
GCP++ Visual Basic Custom Controls version 2.3

Developer's Guide to GCP++ TCP/IP Custom Controls
General

Introduction to the GCP++ family of TCP/IP controls
Overview of TCP/IP control operation
Installation of the software
Operating Environment
Glossary of networking terms used in this document

Custom Controls
VT220, UDP, TCP, TELNET, TFTP



Introduction

Dart Communications is pleased to introduce the GCP++ family of TCP/IP Custom Controls.    
Written by developers for developers, GCP++ is a toolkit of network middle-ware products 
that greatly simplifies the creation of robust IP-aware applications.    This help file documents
the complete line of GCP++ custom controls.

All custom controls utilize the GCP.EXE application as run-time support.    GCP.EXE binds to 
the Windows Sockets library provided by your TCP/IP vendor, and encapsulates the following 
functionality:

1.    Service initiation.    To make a TCP connection, for example, a socket must be created, 
the destination address must be asynchronously resolved, the addess must be formatted, 
and the connection requested.    The asynchronous notification of the connection must be 
caught, and error recover must be handled at each step.    The level of complexity for 
creating daemons and UDP sockets is similar.

2.    Buffering.    The underlying protocol buffers may be full, making buffering a 
requirement for all embedded applications.    GCP makes copies of all outbound buffers, 
providing them to the protocol process as they can be accepted.

3.    File transfer.    The TFTP control puts and gets files, eliminating any programming 
requirements for client applications.

4.    Protocol functionality.    The TELNET and TFTP controls implement those protocols so 
the programmer does not have to learn, code and test them.

5.    Error recovery and cleanup.    GCP++ defines a set of high-level error codes, 
recovering from and resolving low-level error whenever possible.    Servers are closed cleanly
when an unrecoverable error occurs.

GCP utilizes a Windows Sockets Interface (v. 1.1) to communicate with any Windows Sockets 
Compliant TCP/IP stack.    Plans for GCP++ include porting it to the WIN32 environment.

Dart Communications also offers contract programming, consulting and support to 
customers as needed.    If we don't have what you need, we will make it!



Overview

Designed for ease of use, GCP++ Custom Controls are tolerant of and checks for 
programmer errors whenever possible.    The steps a VB programmer accomplishes to use 
the GCP controls are as follows:

Step 1:    Open the Comm Channel or Daemon

Each control has a few properties that must be set to establish the parameters for the open 
call.    Once set, each control has an "OpenComm" property that may be set to TRUE to open 
the control.    The VB application is informed that the control is operating via the 
"OnOpenComm()" event.    

Daemons may be similarly opened by setting the "OpenDaemon" property to TRUE and 
waiting for the "OnOpenDaemon()" event to be fired.

Step 2:    Making something happen

Each control is utilized by setting a property that accomplishes the desired action.    For a 
TCP control, for example, buffers are transmitted by setting the "Output" property to the 
string that is to be transmitted over the network.

Step 3:    Close the Comm Channel or Daemon

The "OpenComm" and "OpenDaemon" properties are set to FALSE when the application 
wished to close the connection.    The "OnCloseComm()" and "OnCloseDaemon()" events are 
executed upon the completion of the operation.



Installation Instructions

The GCP++ Custom Controls distribution diskette provides all the software required to 
incorporate GCP++ Custom Controls into your VB applications.    The following files are 
included:

GCP.EXE This is a standard Windows application that is installed into your target 
directory during setup.    This file must be included as run-time support for any
developed application software.    Any call to a custom control will 
automatically load GCP.EXE as a hidden application.    When the last control is 
closed, GCP.EXE is automatically unloaded.    You must copy and distribute this 
file with all developed applications.

*.VBX Visual Basic Custom Controls are provided as *.VBX files.    These files are 
installed into your target directory.

VT220.EXE, TLNT.EXE, UDP.EXE, TCP.EXE, and TFTP.EXE are compiled VB forms 
that utilize these custom controls.    VB version 3.0 source code for these 
applications are included.

GCP.GLB This is a Visual Basic file that defines the constants used by the GCP++ 
Custom Controls.



Operating Environment and Requirements

Microsoft Windows 3.1 or Windows NT 3.1

Any Windows Sockets compliant version 1.1 TCP/IP stack.    Please contact Dart 
Communications for the most current list of tested products.    Vendors passing GCP++ 
interoperable testing as of 1 Jan 93 are:

Frontier Technologies SuperTCP for Windows
Distinct TCP/IP
NetManage NEWT for Windows
LAN Workplace for DOS (with included WINSOCK emulator)
SPRY's AIR for Windows (with included WINSOCK emulator)
Microsoft WFW TCP/IP
Lanera TCPOpen
FTP Software
Wollongong

80386/486/586 processor.

A 32-bit Windows NT version is planned for development.



Glossary

Client In the client/server relationship, the server provides a service to the client.    
For example, the encapsulated TELNET control provides client functionality, as
it communicates with a matching UNIX host that provides the server portion.

GCP The GCP Server, responsible for interfacing to the network on behalf GCP++ 
client applications and custom controls.

GCP++ Dart Communication's family of TCP/IP products for Windows and Windows NT.

Peer When peers are connected, there is no distinction between a server side and a
client side because they each encapsulate similar functionality and 
communicate as equals.

Server This term sometime refers to the server side of the client/agent relationship, 
but may also refer to a generic communications server.

Socket The socket is the abstaction used to describe the source and sink for data 
(much like a file handle).

TCP Transport Communications Protocol.    Provides unformatted stream 
communications between two processes on a wide-area network.

TELNET This protocol builds upon TCP, defining a protocol for communications 
between two Network Virtual Terminals.

TFTP Trivial File Transport Protocol.    A simple mechanism for sending files between 
workstations on a wide-area network.

UDP User Datagram Protocol.    Provides record-level communications between two 
processes on a wide-area network.

VT-220 Emulation control for VT-220 functionality.



VT-220 Control

Description The VT-220 Control uses TCP sockets for full duplex stream communication.    
All received characters are interpreted and presented on the control's screen.   
By setting control properties, the application can specify how the control will 
behave.

VT-220 offers exceptionally complete and accurate emulation of the DEC 'VT' 
series of terminals, including the VT220, VT102, and VT52. The graphical 
capabilities of the Windows environment are used to provide support for 
features such as 132 columns, multi-national characters, and double-size 
characters.

VT-220 has built-in support for the industry-standard 101-key PC keyboard, 
and for the DEC LK250 keyboard. Non-standard keyboards, such as those 
found on many laptop PC's, can also be used, with proper configuration.

Please refer to the Visual Basic VT220.MAK file that demonstrates how a form 
uses this control.

Keyboard Mapping VT-220 employs an application keypad mapping that is closely tied to 
the DEC VT keyboard:

DEC IBM
PF1 NumLock
PF2 '/' on keypad
PF3 '*' on keypad
PF4 '-' on keypad
- (minus) <Ctrl> + '+' on keypad
, (comma) '+' (on keypad)
Enter Enter (on keypad)
HoldScreen Pause
PrintScreen <Alt-F2>
Data/Talk Not Supported 
F6 - F10 F6 - F10
F11 - F20 Shift-F1 - F10
Help F11
Do F12

The numeric keypad is forced into 'NumLock' mode by Vt220. As a result, only 
the cursor keys on the separate inverted-T keypad will work as cursor-control 
keys.



The following keys are located on the separate 'Editing' keypad. Each key is 
mapped to its physical equivalent on the DEC keyboard ( use the EditKeys 
property to set the DEC or IBM Mapping).

DEC IBM
Find Insert
InsertHere Home 
Remove PageUp 
Select Delete 
PrevScreen End 
NextScreen PageDown 

The DEC user-defined keys (DECUDK) are accessed by pressing <Ctrl-F6> 
through <Ctrl-F10> for the first five, and <Ctrl-Shift-F1> through <Ctrl-Shift-
F10> for the last ten.

File Name GCP_220.VBX

General Properties OpenComm (ensure RemoteAddress and RemotePort are 
initialized before setting to True), CommID, RemoteAddress, RemotePort, 
ShowServer

Auto Login Properties Username, Password, UsernamePrompt, PasswordPrompt

Presentation Properties ForeColor, BackColor, BoldColor, CharSet, ClearComm, 
ClearScreen, ResetTerminal, Columns, AutoWrap, LocalEcho

Control Properties LogFileName, KeyMap, TermType, Keypad, CursorKeys, 
Copy, Paste, SelectPrinter, PrintMode, PrintScreen, EditKeys, Emulate

Events OnOpenComm(), OnCloseComm(), OnOutput(), OnInput(), Console()



TCP Control

Description The TCP Control uses TCP sockets for full duplex stream communication.    
Characters/buffers are sent and received.    The application is responsible for 
segmenting the stream into meaningful records.

Both client and daemon functionality is provided.    When a daemon is 
established on a given port, clients are spawned dynamically when a remote 
TCP provides an inbound connection.    There is no limit placed upon the 
number of connections a single control can support.

Please refer to the Visual Basic TCP.MAK file that demonstrates how a form 
uses this control.

File Name GCP_TCP.VBX

Properties OpenComm (ensure RemoteAddress and RemotePort are initialized before 
setting to True), CommID, OpenDaemon (ensure LocalPort is initialized before 
setting to True), DaemonID, Output, Instance, LocalPort, RemoteAddress, 
RemotePort, ShowServer

Events OnOpenComm(), OnOpenDaemon(), OnCloseComm(), OnCloseDaemon(), 
OnOutput(), OnInput()



UDP Control

Description The UDP Control uses UDP sockets for datagram communication.    
Characters/buffers may be sent and received on a per-datagram basis.    

There is no limit placed upon the number of datagram ports a single control 
can provide.    If a form creates more than one, it should closed them before 
exiting.

Please refer to the Visual Basic UDP.MAK file that demonstrates how a form 
uses this control.

File Name GCP_UDP.VBX

Properties OpenComm (ensure LocalPort is initialized before setting OpenComm), 
CommID, Output (ensure RemoteAddress and RemotePort are initialized 
before setting Output), Instance, LocalPort , RemoteAddress, RemotePort, 
ShowServer

Events OnOpenComm(), OnCloseComm(), OnOutput(), OnInput()



TELNET Control

Description The TELNET Control uses TCP sockets for full duplex stream communication.    
Characters/buffers may be sent and received.    The application is responsible 
for segmenting the stream into meaningful records.    Incoming TELNET 
commands are stripped out and provided to the Control as an event.    
Outgoing TELNET commands (including option and sub-option negotiation) 
can be specified using control properties.

Both client and daemon functionality is provided.    When a daemon is 
established on a given port, TELNET agents are spawned dynamically when a 
remote TELNET client provides an inbound connection.    There is no limit 
placed upon the number of connections a single control can support.    If a 
form creates more than one, it should closed them before exiting.

Please refer to the Visual Basic TLNT.MAK file that demonstrates how a form 
uses this control.

File Name GCP_TLNT.VBX

Properties OpenComm (ensure RemoteAddress and RemotePort are initialized before 
setting to True), CommID, OpenDaemon (ensure LocalPort is initialized before 
setting to True), DaemonID, Output, Instance, LocalPort, RemoteAddress, 
RemotePort,    ShowServer, Cmd, DoOption, DontOption, WillOption, 
WontOption, DoSubOption, SubOption

Events OnOpenComm(), OnOpenDaemon(), OnCloseComm(), OnCloseDaemon(), 
OnOutput(), OnInput(),OnCmd()



TFTP Control

Description The TFTP Control uses UDP sockets for the tranmission of files to/from other 
TFTP-capable hosts.    

Both client and daemon functionality is provided.    When a daemon is 
established it responds to remote requests for file transfer.    There is no limit 
placed upon the number of clients a single control can support.

Please refer to the Visual Basic TFTP.MAK file that demonstrates how a form 
uses this control.

File Name GCP_TFTP.VBX

Properties OpenComm, CommID, OpenDaemon, DaemonID, Instance, RemoteAddress, 
RemoteFileSpec, Mode,    InputFileSpec (ensure RemoteAddress, Mode, and 
RemoteFileSpec are initialized before setting InputFileSpec), OutputFileSpec 
(ensure RemoteAddress, Mode and RemoteFileSpec are initialized before 
setting OutputFileSpec), ShowServer

Events OnOpenComm(), OnOpenDaemon(), OnCloseComm(), OnCloseDaemon(), 
OnOutputFile(), OnInputFile()



OpenComm Property

Description Commands that a communication channel be opened or closed.    This 
property is write-only at run-time and is not shown on the property list.

Usage [form.]Control.OpenComm[ = { True | False } ]

Remarks The OpenComm property settings are:

Setting Description
True Communication channel is initiated
False Communication channel is closed

Set to True to initiate the establishment of a communication channel.    All 
required parameters must initialized first!    The OnOpenComm() event will be 
called when the process completes.

Set to False to close the communication channel identified by the value of 
CommID.    The OnCloseComm() event will be called when the process 
completes.

Example TCP1.RemoteAddress = "dart.com"
TCP1.RemotePort = 4106
TCP1.OpenComm = True      ' the connection process begins

Data Type Integer (Boolean)



Copy, Paste Properties

Description When set to true, copies or pastes between the highlighted area of the screen 
and the clipboard.

Usage [form.]Control.Copy[ = True ]

Data Type Integer (Boolean)



SelectPrinter Property

Description When set to true, a dialog box is displayed to set the printer

Usage [form.]Control.SelectPrinter[ = True ]

Data Type Integer (Boolean)



AutoWrap Property

Description When the VT220 control is narrower than 80 or 132 columns, the value of 
AutoWrap determines if the additional characters will wrap to the next line (or 
be clipped by the right side of the window).

Usage [form.]Control.AutoWrap[ = { True | False } ]

Remarks The AutoWrap property settings are:

Setting Description
True To wrap all characters to the next line.
False Clip characters on right side of control.

Example VT1.AutoWrap = True"

Data Type Integer (Boolean)



LocalEcho Property

Description Echos typed characters to the screen.    Mostly useful for debugging.

Usage [form.]Control.LocalEcho[ = { True | False } ]

Remarks The Local property settings are:

Setting Description
True To send all local keystrokes to screen (as well as to the host)
False Default.    No local keystrokes to screen.

Example VT1.LocalEcho = True

Data Type Integer (Boolean)



OpenDaemon Property

Description Commands that a daemon be opened or closed.    A daemon will accept 
incoming protocol requests.    TCP and TELNET daemons accept incoming 
connections, and will create a new CommID to handle each new connection.    
The TFTP daemon handles remote TFTP requests without creating a new 
CommID.    This property is write-only at run-time.

Usage [form.]Control.OpenDaemon[ = { True | False } ]

Remarks The OpenComm property settings are:

Setting Description
True Daemon is opened
False Daemon is closed

Set to True to initiate the establishment of a daemon.    Ensure all the required 
parameters are initialized first.    The OnOpenDaemon() event will be called 
when the process completes.

Set to False to close the daemon identified by the value of DaemonID.    The 
OnCloseDaemon() event will be called when the process completes.

Example TCP1.LocalPort = 23
TCP1.OpenDaemon = True      ' we have made a TELNET server

Data Type Integer (Boolean)



Output Property

Description When set, the string is sent out over the communication channel specified in 
CommID.    This property is write-only at run-time and is not shown on the 
property list.

Usage [form.]Control.Output[ = outString$ ]

Remarks Output can be of any length up to 32K bytes.

Example Sub Form_KeyPress (KeyAscii As Integer)
                TCP1.Output = Chr$(KeyAscii)
End Sub

Data Type String



LogFileName Property

Description Specifies a filename for the control to log all input (from the host) to.    May be 
set to the null string ("") to turn off log.

Usage [form.]Control.LogFileName[ = LogFileSpec$ ]

Example VT1.LogFileName = "c:\temp\session2.log"

Data Type String



PrintScreen Property

Description Specifies a filename for dumping the current screen contents.

Usage [form.]Control.PrintScreen[ = ScreenFileSpec$ ]

Example VT1.PrintScreen = "c:\temp\screen.25"

Data Type String



KeyMap Property Array

Description This property allows the user to redefine practically any key on the PC 
keyboard to produce a special character string.    <shift>, <control> and 
<shift-control> modifiers are also supported.    The index into the array is a 
value between 0 and 255 that represents the Windows Virtual Key Code (refer 
to constant.txt of the VB Development System).

Usage [form.]Control.KeyMap(keycode)[ = MapString$ ]

Remarks VT220 allows you to arbitrarily redefine almost any key on the keyboard. The 
exceptions are the modifier keys: <Shift>, <Ctrl>, <Alt>, and <CapsLock>.

Key-redefinition strings may be up to 80 characters in length.

Each key can have up to four separate redefinitions:
* one for when the key is pressed in its unmodified, or 'base' state
* one for when the key is pressed together with the <Shift> key
* one for when the key is pressed together with the <Ctrl> key.
* one for when the key is pressed together with both <Shift> and <Ctrl>

These strings should be entered into to the input field as one continuous 
string, with each of the substrings separated by the '|' (pipe) character. For 
example:

test|TEST|Test|tEST

is a key-redefinition string containing four parts, one each for the base state, 
the <Shift> state, the <Ctrl> state, and the <Ctrl+Shift> state. If you omit 
one or more of the four states, the default behavior for the key will be used (if 
one exists).

The caret ('^') character can be used to specify a control character; this 
notation for the first 32 control characters is supported by VT220. Another, 
more versatile notation is also available: this is the 'C' style 'backslash' 
notation. For example, '\033' could be used to represent the <Escape> 
character. If you use this type of notation, you must supply exactly three octal 
digits, including leading zeros if required.

The SS3 (\217) and CSI (\233) 8-bit control characters are special, in that they 
will be converted to their 7-bit counterpart for tranmission to the host.

The sample VT220.EXE application saves these definitions to disk.

Example frmMDI.ActiveForm.VT1.KeyMap(Val(VirtualKey)) = Mapping$

Data Type String





OutputFileSpec Property

Description When set, the file is sent out over the communication channel specified in 
CommID.    This property is write-only at run-time.

Usage [form.]Control.OutputFileSpec[ = outString$ ]

Remarks The RemoteFileSpec property must be set before OutputFileSpec is set, so the 
communication channel knows where to put it on the remote system.

The RemoteAddressand Mode (NET_ASCII or OCTET) properties must also be 
set for TFTP controls.

Example TFTP1.RemoteAddress = "Dart.com"
TFTP1.RemoteFileSpec = "d:\server\your.img"
TFTP1.Mode = OCTET
TFTP1.OutputFileSpec = "c:\output\my.img"

Data Type String



InputFileSpec Property

Description When set, the file is retrieved using the communication channel specified in 
CommID.    This property is write-only at run-time.

Usage [form.]Control.InputFileSpec[ = outString$ ]

Remarks The RemoteFileSpec property must be set before InputFileSpecis set, so the 
communication channel knows where to get it on the remote system.

The RemoteAddress and Mode (NET_ASCII or OCTET) properties must also be 
set for TFTP controls.

Example TFTP1.RemoteAddress = "Dart.com"
TFTP1.RemoteFileSpec = "d:\server\your.img"
TFTP1.Mode = NETASCII 
TFTP1.InputFileSpec = "c:\input\my.img"

Data Type String



Instance Property

Description Sets a value that is saved when the Output, InputFileSpec, and OutputFileSpec
properties are set.    Upon the completion of the file or buffer transfer, Instance
is provided as a parameter to the OnOutput(), OnOutputFile() and 
OnInputFile() events.

Usage [form.]Control.Instance[ = objectpointer& ]

Remarks The Instance property may be used for any purpose.    For example, it may be 
used to reference a structure or C++ object.

Data Type Long



Mode Property

Description For the TFTP Control only, set the Mode to either NETASCII or OCTET before 
setting InputFileSpec or OutputFileSpec.

Usage [form.]TFTP1.Mode[ = NETASCII | OCTET ]

Remarks NETASCII and OCTET are defined in the GCP.GLB file.

Data Type Integer



Cmd Property

Description For the TELNET Control only, instructs the control to send the specified Cmd to
the host.    A two-byte string is sent comprised of an IAC character (255) and 
the specified character.    This property is write-only at run-time, and is not 
shown on the property list.

Usage [form.]TELNET1.Cmd[ = CmdNumber ]

Remarks Cmd must be an integer between 1 and 254.    Please refer to RFC854 for a 
description of TELNET commands.

Data Type Integer



DoOption Property

Description For the TELNET Control only, instructs the control to send a "DO OPTION" 
three-character sequence.    This property is write-only at run-time, and is not 
shown on the property list.

Usage [form.]TELNET1.DoOption[ = OptionNumber ]

Remarks The application will be notified of the resulting negotiation via the OnCmd 
event.    Option numbers are integers between 0 and 254.    Please refer to 
RFC854 for a description of TELNET commands and option negotiation.

Data Type Integer



DontOption Property

Description For the TELNET Control only, instructs the control to send a "DONT OPTION" 
three-character sequence.    This property is write-only at run-time, and is not 
shown on the property list.

Usage [form.]TELNET1.DontOption[ = OptionNumber ]

Remarks The application will be notified of the resulting negotiation via the OnCmd 
event.    Option numbers are integers between 0 and 254.    Please refer to 
RFC854 for a description of TELNET commands and option negotiation.

Data Type Integer



WillOption Property

Description For the TELNET Control only, instructs the control to send a "WILL OPTION" 
three-character sequence.    This property is write-only at run-time, and is not 
shown on the property list.

Usage [form.]TELNET1.WillOption[ = OptionNumber ]

Remarks The application will be notified of the resulting negotiation via the OnCmd 
event.    Option numbers are integers between 0 and 254.    Please refer to 
RFC854 for a description of TELNET commands and option negotiation.

Data Type Integer



WontOption Property

Description For the TELNET Control only, instructs the control to send a "WONT OPTION" 
three-character sequence.    This property is write-only at run-time, and is not 
shown on the property list.

Usage [form.]TELNET1.WontOption[ = OptionNumber ]

Remarks The application will be notified of the resulting negotiation via the OnCmd 
event.    Option numbers are integers between 0 and 254.    Please refer to 
RFC854 for a description of TELNET commands and option negotiation.

Data Type Integer



DoSubOption Property

Description For the TELNET Control only, instructs the control to send a sub-option 
negotiation sequence.    This property is write-only at run-time, and is not 
shown on the property list.

Usage [form.]TELNET1.DoSubOption[ = OptionNumber ]

Remarks The application will be notified of the resulting negotiation via the OnCmd 
event.    Option numbers are integers between 0 and 254.    Please refer to 
RFC854 for a description of TELNET commands and option negotiation.    
Please refer to RFC855 for a description of sub-option negotiation.    Ensure the
SubOption string is set prior to setting this property.

Data Type Integer



SubOption Property

Description For the TELNET Control only, sets the sub-option negotiation sequence in 
preparation for the DoSubOption command statement.

Usage [form.]TELNET1.SubOption[ = SubOptionCommandSequence ]

Remarks The application will be notified of the resulting negotiation via the OnCmd 
event.    Please refer to RFC854 for a description of TELNET commands and 
option negotiation.    Please refer to RFC855 for a description of sub-option 
negotiation. 

Data Type String



RemoteAddress Property

Description A RemoteAddress is required to specify the remote end of a TCP connection or 
the destination for a TFTP file or UDP datagram.    For incoming datagrams, 
this property may be read to get the datagram's origination address.

Usage [form.]Control.RemoteAddress[ = AddressString$ ]

Remarks This can be a logical name (ie. "Dart.com") or an internet address in dot 
notation (ie. "192.55.55.55").    

Use "255.255.255.255" to broadcast datagrams.

Example TCP1.RemoteAddress = "Dart.com"
TCP1.RemotePort = "4106"
TCP1.OpenComm = True

Data Type String



RemotePort Property

Description A RemotePort is required to specify the remote end of a TCP connection or the 
destination for a UDP datagram.    For incoming datagrams, this property may 
be read to get the datagrams origination port.

Usage [form.]Control.RemotePort[ = WellKnownPort% ]

Remarks The remote port number one wishes to connect to is normally specified by the 
protocol to be used.    

Example TELNET1.RemoteAddress = "Dart.com"
TELNET1.RemotePort = "23"        ' well-known port used for TELNET
TELNET1.OpenComm = True

Data Type Integer



LocalPort Property

Description A LocalPort is required to specify the local end of a TCP daemon or the source 
for a UDP datagram.

Usage [form.]Control.LocalPort[ = WellKnownPort% ]

Remarks The local port number one wishes to use to is normally specified by the 
protocol.    

Example TELNET1.LocalPort = "23"        ' well-known port used for TELNET
TELNET1.OpenComm = True        ' we have made a TELNET server

Data Type Integer



RemoteFileSpec Property

Description The RemoteFileSpec property establishes what remote file is to be copied (to 
or from) by the TFTP Control.    This property is write-only at run-time.

Usage [form.]Control.RemoteFileSpec[ = outString$ ]

Remarks The RemoteFileSpec property must be set before InputFileSpec or 
OutputFileSpec is set, so the communication channel knows where to locate 
the file on the remote system.

Example TFTP1.RemoteAddress = "Dart.com"
TFTP1.RemoteFileSpec = "d:\server\your.img"
TFTP1.Mode = NETASCII
TFTP1.InputFileSpec = "c:\input\my.img"        ' this starts the tranfer

Data Type String



CommID Property

Description The CommID identifies a communication channel.    Since it is possible to 
establish multiple communication channels using a single control, the 
application references each channel by setting the CommID before setting 
another property that utilizes a communication channel.

Usage [form.]Control.CommID[ = SavedID% ]

Remarks Most developers will probably use a single channel per control, which means 
that CommID should never need to be modified.    If multiple channels are to 
be used, read on.

If a daemon is opened, it can accept multiple connections which will generate 
multiple communication channels.    In this case, the application is responsible 
for maintaining a list of CommIDs and setting CommID to one of those values 
before setting any property that operates upon the channel (ie: 
Output=string, OutputFileSpec=string, OpenComm=FALSE).

Example Sub Telnet1_OnOpenComm (ErrorCode As Integer)
                If (Not ErrorCode) Then
                                  CommIDs[index] = TFTP1.CommID      ' save CommID
End Sub

Data Type Integer



DaemonID Property

Description The DaemonID identifies a daemon object.    Since it is often possible to 
establish multiple daemons using a single control, the application references 
each by setting the DeamonID before setting a property that used the 
daemon.    This property is both read and write at run-time.

Usage [form.]Control.DaemonID[ = SavedID% ]

Remarks Most developers will probably use a single daemon, which means that 
DaemonID should never need to be modified.    

If multiple daemons are to be used, the application is responsible for 
maintaining a list of active DaemonIDs and setting DaemonID to one of those 
values before setting OpenComm=False (to close the daemon).

Example Sub Telnet1_OnOpenDaemon (ErrorCode as Integer)
                If (Not ErrorCode) Then
                                  DaemonIDs[index] = TFTP1.DaemonID      ' save it
End Sub

Data Type Integer



ShowServer Property

Description Controls the visual display of the GCP++ server.    This property is write-only at
run-time.

Usage [form.]Control.ShowServer[ = { True | False } ]

Remarks The ShowServer property settings are:

Setting Description
True Show the GCP++ icon or window
False Hide the GCP++ icon or window

Normal operation is hidden.

Example TFTP1.ShowServer = True          ' shows the GCP server to the user

Data Type Integer (Boolean)



ClearComm, ClearScreen, ResetTerminal Properties

Description ClearComm aborts any print operation in progress, aborts any escape 
sequence processing, clears buffers, takes the terminal out of printer 
controller mode.

ClearScreen clears the monitor screen.

ResetTerminal resets many terminal operating features to a default setting 
used by most application programs.

Usage [form.]Control.ClearScreen[ = { True } ]

Data Type Integer (Boolean)



Username, Password, UsernamePrompt, PasswordPrompt Properties

Description Used only by the VT220 control to automatically login to the host.

Usage [form.]VT1.UsernamePrompt[ = prompt$ ]

Remarks These properties must all be set before VT1.OpenComm is set to True.    If not 
used, user logs on normally.

Example VT1.UsernamePrompt = "ogin:"          ' any substring of the prompt will do
VT1.PasswordPrompt = "word:"
VT1.UserName = "baldwin"
VT1.Password = "MyPassword"
VT1.RemoteAddress = "dart.com"
VT1.OpenComm = True        '    initiate the connection

Data Type String



ForeColor, BackColor, BoldColor Properties

Description Used only by the VT220 control to set screen colors.

Usage [form.]VT1.ForeColor[ = color% ]

Remarks These properties may be set at any time.    Possible colors are:          0 - BLACK, 
1 - BLUE, 2 - GREEN, 3 - CYAN, 4 - RED, 5 - MAGENTA, 6 - BROWN, 7 - WHITE

Example VT1.BackColor = 0
VT1.ForeColor = 7
VT1.BoldColor = 4

Data Type Integer



CharSet Property

Description Used only by the VT220 control to set the character set.

Usage [form.]VT1.CharSet[ = charset% ]

Remarks These properties may be set at any time.    Possible character sets are:          0 - 
DEC Large, 1 - DEC Small, 2 - IBM, 3 - ANSI, 4 - Terminal.    The 'DEC' font is    
an exact emulation of the DEC Multinational Character Set, as found in the 
VT2xx terminals. The other three are standard Windows fixed-pitch fonts.

Example VT1.CharSet = 0

Data Type Integer



TermType Property

Description Used to set both the terminal type (right after connecting during TELNET 
terminal type negotiation) and (if in VT-200 mode) if 7-bit or 8-bit controls will 
be used.

Usage [form.]VT1.TermType[ = type% ]

Remarks TermType must be set before connecting, as TELNET Terminal Type option 
negotiation can only happen once.    If VT200 mode is negotiatied, however, 
the user can toggle between 7-bit and 8-bit controls (as can host applications).
Possible values are:    

0 - VT200 Mode, 8-Bit Controls.    Sets the control to operate with a full 
range of capabilities in an 8-bit environment with 8-bit controls.    Many 
applications designed for the VT100 terminal will run in this mode.

1 - VT200 Mode, 7-Bit Controls.    Sets the terminal to operate with a full 
range of capabilities, using 8-bit graphic characers and 7-bit controls.    This is 
the recommeded mode for most applications.

2 - VT100 Mode.    Sets the terminal for use with application programs 
designed for a VT100 terminal and requireing strict VT100 compatibility.    In 
general, use VT200 mode, 7-bit controls if possible.

3 - VT52 Mode.    Sets the terminal for use with application programs 
designed for the VT52 terminal.

4 - No Emulation.    Does not interpret any characters.

Example VT1.TermType = 1    ' recommended default

Data Type Integer



KeyPad Property

Description Selects whether or not the keypad sends ASCII character codes or escape 
sequences.

Usage [form.]VT1.KeyPad[ =choice% ]

Setting Description
0 Numeric keypad (default).    Causes the auxiliary keypad to send ASCII 

character codes corresponding to the numeric characters on the keys.
1 Application keypad.    Causes the auxiliary keypad to send escape 

sequences used by an application program.

Example VT1.KeyPad = 1

Data Type Integer



PrintMode Property

Description Selects the operating mode for the printer.

Usage [form.]VT1.PrintMode[ =choice% ]

Setting Description
0 Normal Print Mode (default).    Lets user invoke print functions from the 

keyboard.
1 Auto Print Mode .    Prints the current line of text when the terminal 

receives a line feed, form feed, or vertical tab code from the host 
computer.

2 Controller Mode .    Causes the printer port to treat the printer as a 
terminal, while the VT220 monitors traffic.    (The host computer transfers 
data to the printer, without displaying the data on the monitor screen).

Example VT1.PrintMode = 1

Data Type Integer



EditKeys Property

Description Selects whether DEC or IBM mappings for the edit keypad (above the cursor 
keys on most keyboards) will be used.

Usage [form.]VT1.EditKeys[ =choice% ]

Setting Description
0 DEC Mapping (default).    
1 IBM Mapping.    

Example VT1.EditKeys = 0

Data Type Integer



Emulate Property

Description Selects whether or not the control functions as an emulator or puts up 
characters as received.

Usage [form.]VT1.Emulate = [ True | False ]

Example VT1.Emulate = True

Data Type Bool (Integer)



CursorKeys Property

Description Selects whether or not the cursor keys send ANSI cursor control sequences or 
application control functions.

Usage [form.]VT1.CursorKeys[ =choice% ]

Setting Description
0 Normal cursor keys (default).    Cursor keys send ANSI cursor control 

sequences (up, down, left, and right).
1 Application Cursor Keys.    Cursor keys send application program control 

functions.

Example VT1.CursorKeys = 1

Data Type Integer



Columns Property

Description Used by the VT220 control to set the width of the screen (number of columns)

Usage [form.]VT1.CharSet[ = columns% ]

Remarks This property may be set at any time.    Possible values are:          0 - 80 
Columns, 1 - 132 Columns

Example VT1.Columns = 1

Data Type Integer



OnOpenComm() Event

Description The OnOpenComm() event is generated each time the OpenComm property is 
set to True and whenever a daemon spawns a new communication channel.

Usage Sub Control_OnOpenComm (ErrorCode As Integer)

Remarks The ErrorCode must be checked.    If (ErrorCode = GCP_OK), then the 
communication channel has opened successfully and CommID holds a valid 
reference.    If (ErrorCode <> GCP_OK), then the communication channel 
failed, and ErrorCode can be used to translate the error.

If only a single single channel is used, then CommID need not be changed as 
it will always reference the communication channel.    If multiple channels are 
being used, the application must save the CommID property each time this 
event indicates another open channel.    A unique value for CommID will be 
present each time this event is fired.

Example The following example shows how to handle communication errors and 
events.    You can insert code to handle a particular error or event after its 
Case statement.

Sub Comm_OnOpenComm (ErrorCode As Integer)
Select Case ErrorCode

Case GCP_OK ' OK return
Case GCP_EUNKNOWN ' An error of unknown origin
Case GCP_EPARAM1, ' parameter 1 is invalid
Case GCP_EPARAM2, ' parameter 2 is invalid
Case GCP_EPARAM3, ' parameter 3 is invalid
Case GCP_EPARAM4, ' parameter 4 is invalid
Case GCP_EPARAM5, ' parameter 5 is invalid
Case GCP_EPARAM6, ' parameter 6 is invalid
Case GCP_EPARAM7, ' parameter 7 is invalid
Case GCP_ERDOS, ' remote DOS error
Case GCP_EDOS, ' local DOS error
Case GCP_ERNOENT, ' remote file not found 
Case GCP_ENOENT, ' local file not found 
Case GCP_ENOMEM, ' Insufficient resources 
Case GCP_ENETWORK, ' Unspecified network error 
Case GCP_EINVALIDSERVER,' Server handle invalid 
Case GCP_EALREADYOPEN,' Server was previously opened on specified socket 



Case GCP_ENOTOWNER, ' Server is not owned by hWnd 
Case GCP_EBADSERVERTYPE,' Server type not supported 
Case GCP_EBADCALLBACK,' Callback window specified invalid
Case GCP_EOF, ' end of file reached
Case GCP_EBADMSG, ' Msg Not Supported by Server 
GCP_RCLOSE, ' Remote party has closed
Case GCP_ENOGCP, ' GCP++ server not present
Case GCP_EBADADDRESS, ' connection failed to given address 

End Select
End Sub



OnCloseComm() Event

Description The OnCloseComm event is generated each time the OpenComm property is 
set to False.

Usage Sub Control_OnCloseComm (ErrorCode As Integer)

Remarks The ErrorCode should be checked.    If (ErrorCode = GCP_OK), then the 
communication channel has closed normally.    If (ErrorCode <> GCP_OK), then
the communication channel failed, and ErrorCode can be used to translate the
error.

This event may be generated in response to the application setting 
OpenComm to False, or it may reflect a remote close or a system failure.

Example The following example shows how to handle communication errors and 
events.    You can insert code to handle a particular error or event after its 
Case statement.

Sub Comm_OnCloseComm (ErrorCode As Integer)
Select Case ErrorCode

Case GCP_OK ' OK return
Case GCP_EUNKNOWN ' An error of unknown origin
Case GCP_EPARAM1, ' parameter 1 is invalid
Case GCP_EPARAM2, ' parameter 2 is invalid
Case GCP_EPARAM3, ' parameter 3 is invalid
Case GCP_EPARAM4, ' parameter 4 is invalid
Case GCP_EPARAM5, ' parameter 5 is invalid
Case GCP_EPARAM6, ' parameter 6 is invalid
Case GCP_EPARAM7, ' parameter 7 is invalid
Case GCP_ERDOS, ' remote DOS error
Case GCP_EDOS, ' local DOS error
Case GCP_ERNOENT, ' remote file not found 
Case GCP_ENOENT, ' local file not found 
Case GCP_ENOMEM, ' Insufficient resources 
Case GCP_ENETWORK, ' Unspecified network error 
Case GCP_EINVALIDSERVER,' Server handle invalid 
Case GCP_EALREADYOPEN,' Server was previously opened on specified socket 
Case GCP_ENOTOWNER, ' Server is not owned by hWnd 
Case GCP_EBADSERVERTYPE,' Server type not supported 



Case GCP_EBADCALLBACK,' Callback window specified invalid
Case GCP_EOF, ' end of file reached
Case GCP_EBADMSG, ' Msg Not Supported by Server 
GCP_RCLOSE, ' Remote party has closed
Case GCP_ENOGCP, ' GCP++ server not present
Case GCP_EBADADDRESS, ' connection failed to given address 

End Select
End Sub



OnOpenDaemon() Event

Description The OnOpenDaemon event is generated each time the OpenDaemon property
is set to True.

Usage Sub Comm_OnOpenDaemon (ErrorCode As Integer)

Remarks The ErrorCode must be checked.    If (ErrorCode = GCP_OK), then the 
communication daemon has opened successfully and DaemonID holds a valid 
reference.    If (ErrorCode <> GCP_OK), then the communication daemon failed
during creation, and ErrorCode can be used to translate the error.

If only a single single daemon is used, then DaemonID need not be changed 
as it will always reference the single daemon.    If multiple daemons are being 
used, however, the application must save the DaemonID property each time 
this event indicates another daemon has been created.

Example The following example shows how to handle communication errors.    You can 
insert code to handle a particular error or event after its Case statement.

Sub Comm_OnOpenDaemon (ErrorCode As Integer)
Select Case ErrorCode

Case GCP_OK ' OK return
Case GCP_EUNKNOWN ' An error of unknown origin
Case GCP_EPARAM1, ' parameter 1 is invalid
Case GCP_EPARAM2, ' parameter 2 is invalid
Case GCP_EPARAM3, ' parameter 3 is invalid
Case GCP_EPARAM4, ' parameter 4 is invalid
Case GCP_EPARAM5, ' parameter 5 is invalid
Case GCP_EPARAM6, ' parameter 6 is invalid
Case GCP_EPARAM7, ' parameter 7 is invalid
Case GCP_ERDOS, ' remote DOS error
Case GCP_EDOS, ' local DOS error
Case GCP_ERNOENT, ' remote file not found 
Case GCP_ENOENT, ' local file not found 
Case GCP_ENOMEM, ' Insufficient resources 
Case GCP_ENETWORK, ' Unspecified network error 
Case GCP_EINVALIDSERVER,' Server handle invalid 
Case GCP_EALREADYOPEN,' Server was previously opened on specified socket 
Case GCP_ENOTOWNER, ' Server is not owned by hWnd 



Case GCP_EBADSERVERTYPE,' Server type not supported 
Case GCP_EBADCALLBACK,' Callback window specified invalid
Case GCP_EOF, ' end of file reached
Case GCP_EBADMSG, ' Msg Not Supported by Server 
GCP_RCLOSE, ' Remote party has closed
Case GCP_ENOGCP, ' GCP++ server not present
Case GCP_EBADADDRESS, ' connection failed to given address 

End Select
End Sub



OnCloseDaemon() Event

Description The OnCloseDaemon event is generated each time the OpenDaemon property
is set to False.

Usage Sub Control_OnCloseDaemon (ErrorCode As Integer)

Remarks The ErrorCode should be checked.    If (ErrorCode = GCP_OK), then the daemon
has closed normally.    If (ErrorCode <> GCP_OK), then the communication 
channel failed, and ErrorCode can be used to translate the error.

This event may be generated in response to the application setting 
OpenDaemon to False, or it may reflect a system failure.

Example The following example shows how to handle communication errors and 
events.    You can insert code to handle a particular error or event after its 
Case statement.

Sub Comm_OnOpenComm (ErrorCode As Integer)
Select Case ErrorCode

Case GCP_OK ' OK return
Case GCP_EUNKNOWN ' An error of unknown origin
Case GCP_EPARAM1, ' parameter 1 is invalid
Case GCP_EPARAM2, ' parameter 2 is invalid
Case GCP_EPARAM3, ' parameter 3 is invalid
Case GCP_EPARAM4, ' parameter 4 is invalid
Case GCP_EPARAM5, ' parameter 5 is invalid
Case GCP_EPARAM6, ' parameter 6 is invalid
Case GCP_EPARAM7, ' parameter 7 is invalid
Case GCP_ERDOS, ' remote DOS error
Case GCP_EDOS, ' local DOS error
Case GCP_ERNOENT, ' remote file not found 
Case GCP_ENOENT, ' local file not found 
Case GCP_ENOMEM, ' Insufficient resources 
Case GCP_ENETWORK, ' Unspecified network error 
Case GCP_EINVALIDSERVER,' Server handle invalid 
Case GCP_EALREADYOPEN,' Server was previously opened on specified socket 
Case GCP_ENOTOWNER, ' Server is not owned by hWnd 
Case GCP_EBADSERVERTYPE,' Server type not supported 
Case GCP_EBADCALLBACK,' Callback window specified invalid



Case GCP_EOF, ' end of file reached
Case GCP_EBADMSG, ' Msg Not Supported by Server 
GCP_RCLOSE, ' Remote party has closed
Case GCP_ENOGCP, ' GCP++ server not present
Case GCP_EBADADDRESS, ' connection failed to given address 

End Select
End Sub



OnInput() Event

Description The OnInput() event is generated each time incoming data is ready for 
reading.

Usage Sub Comm_OnInput (Buffer As String, ErrorCode As Integer)

Remarks The ErrorCode must be checked.    If (ErrorCode = GCP_OK), then the buffer is 
full of valid data.    If (ErrorCode <> GCP_OK), then a communication failure 
occurred, and ErrorCode can be used to translate the error.    The user may 
check the InstanceData property of instance data.    For datagram packets, the
RemoteAddress and RemotePort properties may be checked for origination 
information.

Example The following example shows how to handle communication errors.    You can 
insert code to handle a particular error or event after its Case statement.

Sub Comm_OnInput (Buffer As String, ErrorCode As Integer)
if (Not ErrorCode)

Text1.Text = Buffer
End Sub



OnInputFile() Event

Description The OnInputFile() event is generated each time a file has been received 
locally.

Usage Sub Comm_OnInputFile (LocalFileSpec As String, Instance As Long, ErrorCode 
As Integer)

Remarks The ErrorCode must be checked.    If (ErrorCode = GCP_OK), then the file was 
successfully received.    If (ErrorCode <> GCP_OK), then the transfer failed, 
and ErrorCode can be used to translate the error.

If the local workstation iniated the transfer, then Instance will contain the 
Instance property value that was current when the transfer was initiated.

The LocalFileSpec is a complete file specification of the local file.

Example The following example shows how a file is received. 

Sub Comm_OnInputFile (LocalFileSpec As String, Instance As Long, ErrorCode As Integer)
if (Not ErrorCode)

Text1.Text = LocalFileSpec 
End Sub



OnOutput() Event

Description The OnOutput() event is generated each time out-going data is successfully 
accepted by the underlying protocol.

Usage Sub Comm_OnOutput (Instance As Long, ErrorCode As Integer)

Remarks The ErrorCode must be checked.    If (ErrorCode = GCP_OK), then the buffer is 
full of valid data.    If (ErrorCode <> GCP_OK), then a communication failure 
occurred, and ErrorCode can be used to translate the error.

Instance will contain the Instance property value that was current when the 
transfer was initiated.

Example The following example shows how to handle communication errors.    You can 
insert code to handle a particular error or event after its Case statement.

Sub Comm_OnOutput (Buffer As String, ErrorCode As Integer)
if (Not ErrorCode)

Text1.Text = "Buffer successfully sent"
End Sub



OnOutputFile() Event

Description The OnOutputFile() event is generated each time a file has been sent from the
local workstation.

Usage Sub Comm_OnOutputFile (LocalFileSpec As String, Instance As Long, ErrorCode
As Integer)

Remarks The ErrorCode must be checked.    If (ErrorCode = GCP_OK), then the file was 
successfully received.    If (ErrorCode <> GCP_OK), then the transfer failed, 
and ErrorCode can be used to translate the error.

If the local workstation iniated the transfer, then Instance will contain the 
Instance property value that was current when the transfer was initiated.

The LocalFileSpec is a complete file specification of the local file that was sent.

Example The following example shows how the application knows a file was sent. 

Sub Comm_OnOutputFile (LocalFileSpec As String, Instance As Long, ErrorCode As Integer)
if (Not ErrorCode)

Text1.Text = "File successfully sent"
End Sub



Console() Event

Description The Console() event is used to provide information to a "console" window.

Usage Sub VT1_Console (Msg As String)

Example The following example shows how the application knows a file was sent. 

Sub VT1_Console (Msg As String)
MsgBox Msg  ' inform user of exception event

End Sub



OnCmd() Event

Description The OnCmd() event is generated each time the remote Network Virtual 
Terminal (NVT) sends a TELNET command sequence.    Please refer to RFC854 
and RFC855 for details.

Usage Sub Comm_OnCmd (Cmd As Integer, TelnetOption As Integer, SubOption as 
String, ErrorCode As Integer)

Remarks The ErrorCode must be checked.    If (ErrorCode <> GCP_OK), then the receive
failed, and ErrorCode can be used to translate the error.

The Cmd is typically a DO_CMD, DONT_CMD, WILL_CMD, WONT_CMD (defined 
in GCP.GLB)

The TelnetOption is a number from 0 to 254 that indicates a TELNET option.

The SubOption is a string that is only relevant when Cmd = SB_CMD.

Example The following example illustrates how Options are negotiated: 

Sub TELNET1_OnCmd (Cmd As Integer, TelnetOption As Integer, SubOption As String, 
ErrorCode As Integer)
    Select Case Cmd
    Case SB_CMD
        ' negotiate suboption
        If TelnetOption = 24 Then
            TELNET1.SubOption = Str$(0) + "vt220"
            TELNET1.DoSubOption = 24
        End If
    Case DO_CMD
        If TelnetOption = 24 Then
            TELNET1.WontOption = 24
        Else
            TELNET1.WontOption = TelnetOption
        End If
    Case DONT_CMD
        TELNET1.WontOption = TelnetOption
    Case WILL_CMD
        If TelnetOption = 3 Then



            TELNET1.DoOption = 3
        Else
            TELNET1.DontOption = TelnetOption
        End If
    Case WONT_CMD
        TELNET1.DontOption = TelnetOption
    End Select
End Sub



Error Codes

The file GCP.TXT has been included with the GCP++ Custom Controls, and provides the error
constants described below:

GCP_OK OK return 

GCP_EUNKNOWN  An error of unknown origin has occurred

GCP_EPARAM1 parameter 1 is invalid (internal error condition)

GCP_EPARAM2 parameter 2 is invalid (internal error condition)

GCP_EPARAM3 parameter 3 is invalid (internal error condition)

GCP_EPARAM4 parameter 4 is invalid (internal error condition)

GCP_EPARAM5 parameter 5 is invalid (internal error condition)

GCP_EPARAM6 parameter 6 is invalid (internal error condition)

GCP_EPARAM7  parameter 7 is invalid (internal error condition)

GCP_ERDOS DOS error on the remote workstation

GCP_EDOS DOS error on the local workstation

GCP_ERNOENT remote file not found 

GCP_ENOENT local file not found 

GCP_ENOMEM Insufficient resources - object not created 

GCP_ENETWORK Unspecified network error 

GCP_EINVALIDSERVER Server handle invalid or could not create server 

GCP_EALREADYOPEN Server was previously opened on specified socket 

GCP_ENOTOWNER Server is not owned by hWnd provided 

GCP_EBADSERVERTYPE Server type not supported 

GCP_EBADCALLBACK Callback window specified does not exist 



GCP_EOF end of file reached 

GCP_EBADMSG Msg Request Not Supported by Function/Server

GCP_RCLOSERemote party has closed connection

GCP_ENOGCP GCP++ server is not running and cannot be found

GCP_EBADADDRESS connection not possible to given address



RFC854
Network Working Group                                          J. Postel
Request for Comments: 854                                    J. Reynolds
                                                                     ISI
Obsoletes: NIC 18639                                            May 1983

                     TELNET PROTOCOL SPECIFICATION

This RFC specifies a standard for the ARPA Internet community.  Hosts on
the ARPA Internet are expected to adopt and implement this standard.

INTRODUCTION

   The purpose of the TELNET Protocol is to provide a fairly general,
   bi-directional, eight-bit byte oriented communications facility.  Its
   primary goal is to allow a standard method of interfacing terminal
   devices and terminal-oriented processes to each other.  It is
   envisioned that the protocol may also be used for terminal-terminal
   communication ("linking") and process-process communication
   (distributed computation).

GENERAL CONSIDERATIONS

   A TELNET connection is a Transmission Control Protocol (TCP)
   connection used to transmit data with interspersed TELNET control
   information.

   The TELNET Protocol is built upon three main ideas:  first, the
   concept of a "Network Virtual Terminal"; second, the principle of
   negotiated options; and third, a symmetric view of terminals and
   processes.

   1.  When a TELNET connection is first established, each end is
   assumed to originate and terminate at a "Network Virtual Terminal",
   or NVT.  An NVT is an imaginary device which provides a standard,
   network-wide, intermediate representation of a canonical terminal.
   This eliminates the need for "server" and "user" hosts to keep
   information about the characteristics of each other's terminals and
   terminal handling conventions.  All hosts, both user and server, map
   their local device characteristics and conventions so as to appear to
   be dealing with an NVT over the network, and each can assume a
   similar mapping by the other party.  The NVT is intended to strike a
   balance between being overly restricted (not providing hosts a rich
   enough vocabulary for mapping into their local character sets), and
   being overly inclusive (penalizing users with modest terminals).

      NOTE:  The "user" host is the host to which the physical terminal
      is normally attached, and the "server" host is the host which is
      normally providing some service.  As an alternate point of view,
      applicable even in terminal-to-terminal or process-to-process
      communications, the "user" host is the host which initiated the
      communication.

   2.  The principle of negotiated options takes cognizance of the fact
   that many hosts will wish to provide additional services over and
   above those available within an NVT, and many users will have
   sophisticated terminals and would like to have elegant, rather than
   minimal, services.  Independent of, but structured within the TELNET
   Protocol are various "options" that will be sanctioned and may be
   used with the "DO, DON'T, WILL, WON'T" structure (discussed below) to



   allow a user and server to agree to use a more elaborate (or perhaps
   just different) set of conventions for their TELNET connection.  Such
   options could include changing the character set, the echo mode, etc.

   The basic strategy for setting up the use of options is to have
   either party (or both) initiate a request that some option take
   effect.  The other party may then either accept or reject the
   request.  If the request is accepted the option immediately takes
   effect; if it is rejected the associated aspect of the connection
   remains as specified for an NVT.  Clearly, a party may always refuse
   a request to enable, and must never refuse a request to disable some
   option since all parties must be prepared to support the NVT.

   The syntax of option negotiation has been set up so that if both
   parties request an option simultaneously, each will see the other's
   request as the positive acknowledgment of its own.

   3.  The symmetry of the negotiation syntax can potentially lead to
   nonterminating acknowledgment loops -- each party seeing the incoming
   commands not as acknowledgments but as new requests which must be
   acknowledged.  To prevent such loops, the following rules prevail:

      a. Parties may only request a change in option status; i.e., a
      party may not send out a "request" merely to announce what mode it
      is in.

      b. If a party receives what appears to be a request to enter some
      mode it is already in, the request should not be acknowledged.
      This non-response is essential to prevent endless loops in the
      negotiation.  It is required that a response be sent to requests
      for a change of mode -- even if the mode is not changed.

      c. Whenever one party sends an option command to a second party,
      whether as a request or an acknowledgment, and use of the option
      will have any effect on the processing of the data being sent from
      the first party to the second, then the command must be inserted
      in the data stream at the point where it is desired that it take
      effect.  (It should be noted that some time will elapse between
      the transmission of a request and the receipt of an
      acknowledgment, which may be negative.  Thus, a host may wish to
      buffer data, after requesting an option, until it learns whether
      the request is accepted or rejected, in order to hide the
      "uncertainty period" from the user.)

   Option requests are likely to flurry back and forth when a TELNET
   connection is first established, as each party attempts to get the
   best possible service from the other party.  Beyond that, however,
   options can be used to dynamically modify the characteristics of the
   connection to suit changing local conditions.  For example, the NVT,
   as will be explained later, uses a transmission discipline well
   suited to the many "line at a time" applications such as BASIC, but
   poorly suited to the many "character at a time" applications such as
   NLS.  A server might elect to devote the extra processor overhead
   required for a "character at a time" discipline when it was suitable
   for the local process and would negotiate an appropriate option.
   However, rather than then being permanently burdened with the extra
   processing overhead, it could switch (i.e., negotiate) back to NVT
   when the detailed control was no longer necessary.

   It is possible for requests initiated by processes to stimulate a
   nonterminating request loop if the process responds to a rejection by
   merely re-requesting the option.  To prevent such loops from
   occurring, rejected requests should not be repeated until something



   changes.  Operationally, this can mean the process is running a
   different program, or the user has given another command, or whatever
   makes sense in the context of the given process and the given option.
   A good rule of thumb is that a re-request should only occur as a
   result of subsequent information from the other end of the connection
   or when demanded by local human intervention.

   Option designers should not feel constrained by the somewhat limited
   syntax available for option negotiation.  The intent of the simple
   syntax is to make it easy to have options -- since it is
   correspondingly easy to profess ignorance about them.  If some
   particular option requires a richer negotiation structure than
   possible within "DO, DON'T, WILL, WON'T", the proper tack is to use
   "DO, DON'T, WILL, WON'T" to establish that both parties understand
   the option, and once this is accomplished a more exotic syntax can be
   used freely.  For example, a party might send a request to alter
   (establish) line length.  If it is accepted, then a different syntax
   can be used for actually negotiating the line length -- such a
   "sub-negotiation" might include fields for minimum allowable, maximum
   allowable and desired line lengths.  The important concept is that
   such expanded negotiations should never begin until some prior
   (standard) negotiation has established that both parties are capable
   of parsing the expanded syntax.

   In summary, WILL XXX is sent, by either party, to indicate that
   party's desire (offer) to begin performing option XXX, DO XXX and
   DON'T XXX being its positive and negative acknowledgments; similarly,
   DO XXX is sent to indicate a desire (request) that the other party
   (i.e., the recipient of the DO) begin performing option XXX, WILL XXX
   and WON'T XXX being the positive and negative acknowledgments.  Since
   the NVT is what is left when no options are enabled, the DON'T and
   WON'T responses are guaranteed to leave the connection in a state
   which both ends can handle.  Thus, all hosts may implement their
   TELNET processes to be totally unaware of options that are not
   supported, simply returning a rejection to (i.e., refusing) any
   option request that cannot be understood.

   As much as possible, the TELNET protocol has been made server-user
   symmetrical so that it easily and naturally covers the user-user
   (linking) and server-server (cooperating processes) cases.  It is
   hoped, but not absolutely required, that options will further this
   intent.  In any case, it is explicitly acknowledged that symmetry is
   an operating principle rather than an ironclad rule.

   A companion document, "TELNET Option Specifications," should be
   consulted for information about the procedure for establishing new
   options.

THE NETWORK VIRTUAL TERMINAL

   The Network Virtual Terminal (NVT) is a bi-directional character
   device.  The NVT has a printer and a keyboard.  The printer responds
   to incoming data and the keyboard produces outgoing data which is
   sent over the TELNET connection and, if "echoes" are desired, to the
   NVT's printer as well.  "Echoes" will not be expected to traverse the
   network (although options exist to enable a "remote" echoing mode of
   operation, no host is required to implement this option).  The code
   set is seven-bit USASCII in an eight-bit field, except as modified
   herein.  Any code conversion and timing considerations are local
   problems and do not affect the NVT.

   TRANSMISSION OF DATA



      Although a TELNET connection through the network is intrinsically
      full duplex, the NVT is to be viewed as a half-duplex device
      operating in a line-buffered mode.  That is, unless and until
      options are negotiated to the contrary, the following default
      conditions pertain to the transmission of data over the TELNET
      connection:

         1)  Insofar as the availability of local buffer space permits,
         data should be accumulated in the host where it is generated
         until a complete line of data is ready for transmission, or
         until some locally-defined explicit signal to transmit occurs.
         This signal could be generated either by a process or by a
         human user.

         The motivation for this rule is the high cost, to some hosts,
         of processing network input interrupts, coupled with the
         default NVT specification that "echoes" do not traverse the
         network.  Thus, it is reasonable to buffer some amount of data
         at its source.  Many systems take some processing action at the
         end of each input line (even line printers or card punches
         frequently tend to work this way), so the transmission should
         be triggered at the end of a line.  On the other hand, a user
         or process may sometimes find it necessary or desirable to
         provide data which does not terminate at the end of a line;
         therefore implementers are cautioned to provide methods of
         locally signaling that all buffered data should be transmitted
         immediately.

         2)  When a process has completed sending data to an NVT printer
         and has no queued input from the NVT keyboard for further
         processing (i.e., when a process at one end of a TELNET
         connection cannot proceed without input from the other end),
         the process must transmit the TELNET Go Ahead (GA) command.

         This rule is not intended to require that the TELNET GA command
         be sent from a terminal at the end of each line, since server
         hosts do not normally require a special signal (in addition to
         end-of-line or other locally-defined characters) in order to
         commence processing.  Rather, the TELNET GA is designed to help
         a user's local host operate a physically half duplex terminal
         which has a "lockable" keyboard such as the IBM 2741.  A
         description of this type of terminal may help to explain the
         proper use of the GA command.

         The terminal-computer connection is always under control of
         either the user or the computer.  Neither can unilaterally
         seize control from the other; rather the controlling end must
         relinguish its control explicitly.  At the terminal end, the
         hardware is constructed so as to relinquish control each time
         that a "line" is terminated (i.e., when the "New Line" key is
         typed by the user).  When this occurs, the attached (local)
         computer processes the input data, decides if output should be
         generated, and if not returns control to the terminal.  If
         output should be generated, control is retained by the computer
         until all output has been transmitted.

         The difficulties of using this type of terminal through the
         network should be obvious.  The "local" computer is no longer
         able to decide whether to retain control after seeing an
         end-of-line signal or not; this decision can only be made by
         the "remote" computer which is processing the data.  Therefore,
         the TELNET GA command provides a mechanism whereby the "remote"
         (server) computer can signal the "local" (user) computer that



         it is time to pass control to the user of the terminal.  It
         should be transmitted at those times, and only at those times,
         when the user should be given control of the terminal.  Note
         that premature transmission of the GA command may result in the
         blocking of output, since the user is likely to assume that the
         transmitting system has paused, and therefore he will fail to
         turn the line around manually.

      The foregoing, of course, does not apply to the user-to-server
      direction of communication.  In this direction, GAs may be sent at
      any time, but need not ever be sent.  Also, if the TELNET
      connection is being used for process-to-process communication, GAs
      need not be sent in either direction.  Finally, for
      terminal-to-terminal communication, GAs may be required in
      neither, one, or both directions.  If a host plans to support
      terminal-to-terminal communication it is suggested that the host
      provide the user with a means of manually signaling that it is
      time for a GA to be sent over the TELNET connection; this,
      however, is not a requirement on the implementer of a TELNET
      process.

      Note that the symmetry of the TELNET model requires that there is
      an NVT at each end of the TELNET connection, at least
      conceptually.

   STANDARD REPRESENTATION OF CONTROL FUNCTIONS

      As stated in the Introduction to this document, the primary goal
      of the TELNET protocol is the provision of a standard interfacing
      of terminal devices and terminal-oriented processes through the
      network.  Early experiences with this type of interconnection have
      shown that certain functions are implemented by most servers, but
      that the methods of invoking these functions differ widely.  For a
      human user who interacts with several server systems, these
      differences are highly frustrating.  TELNET, therefore, defines a
      standard representation for five of these functions, as described
      below.  These standard representations have standard, but not
      required, meanings (with the exception that the Interrupt Process
      (IP) function may be required by other protocols which use
      TELNET); that is, a system which does not provide the function to
      local users need not provide it to network users and may treat the
      standard representation for the function as a No-operation.  On
      the other hand, a system which does provide the function to a
      local user is obliged to provide the same function to a network
      user who transmits the standard representation for the function.

      Interrupt Process (IP)

         Many systems provide a function which suspends, interrupts,
         aborts, or terminates the operation of a user process.  This
         function is frequently used when a user believes his process is
         in an unending loop, or when an unwanted process has been
         inadvertently activated.  IP is the standard representation for
         invoking this function.  It should be noted by implementers
         that IP may be required by other protocols which use TELNET,
         and therefore should be implemented if these other protocols
         are to be supported.

      Abort Output (AO)

         Many systems provide a function which allows a process, which
         is generating output, to run to completion (or to reach the
         same stopping point it would reach if running to completion)



         but without sending the output to the user's terminal.
         Further, this function typically clears any output already
         produced but not yet actually printed (or displayed) on the
         user's terminal.  AO is the standard representation for
         invoking this function.  For example, some subsystem might
         normally accept a user's command, send a long text string to
         the user's terminal in response, and finally signal readiness
         to accept the next command by sending a "prompt" character
         (preceded by <CR><LF>) to the user's terminal.  If the AO were
         received during the transmission of the text string, a
         reasonable implementation would be to suppress the remainder of
         the text string, but transmit the prompt character and the
         preceding <CR><LF>.  (This is possibly in distinction to the
         action which might be taken if an IP were received; the IP
         might cause suppression of the text string and an exit from the
         subsystem.)

         It should be noted, by server systems which provide this
         function, that there may be buffers external to the system (in
         the network and the user's local host) which should be cleared;
         the appropriate way to do this is to transmit the "Synch"
         signal (described below) to the user system.

      Are You There (AYT)

         Many systems provide a function which provides the user with
         some visible (e.g., printable) evidence that the system is
         still up and running.  This function may be invoked by the user
         when the system is unexpectedly "silent" for a long time,
         because of the unanticipated (by the user) length of a
         computation, an unusually heavy system load, etc.  AYT is the
         standard representation for invoking this function.

      Erase Character (EC)

         Many systems provide a function which deletes the last
         preceding undeleted character or "print position"* from the
         stream of data being supplied by the user.  This function is
         typically used to edit keyboard input when typing mistakes are
         made.  EC is the standard representation for invoking this
         function.

            *NOTE:  A "print position" may contain several characters
            which are the result of overstrikes, or of sequences such as
            <char1> BS <char2>...

      Erase Line (EL)

         Many systems provide a function which deletes all the data in
         the current "line" of input.  This function is typically used
         to edit keyboard input.  EL is the standard representation for
         invoking this function.

   THE TELNET "SYNCH" SIGNAL

      Most time-sharing systems provide mechanisms which allow a
      terminal user to regain control of a "runaway" process; the IP and
      AO functions described above are examples of these mechanisms.
      Such systems, when used locally, have access to all of the signals
      supplied by the user, whether these are normal characters or
      special "out of band" signals such as those supplied by the
      teletype "BREAK" key or the IBM 2741 "ATTN" key.  This is not
      necessarily true when terminals are connected to the system



      through the network; the network's flow control mechanisms may
      cause such a signal to be buffered elsewhere, for example in the
      user's host.
      To counter this problem, the TELNET "Synch" mechanism is
      introduced.  A Synch signal consists of a TCP Urgent notification,
      coupled with the TELNET command DATA MARK.  The Urgent
      notification, which is not subject to the flow control pertaining
      to the TELNET connection, is used to invoke special handling of
      the data stream by the process which receives it.  In this mode,
      the data stream is immediately scanned for "interesting" signals
      as defined below, discarding intervening data.  The TELNET command
      DATA MARK (DM) is the synchronizing mark in the data stream which
      indicates that any special signal has already occurred and the
      recipient can return to normal processing of the data stream.

         The Synch is sent via the TCP send operation with the Urgent
         flag set and the DM as the last (or only) data octet.

      When several Synchs are sent in rapid succession, the Urgent
      notifications may be merged.  It is not possible to count Urgents
      since the number received will be less than or equal the number
      sent.  When in normal mode, a DM is a no operation; when in urgent
      mode, it signals the end of the urgent processing.

         If TCP indicates the end of Urgent data before the DM is found,
         TELNET should continue the special handling of the data stream
         until the DM is found.

         If TCP indicates more Urgent data after the DM is found, it can
         only be because of a subsequent Synch.  TELNET should continue
         the special handling of the data stream until another DM is
         found.

      "Interesting" signals are defined to be:  the TELNET standard
      representations of IP, AO, and AYT (but not EC or EL); the local
      analogs of these standard representations (if any); all other
      TELNET commands; other site-defined signals which can be acted on
      without delaying the scan of the data stream.

      Since one effect of the SYNCH mechanism is the discarding of
      essentially all characters (except TELNET commands) between the
      sender of the Synch and its recipient, this mechanism is specified
      as the standard way to clear the data path when that is desired.
      For example, if a user at a terminal causes an AO to be
      transmitted, the server which receives the AO (if it provides that
      function at all) should return a Synch to the user.

      Finally, just as the TCP Urgent notification is needed at the
      TELNET level as an out-of-band signal, so other protocols which
      make use of TELNET may require a TELNET command which can be
      viewed as an out-of-band signal at a different level.
      By convention the sequence [IP, Synch] is to be used as such a
      signal.  For example, suppose that some other protocol, which uses
      TELNET, defines the character string STOP analogously to the
      TELNET command AO.  Imagine that a user of this protocol wishes a
      server to process the STOP string, but the connection is blocked
      because the server is processing other commands.  The user should
      instruct his system to:

         1. Send the TELNET IP character;

         2. Send the TELNET SYNC sequence, that is:



            Send the Data Mark (DM) as the only character
            in a TCP urgent mode send operation.

         3. Send the character string STOP; and

         4. Send the other protocol's analog of the TELNET DM, if any.

      The user (or process acting on his behalf) must transmit the
      TELNET SYNCH sequence of step 2 above to ensure that the TELNET IP
      gets through to the server's TELNET interpreter.

         The Urgent should wake up the TELNET process; the IP should
         wake up the next higher level process.

   THE NVT PRINTER AND KEYBOARD

      The NVT printer has an unspecified carriage width and page length
      and can produce representations of all 95 USASCII graphics (codes
      32 through 126).  Of the 33 USASCII control codes (0 through 31
      and 127), and the 128 uncovered codes (128 through 255), the
      following have specified meaning to the NVT printer:

         NAME                  CODE         MEANING

         NULL (NUL)              0      No Operation
         Line Feed (LF)         10      Moves the printer to the
                                        next print line, keeping the
                                        same horizontal position.
         Carriage Return (CR)   13      Moves the printer to the left
                                        margin of the current line.

         In addition, the following codes shall have defined, but not
         required, effects on the NVT printer.  Neither end of a TELNET
         connection may assume that the other party will take, or will
         have taken, any particular action upon receipt or transmission
         of these:

         BELL (BEL)              7      Produces an audible or
                                        visible signal (which does
                                        NOT move the print head).
         Back Space (BS)         8      Moves the print head one
                                        character position towards
                                        the left margin.
         Horizontal Tab (HT)     9      Moves the printer to the
                                        next horizontal tab stop.
                                        It remains unspecified how
                                        either party determines or
                                        establishes where such tab
                                        stops are located.
         Vertical Tab (VT)       11     Moves the printer to the
                                        next vertical tab stop.  It
                                        remains unspecified how
                                        either party determines or
                                        establishes where such tab
                                        stops are located.
         Form Feed (FF)          12     Moves the printer to the top
                                        of the next page, keeping
                                        the same horizontal position.

      All remaining codes do not cause the NVT printer to take any
      action.

      The sequence "CR LF", as defined, will cause the NVT to be



      positioned at the left margin of the next print line (as would,
      for example, the sequence "LF CR").  However, many systems and
      terminals do not treat CR and LF independently, and will have to
      go to some effort to simulate their effect.  (For example, some
      terminals do not have a CR independent of the LF, but on such
      terminals it may be possible to simulate a CR by backspacing.)
      Therefore, the sequence "CR LF" must be treated as a single "new
      line" character and used whenever their combined action is
      intended; the sequence "CR NUL" must be used where a carriage
      return alone is actually desired; and the CR character must be
      avoided in other contexts.  This rule gives assurance to systems
      which must decide whether to perform a "new line" function or a
      multiple-backspace that the TELNET stream contains a character
      following a CR that will allow a rational decision.

         Note that "CR LF" or "CR NUL" is required in both directions
         (in the default ASCII mode), to preserve the symmetry of the
         NVT model.  Even though it may be known in some situations
         (e.g., with remote echo and suppress go ahead options in
         effect) that characters are not being sent to an actual
         printer, nonetheless, for the sake of consistency, the protocol
         requires that a NUL be inserted following a CR not followed by
         a LF in the data stream.  The converse of this is that a NUL
         received in the data stream after a CR (in the absence of
         options negotiations which explicitly specify otherwise) should
         be stripped out prior to applying the NVT to local character
         set mapping.

      The NVT keyboard has keys, or key combinations, or key sequences,
      for generating all 128 USASCII codes.  Note that although many
      have no effect on the NVT printer, the NVT keyboard is capable of
      generating them.

      In addition to these codes, the NVT keyboard shall be capable of
      generating the following additional codes which, except as noted,
      have defined, but not reguired, meanings.  The actual code
      assignments for these "characters" are in the TELNET Command
      section, because they are viewed as being, in some sense, generic
      and should be available even when the data stream is interpreted
      as being some other character set.

      Synch

         This key allows the user to clear his data path to the other
         party.  The activation of this key causes a DM (see command
         section) to be sent in the data stream and a TCP Urgent
         notification is associated with it.  The pair DM-Urgent is to
         have required meaning as defined previously.

      Break (BRK)

         This code is provided because it is a signal outside the
         USASCII set which is currently given local meaning within many
         systems.  It is intended to indicate that the Break Key or the
         Attention Key was hit.  Note, however, that this is intended to
         provide a 129th code for systems which require it, not as a
         synonym for the IP standard representation.

      Interrupt Process (IP)

         Suspend, interrupt, abort or terminate the process to which the
         NVT is connected.  Also, part of the out-of-band signal for
         other protocols which use TELNET.



      Abort Output (AO)

         Allow the current process to (appear to) run to completion, but
         do not send its output to the user.  Also, send a Synch to the
         user.

      Are You There (AYT)

         Send back to the NVT some visible (i.e., printable) evidence
         that the AYT was received.

      Erase Character (EC)

         The recipient should delete the last preceding undeleted
         character or "print position" from the data stream.

      Erase Line (EL)

         The recipient should delete characters from the data stream
         back to, but not including, the last "CR LF" sequence sent over
         the TELNET connection.

      The spirit of these "extra" keys, and also the printer format
      effectors, is that they should represent a natural extension of
      the mapping that already must be done from "NVT" into "local".
      Just as the NVT data byte 68 (104 octal) should be mapped into
      whatever the local code for "uppercase D" is, so the EC character
      should be mapped into whatever the local "Erase Character"
      function is.  Further, just as the mapping for 124 (174 octal) is
      somewhat arbitrary in an environment that has no "vertical bar"
      character, the EL character may have a somewhat arbitrary mapping
      (or none at all) if there is no local "Erase Line" facility.
      Similarly for format effectors:  if the terminal actually does
      have a "Vertical Tab", then the mapping for VT is obvious, and
      only when the terminal does not have a vertical tab should the
      effect of VT be unpredictable.

TELNET COMMAND STRUCTURE

   All TELNET commands consist of at least a two byte sequence:  the
   "Interpret as Command" (IAC) escape character followed by the code
   for the command.  The commands dealing with option negotiation are
   three byte sequences, the third byte being the code for the option
   referenced.  This format was chosen so that as more comprehensive use
   of the "data space" is made -- by negotiations from the basic NVT, of
   course -- collisions of data bytes with reserved command values will
   be minimized, all such collisions requiring the inconvenience, and
   inefficiency, of "escaping" the data bytes into the stream.  With the
   current set-up, only the IAC need be doubled to be sent as data, and
   the other 255 codes may be passed transparently.

   The following are the defined TELNET commands.  Note that these codes
   and code sequences have the indicated meaning only when immediately
   preceded by an IAC.

      NAME               CODE              MEANING

      SE                  240    End of subnegotiation parameters.
      NOP                 241    No operation.
      Data Mark           242    The data stream portion of a Synch.
                                 This should always be accompanied
                                 by a TCP Urgent notification.



      Break               243    NVT character BRK.
      Interrupt Process   244    The function IP.
      Abort output        245    The function AO.
      Are You There       246    The function AYT.
      Erase character     247    The function EC.
      Erase Line          248    The function EL.
      Go ahead            249    The GA signal.
      SB                  250    Indicates that what follows is
                                 subnegotiation of the indicated
                                 option.
      WILL (option code)  251    Indicates the desire to begin
                                 performing, or confirmation that
                                 you are now performing, the
                                 indicated option.
      WON'T (option code) 252    Indicates the refusal to perform,
                                 or continue performing, the
                                 indicated option.
      DO (option code)    253    Indicates the request that the
                                 other party perform, or
                                 confirmation that you are expecting
                                 the other party to perform, the
                                 indicated option.
      DON'T (option code) 254    Indicates the demand that the
                                 other party stop performing,
                                 or confirmation that you are no
                                 longer expecting the other party
                                 to perform, the indicated option.
      IAC                 255    Data Byte 255.

CONNECTION ESTABLISHMENT

   The TELNET TCP connection is established between the user's port U
   and the server's port L.  The server listens on its well known port L
   for such connections.  Since a TCP connection is full duplex and
   identified by the pair of ports, the server can engage in many
   simultaneous connections involving its port L and different user
   ports U.

   Port Assignment

      When used for remote user access to service hosts (i.e., remote
      terminal access) this protocol is assigned server port 23
      (27 octal).  That is L=23.



RFC855
Network Working Group                                          J. Postel
Request for Comments: 855                                    J. Reynolds
                                                                     ISI
Obsoletes: NIC 18640                                            May 1983

                      TELNET OPTION SPECIFICATIONS

This RFC specifies a standard for the ARPA Internet community.  Hosts on
the ARPA Internet are expected to adopt and implement this standard.

The intent of providing for options in the TELNET Protocol is to permit
hosts to obtain more elegant solutions to the problems of communication
between dissimilar devices than is possible within the framework
provided by the Network Virtual Terminal (NVT).  It should be possible
for hosts to invent, test, or discard options at will.  Nevertheless, it
is envisioned that options which prove to be generally useful will
eventually be supported by many hosts; therefore it is desirable that
options should be carefully documented and well publicized.  In
addition, it is necessary to insure that a single option code is not
used for several different options.

This document specifies a method of option code assignment and standards
for documentation of options.  The individual responsible for assignment
of option codes may waive the requirement for complete documentation for
some cases of experimentation, but in general documentation will be
required prior to code assignment.  Options will be publicized by
publishing their documentation as RFCs; inventors of options may, of
course, publicize them in other ways as well.

   Option codes will be assigned by:

      Jonathan B. Postel
      University of Southern California
      Information Sciences Institute (USC-ISI)
      4676 Admiralty Way
      Marina Del Rey, California 90291
      (213) 822-1511

      Mailbox = POSTEL@USC-ISIF

Documentation of options should contain at least the following sections:

   Section 1 - Command Name and Option Code

   Section 2 - Command Meanings

      The meaning of each possible TELNET command relevant to this
      option should be described.  Note that for complex options, where

      "subnegotiation" is required, there may be a larger number of
      possible commands.  The concept of "subnegotiation" is described
      in more detail below.

   Section 3 - Default Specification

      The default assumptions for hosts which do not implement, or use,
      the option must be described.

   Section 4 - Motivation



      A detailed explanation of the motivation for inventing a
      particular option, or for choosing a particular form for the
      option, is extremely helpful to those who are not faced (or don't
      realize that they are faced) by the problem that the option is
      designed to solve.

   Section 5 - Description (or Implementation Rules)

      Merely defining the command meanings and providing a statement of
      motivation are not always sufficient to insure that two
      implementations of an option will be able to communicate.
      Therefore, a more complete description should be furnished in most
      cases.  This description might take the form of text, a sample
      implementation, hints to implementers, etc.

A Note on "Subnegotiation"

   Some options will require more information to be passed between hosts
   than a single option code.  For example, any option which requires a
   parameter is such a case.  The strategy to be used consists of two
   steps:  first, both parties agree to "discuss" the parameter(s) and,
   second, the "discussion" takes place.

   The first step, agreeing to discuss the parameters, takes place in
   the normal manner; one party proposes use of the option by sending a
   DO (or WILL) followed by the option code, and the other party accepts
   by returning a WILL (or DO) followed by the option code.  Once both
   parties have agreed to use the option, subnegotiation takes place by
   using the command SB, followed by the option code, followed by the
   parameter(s), followed by the command SE.  Each party is presumed to
   be able to parse the parameter(s), since each has indicated that the
   option is supported (via the initial exchange of WILL and DO).  On
   the other hand, the receiver may locate the end of a parameter string
   by searching for the SE command (i.e., the string IAC SE), even if
   the receiver is unable to parse the parameters.  Of course, either
   party may refuse to pursue further subnegotiation at any time by
   sending a WON'T or DON'T to the other party.

   Thus, for option "ABC", which requires subnegotiation, the formats of
   the TELNET commands are:

      IAC WILL ABC

         Offer to use option ABC (or favorable acknowledgment of other
         party's request)

      IAC DO ABC

         Request for other party to use option ABC (or favorable
         acknowledgment of other party's offer)

      IAC SB ABC <parameters> IAC SE

         One step of subnegotiation, used by either party.

   Designers of options requiring "subnegotiation" must take great care
   to avoid unending loops in the subnegotiation process.  For example,
   if each party can accept any value of a parameter, and both parties
   suggest parameters with different values, then one is likely to have
   an infinite oscillation of "acknowledgments" (where each receiver
   believes it is only acknowledging the new proposals of the other).
   Finally, if parameters in an option "subnegotiation" include a byte



   with a value of 255, it is necessary to double this byte in
   accordance the general TELNET rules.




