
Microsoft

Kraig Brockschmidt, Software Design Engineer

Systems Developer Relations

Version 1.01 13 April, 1992

The information and code provided in this document is subject to change without notice and does not represent a commitment on the part of
Microsoft Corporation or the author.

THE INFORMATION AND CODE PROVIDED HEREUNDER (COLLECTIVELY REFERRED TO AS "SOFTWARE") IS PROVIDED AS IS
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR, MICROSOFT
CORPORATION, OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER INCLUDING DIRECT, INDIRECT, INCIDENTAL,
CONSEQUENTIAL, LOSS OF BUSINESS PROFITS OR SPECIAL DAMAGES, EVEN IF THE AUTHOR, MICROSOFT CORPORATION, OR
ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW THE EXCLUSION
OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES SO THE FOREGOING LIMITATION MAY NOT APPLY.

The sample code may be copied and distributed royalty-free subject to the following conditions:
1. You must distribute the sample code only in conjunction with and as a part of your software product;
2. You do not use Microsoft's name, logo or trademark to market your software product;
3. You include the copyright notice that appears on the Software on your product label and as a part of the sign-on message

for your software product; and
4. agree to indemnify, hold harmless, and defend Microsoft from and against any claims or lawsuits, including attorney's

fees, that arise or result from the use or distribution of your software product.

Your feedback is a very important part in providing documents such as these to the developer community for Microsoft
Windows. Please let me know how you used this document, how you used the sample code, what aspects you found helpful,
and what you didn't like. A work like this document is always open to improvement, so please report any problems, errors,
or general criticisms you might have. Reach me through mail, fax (dial (206)93MSFAX), or electronic mail at the following
addresses:

Internet: kraigb@microsoft.com
Compuserve: 70750,2344

At the very least, please tell me what you think. With your help, future documents and samples covering technologies in
Microsoft Windows will be even better!

Kraig Brockschmidt
12 February, 1992

Redmond, Washington USA

For technical support in implementing OLE into your application, contact Microsoft Product Support Services using
Microsoft OnLine or through the WINEXT forum on Compuserve. Please, do not ask the author for such technical

support as any requests for such will simply be referred to the appropriate support service.

Updates and error lists to the document and sample code will be posted on both OnLine and Compuserve as necessary.

The Microsoft Logo is a registered trademark of Microsoft corporation. Windows and the Windows logo are trademarks of
Microsoft Corporation.

Object Linking and Embedding Server Implementation Guide
©1992 Microsoft Corporation, All rights reserved.

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

Table of Contents

1. Introduction---1
1.1. Required Windows Programming Knowledge..1
1.2. Conventions..2
1.3. Sample Server: SCHMOO...2

1.3.1. Source Code Structure 3
1.3.2. Isolation of Global Data and Strings 4

2. OLE Technical Background--4
2.1. OLESVR.DLL and OLESVR.LIB..4

2.1.1. OLE.H 5
2.2. SHELL.DLL, SHELL.LIB, and SHELLAPI.H..5
2.3. Library Redistribution and Installation...6
2.4. OLE Communication Routes..6
2.5. OLE Data Structures and Application-Specific Variations...7

2.5.1. Methods 7
2.5.2. Relationship Between Server, Document, and Object 8
2.5.3. OLE Use of Pointers 8

2.6. Mini Servers vs. Full Servers..9
2.7. Single-Document vs. Multiple Document Servers...9
2.8. Clipboard Formats and Conventions...9

2.8.1. Native, OwnerLink, and ObjectLink Formats 10

3. Preparing an Application to Become an OLE Server------------------------------11
3.1. Version Number Data Structures and Files...11
3.2. Isolate Data..11

3.2.1. Use of Window-Specific Data 11
3.2.2. Application-Specific (global) Data 12
3.2.3. Document- and Object-Specific Data 12

3.3. Create Metafiles and Bitmaps...12
3.4. Clipboard I/O..13
3.5. Isolate Utility Functions..13

3.5.1. Application Installation (first instance only) 13
3.5.2. Application Initialization (all instances) 14
3.5.3. Exit and Cleanup Procedure 14
3.5.4. Background Processing Schedulers 14
3.5.5. Drawing to an Arbitrary DC 14
3.5.6. Clipboard Format Builders 15
3.5.7. MM_HIMETRIC to MM_TEXT (or other) Conversions 15
3.5.8. Setting Private Data Dynamically 15
3.5.9. Manipulating the Dirty Flag 15
3.5.10. File I/O 15
3.5.11. Changing Window Title on File Open/Save As 16
3.5.12. Window Sizing, by User or Program 16
3.5.13. (Optional) DDE Execute String Parsing and Dispatching 16

4. Two Hints for Debugging an OLE Server--18
4.1. Starting the Server in the Debugger..18
4.2. Set Breakpoints on Entry to All Methods...18

OLE Server Implementation Guide Version 1.01 i 13 April, 1992

5. Step-By-Step OLE Server---19
5.1. Define OLE Data Structures...20
5.2. Install the Server in the Registration Database...21

5.2.1. OLE Keys and Values 21
5.2.2. Example: FOLEServerInstall and FKeyCreate 22
5.2.3. Verifying the Registration with RegEdit. 24

5.3. Place Data on the Clipboard..25
5.3.1. Example: FEditCopy, FOLECopyNative, FOLECopyLink and HLinkConstruct 25
5.3.2. Verifying Correct Data Placement 26

5.4. Implement Skeleton (stub) Methods...26
5.4.1. Export the Methods 27

5.5. Initialize the Application and VTBLs...27
5.5.1. Register Clipboard Formats 28
5.5.2. Initialize VTBLs and VTBL Pointers 28
5.5.3. Allocate OLESERVER and Register the Server 29
5.5.4. Parse the Command-Line and Determine the Initial Window State 30
5.5.5. Allocate and Register the Initial Document(s) 31
5.5.6. Handling Errors: Summary 31
5.5.7. Example: FApplicationInit, FOLEInstanceInit, and OLEVTBL.C 32
5.5.8. Verify Command-Line Parsing and Initialization 32

5.6. UI: Change Window Titles and Menus...32
5.6.1. Window Title Change 33
5.6.2. Menu Changes for Embedding 33
5.6.3. Example: SCHMOO.C 33

5.7. Implement Basic Methods..34
5.7.1. Thinking about the Methods 34
5.7.2. Basic Server Methods 35
5.7.2.1. ServerCreate 35
5.7.2.2. ServerCreateFromTemplate 36
5.7.2.3. ServerEdit 36
5.7.2.4. ServerExit 36
5.7.2.5. ServerOpen 37
5.7.2.6. ServerRelease 37
5.7.3. Document Methods 38
5.7.3.1. DocClose 38
5.7.3.2. DocGetObject 39
5.7.3.3. DocRelease 39
5.7.3.4. DocSave 40
5.7.3.5. DocSetHostNames 40
5.7.4. Object Methods 41
5.7.4.1. ObjDoVerb 41
5.7.4.2. ObjEnumFormats 42
5.7.4.3. ObjGetData 43
5.7.4.4. ObjQueryProtocol 43
5.7.4.5. ObjRelease 44
5.7.4.6. ObjSetData 44
5.7.4.7. ObjShow 45

5.8. Handle Simple Shutdown..46
5.9. File Menu Commands: New, Open, Save [Copy] As, and Save/Update...47

5.9.1. When to Consider the Document as Dirty 48
5.9.2. Notifying the Client 48
5.9.3. File New and File Open 49
5.9.3.1. File Import 49
5.9.4. File Save [Copy] As 50
5.9.5. File Save/Update 50
5.9.6. Verify File Commands 50

OLE Server Implementation Guide Version 1.01 ii 13 April, 1992

5.10. Closing Objects, Documents, and the Server..51
5.11. Optional Methods and OLE Functions...52

5.11.1. Document and Object SetColorScheme 52
5.11.2. DocSetDocDimensions 52
5.11.3. ObjSetBounds 53
5.11.4. ObjSetTargetDevice 53
5.11.5. Server Execute 53
5.11.6. Blocking Requests (optional) 54
5.11.7. OleRevertServerDoc 54

Appendix A: Definitions--55

OLE Server Implementation Guide Version 1.01 iii 13 April, 1992

1 Introduction
This Object Linking and Embedding (OLE) Server Implementation Guide is intended to help you, as an applications
programmer, add OLE server capabilities to a new or existing application. This guide provides OLE technical background
information, suggestions to prepare an application for becoming an OLE server, and step-by-step details about where to add
code, what OLE functions to call, and what specific actions to perform.

A classic problem in implementing OLE, which I encountered in writing the sample server, is that you must write
considerable code before testing anything. The step-by-step implementation section provides various points where you may
compile and possibly test the OLE code you just added. This incremental approach gave me a clearer picture of what the
code was actually doing and allowed me to easily debug a small part of code. The nature of OLE makes debugging difficult
as it is, and trying to test all the OLE-specific code at once can take considerable time to determine where the bug really is,
let alone how to fix it. In any case, you are always free to take your own approach.

OLE is a protocol that complements, not replaces, DDE and standard clipboard data exchange. It is also a protocol that
easily sits on top of an existing application. If you are planning to write a server application and have not yet done so, write
the non-OLE application first, then follow the steps in this guide to implement OLE. "Integrating OLE" into an application
is simply not necessary, because OLE only affects a few specific parts.

With this guide you should be able to add basic OLE support to a suitable server application within a week, give or take some
days depending on the complexity of your application. The sample server demonstrates the steps described in this guide and
also contains many pieces that you can immediately transplant to your application.

2 Required Windows Programming Knowledge
This document assumes a working knowledge of those areas of Windows listed below. All areas except atoms and DDE you
will need to understand–if you are unfamiliar with an area, please consult one of the listed references.

Area Reason for Understanding the Area

Atoms Atoms are a convenient method to store variable length strings in a single integer,
especially for structures.

Bitmaps All OLE servers are required to produce a graphic representation of their data, and a
bitmap is one format that a server provides for this purpose (see Metafile below).
Does not necessitate knowledge of DIBs (Device Independent Bitmaps).

Callback functions MakeProcInstance required for initializing function tables.

Clipboard I/O OLE Servers that can run stand-alone must provide several non-OLE and OLE-
specific data formats on the clipboard.

DDE Since OLE 1.x works off the DDE protocol, a knowledge of DDE may help you
understand how the OLE protocol works.

Dynamic memory allocation The application must allocate memory for the clipboard formats and possibly OLE-
specific structures.

Dynamic Menu Changes Part of an OLE server's user interface changes includes modifying menu items for
embedded objects. The function used is ModifyMenu.

File I/O Any server that will support linking (as opposed to embedding) must save
information in a file.

Metafiles A required graphic representation of the server's data.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 2 Microsoft

Mapping modes The OLE libraries express all dimensions in MM_HIMETRIC units; your
application may need to convert such units to another mapping mode.

Message Loops The OLE 1.x libraries depend on DDE messages, so the application must process
messages to allow OLE to function, possibly impacting background processing.

References
Petzold, Charles Programming Windows 2nd Edition Microsoft Press 1990
Richter, Jeffrey Windows 3: A Developer's Guide M&T Publishing 1991
Wilton, Richard Windows Developer's Workshop Microsoft Press 1991
Yao, Paul and Norton, Peter Windows 3.0 Power Programming Techniques Bantam Books 1990

3 Conventions
1. In-line code, taken from the sample server included with this guide, is presented in small fixed-pitch fonts:

if (OLE_WAIT_FOR_RELEASE==os)
 {
 pOLE->oleDoc.fRelease=FALSE;
 FOLEReleaseWait(&pOLE->oleDoc.fRelease, pOLE->oleSvr.lh);
 }

2. Special information of importance is offset in gray boxes.

3. Definitions of terms used in this guide, like "server" and "Native," are given in Appendix A.

4 Sample Server:    SCHMOO
Accompanying this implementation guide is a sample OLE server called Schmoo, a Germanic twist on Lil' Abner's pets that
also reminds us of college physics classes dealing with magnetic flux and electric fields. It's also a name that other servers
will not use, so it does not interfere with your existing system.

Schmoo is a single-document application, capable of running multiple instances, that allows you to edit, save, and load a
Schmoo Figure: a bunch of dots connected with lines. While the Schmoo Figure is somewhat uninteresting1, Schmoo
demonstrates the OLE server protocol and serves as a model for discussions in this document. In fact, the in-line code in
this guide was taken directly from Schmoo.

5 Source Code Structure
Schmoo has a fair number of source files in which I have attempted to isolate the OLE-specific code leaving only a few parts
of mostly non-OLE files touched by OLE. This isolation demonstrates how OLE can simply lay on top of an existing
application requiring a few new files and minor additions to a few key sections of the existing application code.

There are two types of source files, those with OLE as a prefix and those without; the OLE files contain, as you might guess,
OLE specific code. Some files, like OLEINIT.C and OLECLIP.C, correspond to non-OLE files like INIT.C and CLIP.C.
The source files and contents are listed below. Also note that within these modules are various functions that are reusable in
your application:

File Contents
Non-OLE

1Maybe a little interesting. The samples SHIP.MOO and TETRA.MOO show a few figures that you can make with Schmoo.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Microsoft Page 3

commdlg.c Support for File/Open, File/Save As common dialogs.
fileio.c File I./O functions.
misc.c Functions without any other home.
polyline.c Polyline window procedure and functions to generate bitmaps or metafiles of the image in the

window. ALL data editing and creation is handled here.
polyline.h Prototypes and definitions for polyline.c
schmoo.c Main window procedure.
schmoo.h Prototypes and definitions for non-OLE functions.

Files Dealing with OLE
clip.c Pre-OLE clipboard support, calls OLECLIP.C functions for OLE clipboard formats.
exit.c Pre-OLE cleanup function, calls OLEEXIT.C for OLE cleanup.
file.c File menu commands: New, Open, Save, Save As, and Exit. Functions in this module are the

most affected by OLE.
init.c Pre-OLE initialization function, calls OLEINST.C and OLEINIT.C to perform OLE-specific

installation and initialization responsibilities.

OLE-Specific Counterparts
oleclip.c Functions to place OLE data on the clipboard.
oleexit.c OLE cleanup, including calls to OLEVTBL.C to de-initialize the method tables.
olefile.c Helper functions for File menu commands.
oleinst.c Functions to install the server in the registration database.
oleinit.c OLE initialization, including calls to OLEVTBL.C to initialize method tables.
olemisc.c OLE functions without a home, such as modifying menus, notifying the client, and providing a

message processing loop.
olevtbl.c Functions to initialize and free method tables the for server, documents, and objects.

OLE-Specific Code
oledoc.c OLESERVERDOCVTBL methods.
oleobj.c OLEOBJECTVTBL methods.
olesvr.c OLESERVERVTBL methods.
oleglobl.c Declarations of OLE-specific global data.

oleglobl.h External declarations of OLE-specific global data and prototypes of OLE-specific functions.
oleinst.h Prototypes for functions in OLEINST.C that deal with the registration database. These are not in

OLEGLOBL.H so that the installation code may be easily removed to a separate setup program.

6 Isolation of Global Data and Strings
Since the OLE protocol can quickly have you using global variables, I have isolated those dealing with OLE and those not
dealing with OLE into two separate structures. The only true global variables are pointers to these two structures: pGlob
and pOLE, and a pointer to a string array rgpsz (see below). pGlob points to application globals unrelated to OLE except the
fOLE flag that indicates that the application is running as a linked or embedded server instead of stand-alone. pOLE points
to OLE-specific globals.

I chose to write the code in this manner to separate these unrelated globals from each other and to provide an easy method to
identify the use of such globals in code. Anytime a global is used, it must be referenced off one of the pointers, as in pGlob-
>fOLE or pOLE->fEmbed. This clearly marks the use of a global as opposed to a local variable.

rgpsz is an array allocated in HLoadAppStrings (INIT.C) where the application's string table is read into local memory so
that all strings can be referenced by a pointer using an index into rgpsz, such as rgpsz[IDS_CLASSSCHMOO]. Use of rgpsz
will crop up in various places around this document.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 4 Microsoft

7 OLE Technical Background
Before dealing heavily with the implementation steps for an OLE server application, some background on the OLE
components and concepts of an OLE server:

· OLESVR.DLL, OLE.H
· SHELL.DLL, SHELLAPI.H
· Library Redistribution and Installation
· OLE Communication Routes
· OLE Data Structures and Application-Specific Variations
· Mini-Servers vs. Full Servers
· Single-Document vs. Multiple-Document Servers
· Clipboard Formats and Conventions

8 OLESVR.DLL and OLESVR.LIB
The OLESVR library contains ten functions that enable a server to register itself with OLESVR and to inform OLESVR of
changes to objects and documents. OLESVR.DLL contains the functions, and OLESVR.LIB is the import library to which
you link your server application.

Function When Used Description
OleRegisterServer Initialization Registers the specified server with the library. Information

registered included the class name, instance, and whether the
server supports single or multiple instances.

OleRegisterServerDoc Document creation Registers a document with the server library.

OleRenameServerDoc Document Save As Renames the specified document.

OleRevertServerDoc Document reload Reverts a document to a previously saved state, without closing the
document.

OleSavedServerDoc Document save Informs library that a document has been saved. Calling this
function is equivalent to sending the OLE_SAVED notification.

OleRevokeServer Server shutdown Revokes access to the specified server, closing any documents and
terminating communication with client applications. This
function may return OLE_WAIT_FOR_RELEASE requiring the
server to wait for OLESVR to call the Release callback.

OleRevokeServerDoc Document close Revokes access to the specified document. This function may
return OLE_WAIT_FOR_RELEASE requiring the server to wait
for OLESVR to call the Release callback.

OleRevokeObject Object close/delete Revokes access to the specified object.

OleQueryServerVersion Anytime Retrieves the version of the OLESVR.DLL library in use.

OleBlockServer Anytime Queues requests to the server until the server calls the
OleUnblockServer function.

OleUnblockServer Anytime Processes a request from a queue created by calling the
OleBlockServer function.

9 OLE.H
OLE.H is the standard include file for all OLE applications, clients and servers alike, and defines structures like
OLESERVER, OLESERVERDOC, OLEOBJECT, OLESERVERVTBL, etc. Prior to a #include <ole.h> statement in your

OLE Server Implementation Guide Version 1.01 13 April, 1992

Microsoft Page 5

source files, #define SERVERONLY (or define it on the C compiler command line with -DSERVERONLY) to prevent
OLE.H from including a number of additional fields in the OLEOBJECTVTBL structure that are used strictly for object
handler DLLs2, that is, a server application does not use them.

10 SHELL.DLL, SHELL.LIB, and SHELLAPI.H
SHELL.DLL contains functions to manipulate the registration database.3 SHELL.LIB is the import library to which you link
your application. The include file SHELLAPI.H contains prototypes for these functions:

Function Description
RegCloseKey Closes a key given a key handle.
RegCreateKey Creates a key given a name, generates a key handle.
RegDeleteKey Deletes a key given a key handle and a subkey name.
RegEnumKey Enumerates subkeys of specified key into a string.
RegOpenKey Opens a key given a name, providing a key handle.
RegQueryValue Retrieves text string for specified key.
RegSetValue Sets the text string (value) for a specified key.

An OLE Server uses the RegCreateKey, RegSetValue, and RegCloseKey functions to install itself in the system registration
database so that client applications are aware that the server is available. In the event of an error, the application can delete a
key with RegDeleteKey. RegQueryKey can be used to detect if the server is already registered, and in most OLE server
applications, RegOpenKey and RegEnumKey are not used.

11 Library Redistribution and Installation
You may ship various components that your server application uses if you intend to target Windows 3.0 systems that may not
have these libraries installed. Redistribution requires no royalties to Microsoft, but does require that your application
version check each component before copying them to a user's hard drive, possibly replacing existing versions of the
libraries. If the user currently has the same or newer library installed, do not copy the version shipped with your application.
Version checking is not covered in this document, so consult a Windows 3.1 Programming Reference for more information
on versioning API.

The obvious library you might ship is OLESVR.DLL, but if you ship that library you must also ship the matching
OLECLI.DLL to insure compatibility between the two libraries. Since server applications must make use the registration
database you must also ship SHELL.DLL. In addition, if you supply a REG.DAT file for your server, that we'll talk about
later, include REGLOAD.EXE to facilitate merging your registration file with the user's. Finally, in order to provide version
checking capabilities, ship VER.DLL that contains the versioning API.

2Object handlers are described in the Windows 3.1 Software Development Kit.

3SHELL.DLL also contains functions for the Windows 3.1 Drag/Drop interface; these will not be discussed in this document.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 6 Microsoft

12 OLE Communication Routes
Communication between a client application, a server application, and the two OLE libraries, OLECLI.DLL and
OLESVR.DLL, takes place on several different levels:

· The client calls API functions in OLECLI.DLL.

· OLECLI.DLL sends notifications to the client through the "CallBack" function in an OLECLIENTVTBL
structure.

· The server calls API functions in OLESVR.DLL.

· OLESVR.DLL calls the exported server methods to request various actions in on the server, document, or
object level.

· The server sends notifications to the client through the CallBack pointer in the OLECLIENTVTBL
structure provided by OLESVR. OLESVR intercepts these calls and may not pass the notification on to
the client.

· OLECLI.DLL and OLESVR.DLL communicate through DDE messages.

An OLE server application in this model makes calls to OLESVR.DLL functions and calls a CallBack functionto notify the
client of changes. For example, when an OLE server is opened because of a linked object in a client, the server must notify
the client, through CallBack, whenever a change is made to that document or object. When the client receives this
notification, it requests the updated data from the server by calling a function in OLECLI, sending a request to OLESVR that
calls methods in the server to retrieve the data to return to OLECLI and eventually back to the client. The CallBack function
to which the server sends notifications resides in OLESVR. OLESVR filters notifications before passing them to OLECLI
who then passes them on to the client application.

A server's methods, specified through OLESERVERVTBL, OLESERVERDOCVTBL, and OLEOBJECTVTBL structures,
are the only points where OLESVR requests actions in the server.

13 OLE Data Structures and Application-Specific Variations
There are eight data structures defined in OLE.H of interest to an OLE server application:

Data Structure Contents as defined in OLE.H

OLE Server Implementation Guide Version 1.01 13 April, 1992

Client
Application

Server
Application

OLECLI.DLL OLESVR.DLL
DDE

CallBackAPI
API,

CallBack Methods

Object Handler

Function Calls

Although the OLE 1.0 server library,
OLESVR.DLL, uses DDE commands to
communicate with the client library, a server
application should not depend on this fact.
Future versions of the OLE libraries may not
necessarily use the DDE mechanism. The OLE
libraries hide the underlying mechanism beneath a
set of function calls and allow the mechanism to
change and improve without requiring changes to
the application. Concentrate on the OLE
protocol and avoid concerning yourself with
DDE.

Microsoft Page 7

OLECLIENT A single LPOLECLIENTVTBL
OLECLIENTVTBL A single far pointer to the client's notification procedure: CallBack.

OLEOBJECT A single LPOLEOBJECTVTBL
OLEOBJECTVTBL Far pointers to object methods (see below).

OLESERVER A single LPOLESERVERVTBL
OLESERVERVTBL Far pointers to server methods (see below)

OLESERVERDOC A single LPOLESERVERDOCVTBL
OLESERVERDOCVTBL Far pointers to document methods (see below)

These data structures are quite limited as defined in OLE.H: each structure only contains a single pointer to a VTBL that
contains pointers to various callback functions.

To fully utilize these structures, define application-specific modifications to each structure in your own server, adding any
additional fields that you want to manipulate at the server, document, or object level. The key point to remember is that each
structure must always have an LPOLE*VTBL type first in which the server stores a pointer to the appropriate VTBL.

The Schmoo server defines its own modifications to these structures, like SCHMOOSERVER that contains the
LPOLESERVERVTBL field but also contains other fields that essentially act as global variables. Documents and objects
are treated in the same manner, where additional fields are added to the structures to act as globals within an object or
document. These globals need only be visible to an object, a document, or the server, leaving few variables that need be
truly global within the application.

14 Methods
A large part of the responsibilities of an OLE server is contained in the methods that handle requests from OLESVR:

OLESERVERVTBL OLESERVERDOCVTBL OLEOBJECTVTBL
Create Close DoVerb
CreateFromTemplate GetObject EnumFormats
Edit Execute GetData
Execute Release QueryProtocol
Exit Save Release
Open SetColorScheme SetBounds
Release SetHostNames SetColorScheme

SetData
SetTargetDevice
Show

Each method is simply a callback function defined in and exported from the server application. The specific responsibilities
of each of these methods will be detailed later in the Step-by-Step OLE Server section. Also, this document uses prefixes
of Server, Doc, or Obj before various methods to identify which VTBL they are referring to, as in ServerRelease. This
naming convention helps distinguish between methods with the same name, sich as the server, document, and object Release
methods which become ServerRelease, DocRelease, and ObjRelease.

15 Relationship Between Server, Document, and Object
The OLE structures represent a loose hierarchy. The three structures OLESERVER, OLESERVERDOC, and OLEOBJECT
are independent of one another, that is, an OLESERVER structure does not necessarily contain an OLESERVERDOC
structure (although you may wish to include it there).

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 8 Microsoft

A server in the most abstract sense is just the top-level structure of a particular object class, and each server only deals with a
single object class. A server in this sense can contain any number of documents, and each document contains any number of
objects of that class. This relationship is contained in the server and document methods. The server methods ServerCreate,
ServerCreateFromTemplate, and ServerOpen allocate and initialize documents. The document GetObject method allocates
and initializes objects.

"Server," "Document," and "Object" are abstract names that roughly correspond to parts of an application. The Server is
really the main application and the main window (like the Frame Windows in MDI) although a single application can support
multiple object classes, meaning it's a multiple server.4 Inside that server can be any number of documents; generally a
document equates to a window containing that document. Finally, inside a document are the objects, which may exist as
child windows of the document window or may simply be separate editable pieces of the document, such as a range of cells
in a larger spreadsheet.

16 OLE Use of Pointers
All OLE structures in OLE function calls and in an application's methods are referenced through
pointers, primarily so you can define application-specific structures to replace the standard OLE
structures. A direct result of pointer use is that OLE does not work in real mode Windows (3.0). If you have an
application that currently operates under real mode, adding OLE will eliminate that capability.

The use of pointers necessitates that you allocate memory and keep it locked until freed, a cardinal sin in real mode.
However, since far pointers in standard and enhanced mode Windows contain LDT (Local Descriptor Table) selectors,
instead of physical segment values, memory can move without requiring the selector (or the pointer) to change. Therefore
you can allocate and lock a structure to pass a pointer to OLECLI, and leave that memory locked until you free it.

Make the Best use of Local/Global Memory for OLE Structures

Local Memory: (LocalAlloc) Allocate as LMEM_FIXED or LPTR (windows.h defines LPTR as LMEM_FIXED |
LMEM_ZEROINIT in windows.h). Do not use LMEM_MOVEABLE followed by a LocalLock since that creates a
sandbar in the high area of the local heap. Allocating LMEM_FIXED allocates from the bottom of the stack, which is the
best place for locked memory to reside.

Global Memory: (GlobalAlloc) Allocate as GMEM_MOVEABLE followed by a GlobalLock. The largest concern with
global memory is how much of it resides in conventional memory below the 1MB line. Allocating GMEM_FIXED
automatically places that memory as low as possible in the global heap whereas GMEM_MOVEABLE allocates from the
top. Since the memory allocated GMEM_MOVEABLE can physically move after GlobalLock, you create no sandbars.

17 Mini Servers vs. Full Servers
Mini Servers are embedding-only servers: they cannot run stand-alone, they cannot save and open files independently, and
they have a simplified user interface. Examples of mini-servers are Microsoft Word-Art (font effects) and Microsoft Draw
(metafile editor), both included with products such as Word for Windows 2.0 or Publisher 1.0. Mini Servers work best to
generate small visual objects (as Word-Art and Draw) or where there is little point in providing the ability to save and open
files independently.

The Native data generated by a mini-server should be small so the effect on a client document containing many of such
embedded objects is not great. For example, a mini-server bitmap editor may consistently generate 50K objects so a client
document containing 20 of such bitmaps rapidly exceeds 1 MB in size. On the other hand, a metafile from Microsoft Draw
is relatively small, perhaps 200 bytes for a simple image, since metafiles are descriptions of graphics operations instead of a
pixel-by-pixel dump. If your server creates large objects, support linking with a full server to allow the user to separate the
data into multiple linked files instead of a single huge file with many embedded objects.

4For example, Microsoft Excel has a Worksheet object class and a Chart object class, both supported by the same application. The distinction is visible at
the document level.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Microsoft Page 9

Full Servers are applications that can run stand-alone, creating, opening, and saving files, can link or embed objects, and may
be an OLE client themselves. Microsoft Excel is a good example of such an application. Since full servers usually have a
menu, there are some minor user-interface changes that a full server must follow when it starts for editing an embedded
object.

If you are converting an existing application to become an OLE server, your application most likely reads and writes its own
files already. In this case it should become a full server, since supporting linking adds very little code to the application and
requires no user-interface changes. Note that if you support linking, you must also support embedding–let the user decide
which to use.

18 Single-Document vs. Multiple Document Servers
A server application can be either single-document (SDI) or multiple-document (MDI). When OLESVR initiates editing of
an object, it starts another instance of an SDI server but directs an MDI server to simply create a new window in which to
edit that object. MDI applications were created to optimize the workspace for a set of documents in an application. As
OLE moves away from application-centric computing to document-centric, the need for MDI diminishes. Microsoft
therefore encourages the use of a single-document interface for OLE servers.

There is one catch with the wording of Single-Document and Multi-Document servers when intermixed with Single-
Instance and Multi-Instance servers. The words document and instance have nothing to do with each other. A Single-
Document server is not necessarily Multi-Instance, and a Multi-Document server not necessarily Single-Instance. As we'll
see later, this affects your choice of the last parameter to OleRegisterServer that can be OLE_SERVER_MULTI or
OLE_SERVER_SINGLE, where OLE_SERVER_MULTI stands for Multiple-Instance and NOT MDI.
OLE_SERVER_SINGLE stands for Single-Instance. Be very careful not to confuse the two!

19 Clipboard Formats and Conventions
OLE servers provide data to OLESVR (and indirectly to the client) in standard clipboard formats:

1. "Native," the server's raw data structures.
2. "OwnerLink," information about the server, used for embedding an object.
3. "ObjectLink," information about a file the server has saved, used for linking an object.
4. CF_METAFILEPICT, a continuously scalable presentation for the client.
5. CF_BITMAP, a roughly scalable presentation for the client.

Native, OwnerLink, and ObjectLink are formats defined in the OLE protocol; all OLE applications register these formats
with RegisterClipboardFormat, which returns the exact same integer value in any applications. 5 These three formats
describe a linked or embedded object within a client document, allowing the OLE libraries to launch the correct server
application when the user activates an object in the client document. See the next section below for the structure of these
formats.

The CF_METAFILEPICT format is required to provide the client application with some visual representation (presentation)
of the embedded or linked data–this image is all that the client will show for the object. The server application must provide
at least a metafile in lieu of the server using an object handler DLL. Object handlers, which are not discussed in this
document, act in place of the server to generate images dynamically from Native data.

5RegisterClipboardFormat simply uses AddAtom on the given string, and atoms are constant across the system for any given string.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 10 Microsoft

Server applications are responsible for placing all the data formats above on the clipboard in order of decreasing fidelity, that
is, place the data containing the most information first. Given the contents of all the formats, OLE applications follow a
standard ordering:

1. Application-specific data.
2. Native
3. OwnerLink
4. CF_METAFILEPICT
5. CF_BITMAP
6. ObjectLink
7. Any other data.

For all intents and purposes, ordering is only important from Native to CF_BITMAP in that Native and OwnerLink precede
ObjectLink and that CF_METAFILEPICT precedes CF_BITMAP.

20 Native, OwnerLink, and ObjectLink Formats
Format Name Contents

Native Application-specific data structure, understood only by the server application that created

it. It must enable the server to completely recreate the object. The OLE libraries and
client applications treat Native data as a stream of raw bytes, that is, they do not assume
anything about the contents of that data.

OwnerLink Sequence of three null-terminated strings in memory, where the next string follows the
preceding string's null-terminator and the sequence is terminated by two NULLs:

String 1 Object class name
String 2 Document name
String 3 Object's individual name, assigned by the server application

The OwnerLink format describes an embedded object.

ObjectLink Identical to OwnerLink in OLE 1.x, but describes a linked object:

String 1 Object class name
String 2 Full path to the document file
String 3 Object's individual name, assigned by the server application

In OwnerLink and ObjectLink the object class name is the registered class of objects that the server handles. The document
name and object name in OwnerLink are strictly used to identify the object within whatever server or document it resides.
The current implementation of OLE (1.04) does not use the OwnerLink document name. However, the document name in
ObjectLink must contain a path name of the linked file, allowing OLESVR to pass that filename back to the server when a
client edits a linked object. The object name in ObjectLink specifies the object in the document to select when that
document is loaded.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Since the clipboard must be able to access the data
and pass it to other applications, always allocate
the memory using
GlobalAlloc(GMEM_DDESHARE |
GMEM_MOVEABLE...). GMEM_DDESHARE
insures that other applications will be able to make
use of the memory.

Microsoft Page 11

21 Preparing an Application to Become an OLE Server
Any application that produces some data can, with enough time and effort, become an OLE server. However, before starting
to add OLE support code, you can make small changes in your existing application to simplify your experience with OLE.
The suggested changes below will allow you to stay more focused on the OLE specifics instead of becoming distracted with
other non-OLE code changes. While these suggestions are not a mandate, they can make OLE easier to implement:

· Version Number Data Structures and Files
· Isolate Data
· Create Metafiles and Bitmaps
· Clean Up Clipboard I/O
· Isolate Utility Functions

22 Version Number Data Structures and Files
Include version numbers in any private data structures as well as in files. With OLE, a client application may embed data
from one version of a server and later request a newer version to edit that same data. Without version numbers, the server
would malfunction when manipulating an old data structure. A version number in the structures allows a newer server to
convert the old data to a new structure and allows an older server to notify the user that an updated version of the server
application is available.

Also consider placing a unique identifier in the data structure that you could publish so other applications could provide
conversion utilities to convert that data to their own formats.

23 Isolate Data
Consider reorganizing your existing global and static data with the objective of isolating non-OLE data from OLE-specific
data that you might add later. OLE is a protocol that sits on top of any server application that allows other applications
access to the server's data; in other words, OLE is not something that is "integrated" a great deal with the application, and
OLE, in the future, may change independent of upgrades in the Windows system, so be prepared to make a revision to the
application's OLE code without making changes to the remainder of the application.

The subsections below discuss more specifics about data isolation. One other small suggestion is to add a global variable
such as fOLE to indicate if the server was started stand-alone or for linking/embedding. In dealing with File menu
commands like File Save, you will need to distinguish the two cases to perform slightly different operations.

24 Use of Window-Specific Data
OLE is based on a loose object-oriented model where a server contains documents, and documents contain objects. Isolating
object, document, and server data is simpler if you structure your application to have a server window that contains document
windows, and document windows that contains object windows, where each of those windows maintains a private data
structure visible only to that window. Not only does it simplify data management, but also can reduce global variables to
track the number of objects or open files and possibly variable-length arrays of data structures.

For each server, document, and object window, register the window class with sizeof(HANDLE) in the cbWndExtra field
of WNDCLASS and define a single data structure containing the data specific to that class. Allocate memory for this
structure when the window receives a WM_CREATE message and free that memory on WM_DESTROY. Store the handle
to this memory in the window's extra bytes. Whenever you enter the window procedure later, you can simply retrieve this
handle and have access to the entire data structure.6 Note, however, that the Schmoo sample server does not use this method.

6Which is far more convenient and efficient than using separate window extra bytes for each field in this structure.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 12 Microsoft

25 Application-Specific (global) Data
Most applications, either for performance reasons or just to save development time, maintain some global (application-
visible) data. Some of this data is only manipulated through WinMain or the main window procedure, and some is necessary
for all levels of functions. Separate the data that is manipulated only on the highest level into one data structure and that
manipulated at all levels into another structure (or just leave it alone).

The data that is only manipulated at the high levels can be folded into the application's OLESERVER structure and shared
only with the main window procedure and the OLESERVERVTBL methods. If any other module needs that data, simply
pass a pointer to this structure. Not only does this provide some structure to otherwise global variables, but referencing the
variables off a pointer visibly identifies that data as belonging to the global data block. For example, the Schmoo server has
a single global pGlob that points to a data structure containing non-OLE global variables. Anywhere a global appears in the
source code it always has pGlob-> as a prefix, quickly identifying that variable as global.

26 Document- and Object-Specific Data
Information that is global between documents or document windows can also be isolated into a data structure or attached to
each document window. Isolating the data now will make it easier to fold this data into an OLESERVERDOC structure that
holds OLE specific data for each document. By isolating this data now and always referencing it from a pointer, changing
where the structure resides is a trivial matter of changing the name of the pointer from which you reference the variable.

In the same manner as you isolate document-specific data, also isolate object-specific data that can be folded into your
application-defined OLEOBJECT structure.

27 Create Metafiles and Bitmaps
OLE will later require the server to provide a graphic representation of its native data in a metafile and possibly a bitmap.
Before adding any OLE code, add the capability to generate these images in the form of a metafile handle (HMF) or a bitmap
handle (HBITMAP). As we'll discuss below, isolate the functions to create these images so they may be called at any time.
You will not only need these handles when copying or cutting data to the clipboard but the OLESVR will call the GetData
method in your OLEOBJECTVTBL to request a handle to the same image.7

In creating a metafile, use the MM_ANSITROPIC mapping mode so the metafile will scale properly in the clipboard viewer
and in other applications (such as OLE clients). If your metafile contains text and you are targeting Windows 3.1, try to use
TrueType fonts, simply because they will provide the best presentation no matter how that metafile is scaled. In addition,
TrueType fonts are device-independent, relieving your application from dealing with device-specific fonts depending on the
printer in use (see the ObjSetTargetDevice section at the end of this document).

28 Clipboard I/O
If you are converting your application to operate as a full OLE server, now is a great time to add clipboard I/O capabilities. 8

If you already have some clipboard interaction, verify that you manipulate your application's private data,
CF_METAFILEPICT, and CF_BITMAP. Later you will need to add the ability to copy and cut the OLE-specific formats of
Native and OwnerLink. You will probably use your application's private data as the Native format.

As you want a single function to generate a metafile image of your server's private data, include a function to create and
return a global memory handle to a METAFILEPICT structure to send to the clipboard as the CF_METAFILEPICT format.
In the METAFILEPICT structure, specify the extents of the metafile in HIMETRIC units which OLE uses exclusively to
specify dimensions. Do not confuse the use of HIMETRIC units with the MM_ANISOTROPIC mapping mode required in
the metafile itself. The extents and metafile are two independent things.

7OLE does not ask for an HMF directly, but does request a handle to a METAFILEPICT structure.
8Mini-servers do not generally interact with the clipboard.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Microsoft Page 13

29 Isolate Utility Functions
As the previous sections began to mention, one of the best ways to simplify OLE implementation is to reorganize functions
and code fragments in your application to make them callable from OLE methods. Again, if you spend time reorganizing
before dealing heavily with OLE you can stay more focused on the OLE protocol instead of becoming bogged down in
moving code and updating include files.

This section suggests that you isolate code in fourteen areas:

1. Application Installation (first instance only)
2. Application Initialization (all instances)
3. Exit and Cleanup Procedure
4. Background Processing Schedulers
5. Drawing to an Arbitrary DC
6. Clipboard Format Builders
7. MM_HIMETRIC to MM_TEXT (or other) Conversions
8. Setting Private Data Dynamically
9. Manipulating the Dirty Flag
10. File I/O
11. Changing Window Title on File Open/Save As
12. Window Sizing, by User or Program
13. (optional) DDE Execute String Parsing and Dispatching

30 Application Installation (first instance only)
Some applications contain code that executes only if the instance of the application is the only one running. For example,
the first instance may establish a system-wide network or database connection that all subsequent instances of that
application also use.

During installation, an OLE server may want to verify that it exists in the system registration database and possibly register
itself if not. This only needs to occur for the first instance run on any particular machine. By isolating your existing
installation code, you create a definite place to quickly insert the code to deal with the registration database.

31 Application Initialization (all instances)
Application startup is greatly affected by OLE as the server must handle several responsibilities at that time such as
registering clipboard formats and parsing the command line. Isolating existing initialization code will create obvious places
to insert this OLE-specific code. If all initialization code resides in one function call that you make from WinMain, then that
function can simply return FALSE indicating there was an error so that WinMain can terminate the application.

One of the complexities of initialization is parsing the command-line to detect an Embedding flag. To ease this extra step,
consider making a function to just parse the command line into separate parameters. In the Schmoo sample server, a
function called HListParse in INIT.C allocates an array of pointers, parses the command line, and stores a pointer to each
parameter in the command-line that is separated by whitespace. The array pointers reference each parameter individually so
you can simply walk through that array to find switches, flags, and filenames. When the OLE server checks for Embedding,
it only has to compare the first item in the array, since Embedding is either first on the command line or not there at all.

When Embedding does occur, the nCmdShow parameter passed to WinMain will have to change, so include some method in
your initialization function to return the modified nCmdShow. This can be accomplished by passing a pointer to nCmdShow
to the initialization function that can modify it or leave it alone. WinMain then does not have to change, since nCmdShow
was changed behind the scenes.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 14 Microsoft

32 Exit and Cleanup Procedure
Applications generally have some code to clean up items such as allocations and GDI objects that were created in the
application initialization code. So in the same fashion that you separate initialization code, isolate the exit procedure to
create a place for OLE-specific cleanup.

33 Background Processing Schedulers
Some applications that perform background processing modify the message loop in WinMain to detect when there are no
messages to process (by using PeekMessage) and then performing a step of some background process before checking for
messages again. OLE requires a server to enter a separate message loop when certain operations require the server to wait
until an object, document, or the server is released. The message loop is necessary to process DDE messages between
OLESVR and OLECLI while synchronizing a sequence of calls in the server.

Like any other message loop, there may be idle time during this OLE wait loop during which you can again perform some
background task. By isolating the code you execute to perform a step of this task, you can call it from any message loop
anywhere in the application with the same results.

34 Drawing to an Arbitrary DC
At any time OLESVR may ask an OLE server to produce an image on the screen (for it's own display), a metafile or bitmap
(for providing an image to a client application), or even to a printer. Simplify this requirement by modifying whatever
drawing code your application uses for its objects to work with an arbitrary DC, whether it be a screen DC, a metafile DC, or
a memory DC containing a bitmap.

For example, the Schmoo server creates a window called Polyline that edits the object. The Polyline window's paint routine
normally draws the image to the screen on a WM_PAINT message. By enabling it to draw to any DC, the same function can
be called from the WM_PAINT case, a redraw case in WM_LBUTTONDOWN, or from code to generate a bitmap or
metafile.

35 Clipboard Format Builders
OLESVR will ask an OLE server (through the Object's GetData method) to provide a handle to data in any single clipboard
format, including Native, OwnerLink, CF_METAFILEPICT, and CF_BITMAP. To simplify your GetData method later,
create functions like HGetMetafilePict and HGetBitmap (as in Schmoo's CLIP.C) that return handles for existing formats
(prior to OLE) that are readily usable for clipboard I/O or in handling the GetData method.

36 MM_HIMETRIC to MM_TEXT (or other) Conversions
OLE expresses any rectangles or other dimensional quantities in HIMETRIC units, including any rectangles provided in the
DocSetDocDimensions method and also in any metafile that the server copies to the clipboard. If your application does not
deal in MM_HIMETRIC already, create two functions that convert MM_HIMETRIC to and from the mapping mode you
normally use, such as MM_TEXT. The application can then continue to deal in it's usual mapping mode, only converting
units when exchanging dimensions of an object with OLESVR.

The Schmoo server contains two functions in MISC.C to convert rectangles between MM_HIMETRIC and MM_TEXT
units. RectConvertToHiMetric converts from MM_TEXT to MM_HIMETRIC (using DPtoLP) and RectConvertToDevice
handles the opposite (using LPtoDP). These functions are readily usable in your application, but note that debug Windows
will RIP if you pass a metafile DC to the LPtoDP or DPtoLP functions, so don't pass them to these functions in Schmoo.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Microsoft Page 15

37 Setting Private Data Dynamically
Applications that cut or copy private data to the clipboard are also capable of pasting that data back. However, the code to
perform this paste may be buried inside a WM_COMMAND processing switch. OLESVR uses the object's SetData method
to affect the same operation as paste, so isolate whatever code your application uses to take a private data structure and add it
to the current document. When you receive the Paste, just get the data from the clipboard and pass it to this function.
When the SetData method receives a handle you again simply pass it to this function, making SetData trivial.

38 Manipulating the Dirty Flag
Invariably you will have several different operations that cause some change to occur in the server document that the user is
editing. Your application may currently set some global flag in all of these cases. Isolate code to change that flag into a
separate function that you then call from each case.

When you add OLE linking support, you must notify the client application that the data has changed. By creating a function
to call every time you change the dirty flag, you create a single place to add the client notification call and prevent yourself
from having to find and modify (that is, possibly miss) all the cases where you change the dirty flag.

39 File I/O
OLE affects most File menu commands and may require loading or saving a file outside the context of those commands.
Therefore, isolate functions to read and write your data structures to a file. The server method CreateFromTemplate, for
example, requires that you open and read the contents of a file to use as the initial contents of a new document in the server.
You may have functions that create a new document from a file already, but the CreateFromTemplate method also requires
that you only use the file for initial data and do not keep that file open.

Also create a single function where you prompt the user to save changes in a document before creating a new one, opening a
new file, or exiting the application. Normally this small piece of code displays a message box, and depending on whether
the user chooses Yes, No, or Cancel the function either saves the file, continues with the operation (new/open/exit), or cancels
the operation. When an OLE server is started to edit an embedded object, the text in this message box will change, so
centralizing this code now simplifies the necessary changes for OLE.

40 Changing Window Title on File Open/Save As
Most applications that load files display the loaded filename in the title bar of the application along with the usual application
name. When a user opens a file or renames the file with Save As, the name of the file in the title bar generally changes.

The UI for OLE servers goes a little beyond filenames, requiring a different string in the title bar if the server is editing an
embedded object. Isolate the code for manipulating the title bar by creating a function that takes the main window handle, a
pointer to a string containing the document name (or filename), and a pointer to a string containing an object name. In
stand-alone (or OLE linking) operation, just pass a NULL as the object name and have this function create a string like:

<Application Name> - <Filename>

If the function receives a non-NULL object name, use that to indicate that the server is editing an embedded object and
change the title bar to the appropriate string:

<Application Name> - <Object Name> in <Filename>

As we'll see later, OLESVR provides the object name and filename in the embedding case through the document
SetHostNames method.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 16 Microsoft

41 Window Sizing, by User or Program
Some applications (Schmoo, for example) resize the document window and scale their image(s) when their main window
changes size. Resizing may occur either through user action (where a window will receive a WM_SIZE message) or
through a possible call to SetWindowPos. If your application only handles the user action case, OLE will change that.

The document SetDocDimensions method simply instructs a document to resize to a given rectangle. Schmoo resizes
several windows to fit this new document size. If you have existing code in the WM_SIZE case to resize other windows
based on a document size, isolate that code into a separate function that you can call from SetDocDimensions.

42 (Optional) DDE Execute String Parsing and Dispatching
If your application currently supports DDE Execute commands and your OLE server will support the StdExecute protocol,
you will receive DDE Execute strings not only through DDE messages but also through the server and document Execute
methods when those commands come through OLESVR. If you have existing code to parse an Execute string, isolate it to
be callable from your WM_DDE_EXECUTE case or from either Execute method. You may also have code to actually
execute the commands after parsing, which you can also isolate to be callable from these separate locations.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Window Sizing and the Dirty Flag

If your application saves the dimensions of a document or
object in a file, then window sizing should make the
document or object "dirty." The same dirty flag that you
may currently use for prompting the user to save changes to
a file will also be used with OLE to prompt the user to
update the object in a client document. Resizing the object
in the server should be an operation that is reflected in the
client document, so users who resize an object must be
prompted to update the object if they attempt to close the
server when the object is dirty.

Microsoft Page 17

43 Two Hints for Debugging an OLE Server
Developers who have already struggled with implementing OLE servers (myself included) have found debugging to be one
of the greatest challenges. Below are some hints aimed at making your experience easier.

44 Starting the Server in the Debugger
One of the greatest difficulties in debugging is breaking execution when OLESVR launches the server application. There
are two ways to deal with this:

1. If your debugger supports debugging multiple instances of the same application, start one instance of the
server as stand-alone in the debugger. Set a breakpoint on WinMain and let that instance run. When
OLESVR launches another instance, you will break on WinMain and be able to debug this new instance
from there. The disadvantage is that you must watch which instance you are running at the time.

2. Under Codeview for Windows you can debug two applications by loading one as an application and
specifying the other as a DLL. To debug an OLE server, use a suitable client (preferably a sample client
for which you have sources) as the main application and specify your server as a DLL.

When Codeview starts, it loads the symbols for both applications, allowing you to set breakpoints
anywhere in the server application, even if it has not yet started. When OLESVR launches your
application you can break on entry to WinMain which is most convenient for debugging installation code
and initialization functions. In addition, when your server terminates, you are still running the debugger
on the client, so if you launch the server again you debug it again, from the start. You also have no need to
watch which instance of the server is running, unless you wish to debug multiple instances.

45 Set Breakpoints on Entry to All Methods
A great technique to learn what is happening with your methods is to set a breakpoint at the beginning of each method.
Anytime an OLE operation is carried out, you can debug each method as they are used. You will also see the sequence of
calls to your methods giving you a good feel about what operations (in the client) cause which methods to be called and in
what order they are called.

With that, let's get to the code...

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 18 Microsoft

46 Step-By-Step OLE Server

This section will take you through the necessary code additions and changes to make an existing application an OLE server.
The discussion assumes that the application can operate stand-alone, independently loading, modifying, and saving
documents in files. It also assumes that your application is not based on the Multiple-Document Interface (MDI) model, so
special notes about MDI are given when necessary.

The incremental approach in this guide provides points at which you can compile and test your code, marked by a gear
symbol. At these points your server may not be fully functional, but you can insure that certain elements do work perfectly.
This is very important to making your life with OLE simpler, because later steps depend on the previous steps working
correctly. Some points reference parts of the Schmoo server to demonstrate how you might implement the functionality just
described.

This section is organized into the following steps:

Define OLE Data Structures Modifying your include files to contain the necessary OLE
structures.

Install the Server in the Reg. Database Registering the server with the system registration database as
a server for a particular object.

Place Data on the Clipboard Clearing existing data, retrieving handles to all necessary
formats (Native, OwnerLink, ObjectLink, metafile, and
bitmap), and placing those formats on the clipboard in the
right order.

Implement Skeleton (stub) Methods Creating the necessary source files and function stubs for OLE
Server Methods.

Initialize the Application and VTBLs Registering OLE clipboard formats, allocating an
OLESERVER structure, initializing VTBLs, registering the
server with OLESVR, parsing the command line, and creating
an initial document.

UI: Change Window Titles and Menus Handling simple user interface requirements.

Implement Basic Methods Making the server capable of embedding. This is the longest
section to work through.

Handle Simple Shutdown Revoking the server and waiting for release.

File Menu: New, Open, Save[As], Update Allocating, initializing, and registering new documents,
notifying the client of changes, and handling a switch from
embedding mode to stand-alone. Notifying the client and
renaming documents.

Closing Objects, Documents, and the Server Updating the object if necessary, informing OLESVR that the
document is closing, revoking the server and documents, and
freeing the VTBLs and other structures.

Optional Methods and Functions Implementing optional methods and blocking OLESVR
requests.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Microsoft Page 19

47 Define OLE Data Structures
OLESVR passes information concerning the server, documents, and objects to the server through pointers to OLESERVER,
OLESERVERDOC, and OLEOBJECT structures. However, the definitions of these structures in OLE.H include only a
single pointer to a method callback table:

typedef struct _OLESERVER
{
LPOLESERVERVTBL lpvtbl;
} OLESERVER;

typedef struct _OLESERVERDOC
{
LPOLESERVERDOCVTBL lpvtbl;
} OLESERVERDOC;

typedef struct _OLEOBJECT
{
LPOLEOBJECTVTBL lpvtbl;
} OLEOBJECT;

For you to make effective use of these structures, define your own structures, keeping the lpvtbl field first and adding any
additional data. Feel free to name these structures anything you care as Schmoo does below:

typedef struct
 {
 LPOLEOBJECTVTBL pvtbl; //Standard
 BOOL fRelease; //Flag to watch if we need to wait
 LPOLECLIENT pClient; //Necessary for notifications
 HANDLE hMem; //Memory handle to this structure
 } SCHMOOOBJECT;

typedef struct
 {
 LPOLESERVERDOCVTBL pvtbl; //Standard
 LHSERVERDOC lh; //Required by OleRegisterServerDoc
 BOOL fRelease; //Flag to watch if we need to wait
 ATOM aObject; //Name of the object
 ATOM aClient; //Name of the connected client
 HANDLE hMem; //Memory handle to this structure
 LPSCHMOOOBJECT pObj; //Last object allocated.
 } SCHMOODOC;

typedef struct
 {
 LPOLESERVERVTBL pvtbl; //Standard
 LHSERVER lh; //Required by OleRegisterServer
 BOOL fRelease; //Flag to watch if we need to wait
 BOOL fEmbed; //TRUE if we're embedding only
 BOOL fLink; //TRUE if we're linking only
 WORD wCmdShow; //OLE-modified window show command
 HWND hWnd; //Main application window
 HANDLE hMem; //Memory handle to this structure
 LPSCHMOODOC pDoc; //Last document allocated
 } SCHMOOSERVER;

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 20 Microsoft

Each of these structures contains a flag fRelease that the server watches in cases where a Revoke function returned
OLE_WAIT_FOR_RELEASE. If we called OleRevokeServer, OleRevokeServerDoc, or OleRevokeObject then we must
watch the fRelease flag in SCHMOOSERVER, SCHMOODOC, and SCHMOOOBJECT respectively. See the section
Closing Objects, Documents, and the Server.

Also note that each structure uses ATOMs to store strings, such as the name of a document or client. Though using ATOMs
is not required, they provide a convenient storage method for strings where you need to make no prior assumptions about
string length. To use the string itself you do have to allocate string space and call GetAtomName, but that has little impact
where an OLE server actually uses the strings.

Finally, the lh fields in the SCHMOOSERVER and SCHMOODOC structures are handles generated by OleRegisterServer
and OleRegisterServerDoc that are required in other OLE calls. Storing a handle in these structures associates that handle
with the structure, so whenever you have a structure pointer, you have the handle for that item.

Schmoo also defines a few additional types not included in OLE.H to eliminate the use of ugly type casting like
(LPOLEOBJECT FAR *). The first three are used in various methods. The LPVOIDPROC is the type of the object
QueryProtocol function and is typedef'd here to make other code cleaner:

typedef LPOLESERVER FAR *LPLPOLESERVER;
typedef LPOLESERVERDOC FAR *LPLPOLESERVERDOC;
typedef LPOLEOBJECT FAR *LPLPOLEOBJECT;

typedef LPVOID (FAR PASCAL *LPVOIDPROC) (LPOLEOBJECT, LPSTR);

48 Install the Server in the Registration Database
An OLE server must register itself with the system registration database specifying the objects it can edit. The database
contains key/value pairs where keys and values are simple strings. Windows uses the registration database for more than
just OLE, such as storing associations between file extensions and executables; OLE is not the exclusive use of the database.

The discussion below describes how a server registers itself as the server for a single object, but a single application can be
the server for multiple objects. For each object the application must repeat the registration process. Registration is
accomplished through calling functions in SHELL.DLL (see the OLE Technical Background section above).

An alternate method to register the server is to ship your application with a APPNAME.DAT file and the REGLOAD.EXE
utility. To generate the APPNAME.DAT file, start the REGEDIT.EXE application shipped with Windows 3.1 with -v on the
command line to enable its editing mode. When you install your application, use REGLOAD.EXE to merge this
APPNAME.DAT with the user's REG.DAT automatically, or instruct the user to merge the file themselves with RegEdit.

49 OLE Keys and Values
All OLE-related keys start from a root key called HKEY_CLASSES_ROOT, as all objects are members of some 'class.' The
first subkeys from HKEY_CLASSES_ROOT are the object's classname and the application's file extension. Both of these
subkeys must have values:

Key Name Required Value Example
HKEY_CLASSES_ROOT\classname Readable version of class name. Schmoo Server 1.0
HKEY_CLASSES_ROOT\.ext Associated class name for the extension Schmoo1.0

The HKEY_CLASSES_ROOT\classname key has two standard extensions to which additional subkeys are attached:

HKEY_CLASSES_ROOT\classname\protocol\StdFileEditing

OLE Server Implementation Guide Version 1.01 13 April, 1992

Microsoft Page 21

HKEY_CLASSES_ROOT\classname\protocol\StdExecute

Additional subkeys attached to \protocol\StdFileEditing describe more specific characteristics of the OLE protocol
supported by the server:

Key Name ...\StdFileEditing\ Value Example
server Full path to server executable e:\win31\schmoo\schmoo.exe
handler (optional) Full path to object handler DLL e:\win31\schmoo\schmooh.dll
verb\0 Primary verb in mixed case Edit
verb\n (optional) Secondary, tertiary, etc., verbs Open, etc.
SetDataFormats (optional) CSV string of data formats Native, CF_METAFILEPICT
RequestDataFormats (optional) CSV string of data formats Native, CF_METAFILEPICT

Be sure to include the full pathname to both server executable and object handler in the values for the server and handler
subkeys. If you do not include the path, then your application must either reside in the PATH or OLE will force the user to
provide that path every time they edit an object–a major headache. In addition, the verbs you register must be sequential,
starting at 0 and increasing by one for each verb.

The \protocol\StdExecute\server is an optional key that has a value of the application path, just like the server subkey in
StdFileEditing. Windows uses this entry to find the server if another application attempts to send commands through the
OleExecute function in the OLECLI.DLL library. A server need not support StdExecute.

50 Example:    FOLEServerInstall and FKeyCreate
The Schmoo application uses its FOLEServerInstall function (OLEINST.C) to create the necessary keys in the registration
database. FOLEServerInstall takes a single pointer to a structure that contains the strings necessary to build the keys and a
few other key pieces of information. OLEINST.H defines this structure:

typedef struct
 {
 LPSTR pszServerName; //Full server name.
 LPSTR pszServerClass; //Short server class name.
 LPSTR pszServerPath; //Full path to server module.
 LPSTR pszHandlerPath; //Optional Full path to object handler DLL.
 LPSTR pszExt; //File extension for the server.
 LPSTR *ppszVerbs; //Pointer to array of LPSTRs to verbs.
 WORD cVerbs; //Number of verbs in array.
 LPSTR pszSetFormats; //Optional CSV list of accepted formats.
 LPSTR pszRequestFormats; //Optional CSV list of requestable formats.
 BOOL fExecute; //Is OleExecute supported?
 } REGINSTALL;.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Verbs are the types of actions a user can perform on an
object, such as "Play," "Edit," and "Open." For most
graphical applications, like Schmoo, "Edit" is the only verb
provided, since editing is the only thing to do with the data.
An application like the Windows 3.1 Sound Recorder
supports two verbs, "Play" and "Edit," where Play is the
primary verb and Edit is the secondary verb. When a user
double-clicks an object in a client document, the client
application invokes the primary verb for that object; for
Sound Recorder that means play the sound. All other
verbs are accessed through the client application's menu.
Note that when you register verbs, store them in mixed
case.

SetDataFormats and RequestDataFormats

A server may wish to support the OleSetData and OleRequestData calls available to client applications from
OLECLI.DLL. These functions allow the client to set or retrieve the data for an object if that client understands the object's
native format. The value strings for the SetDataFormats and RequestDataFormats keys are a comma-separated value (CSV)
list of clipboard formats such as "Native, CF_METAFILEPICT" or "CF_DIB, CF_BITMAP, CF_TEXT."

Note that while SetDataFormats and RequestDataFormats are optional in the StdFileEditing protocol, the object SetData and
GetData methods, which are unrelated, are absolutely necessary.

Page 22 Microsoft

FRegDBInstall (OLEINST.C) contains an example of filling this structure and calling FOLEServerInstall.

On entry, FOLEServerInstall checks if the server is already registered in the database, using RegQueryValue:

#include <shellapi.h>

...

BOOL FAR PASCAL FOLEServerInstall(LPREGINSTALL lpRI)
{
LONG lRet;

...

//Check if this server is already around.
lRet=RegQueryValue(HKEY_CLASSES_ROOT, lpRI->pszServerClass, szKey, &dw);

if (ERROR_SUCCESS==lRet)
return TRUE;

...

In RegQueryValue, HKEY_CLASSES_ROOT specifies the root key, lpRI->pszServerClass the classname used in all the
subkeys, szKey is a dummy buffer to receive the value of this key, and dw is a DWORD that contains the length of the szKey
buffer. If RegQueryValue returns ERROR_SUCCESS, then a value already exists for the classname key and there's no need
to create any additional keys.9

If the server is not already registered, FOLEServerInstall proceeds to create keys for all desired values. For each key it calls
FKeyCreate with a key name, a subkey name, and a value for the key. FKeyCreate handles the sequence of RegCreateKey,
RegSetValue, and RegCloseKey:

BOOL PASCAL FKeyCreate(LPSTR pszKey, LPSTR pszSubKey, LPSTR pszValue)
{
char szKey[128];
HKEY hKey;
WORD cch;
LONG lRet;

cch=lstrlen(pszValue)+1;

lstrcpy(szKey, pszKey);
lstrcat(szKey, pszSubKey);

lRet=RegCreateKey(HKEY_CLASSES_ROOT, szKey, &hKey);

if (lRet!=ERROR_SUCCESS)
return FALSE;

lRet=RegSetValue(HKEY_CLASSES_ROOT, szKey, REG_SZ, pszValue, cch);

if (lRet!=ERROR_SUCCESS)
{

9This assumes that if the classname key exists that all other necessary keys also exists, which is a safe assumption because end-users do not have the
capability to modify the database. Only the SHELL.DLL API and the Windows 3.1 RegEdit application can change the database.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Microsoft Page 23

//Delete key if we could not set a value.
RegDeleteKey(hKey, pszSubKey);
return FALSE;
}

lRet=RegCloseKey(hKey);

if (lRet!=ERROR_SUCCESS)
return FALSE;

return TRUE;
}

FKeyCreate appends the subkey pszSubkey to the basic key in pszKey. pszSubKey is passed separately in order to use
RegDeleteKey if necessary. FKeyCreate uses RegDeleteKey only if RegCreateKey succeeded but RegSetValue failed.

Both FOLEServerInstall and FKeyCreate are reusable pieces for your application. As mentioned above, Schmoo uses
FRegDBInstall (OLEINST.C) to fill a REGINSTALL structure. FRegDBInstall sets fExecute to FALSE indicating that the
server does not support StdExecute. Also note that ppszVerbs must point to an array of LPSTR values, where each value in
that array points to an actual string containing a verb. The Schmoo server, like most other servers with graphical data,
supports only one verb, "Edit." However, FOLEServerInstall is capable of handling multiple verbs.

If you choose to use these functions, OLEINST.H contains the necessary structure definitions and function prototypes.
OLEINST.H is the only include file independent of OLEGLOBL.H since installation code may reside in a separate
installation program.

51 Verifying the Registration with RegEdit.
After running your server with the registration code, start the Windows Registration Database Editor, REGEDIT.EXE, to
verify that your server was properly registered. In order to see all information and edit the database, start RegEdit with -v on
the command line. In the figure below the Registration Editor shows that Schmoo successfully added the key Schmoo1.0
with the value "Schmoo 1.0 Figure" and that subkeys of \protocol\StdFileEditing\verb\0 and \protocol\StdFileEditing\server
also exist. Schmoo also successfully added the key HKEY_CLASSES_ROOT\.MOO. In the event your code produced the
wrong results, just delete the entries and try again.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 24 Microsoft

52 Place Data on the Clipboard
Setting clipboard data is a simple matter of creating the data structures and passing handles to the clipboard, but it is
necessary to allow the user to run the server stand-alone and copy data to the clipboard for linking or embedding into another
application. If you have already created functions to retrieve the handles for the individual clipboard formats, adding OLE
clipboard support will be very quick using the following steps:

1. Call OpenClipboard.

2. Call EmptyClipboard to clear out existing data.

3. For each data format, retrieve a handle to the data and call SetClipboardData, observing the
standard order of formats:

a. Any private data supported by the application.
b. "Native"
c. "OwnerLink"
d. CF_METAFILEPICT
e. CF_BITMAP
f. "ObjectLink," if the server has a known filename and the data is being copied, not cut.

Linking to non-existent data is esoteric, at best.
g. Any other standard clipboard format supported by the application.

4. Call CloseClipboard.

As far as pasting, there is no need for a server to know how to paste "Native," "OwnerLink," or "ObjectLink."

53 Example:    FEditCopy, FOLECopyNative, FOLECopyLink and
HLinkConstruct

Schmoo sends the basic non-OLE formats to the clipboard using the function FEditCopy in CLIP.C (FEditCut simply calls
FEditCopy and deletes the current data). Prior to OLE implementation, it simply set data for its private format (a format
registered as "Schmoo1.0"), CF_METAFILEPICT, and CF_BITMAP.

To support OLE, FOLECopy calls FOLECopyNative and FOLECopyLink (used for both OwnerLink and ObjectLink) in the
correct order. Note that even when two formats have the same data (as the private and "Native" data have), send a different
handle for each to the clipboard so that the clipboard can manage each format separately.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Microsoft Page 25

The function HLinkConstruct (OLECLIP.C) reusable in your application, verbatim. It simply takes three strings, allocates
memory for the three plus an extra null-terminator, copies those three strings into that memory, and returns a memory handle
that can be immediately sent to the clipboard.

54 Verifying Correct Data Placement
After adding basic OLE clipboard support, run your server and copy or cut data to verify that the proper clipboard formats are
appearing on the clipboard in the correct order, depending on whether or not you have saved a file. The Display menu of the
Window's Clipboard Viewer (clipbrd.exe) lists the data currently held in the clipboard:

No file saved: File saved
<Owner Display> <Owner Display>
<Private Data> <Private Data>
Native Native
OwnerLink OwnerLink
Picture Picture
Bitmap Bitmap

ObjectLink

At this time you should also verify that the metafile you place on the clipboard is scalable by viewing the
CF_METAFILEPICT format (Picture) and resizing the clipboard viewer application. The image should scale smoothly to
any rectangle without distortion, unlike a bitmap munged with StretchBlt.

To verify that the OwnerLink and ObjectLink data are correct, you will have to step through your code in a debugger and see
exactly what string exists in that memory before the call to SetClipboardData.

You can now also open an OLE client application and paste the object into a document. The client application will simply
retrieve the Native and OwnerLink data, if available, and a presentation format like a picture or a bitmap, displaying that
image in its document. However, before you can double-click the object in the client document to edit it, there is more work
to complete...

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 26 Microsoft

55 Implement Skeleton (stub) Methods
In the next section, Initialize the Application and VTBLs, you will add code to call MakeProcInstance for each of the
server, document, and object methods. To do that, you have to have some methods, even stub methods.

As a starting point, use the Schmoo files OLESVR.C, OLEDOC.C, and OLEOBJ.C. These files contain implementations
for each method that you can use as a starting point, commenting out any code you don't yet want yet. Each of the functions
includes a comment describing what that method must do when called, as discussed later in this document under
Implementing Basic Methods.

If the server is going to support multiple object classes, then each class needs its own set of methods on the server, document,
and object level, so make copies of these source files as necessary. Of course, some of these methods may contain the same
code, and there is no reason that they may not be the same function. When you initialize the VTBL for that object class you
can simply use the same function pointer across classes.

In all cases, these stubs return an appropriate OLE_ERROR_* value depending on the method. For information on the
parameters and return values of all methods, consult the Windows 3.1 SDK Reference.10

56 Export the Methods
An extremely easy mistake that we have probably all made is to forget to export a function you pass to MakeProcInstance.
During initialization, an OLE server passes pointers to all methods to MakeProcInstance and so you must list them in the
EXPORTS section of your .DEF file in order for OLESVR to call them. Note that exported methods in the .DEF file need
not be listed in any particular order, nor do they require particular ordinal number or any sort of standard name.

Compile here to weed out any syntax errors that have crept in and to insure that the source files are compiled and linked
flawlessly. Also do a short run of the application to insure that the code addition did not cause any strange segmentation
errors. Other than that, there is nothing to test.

57 Initialize the Application and VTBLs
This section describes what an OLE server must do during application (instance) initialization above what its normal
operations prior to OLE. Instance initialization takes place before the application has created its main window and entered
the message processing loop. If an error occurs during this phase, terminate the application, notifying the user if necessary.

Initialization steps specific for OLE:

1. Register clipboard formats for Native, OwnerLink, and ObjectLink types.
2. Initialize VTBLs containing thunks for the server, document, and object methods.
3. Allocate and initialize your application-specific OLESERVER structure.
4. Register the server application with OleRegisterServer.
5. Parse the application command line to determine if it's starting for a linked or embedded object.

10The Windows 3.1 Software Development Kit contains the full OLE function and structure reference. Search for OLESERVERVTBL,
OLESERVERDOCVTBL, and OLEOBJECTVTBL for server, document, and object methods, respectively, in the on-line help file.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Microsoft Page 27

6. Allocate and initialize your application's initial OLESERVERDOC structure.
7. Register the initial document with OleRegisterServerDoc.

This section also includes a summary of error conditions that may happen during OLE initialization and what action to take
on those errors.

58 Register Clipboard Formats
Regardless of whether or not the server actually does clipboard I/O, you need clipboard formats for "Native," "OwnerLink,"
and "ObjectLink." Store these registered formats in globally visible variables since the application uses them for clipboard
I/O as well as inside object methods. The object methods GetData, SetData, and EnumFormats use these formats outside the
clipboard context to exchange data with OLESVR. Register the three standard formats with RegisterClipboardFormat:11

pOLE->cfNative =RegisterClipboardFormat("Native");
pOLE->cfOwnerLink =RegisterClipboardFormat("OwnerLink");
pOLE->cfObjectLink=RegisterClipboardFormat("ObjectLink");

if (0==pOLE->cfNative || 0==pOLE->cfOwnerLink || 0==pOLE->cfObjectLink)
 return FALSE;

If either call to RegisterClipboardFormat for Native and OwnerLink fails, then initialization of this server fails. If
registering ObjectLink fails, then this server cannot do linking. It is your decision if this is to be a fatal error or will simply
disable any ability to link, in which case the server acts as embedding only. The Schmoo server simply terminates if any of
the three calls fail.

59 Initialize VTBLs and VTBL Pointers
Before the server application calls any function in OLESVR, it must initialize the method callback tables, called VTBLs, with
the MakeProcInstance call, setting each field in the OLESERVERVTBL, OLESERVERDOCVTBL, and
OLEOBJECTVTBL structures. Note that this requires you to allocate these structures, since the OLESERVER,
OLESERVERDOC, and OLEOBJECT structures (or your variants) simply contain a pointer to the VTBL. If you have
already implemented stubbed methods as described in the previous section, then you should have already exported them in
your .DEF file.

For a single-document server application, such as Schmoo, initialize the server, document, and object VTBLs during
application initialization. While it is acceptable to initialize the document and object VTBLs dynamically, it can become
cumbersome and inefficient. At the bare minimum, however, you must initialize the OLESERVERVTBL, the pointer to
which is stored in the OLESERVER structure (or your specific modification):

/*
 * pvt is of type LPOLESERVERVTBL, hInst is the application instance handle,
 * and the Server* functions are the names of the server methods.
 */
pvt->Create =MakeProcInstance(ServerCreate, hInst);
pvt->CreateFromTemplate=MakeProcInstance(ServerCreateFromTemplate, hInst);
pvt->Edit =MakeProcInstance(ServerEdit, hInst);
pvt->Execute =MakeProcInstance(ServerExecute, hInst);
pvt->Exit =MakeProcInstance(ServerExit, hInst);
pvt->Open =MakeProcInstance(ServerOpen, hInst);
pvt->Release =MakeProcInstance(ServerRelease, hInst);

OLESERVERDOCVTBL and OLEOBJECTVTBL structures are initialized in the same manner:

11As mentioned earlier in this document, pOLE is a pointer to global OLE variables in the Schmoo sample server.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 28 Microsoft

pvt->Close =MakeProcInstance(DocClose, hInst);
pvt->GetObject =MakeProcInstance(DocGetObject, hInst);
pvt->Execute =MakeProcInstance(DocExecute, hInst);
pvt->Release =MakeProcInstance(DocRelease, hInst);
pvt->Save =MakeProcInstance(DocSave, hInst);
pvt->SetColorScheme =MakeProcInstance(DocSetColorScheme, hInst);
pvt->SetDocDimensions=MakeProcInstance(DocSetDocDimensions, hInst);
pvt->SetHostNames =MakeProcInstance(DocSetHostNames, hInst);

The one ugly part in initializing OLEOBJECTVTBL is the ObjQueryProtocol method that returns something other than an
integer type (LPVOID), and where the OLEOBJECTVTBL field of QueryProtocol is not compatible with the standard
FARPROC returned from MakeProcInstance. (The code below (from FOLEVtblInitObject) uses some locals to be a little
more readable):

FARPROC lpfn;
LPVOIDPROC lpvp;

/*
 * Local variables are used here just to make this one assignment
 * more readable since it requires some typecasting to compile clean
 * at warning level 3.
 */
lpfn=(FARPROC)ObjQueryProtocol;
lpvp=(LPVOIDPROC)MakeProcInstance(lpfn, hInst);

pvt->QueryProtocol = lpvp;
pvt->DoVerb =MakeProcInstance(ObjDoVerb, hInst);
pvt->EnumFormats =MakeProcInstance(ObjEnumFormats, hInst);
pvt->GetData =MakeProcInstance(ObjGetData, hInst);
pvt->Release =MakeProcInstance(ObjRelease, hInst);
pvt->SetBounds =MakeProcInstance(ObjSetBounds, hInst);
pvt->SetColorScheme =MakeProcInstance(ObjSetColorScheme, hInst);
pvt->SetData =MakeProcInstance(ObjSetData, hInst);
pvt->SetTargetDevice=MakeProcInstance(ObjSetTargetDevice, hInst);
pvt->Show =MakeProcInstance(ObjShow, hInst);

If any MakeProcInstance call for any VTBL fails, then fail the initialization and terminate the application. An OLE server
cannot function without the ability for OLESVR to call these methods. If you terminate the application on a failed
MakeProcInstance, you could call FreeProcInstance for any instance thunk you created, but Windows automatically frees all
thunks when the application terminates.

60 Allocate OLESERVER and Register the Server
Once you have initialized the OLESERVERVTBL structure, allocate your OLESERVER structure and initialize as necessary.
Be sure to set the LPOLESERVERVTBL to point to the VTBL you just initialized. Then register the server application with
OLESVR by calling OleRegisterServer:

os=OleRegisterServer(pszClass, (LPOLESERVER)pSvr, &pSvr->lh, hInstance, OLE_SERVER_MULTI);

pszClass Points to the name of the object class that this server supports.
pSvr Points to the relevant OLESERVER structure with an initialized VTBL.
&pSvr->lh Points to the LHSERVER associated with the server. In this example, the handle is

stored in the application-specific OLESERVER structure.
hInstance Instance handle for the application.
OLE_SERVER_MULTI Indicates that this server supports multiple instances as opposed to a single instance.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Microsoft Page 29

Warning

Do not confuse OLE_SERVER_MULTI with MDI. MDI applications specify OLE_SERVER_SINGLE, SDI applications
specify OLE_SERVER_MULTI. If you specify OLE_SERVER_SINGLE then OLESVR, instead of launching a new
instance of the application, always directs the existing instance to open a new document.

Any OLE server application must unconditionally call OleRegisterServer. If OleRegisterServer returns OLE_OK, then the
LHSERVER pointed to in the third parameter contains a crucial handle that you must pass to future OLESVR calls, such as
OleRegisterServerDoc (see below under Register the Document(s)). Be sure to store this handle where it will be globally
accessible and at the same time associated with the OLESERVER structure. Storing it directly in the application's
OLESERVER meets both needs.

If OleRegisterServer returns anything other than OLE_OK, terminate the application. Treat this condition as if you could
not register the main window class or as any other error that prevents the application from running.

The class name passed in OleRegisterServer must match the class name set in the registration database for the object class.
The OLE libraries use this name to find your application if it's already running and the use edits another object of that class.

Finally, note that you must eventually free the OLESERVER structure, which is best accomplished during application
shutdown after exiting the main message loop.

61 Parse the Command-Line and Determine the Initial Window State
In addition to any command-line parsing you already handle, check for an "Embedding" flag, which may appear (case-
insensitive) as -Embedding or /Embedding, possibly with a filename. What appears on the command line depends on
whether the server is started as stand-alone, for embedding, or for linking, resulting in three possibilities:

· Embedding does not appear.
· -Embedding or /Embedding appears with nothing else.
· -Embedding or /Embedding appears with a single filename.

Note that when Embedding does appear there can only be an additional filename. No other command-line arguments or
parameters will ever appear. Also note that the word "Embedding" is not localized in international versions of Windows.

In the first instance with a normal command-line, OLESVR did not start the application. In this case continue your
initialization as usual, but also register the initial document (see below).

When Embedding appears, either alone or with a filename, do not show any window in the application–return a flag or value
to WinMain indicating that the initial parameter to ShowWindow is SW_HIDE instead of WinMain's nCmdShow parameter.

OLE Server Implementation Guide Version 1.01 13 April, 1992

OLE Class Name vs. DDE Executable Name

If an OLE server application is also a DDE server, the class name
passed to OleRegisterServer must not be identical to the
application's module (executable) name. This restriction is due to
the fact that OLESVR communicates with the server through DDE
and attempts to initiate a DDE conversation with the server using
the name given in OleRegisterServer. If the application uses that
name for its own DDE, then OLE and non-OLE conversations will
overlap and cause everything to malfunction.

Page 30 Microsoft

When OLESVR requires the server to become visible, it will call the ObjShow or ObjDoVerb methods at which time the
server can show itself.

When Embedding appears alone, the server has been started in an embedding case where there's no filename known. When
Embedding appears with a filename, the server has been started in a linking case and the filename references the linked file.
When a server starts as linking, it must also register a document.

62 Allocate and Register the Initial Document(s)
Allocate your OLESERVERDOC structure and initialize as necessary, making sure to fill the LPOLESERVERDOCVTBL
field with a pointer to the VTBL you created. Then, for all cases other than where -Embedding was the only thing on the
command line, call OleRegisterServerDoc to inform OLESVR that this instance of the server has an open document.
Again, DO NOT call OleRegisterServerDoc when the server starts to edit an embedded object.

If the command line contains a filename, with or without -Embedding, then you have a document name to pass to
OleRegisterServerDoc; otherwise use a string like "(Untitled)" to register a new, unnamed document:

//Register a new Untitled document.
os=OleRegisterServerDoc(pSvr->lh, "(Untitled)", (LPOLESERVERDOC)pDoc, &pDoc->lh);

or
//Register the file given on the command line.
os=OleRegisterServerDoc(pSvr->lh, pszFile, (LPOLESERVERDOC)pDoc, &pDoc->lh)

where

pSvr->lh Contains the LHSERVER generated in OleRegisterServer.
pszFile Points a null-terminated string with the document name.
pDoc Points to an OLESERVERDOC structure with an initialized

LPOLESERVERDOCVTBL.
&pDoc->lh Points to the LHSERVERDOC associated with the document. In this case, the

handle is stored in the application-specific OLESERVERDOC structure.

If OleRegisterServerDoc returns OLE_OK in any case, then continue your initialization. Otherwise, immediately call
OleRevokeServer and fail the initialization because you cannot do OLE without a document. OleRevokeServer will always
return OLE_OK here because there can not yet be any conversations.

63 Handling Errors:    Summary
Condition Action

RegisterClipboardFormat fails on "Native" Terminate application

RegisterClipboardFormat fails on "OwnerLink" Terminate application

RegisterClipboardFormat fails on "ObjectLink" Disable linking capability or terminate application

MakeProcInstance fails on any method. Free any thunks previously created and terminate application.
If the server does not support the StdExecute protocol, then you
do not need to terminate if MakeProcInstance fails on
ServerExecute or DocExecute.

Server allocation, OleRegisterServer fails. Free the VTBL thunks and terminate application.

Doc allocation, OleRegisterServerDoc fails. Call OleRevokeServer, free VTBL thunks, and terminate
application.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Microsoft Page 31

64 Example:    FApplicationInit, FOLEInstanceInit, and OLEVTBL.C
FApplicationInit (INIT.C) contains Schmoo's initialization code which calls FOLEInstanceInit (OLEINIT.C) to perform the
OLE-specific initialization. Only parts of these functions are reusable, but they each call other functions that you may copy
verbatim. The first is HListParse (INIT.C) which, as mentioned above, parses a command line into an array of pointers that
can be walked one-by-one to check arguments. HListParse also uses PszWhiteSpaceScan in INIT.C.

The other reusable parts are all the functions in OLEVTBL.C, specifically the FOLEVtblInitServer, FOLEVtblInitDocument,
and FOLEVtblInitObject functions. If you started with Schmoo's methods as a template and kept the method names the
same, these functions in OLEVTBL.C will work as is. OLEVTBL.C also contains functions to handle VTBL cleanup on
termination that we'll see later.

65 Verify Command-Line Parsing and Initialization
While the server is by no means functional at this point, verify that you correctly parse the command line and that you
successfully register the server. For testing purposes, change the case where you use SW_HIDE in the first call to
ShowWindow to use SW_SHOWNORMAL. Otherwise, you might start your application hidden and not be able to close it.
You can then start your application stand-alone but with the -Embedding flag and other command-line arguments to verify
that you are parsing it correctly and handling each case as necessary. You can also verify that OleRegisterServer and
OleRegisterServerDoc work, as well as initializing your VTBLs.

Note that at this point, since we have not dealt with closing the server, you risk leaving OLESVR in an unstable state since
you have registered the server with OLESVR but have done nothing to inform it that you are terminating. I only suggest
these changes here to start giving you a feel of what is going on down in the initialization code.

66 UI: Change Window Titles and Menus
User interface standards for a server are quite simple and only affect the window's title bar and one or two of its menus and a
message box. Complete information about UI standards for OLE is contained in the Microsoft User Interface Style Guide,
Chapter 9.12 For mini-servers, that never run stand-alone, the only UI change affects the window title as described below.
Since mini-servers do not have menus, there are no menu changes to worry about.

All UI changes affect a server started for embedding; when a server is opened for linking it appears exactly like it was started
stand-alone. The linked server only cares about OLE when it saves and changes documents so it can properly inform the
client in which the document resides.

Note that after making these additions there is little testing you can perform, except to see if the routines to make the title bar
and menu changes work as expected. You either call these functions from your file handling code or from the methods, such
as DocSetHostNames.

12The OLE Chapter of the Style Guide will be shipped with the final Windows 3.1 Software Development Kit.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 32 Microsoft

67 Window Title Change
Most full servers that are able to open files display the name of the open file somewhere in their title bar. For example, the
Windows 3.1 Paintbrush application displays the filename of the currently loaded bitmap if it has such a filename, or else it
uses the filename "(Untitled)". The standard for filenames in the title bar of any application is:

<Application Name> - <Filename>

as in Paintbrush - CHESS.BMP. When the server is started for embedding, and only for embedding, the title bar should
appear as:

<Application Name> - <Object Type> in <Client Document>

as Paintbrush shows: Paintbrush - Paintbrush Picture in SERVER.DOC
The names of objects and clients comes from the document SetHostNames method. When we implement that method in
the next section we'll have a real string to use in these titles, but for now, just use a string like "Client Document."

68 Menu Changes for Embedding
Like the changes to the title bar, changes to the menu are simple: they affect only the File menu in three locations using the
ModifyMenu API call. First, change any menu item labeled File/Save to File/Update <Client Document> when the server
starts for embedding where <Client Document> is the name given in the DocSetHostNames method covered in the next
section. For now, just use a string like "Client Document" where the real name will appear later.

Second, change the menu item labeled File/Save As... to File/Save Copy As.... Finally, change the File/Exit menu item to
File/Exit & Return to <Client Document>, where <Client document> is the same as for File/Update above.

69 Example:    SCHMOO.C
SCHMOO.C contains a function called MenuEmbeddingSet that takes the window handle of the main server window, a
string of the client name, and a flag indicating whether to set the menu to the OLE style or the stand-alone style:

void FAR PASCAL MenuEmbeddingSet(HWND hWnd, LPSTR pszClient, BOOL fOLE)
 {
 HMENU hMenu;
 char szTemp[130];
 LPSTR pszT;

 hMenu=GetMenu(hWnd);

 //Change the File/Save menu to File/Update <client> or vice-versa
 if (fOLE)
 wsprintf(szTemp, rgpsz[IDS_UPDATE], pszClient);
 else
 lstrcpy(szTemp, rgpsz[IDS_SAVE]);

 ModifyMenu(hMenu, IDM_FILESAVE, MF_STRING, IDM_FILESAVE, szTemp);

 //Change the File/Save As menu to File/Save Copy As or vice-versa.
 pszT=(fOLE) ? rgpsz[IDS_SAVECOPYAS] : rgpsz[IDS_SAVEAS];

OLE Server Implementation Guide Version 1.01 13 April, 1992

When the focus in an MDI server changes from a
window that had activated an embedded object to a
window that is editing a document that does not
contain an embedded object, the Update command
should revert to Save and Save Copy As to Save As.

Microsoft Page 33

 ModifyMenu(hMenu, IDM_FILESAVEAS, MF_STRING, IDM_FILESAVE, pszT);

 //Change "Exit" to "Exit & return to xx" or vice-versa.
 if (fOLE)
 wsprintf(szTemp, rgpsz[IDS_EXITANDRETURN], pszClient);
 else
 lstrcpy(szTemp, rgpsz[IDS_EXIT]);

 ModifyMenu(hMenu, IDM_FILEEXIT, MF_STRING, IDM_FILEEXIT, szTemp);
 return;
 }

You can call a function such as this at any time to toggle the OLE menu on and off as necessary. Since this function just
changes strings on the menu items, the application has to distinguish between File/Save and File/Update when it receives the
WM_COMMAND message for this item. If you completely replace the item, changing the ID value, then each case will
come as separate WM_COMMAND messages. The decision is simply what is most convenient for your application.

70 Implement Basic Methods
The real fun with an OLE server begins when you implement the basic methods for the server, document, and objects; after
implementation, you can start seeing OLE working. Double-clicking an embedded object in a client will start an instance of
your server, set data in an object, instruct the server to show itself, and so on. However, do not test these methods until you
add minimal shutdown code, which is quickly covered in the next section. The remainder of this section will cover each
basic method in the OLESERVERVTBL, OLESERVERDOCVTBL, and OLEOBJECTVTBL structures that are required for
minimal OLE operation.

A Word of Caution:

Do not post any DDE messages or call any OLE functions from within a method.
Methods are called as part of an asynchronous process that is currently affecting an

object, document, or the server. In addition, do not display a message box or a dialog
box since they process messages internally and would cause DDE messages to be

processed before the server has finished executing the method it's in.

71 Thinking about the Methods
Implementing the basic 18 methods is not extremely complicated, but will take time. Before jumping into coding each
method one by one, spend some time thinking about what should happen during each one of these methods and identify
methods that will possibly share code. To make this easier, Schmoo's OLESVR.C, OLEDOC.C, and OLEOBJ.C files briefly
describe the responsibilities of each method, which is repeated below. I mainly suggest you read through this section or the
sample code before doing any code yourself, because it becomes increasingly difficult to see global issues between functions
once you begin to immerse yourself in code.

Each of the following sections, given by Server, Document, and Object, lists the basic methods for that type and then deals
with each method one-by-one, describing when OLESVR calls that method, the information passed to the method, the
responsibilities of the method, and what actions to take. You will begin to see some overlap between methods. Note also
that the names of the methods are given as ServerRelease and DocRelease instead of just Release, to make it easier to
associate which method belongs to which OLE item. These names also match those in the sample code.

Much of this section is duplicated in the sample code, and the parameters to each method are documented in the Windows 3.1
SDK Programmer's Reference. However, since names of certain parameters are necessary in discussing the method's
responsibilities, all the method parameters are given here. Also, the return value for the particular method is generally given
in the responsibilities.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 34 Microsoft

Method Parameter Types

Although the methods for server, documents, and objects are documented to accept pointers like LPOLESERVER, you may
code your methods to accept your private LPOLESERVER data type. For example, Schmoo's ServerCreate in OLESVR.C
accepts the type LPSCHMOOSERVER instead of LPOLESERVER as the first parameter. This relieves your code from
ever having to declare a local variable for your private data structure and to assign the LPOLESERVER value to it on entry.

72 Basic Server Methods
Basic server methods encompass all methods in the OLESERVERVTBL except for ServerExecute.

ServerCreate ServerExit
ServerCreateFromTemplate ServerOpen
ServerEdit ServerRelease

73 ServerCreate
Use: OLESVR calls ServerCreate when a client application has created a new object with the client's

Insert Object command (client calls OleCreate).

Parameters: pServer (LPOLESERVER) Points to the OLESERVER structure passed in
OleRegisterServer.

lhDoc (LHSERVERDOC) Identifies the handle to associate (store) with the document.
pszClass (LPSTR) Provides the name of the document class.
pszDoc (LPSTR) Provides the name of the document as used in the client application.

However, use the strings from DocSetHostNames for user interface changes.
ppServerDoc (LPLPOLESERVERDOC) Where to store a pointer to the new OLESERVERDOC

structure.

Responsibilities: 1. Create a document of the specified class.
2. Allocate and initialize an OLESERVERDOC structure.
3. Store lhDoc in the OLESERVERDOC structure.
4. Store a pointer to the new OLESERVERDOC structure in ppServerDoc.
5. Return OLE_OK if successful, OLE_ERROR_NEW otherwise.

Steps 1 and 2, creating, allocating, and initializing, may be lumped together. Single-document servers can have a single
OLESERVERDOC structure as a global variable that is initialized during startup, so creating and initializing a document
is already done. Any server may allocate memory here instead, as the Schmoo sample demonstrates. Also note that an
MDI server generally creates a new window for the new document.

74 ServerCreateFromTemplate
Use: ServerCreateFromTemplate is a fancy name for initializing a new document with the contents of a

file, although from here on out the file is not referenced anywhere. OLESVR calls
ServerCreateFromTemplate when a client application has created a new object specifying a
template with the OleCreateFromTemplate function.

Parameters: Same as ServerCreate, with an additional LPSTR, pszTemplate, pointing to the filename to use as
the template.

Responsibilities: 1. Create a document of the specified class.
2. Read the contents of the specified file and initialize the document.
3. Allocate and initialize an OLESERVERDOC structure.
4. Store lhDoc in the OLESERVERDOC structure.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Microsoft Page 35

5. Store a pointer to the new OLESERVERDOC structure in ppServerDoc.
6. Return OLE_OK if successful, OLE_ERROR_NEW otherwise.

Except for returning OLE_ERROR_TEMPLATE instead of OLE_ERROR_NEW, this method is identical to
ServerCreate.

75 ServerEdit
Use: ServerEdit is exactly ServerCreate except that when the ServerEdit method is called the

application can expect an ObjSetData call. OLESVR calls ServerEdit when a client application
has activated an embedded object for editing and the server must create a new document. The
DocGetObject method will create the object and ObjSetData will initialize the object's data. At
this point the server is not visible.

Parameters: pServer (LPOLESERVER) Identifies the server.
lhDoc (LHSERVERDOC) Identifies the handle to store with the document.
pszClass (LPSTR) Describes the class of document to create.
pszDoc (LPSTR) Provides the name of the document as used in the client application.

However, use the strings from DocSetHostNames for user interface changes.
ppServerDoc (LPLPOLESERVERDOC) Where to store the pointer to the new document.

Responsibilities: 1. Create a document of the specified class.
2. Allocate and initialize an OLESERVERDOC structure.
3. Store lhDoc in the OLESERVERDOC structure.
4. Store a pointer to the new OLESERVERDOC structure in ppServerDoc.
5. Return OLE_OK if successful, OLE_ERROR_EDIT otherwise.

76 ServerExit
Use: OLESVR calls ServerExit when a fatal error requires the server to immediately terminate. The

server is always hidden whenever ServerExit is called so there will not be dirty files that need to
be saved.

Parameters: pServer (LPOLESERVER) Identifies the server.

Responsibilities: 1. Hide the window to prevent any user interaction.
2. Call OleRevokeServer. Ignore an OLE_WAIT_FOR_RELEASE return value.
3. Perform whatever action is necessary to cause the application to terminate, such as

DestroyWindow.
4. Return OLE_OK if successful, OLE_ERROR_GENERIC otherwise.

Example:

ShowWindow(pGlob->hWnd, SW_HIDE);

pServer->fRelease=FALSE;
os=OleRevokeServer(pServer->lh);

DestroyWindow(pGlob->hWnd);

77 ServerOpen
Use: OLESVR calls ServerOpen when the user activates a linked object in an OLE client and the client

calls OleActivate. The server simply creates a new document with that file loaded, much like
ServerCreateFromTemplate, but leaves that file open, unlike ServerCreateFromTemplate that uses

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 36 Microsoft

the file to initialize the data but discards the filename. The server is still hidden at the point when
ServerOpen is called.

Parameters: pServer (LPOLESERVER) Identifies the server.
lhDoc (LHSERVERDOC) Identifies a handle to store with the document.
pszDoc (LPSTR) Provides the filename of the document to open.
ppServerDoc (LPLPOLESERVERDOC) Where to store a pointer to the new document.

Responsibilities: 1. Create a document of the specified class.
2. Read the contents of the specified file and initialize the document.
3. Save the filename of the loaded file with this document, if necessary.
4. Allocate and initialize an OLESERVERDOC structure.
5. Store lhDoc in the OLESERVERDOC structure.
6. Store a pointer to the new OLESERVERDOC structure in ppServerDoc.
7. Return OLE_OK if successful, OLE_ERROR_OPEN otherwise.

78 ServerRelease
Use: OLESVR calls ServerRelease after the server has called OleRevokeServer and when the DDE

conversation with the client has been successfully closed. This informs the server that there are
no conversations to it or any document or object and that it is free to terminate at this point.
ServerRelease also causes the server to terminate if it was started from the client in order to update
links (with the OleUpdate call). Do not free the structure holding server information if you still
refer to that structure after the release.

Parameters: pServer (LPOLESERVER) Identifies the server.

Responsibilities: 1. Set a flag to indicate that Release has been called.
2. If the application is hidden and it has not called OleRevokeServer itself, then we must use

ServerRelease to instruct the application to terminate, by posting a WM_CLOSE or otherwise
effective message and immediately returning OLE_OK.

3. Otherwise, free any resources allocated for this server, including documents if necessary, and
possibly the structure in which you hold server information.

4. Return OLE_OK if successful, OLE_ERROR_GENERIC otherwise.

ServerRelease is a tricky method to handle because it may be called twice in the life of a server application. If you run
the server and close it, you will call OleRevokeServer which will eventually call ServerRelease. However, your server
may start hidden and stay hidden to perform an invisible update in a client application. OLESVR will call
ServerRelease before any other methods, in which case you must tell yourself to close because no user interaction could
close the application.

Schmoo uses the server handle to determine whether or not to close itself on ServerRelease. When the method is called,
Schmoo checks if the window is hidden and that a non-NULL value exists in pOLE->pSvr->lh. If so, it posts a
WM_CLOSE to kill the application and returns OLE_OK:

if (!IsWindowVisible(hWnd) && 0!=pOLE->pSvr->lh)
 {
 PostMessage(hWnd, WM_CLOSE, 0, 0L);
 return OLE_OK;
 }

Posting a WM_CLOSE message is the favorable way to terminate the application, since it by default calls
DestroyWindow and allows centralization of the application's cleanup code. DestroyWindow sends a WM_DESTROY
to the application where most applications call PostQuitMessage. Do not call PostQuitMessage directly from this
method because it will possibly bypass your application's necessary cleanup procedures.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Microsoft Page 37

When Schmoo calls OleRevokeServer itself, it first clears the pOLE->pSvr->lh value to tell ServerRelease that we
actually did call OleRevokeServer. Now when ServerRelease is called, it frees any document it's holding. If we did
not make this distinction, the invisible update case above might have freed the document before that document was
released.

79 Document Methods
Basic document methods are those in the OLESERVERDOCVTBL except for DocExecute, DocSetColorScheme, and
DocSetDocDimensions. Those methods are not necessary for basic OLE server operation, but the remaining five are:

DocClose
DocGetObject
DocRelease
DocSave
DocSetHostNames

The return value of all these methods is, like the server methods, the type OLESTATUS. For method stubs, simply return
OLE_OK for all methods.

80 DocClose
Use: OLESVR calls DocClose when the document must be unconditionally closed when the client

containing a link (embedding or linking) to that document shuts down. This method is always
called before the DocRelease method.

Parameters: pDoc (LPOLESERVERDOC) Identifies the document to close.

Responsibilities: 1. Call OleRevokeServerDoc; resources are freed when OLESVR calls DocRelease.
2. Return the return value of OleRevokeServerDoc, which will generally be OLE_OK.

When DocClose is called, take no action to notify the user. The client application handles that responsibility.

os=OleRevokeServerDoc(pDoc->lh); //lh was stored in ServerCreate, ServerOpen, etc.
return os;

81 DocGetObject
Use: OLESVR calls DocGetObject whenever a client application creates an object through functions

like OleCreate. If the pszObj parameter below is NULL, then DocGetObject is called for an
embedded object after ServerCreate, ServerEdit, or ServerCreateFromTemplate. If pszObj is non-
NULL then ServerOpen was used to open a linked object.

Parameters: pDoc (LPOLESERVERDOC) Identifies the document affected.
pszObj (LPSTR) Specifies the name of the object to create; if NULL, then OLESVR

requests the entire document.
ppObj (LPLPOLEOBJECT) Where to store a pointer to the new object.
pClient (LPOLECLIENT) Identifies the client that will connect to this object.

Responsibilities: 1. Allocate and initialize an OLEOBJECT structure.
2. Store pClient in the object's OLEOBJECT structure for use in sending notifications to the

client.
3. Store a pointer to the new OLEOBJECT structure in ppObj.
4. Return OLE_OK if successful, OLE_ERROR_NAME if pszObj is not recognized, or

OLE_ERROR_MEMORY if the object could not be allocated.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 38 Microsoft

The pClient pointer is not the same as a pointer that a client application passed to OLECLI. This client structure resides
in OLESVR and acts on behalf of the client application. You must save this pointer so you can send notifications such
as OLE_CHANGED to the pClient->lpvtbl->CallBack function.

82 DocRelease
Use: OLESVR calls DocRelease when all DDE conversations to the object have been closed, after the

server has called OleRevokeServerDoc or OleRevokeServer. There will be no more calls to the
document methods for this document after DocRelease. The document can free any resources or
objects at this time but do not free the structure in which you hold additional document
information if you still refer to this structure after the release.

Parameters: pDoc (LPOLESERVERDOC) Identifies the document released.

Responsibilities: 1. Free any resources allocated for this document and possibly the structure in which you hold
document information.

2. Set a flag to indicate that Release has been called.
3. Return OLE_OK if successful, OLE_ERROR_GENERIC otherwise.

Example: The Schmoo server stores ATOMs for the document and client names in its SCHMOODOC structure and
frees them on DocRelease:

if (NULL!=pDoc->aName) //Created in DocSetHostNames
{
DeleteAtom(pDoc->aName);
pDoc->aName=NULL;
}

if (NULL!=pDoc->aClient) //Created in DocSetHostNames
{
DeleteAtom(pDoc->aClient);
pDoc->aClient=NULL;
}

83 DocSave
Use: When a client application is closing and the user is saving the client's document that contains a

linked object, OLESVR directs the server to save the linked file by calling the DocSave method.
This insures that the data currently displayed in the client is saved when the client document is
saved. OLESVR only uses this method when a server is editing a linked object, so it assumes that
the server already knows a filename.

Parameters: pDoc (LPOLESERVERDOC) Identifies the document to save.

Responsibilities: 1. Save the document to the known filename. How you save documents is application-specific.
2. Return OLE_OK if the save is successful, OLE_ERROR_GENERIC otherwise.

84 DocSetHostNames
Use: OLESVR calls DocSetHostNames to provide the server with the name of the client's document

and the name of the object in the client application. These names are used to make the necessary
window title bar and menu changes as described above in UI: Change the Window Title and
Menu. OLESVR only calls this method for embedded objects.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Microsoft Page 39

Parameters: pDoc (LPOLESERVERDOC) Identifies the document affected.
pszClient (LPSTR) Provides the name of the client application document.
pszObj (LPSTR) Provides the name of the object in the client application.

Responsibilities: 1. Change the title bar to reflect the embedded state with the appropriate names.
2. Change the File menu to reflect the embedded state and the name of the client application.
3. Store the object and client names in the OLESERVERDOC structure. These will be needed

later for message boxes where the name of the client application must be displayed.
4. Return OLE_OK if all is successful, OLE_ERROR_GENERIC otherwise.

Once you have implemented this method, you can modify your previous work for the title bar and menus to reflect the
names in pszClient and pszObj passed to this method. In addition, if you store names as ATOMs be sure to free any
existing ATOMs before adding a new one, otherwise you will have a small memory leak.

Example:

if (NULL!=pDoc->aObject)
DeleteAtom(pDoc->aObject);

pDoc->aName=AddAtom(pszDoc);

if (NULL!=pDoc->aClient)
DeleteAtom(pDoc->aClient);

pDoc->aClient=AddAtom(pszClient);

85 Object Methods
Of the Object methods, ObjSetBounds, ObjSetColorScheme, and ObjSetTargetDevice are not necessary for basic operation
of an OLE server, leaving only seven basic methods, each of which is very straightforward to implement:

ObjDoVerb ObjRelease
ObjEnumFormats ObjSetData
ObjGetData ObjShow
ObjQueryProtocol

86 ObjDoVerb
Use: OLESVR calls ObjDoVerb when the client application has called OleActivate on an embedded

object. This method receives a verb identifier and must perform the necessary actions to execute
that verb.

Parameters: pObj (LPOLEOBJECT) Identifies the object affected.
iVerb (WORD) Index to the verb to execute.
fShow (BOOL) Indicates if the server should show the object (TRUE) or remain in its

current state (FALSE)
fFocus (BOOL) Indicates if the server should take the focus (TRUE) or leave the focus

unaffected (FALSE)

Responsibilities: 1. Execute the verb.
a. For a 'Play' verb, a server does not generally show its window or affect the focus.

b. For an 'Edit' verb, show the server's window and the object if fShow is TRUE, and take
the focus if fFocus is TRUE. An ideal way to accomplish this is to call the ObjShow

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 40 Microsoft

method through the OLEOBJECTVTBL since that method will handle showing the
object and taking the focus itself.

c. An 'Open' verb is not clearly defined; depending on the application it may mean the
same as 'Play' or 'Edit.' The Schmoo server, if it had an 'Open' verb, would treat it like
'Edit.'

2. Return OLE_OK if the verb was successfully executed, OLE_ERROR_DOVERB otherwise.

OLESVR will call the ObjSetData method before ObjDoVerb so the object has data to edit or play when so instructed
through this method.

Example:

switch (iVerb)
 {
 case OBJVERB_EDIT:
 /*
 * Schmoo's edit is the same as just showing the object. Call ObjShow
 * through the LPOLEOBJECTVTBL.
 */
 if (fShow)
 return (pObj->pvtbl->Show)((LPOLEOBJECT)pObj, fShow);
 //Return OLE_OK
 break;

 case OBJVERB_PLAY:
 //Unsupported (but perhaps known) verb.
 return OLE_ERROR_DOVERB;

 default:
 //Unknown verb.
 return OLE_ERROR_DOVERB;
 }

return OLE_OK;

87 ObjEnumFormats
Use: On various requests from OLECLI, OLESVR will ask the server for the types of data it can render

for an object. OLESVR will make multiple calls to ObjEnumFormats until the method returns
the format that OLESVR is looking for.

Parameters: pObj (LPOLEOBJECT) Specifies the object affected.
cf (WORD) Indicates the last format returned by this method. If cf is zero, then this

is the first call to this method in a series. The order in which formats are returned
must be the same as the order that data is placed on the clipboard.

Responsibilities: 1. Depending on cf, return the 'next' clipboard format in which the server can render the object's
data.

2. If there are no more supported formats after the format in cf, return NULL.

Example: A simple series of if statements determines the order of formats. The logic, not the order of appearance of
the if statements, determines the order, which must match the ordering of placing the same data on the clipboard. Note
also that you cannot use a switch statement since the format identifiers from RegisterClipboardFormat (like cfNative)
are not constants:

OLE Server Implementation Guide Version 1.01 13 April, 1992

Microsoft Page 41

if (0==cf)
return pOLE->cfNative;

if (pOLE->cfNative==cf)
return pOLE->cfOwnerLink;

if (pOLE->cfOwnerLink==cf)
return CF_METAFILEPICT;

if (CF_METAFILEPICT==cf)
return CF_BITMAP;

if (CF_BITMAP==cf)
return pOLE->cfObjectLink;

//This IF is here just to be explicit.
if (pOLE->cfObjectLink==cf)

return NULL;

return NULL;

88 ObjGetData
Use: Through ObjGetData, OLESVR requests the server to render an object in a specific format, such

as Native or CF_METAFILEPICT. These requests occur any time the client needs to display an
object or when the data must be written to a client file.

Parameters: pObj (LPOLEOBJECT) Specifies the object in question.
cf (WORD) Identifies the data format requested.
phData (LPHANDLE) Where to store the handle to the allocated data.

Responsibilities: 1. Allocate the requested data through GlobalAlloc (with GMEM_MOVEABLE and
GMEM_DDESHARE). The exception is data for CF_BITMAP that uses a call like
CreateBitmap.

2. Lock and fill the memory with the appropriate data.
3. Unlock the memory and store the handle in *phData.
4. Return OLE_OK if successful, OLE_ERROR_MEMORY otherwise.

Example: Some time ago in this document I recommended that you implement a routine or set of routines to create the
necessary data structure for each format, specifically because OLESVR requests ObjGetData to return any data format at
any time. Having a function to call for each format reduces ObjGetData to a trivial sequence of calls:

if (pOLE->cfNative==cf)
hMem=HGetPolyline(pGlob->hWndPolyline); //Polyline is Schmoo's native data.

if (CF_METAFILEPICT==cf)
hMem=HGetMetafilePict(pGlob->hWndPolyline);

...

if (NULL==hMem)
 return OLE_ERROR_MEMORY;

*phData=hMem;

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 42 Microsoft

return OLE_OK;

89 ObjQueryProtocol
Use: OLESVR calls ObjQueryProtocol simply to determine which protocols the server supports:

StdFileEditing and possibly StdExecute.

Parameters: pObj (LPOLEOBJECT) Specifies the object affected.
pszProtocol (LPSTR) Provides the name of the protocol.

Responsibilities: 1. If the protocol in pszProtocol is supported, return a pointer to an OLEOBJECT structure that
contains an appropriate VTBL for that protocol, such as the pObj passed to this method.

2. If the protocol is not supported, return NULL.

Example:

//lstrcmp returns 0 if the two strings are identical.
if (0==lstrcmp(pszProtocol, "StdFileEditing"))

return (LPVOID)pObj;

return NULL;

90 ObjRelease
Use: OLESVR informs an object that it is no longer connected to any client, after the client calls

OleDelete or the server calls OleRevokeServer, OleRevokeServerDoc, or OleRevokeObject.
Since this is the last object method that OLESVR calls for a given object, the application can free
any resources for that object, but do not free the structure in which you hold additional object
information if you still refer to this structure after the release.

Parameters: pObj (LPOLEOBJECT) Specifies the object being released.

Responsibilities: 1. Free any resources allocated for this object and possibly the structure in which you hold
object information.

2. Set a flag to indicate that Release has been called.
3. NULL any saved LPOLECLIENT stores in the OLEOBJECT structure.
4. Return OLE_OK if successful, OLE_ERROR_GENERIC otherwise.

91 ObjSetData
Use: When OLESVR launches a server to edit an embedded object, it calls ObjSetData to provide the

server with the data that is embedded in the client. ObjSetData is about the most important
method in OLE as OLESVR calls ObjSetData before it calls other methods like ObjDoVerb and
ObjShow. ObjSetData is the single method through which a server receives embedded data.

Parameters: pObj (LPSCHMOOOBJECT) Identifies the object affected.
cf (WORD) The format of the data contained in hData.
hData (HANDLE) A handle to global memory containing the data, allocated with

GMEM_DDESHARE and GMEM_MOVEABLE.

Responsibilities: 1. If the data format is not supported, return OLE_ERROR_FORMAT.
2. Attempt to GlobalLock the memory to get a pointer to the data. If GlobalLock returns

NULL, return OLE_ERROR_MEMORY.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Microsoft Page 43

3. Copy the data to the object identified by pObj.
4. Unlock and GlobalFree the data handle. The ObjSetData method is responsible for the

memory.
5. Return OLE_OK.

Example: Schmoo accepts only "Native" through ObjSetData, copying that data to the object structure and passing the
data to the Polyline window that was written to accept data through a window-specific message, PLM_POLYLINESET:

LPPOLYLINE lppl;

//Check if we were given Native data. We don't support anything else.
if (pOLE->cfNative!=cf)

return OLE_ERROR_FORMAT;
lppl=(LPPOLYLINE)GlobalLock(hData);

//CHECK the return from GlobalLock since we don't know where this handle has been.
if (NULL==lppl)

return OLE_ERROR_MEMORY;

//Set the data through the editing window.
SendMessage(pGlob->hWndPolyline, PLM_POLYLINESET, TRUE, (LONG)lppl);

//Server is responsible for freeing the data.
GlobalUnlock(hData);
GlobalFree(hData);
return OLE_OK;

92 ObjShow
Use: OLESVR calls ObjShow when an object must become visible, by making the server window

visible and possibly scrolling the object into view. If the object is selectable (such as a range of
cells in a spreadsheet), select the object as well.

Parameters: pObj (LPOLEOBJECT) Identifies the object to show.
fTakeFocus (BOOL) Indicates if the server should SetFocus to itself or leave the focus

unaffected.

Responsibilities: 1. Show the application window(s) if not already visible.
2. Scroll the object identified by pObj into view, if necessary.
3. Select the object if possible.
4. If fTakeFocus is TRUE, call SetFocus with the main window handle.
5. Return OLE_OK if successful, OLE_ERROR_GENERIC otherwise.

Example: (pGlob->hWnd contains the main window handle)

//Since we only have one object, we don't care what's in pObj.
ShowWindow(pGlob->hWnd, SW_NORMAL);

if (fTakeFocus)
 SetFocus(pGlob->hWnd);

return OLE_OK;

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 44 Microsoft

Now is a good time to compile all the new code added for basic methods so you can verify syntax and compilation.
However, before you can successfully test the methods, you must implement a simple shutdown procedure where you call
OleRevokeServer. After this simple addition, described in the next section, you can test your server handling embedded
objects.

93 Handle Simple Shutdown
Closing the application requires that you call OleRevokeServer and perform application shutdown, such as freeing the
thunks in the VTBLs created during initialization. OleRevokeServer automatically revokes any documents which revokes
any objects. The other revoke functions, OleRevokeServerDoc and OleRevokeObject will be discussed in a later section.
The best place to call OleRevokeServer is from the main application window's WM_CLOSE message case, just before
calling DestroyWindow.

Any of the revoking functions may return OLE_WAIT_FOR_RELEASE in which case you would normally have to enter a
message processing loop (see below). However, when calling OleRevokeServer you will not make any more OLE function
calls and must assume that all OLE conversations are finished.

When we discuss handling File Menu commands later, you will at some points call OleRevokeServerDoc. If that returns
OLE_WAIT_FOR_RELEASE, you want to enter a message loop that does not exit until the DocRelease method has been
called. This message loop allows DDE messages to be processed (which is critical to having DocRelease called) which not
allowing the server to execute past a particular point. This is how OLE takes an asynchronous protocol like DDE and let's
the application synchronize OLE calls.

The FOLEReleaseWait function below (in Schmoo's OLEMISC.C) demonstrates how to process messages while waiting for
a flag, pointed to by pf, to change to TRUE. Since FOLEReleaseWait takes a pointer to any BOOL, you can use the
function to wait for ObjRelease, DocRelease, or ServerRelease by passing a pointer to the fRelease flag contained in any of
the application-specific OLEOBJECT, OLESERVERDOC, or OLESERVER structures.

FOLEReleaseWait uses PeekMessage to provide a space for background processing. If your application does no background
processing, then replace PeekMessage with GetMessage and remove the else clause containing the WaitMessage. Do not
concern yourself with OleUnblockServer for now.

BOOL FAR PASCAL FOLEReleaseWait(BOOL FAR *pf, LONG lhSvr)
 {
 MSG msg;
 BOOL fMsg=FALSE;

 *pf=FALSE;

 while (FALSE==*pf)
 {
 OleUnblockServer(lhSvr, &fMsg);

 //Process normal messages once we've cleared up the server queue.
 if (!fMsg)

OLE Server Implementation Guide Version 1.01 13 April, 1992

Microsoft Page 45

 {
 /*
 * We use PeekMessage here to make a point about power
 * management and ROM Windows--GetMessage, when there's no more
 * messages, will correctly let the system go into a low-power
 * idle state. PeekMessage by itself will not. If you do
 * background processing with PeekMessage and have nothing to do,
 * call WaitMessage to let Windows detect the idle state.
 */

 if (PeekMessage(&msg, NULL, NULL, NULL, PM_REMOVE))
 {
 TranslateMessage (&msg);
 DispatchMessage (&msg);
 }
 else
 {
 WaitMessage();
 }
 }
 }

 return *pf;
 }

Note the use of OleUnlblockServer here because the call must appear in all message loops if you use OLE's Block/Unblock
feature. See the section Optional Methods and OLE Functions later in this document.

Once you have added the single call to OleRevokeServer in your WM_CLOSE case, you are ready to compile and test your
server with embedded objects.

After this compilation, you are ready to begin testing all the basic functionality of your OLE server. First, open the server
stand-alone, create data, copy it to the clipboard, close the server, and paste it into a suitable client document. Then activate
the object in the client for editing, launching your server. In a debugger with breakpoints on each method, you can begin to
see the sequence of method calls and can verify that the correct actions are happening. When all goes well, your server will
appear with the data from the embedded object.

The same goes for linking: start your application stand-alone, open a file, copy data to the clipboard, close the server, and
paste the data into an appropriate client. When you activate the object in the client, you will see your server start and can
observe what happens when OLESVR calls your methods.

At this time you can also verify the server's user interface, insuring that you change the title bar and File menu when the
server starts for embedding. What we cannot do is properly update the object in the client, which is where the File Menu
commands come in.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 46 Microsoft

94 File Menu Commands:    New, Open, Save [Copy] As, and Save/Update
When a full server carries out the File New, File Open, File Save [Copy] As, and File Save/Update commands, it must inform
OLESVR about what is happening to its documents. This section describes the steps necessary to handle each case.

In a single-document server, the File New and File Open commands break the link between the client application and the
server document. The File Save Copy As command saves a silent copy of an embedded object without breaking the
connection to the client application. If the object is linked, File Save As just informs the server that the document was
renamed.

Before addressing the menu commands, two topics need brief treatment: maintaining a 'dirty' flag for the document and
notifying the client. Also note that under the File New and File Open section is a special mention about an optional File
Import command.

95 When to Consider the Document as Dirty
Before diving into each case, examine what operations in your application make the document 'dirty' in which case you
would prompt the user to save changes before carrying out some operation like File New. An application normally tracks a
dirty flag that is set or cleared on various conditions:

Flag Condition
TRUE OLESVR calls the ServerCreate method.
TRUE OLESVR calls the ServerCreateFromTemplate method.
TRUE A user action in the server changes the document.
TRUE (Optional) The user resizes the server window, resizing the server's data.

FALSE OLESVR calls the ServerEdit method.
FALSE OLESVR calls the ObjGetData method requesting the "Native" data format.

The Schmoo server contains a single function, FDirtySet, to set or clear the dirty flag. The File menu commands are
generally those that need to watch this flag in order to prompt the user to save changes.

The Microsoft User Interface Style Guide defines a standard message box for informing the user that an embedded object is
dirty when the user closes a document (or the server). For a linked object, use what your application already has. In the
message box below, CLIENT.DOC should be replaced by the client document name provided through the DocSetHostNames
method.

OLE Server Implementation Guide Version 1.01 13 April, 1992

In an MDI server, the New or Open commands do not
affect the window containing an embedded object as they
simply create a new window. This eliminates the need to
prompt the user to update the object.

Microsoft Page 47

96 Notifying the Client
File Save and File Update require that the server notifies the client (through OLESVR) of those actions but calling the
OLECLIENTVTBL function CallBack; the pClient structure passed to DocGetObject contains a pointer to the client VTBL
containing CallBack

Calls like OleSavedServerDoc generally handle these notifications automatically. The cases where the server must directly
send a notification code to CallBack are listed below:

Notification Code Condition

OLE_CHANGED Any operation that changes the object, making it dirty. Not necessary for embedded
objects.

OLE_SAVED As a replacement for calling OleSavedServerDoc.
OLE_CLOSED When the user closes a document with embedded objects that require updating (that

is, dirty objects), before calling OleRevokeServerDoc.

The OLE_CHANGED notification works expressly for linked objects to allow the client application to dynamically the
object as the user changes it in the server.

The Schmoo sample contains a function, OLEClientNotify (OLEMISC.C), that takes an LPOLECLIENT and a notification
code and sends that notification to the CallBack referenced through the OLECLIENT pointer. It is only used in the File Exit
(OLE_CLOSED) menu case and from the FDirtySet function (OLE_CHANGED):

void FAR PASCAL OLEClientNotify(LPSCHMOOOBJECT pObj, WORD wMsg)
 {
 LPOLECLIENTVTBL pvt;

 if (NULL==pObj || NULL==pObj->pClient)
 return;

 pvt=pObj->pClient->lpvtbl;

 if (NULL==pvt)
 return;

 (pvt->CallBack)(pClient, wMsg, (LPOLEOBJECT)pObj);
 return;
 }

97 File New and File Open
1. (SDI Server only) Prompt the user to update the objects before proceeding. Updating takes the form of calling

OleSavedServerDoc.
2. (SDI Server only) Close the old document and call OleRevokeServerDoc. If OleRevokeServerDoc returns

OLE_WAIT_FOR_RELEASE, process messages until the DocRelease method is called..
3. Allocate, initialize, and register a new document with OleRegisterServerDoc.
4. For File Open, load the file as necessary.
5. (SDI Server Only) Reconfigure the user interface for a stand-alone server

File New and File Open follow the same sequence of steps, since File Open is really File New with the extra step of loading
the contents of a file. Other than that, the two commands are generally equivalent.

Note that an SDI server that was performing embedding when the user chooses File New must reconfigure itself to appear as
a stand-alone server by changing the title bar and menu back to the stand-alone interface: the new filename appears in the
title bar and the File menu contains the standard "Save" and "Exit" items in place of "Update" and "Exit & Return to..."

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 48 Microsoft

From this point on, the server operates as stand-alone. Be sure to reset any global flags in your application that track
whether or not the server was started through OLE and whether it's linking or embedding.

98 File Import
Since the File Open command breaks the connection between the object in the server and the client application, it prevents
users from importing data from existing files into an embedded or linked object. If you want to include this capability, your
server application should support a File Import command. This command acts almost identically to File Open, but instead of
renaming the server's document and breaking the connection to the client document, the command simply loads data from a
file into the current object. That file is then closed and only referred to again when File Import is reused.

A File Import command may either fully replace the data in the object (as the Schmoo server does) or may simply add to it.
If you wish to have both abilities, then you should support a File Import command (to fully replace the object's contents) and
an Edit Paste From... command (to paste the contents of a file into the object). As of the writing of this document, a standard
interface for importing data from existing files has not been defined.

99 File Save [Copy] As
Save [Copy] As for an embedded object means to save a copy of the object into a file. For a linked object it means to save
an untitled or existing file under a new name. Since File Save As affects a single document and does not create a new one,
the steps are identical for SDI and MDI servers.

1. Retrieve the new filename.
2. Create and write the file.
3. If the object is embedded, you are done with this command. For linked objects, continue steps 4-6.
4. Call OleRenameServerDoc to inform OLESVR that the document has a new name.
5. Call OleSavedServerDoc to inform OLESVR that the document has been saved.
6. Change the window title bar to reflect the new filename for a linked file. If the object was embedded reconfigure

the user-interface for a stand-alone server.

100 File Save/Update
1. If the object is linked, write the new data to a file.
2. Call OleSavedServerDoc.
3. Set your 'dirty' flag to FALSE.

If the server is running stand-alone and saves a file, it should simply send the OLE_SAVED notification to OLESVR as
described above.

Handling the File Update command is quite simple, but once you call OleSavedServerDoc you will see that many of the
methods, like ObjGetData, are called from OLESVR. The majority of the work in updating an object is handled through
your various methods.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Microsoft Page 49

101 Verify File Commands
With all the File menu commands implemented, you are ready to test each of those commands as well as linked objects. To
test a linked object, start the server stand-alone, edit and save a file, then copy an object to the clipboard and Paste Link it
into a suitable client application. Close the server and double-click in the client to activate that linked object. Your server
should start with -Embedding <filename> on the command line. As you make changes, verify that the changes are being
noted to the client (sending the OLE_CHANGED notification). Whenever a change occurs and you send the notification,
you will notice calls to your methods to retrieve the updated data.

When editing an embedded object, verify that the proper message boxes appear when necessary and that you are successfully
registering new documents when closing an existing one. In addition, verify that updating the object causes the client to
display the new data and that File Save Copy As makes a copy of the object without affecting the object being edited.

Overall, test your server with each menu command under stand-alone, linking, and embedding cases. If you have a
multiple-instance, SDI server, you may also want to verify that when you edit an embedded object then create a new one
(which should revert the server back to stand-alone configuration), double-clicking on an object in a client starts a new
instance of your application to edit that other object. If a new instance does not start, check that you are always registering a
document (regardless of whether or not it's untitled) and check your use of OLE_SERVER_MULTI and
OLE_SERVER_SINGLE in your OleRegisterServer call.

102Closing Objects, Documents, and the Server
At points in the life of the server, it may close an object (by deleting it), a document containing objects (by closing the file,
with or without saving changes), or the server itself. Remember to call FreeProcInstance on the methods in the VTBLs
when you terminate the application.

Closing any one of the three OLE items means to revoke it, or to terminate any conversations that any client may have with
that item. Release, on the other hand, means to inform the item that no client document is connected to it, so it can perform
any final cleanup. There are three revoke APIs in OLESVR to handle these cases:

Item Closing OLESVR Call
Object OleRevokeObject
Document OleRevokeServerDoc
Server OleRevokeServer

Note that OleRevokeServerDoc has the effect of revoking all objects in that document, and OleRevokeServer has the effect
of revoking all documents and objects in that server. Any of the Revoke calls may return OLE_WAIT_FOR_RELEASE,
and when receiving this return value, enter a message loop like that in Schmoo's FOLEReleaseWait until that particular item's
Release method is called. Also note the special circumstance where the ServerRelease method may be called twice, as
described in section 5.7.2.6 above.

When the user closes the server with an embedded object and that object requires updating, display the message box shown
in the previous section. If the user chooses to save changes, then send the OLE_CLOSED notification to OLESVR through
the OLECLIENT pointer given in DocGetObject and call OleRevokeServerDoc. If the user does not want to save changes,
simply call OleRevokeServerDoc. An example of this can be seen in Schmoo's FCleanVerify function.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 50 Microsoft

After successfully compiling and linking your server, verify that revoking objects, documents, and the server occur at the
proper time and that the server waits until the appropriate Release method is called. In addition, verify that you properly
close the server when OLESVR calls ServerRelease and the application is hidden. The case where this normally occurs is
when a client application updates a link, so in order to test this, open a suitable client application and create a linked object
from your server. Save the client file and reload it, which will prompt you to update links. Updating the link to your server
will start a hidden instance of it and eventually call ServerRelease. You can use the Windows SDK HeapWalk utility to
verify that your servers modules are indeed freed from memory once the link update is complete.

103Optional Methods and OLE Functions
This section discusses how to handle the remainder of the Server, Document, and Object methods that are optional for your
server. Minimal stubs must exist for these methods, but they do not necessarily have to contain code. It also discusses the
remaining OLESVR calls, such as OleBlockServer and OleRevertServerDoc.

104 Document and Object SetColorScheme
DocSetColorScheme and ObjSetColorScheme provide the document or object with a set of colors suggested by the client for
foreground, background, fill, and lines. This is NOT, repeat NOT, however, a palette from which you should call
CreatePalette and RealizePalette. The LPLOGPALETTE parameter to this function points to a LOGPALETTE structure,
but the colors in the structure are not those to send to the video hardware. Instead, they are colors suggested from the client
that the server can display for color choices when editing the embedded or linked object.

In the LOGPALETTE structure, the palNumEntries field contains the number of total colors in this color scheme. The
palPalEntry array contains those colors. The first color is the suggested foreground color and the second is the suggested
background color. The first half of the remaining colors are suggested fill colors, with the second half containing suggested
line colors. If there are an odd number of entries, then give the extra color to the fill colors, that is, there is one less line
color than fill colors. If there are 9 entries in the entire color scheme, use the first two for foreground and background, the
next 4 for fill colors, and the final 3 for line colors.

If you are familiar at all with Microsoft PowerPoint for Windows, you know that is has a "color scheme" that consists of a
foreground color, background color, fill colors, and line colors, that it displays on menus. These are the colors that all slides
in the PowerPoint presentation are using. When you edit an object embedded in PowerPoint, it may send a color scheme to
the server, which can then provide those colors as choices for editing.

If the server will make use of these colors, apply (or save) those colors to whatever color selection menus or dialogs the
application displays and return OLE_OK. If the server does not manipulate colors with a palette, return
OLE_ERROR_PALETTE.

Note that Microsoft PowerPoint is one of the few client applications that will use your SetColorScheme method.

105 DocSetDocDimensions
DocSetDocDimensions informs the document that the user changed the object's size in the client application. The server is
not required to resize itself or the object accordingly, but doing so keeps the object in both client and server consistent.

DocSetDocDimensions receives an LPOLESERVERDOC parameter and a pointer to a RECT structure containing the size of
the object in the client, given in MM_HIMETRIC units. Be sure to convert these coordinates to the units manipulated by
your server! From this method, convert the units into those you need and carry out any object/document resizing, as the
sample server does in OLEDOC.C:

OLESTATUS FAR PASCAL DocSetDocDimensions(LPSCHMOODOC pDoc, LPRECT pRect)
 {
 /*
 * OLESVR will call this method when the client has resized the
 * object. In this case we try to make the parent window the correct
 * size to just contain the object.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Microsoft Page 51

 */

 //First, convert the rectangle to units we can deal with MM_TEXT.
 RectDeviceConvert(pGlob->hWnd, pRect);

 /*
 * Tell the Polyline document to use this rectangle, also notifying
 * the parent which will then resize itself.
 */
 SendMessage(pGlob->hWndPolyline, PLM_RECTSET, TRUE, (LONG)pRect);
 return OLE_OK;
 }

RectConvertToDevice is a private function that converts the MM_HIMETRIC units into MM_TEXT. The document
resizing is done by sending a private message to the document window (hWndPolyline) with the new rectangle.

Note also that while resizing the document through user manipulation could be considered an action that changes the
document (makes it dirty), resizing through the DocSetDocDimensions method should not, since the client object is already
the given size, that is, the server and client are synchronized.

106 ObjSetBounds
In OLE version 1.x, ObjSetBounds is not used. If it were, handle it like you would handle DocSetDocDimensions, sizing
only an object within a document and not the entire document itself.

107 ObjSetTargetDevice
The ObjSetTargetDevice method is called to inform the object that any rendering through the ObjGetData call should be for
the screen or a printer. The hData parameter is either NULL or contains an OLETARGETDEVICE structure as defined in
OLE.H.

If hData is non-NULL, then use the data in this structure to extract specific device information. If your application can
create a better metafile or bitmap for a specific device, it should use this method to detect that change and optimize the
presentation. If you create the same metafile or bitmap for screen or printer, then there is no need to implement this method.
This method is most useful for applications that deal with device fonts.

Note that once this method is called, any subsequent presentations created through the ObjGetData method should be
rendered for the given device until ObjSetTargetDevice is called with a different device in hData (which might be NULL).

108 Server Execute
A server that supports the StdExecute protocol (by being both registered in the registration database as supporting
StdExecute and returning an LPOLEOBJECT in ObjQueryProtocol for StdExecute) can expect to receive DDE-style execute
strings through the ServerExecute method. This method is a central location to parse and execute these strings.

Execute strings are entirely application-specific. For example, the Windows Program Manager, although not an OLE server,
supports a DDE Execute string "[CreateGroup(OLE Test Applications)]" which causes it to create a new group window.
These execute strings generally instruct the receiving application to perform a set of command, not usually to generate and
return data other than a TRUE or FALSE.

StdExecute is not an extremely important part of OLE at this point, but expect its importance to grow in the future where the
Windows system will have a common macro language. The StdExecute protocol is central to providing an external macro
language access to your application's operations. This has a great effect on application design where it must be structured to
support operations not initiated by user interaction.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 52 Microsoft

109 Blocking Requests (optional)
If you have a situation where your server is carrying out a long operation and does not want OLE in the picture, use the
OleBlockServer function to instruct OLESVR to queue any OLE messages destined for the server. When the server is
ready to process these requests, call OleUnblockServer prior to GetMessage in your main message loop and in any message
loop used to wait for a Release. OleUnblockServer causes all queued requests to be processed before GetMessage can
retrieve the next message. Alternately, return OLE_BUSY from any method that is called when you want to block requests.
Returning OLE_BUSY allows the server to choose which requests to block.

Implementing a blocking mechanism requires that you maintain a global flag indicating you are ready to unblock. When
you wish to block, call OleBlockServer. When you wish to unblock, set this flag to TRUE. In your message loops, call
OleUnblockServer if this flag is true, and repeat until there are no more blocked requests, at which time you set the global
flag back to FALSE.

A typical case where a server would use OleBlockServer is when a modal dialog appears. A modal dialog has its own
message-processing loop inside Windows, so any DDE messages going between the OLE libraries will cause calls to your
server's methods. This may cause unwanted actions while a dialog box is displayed, so block the server at that point, not
allowing OLESVR to make any requests to your application until you unblock.

110 OleRevertServerDoc
OleRevertServerDoc is a special OLESVR function for applications that allow the user to open a file and make changes, but
then reload the original file, discarding any changes. If you provide this sort of functionality, call the OleRevertServerDoc
function when you reload a file without closing it.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Microsoft Page 53

Appendix A:    Definitions

Term Definition
Client (or Client Application) An

application that creates and edits
compound documents containing
objects from one or more server
applications. Clients only store
objects; servers actually edit them.

Destination Synonym for Client.

Document A container for one or more
objects, generally the same as a
physical file.

Embed To create and store an object
completely within a client
document. An embedded object
contains a presentation format
(bitmap or metafile), and
OwnerLink data structure
identifying the server, and the
Native data provided by the server.
Editing an embedded object starts
the server and sends the Native data
back to that server.

File A physical file on a disk, usually
containing a document.

Key Unit of storage in the registration
database. There is one root key
from which subkeys are attached.
A key is physically a character
string where each subkey is
separated with a backslash (\).

Link To create an object in a client
document whose native data is
stored in another file maintained by
the server for that object. The
client document contains only a
presentation format and an
ObjectLink data structure
identifying the linked file.

Term Definition
Method A callback function contained in

the server application that the
OLESVR library calls to perform
specific actions such as creating
documents or retrieving object
data.

Native An internal data structure
manipulated by a server application
that contains enough information to
completely reconstruct an object.
The server application is the only
application that understands this
data.

Object A black box of information with a
presentation that represents that
data. A server application
understands the internal data of an
object it created, but a client
application treats it like a number
of bytes with a pretty picture on the
box.

Object Link Data structure that identifies the
class, document filename, and the
object name that is the source for a
linked object.

OLECLI.DLL The OLE Client Library, that
contains OLE API used by client
applications.

OLESVR.DLL The OLE Server Library, that
contains OLE API used by server
applications.

Owner Link Data structure that identifies the
class, document, and object names
that describes the owner of an
embedded object.

OLE Server Implementation Guide Version 1.01 13 April, 1992

Page 54 Microsoft

Term Definition
Registration The system database that holds
Database names of applications that support

the OLE protocol, the full
pathnames to those application, the
objects they can edit, what verbs
those objects support, and whether
or not an object handler exists for
that class.

Release A Released object, document, or
server is one that no longer has any
connections to any client
documents. Servers, documents,
and objects all have Release
methods that inform the item that
no client is connected to it.

Revoke To close communication between a
client application and a server,
document, or object. When one of
these items is revoked, the item
will eventually become released.
A client may also revoke
communication between it and any
objects it contains.

Server (or Server Application) An
application that creates and edits
objects for storage in a client
application's compound document.

SHELL.DLL A dynamic link library that
contains functions to manipulate
the registration database.

Source Synonym for Server.

Subkey A refinement of a key in the
registration database. A key can
have any number of subkeys and
subkeys can have their own
subkeys.

Thunk A procedure-instance address
created through a call to
MakeProcInstance. Also called an
instance thunk.

OLE Server Implementation Guide Version 1.01 11 March, 1992

