
Microsoft

, Software Design Engineer
Systems Developer Relations

Version 1.01

The information and code provided in this document is subject to change without notice and does not represent a commitment on the part of Microsoft
Corporation or the author.

THE INFORMATION AND CODE PROVIDED HEREUNDER (COLLECTIVELY REFERRED TO AS "SOFTWARE") IS PROVIDED AS IS
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR,
MICROSOFT CORPORATION, OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER INCLUDING DIRECT, INDIRECT,
INCIDENTAL, CONSEQUENTIAL, LOSS OF BUSINESS PROFITS OR SPECIAL DAMAGES, EVEN IF THE AUTHOR, MICROSOFT
CORPORATION, OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW
THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES SO THE FOREGOING
LIMITATION MAY NOT APPLY.

The sample code may be copied and distributed royalty-free subject to the following conditions:
1. You must distribute the sample code only in conjunction with and as a part of your software product;
2. You do not use Microsoft's name, logo or trademark to market your software product;
3. You include the copyright notice that appears on the Software on your product label and as a part of the sign-on message for your software

product; and
4. agree to indemnify, hold harmless, and defend Microsoft from and against any claims or lawsuits, including attorney's fees, that arise or

result from the use or distribution of your software product.

Your feedback is a very important part in providing documents such as these to the developer
community for Microsoft Windows. Please let me know how you used this document, how you
used the sample code, what aspects you found helpful, and what you didn't like. A work like this
document is always open to improvement, so please report any problems, errors, or general
criticisms you might have. Reach me through mail, fax (dial (206)93MSFAX), or electronic mail at
the following addresses:

Internet: kraigb@microsoft.com
Compuserve: 70750,2344

At the very least, please tell me what you think. With your help, future documents and samples
covering technologies in Microsoft Windows will be even better!

Kraig Brockschmidt
12 February, 1992

Redmond, Washington USA

For technical support in implementing OLE into your application, contact Microsoft Product
Support Services using Microsoft OnLine or through the WINEXT forum on Compuserve. Please,
do not ask the author for such technical support as any requests for such will simply be referred to

the appropriate support service.
Updates and error lists to the document and sample code will be posted on both OnLine and

Compuserve as necessary.

The Microsoft Logo is a registered trademark of Microsoft corporation. Windows and the Windows
logo are trademarks of Microsoft Corporation.

Object Linking and Embedding Client Implementation Guide

3

6

9

12

15

18

21

24

27

©1992 Microsoft Corporation, All rights reserved.

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

Table of Contents

µ1.---Introduction
1

1.1. Required Windows Programming Knowledge..1
1.2. Conventions...2
1.3. Sample Client: PATRON..2

1.3.1. Source Code Structure 2

1.3.2. Isolation of Global Data and Strings 3

2. OLE Technical Background--4
2.1. OLECLI.DLL and OLECLI.LIB..4

2.1.1. OLE.H 6

2.2. SHELL.DLL, SHELL.LIB, and SHELLAPI.H...6
2.3. Library Redistribution and Installation...7
2.4. OLE Communication Routes...7
2.5. OLE Data Structures and Application-Specific Variations.......................................8

2.5.1. OLECLIENT CallBack and OLESTREAM Methods 9

2.5.2. OLE Client Streams and Persistent Naming 9

2.5.3. OLE Use of Pointers 10

2.6. Handling Asynchronous Operations...10
2.6.1. Waiting for All Objects 11

2.6.2. The OLE_BUSY Return Code 12

2.6.3. Debugging Asynchronous Operations 12

2.7. Clipboard Formats and Conventions...12
2.7.1. Native, OwnerLink, and ObjectLink Formats 12

2.8. Registration Database: OLE Keys and Values...13

3. Preparing an Application to Become an OLE Client-------------------------------14
3.1. Decide How to Reference Objects in Files; Version Numbers.................................14
3.2. Isolate Data..15
3.3. Isolate Initialization and Cleanup Procedures...15
3.4. Isolate Painting and Printing Code for Objects...15
3.5. Isolate Menu Enabling/Disabling Functions..15
3.6. Isolate Clipboard I/O..15
3.7. Isolate Your Dirty Flag...16
3.8. Isolate Background Processing Schedulers..16
3.9. Isolate Mapping Mode Conversions..16

i

4. Step-By-Step OLE Client--17
4.1. Define OLE Data Structures..18

4.1.1. The DOCUMENT Structure 18

4.1.2. The OBJECT Structure 19

4.1.3. The STREAM Structure 20

4.1.4. Constructors, Initializers, and Destructors 21

4.2. Create Registration Database Utility Functions..22
4.2.1. Enumerate Class Descriptions: WFillClassList 22

4.2.2. Find Class Name Given a Descriptive Name: WClassFromDescription 22

4.2.3. Find Class Name Given a File Extension: WClassFromExtension 23

4.2.4. Enumerate Verbs for a Class: CVerbEnum 23

4.2.5. Find Descriptive Name Given a Class Name: WDescriptionFromClass 23

4.3. Implement Basic Methods..24
4.3.1. CallBack 24

4.3.2. StreamGet and StreamPut 25

4.4. Initialize the Application and VTBLs...26
4.4.1. Register Clipboard Formats 27

4.4.2. Allocate and Initialize VTBLs and VTBL Pointers 27

4.4.3. Allocate and Initialize Your OLESTREAM Structure 27

4.4.4. Load and Register the Initial Document(s) 27

4.4.5. Register the Window for Drag/Drop 28

4.5. Handle Simple Shutdown: File Close..28
4.6. Create an Object Manager...28

4.6.1. Example: The OBJECT Structure and OLEOBJ.C 29

4.7. Add OLE Menu Items..29
4.7.1. Enabling and Disabling OLE Menu Items 30

4.7.2. Example: MenuOLEClipboardEnable in OLEMENU.C 30

4.8. Create Objects and Other Object Operations...31
4.8.1. Wait For Release 32

4.8.1.1. Example: FOLEReleaseWait in OLEOBJ.C 32

4.8.2. Implement the Paste Commands 33

ii

4.8.3. Implement the Insert Object Command 34

4.8.3.1. Example: FEditInsertObject (INSDROP.C), FOLEObjectInsert
(OLEINS.C) 34

4.8.4. Handle WM_DROPFILES 35

4.8.5. Copy and Cut Objects to the Clipboard 35

4.8.5.1. Selections that Include Objects and Other Data 36

4.8.6. Convert Objects to Static 36

4.8.7. Close, Release, and Delete Objects 36

4.9. Display and Print Objects; Resizing...37
4.9.1. Handle Object Resizing 38

4.10. Add the Object Verb Menu and Execute Verbs..38
4.10.1. Executing Verbs and Handling Notifications 39

4.10.1.1. Examples: FObjectPaint in OLEOBJ.C 39

4.10.2. Creating the Object Verb Menu 40

4.11. File Menu Commands: Close, New, Open, and Save [As].......................................41
4.11.1. Closing a File: Prompt the User to Save Changes 42

4.11.2. File New 42

4.11.3. File Open 43

4.11.4. File Save [As] 43

4.12. Update Links and Create the Links Dialog..44
Update Links After Loading a Document..44

4.12.1. Create a Links Dialog 45

4.12.1.1. Implement Utility Functions 46

4.12.1.2. Enable Buttons According to List Selections 48

4.12.1.3. Initialize List Tabstops and Items 48

4.12.1.4. Prepare for Undo on Cancel 49

4.12.1.5. Change Update Options 50

4.12.1.6. Update Links 50

4.12.1.7. Cancel Links 51

iii

4.12.1.8. Change Links 52

4.13. Additional OLE Client Functions...53
4.13.1. Object Creation 53

4.13.2. Object Handling 53

4.13.3. Server-Related Functions 54

4.13.4. Miscellaneous 54

Appendix A: Definitions 55

Appendix B: Guide to OLE Code in Patron--57
B.1Registration Database Helpers: REGISTER.C, REGISTER.H.................................58
B.2Resources: OCLIENT.RC..60
B.3Utility Functions: OLELIB.C..60
B.4VTBL Constructors/Destructors: OLEVTBL.C..63
B.5The DOCUMENT Structure and PSZOLE: OLEDOC.C..64
B.6STREAM and Default Methods: OLESTREA.C..66
B.7OBJECT Manager: OLEOBJ.C..67
B.8OBJECT Manipulations: OLEOBJ.C..69
B.9Insert Object Dialog: OLEINS.C..71
B.10 Menu Manipulations: OLEMENU.C...72
B.11 Updating Links: OLELOAD.C..73
B.12 Links Dialog: OLELINK1.C and OLELINK2.C..73

iv

1 Introduction

This Object Linking and Embedding (OLE) Client Implementation Guide is intended to help you, as
an applications programmer, add OLE client capabilities to a new or existing application. This
guide provides OLE technical background information, suggestions to prepare an application
for becoming an OLE client, and step-by-step details about where to add code, what OLE
functions to call, and what specific actions to perform.

A classic problem in implementing OLE, which I encountered in writing the sample client, is that
you must write considerable code before testing anything. The step-by-step implementation section
provides various points where you may compile and possibly test the OLE code you just added.
This incremental approach gave me a clearer picture of what the code was actually doing and
allowed me to focus on debugging a small piece of code.

OLE is a protocol that complements, not replaces, DDE and standard clipboard data exchange. It is
also a protocol that easily sits on top of an existing application. If you are planning to write a server
application and have not yet done so, write the non-OLE application first then follow the steps in
this guide to implament OLE. "Integrating OLE" into an application is simply not necessary,
because OLE only affects a few specific parts.

This document will not teach you the concepts and architecture of OLE. For background
information, consult the Windows 3.1 Software Development Kit.

With this guide you should be able to add basic OLE support to a suitable client application within a
week, give or take some days depending on the complexity of your application. The sample client
demonstrates the steps described in this guide and contains many pieces that you can immediately
transplant to your application. Documentation for these pieces is given in the context of the step-by-
step implementation section where they apply.

2 Required Windows Programming Knowledge
This document assumes a working knowledge of those areas of Windows listed below. All areas

except atoms and DDE you will need to understand–if you are unfamiliar with an area, please
consult one of the listed references.

Area Reason for Understanding the Area

Atoms Atoms are a convenient method to store variable length strings in a
single integer, especially for structures.

Callback functions MakeProcInstance required for initializing function tables.

Clipboard I/O OLE clients need to be able to open the clipboard and paste OLE
objects, as well as possibly look for other formats such as metafiles
and bitmaps.

DDE Since OLE 1.x works off the DDE protocol, a knowledge of DDE
may help you understand how the OLE protocol works.

Page 2 Microsoft

Dialog Boxes Many of the user interface requirements for an OLE client require
dialog boxes with lists of object or object classes. A typical OLE
client will add at least two new dialog boxes, one of which is quite
complicated.

Dynamic Menu Changes Part of an OLE client's user interface changes includes modifying
menu items to reflect the verbs available for embedded objects.

File I/O Any client application that benefits from OLE needs to save
objects to a file, albeit file I/O for an OLE client is simple.

Mapping modes The OLE libraries express all dimensions in MM_HIMETRIC
units; your application may need to convert such units to another
mapping mode.

Message Loops The OLE 1.x libraries depend on DDE messages, so the
application must process messages to allow OLE to function,
possibly impacting background processing.

References
Petzold, Charles Programming Windows 2nd Edition Microsoft Press 1990
Richter, Jeffrey Windows 3: A Developer's Guide M&T Publishing

1991
Wilton, Richard Windows Developer's Workshop Microsoft Press 1991
Yao, Paul and Norton, Peter Windows 3.0 Power
Programming TechniquesBantam Books 1990

3 Conventions
1. In-line code, taken from the sample server included with this guide, is presented in small

fixed-pitch fonts:

os=OleUpdate(pObj);

if (OLE_WAIT_FOR_RELEASE==os)
 FOLEReleaseWait(FALSE, pDoc, pObj);

2. Special information of importance is offset in gray boxes.

3. Definitions of terms used in this guide, like "client" and "Native," are given in Appendix A.

4 Sample Client: PATRON
Accompanying this implementation guide is a sample OLE client called Patron, which simply stands

as a loose synonym for 'client.' Perhaps it's personal revenge on my part for everything being
called 'demo' or 'client.'

Microsoft Page 3

Patron is a single-document application that simply allows you to save and load files composed of
embedded and linked objects. Each object is contained within a separate child window, since that
method is most convenient for demonstrating how to use the OLE API. Your application most
likely has other significant data structures for items like pictures or tables as well as methods for
dealing with their display and positioning. Patron does not get that complicated because techniques
to move objects in a document have no bearing on implementing an OLE client.

In writing Patron I have made an effort to provide a considerable amount of reusable code to greatly
reduce your implementation time. Appendix B contains a guide to the reusable functions in
Patron's OLE code. However, many of the operations in an OLE client require enumerating objects
in a document and retrieving application-specific data about each object. So in order to use Patron's
code verbatim you need to use the functions and techniques to allocate and manage various data
structures. Of course, since you have the source you can always modify the code to fit better into
your application.

5 Source Code Structure
File Contents
Files Dealing with OLE
blackbox.c BlackBox creation function and BlackBox window procedure. BlackBox is

the window class that holds an object and simply provides a rectangle in
which to draw an object.

blackbox.h Prototypes and definitions for blackbox.c.
clip.c Functions to handle Cut, Copy, Paste, and Paste Link commands.
exit.c Application cleanup function.
file.c Function to handle File New, Open, Save, Save As, and Exit as well as

maintenance of the dirty flag.
fileio.c File I./O functions, to read and write .PTN files.
init.c Initialization functions that call OLEDOC.C to initialize the application as an

OLE Client.
insdrop.c Handlers for the Edit Insert Object command and the WM_DROPFILES

message.
patron.c Main window procedure, object window cleanup functions, and the CallBack

function required of an OLE client application.
patron.h Prototypes and definitions for application-specific functions.

Registration Database Components
register.c Registration database helper functions to enumerate classes, verbs for a class,

and to find a class or descriptive name from other information such as a file
extension or a class name.

register.h Function prototypes for REGISTER.C enabling an application to use
REGISTER.C as a library.

OLE-Components

Page 4 Microsoft

oclient.h Prototypes, definitions, and structures for OLE functions. OCLIENT.H acts
as a header for a library composed of the OLE-specific functions below.

oclient.rc Dialog boxes and string resources for OLE specific functions.
oledoc.c Constructor and destructor for the DOCUMENT data structure which hold all

document-related information such as clipboard formats and a list of objects
contained in the document.

oleins.c Function to display and handle the Insert Object dialog box. Also creates an
object of the chosen class to return to the caller.

olelib.c Miscellaneous OLE helper functions: wrapper for the Common Dialog File
Open/Save As, parsing filenames and extensions from full pathnames, file
read and write functions that handle >64K data, and mapping mode
conversions.

olelink1.c Functions to display and handle the complex Links dialog.
olelink2.c Helper functions for the links dialog to create and manipulate listbox strings.
oleload.c Functions to handle link updating on File Open.
olemenu.c Functions to manipulate the Edit menu commands depending on clipboard

data availability and the selected object.
oleobj.c Constructor and destructor for the OBJECT data structure and functions to

help manipulate them, such as searching for a particular object or enumerating
them.

olestrea.c Constructor and destructor for the STREAM data structure as well as standard
OLESTREAM methods.

olevtbl.c Constructors and destructors for OLECLIENTVTBL and
OLESTREAMVTBL structures.

6 Isolation of Global Data and Strings
Since the OLE protocol can quickly have you using global variables, I have isolated those not

dealing with OLE and those dealing with OLE into two separate structures: GLOBALS and
DOCUMENT. Two global variables are pointers to these structures: pGlob and pDoc. pGlob
points to application globals unrelated to OLE except that OLE code makes use of them. It
contains the currently loaded file, window handles, the application instance, etc. pDoc,
allocated through the PDocumentAllocate function in OLEDOC.C, contains document-related
variables such as OLE clipboard formats, headers to the list of OBJECT structures, and even
temporary work memory. Patron only uses one DOCUMENT structure since it has only one
document. An MDI client would use multiple DOCUMENT structures, each containing OLE
information pertaining to a document.

I chose to write the code in this manner to separate these unrelated globals from each other and to
provide an easy method to identify the use of such globals in code. Anytime a global is used it must
be referenced off one of the pointers, as in pGlob->szFile or pDoc->pszData1. This clearly marks
the use of a global as opposed to a local variable.

Microsoft Page 5

Two other global variables, rgpsz (PATRON.C) and rgpszOLE (OLEDOC.C), store near pointers
to strings loaded from the string tables defined in PATRON.RC and OCLIENT.RC, respectively.
At startup, the functions HLoadAppStrings (INIT.C) and HLoadOLEStrings (OLEDOC.C) load the
string tables into local memory and initialize the arrays. All strings are subsequently referenced by
an offset into rgpsz (as in rgpsz[IDS_CLASSPATRON], for application strings) or through the
macro PSZOLE (defined in OCLIENT.H, for OLE-related strings). Note that the OLE string table
starts at string 1024 and the PSZOLE macro uses the string index minus 1024 to select a pointer
from rgpszOLE.

7 OLE Technical Background

Before dealing heavily with the implementation steps for an OLE client application, some
background on the OLE components and concepts of an OLE client:

· OLECLI.DLL, OLE.H
· SHELL.DLL, SHELLAPI.H
· Library Redistribution and Installation
· OLE Communication Routes
· OLE Data Structures and Application-Specific Variations
· Handling Asynchronous Operations
· OLE Clipboard Formats
· Registration Database: OLE Keys and Values

Note that OLECLI.DLL and SHELL.DLL are redistributable libraries; any application that
makes use of these libraries must ship the required DLLs for users who may be running
under Windows 3.0 instead of Windows 3.1. During your application installation program,
perform version checks on these DLLs before copying them to a user's hard drive. In
addition, if you redistribute OLECLI.DLL also ship OLESVR.DLL to insure that both
libraries are updated together. More information about redistributable libraries and version
checking is available in the Windows 3.1 Software Development Kit.

8 OLECLI.DLL and OLECLI.LIB
The OLECLI dynamic link library contains functions through which a client application registers

documents and manages objects within those documents. OLECLI.LIB is the import library to
which you link your client application. In all, OLECLI.DLL exports 55 functions for use by
client applications. For full documentation for these functions, consult a Windows 3.1
Programmer's Reference.

The following tables list the OLECLI functions organized into various functional groups. The
column "When Used" lists the menu command or other operation that uses the function. Those
functions marked <optional> are not used from any standard functional requirements of an OLE
client.

Page 6 Microsoft

Document Management: Documents are containers for objects.

Function When Used Description

OleRegisterClientDoc File New, Open Registers a client document.
OleRenameClientDoc File Save As Informs OLECLI that a registered document was

renamed.
OleRevertClientDoc File Reload1 Informs OLECLI that a registered document was

reloaded.
OleRevokeClientDoc File Close Informs OLECLI that a registered document was

closed.
OleSavedClientDoc File Save, Save As

Informs OLECLI that a registered document was
saved.

Object Creation and Destruction: Adding or removing object from a container
document.

Function When Used Description

OleClone <optional> Creates an exact copy of another object.
OleCopyFromLink <optional> Creates an embedded object copy of a linked object.
OleCreate Insert Object Creates an embedded object of a specified class.
OleCreateFromClip Edit Paste Creates an embedded object from data on the

clipboard.
OleCreateFromFile WM_DROPFILES2

Creates an embedded object using the contents of a
file.

OleCreateFromTemplate <optional> Creates an embedded object using a file as a
template.

OleCreateInvisible <optional> Creates an embedded object with no data or display.
OleCreateLinkFromClip Edit Paste Link Creates a linked object from data on the clipboard.
OleCreateLinkFromFile <optional> Creates a linked object with a link to a specified

file.
OleDelete Edit Clear Permanently deletes an object from a document.
OleLoadFromStream File Open Loads an object from a document being loaded.
OleObjectConvert Edit Links Creates a static object from an existing object.
OleRelease File Close Frees an object from memory.

1If an application supports such a function to reload a file, discarding changes.
2The WM_DROPFILES message is sent to a client application when the user drags files from File Manager and drops them on the client's document
window. The client must call DragAcceptFiles to receive this message.

3

Microsoft Page 7

Object Management: Opening, closing, and drawing objects.

Function When Used Description
OleActivate Editing an Object Executes an object's verb which could start the

object's server.
OleClose <optional> Breaks the connection between an object and a

server.
OleCopyToClipboard File Copy, Cut Places a copy of an object on the clipboard.
OleDraw Painting, printing Draws an object onto any device context.
OleEnumObjects <optional> Enumerates the objects in a document.
OleEqual <optional> Compares two objects for equality.
OleExecute <optional> Sends DDE execute commands to an object's

server.
OleReconnect <optional> Reconnects a linked object to a server after

OleClose.
OleRename <optional> Informs OLECLI that an object name changed.
OleSaveToStream File Save, Save As

Saves an object to a file or other storage.
OleUpdate File Open, Edit Links

Updates an object's data and display.

Object Information Retrieval:

Function When Used Description

OleEnumFormats <optional> Enumerates available data formats for an object.
OleGetData Anytime Retrieves an object's data in a specified format.
OleGetLinkUpdateOptions Edit Links

Determines if a linked object is automatic or
manual.

OleQueryBounds Anytime Retrieves the bounding rectangle for object.
OleQueryCreateFromClipWM_INITMENU1Determines if OleCreateFromClip will succeed.
OleQueryLinkFromClip WM_INITMENU Determines if OleCreateLinkFromClip will

succeed.
OleQueryName Anytime Retrieves the name of an object stored in OLECLI.
OleQueryOpen Anytime Determines if a server is currently editing an object.
OleQueryOutOfDate <optional> Determines whether an object is out-of-date
OleQueryProtocol <optional> Determines if an object supports a protocol
OleQueryReleaseError Waiting for release

1or WM_INITMENUPOPUP. The OleQueryCreateFromClip and OleQueryCreateLinkFromClip functions are used like IsClipboardFormatAvailable
to determine if a linked or embedded object can be pasted.3

Page 8 Microsoft

Determines if an error caused an object's release.
OleQueryReleaseMethod Waiting for release

Determines which operation released an object.
OleQueryReleaseStatus Waiting for release

Determines if an object is released or busy.
OleQuerySize <optional> Retrieves the size of an object.
OleQueryType Anytime Determines if object is linked, embedded, or static.
OleRequestData <optional> Retrieves data from a server in a specified format.

Object Information Updating: Informing OLECLI of changes made in the client document
to an object.

Function When Used Description

OleSetBounds Object resizing Informs OLECLI of the new object rectangle.
OleSetData Edit Links (etc.) Changes the object's data for a specified format.
OleSetHostNames Object creation Provides OLECLI with the object and document

names.
OleSetLinkUpdateOptions Edit Links

Changes a linked object between automatic and
manual.

OleSetTargetDevice Printing <optional>
Provides OLECLI with information about the

output device.

Miscellaneous:

Function When Used Description

OleIsDcMeta <optional> Identifies a metafile device context.
OleLockServer File Open Keeps a server in memory for updating multiple

objects.
OleQueryClientVersion <optional> Retrieves the version number of OLECLI.DLL.
OleSetColorScheme <optional> Recommends colors for documents and objects.
OleUnlockServer File Open Releases a server locked with OleLockServer.

Microsoft Page 9

9 OLE.H
OLE.H is the standard include file for all OLE applications, clients and servers alike, and defines

structures like OLECLIENT and OLESTREAM. It also enumerates error codes for the
OLESTATUS return type, which most OLE functions return.

10 SHELL.DLL, SHELL.LIB, and SHELLAPI.H
SHELL.DLL contains functions to manipulate the registration database and to support the Windows

3.1 Drag/Drop interface. SHELL.LIB is the import library to which you link your application.
The include file SHELLAPI.H contains prototypes for the functions below with the exception
of the WM_DROPFILES message that is defined in windows.h.:

Function/Message Description
Drag/Drop
DragAcceptFiles Notifies SHELL.DLL that a window can or cannot accept dropped

files.
WM_DROPFILES Message sent to a window when files are dropped on it.
DragQueryFile Retrieves the filename of a dropped file.
DragFinish Instructs

Registration Database
RegCloseKey Closes a key given a key handle.
RegCreateKey Creates a key given a name, generates a key handle.
RegDeleteKey Deletes a key given a key handle and a subkey name.
RegEnumKey Enumerates subkeys of specified key into a string.
RegOpenKey Opens a key given a name, providing a key handle.
RegQueryValue Retrieves text string for specified key.
RegSetValue Sets the text string (value) for a specified key.

An OLE Client uses the RegEnumKey, RegOpenKey, RegQueryValue, and RegCloseKey
functions to find what OLE servers exist in the system and to retrieve specific information about
an object class. Specifically, an OLE client needs to retrieve an object's descriptive name and
verbs it supports for various user interface purposes. The client will also need to enumerate all
OLE object class names contained in the registration database.

Use of the Drag/Drop interface in an OLE client is optional, but without much work you allow users
to create Packager objects within your document. This document will describe more about Packager
and handling the WM_DROPFILES message later.

Page 10 Microsoft

11 Library Redistribution and Installation
You may ship various components that your client application uses if you intend to target Windows

3.0 systems that may not have these libraries installed. Redistribution requires no royalties to
Microsoft, but does require that your application version check each component before copying
them to a user's hard drive, possibly replacing existing versions of the libraries. If the user
currently has the same or newer library installed, do not copy the version shipped with your
application. Version checking is not covered in this document, so consult a Windows 3.1
Programming Reference for more information on versioning API.

The obvious library you might ship is OLECLI.DLL, but if you ship that library you must also ship
the matching OLESVR.DLL to insure compatibility between the two libraries. Since client
applications must make use the registration database you must also ship SHELL.DLL. Finally, in
order to provide version checking capabilities, ship VER.DLL that contains the versioning API.

12 OLE Communication Routes
Communication between a client application, a server application, an optional object handler, and

the two OLE libraries, OLECLI.DLL and OLESVR.DLL, takes place on several different
levels:

 · The client calls API functions in OLECLI.DLL.

· OLECLI.DLL sends notifications to the client through the "Callback" method.

· If an object handler exists, OLECLI.DLL may call the object handler's exported functions to

perform various operations for an object, eliminating the need to start the server application.

· The server calls API functions in OLESVR.DLL.

· OLESVR.DLL calls the exported server methods to request various actions in on the server,
document, or object level.

· The server sends notifications to the client through a "CallBack" method pointer provided by
OLESVR. OLESVR intercepts these calls and may not necessarily pass the notification on
to OLECLI.DLL and the client.

· OLECLI.DLL and OLESVR.DLL communicate through DDE messages.

Microsoft Page 11

An OLE client application in this model makes function calls to OLECLI.DLL functions and
OLECLI calls the CallBack method in the client application to notify it of changes. For example,
when the a server changes a linked object it sends an OLE_CHANGED notification (through
OLESVR) that eventually ends up in the client's CallBack method. In response to this notification,
the client repaints the object by calling OleDraw in OLECLI, which in turn asks OLESVR for the
updated data.

13 OLE Data Structures and Application-Specific Variations
There are four data structures defined in OLE.H of interest to an OLE client application:

Data Structure Contents as defined in OLE.H

OLECLIENT A single LPOLECLIENTVTBL
OLECLIENTVTBL A single far pointer to the client's notification procedure:

CallBack.

OLESTREAM A single LPOLESTREAMVTBL
OLESTREAMVTBL Far pointers to stream methods, Get and Put.

An OLE client uses LPOLEOBJECT as a type to declare variables, but does not allocate
the structure.

These data structures are quite limited as defined in OLE.H: each structure only contains a single
pointer to a VTBL that contains pointers to various callback functions:

typedef struct _OLECLIENT
 {
 LPOLECLIENTVTBL lpvtbl;
 } OLECLIENT;

typedef struct _OLESTREAM
 {
 LPOLESTREAMVTBL lpstbl;
 } OLESTREAM;

Although the OLE 1.0 client library, OLESVR.DLL, uses DDE commands to communicate with the
server library, a client application should not depend on this fact. Future versions of the OLE
libraries may not necessarily use the DDE mechanism. The OLE libraries hide the underlying
mechanism beneath a set of function calls and allow the mechanism to change and improve without
requiring changes to the application. Concentrate on the OLE protocol and avoid concerning
yourself with DDE.

Page 12 Microsoft

To fully utilize these structures, define application-specific modifications to each structure in your
own client, adding any additional fields that relate to the structure. Whenever you create an OLE
object in a client you pass a pointer to or load a file one of these structures. When a method
(CallBack, Get, or Put) is called you are given the same pointer. Since that pointer references the
same structure you initially allocated, any information it originally had is still there. The key point
to remember is that each structure must always have an LPOLE*VTBL type first in which the
server stores a pointer to the appropriate VTBL.

The Patron sample defines three structures: DOCUMENT, OBJECT, and STREAM. DOCUMENT
is NOT a replacement for OLECLIENT but rather is a structure containing document related
information global to all objects within that document. The OBJECT structure contains an
LPOLECLIENTVTBL as its first field, and is used where an OLE function call required a pointer to
an OLECLIENT. Finally, the STREAM structure is used in place of OLESTREAM and contains a
file handle as a single additional field.

14 OLECLIENT CallBack and OLESTREAM Methods
The CallBack function contained in the OLECLIENTVTBL is the single method through which

OLECLI notifies the client of actions that affect an object. CallBack receives an
LPOLECLIENT, a notification code, and an LPOLEOBJECT. The LPOLECLIENT pointer is
whatever you passed to various create functions as the LPOLECLIENT parameter. In the case
of the Patron sample, this is actually an LPOBJECT pointer, providing CallBack with
application-defined data. The notification code contains one of the specifies which event
occurred:

Value Meaning
OLE_CHANGED The object was changed in the server application. The client

repaints the object to show the changes.

OLE_CLOSED (Embedded objects only) The server that was editing the
embedded object closed.

OLE_QUERY_PAINT OLECLI is processing a lengthy draw operation on an object,
so this notification allows the client application to stop drawing
if desired.

OLE_QUERY_RETRY An OLE function call in the client returned OLE_BUSY. This
notification allows the application to attempt to retry the
operation or terminate it.

OLE_RELEASE An asynchronous operation has finished and other actions can
be taken on the single object affected.

OLE_RENAMED (Linked objects only) Informs the client that a linked object

Microsoft Page 13

was renamed allowing the client to update private data
structures. All information in OLECLI is already updated.

OLE_SAVED Informs the client that an object was saved (linked object) or
updated (embedded objects). The client should update and
repaint the object.

The CallBack function must be exported from the client application. The notification
codes are described again in the Step-by-Step OLE Client
section.

15 OLE Client Streams and Persistent Naming
An important concept to understand with OLE clients is that of a Stream, which simply means a
storage location. OLE allows a client application to store objects anywhere–in memory, in
application document files, in separate files, in a database, etc. When a client application calls
OLECLI to save an object to a stream with the OleSaveToStream function, OLECLI calls the
OLESTREAMVTBL Put method; when loading an object from a stream the client calls
OleLoadFromStream that calls the OLESTREAMVTBL Get method. From within these methods
the client determines where and how it stores and retrieves those objects. Note that these methods
must handle data potentially greater than 64K.

When a client saves an object, it must store a persistent name for that object in its document file.
This name uniquely identifies an object allowing the client to locate and reload it when requested to
do so. The persistent modifier means that an object should retain this name until explicitly renamed
with the OleRename function or until that object is deleted with OleDelete. The persistent name
will become increasingly important in the future as object store becomes more integrated with the
file system. Finally, since this name is used to locate the object, it must be stored separate from the
object itself.

16 OLE Use of Pointers
All OLE structures in OLE function calls and in an application's methods are referenced through
pointers, primarily so you can define application-specific structures to replace OLECLIENT and
OLESTREAM. A direct result of pointer use is that OLE does not work in real mode Windows
(3.0). If you have an application that currently operates under real mode, adding OLE will eliminate
that capability.

The use of pointers necessitates that you allocate memory and keep it locked until freed, a cardinal
sin in real mode. However, since far pointers in standard and enhanced mode Windows contain
LDT (Local Descriptor Table) selectors, instead of physical segment values, memory can move
without requiring the selector (or the pointer) to change. Therefore you can allocate and lock a
structure to pass a pointer to OLECLI, and leave that memory locked until you free it.

Page 14 Microsoft

17 Handling Asynchronous Operations
The OLESVR and OLECLI libraries under OLE 1.x communicate through DDE messages; while
you should never depend on this fact, it does have repercussions in your application. In particular,
most of the OLE function calls may return the OLE_WAIT_FOR_RELEASE code, signifying that
the OLE libraries started an asynchronous operation on a specific object. While an asynchronous
operation is happening, the client cannot call any other OLE function that affects the same object
since only one asynchronous operation per object is supported (this is especially important within
the CallBack method–be sure to make no OLE calls from within that function). Synchronizing calls
in this manner is called "waiting for release" on the object in question.

However, the application may continue operations on other objects during this time and does so by
processing messages (allowing the libraries to process DDE messages) in a special message loop
until the object is released. The client has two techniques to determine when an object is released.
Either method works the same and the release will occur at the same time:

1. [Interrupt technique] Watch for the OLE_RELEASE notification in the CallBack method.
When this notification occurs, set a flag that causes the message loop to exit.

2. [Polling technique] While processing messages, repeatedly call OleQueryReleaseStatus
until it returns OLE_OK.

Since the original OLE function call that returned OLE_WAIT_FOR_RELEASE cannot return any
other error code, a client must call OleQueryReleaseError to determine if the function was actually
successful. If OleQueryReleaseError returns OLE_OK then everything is fine. Otherwise the return
value provides the details of the error. For example, consider the code below to update an object:

OLESTATUS os;

...

os=OleUpdate(pObj->pObj);

if (OLE_WAIT_FOR_RELEASE==os)

Make the Best use of Local/Global Memory for OLE Structures

Local Memory: (LocalAlloc) Allocate as LMEM_FIXED or LPTR (windows.h defines LPTR as
LMEM_FIXED | LMEM_ZEROINIT in windows.h). Do not use LMEM_MOVEABLE followed

by a LocalLock since that creates a sandbar in the high area of the local heap. Allocating
LMEM_FIXED allocates from the bottom of the stack, which is the best place for locked memory to

reside.

Global Memory: (GlobalAlloc) Allocate as GMEM_MOVEABLE followed by a GlobalLock.
The largest concern with global memory is how much of it resides in conventional memory below
the 1MB line. Allocating GMEM_FIXED automatically places that memory as low as possible in
the global heap whereas GMEM_MOVEABLE allocates from the top. Since the memory allocated
GMEM_MOVEABLE can physically move after GlobalLock, you create no sandbars.

Microsoft Page 15

 {
 //FOLEReleaseWait processes messages while waiting for pObj.
 FOLEReleaseWait(FALSE, pDoc, pObj);
 os=OleQueryReleaseError(pObj->pObj);
 }

if (OLE_OK!=os)
 //Signal error condition
 ;

If OleUpdate initially returns anything except OLE_WAIT_FOR_RELEASE, then we immediately
skip to checking the return value for an error code. Otherwise we need to wait for release using a
message processing function like FOLEReleaseWait in Patron's OLEOBJ.C. Once the object is
released, we reload our OLESTATUS variable with the outcome of the asynchronous operation
returned from OleQueryReleaseError.

Finally, the OleQueryReleaseMethod function returns a code indicating which OLE call started the
asynchronous operation that was last completed. For example, when the CallBack method receives
the OLE_RELEASE notification for the OleUpdate call above, OleQueryReleaseMethod would
return OLE_UPDATE. From CallBack as well, we could call OleQueryReleaseError to determine
the cause of the release. Given the operation and the result of that operation, we can then take
specific actions to terminate the sequence of OLE calls, notify the user, and so on.

In most cases, Patron passes the return value of an OLE function to an error handler, OsError
(OLEOBJ.C), that waits for the object to be released if necessary and calls OleQueryReleaseError
for the final outcome of the operation. It also handles the OLE_BUSY return value described
below.

18 Waiting for All Objects
Some operations, such as closing a file, affect all objects in a document together, so waiting for each
object in turn is slow. Instead of waiting one object at a time, you can wait for all objects together.
Note, however, that in such a procedure you will find it much more difficult to articulate errors for
individual objects once you exit the message loop. However, for operations like document close,
you may simply not care about such errors.

To wait for all objects together, maintain a special counter to track how many objects are released
and how many are still waiting:

· Before executing an operation on all object, set the counter to zero.
· For every OLE call that returns OLE_WAIT_FOR_RELEASE, increment the counter.
· For every OLE_RELEASE notification received in CallBack, decrement the counter.
· In your message processing function, watch for this counter to fall to zero, at which point

you terminate the loop.

Page 16 Microsoft

Waiting for all objects at once keeps your application somewhat asynchronous during OLE
operations, and as mentioned, makes it harder to detect and recover from specific errors. If you wait
for each object individually as soon as any call returns OLE_WAIT_FOR_RELEASE, you turn
OLE into a more synchronous protocol. Waiting for all objects together is simply a possibility that
you may be able to take advantage of. Take extra caution to insure that other OLE operations do not
occur between the time you set your counter and the time you wait. Otherwise your counter may
fall below zero.

19 The OLE_BUSY Return Code
If an object's server is locked in some modal operation or an asynchronous operation is not complete
on the object, an OLE function call may return OLE_BUSY, indicating that the operation cannot be
executed. You may either wait for the object to be released or terminate the operation. Whenever
this busy condition occurs, your CallBack method will receive the OLE_QUERY_RETRY_BUSY
notification. The return value of CallBack indicates whether or not to continue the operation in
response to this notification. You may also want to allow the user to wait or cancel.

20 Debugging Asynchronous Operations
Multiple operations on multiple objects can, of course, become a mess to follow. During
development of your client, stick with waiting for an object to be released as soon as any OLE
function returns OLE_WAIT_FOR_RELEASE, blocking all operations on any other objects. While
waiting for each object in turn will probably cause the application to run slower, it effectively makes
OLE synchronous. Once you have debugged your operations on single objects you can reinstate
asynchronous actions for performance reasons, if it's even necessary.

In short, don't let the asynchronous behavior of OLE get in your way of programming the right
sequence of calls.

21 Clipboard Formats and Conventions
OLE clients are concerned with several standard clipboard formats:

1. "Native," a server's raw data structures.
2. "OwnerLink," information about a server, used for embedding an object.
3. "ObjectLink," information about a file a server has saved, used for linking an object.
4. CF_METAFILEPICT, a continuously scalable presentation displayed in the client.
5. CF_BITMAP, a roughly scalable presentation displayed in the client.

Microsoft Page 17

Native, OwnerLink, and ObjectLink are formats defined in the OLE protocol; all OLE
applications, servers and clients, register these formats with RegisterClipboardFormat, which returns
the same integer value in any applications.1 These three formats describe a linked or embedded
object within a client document, allowing the OLE libraries to launch the correct server application
when the user activates an object in the client document. The CF_METAFILEPICT and
CF_BITMAP formats provide OLECLI with a visual representation of an embedded or linked
object.

Client applications generally deal with only the ObjectLink format when it displays information
about a linked object (such as the filename of the link). Clients do not generally use Native data,
probably will not use OwnerLink, and would only be concerned with metafiles and bitmaps if it can
manipulate that data outside the context of OLE. In all actuality a client application may only need
to register ObjectLink, but should register all the OLE formats for future use.

22 Native, OwnerLink, and ObjectLink Formats
Format Name Contents
Native Application-specific data structure, understood only by the server

application that created it. It must enable the server to completely
recreate the object. The OLE libraries and client applications treat
Native data as a stream of raw bytes, that is, they do not assume
anything about the contents of that data.

OwnerLink Sequence of three null-terminated strings in memory, where the next
string follows the preceding string's null-terminator and the sequence
is terminated by two NULLs:

String 1 Object class name
String 2 Document name
String 3 Object selection/name, assigned by the server

application

The OwnerLink format describes an embedded object.

ObjectLink Identical to OwnerLink in OLE 1.x, but describes a linked object:

String 1 Object class name
String 2 Full path to the document file
String 3 Object selection/name, assigned by the server

application

1RegisterClipboardFormat simply uses AddAtom on the given string, and atoms are constant across the system for any given string.

3

Page 18 Microsoft

In OwnerLink and ObjectLink the object class name is the registered class of objects that
a server handles. The document name and object name in OwnerLink
are strictly used to identify the object within whatever server or
document it resides. The document name in ObjectLink contains a
path name of the linked file, allowing OLECLI and the client
application to determine the exact file to which an object is linked.
The object name in ObjectLink specifies what part of the document
applies to the object, such as a range of cells in a spreadsheet. The
object name only has meaning to the server application and the user,
as clients do not parse or manipulate the name.

23 Registration Database: OLE Keys and Values
The registration database is a system resource that contains keys and values, both of which are
strings. All OLE-related keys start from a root key called HKEY_CLASSES_ROOT, as all objects
are members of some class. The first subkeys from HKEY_CLASSES_ROOT are the object's
classname and the application's file extension:

Key Name Required Value Example

HKEY_CLASSES_ROOT\classname Readable version of class name. Schmoo
Server 1.0

HKEY_CLASSES_ROOT\.ext Associated class name for the extension Schmoo1.0

The HKEY_CLASSES_ROOT\classname key has two standard extensions to which additional
subkeys are attached:

HKEY_CLASSES_ROOT\classname\protocol\StdFileEditing
HKEY_CLASSES_ROOT\classname\protocol\StdExecute

Additional subkeys attached to \protocol\StdFileEditing describe more specific characteristics
of the OLE protocol supported by the server:

Key Name ...\StdFileEditing\ Value Example

server Full path to server executable e:\win31\schmoo\
schmoo.exe

handler (optional) Full path to object handler DLL
e:\win31\schmoo\schmooh.dll

verb\0 Primary verb
Edit

verb\1, verb\2, ... (optional) Secondary, tertiary, etc., verbs Open, etc.
SetDataFormats (optional) CSV string of data formats Native,

CF_METAFILEPICT

Microsoft Page 19

RequestDataFormats (optional) CSV string of data formats Native,
CF_METAFILEPICT

The \protocol\StdExecute\server is an optional key that has a value of the application path, just
like the server subkey in StdFileEditing. Windows uses this entry to find the server if a
client application attempts to send commands through the OleExecute function.
Verbs are the types of actions a user can perform on an object, such as "Play," "Edit,"
and "Open." For most graphical applications "Edit" is the only verb provided, since
editing is the only thing to do with the data. An application like the Windows 3.1
Sound Recorder supports two verbs, "Play" and "Edit," where Play is the primary
verb and Edit is the secondary verb. When a user double-clicks an object in a client,
the client application invokes the primary verb for that object; for Sound Recorder
that means play the sound. All other verbs are accessed through the client
application's menu.

24 Preparing an Application to Become an OLE Client
Any application that manages some sort of document and can contain items such as pictures can

become an OLE client application. However, OLE does intrude somewhat into the existing
structure of the application and small changes to your application prior to implementing OLE
can help you stay more focused on adding OLE support. Most of the suggestions below deal
with isolating areas of your code that will be affected by OLE. When you have a single
function to perform a specific operation, it will be much easier to add a few OLE calls to that
one function. The sections below discuss various parts of your code to isolate, with the
exception of the first that deals more with files:

· Decide How to Reference Objects in Files; Version Numbers
· Isolate Data
· Isolate Initialization and Cleanup Procedures
· Isolate Painting and Printing Code for Objects
· Isolate Menu Enabling and Disabling Functions
· Isolate Clipboard I/O
· Isolate Your Dirty Flag
· Isolate Background Processing Schedulers
· Isolate Mapping Mode Conversions

These suggestions are not a mandate–in no way are you required to isolate code in this fashion.
Doing so may hurt your application's performance because of the increased overhead in function
calls. However, isolating functions will speed your development as it saves you from having to find
every case in which you must add an OLE call.

Page 20 Microsoft

25 Decide How to Reference Objects in Files; Version Numbers
OLE gives your application complete control over where you store objects. The most convenient
method is to simply store objects directly in your existing document files; however, you can also
store them in their own files, in a database, etc. In any case, modify your existing file format to
reference an object with a persistent name that your OLESTREAMVTBL methods can use to locate
and load an object.

So as OLE affects your file format, isolate your file read and write functions such that adding an
OLE call is trivial. When writing a document file, store a small data structure for every object in the
document to identify that object and its storage location. When you load a document file and
encounter one of these structures, you then have the name and location of that object allowing you
to reload it.

Finally, Since OLE is an evolving technology, mark your files or object structures with some sort of
version information related to the version of OLE under which you saved the file. This will insure
that as OLE changes you can provide whatever conversions are necessary between old and new
versions of your application.

26 Isolate Data
Consider reorganizing your existing global and static data with the objective of isolating non-OLE
data from OLE-specific data that you will add later. For client applications, OLE becomes
somewhat integrated with the application in that it affects almost all functions of file manipulation
and requires the application to manage where objects reside within documents. OLE is not yet
something that is exactly "integrated" a great deal with an application. In the future, OLE may
change independent of upgrades in the Windows system, so be prepared to make a revision to the
application's OLE code without making changes to the remainder of the application.

Your application will at least one new variable visible at the application level–a structure or
structure pointer that contains OLE document-related information, such as OLE clipboard formats,
an OLE document handle, and so forth. You can then pass a pointer to this structure to any OLE-
specific functions you create to handle various operations.

27 Isolate Initialization and Cleanup Procedures
During application initialization you will need to perform additional steps necessary for OLE, such
as registering new clipboard formats and calling OleRegisterClientDoc. Isolate your application
initialization code to prepare a place for these additional steps. In addition, some of the OLE
initialization steps have opposites to perform on application shutdown, so isolate your cleanup code
as well.

Microsoft Page 21

28 Isolate Painting and Printing Code for Objects
Painting or printing an object requires at least one call to OleDraw. If you currently draw some sort
of objects in your document, isolate your code to display or print these existing objects. Later, you
can add a quick check for an OLE object in this procedure and call OleDraw as necessary. Isolating
such code now will save you from tracking down every case where you draw or print an object in
order to add the OLE call.

29 Isolate Menu Enabling/Disabling Functions
OLE will affect your existing Edit menu, or require you to create such a menu. Besides adding
various new menu items, OLE adds an extra step in handling standard menu items such as Cut,
Copy, and Paste–to determine whether or not to disable these items, OLE adds function calls to
check for availability of OLE formats.

First, isolate your code that handles the WM_INITMENU or WM_INITMENUPOPUP message
case in your main window procedure to enable or disable menu items. Second, centralize any other
code to enable or disable the standard menu items. The new code to handle the Edit menu that you
will add later is not exactly trivial.

30 Isolate Clipboard I/O
Isolate code to handle each clipboard operation such as Cut, Copy, and Paste. Where you normally
cut and copy data you will need to determine if an object is selected and call OleCopyToClipboard.
Where you normally paste you will need to determine if you want to paste an OLE object instead of
other available data. OLE also adds the Paste Link and/or Paste Special commands that may make
use of your existing Paste functionality.

31 Isolate Your Dirty Flag
All applications that load, modify, and save files track some sort of 'dirty' flag that signals when the
user has made a modification but has not yet saved those changes in a file. Above what your
application currently does to set or clear this flag, various OLE operations, such as creating or
changing an object, will make the file dirty as well. Isolate code to set such a flag so that you can
control the flag from any other function, such as the OLECLIENTVTBL CallBack method.

Page 22 Microsoft

32 Isolate Background Processing Schedulers
Your application may use a modified message loop in which it detects idle time (no messages to
process) and performs a step of background processing before checking for new messages. As
describes in the section above on Handling Asynchronous Operations, OLE requires a client to
enter a separate message loop during an asynchronous operation and wait until an object (or all
objects) is released. The message loop is necessary to process DDE messages between OLESVR
and OLECLI that perform the actual operation.

Like any other message loop, there may be idle time during this OLE wait loop during which you
can again perform some background task. By isolating the code you execute to perform a step of
this task, you can call it from any message loop anywhere in the application with the same results.

33 Isolate Mapping Mode Conversions
OLE expresses any rectangles or other dimensional quantities in MM_HIMETRIC units, such as a
rectangle returned by the OleGetBounds function. If your application does not deal in
MM_HIMETRIC already, create a function to convert between MM_HIMETRIC and the mapping
mode you normally use, such as MM_TEXT. Your application can then continue to deal in its usual
mapping mode, only converting units when exchanging dimensions of an object with OLECLI.

With that, let's start coding...

Microsoft Page 23

34 Step-By-Step OLE Client

This section describes the necessary code additions and changes to make an existing application an
OLE client. The incremental approach in this implementation guide provides points at which you
can compile and test your code, marked by a gear symbol. At these points your server may not be
fully functional, but you can insure that certain elements do work perfectly. This is very important
to making your life with OLE simpler, because later steps depend on the previous steps working
correctly.

Implementing an OLE Client involves requires a considerable amount of work to just meet the user
interface standards. Creating documents and objects is quite simple compared to the user interface.

To that end, all the OLE-related code in Patron is readily usable in your application at least as a
starting point, but requires that you use its structures (and functions to allocate those structures) and
API.1 Appendix B contains documentation for the functions contained in the API. Since the source

to Patron is provided, you are, of course, free to make your own modifications.

This section is organized into the following steps:

Define OLE Data Structures Modify your include files to contain the
necessary OLE structures.

Create Registration Database Utility Functions An OLE client application makes
frequent use of the registration database.
These utility functions greatly simplify the
extraction of key information from the
registration database.

Implement Basic Methods The methods for an OLE client are quite
trivial to implement, but are necessary to
write before writing OLE initialization code.

Initialize the Application and VTBLs Register the OLE clipboard formats, allocate
and initialize OLE-related structures, and
register initial documents.

Handle Simple Shutdown: File Close Release objects and revoke documents.

Create an Object Manager Before creating objects, your application
needs a method to store and enumerate those
objects.

Add OLE Menu Items Add the basic user interface for an OLE
client, including the Edit Paste Link/Special

1Be sure to test this code with your application as well to incude that it meets your standards for error handling and robustness.

3

Page 24 Microsoft

command and the Insert Object command.

Create Objects and Other Object Operations Implement OLE-specific Paste, Paste
Link, Paste Special, and Insert Object
commands; place those objects back on the
clipboard, convert those objects to static
items, and release or delete an object.

Display and Print Objects; Resizing Draw the object or print it to a device
context; handle resizing of the object.

Add the Object Verb Menu and Execute Verbs Execute an object's verbs with a
quick double-click; attach verbs to your Edit
menu to fulfill an important user interface
requirement.

Implement File Menu Commands Close a document and register a new one;
Save objects to a file and load them though
the OleSaveToStream and
OleLoadFromStream functions.

Update Links and Create the Links Dialog Update links when loading them and
implement the links dialog, the most
complex user interface requirement in OLE.

Additional OLE Client Functions Overview of other OLE functions not
previously mentioned.

35 Define OLE Data Structures
OLE clients concern themselves with two basic data structures defined in OLE.H. However, the

definitions of these structures include only a single pointer to a method callback table:

typedef struct _OLECLIENT
{
LPOLECLIENTVTBL lpvtbl;
} OLECLIENT;

typedef struct _OLESTREAM
{
LPOLESTREAMVTBL lpstbl;
} OLESTREAM;

As mentioned before, define your own application-specific versions of these structures, keeping the
lpvtbl (or lpstbl) field at the beginning, then adding any additional data. Place object-related data
in your OLECLIENT replacement and storage information (like a file handle or pathname) in your
OLESTREAM replacement. You can also name these structures anything you like and typecast
them to the appropriate OLE type when passing pointers to OLE function calls.

Microsoft Page 25

The Patron sample defines three structures: DOCUMENT, OBJECT, and STREAM, where
OBJECT replaces OLECLIENT, STREAM replaces OLESTREAM, and DOCUMENT holds
information global to all objects with in a document. Each of these structures is described in more
detail below.

36 The DOCUMENT Structure

typedef struct
 {
 LPOLECLIENTVTBL pvt; //Stores the global VTBL for all objects
 LHCLIENTDOC lh; //Required for later OLE calls.
 ATOM aCaption; //Caption of the application.
 ATOM aFile; //Filename for the document
 LPFNMSGPROC pfnMsgProc; //Message translate/dispatch function.
 LPFNMSGPROC pfnBackProc; //Background processing function.
 LPSTREAM pStream; //Pointer to our document STREAM

 HWND hWnd; //HWND of document window.
 HANDLE hMemStrings; //Memory containing OLE strings.

 WORD cObjects; //Number of objects in the list.
 LPOBJECT pObjFirst; //Pointer to start of OBJECT list.
 LPOBJECT pObjLast; //Pointer to end of OBJECT list.

 WORD cfNative; //OLE Clipboard formats.
 WORD cfOwnerLink;
 WORD cfObjectLink;

 HWND hList; //Listbox handle for use in Links dialog
 HWND cxList; //Tab width of the links dialog.
 WORD cLinks; //Number of links we load from a file.
 WORD cWait; //Number of objects awaiting release.

 HANDLE hData; //Global handle to scratch area.
 LPSTR pszData1; //Pointers to blocks in hData
 LPSTR pszData2; //each containing CBSCRATCH
 LPSTR pszData3; //bytes.
 } DOCUMENT;

Of all the information in the DOCUMENT structure, the lh, cf*, and cWait fields are the most
important. lh holds the client document handle returned from a call to OleRegisterClientDoc that
is required in any OLE function call that creates an object. The cf* fields contain clipboard formats
returned from RegisterClipboardFormat for the "Native," "OwnerLink," and "ObjectLink" formats;
the ObjectLink format is used most to retrieve information such as the file to which an object is
linked. Finally, the cWait field counts OLE_WAIT_FOR_RELEASE return codes for operations
affecting all objects as described above in Handling Asynchronous Operations.

Warning:

The DOCUMENT structure in Patron is not used in place of the OLECLIENT structure. It acts as a
document structure holding variables applicable to all objects in a document. Patron never passes a
pointer to this structure to any OLE API calls, although a pointer is almost always passed to Patron's

OLE-specific functions.

Page 26 Microsoft

Of special note are the hData field and the three pointers pszData1, pszData2, and pszData3.
Supporting the user interface standards for OLE requires a good deal of string manipulation. Instead
of continually allocating temporary work buffers in specific functions, Patron allocates a single
piece of global memory (storing the handle in hData), locks it down, and stores three pointers into
that memory in pszData1, pszData2, and pszData3. In Patron's implementation each block
referenced through these pointers is 1K bytes (defined as CBSCRATCH, OCLIENT.H).

Not only does this method relieve functions from making temporary allocations, but greatly reduces
the number of possible error conditions in functions, simplifying their flow. The cost is added care
to keep these buffers secure across function calls.

37 The OBJECT Structure
Patron's OLECLIENT replacement structure is called OBJECT simply because it contains

information relevant to each object in a document. Patron uses this structure in place of any
OLECLIENT required by the OLECLI library, so the first field is the LPOLECLIENTVTBL
pointer:

typedef struct _OBJECT
 {
 LPOLECLIENTVTBL pvt; //Lets us use this as an OLECLIENT.
 LPOLEOBJECT pObj; //Identifies the object in OLECLI
 BOOL fRelease; //Released flag.
 BOOL fOpen; //Was this object activated?
 struct _OBJECT FAR *pPrev; //Previous and next OBJECTs in
 struct _OBJECT FAR *pNext; //the object list.
 LPDOCUMENT pDoc; //Parent document
 ATOM aName; //Name of object.
 ATOM aClass; //Classname of the object.
 ATOM aLink; //Path of linked document.
 ATOM aSel; //Selection information.
 DWORD dwType; //Object type from OleQueryType
 OLEOPT_UPDATE dwLink; //Type of link, auto, manual, or static
 BOOL fNoMatch; //Marks the object when updating links.
 LPOLEOBJECT pObjUndo; //Clone OLEOBJECT for undo usage.
 BOOL fUndoOpen; //Indicates if the cloned object is open.
 BOOL fLinkChange; //Indicates modification in Links dialog.
 HANDLE hData; //App-defined data.
 } OBJECT;

Additional information stored in OBJECT simplifies object management. First, it stores whatever
OLEOBJECT was created for this particular OBJECT in pObj. It also stores two pointers, pPrev
and pNext, to reference the previous and next objects in a linked list–such a list allows the client to
quickly enumerate objects. The ATOMs aName, aClass, aLink, and aSel are used to store strings
for the object's name, class, link file (for linked objects), and selection information (for linked
objects). In structures, ATOMs are much more convenient than character arrays to store strings that
may be arbitrary long. Note that OLE does not require use of ATOMs–character strings are plenty
acceptable.

Microsoft Page 27

The dwType and dwLink fields specify the type of object (embedded, linked, or static) and the
update option for a linked object (automatic, manual, unavailable, or static), respectively. Finally,
hData field provides a HANDLE for an application to store any other data. Patron uses hData to
store the window handle where it displays the object.

38 The STREAM Structure
typedef struct
 {
 LPOLESTREAMVTBL pvt; //Standard
 HANDLE hFile; //File handle we need in methods.
 } STREAM;

Since the OLESTREAMVTBL methods Get and Put are necessary to read and write data from a
file, those methods require some information to locate the object, such as a file handle or file name–
that information must be sufficient to relocate the object in some storage. Storing the information in
the STREAM structure prevents you from having global variables to pass the same information.
When you load or save an object, you first fill your structure and pass its pointer to
OleLoadFromStream or OleSaveToStream. OLECLI then passes this same pointer to the Get
and Put methods. Patron just passes a file handle when it uses the stream for file I/O.

Not all stream operations deal with saving objects to a file. If you include an object as part of a
larger data structure for clipboard I/O (such as copying rich text format information), then you can
use OleSaveToStream to save the object to a memory block. The Stream functions and methods
simply give the application access to an object's native data.

39 Constructors, Initializers, and Destructors
The Patron sample references its DOCUMENT and OBJECT structures heavily. If you plan on

using any of Patron's OLE specific code, you will need to use these data structures (or modify
Patron's code to handle your changes). To that end, Patron borrows some C++ techniques to
simplify management of these structures: Constructors and Destructors1 for five separate
structures:

Structure Constructor Destructor File
DOCUMENT PDocumentAllocate PDocumentFree OLEDOC.C
OBJECT PObjectAllocate PObjectFree OLEOBJ.C
OLECLIENTVTBL PVtblClientAllocate PVtblClientFree OLEVTBL.C
STREAM PStreamAllocate PStreamFree OLESTREA.C
OLESTREAMVTBL PVtblStreamAllocate PVtblStreamFree OLEVTBL.C

1A constructor allocates and initializes a structure; a destructor frees resources associated with the structure and frees the structure itself.

3

Page 28 Microsoft

On startup, Patron calls PDocumentAllocate that not only allocates a DOCUMENT structure but
also registers clipboard formats, initializes VTBLs, calls PStreamAllocate, and allocates the work
strings stored in the pszData fields. In short, calling PDocumentAllocate handles almost all the
OLE-specific initialization that we'll discuss later and initializes the OLECLIENTVTBL structure
through PVtblClientAllocate.

PStreamAllocate simply allocates a STREAM structure and calls PVtblStreamAllocate, passing
pointers to the OLESTREAM methods. By default, PStreamAllocate uses StreamGet and
StreamPut in OLESTREA.C.

Before creating an object, Patron calls PObjectAllocate to just allocate an OBJECT structure,
initialize the LPOLECLIENTVTBL field, and insert itself into the object list referenced in a
DOCUMENT. After an OLE function successfully creates an object, Patron calls PObjectInitialize
to fill the remaining fields. This separate initialize function is necessary because OLECLI allocates
OLEOBJECTs, meaning that we cannot attach data to that native structure. Instead, we create the
OBJECT structure to use in place of the LPOLECLIENT parameters to various create functions.
We cache data in this OBJECT structure, but to initialize the data we need the OLEOBJECT. Since
we provide the OBJECT pointer as the LPOLECLIENT parameter, we get the same pointer, and
thus all the data in that structure, through the LPOLECLIENT parameter of the CallBack method.

Each constructor function takes a pointer to a BOOL and returns a pointer. If the BOOL is FALSE
on return, then the function failed, but the pointer may be non-NULL. In this case, call the
destructor to free the data. Each destructor function simply cleans up anything that exists in the
structure, then frees the structure itself. Note that PDocumentFree calls PVtblClientFree and
PStreamFree calls PVtblStreamFree.

While there is little to possibly test here, you can make sure your structures
compile cleanly.

40 Create Registration Database Utility Functions
An OLE Client makes considerable use of information stored in the registration database through

SHELL.DLL functions. However, the SHELL functions are only primitives to open keys and
read values. To simplify OLE operations, create specific utility functions that provide
associations between different values in the registration database. For definitions of terms (like
descriptive name) please see Appendix A.

1. Enumerate Class Descriptions Fill a list with the descriptive names of available
objects.

2. Class Name from Descriptive Name Find the class name associated with a
descriptive name.

3. Class Name from File Extension Find the classname associated with a given file

Microsoft Page 29

extension.
4. Enumerate Verbs for a Class Generate a list of verbs supported by a given

object class.
5. Descriptive Name from Class Name Find the descriptive name associated

with a given class.

In the continuing effort to make client implementation easier, these functions are provided in
Patron's REGISTER.C with prototypes in REGISTER.H.

41 Enumerate Class Descriptions: WFillClassList
OLE clients provide an Insert Object command that displays a listbox containing the descriptive

names of all available OLE object classes. Obtaining this list of names requires a function to
enumerate class names in the registration database, retrieve their descriptive names, and add
that name to the list. The WFillClassList function (REGISTER.C) performs these steps to fill
a given listbox:

1. If you are filling a listbox in this function, send it LB_RESETCONTENT to insure a clean
list.

2. Open the HKEY_CLASSES_ROOT key with a NULL subkey.
3. Set an index counter to zero and enter a loop to find each subkey:

a. Call RegEnumKey using the index in the counter.
b. If RegEnumKey fails, then we've enumerated all subkeys; exit loop
c. If RegEnumKey succeeds, call RegQueryValue on the subkey "<classname>\
protocol\StdFileEditing\server" where <classname> is the string from RegEnumKey.
d. If RegQueryValue fails then the subkey is not a valid OLE class name;
continue loop.
e. Call RegQueryValue on the key from step a to retrieve the descriptive name
for the class.
f. Add the string to the list and continue the loop.

4. Call RegCloseKey for the key obtained in 2 and return.

42 Find Class Name Given a Descriptive Name: WClassFromDescription
You may encounter a case where you need the class name for an object's descriptive name. For

example, if the user selects a descriptive name from the Insert Object dialog box, then you need
to retrieve a class name for that descriptive name before creating an object. This process, as
implemented in WClassFromDescription (REGISTER.C), is much like enumerating class
names except you search for a match between the given descriptive name and the value of
enumerated names:

1. Open the HKEY_CLASSES_ROOT key with a NULL subkey.
2. Set an index counter to zero and enter a loop to find each subkey:

Page 30 Microsoft

a. Call RegEnumKey using the index in the counter.
b. If RegEnumKey fails, then we've enumerated all subkeys; exit loop
c. If RegEnumKey succeeds, call RegQueryValue on the subkey for that
classname.
d. Call lstrcmp to compare the value of that classname to the desired descriptive
name.
e. If the names match, exit the loop and return the classname.
f. If the names do not match, continue the loop.

3. Call RegCloseKey for the key obtained in 2.
4. If we found a matching descriptive name, return the classname. Otherwise return an error.

43 Find Class Name Given a File Extension: WClassFromExtension
At a later point you will allow the user to change the file to which an object is linked, using the

extension of that file and the class name of that file as defaults in the GetOpenFileName
common dialog. To prepare for that capability, implement this simple function to perform a
quick lookup:

1. Open HKEY_CLASSES_ROOT key with a NULL subkey.
2. Call RegQueryValue using the key from 1 and the file extension as the subkey. This value is

the class name.
3. Call RegCloseKey for the key from 1 and return.

44 Enumerate Verbs for a Class: CVerbEnum
Another user interface requirement for a client is an item on the Edit menu listing the verbs

supported by the currently selected object (if there's only a single object selected). An object
class' verbs are contained under its classname subkey in the registration database. CVerbEnum
(REGISTER.C) generates a list of null-terminated strings where each string contains a verb and
the list itself is double null-terminated:

1. Open HKEY_CLASSES_ROOT with the classname as subkey.
2. Call RegOpenKey to open the subkey "protocol\StdFileEditing\verb" of the key obtained

in 1.
3. Close the key obtained in 1.
4. Set a counter to zero and enter a loop:

a. Convert the counter to ASCII.
b. Call RegQueryValue using the ASCII string of the counter as a subkey of the
key from 2.
c. If RegQueryValue succeeds, the value is a verb string; add the string to the
list.
d. If RegQueryValue fails, exit the loop, otherwise continue.

5. Call RegCloseKey for the key obtained in 2 and return.

Microsoft Page 31

45 Find Descriptive Name Given a Class Name: WDescriptionFromClass
Along with a selected object's verbs, and OLE client must show the object's descriptive name in the

Edit menu. Since an object's classname is readily available from the object itself, we only need
to do a quick lookup in the registration database to find the descriptive name:

1. Open HKEY_CLASSES_ROOT key with a NULL subkey.
2. Call RegQueryValue using the key from 1 and the classname as the subkey. This value is

the descriptive name.
3. Call RegCloseKey for the key from 1 and return.

First, verify that you can cleanly compile and link these new functions. Since
we will not make use of these functions until we add user interface code,
create a small test suite allowing you to walk through the functions in a

debugger to verify their operation.

46 Implement Basic Methods
In order to initialize OLECLIENTVTBL and OLESTREAMVTBL structures, first create the

methods referenced in those structures. At this point you can almost completely implement
each of the three methods.

47 CallBack
A basic CallBack method needs to do very little for each notification code that were described in
section 2.5.1:

Notification Basic Action
OLE_CLOSED SetFocus to the main application window, set a closed flag,

and repaint.
OLE_SAVED Resize your object to the new size from OleQueryBounds and

repaint.
OLE_CHANGED Same as OLE_SAVED.
OLE_RELEASE Decrement the wait counter in your DOCUMENT data

structure and possibly set another flag indicating the released
status.

OLE_RENAMED Reinitialize any stored information concerning a linked file.
OLE_QUERY_RETRY Return TRUE to continue waiting for busy objects or FALSE

to always terminate the operation on a busy object..
OLE_QUERY_PAINT Return TRUE to always repaint the object completely.

Page 32 Microsoft

Since repainting objects and setting focus to a window involves application-specific data,
implement the CallBack function as part of the application; Patron's ClientCallback
(PATRON.C) is little more than a template:

int FAR PASCAL ClientCallback(LPOBJECT pObj, OLE_NOTIFICATION wCode,
 LPOLEOBJECT pOLEObj)
 {
 switch (wCode)
 {
 case OLE_CLOSED: //Server closed for an embedded object.
 SetFocus(pGlob->hWnd);
 pObj->fOpen=FALSE;
 PostMessage((HWND)pObj->hData, BBM_OBJECTNOTIFY, wCode, (LONG)pObj);
 break;

 case OLE_SAVED:
 case OLE_CHANGED:
 case OLE_RENAMED: //Server renamed a link file.

Reminder:
Call no OLE functions on the given object from within CallBack. OLE functions will usually return OLE_BUSY since OLECLI sends
notifications to CallBack from within an asynchronous operation. Applications generally need to post a message that affects the desired
operation. In addition, do not perform any action in CallBack that might display a message box or dialog or anything else that might enter
another message loop. PostMessage((HWND)pObj->hData, BBM_OBJECTNOTIFY, wCode, (LONG)pObj);
 break;

 case OLE_RELEASE:
 pObj->fRelease=TRUE;
 pObj->pDoc->cWait--;
 break;

 case OLE_QUERY_RETRY:
 return FALSE;

 case OLE_QUERY_PAINT:
 return TRUE;

 default:
 break;
 }

 return FALSE;
 }

Note that instead of taking an LPOLECLIENT type as the first parameter, Patron immediately
changes it to an LPOBJECT, which acts in place of an LPOLECLIENT. When Patron calls a
function to create an object, it passes an OBJECT pointer which is passed back to this method.

In order to repaint the object, Patron sends a private message to the BlackBox window associated
with the object. Also note the references to global variables in pGlob->hWnd (the main application
window) and pObj->pDoc->cWait (the object wait counter).

Microsoft Page 33

48 StreamGet and StreamPut
The Get and Put methods contained in the OLESTREAMVTBL are very straightforward as they
only need to read or write a given number of bytes, potentially larger than 64K, from the
application's object storage location. The Get method is called from OleLoadFromStream and the
Put method is called from OleSaveToStream. In calling the OLE functions, provide a pointer to
your application-specific OLESTREAM structure in which you store any information necessary to
locate or store the object. This information can be as simple as a file handle (as in Patron) but is
completely determined by your application.

For example, if you want to copy data fro myour application to the clipboard, and that data includes
information other than OLE objects, then you must save all the object information as part of a larger
structure. We'll cover this in more detail later, but such an operation will require different stream
methods to save or load an object to and from a memory block, not to a file. Patron, however, does
not handle such an operation, simply doing file I/O in its StreamGet and StreamPut methods:

DWORD FAR PASCAL StreamGet(LPSTREAM pStream, LPBYTE pb, DWORD cb)
 {
 DWORD cbRead;

 /*
 * With a file handle, just read cb bytes of the data into pb from that file
 * handle. This assumes that we are in the process of reading a file and
 * store objects directly in the file.
 */

 if (NULL==pStream->hFile)
 return 0L;

 cbRead=DwReadHuge(pStream->hFile, (LPVOID)pb, cb);

 //Return the number of bytes actually read.
 return cbRead;
 }

DWORD FAR PASCAL StreamPut(LPSTREAM pStream, LPBYTE pb, DWORD cb)
 {
 DWORD cbWritten;

 /*
 * With a file handle, just write cb bytes of the data from pb to that file
 * handle. This assumes that we are in the process of writing a file and
 * store objects directly in the file.
 */

 if (NULL==pStream->hFile)
 return 0L;

 cbWritten=DwWriteHuge(pStream->hFile, (LPVOID)pb, cb);

 //Return the number of bytes actually written.
 return cb;
 }

Page 34 Microsoft

Both methods return a number of bytes read or written. If this value does not match the number of
bytes requested (in the cb parameter) then OLECLI will signal an error for OleLoadFromStream or
OleSaveToStream.

The reusable functions DwReadHuge and DwWriteHuge (OLELIB.C) use the Windows API calls
_lread and _lwrite to read or write a data block in 32K chunks. Therefore each data block can be
larger than 64K, the maximum size handled by _lread and _lwrite. Note also that Windows 3.1
(including Beta releases after build 68) contain the _hread and _hwrite functions that eliminate the
need for functions like DwReadHuge..

49 Initialize the Application and VTBLs
This section describes what an OLE client must do during application (instance) initialization above

its normal operations. Instance initialization takes place before the application creates its main
window and enters its message processing loop.

1. Register clipboard formats for "Native," "OwnerLink," and "ObjectLink."
2. Allocate and initialize VTBLs for the OLECLIENTVTBL and OLESTREAMVTBL

structures.
3. Allocate and initialize your application-specific OLESTREAM structure (such as

STREAM).
4. Register the client application with OleRegisterClientDoc.
5. (optional) Register the application as able to accept files dropped from File Manager by

calling DragAcceptFiles.

If any of these steps fails, except for registering "Native," registering "OwnerLink," and calling
DragAcceptFiles, then terminate the application. A client application does not necessarily need to
accept dropped files nor does it need the "Native" and "OwnerLink" clipboard formats for most
operations. Any other error, however, is fatal.

As mentioned above, the function PDocumentAllocate in OLEDOC.C performs steps 1-3. Patron
registers the client document and calls DragAcceptFiles in the WM_CREATE message case of the
main window procedure in PATRON.C.

50 Register Clipboard Formats
Regardless of what clipboard I/O the client application does, it needs at least the "ObjectLink"

clipboard format. It should also register formats for "Native" and "OwnerLink" as it may make
use of them. Store these registered formats in variables visible to all objects (such as a
DOCUMENT structure) as they are necessary to handle object data. Register the three
standard formats with RegisterClipboardFormat:

pDoc->cfNative =RegisterClipboardFormat("Native");
pDoc->cfOwnerLink =RegisterClipboardFormat("OwnerLink");
pDoc->cfObjectLink=RegisterClipboardFormat("ObjectLink");

Microsoft Page 35

51 Allocate and Initialize VTBLs and VTBL Pointers
Before calling any function in OLECLI, initialize all VTBLs with the MakeProcInstance call,

setting each field in the OLECLIENTVTBL and OLESTREAMVTBL structures
(OLESTREAMVTBL does not necessarily have to occur at this time, see below). You must
allocate these structures (or use global variables) since the OLECLIENT and OLESTREAM
structures (or your variants) simply contain a pointer to VTBLs. Note that if you have already
implemented basic methods as described in the previous section, then you have already
exported them in your .DEF file. Now is a great time to verify that again.

If any MakeProcInstance call fails, then fail initialization and terminate the application. An OLE
client cannot function without the ability for OLECLI to call these methods. If you terminate the
application on a failed MakeProcInstance, you could call FreeProcInstance for any instance thunk
you created, but Windows automatically frees all thunks when the application terminates.

52 Allocate and Initialize Your OLESTREAM Structure
An OLE client only needs a single OLESTREAM (or application-specific modification) structure

with an initialized VTBL pointer. During initialization, allocate your STREAM structure and
initialize the LPOLESTREAMVTBL pointer within it. You can allocate and initialize
OLESTREAM and OLESTREAMVTBL structures during file I/O, that is, it does not
necessarily have to be done at initialization. However, allocations made at startup are
generally more likely to succeed, reducing the chance that a user would not be able to save a
file on some internal error condition.

53 Load and Register the Initial Document(s)
For any document you create or load on startup, call OleRegisterClientDoc. If the document is a

real file specified on the client's command line, use that filename as the document name passed
to OleRegisterClientDoc. If you simply create a new file on startup, then use '(Untitled)' or
something else suitable as the document name. Note that OleRegisterClientDoc creates an
LHCLIENTDOC handle that you must store where any other operation within the document
can reference it, such as when you create objects. A DOCUMENT structure is a great place.

Page 36 Microsoft

54 Register the Window for Drag/Drop
If your application wishes to accept files dropped from File Manager, call DragAcceptFiles(hWnd,

TRUE) where hWnd is the main application window and TRUE enables that the application to
accept dropped files (FALSE disables the capability). When the user drops files on a client's
window, that client generally creates an embedded "Packager" object for each dropped file.
The client may, however, do whatever it wishes with dropped files. The later section Create,
Copy, Delete, and Release Objects discusses specific handling of dropped files and creating
Packager objects. For initialization purposes, however, just call DragAcceptFiles.

55 Handle Simple Shutdown: File Close
Before compiling and testing your initialization code, provide for simple application shutdown.

Note that this procedure includes steps to handle objects within a document, none of which we
can even create at this point. For now, ignore steps 1-4. After completing section 4.8, you will
be able to complete this procedure where you perform steps 1-6 for each document and steps 7-
8 when you have closed all documents:

1. Set your 'release' counter to zero if you wait for all objects at once, otherwise skip this step.
2. Enumerate all objects in the document.
3. For each object, call OleRelease and if it returns OLE_WAIT_FOR_RELEASE either wait

for the object or increment your release counter.
4. When all objects have been enumerated, wait for release on all objects if necessary.
5. Call OleRevokeClientDoc for all open documents, using the handles returned from

OleRegisterClientDoc.
6. Free the DOCUMENT structure.
7. Call DragAcceptFiles(hWnd, FALSE) if the application previously called

DragAcceptFiles(hWnd, TRUE).
8. Free the OLESTREAM structure and all VTBLs.

Call OleRevokeClientDoc before posting a WM_CLOSE message to your main window or
otherwise destroying it. If OleRevokeClientDoc fails, you might still want to alert the user in which
case you need a valid window handle. Call DragAcceptFiles from the WM_DESTROY case in the
main window procedure, since by that time you know you are truly closing but the window is still
valid. Free the data structures after you exit your message loop.

Microsoft Page 37

56 Create an Object Manager
Before creating any objects, your application will need some way to track those objects. OLECLI's

OleEnumObjects function does provide some very basic and limited object management–
limited mainly because the enumeration only provides pointers to the OLEOBJECTs within
OLECLI. Since these pointers reference no application-supplied data, your application must
then search for associated data. In addition, while you can retrieve any information about an
object from the OLEOBJECT pointer, it's much more efficient to cache much of that
information in something like the OBJECT structure and update it when necessary. For these
reasons, Patron does not use OleEnumObjects and instead implements its own object manager
to track its own structures.

In your object manager, provide four basic functions: allocate, initialize, enumerate, and free. The
allocate function simply allocates memory for the structure and inserts it into whatever list you
maintain. In addition, if you follow the recommendations in this document place an
LPOLECLIENTVTBL field at the beginning of this structure and initialize it at this time. On
return from this allocate function, you have a pointer to pass as the LPDOCUMENT parameter to
various OLE object creation functions that create objects. Once an OLE create function provides an
OLEOBJECT pointer, you can use your initialize function to retrieve and cache various pieces of
information. Since you may later change the OLEOBJECT within a particular document object,
code your initialization function so it may be called repeatedly for a single object, cleaning up any
prior allocations as necessary.

Implement an enumeration function that walks the list of objects and calls a given callback function
for each object. That callback function performs any action it so desires on that object, and since it
is given an application object, not an OLEOBJECT, it has all the information it requires to carry out
that action. The primary advantage using a callback function in an enumeration is that the action
you perform on the list of objects is reduced to an action on a single object. The control structure to
loop through those objects is hidden from the function, simplifying the flow-of-control.

Finally, implement the free function to simply take an application object, free any information inside
it (such as ATOMs or GDI objects), and free the memory for that structure. This does not mean
deleting the OLEOBJECT itself (with OleDelete) since creating and destroying OLE objects should
happen outside the context of your object manager. By the time you call this free function, the
client should have already cleaned up the OLEOBJECT.

57 Example: The OBJECT Structure and OLEOBJ.C
Patron provides an example of just such a manager for the OBJECT structures described above.

Patron's DOCUMENT structure contains pointers to the first and last objects in the document.
Patron allocates OBJECTs through PObjectAllocate, initializes them with PObjectInitialize,
and frees them with PObjectFree. The allocate and free functions insert and remove the
OBJECT from the object list in a DOCUMENT.

Page 38 Microsoft

The OBJECT structure simply holds OLEOBJECT information available from various OLE API
functions like OleGetData–allocating or freeing the structure does not affect the OLEOBJECT it
refers to. To affect some operation on all the OLEOBJECTs, Patron uses its FObjectsEnumerate
(OLEOBJ.C) that walks the list and calls a function for each object. An example of using
FObjectsEnumerate can be seen in OLEMENU.C in MenuOLEClipboardEnable, which uses the
enumeration function FEnumOLEPaste to simply see if at least one linked object exists.

58 Add OLE Menu Items
To give users a way to create objects, add the standard menu items listed in the table below if they

do not already exist. The table shows each required command (unless marked as optional), the
preferred menu on which it should appear, and an alternate menu on which it may appear (&
precedes the mnemonic character for this item):

Command Menu Optional Menu/Comment

[&Insert]Object... Insert

Edit, as "Insert Object..." It may appear as just "Object..." on an
Insert menu.

&Copy Edit None–must be on the Edit menu.
Cu&t Edit None
&Paste Edit None
Paste &Link Edit None. Paste Link is optional if you provide Paste Special.
Paste &Special Edit None. Paste Special is optional if you provide Paste and Paste

Link
Con&vert to Static1 Edit

None
Lin&ks... Edit None
&Object Edit None. This is a placeholder for a more specific menu item that

changes with the selected object. We'll cover this in detail in the
section Add the Object Verb Menu and Execute Verbs below.

59 Enabling and Disabling OLE Menu Items
Depending on available clipboard data and status of currently selected objects, enable or disable the

menu items that OLE affects. The modifications described here only apply to OLE objects, not
to other data that your application may already support. If you currently have code to enable or
disable the Cut, Copy, and Paste commands, execute this OLE-specific code before it, so even
if there's nothing OLE can deal with, your existing code will override the state of these menu
items.

1This particular menu item is not a user interface standard, but do consider including it since a user might otherwise have no convenient method to
remove the embedded status from an object.3

Microsoft Page 39

To determine the status of the Copy, Cut, and Paste menu items, call the
OleQueryCreateFromClip and OleQueryCreateLinkFromClip functions. The first parameter to
these functions is a protocol string that is either "StdFileEditing" or "Static," and specific
combinations of these functions and parameters indicate available objects on the clipboard:

· Embedded object available: OleQueryCreateFromClip("StdFileEditing" ...) returns
OLE_OK

· Static embedded object available: OleQueryCreateFromClip("Static" ...) returns OLE_OK
· Linked object available: OleQueryCreateLinkFromClip("StdFileEditing" ...) returns

OLE_OK

The table below summarizes conditions for which a you enable and disable OLE menu items:

Item Condition and Effect
[Insert]Object... Enable always.
Copy Enable if any object is selected, disabled otherwise.
Cut Enable if any object is selected, disabled otherwise.
Paste Enable if an embedded or static object is available, disable otherwise.
Paste Link (if supported) Enable if a linked object is available, disable otherwise.
Paste Special (if supported) Enable if an embedded, static, or linked object is available,

disable otherwise.
Convert to Static

Enable if any object is selected, disable otherwise.
Links... Enable if any linked objects exist in the document, disable otherwise.
Object Enable if any object is selected, disable otherwise.

Since only an application knows if an object is 'selected,' it must control enabling the
Copy, Cut, and Convert to Static commands, as Patron does in
MenuClipboardEnable (CLIP.C).

60 Example: MenuOLEClipboardEnable in OLEMENU.C
Patron has a reusable function called MenuOLEClipboardEnable (OLEMENU.C) that demonstrates

how to call OleQueryCreate*FromClip to enable the various menu items. It also manipulates
the Links... item by enumerating available objects and looking for any one linked object. The
Links... item is only disabled if no linked objects exists.

For the most part, MenuOLEClipboardEnable calls OleQueryCreateFromClip and
OleQueryCreateLinkFromClip to enable the various Paste items. It then uses FObjectsEnumerate
(OLEOBJ.C) to search the list of objects passing each object to FEnumOLEPaste, which checks if
the object is linked and stops the enumeration if it is. If FObjectsEnumerate returns without
enumerating the entire list, then FEnumOLEPaste found a linked object and we enable the Links...
item.

Page 40 Microsoft

Note that MenuOLEClipboardEnable does not affect the Object item. This item is generally
replaced with an object-specific string or popup menu in the MenuOLEVerbAppend, discussed later.
If no object is selected, MenuOLEVerbAppend insures that a grayed "Object" item appears on the
menu.

61 Create Objects and Other Object Operations
With a method to store and create objects in place, you can now begin to create objects and perform

operations on them. This section contains information on a variety of object operations:

Waiting For Release Implement a function to process messages while
waiting for an asynchronous operation to
complete. Implement this step before creating
any object.

Implement Paste Commands Implement the Paste, Paste Link, or Paste
Special menu commands.

Implement the Insert Object Command Implement the Insert Object dialog to
create an object of a specific class.

Handle WM_DROPFILES Process the WM_DROPFILES message to
create Packager objects.

Copy and Cut Objects to the Clipboard Place existing objects back on the
clipboard.

Convert Objects to Static Call OleObjectConvert to create a Static copy of
an item that can no longer be activated through
OLE

Close, Release, and Delete Objects Call OleClose to break an object's connection to
a server, OleRelease to free an object's memory,
and OleDelete to permanently delete an object
from a document.

Any operation that creates an object follows four general steps, making use of your
object manager:

1. Allocate your OBJECT structure and initialize the LPOLECLIENTVTBL field.

Microsoft Page 41

2. Create a unique name string for the new object. A good method is to append a number to an
English name you use for the objects. The name must be unique within whatever storage
device you use for objects.

3. Call an OleCreate* function, passing the OBJECT you allocated in 1 as the LPOLECLIENT
parameter and the unique name from 2 as the object name parameter. Note that all create
functions require a client document handle from OleRegisterClientDoc.

4. If the object creation succeeds, initialize your OBJECT structure with information from the
new OLEOBJECT. If creation fails, free the allocated OBJECT and fail the operation.

Patron applies this sequence of steps for each creation case described below. To handle step 4,
Patron creates a BlackBox window that intializes the object, then sends that window a message to
force it to update.

62 Wait For Release
OLE functions that create objects will often return the OLE_WAIT_FOR_RELEASE code,

specifying that your application must not perform any other actions on the object until it has
been released. Methods to detect the released state are discussed in Handling Asynchronous
Operations (section 2.7) earlier in this document. So before creating any objects, implement a
technique to wait for release.

63 Example: FOLEReleaseWait in OLEOBJ.C
An example of processing messages is the FOLEReleaseWait function in OLEOBJ.C. This

function either waits for a single object by watching for the OBJECT's fRelease flag to go
TRUE, or waits for all objects by watching the cWait counter in a DOCUMENT structure.

To make this function a reusable part of Patron, the DOCUMENT structure contains two message
function pointers, pfnMsgProc and pfnBackProc, pointers to functions that take a single LPMSG
parameter. FOLEReleaseWait calls the pfnMsgProc function whenever it retrieves a message to
process. Calling an application-supplied function like MessageProcess in PATRON.C allows the
application to do whatever it wants with a message, such as TranslateMessage/DispatchMessage or
IsDialogMessage–FOLEReleaseWait assumes nothing about that process. In the same manner,
when FOLEReleaseWait detects idle time, it calls the pfnBackProc function allowing the application
to perform any slice of background processing. If no background function is given, or if the
background function returns FALSE (indicating it has nothing to do), FOLEReleaseWait calls
WaitMessage:

BOOL FAR PASCAL FOLEReleaseWait(BOOL fWaitForAll, LPDOCUMENT pDoc, LPOBJECT pObj)
 {
 BOOL fRet=FALSE;
 MSG msg;

 while (TRUE)

Page 42 Microsoft

 {
 //Test terminating condition.
 if (fWaitForAll)
 {
 if (0==pDoc->cWait)
 break;
 }
 else
 {
 if (pObj->fRelease)
 break;
 }

 if (PeekMessage(&msg, NULL, NULL, NULL, PM_REMOVE))
 {
 if (NULL!=pDoc->pfnMsgProc)
 (*pDoc->pfnMsgProc)(&msg);
 }
 else
 {
 if (NULL==pDoc->pfnBackProc)
 WaitMessage();
 else
 {
 if (!(*pDoc->pfnBackProc)(&msg))
 WaitMessage();
 }

 fRet=TRUE;
 }
 }

 return fRet;
 }

64 Implement the Paste Commands
A Paste command is the simplest operation to create an OLE object, with three variations: Paste,

Paste Link, and Paste Special. Before calling any OLE functions mentioned below call
OpenClipboard to insure your application can access the clipboard. Immediately after pasting
any information, call CloseClipboard. If the create function you call returns
OLE_WAIT_FOR_RELEASE, process messages until that particular object is released. An
example of pasting is found in Patron's FEditPaste function (CLIP.C).

On the Paste command, first attempt to paste any application-specific data created in your
application. For example, if you are working in a word-processor and copy some text, you would
expect to paste that text, not an embedded object containing that text. If no application data exists,
call OleCreateFromClip("StdFileEditing" ...) to create an embedded object. If that fails, then
call OleCreateFromClip("Static" ...) to create a static object. If that call fails as well, attempt to
paste any other non-OLE information your client supports.

On the Paste Link command, attempt to create a linked object by calling
OleCreateLinkFromClip("StdFileEditing" ...). If that call fails then you simply cannot create a
linked object.

Microsoft Page 43

On the Paste Special command, first display a Paste Special dialog that allows the user to choose
which format to paste instead of pasting the default selection. Paste Special should only be provided
if the application supports formats other than OLE:1

To generate the text shown in this dialog box, first retrieve the ObjectLink format from the
clipboard (or OwnerLink if ObjectLink is unavailable). The first string in that data is the object

class name for which you need to retrieve the descriptive name from the registration database (using
the utility function you implemented earlier).

Form the string next to Source: by appending the second and third strings from the ObjectLink (or
OwnerLink) data to the object's descriptive name. The Data Type listbox displays the available
data formats that the client can paste. If (and only if) OwnerLink is available, then add a string
formed by appending "Object" to the object's descriptive name. For other available clipboard
formats that you can paste, add the appropriate string: "Picture" for CF_METAFILEPICT,
"Bitmap" for CF_BITMAP, etc. Select the listbox item for your application's preferred Paste format
as the default choice.

Whenever the "<classname> Object" string is selected, enable the Paste and/or Paste Link buttons if
OwnerLink and/or ObjectLink data are available, respectively. Do not enable Paste Link for any
other clipboard formats you support unless you perform DDE linking outside of OLE. When the
user selects either Paste or Paste Link, perform that command using the selected data format as if the
same command was chosen from the menu.

65 Implement the Insert Object Command
The Insert Object command is quite easy to implement and allows the user to create an object of a

specified class, which the user chooses from the Insert Object dialog:

This dialog only serves to let the user select a specific object to create. Fill the listbox with the
descriptive names of available classes in the registration database. Earlier in this document we

implemented a function to fill such a listbox with these names, as does WFillClassList in
REGISTER.C.

Once the user has selected a descriptive name, retrieve the class name for that description and call
either OleCreate or OleCreateInvisible. OleCreate starts the server application for with a new
object and allows the user to immediately edit that object. OleCreateInvisible eliminates the user
interaction by creating a blank object, with or without starting the server (which OLECLI
determines). OleCreateInvisible allows quick creation of an object and allows a client to
immediately work with it instead of waiting for the server.

1Patron does not implement this dialog since Patron pastes nothing but objects.

3

Page 44 Microsoft

OleCreateInvisible will not return OLE_WAIT_FOR_RELEASE, allowing the client to quickly
create and work with an object (possibly calling other OLE functions on it). OleCreate, however,
will usually return OLE_WAIT_FOR_RELEASE, in which case you must wait.

66 Example: FEditInsertObject (INSDROP.C), FOLEObjectInsert (OLEINS.C)
When Patron sees the Insert Object command it calls FEditInsertObject (INSDROP.C) which calls

FOLEObjectInsert (OLEINS.C). FOLEObjectInsert is a reusable function to display the Insert
Object dialog, allocate an OBJECT, call OleCreate on the selected class name, and wait for
release. On return from FOLEObjectInsert, Patron initializes the OBJECT by creating a
window in which it stores and displays objects.

67 Handle WM_DROPFILES
The most involved method to create a new object is to drop one or more files from File Manager on

to the client application's document window. To accept dropped files, be sure to call
DragAcceptFiles during application initialization as described earlier in this document. Note
that Windows 3.0 does not support Drag/Drop, so if you target that version you can ignore this
step completely.

When the user drops files on the document window, that window receives the WM_DROPFILES
message. Process this message with the steps below:

1. Call DragQueryFile passing -1 for the index. DragQueryFile then returns the number of
files dropped.

2. Enter a loop to process each file, starting a file index at 0 and counting up to the number of
files from step 1:

a. Call DragQueryFile with the current index to retrieve the path name.
b. Allocate your OBJECT in which to store the OLEOBJECT.
c. Call OleCreateFromFile using the class name "Package." This creates an
embedded object for the Packager application shipped with Windows 3.1.1

d. Wait for release if OleCreateFromFile returns OLE_WAIT_FOR_RELEASE.
e. Initialize your OBJECT. If desired, call DragQueryPoint to determine where
the file(s) was dropped and show the object there.

3. Call DragQueryFinish to complete the operation.

If your application is based on the Multiple Document Interface (MDI) you may want to check if
each file is one generated by your application and open it separately if so. How you wish to handle
such files is your decision.

An implementation of the steps above is found in Patron's FCreateFromDropFiles (INSDROP.C).
1If you are running under Windows 3.0, you cannot receive WM_DROPFILES and therefore need not worry that Packager is unavailable.

3

Microsoft Page 45

68 Copy and Cut Objects to the Clipboard
A simple but necessary responsibility of an OLE client is copying a selected object to the clipboard

(when the user chooses Edit Copy or Edit Cut) so that other clients may paste them:

1. Call OpenClipboard.
2. Call OleCopyToClipboard passing the pointer to the OLEOBJECT to copy.
3. Call CloseClipboard.
4. If you are cutting the object, call OleDelete for the OLEOBJECT (wait for release if

necessary) and free your object structure.

See the FEditCut and FEditCopy functions in Patron's CLIP.C for examples. Note that to delete an
object Patron uses a function called WindowDelete (PATRON.C) that also destroys the window in
which it stores the object.

69 Selections that Include Objects and Other Data
As discussed before in this document, saving an object to a stream many not always mean saving to
a storage device. If you have a selection that contains one or more objects or contains other data
such as spreadsheet cells or text, then the objects must not be copied with OleCopyToClipboard.
Instead, make the object part of the application-specific data structure (like Rich Text Format, RTF)
copied to the clipboard:

1. Determine the size of the allocation:
a. Include your application-specific formats.
b. For each object, store an application-specific header.
c. Call OleQuerySize to determine the amount of memory required for each
object. This size should be stored in the object's header.

2. Allocate memory for the clipboard data.

3. Allocate and initialize a special OLESTREAM and OLESTREAMVTBL:
a. The Get method is non-functional, but must exist in order for initialization to
succeed.
b. The Put method should receive a pointer at which to store the object's data.
This requires a suitable global varaible or a special OLESTREAM structure
containing the pointer.

4. Build the application-specific data structure. For each object, place a pointer in this memory
where the Put method can see it and call OleSaveToStream. The special Put method simply
copies data from OLECLI into this memory.

With this procedure, the objects become part of a larger selection, which may itself be an OLE
object as the client may also act as a server.

Page 46 Microsoft

70 Convert Objects to Static
For various reasons, a user may wish to cancel any OLE interaction for a particular object,

converting it to a "static" object. OLECLI still maintains this object, but any OLE call made
with this object will fail with the OLE_ERROR_OBJECT code. To convert an object:

1. If you provide an Undo feature, call OleClone to save a copy of the object prior to this
change. Be sure to call OleDelete for this cloned object when you delete or replace the
contents of your Undo buffer. With this clone, retrieve the object's name with
OleQueryName and save it with the clone.

2. Call OleObjectConvert, passing "static" as the second parameter specifying the protocol.
OleObjectConvert creates a new object

3. Call OleDelete on the original object and wait if necessary.
4. Assuming you still have the original object name, call OleRename on the new static object

to change its name to that of the original.
5. Reinitialize any other object information, such as the type (which will now be OT_STATIC).

Patron handles this procedure in FEditConvertToStatic (CLIP.C).

71 Close, Release, and Delete Objects
The three OLE functions OleClose, OleRelease, and OleDelete are similar but perform different

operations.

OleClose breaks the connection between any open object and the server in which that object is open.
Future changes and updates to the object in the server will have no effect. If the object is linked, the
client may later call OleReconnect to try re-establishing this connection. However, reconnection
only works when the server containing that linked object is currently running. The client must
otherwise reactivate the object to restart the server.

When closing a document, or when a client application no longer wishes to display or manipulate an
object, call OleRelease to instruct OLECLI to free any memory allocated for that object. For
example, a client may only load objects from a file that are currently displayed. When an object
scrolls out of view, the client might release it; the client then loads new objects scrolling into view
as necessary. OleRelease allows the application to selectively create and free objects that are still
part of a client document, although the user may not manipulate those objects. The key point here is
that the object's data still exists in storage somewhere, such as in the client's document file.

To permanently destroy an object, which implies deleting it from any storage device, call OleDelete,
the last word for an object. All memory associated with that object is freed from OLECLI, and that
object is assumed to no longer exist in any storage. The physical difference between OleDelete and
OleRelease in OLE 1.0 is small–they both free memory–but the meaning of OleDelete is much
stronger. In the future, when link tracking is part of the file system, the difference will be more
pronounced; OleDelete might actually delete file records as well as memory allocations, whereas
OleRelease would only free the memory.

Microsoft Page 47

72 Display and Print Objects; Resizing
Simply creating an object gives little feedback to the user until you display the object's image. To

display or print the object on any device context, call OleDraw. However, be aware of a few
issues when calling this function.

The rectangle in the lprcBounds parameter to OleDraw is relative to the device context regardless of
what type of device context, screen or printer. If you paint the client area of a window that is
dedicated to display an object, then that rectangle is the client rectangle of that window. If the
device context is a metafile DC, then you must pass this same rectangle in the lprcWBounds
parameter.

The hdcFormat parameter to OleDraw can be NULL when drawing to the screen. When printing,
this device context should completely represent the target device. hDCFormat may contain a
different mapping mode than the hDC on which the object is to be drawing, in which case OLECLI
(or an object handler) may scale the image.

Whenever the client changes the target device, such as before printing, fill an
OLETARGETDEVICE structure (in OLE.H) and call OleSetTargetDevice. Whenever the target
device is the screen, pass NULL as the pointer to the OLETARGETDEVICE structure.
OLESVR.DLL notifies the server application for an object and that server can then render an image
of the object optimized for that target device, if it wants to implement that capability.

If OLECLI draws an object from a metafile, it will periodically send the OLE_QUERY_PAINT
notification to your CallBack function, allowing you to terminate the painting or perform some other
small operation. Note, however, that you cannot perform any other action on the affected object
from within CallBack.

Note that you must also paint a special hatch pattern across an embedded object if the object is open.
We'll cover that in the Add the Object Verb Menu and Execute Verbs section below, as we need
to know when we activate the object before we paint a hatch pattern. That section also gives an
example from Patron showing how to draw the pattern.

73 Handle Object Resizing
Whenever an object's size changes, on the client side or through OLECLI, the client application

must keep the object's rectangle in sync between itself and OLECLI. Whenever CallBack
receives the OLE_CHANGED or OLE_SAVED notifications, call OleQueryBounds to
retrieve the new size of the object, resize your object to match, and repaint that object. If you
use a mapping mode other than MM_HIMETRIC (in which the rectangle is given) be sure to
convert the rectangle.

Page 48 Microsoft

Whenever the object changes size in the client, call OleSetBounds. The rectangle to OleSetBounds
must not only be in MM_HIMETRIC but must also be coordinates on the target device. This means
the rectangle must be the coordinates of the object on the screen, not on the client area of the
application.

To synchronize OLECLI with an object's rectangle, Patron calls the two functions FObjectRectSet
and FObjectRectGet (OLEOBJ.C). FObjectRectSet calls OleSetBounds after converting the
rectangle (which it expects to be in screen coordinates) into MM_HIMETRIC from another mapping
mode. FObjectRectGet calls OleQueryBounds and converts that rectangle into another mapping
mode from MM_HIMETRIC.

If you have added a simple call to OleDraw, then once you create an object
you can immediately see its graphical representation within your object's

boundaries. You can also resize that object to insure that the image is
scaled appropriately.

74 Add the Object Verb Menu and Execute Verbs
Now that you have created and displayed objects, you can really begin to see OLE work by

activating those objects with OleActivate. Activating really means to execute a verb that a
particular object supports. In many cases the object will support a verb like "Edit," which
means open the server application and allow the user to edit the object. Some objects have
multiple verbs, such as the Windows 3.1 Sound Recorder that supports the verbs "Play" and
"Edit." In addition, the Windows 3.1 Packager application supports the two verbs "Activate
Contents" and "Edit Package." The object's server application defines these verbs and stores
them in the registration database.

An OLE client provides a quick method to execute an object's primary verb: double-clicking the
object or selecting it and pressing Enter1. For the Sound Recorder, the primary verb is "Play," so
when a user activates the object it will play back the recorded sound. To allow the user to execute
other verbs, an OLE client creates a special menu item listing all verbs. Only through this menu can
a user execute verbs such as "Edit" for the Sound Recorder.

1The user interface guide for OLE specifies that Enter activates the primary verbs for the object when that object is selected. However, some
applications like word processors may want to replace the object with a carriage return and line feed since Enter replaces any other selection in the
document. In this case the Enter key does not activate the object, and mouseless users must activate the object through the verb menu.

3

Microsoft Page 49

75 Executing Verbs and Handling Notifications
To execute any verb, first check if the object is busy by calling OleQueryReleaseStatus. If the

return value is OLE_BUSY, then either abort the operation (notifying the user) or wait for the
object to be released. Otherwise, simply call OleActivate and wait for release if necessary.
The second parameter to OleActivate is the zero-based index to the verb to execute where the
primary verb is defined as zero. This index is passed directly to the server application
requesting it to execute that verb.

After calling OleActivate and waiting for release on an embedded object, set a flag, such as the
fOpen in OBJECT, to indicate that OleActivate succeeded and that the object is open. Immediately
repaint the object to show a hatch pattern:

As an object is modified in the server application, your CallBack method will receive notifications.
First, if the server saved a link file (for linked objects) or updates an embedded object, you will

receive the OLE_SAVED notification. In that case, retrieve the new rectangle for the object with
OleQueryBounds and repaint with OleDraw. If the open flag is still set, continue to paint the

hatch pattern since the server is still open. When a server editing an embedded object closes, you
will receive OLE_CLOSED, at which time you reset your open flag and repaint the object to

remove the hatch pattern. Also update embedded objects on OLE_CHANGED.

When a server modifies an automatic1 linked object, you will receive OLE_CHANGED in which
case update the object's rectangle and repaint. A linked object will also receive OLE_SAVED when
the server saves a linked file in which case update the rectangle and repaint as well. If the server
saves the linked file under a new name, CallBack will receive OLE_RENAMED; in response, post a
message on which you update any cached object data pertaining to the linked filename–the new
filename already exists in OLECLI, so simply call OleGetData to retrieve the object's ObjectLink
data and save the new filename. Note that a linked object will NOT receive OLE_CLOSED when
the server closes.

76 Examples: FObjectPaint in OLEOBJ.C
When Patron needs to paint an object (that is, when a BlackBox window receives WM_PAINT), it
calls FObjectPaint in OLEOBJ.C. This function calls OleDraw for any object, and paints a hatch
pattern across any open embedded object:

BOOL FAR PASCAL FObjectPaint(HDC hDC, LPRECT pRect, LPOBJECT pObj)
 {
 OLESTATUS os;
 HBRUSH hBr, hBrT;

 //Draw the object
 OleDraw(pObj->pObj, hDC, pRect, NULL, NULL);

1The later section Update Links and the Create the Links Dialog defines 'automatic' with other update options. Automatic links are the only ones
that receive OLE_CHANGED when modified in the server application.3

Page 50 Microsoft

 //If this object is open, patch a hatch over the image.
 if (OLE_OK==os && OT_EMBEDDED==pObj->dwType && TRUE==pObj->fOpen)
 {
 hBr=CreateHatchBrush(HS_BDIAGONAL, GetSysColor(COLOR_HIGHLIGHT));
 hBrT=SelectObject(hDC, hBr);

 /*
 * The 0x00A000C9L ROP code does an AND between the pattern and
 * the destination; there is no standard definition for this
 * ROP code, but it's exactly what we want to draw COLOR_HIGHLIGHT
 * lines across the object when it's open.
 */
 PatBlt(hDC, pRect->left, pRect->top,
 pRect->right-pRect->left, pRect->bottom-pRect->top, 0xA000C9L);

 SelectObject(hDC, hBrT);
 DeleteObject(hBr);
 }

 return (OLE_OK==os);
 }

77 Creating the Object Verb Menu
To provide access to all verbs, modify your Edit menu to reflect the available verbs for the currently

selected object whenever your main window receives WM_INITMENU[POPUP]. In your
resource file, define a single "Object" menu item, initially grayed. In your include file, define
a constant (if possible) for that item's position in the Edit menu. This menu item may become
a popup menu in itself so you will be required to reference it by position and not command.

The Object item in the Edit menu takes one of three forms:

· If no object is selected (or exists) the item appears as "Object" and is disabled and grayed.

· If an object supporting one verb is selected, the item appears as "<verb> <name> &Object"
where <verb> is the primary verb, <name> is the descriptive name for the object class, and
the "&" in "&Object" creates an underline on the "O."

· If an object supporting multiple verbs is selected, the item appears as "<name> &Object" as
for items with one verb, but this menu item also has a submenu that lists each verb, one per
line.

To handle these modifications, first define an ID value for verb commands on the menu. For
example, Patron reserves the numbers 250 through 299 for verbs, where verb 0 is 250, verb 1 is 251,
etc. When the main window procedure receives a WM_COMMAND message with an ID value in
this range, subtract the low value of the range from the ID and you have a verb index to immediately
pass to OleActivate. Note that you cannot depend on any verb, such as Edit, always using the same
index.

Microsoft Page 51

One you have defined menu identifiers, create a function that you can call from the
WM_INITMENU[POPUP] message case to create the menu items described above::

1. Delete the existing menu item in the position to modify with DeleteMenu.

2. If no object is selected or exists, call InsertMenu to add a disabled and grayed "Object" item
and exit.

3. If an object does exist, retrieve its class name by calling OleGetData. If the object is
embedded, request the OwnerLink format; if the object is linked, request ObjectLink. With
the class name, retrieve the descriptive name from the registration database.

4. Enumerate verbs for the object class, using the enumeration function you implemented
earlier (like CVerbEnum in REGISTER.C). If you find no verbs, use "Edit" as a default in
5.

5. If there is one verb, create a string in the format "<verb> <descriptive name> &Object",
insert it as the menu item in the position to modify with the ID value for verb 0. Exit the
function.

6. If there are multiple verbs, call CreatePopupMenu to create the menu to hold the verb list.

7. Create a string in the format "<descriptive name> &Object" and insert it as the menu item in
the position to modify. Be sure to pass the menu created in 6 as the idNewItem parameter.

8. For each verb, append a menu item to the menu from 6 using the string for the verb as the
menu text and sequential ID values corresponding to verb 0, verb 1, and so on..

Patron implements this exact procedure in the MenuOLEVerbAppend function in OLEMENU.C.
MenuOLEVerbAppend is reusable within your code provided you are using Patron's object
management scheme or have modified the object manager (and this function) to suit your needs.

After completing the steps to execute verbs and add the Object Verb menu,
you can run your client application and really see OLE in action. First,
verify that your menu appears correct for various objects with no verbs,

one verb, and multiple verbs. If you cannot locate a server with a specific
number of verbs, start the Windows 3.1 Registration Database Editor

(REGEDIT.EXE) with -v on the command line and modify some existing
server's verb list. The -v parameter enabled RegEdit to modify the

registration database instead of just viewing it.

Page 52 Microsoft

The Sound Recorder and Packager are good applications to test with multiple verbs. If you handle
the WM_DROPFILES message, then create a Packager object by dropping a file from File Manager
into your document. Double-clicking the object should start the application associated with that file.
Selecting the "Edit Contents" verb from your verb popup menu starts Packager and allows you to
change the package itself.

78 File Menu Commands: Close, New, Open, and Save [As]
Saving and loading files is only moderately affected by OLE. In short, you only have to manage

documents with OleRegisterClientDoc and OleRevokeClientDoc and call OleSaveToStream
and OleLoadFromStream to save and load objects. This section lists the steps necessary to
correctly manage OLE document and objects in files.

First, examine what operations in your application make the document 'dirty' in which case you
would prompt the user to save changes before carrying out some operation like File New. Almost
all OLE operations should set this flag: creating, destroying, updating, or resizing objects; whenever
CallBack receives OLE_CHANGED, OLE_SAVED, or OLE_RENAMED; and canceling or
changing links (see the next section). Note that loading objects from a file or releasing them does
not affect the dirty flag since the file itself does not need to change.

Before modifying your file procedures to handle OLE, decide how you will store objects and how
you will reference them in your application's files. Your application only needs a simple structure to
reference an object, for example:

typedef struct
 {
 RECT rc; //Rectangle of object
 WORD wID; //ID value of object
 char szName[40]; //Persistent name of object.
 DWORD cbObject; //Size of OLE object--just for demonstration
 } FILEOBJECT;

This is an example where the FILEOBJECT structure is stored before object data in a document file.
If the objects were stored in a SQL database, for example, this structure might contain a server
name, database name, and object identifier instead of just a character string name. Whatever you do
use to identify the object, that identifier must be unique within the object storage. If you store
objects in a file, then the name must be unique within the file; if you store in a database, the name
must be unique within the entire database. In short, the header structure you create for your objects
must enable your application to completely relocate the object when loading a document.

79 Closing a File: Prompt the User to Save Changes
Closing a file means to release each object contained in the document. The procedure below

describes how to close a single document, which was already mentioned in section 4.5, Handle
Simple Shutdown:

Microsoft Page 53

1. Set your 'release' counter to zero if you wait for all objects together.
2. Enumerate all objects in the document.
3. For each object, call OleRelease and if it returns OLE_WAIT_FOR_RELEASE, either wait

for release or increment your release counter.
4. When all objects have been enumerated, wait for release on all objects if necessary.
5. Call OleRevokeClientDoc using the handle returned from the OleRegisterClientDoc call

for this document.

Patron's FFileClose (FILE.C) uses the FObjectsEnumerate function (OLEOBJ.C) to handle the
enumeration, and the enumeration callback (FEnumClose, FILE.C) calls OleRelease and increments
the release counter as necessary. Patron uses FFileClose from other its other file management
functions FFileNew, FFileOpen, and FFileExit. The latter function prompts the user to save
changes, closes the file, and calls PostQuitMessage to close the application.

Note that there is no step in this procedure to prompt the user to save changes in a dirty file. The
File new and File Open cases below perform this step since a case like must save the document
before retrieving a new filename to open, and if that open fails you want to keep the same document
in memory. Closing a file and saving changes is not necessarily the same operation.

In any case, applications normally prompt the user to save changes to which the user may reply Yes,
No, or Cancel. In the Yes case, save the file, which should call OleSavedClientDoc. In the No case,
call OleRevertClientDoc to inform OLECLI that the document has not changed since the last save,
regardless of what operations we've done in the meantime. You can see this call in Patron's
FCleanVerify (FILE.C). Cancel, of course, stops the file operation.

80 File New
1. MDI clients skip to 4.

2. For non-MDI clients, check the dirty flag and prompt the user to save changes if necessary.
3. For non-MDI clients, close the existing file.
4. Create the new document and call OleRegisterClientDoc with the new name. If that new

document is untitled, use '(Untitled)' as the name.

Patron handles File New in its FFileNew (FILE.C) function that performs steps 1 and 2 before
calling FFileOpen (FILE.C) for step 3.

81 File Open
1. MDI clients skip to 2. Non-MDI clients check the dirty flag and prompt the user to save

changes if necessary.
2. Prompt the user for the new filename. Terminate the File Open operation if the user presses

Cancel here. If desired, verify that file's existence before proceeding.
3. MDI clients skip to 4. Non-MDI clients close the existing file.
4. Call OleRegisterClientDoc with the new filename. If this fails then the operation must fail.

Page 54 Microsoft

5. Open and read the file. Whenever you encounter a structure that references an OLE object
you wish to load, create a new object:

a. Allocate your application's OBJECT structure.
b. Call OleLoadFromStream to create the OLEOBJECT. This OLE function
will call your StreamGet method to physically load that object into memory.
c. Initialize the object.
d. If the object is linked and the object is open (that is, there's a server
application open with that linked file loaded), update the object. See the next section
Updating Links and the Links Dialog for more information on updating links.

6. If loading the file fails, either close the document or leave it as a new document and rename
it to "(Untitled)" with the OleRenameClientDoc function.

Patron handles steps 1-4 and step 6 in FFileOpen (FILE.C). It loads files (step 5) in FPtnFileRead
(FILEIO.C).

82 File Save [As]
1. If the user chose Save As, or if the application has no filename to use with Save, prompt the

user for the filename.
2. Write the file. Whenever you need to save an OLE object:

a. Retrieve the object's unique identifier and name to save.
b. Write an object header (like FILEOBJECT) to your application's document
file that will identify the object when the file is reopened.
c. Call OleSaveToStream which calls your StreamPut method.

3. If the command was Save As call OleRenamedClientDoc to inform OLECLI of the new
name.

4. If the command was Save for an already existing filename, call OleSavedClientDoc to
inform OLECLI of the condition of the document. If the command was Save but the user
had to provide a filename, call OleRenameClientDoc to give the new name to OLECLI.

Patron handles steps 1, 3, and 4 in FFileSave/FFileSaveAs (FILE.C). FPtnFileWrite (FILEIO.C)
handles step 2.

With document and file management function implemented, you can now
save files containing linked and embedded objects then load them back.

The single missing feature is updating links on loading a file and changing
attributes of linked objects, which is the topic of the next section.

Microsoft Page 55

83 Update Links and Create the Links Dialog
Handling linked objects is a major portion of the code involved in making an application an OLE

client. If you have little time in which to implement OLE support, you can elect to support
only embedded objects by not offering a Paste Link or Paste Special menu command. You can
also make maximal use of the code in Patron to support links and the links dialog which should
save you considerable time.

Besides creating linked objects and saving them to files, an OLE client must be able to update those
links when a file is loaded and be able to edit those links (as opposed to editing the contents of a
linked object). While editing links, the user may update links, cancel links, or change links from
one file to another (of the same class). The first part of this section deals with updating links after
loading a document. The second part deals with the Links dialog, the most complex user interface
requirement of an OLE client. But first, some definitions of the types of links an object may have.

The type of link is called an update option and is a value in the OLEOPT_UPDATE type defined in
OLE.H, either oleupdate_always or oleupdate_oncall. Clients manipulate the update option
through the OLE functions OleGetLinkUpdateOptions and OleSetLinkUpdateOptions. This
document refers to these types of links as Automatic and Manual. A third type, Unavailable, has no
representation in the OLEOPT_UPDATE type, but is used in the user interface of the Links dialog:

Name Definition
Automatic Also called a 'hot link' meaning that changes made to the linked object

in a server immediately updates the object in the client. In addition, if
the server for this object is open when the client loads the object from
a file, the client knows to update that object immediately.

Manual The object can only be updated through direct user command, either
after loaded from a file or from the Links dialog.

Unavailable The file to which this object is linked cannot be found when the object
is loaded.

In the Links dialog a link may be canceled, converting the linked object to static.
When this occurs, the word "Static" appears in the dialog where the
other three types above normally appear.

Update Links After Loading a Document
There are two parts to updating links after loading a document:

1. Update any automatic links for which a server application containing that object is open:
a. For each linked object in the document, check if its update option is
oleupdate_always. If not, skip this object and count it for possible update in part 2

Page 56 Microsoft

below.
b. Call OleQueryOpen to determine if the object is currently open in a server.
If not, skip this object and count it for possible update in part 2 below.
c. Call OleUpdate to update the linked object and wait for release if necessary.
If there is an error, count this object for possible update in part 2. Otherwise, mark
this object as updated so we can skip it in part 2.

2. If the document contains any manual links or any automatic links that
were not updated in part 1:

a. Display a message box asking if the user wants to update links contained in
this document:

b. If the user chooses No, then exit.

c. If the user chooses Yes, then enumerate all linked objects:
1. If the object was marked as updated, clear the mark and skip the
object.
2. Call OleUpdate for the object and wait for release if necessary. You
must wait for release now to determine if OleUpdate works.
3. If an error occurs from OleUpdate, mark the object's link as
unavailable. This will affect the display in the Links dialog if the user
chooses to use it.

d. If there were any unavailable links, display the dialog box below allowing the
user to invoke the Links... dialog. If the user presses Links... in this dialog, close this
dialog and invoke the Links dialog described in the next section.

84 Create a Links Dialog
The Links dialog allows users to update, cancel, and change links:

When creating this dialog, use the LBS_EXTENDEDSEL and LBS_USETABSTOPS styles for the
listbox. You may also want to include LBS_SORT, but sorting is not required.

Microsoft Page 57

The Links dialog the most complex user interface requirement of an OLE client, from displaying the
strings in the listbox to handling the commands. This section describes eight different non-trivial
steps to implement this dialog:

Implement Utility Functions Implement three functions to make the Links
dialog easier: one to build a listbox string, one to
replace the listbox string, and one to enumerate
all selected or non-selected items in the list.

Enable Buttons According to List Selections Create a function to enable and disable five
button controls in the dialog by analyzing the
listbox selections.

Initialize List Tabstops and Items Set the appropriate tab stops in the list, enumerate
all linked objects, and build a string for each
object to add to the listbox.

Prepare for Undo on Cancel Use OleClone to make copies of all linked
objects before changing them in the Links dialog.
When Cancel is pressed, use these clones to revert
any modified object to its previous state.

Change Update Options Change update options when the Automatic and
Manual radiobuttons are pressed.

Update Links Update any selected links and locate any links that
belong to the same source file. If any are found,
let the user choose whether or not to update those
links as well.

Cancel Links Change any selected linked objects to static
objects.

Change Links Retrieve a new link filename from the user and
change any selected links to that new file. If any
other unselected links to the old file exist, ask if
the user wants to change those as well. This step
is much like updating links.

85 Implement Utility Functions
This section describes three functions that isolate frequently used code in the Links dialog.

1. Create a listbox string given an object. Each string in the listbox has the format:

<descriptive name>\t<linked document>\t<object identifier>\t<update option>

Page 58 Microsoft

where <descriptive name> is the readable English version of the classname, <linked
document> and <object identifier> are the second and third strings in the object's
ObjectLink data, and <update option> is "Automatic," "Manual," "Unavailable," or "Static."1

Note that \t represents a tab in the string.

To build the string, first retrieve the object's ObjectLink data either from cached information
or by calling OleGetData. Next, retrieve the descriptive name from the registration
database for the class. Building the string is then just a matter of concatenating each string
followed by a tab character into a single string. However, you'll notice in the dialog figure
that each string is limited to the width of its column. This is critically important to insure
that all columns line up correctly.

Therefore, limit each string to the number of characters that will fit into a tab width, one
quarter of the listbox width, specified in some number of pixels (or dialog units). This
requires repeated calls to GetTextExtent–using the hDC of the listbox to account for the
font–until you find the number of characters for which the horizontal extent of the string is
less than the tab width. Before adding the string to the listbox string, truncate it at this
number of characters.

For an example, see Patron's CchLinkStringCreate in OLELINK2.C. It uses a function
CchLimitText that inserts a null-terminator into a string to truncate it to fit into a tab width.

2. Replace a listbox string. Whenever you change a link or a link option, you need to update
the listbox to show the change. For each link you modify you will recreate the listbox string
(using the function above) and replace the existing string in the list, preserving the item's
data and selection state. The message sequence below to accomplish this, assuming you
have the item's index:

a. Send LB_GETITEMDATA and store the result in a temporary variable.

b. Send LB_GETSEL and store the result in another temporary variable.
c. Send LB_DELETESTRING to remove the item from the list.
d. Send LB_INSERTSTRING to insert the updated item in the list at the same
point.
e. Send LB_SETITEMDATA using the result from step 1.
f. If the result from step b is non-zero, send LB_SETSEL with TRUE in
wParam and the index in the low-word of lParam.

See the Patron's ListStringChange in OLELINK2.C for an example.

1Since the OleGetLinkUpdateOption will only return oleupdate_always or oleupdate_oncall (for automatic and manual links), you must define other
codes to use in your object structure for unavailable and static links, such as the numbers -1 and -2.3

3. Enumerate selected or non-selected listbox items. The operations you carry out in the
Links dialog affect either all selected links in the listbox or all unselected links. An
enumeration function finds selected, unselected, or all items in the listbox depending on a
WORD that describes what type to look for. This function passes each enumerated list item
to a callback function that carries out a specific action on each single object. Some
operations in the callback may return OLE_WAIT_FOR_RELEASE for which the callback
increments a release counter. Therefore the enumeration function also waits for all objects to
be released after the enumeration is complete, if necessary:

a. Set the release counter to zero.
b. Send the LB_GETCOUNT message to the listbox to retrieve the number of
items in the list.
c. Loop through the items (a for loop from 0 to the number of items works
well):

1. Get the selection state for this item.
2. If the selection state does not match the desired selection state, skip
this item and continue the loop.
3. Retrieve your application's OBJECT structure for this item.1

4. If the item is static, skip it and continue the loop.
5. Call the enumeration function, passing the listbox handle, the item
index and at least a pointer to the object.2

6. If the enumeration function returns FALSE, end the enumeration,
otherwise continue the loop.

d. If the release counter is non-zero, wait for release until your CallBack
decrements it to zero. Always check the counter in case an enumeration function did
not already wait for an object.

This enumeration function will be essential to simplify implementation of the other Links
dialog functions. An example is found in Patron's FLinksEnumerate in OLELINK1.C.
The application-defined data passed to the enumeration function is very useful as it can
contain a variable that only has meaning to a particular type of enumeration as we shall soon
see.

86 Enable Buttons According to List Selections
Five buttons in the Links dialog must either be enabled or disabled depending on the combination of

the listbox selections:

Button Enable When...
Automatic Any items besides canceled links are selected.
Manual Any items besides canceled links are selected.
Update Now Any automatic or manual links and no unavailable links are selected and

1As described in the next section on initializing the list, the listbox item data is a great place to store a pointer to the OBJECT structure with the
LB_SETITEMDATA message.
2Patron's implementation allows extra data to be passed into the enumeration callback which enables passing of information like a link filename or a
new update option.

3

Page 60 Microsoft

Cancel Link Any automatic or manual links are selected. Do not count unavailable or
static links.
Change Link All the selections are linked to the same file.

In addition, if all the selected links are automatic, then check the "Automatic" button using
CheckDlgButton; if all the selected links are manual, then check the "Manual" button. If
the selections contain different update options, then uncheck both buttons.

To determine what items are selected, loop through all the listbox items, and for any selected item,
increment a counter for its particular update option–automatic, manual, static, and unavailable. In
addition, when you find the first selected link, save its link filename. For any subsequent selected
link, compare the first item's filename to the current item's filename. If they do not match, then set a
flag indicating the link files are different between the selections. Use this flag to enable or disable
the Change Link button.

Patron's EnableLinkButtons function in OLELINK2.C retrieves the object for each item in the list
and compares filenames stored in the aLink ATOM. When it encounters the first selection, that
object's atom is kept in a variable to compare to all other selected links. Comparing ATOMs is
much quicker and convenient that extracting and comparing strings. If any mismatch was found in
comparing link files, then the Change Link buttin is disabled.

87 Initialize List Tabstops and Items
In the WM_INITDIALOG message case for your dialog, initialize tabstops in the listbox, fill the

listbox with link items, and select the first item with the LB_SETSEL message. Finally, call
your function to enable and disable buttons that you implemented in the previous section.

Using the LB_SETTABSTOPS message, set tabstops in the listbox at every quarter of the listbox
width. Note that to use tabstops the listbox must be created with the LBS_USETABSTOPS style.
In addition, the LB_SETTABSTOPS message requires you to provide tab positions in dialog units,
not device units. Therefore, get the pixel width of the entire listbox (from GetClientRect), multiply
the width of the entire listbox by four, and divide by the low-word of the value from
GetDialogBaseUnits:

GetClientRect(hList, &rc);

//Convert pixel width to dialog width for LB_SETTABSTOPS
dwBase=GetDialogBaseUnits();
cx=((rc.right-rc.left) * 4)/LOWORD(dwBase);

This value (in cx above) is the width of the listbox in dialog units. To send the
LB_SETTABSTOPS message, fill an array of three WORDs with one-fourth the width (the first
tab), one half the width (the second tab), and three-fourths the width (the third tab stop). Pass a
pointer to this array as the lParam of the message.

Microsoft Page 61

To fill the listbox with strings, enumerate all the objects (not links) in your application. For each
linked object, create a string for it (using the utility function you created), add the string to the list
with the LB_ADDSTRING message, and send the LB_SETITEMDATA message to save your
OBJECT structure pointer for this object with the listbox item. By storing this pointer you will save
yourself from ever having to find the object associated with a listbox string. Whenever you
reference a listbox item, simply send the LB_GETITEMDATA message to retrieve the object
pointer.

To select the first string in the list, call SendMessage(hList, LB_SETSEL, 1, 0). Then finish your
initialization by correctly enabling or disabling the other dialog box buttons using the function
created in the previous section.

For an example, see the WM_INITDIALOG case in Patron's LinksProc (OLELINK1.C) and
FEnumLinksInit (OLELINK1.C).

88 Prepare for Undo on Cancel
The Links dialog has both OK and Cancel buttons; OK means accept changes but Cancel means

discard them. To undo changes when Cancel is pressed, you must make clones of each linked
object using OleClone:

1. During WM_INITDIALOG, enumerate all linked objects. For each object:
a. Call OleClone for each object. This requires a new unique object name.
b. Store the LPOLEOBJECT value from step a in a list. This list must persist
until the Links dialog is closed.
c. Call OleQueryOpen to determine if the object was open or not. Store this
condition in a flag associated with the cloned object.

2. When any object in the Links dialog is modified, mark that object as changed.

3. If the user presses Cancel in the Links dialog:
a. Prompt the user to confirm discarding changes. There is no standard message
for this prompt, but if the user chooses No, then stop this operation now.
b. Enumerate all linked objects in the listbox.
c. If the object was not modified, skip it. Otherwise continue.
d. Retrieve the original object's name and call OleDelete for that object, waiting
for release as necessary.
e. Call OleRename to rename the cloned object from the name used in step 1a
above to the name from step c in this procedure.
f. Install the clone OLEOBJECT and reinitialize any cached information.
g. If the original object was open, call OleReconnect to attempt to reestablish
the connection.
h. Resize the object to its original size and repaint.

Page 62 Microsoft

4. If the user presses OK in the Links dialog:
a. Enumerate all linked objects in the listbox.
b. Call OleDelete on the clone OLEOBJECT pointer associated with the object,
waiting for release as necessary.

Patron makes clones of each object when initializing the Links dialog listbox (see FEnumLinksInit
in OLELINK1.C). It stores the clone object and the open state of the object in the OBJECT
structure for the link. In addition, a 'dirty' flag is kept in each object and set to TRUE whenever the
Links dialog changes it. This information is then easily found when either OK or Cancel is pressed.
Both cases use FLinksEnumerate, with FEnumLinksUndo performing step 3 above and
FEnumLinksAccept performing step 4.

89 Change Update Options
When the user selects either Automatic or Manual, use your function to enumerate selected links and

change each link's update options to oleupdate_always (for automatic) or oleupdate_oncall
(for manual):

1. Set the release counter to zero, if waiting for all objects together.
2. Enumerate selected listbox items.
3. If the new update option already matches the object's update option, skip this item.
4. If the new option differs, then store that new option in your OBJECT structure and call

OleSetLinkUpdateOptions for this object.
5. If OleSetLinkUpdateOptions returns OLE_WAIT_FOR_RELEASE, increment the release

counter or wait for release immediately, as desired.
6. If there are no errors, change the string in the listbox for this item to reflect the new option.

Note that if your listbox string builder calls any OLE functions, then you must immediately wait for
release after OleSetLinkUpdateOptions. Since Patron caches all the object's link information, it uses
no OLE functions in the listbox string builder. See FEnumOptionChange (OLELINK1.C) for an
example of this procedure.

90 Update Links
Updating links by themselves is quite straightforward–just call OleUpdate for each selected link.

However you must detect when the update fails and change that link to unavailable if so. In
addition, once you have updated selected links, search the unselected items to find any
references to the same files in the selected items. For each file that is referenced by both
selected and unselected items, display the message box below and update unselected items as
necessary (SOURCE.XLS is generic for the source (server) document and CLIENT.DOC is
generic for the client application's document):

Microsoft Page 63

Updating links follows the following process:

1. Enumerate selected links.

2. Call OleUpdate for the object associated with each enumerated item and wait for release if
necessary. Check for errors using OleQueryReleaseError.

3. If there is an error, mark the link as unavailable and change its string in the listbox. If there
is no error and the link was previously unavailable, change it to "Automatic" and update its
string.

4. Check for a flag set in step 5d below. If this is set, continue the enumeration with the next
link. The first enumerated link will not have this flag set.

5. Otherwise, from within this first enumeration:
a. Enumerate unselected links and find any item that is linked to the same file as
the link updated in 2 above.
b. If no matches are found, then continue the first enumeration in 1.
c. If the link files match, display the message box above.
d. Enumerate all selected links that match the link file in 2. For any that match,
set a flag in the object that we used in 4 above. This flag prevents us from asking the
user to update matching unselected links again when we encounter another selected
link for this file.
e. If the user responded Yes to the message box, repeat steps 1-3 for all
unselected items.

6. Enumerate all selected links and reset the flag set in step 5d above.

Patron implements this updating procedure through FLinksEnumerate and the callback
FEnumLinkUpdate (OLELINK1.C) that performs a variety of different actions depending on the
part of the process that we're in. In fact, FEnumLinkUpdate itself calls FLinksEnumerate using
FEnumLinkUpdate again to perform the nested enumeration. A flag determines what action to
perform in this callback.

91 Cancel Links
Canceling a link really means to create a new object that converts the original object into a 'static'

copy of the original data that can no longer be edited through OLE means. The process is
straightforward:

1. Enumerate selected links.
2. For each selected link, retrieve the object for that item and it's object name.
3. Call OleObjectConvert where the first parameter is the object and the second parameter is

"Static."

Page 64 Microsoft

4. If OleObjectConvert succeeds (and it does NOT return OLE_WAIT_FOR_RELEASE), call
OleDelete for the original object and wait for release if necessary.

5. Replace the existing OLEOBJECT in your object structure with the new static object. If you
cache such information, store the object type as it as OT_STATIC and the link update option
as "static" (that is, whatever value you define for static).

6. Update the listbox string, changing the update option string (like "Automatic") to "Static."

92 Change Links
Changing links is a similar process to updating them. The process is slightly simpler since the

Change Link button is disabled if the selected links reference different files. Therefore we do
not need to nest link enumerations:

1. Enumerate selected links, stopping the enumeration on the first item found.

2. Extract the link filename for this object. Using this filename, invoke the common File Open
dialog (using the title "Change Link"):

a. Extract the file extension from the link filename.
b. Find the class name associated with this extension in the registration database.
You should already have a utility function to perform this lookup.
c. Retrieve the descriptive name for the class name from the registration
database. Again, you should have a function for this.
d. Create a filter description string for the common dialog in the form
"<descriptive name> (<ext>)" to appear in the file types list of the common dialog.
e. Call GetOpenFileName using "Change Link" for the dialog title, passing the
file extension (without the period) as the default extension, the string from step d as
the filter, and the full path to the link file as the default path.

3. If the user cancels the Change Link dialog, then terminate this operation.

4. Enumerate all selected links:
a. Create new ObjectLink data for the item, retaining the class name and object
name but changing the document name to the new file.
b. Call OleSetData using the new ObjectLink data.
c. Call OleUpdate to update the link and wait if necessary. If an error occurs,
skip this item.
d. If no error occurred and the object was previously unavailable, mark it as
"Automatic" and update the listbox string for this item.

5. Enumerate unselected links:
a. If any unselected link matches the old link filename of the objects just
changed, display a message box asking the user to change unselected links to the
same file:

Microsoft Page 65

b. If the user responds No to this message, then the Change Link operation is
finished. Otherwise repeat 4 for unselected links.

You made it! Now that Links are fully implemented, you can test all
operations of your OLE client, including updating links on File Open and
modifying various link attributes in the Links dialog. Note that to have a

link marked unavailable, first create a linked object to an existing file,
save and close the document holding that object, delete the source file,

then attempt to reload the document and update all links. If OleUpdate
fails at this stage, you should see the dialog informing you of unavailable

links and allowing you to invoke the Links dialog which should have
those links marked Unavailable.

93 Additional OLE Client Functions
Once you can compile and test updating links and the Links dialog, you now have a completely

functional OLE client application! You may wish to expand the functionality of your client by
taking advantage of the additional functions that OLECLI.DLL offers. This section briefly
describes other OLE Client functions in OLECLI.DLL that have not yet been mentioned.
These fall several categories: Object Creation, Object Handling, Server Information, and a few
oddballs.

94 Object Creation
OleCopyFromLink Creates an embedded object from a linked object.

OleCreateFromTemplate Creates an embedded object using the contents of a file
as the original data for the object. This is different from
OleCreateFromFile in that the object's server is opened to
allow initial editing.

OleCreateLinkFromFileCreates a linked object using a given filename. This
function is similar to OleCreateFromFile that creates an
embedded object.

95 Object Handling
OleEnumFormats Enumerates the data types supported by an object, allowing

a client application to determine if it could retrieve a
particular format (such as CF_DIB) from the object.

Page 66 Microsoft

OleEqual Compares two objects returning OLE_OK if they are equal.

OleQueryOutOfDate Checks if an object is out of date and should be updated.
In the current OLE libraries, this function always returns
OLE_OK. When it does become implemented, it will
provide a much easier method to determine if an object
needs updating.

OleQueryProtocol Determines if the object supports a given protocol, either
"StdFileEditing" or "StdExecute." This function can be
used to determine if an object is static, as calling it with
"StdFileEditing" will return NULL.

OleRequestData Similar to OleGetData, but requires that the object is
already connected to the server. This simply provides a
faster means of retrieving data when the server is already
open.

96 Server-Related Functions
OleLockServer Instructs OLECLI to keep the server for an object in

memory. The client application can use this to optimize
operations for objects from the same server as OLECLI
does not load and close the server for each object.

OleUnlockServer Instructs OLECLI that the server for an object can be
unloaded. This function must be called for any server
locked with OleLockServer.

OleExecute Sends a DDE Execute string to an object's server. Before
sending any commands, you must insure that the server
supports the StdExecute protocol by calling
OleQueryProtocol for the object.

OleSetColorScheme Provides an object's server with colors used in the client
application. This function takes a LOGPALETTE
structure but is not related in any way to a device color
palette. This function is only useful to applications to
provide some set of color with which a user can draw text
and graphics.

97 Miscellaneous
OleIsDcMeta Determines if a given hDC is a metafile DC.

OleQueryClientVersion Returns the version number of OLECLI.DLL.

OleQueryReleaseMethod Returns the type of operation for which the object was
released. This is very useful when waiting for all objects to
be released at one time. When one object is released it can
call this function to know what it was just doing and act

Microsoft Page 67

accordingly, especially when combined with
OleQueryReleaseError.

Page 68 Microsoft

Appendix A: Definitions

Term Definition
Class Name A single word (or acronym)

that identifies an object
class. This is not expected
to be used in a user
interface.

Client (or Client Application) An
application that creates and
edits documents that
contain linked and/or
embedded objects from one
or more server applications.
Clients only store objects;
servers actually edit them.

CSV Comma Separated Value
string, where each item in
the string is delimited with
a comma.

Descriptive A readable class name used
in a

Name user interface to describe an
object.

Destination Synonym for Client.

Document A container for one or more
objects, generally the same
as a physical file.

Embed To create and store an
object completely within a
client document. An
embedded object contains a
presentation format (bitmap
or metafile), and
OwnerLink data structure

identifying the server, and
the Native data provided by
the server. Editing an
embedded object starts the
server and sends the Native
data back to that server.

File A physical file on a disk,
usually containing a
document.

Microsoft Page 69

Term Definition
Key Unit of storage in the

registration database.
There is one root key from
which subkeys are attached.
A key is physically a
character string where each
subkey is separated with a
backslash (\).

Link To create an object in a
client document whose
native data is stored in
another file maintained by
the server for that object.
The client document
contains only a presentation
format and an ObjectLink
data structure identifying
the linked file.

Method A callback function
contained in the server
application that the
OLESVR library calls to
perform specific actions
such as creating documents
or retrieving object data.

Native An internal data structure
manipulated by a server
application that contains
enough information to
completely reconstruct an
object. The server
application is the only
application that understands
this data.

Object A black box of information
with a presentation that
represents that data. A
server application
understands the internal
data of an object it created,

but a client application
treats it like a number of
bytes with a pretty picture
on the box.

Object Link Data structure that
identifies the class,
document filename, and the
object name that is the
source for a linked object.

Page 70 Microsoft

Term Definition
OLECLI.DLL

The OLE Client Library,
OLECLI.DLL, that
contains OLE API used by
client applications.

OLESVR.DLL The OLE Server Library,
OLESVR.DLL, that
contains OLE API used by
server applications.

Owner Link Data structure that
identifies the class,
document, and object
names that describes the
owner of an embedded
object.

Registration The system database that
holds

Database names of applications that
support the OLE protocol,
the full pathnames to those
applications, the objects
they can edit, what verbs
those objects support, and
whether an object handler
exists for that class.

Release A Released object,
document, or server is one
that no longer has any
connections to any client
documents. Servers,
documents, and objects all
have Release methods that
inform the item that no
client is connected to it.

Revoke To close off communication
from a client application
from a server, document, or

object. When one of these
items is revoked, the item
will eventually become
released. A client may also
revoke communication to a
server, document, or object.

Server (or Server Application) An
application that creates and
edits objects for storage in a
client application's
document.

SHELL.DLL A dynamic link library that
contains functions to
manipulate the registration
database.

Source Synonym for Server.

Microsoft Page 71

Term Definition
Subkey A refinement of a key in the

registration database. A
key can have any number of
subkeys and subkeys can
have their own subkeys.

Thunk A procedure-instance
address created through a
call to MakeProcInstance.
Also called an instance
thunk.

Appendix B: Guide to OLE Code in Patron

This appendix contains information about using Patron's OLE code in your own application. The
sections are organized loosely along the structure of this entire implementation guide. This
appendix is essentially documentation for an OLE client helper library made up from the files
OLE*.C, OCLIENT.H, OCLIENT.RC, OCLIENT.DLG, REGISTER.C, and REGISTER.H. With
little or no modification, this library should be immediately usable in your application.

The sections below will describe the interface for each component; specific implementation details
are not provided. Much of the information is taken from header comments on the functions
themselves. All functions are declared as FAR PASCAL.

Section Contents and Files
Registration Database Helpers Five functions in REGISTER.C to simplify

information retrieval from the registration database.
REGISTER.H contains function prototypes.

Resources Dialog box templates and OLE-related strings in
OCLIENT.DLG and OCLIENT.RC, with
definitions in OCLIENT.H.

Utility Functions Miscellaneous functions in OLELIB.C such as
manipulating filenames, reading and writing >64K
data to a file, and mapping mode conversion.

VTBL Constructors/Destructors Four functions to allocate and free OLECLIENTVTBL and
OLESTREAMVTBL structures in OLEVTBL.C.

The DOCUMENT Struct & Strings Constructor, destructor, and utility functions for the
DOCUMENT structure in OLEDOC.C. Includes
loading OLE-specific strings into a globally visible
array referenced through the PSZOLE macro.

STREAM and Default Methods Constructor and destructor function for the STREAM structure
as well as default Get and Put methods for the
OLESTREAMVTBL in OLESTREA.C

OBJECT Manager Constructor, initializer, enumeration, and destructor
functions for the OBJECT structure in OLEOBJ.C

OBJECT Manipulations Waiting for release, changing or retrieving object
bounds, changing or retrieving object data, and
drawing an object in OLEOBJ.C

Insert Object Dialog A standard Insert Object dialog implementation to
display the dialog, fill the listbox with class
descriptive names, and create an OLEOBJECT
within an OBJECT structure. Dialog is defined in
OCLIENT.DLG and invoked through OLEINS.C.

Menu Manipulations Two functions in OLEMENU.C to 1) enable or
disable the Copy, Cut, Paste, and Paste Link menu

items on a menu, and 2) to create an object verb
menu at a given position.

Updating Links Functions in OLELOAD.C to update open
automatic links on loading a file, update all links in
a document at the users request, and to track
unavailable links and possibly invoke the Links
dialog. This last function makes use of the Links
dialog below.

Links Dialog A standard Links dialog implementation to display
the dialog, initialize the links listbox, enable and
disable buttons depending on the selected links, and
handling each of the dialog buttons. OLELINK1.C
contains the function to display a dialog;
OLELINK2.C contains utility functions to create
and replace listbox strings.

Functions to manipulate the registration database, VTBL structures, the
DOCUMENT structure, and the STREAM structure
are independent of Patron's OBJECT manager
implementation. However, to use the user interface
functions (listed after the OBJECT Manager
above), you do need to use this object manager. Of
course, you can modify the code as necessary for
your application, which should save you
considerable time in just writing code to handle the
user interface. No matter what you decide to do
with this code, Patron's model will at least serve to
illustrate how an object manager can simplify your
implementation.

To create an OLE client using these functions, allocate a single DOCUMENT structure for each
document with PDocumentAllocate. When closing the document call PDocumentFree. Before
calling any OLE function to create an object, create an OBJECT in which to store it with
PObjectAllocate, specifying the DOCUMENT structure for the document that contains that object.
Once the OLE object is created, call PObjectInitialize. When that object is destroyed or the
document is closed, call PObjectFree. With a document and object created, you can use any of the
user interface helper functions.

B.1 Registration Database Helpers: REGISTER.C, REGISTER.H

WFillClassList
WORD WFillClassList(HWND hList)

Enumerates available OLE object classes from the registration database and fills a listbox with

those names. WFillClassList removes any prior contents of the listbox.

Parameter Type Description
hList HWND Listbox to fill.

Return Type Description
WORD Number of strings added to the listbox if successful, -1

otherwise.

WClassFromDescription

WORD WClassFromDescription(LPSTR psz, LPSTR pszClass, WORD cb)

Retrieves the OLE class name from the registration database for the given descriptive name.

Parameter Type Description

psz LPSTR Pointer to the descriptive name to find.
pszClass LPSTR Pointer to a buffer in which to store the class name.
cb WORD Maximum length of pszClass.

Return Type Description

WORD Number of characters copied to pszClass if successful, 0
otherwise.

WClassFromExtension

WORD WClassFromExtension(LPSTR pszExt, LPSTR pszClass, WORD cb)

Retrieves the OLE class name in the registration database for the given file extension.

Parameter Type Description

pszExt LPSTR Pointer to the extension to reference.
pszClass LPSTR Pointer to a buffer in which to store the class name.
cb WORD Maximum length of pszClass.

Return Type Description

WORD Number of characters copied to pszClass if successful, 0
otherwise.

CVerbEnum

WORD CVerbEnum(LPSTR pszClass, LPSTR pszzVerbs, WORD cbMax)

Builds a double-null terminated list of strings where each string is one of the supported verbs for

a for a particular class.

Parameter Type Description

pszClass LPSTR Pointer to the object classname.
pszzVerbs LPSTR Pointer to a buffer in which to store the verb list.
cbMax WORD Maximum length of pszzVerbs.

Return Type Description

WORD Number of verbs stored in pszzVerbs if successful, 0
otherwise.

WDescriptionFromClass

WORD WDescriptionFromClass(LPSTR pszClass, LPSTR pszDescription, WORD cb)

Looks up the descriptive name in the registration database for the given class name.

Parameter Type Description

pszClass LPSTR Pointer to the class name.
pszDescription LPSTR Pointer to a buffer in which to store the descriptive name.
cb WORD Maximum length of pszDescription.

Return Type Description

WORD Number of characters copied to pszDescription if
successful, 0 otherwise.

B.2 Resources: OCLIENT.RC

OLE Strings in OCLIENT.RC
Identifier in OCLIENT.H String

IDS_NATIVE "Native"
IDS_OWNERLINK "OwnerLink"
IDS_OBJECTLINK "ObjectLink"
IDS_STDFILEEDITING "StdFileEditing"
IDS_AUTOMATIC "Automatic"
IDS_MANUAL "Manual"
IDS_UNAVAILABLE "Unavailable"
IDS_STATIC "Static"
IDS_PACKAGE

"Package"

IDS_UPDATELINKS0 "The file contains links to other\ndocuments.\n\nUpdate
links now?"

IDS_UPDATELINKS1 "The selected links to %s have been\nupdated. %s contains
"

IDS_UPDATELINKS2 "additional links\nto %s.\n\nUpdate additional links?"
IDS_CHANGELINK "Change Link"
IDS_CHANGELINKS1 "The selected links to %s have been\nchanged. %s

contains "
IDS_CHANGELINKS2 "additional links\nto %s.\n\nChange additional links?"
IDS_INSERTTITLE "Insert Object"
IDS_NOINSERT

"Could not create a new object or start object server."
IDS_VERBEDIT

"Edit"
IDS_OBJECT "Object"
IDS_OBJECTBUSY "The action cannot be completed because the object is

busy."
IDS_OLEERROR

"OLE Error"
IDS_OLEERRORMSG "Method: %d, Error: %d"
IDS_UPDATEMSG "Updating Links"

Dialog Box Templates in OCLIENT.RC

Identifier in OCLIENT.H Description
IDD_INSERTOBJECT Insert Object dialog containing one listbox, an OK button,

and a Cancel button.

IDD_LINKS Links dialog containing a listbox for link strings, two
radiobuttons Automatic and Manual, and push buttons for
OK, Cancel, Update Now, Cancel Link, and Change
Link.

IDD_BADLINKS

Message box informing the user that some links were
unavailable and giving the user the option of invoking the
links dialog. This message box must be a dialog to have
the Links... button as well as an OK.

Control identifiers for these dialogs are also defined in OCLIENT.H.

B.3 Utility Functions: OLELIB.C

FFileDialog
BOOL FFileDialog(HWND hWnd, HANDLE hInst, LPSTR pszExt, LPSTR pszFilter, LPSTR
pszFile, BOOL fOpen)

Invokes the COMMDLG.DLL GetOpenFileName dialog and retrieves a filename for saving or
opening.

Parameter Type Description

hWnd HWND Window of the owning application.
hInst HANDLE Application instance.
pszExt LPSTR Pointer to the default extension.
pszFilter LPSTR Pointer to the filter description.
pszFile LPSTR Pointer to a buffer to receive the entered filename. Must be

at least CCHPATHMAX (defined in OCLIENT.H) long.
pszCaption LPSTR Pointer to the title to use in the dialog box.
fOpen BOOL Flag indicating if we want file open or save.

Return Type Description

BOOL TRUE if the function retrieved a filename, FALSE if the
user pressed CANCEL.

PszFileFromPath

LPSTR PszFileFromPath(LPSTR pszPath)

Returns a pointer within an existing pathname string to the last file of that string. Used to
extract the filename from a path for use in window titles and message boxes. Note: This
function does character comparisons to '\' and so may require more work to localize.

Parameter Type Description

pszPath LPSTR Pointer to the full pathname.

Return Type Description

LPSTR Pointer to a filename within pszPath if successful, NULL
otherwise.

PszExtensionFromFile

LPSTR PszExtensionFromFile(LPSTR pszFile)

Returns a pointer within an existing filename string to the extension of that file. Used to extract

the extension from a file for use in File dialogs and so forth. The file is scanned backwards
looking for a '.' or '\'. If no '.' is found before a '\' then this function returns a pointer to the null
terminator. Note: This function does character comparisons to '.' and '\' and so may require
more work to localize.

Parameter Type Description

pszFile LPSTR Pointer to a filename.

Return Type Description

LPSTR Pointer to an extension (starting with the .) within pszFile
if successful, NULL otherwise.

PszWhiteSpaceScan

LPSTR PszWhiteSpaceScan(LPSTR psz, BOOL fSkip)

Skips characters in a string until a whitespace or non-whitespace character is seen. Whitespace
is defined as \n, \r, \t, or ' '. NOTE: This function is not extremely well suited to localization. It
assumes that an existing application seeking to become an OLE client probably already has such
a string function available.

Parameter Type Description

psz LPSTR Pointer to string to manipulate.
fSkip BOOL TRUE if we want to skip whitespace. FALSE if we want

to skip anything but whitespace.

Return Type Description

LPSTR Pointer to first character in the string that either non-
whitespace (fSkip=TRUE) or whitespace (fSkip=FALSE),
which may be the null terminator.

DwReadHuge

DWORD DwReadHuge(WORD hFile, LPVOID pv, DWORD dwRead)

Reads a data block that is potentially larger than 64K from a file. The data is read in 32K
chunks.

Parameter Type Description

hFile WORD File handle from which to read.
pv LPVOID Pointer to the data buffer.
dwRead DWORD Number of bytes to read.

Return Type Description

DWORD Number of bytes read if successful, 0 otherwise.

DwWriteHuge

DWORD DwWriteHuge(WORD hFile, LPVOID pv, DWORD dwWrite)

Writes a data block that is potentially larger than 64K to a file. The data is written in 32K
chunks.

Parameter Type Description

hFile WORD File handle to write to.
pv LPVOID Pointer to the data buffer.
dwRead DWORD Number of bytes to write.

Return Type Description

DWORD Number of bytes written if successful, 0 otherwise.

RectConvertMappings

void RectConvertMappings(LPRECT pRect, WORD mmSrc, WORD mmDst)

Converts the contents of a rectangle from one logical mapping into another. This function is
useful since you have to convert logical->device then device->logical to do this transformation.

Parameter Type Description

pRect LPRECT Containing the source rectangle to convert.
mmSrc WORD Mapping mode of the source rectangle.
mmDst WORD Mapping mode of the destination rectangle.

Return Type Description

None

B.4 VTBL Constructors/Destructors: OLEVTBL.C

PVtblClientAllocate
LPOLECLIENTVTBL PVtblClientAllocate(LPBOOL pfSuccess, HANDLE hInst, FARPROC
pfn)

Allocates and initializes an OLECLIENTVTBL structure.

Parameter Type Description

pfSuccess LPBOOL Pointer to a flag to store the outcome of the function. If
this function returns non-NULL, but *pfSuccess==FALSE,
the caller must call the destructor function.

hInst HANDLE Application instance.
pfn FARPROC Pointer to the single client method to initialize. We call

MakeProcInstance for this function.

Return Type Description

LPOLECLIENTVTBL Pointer to the allocated VTBL if successful, NULL if the
allocation failed or a parameter is invalid.

PVtblClientFree

LPOLECLIENTVTBL PVtblClientFree(LPOLECLIENTVTBL pvt)

Frees all procedure instances in the LPOLECLIENTVTBL and frees the structure as well.

Parameter Type Description

pvt LPOLECLIENTVTBL

Pointer to the structure to free.

Return Type Description

LPOLECLIENTVTBL NULL if the function succeeds, pvt otherwise

PVtblStreamAllocate

LPOLESTREAMVTBL PVtblStreamAllocate(LPBOOL pfSuccess, HANDLE hInst, FARPROC
pfnGet, FARPROC pfnPut)

Allocates and initializes an OLESTREAMVTBL structure.

Parameter Type Description

pfSuccess LPBOOL Pointer to a flag to store the outcome of the function. If
this function returns non-NULL, but *pfSuccess==FALSE,
the caller must call the destructor function.

hInst HANDLE Application instance.
pfnGet FARPROC Pointer to the stream's Get method.
pfnPut FARPROC Pointer to the stream's Put method.

Return Type Description

LPOLESTREAMVTBL Pointer to the allocated VTBL if successful, NULL if the
allocation failed or a parameter is invalid.

PVtblStreamFree

LPOLESTREAMVTBL VtblStreamFree(LPOLESTREAMVTBL pvt)

Frees all procedure instances in the OLESTREAMVTBL and frees the structure.

Parameter Type Description

pvt LPOLESTREAMVTBL

Pointer to the structure to free.

Return Type Description

LPOLESTREAMVTBL NULL if the function succeeds, pvt otherwise

B.5 The DOCUMENT Structure and PSZOLE: OLEDOC.C

PDocumentAllocate
LPDOCUMENT PDocumentAllocate(LPBOOL pfSuccess, HANDLE hInst, LPSTR pszCaption,
FARPROC pfnCallBack, FARPROC pfnGet, FARPROC pfnPut)

Constructor method for the DOCUMENT data type used from application initialization.
Allocates a DOCUMENT and sets the defaults in its fields:

· Initialize OLECLIENTVTBL and OLESTREAMVTBL
· Allocate and initialize an OLESTREAM structure (see OLESTREA.C)
· Register OLE clipboard formats
· Allocate scratch data and set pointers within it.
· Load OLE strings if this is the first DOCUMENT structure allocated. Strings are loaded

once for all DOCUMENT allocations.

Parameter Type Description

pfSuccess LPBOOL Pointer to a flag to store the outcome of the function. If
this function returns non-NULL, but *pfSuccess==FALSE,
the caller must call the destructor function.

hInst HANDLE Application instance.
pszCaption LPSTR Pointer to the application name.
pfnCallBack FARPROC Pointer to the single client method to initialize. We pass

this function to PVtblClientAllocate.
pfnGet FARPROC Pointer to the document's Stream Get method, passed to

PStreamAllocate.
pfnPut FARPROC Pointer to the document's Stream Put method, passed to

PStreamAllocate.

Return Type Description

LPDOCUMENT

Pointer to the allocated DOCUMENT if successful, NULL
if the allocation failed or a parameter is invalid.

PDocumentFree

LPDOCUMENT PDocumentFree(LPDOCUMENT pDoc)

Frees all data in the DOCUMENT and frees the structure. This includes freeing the OLE strings
if this is the last DOCUMENT structure to be freed and the STREAM structure contained in this
document.

Parameter Type Description

pDoc LPDOCUMENT

Pointer to the structure to free.

Return Type Description

LPDOCUMENT

NULL if the function succeeds, pDoc otherwise.

FDocumentFileSet

BOOL FDocumentFileSet(LPDOCUMENT pDoc, LPSTR pszFile)

Provides the document with an associated filename for use in OLE-related UI. An application
should call this function whenever it loads a new file or when that filename changes.

Parameter Type Description

pDoc LPDOCUMENT

Document in which to store the filename.
pszFile LPSTR Pointer to the filename of the document.

Return Type Description

BOOL TRUE if the function succeeds, FALSE otherwise.

3

6

PDocumentMsgProcSet

void PDocumentMsgProcSet(LPDOCUMENT pDoc, LPFNMSGPROC pfn)

Informs the DOCUMENT structure about a function in the main application that translates and
dispatches messages. This prevents the DOCUMENT from having to carry an accelerator
handle or window handle and allows the application to perform other actions we cannot predict
(like IsDialogMessage). The pfn function should be in the form:

BOOL FAR PASCAL MessageProc(LPMSG pMsg)

The return value of MessageProc indicates whether or not the function processed the message.

Parameter Type Description

pDoc LPDOCUMENT

Pointer to the structure concerned.
pfn LPFNMSGPROC

Pointer to the message processing function.

Return Type Description

None

PDocumentBackgroundProcSet

void PDocumentBackgroundProcSet(LPDOCUMENT pDoc, LPFNMSGPROC pfn)

Informs the DOCUMENT structure about a function in the main application that performs
background operations when there are no messages to process. This is necessary to provide a
standard release waiting message loop such that the loop can call the background process
function when it detects idle time. The pfn function should be in the form:

BOOL FAR PASCAL BackgroundProc(LPMSG pMsg)

The return value of BackgroundProc indicates whether or not the function performed any action.
If the function calls WaitMessage, it should return TRUE, otherwise Patron will call
WaitMessage again.

Parameter Type Description

pDoc LPDOCUMENT

Pointer to the structure concerned.
pfn LPFNMSGPROC

Pointer to the background processing function.

Return Type Description

None

PSZOLE (macro)

char NEAR * PSZOLE(WORD i)

The PSZOLE macro returns the a near string pointer stored in the rgpszOLE array at index i.
This macro handles any subtraction on the index if the first OLE string has an identifier greater
than zero.

Note that you must call PDocumentAllocate to load the strings from OCLIENT.RC and initialize
rgpszOLE in order to use this macro.

B.6 STREAM and Default Methods: OLESTREA.C

PStreamAllocate
LPSTREAM PStreamAllocate(LPBOOL pfSuccess, HANDLE hInst, FARPROC pfnGet,
FARPROC pfnPut)

Allocates and initializes a STREAM structure, using the function PVtblStreamAllocate to
initialize its VTBL. If pfnGet is NULL then we use the StreamGet method from OLESTREA.C.
Likewise, if pfnPut is NULL we use StreamPut from OLESTREA.C.

Parameter Type Description

pfSuccess LPBOOL Pointer to flag to store the outcome of the function. If this
function returns non-NULL, but *pfSuccess==FALSE, the
caller must call the destructor function.

hInst HANDLE Application instance.
pfnGet FARPROC Pointer to the stream's Get method.
pfnPut FARPROC Pointer to the stream's Put method.

Return Type Description

LPSTREAM Pointer to the allocated STREAM if successful, NULL if
the allocation failed or a parameter is invalid.

PStreamFree

LPSTREAM PStreamFree(LPSTREAM pStream)

Frees all data in the STREAM and frees the structure.

Parameter Type Description

pStream LPSTREAM Pointer to the structure to free.

Return Type Description

LPSTREAM NULL if the function succeeds, pStream otherwise.

StreamGet

DWORD StreamGet(LPSTREAM pStream, LPBYTE pb, DWORD cb)

Instructs the client to read a specified number of bytes (possibly over 64K) from wherever it
stores objects.

Parameter Type Description

pStream LPSTREAM Pointer to the stream structure holding the file handle.
pb LPBYTE Pointer to which we read data. We have no idea what data

we'll read since it's defined by OLECLI.
cb DWORD Number of bytes to read from the file into pb.

Return Type Description

DWORD Number of bytes actually read. If this value does not
match pb then OLECLI assumes an error.

StreamPut

DWORD StreamPut(LPSTREAM pStream, LPBYTE pb, DWORD cb)

Instructs the client to write a specified number of bytes (possibly over 64K) to storage.

Parameter Type Description

pStream LPSTREAM Pointer to the stream structure holding the file handle.
pb LPBYTE Pointer to the data to write. We have no idea what data sits

here.
cb DWORD Number of bytes to write from pb.

Return Type Description

DWORD Number of bytes actually written. If this value does not
match pb then OLECLI assumes an error.

B.7 OBJECT Manager: OLEOBJ.C

PObjectAllocate
LPOBJECT PObjectAllocate(LPBOOL pfSuccess, LPDOCUMENT pDoc)

Allocates an OBJECT structure. This function only creates the structure and inserts it into the
owner's list.

Parameter Type Description

pfSuccess LPBOOL Pointer to a flag to store the outcome of this function. If
this function returns non-NULL, but *pfSuccess==FALSE,
the caller must call the destructor function.

pDoc LPDOCUMENT

Pointer to the owner of this object, which contains the
linked list into which we insert ourselves.

Return Type Description

LPOBJECT Pointer to the allocated OBJECT if successful, NULL if the
allocation failed or a parameter is invalid.

PObjectInitialize

LPOBJECT PObjectInitialize(LPOBJECT pObj, LPDOCUMENT pDoc, LPSTR pszDoc)

Initializes an OBJECT structure and assumes that the pObj field in the structure already contains
a valid OLEOBJECT pointer. Any existing initialized data is freed and overwritten.

Parameter Type Description

pObj LPOBJECT Pointer to the structure to initialize.
pDoc LPDOCUMENT

Pointer to the owner of this object.
pszDoc LPSTR Pointer to the name of the client document name containing

this object.

Return Type Description

LPOBJECT pObj if successful, NULL otherwise.

PObjectFree

LPOBJECT PObjectFree(LPDOCUMENT pDoc, LPOBJECT pObj)

Frees all data in the OBJECT and frees the structure.

Parameter Type Description

pDoc LPDOCUMENT

Pointer to owner of the object.
pObj LPOBJECT Pointer to the structure to free.

Return Type Description

LPOBJECT NULL if the function succeeds, pObj otherwise

FObjectsEnumerate

BOOL FObjectsEnumerate(LPDOCUMENT pDoc, LPFNOBJECTENUM pfn, DWORD dw)

Enumerates all allocated OBJECT structures, passing them to a specified enumeration function
given in pfn which should appear as:

BOOL EnumFunc(LPDOCUMENT pDoc, LPOBJECT pObj, DWORD dwData)

The return value of EnumFunc is TRUE to continue the enumeration, FALSE otherwise. This
function provides a different enumeration method than OleEnumObjects since it contains the
loop instead of embedding OleEnumObjects inside your own loop. The enumeration provided
by this function is more consistent with other Windows Enum* functions.

Parameter Type Description

pDoc LPDOCUMENT Pointer to the owner of the objects.
pfn LPFNOBJECTENUM

Pointer to the enumeration callback function.
dw DWORD Extra data to pass to the callback function.

Return Type Description

BOOL TRUE if ALL objects were enumerated, FALSE if the
callback returned FALSE.

B.8 OBJECT Manipulations: OLEOBJ.C

FObjectPaint
BOOL FObjectPaint(HDC hDC, LPRECT pRect, LPOBJECT pObj)

Calls OleDraw for a specified object to draw the object ON THE SCREEN. If the object is

embedded and open, it also paints the object with an HS_BDIAGONAL hatch brush.

Parameter Type Description

hDC HDC Display context on which to paint.
pRect LPRECT Rectangle of the area to paint.
pObj LPOBJECT Pointer to the object to paint.

Return Type Description

BOOL TRUE if successful, FALSE otherwise.

FObjectRectSet

BOOL FObjectRectSet(LPDOCUMENT pDoc, LPOBJECT pObj, LPRECT pRect, WORD mm)

Provides the object with a screen-relative rectangle. The object itself assumes that the rectangle
contains coordinates in units defined by the mapping mode in mm. The rectangle given here is
sent to the OleSetBounds function for this object after which we call OleUpdate.

Parameter Type Description

pDoc LPDOCUMENT

Pointer to the DOCUMENT containing OLE information.
Necessary if we have to wait for release.

pObj LPOBJECT Pointer to the object concerned
pRect LPRECT Pointer to the rectangle of the object.
mm WORD Mapping mode of pRect.

Return Type Description

BOOL TRUE the set succeeds, FALSE if OleSetBounds fails or if
an invalid pointer is passed.

FObjectRectGet

BOOL FObjectRectGet(LPOBJECT pObj, LPRECT pRect, WORD mm)

Retrieves the object's rectangle stored in the specified units.

Parameter Type Description

pObj LPOBJECT Pointer to the object concerned.
pRect LPRECT Rectangle in which to store the coordinates.
mm WORD Mapping mode in which to retrieve coordinates.

Return Type Description

BOOL TRUE if the function succeeds, FALSE if an invalid

pointer is passed.

FObjectDataGet

BOOL FObjectDataGet(LPOBJECT pObj, WORD cf, LPSTR psz)

Calls OleGetData for a particular object to retrieve data in the specified format, either
ObjectLink or OwnerLink. The contents are copied into a buffer pointed to by psz on which no
length assumptions are made.

Parameter Type Description

pObj LPOBJECT Pointer to OBJECT concerned.
cf WORD Specifies the ObjectLink or OwnerLink format to retrieve.
psz LPSTR Pointer to buffer to store the string.

Return Type Description

BOOL TRUE if the function succeeds, FALSE otherwise.

FObjectDataSet

BOOL FObjectDataSet(LPDOCUMENT pDoc, LPOBJECT pObj, WORD cf, LPSTR pszDoc)

Calls OleSetData for a particular object to update data in the in the specified format, either
ObjectLink or OwnerLink. The only changeable field in the data is the document (2nd string)
which is provided in pszDoc. PszObjectDataSet passes the new data to OleSetData and stores it
in psz; no assumptions are made about the length of psz.

Parameter Type Description

pDoc LPDOCUMENT containing OLE information.
pObj LPOBJECT containing the OLEOBJECT to receive the new data.
cf WORD specifying the ObjectLink or OwnerLink format.
pszDoc LPSTR to the new link file

Return Type Description

BOOL TRUE if the function succeeds, FALSE otherwise.

FOLEReleaseWait

BOOL FOLEReleaseWait(BOOL fWaitForAll, LPDOCUMENT pDoc, LPOBJECT pObj)

Enters a Peek/Translate/Dispatch message loop to process all messages to the application until
one or all objects are released. This message processing is necessary because OLECLI.DLL and

OLESVR.DLL communicate with asynchronous DDE messages. The fWaitForAll flag indicates
how to wait:

1. If TRUE==fWaitForAll, then wait for all objects, that is, until pDoc->cWait is zero.
2. If FALSE==fWaitForAll, then wait until pObj->fRelease is set to TRUE. This assumes

that the caller previously set this flag to FALSE.

Parameter Type Description

fWaitForAll BOOL Flag indicating if we wait for one object by pObj->fRelease
or for the pDoc->cWait counter to fall to zero.

pDoc LPDOCUMENT

Pointer to a DOCUMENT containing the message
processing function, the background processing function,
and the cWait counter.

pObj LPOBJECT Pointer to the object to wait for if fWaitForAll is FALSE.
Ignored if fWaitForAll is TRUE.

Return Type Description

BOOL TRUE if we yielded, FALSE otherwise. For what it's
worth.

OsError

OLESTATUS OsError(OLESTATUS os, LPDOCUMENT pDoc, LPOBJECT pObj, BOOL
fWait)

Provides a centralized error handler for OLE function calls, depending on the value in os:
OLE_OK Return OLE_OK
OLE_BUSY Display a message and return OLE_BUSY.
Any OLE error Return that error.
OLE_WAIT_FOR_RELEASE Call FOLEReleaseWait on the object if fWait is TRUE,

then call OleQueryReleaseError for the return value. Otherwise
increment pDoc->cWait.

Parameter Type Description

os OLESTATUS Error value to process.
pDoc LPDOCUMENT

Pointer to a DOCUMENT containing OLE information.
pObj LPOBJECT Pointer to the OBJECT affected.
fWait BOOL Flag indicating if we are to wait for release on the object or

increment pDoc->cWait

Return Type Description

3

6

9

12

15

18

OLESTATUS New error code depending on the original os.

B.9 Insert Object Dialog: OLEINS.C

PObjectInsertDialog
LPOBJECT PObjectInsertDialog(HWND hWnd, HANDLE hInst, LPDOCUMENT pDoc,
LPSTR pszObject)

Displays the Insert Object dialog and creates an object of the selected name. The caller must
provide the name of the object to create. NOTE: Uses pDoc->pszData1.

Parameter Type Description

hWnd HWND Window to use as the parent of the dialog box.
hInst HANDLE Application instance.
pDoc LPDOCUMENT

Pointer to the owner of objects.
pszObject LPSTR Pointer to the name for a new object.

Return Type Description

LPOBJECT Pointer to a new OBJECT if the function succeeds, NULL
otherwise or if the user pressed Cancel.

B.10 Menu Manipulations: OLEMENU.C

MenuOLEClipboardEnable
void MenuOLEClipboardEnable(HMENU hMenu, LPDOCUMENT pDoc, LPWORD pWID)

Enabled or disables Edit menu commands for Paste, Paste Link, Paste Special, and Links,
depending on whether or not certain clipboard formats exists or if there are linked objects. This
function should be called for the WM_INITPOPUPMENU message in the main window
procedure.

Parameter Type Description

hMenu HMENU Handle to the Edit menu to modify.
pDoc LPDOCUMENT

Pointer to the DOCUMENT owner of all objects.
pWID LPWORD Pointer to an array of four WORDs, where the caller stores

menu ID values for Paste, Paste Link, Paste Special, and

Links. If any of these are zero that menu item is ignored.

Return Type Description

None

MenuOLEVerbAppend

void MenuOLEVerbAppend(HMENU hMenu, WORD iVerbMenu, WORD wIDMin,
LPDOCUMENT pDoc, LPOBJECT pObj)

Appends the appropriate menu item(s) on the given menu depending on the given object. This
function finds the verbs for the given object and if there's one, it creates a single menu item with
<verb> <object>. If there's multiple verbs, it creates a cascading menu with:

<object> > <verb 0>
<verb 1>
...

Call this function when processing the WM_INITPOPUPMENU message. This function
requires HVerbEnum function in register.c.

Parameter Type Description

hMenu HMENU Handle of the Edit menu to modify.
iVerbMenu WORD Position of the item to modify.
wIDMin WORD First menu ID value for a verb menu item.
pDoc LPDOCUMENT

Pointer to DOCUMENT owning pObj. This must contain
clipboard formats.

pObj LPOLEOBJECT

Pointer to the object concerned.

Return Type Description

None

B.11 Updating Links: OLELOAD.C

FObjectAutoLinkUpdate
BOOL FObjectAutoLinkUpdate(LPDOCUMENT pDoc, LPOBJECT pObj)

Checks if the object link is automatic and if so, update it if the server is open, waiting as
necessary.

Parameter Type Description

pDoc LPDOCUMENT

Pointer to the object owner.
pObj LPOBJECT Pointer to the object in question.

Return Type Description

BOOL TRUE if the object was updated, FALSE if the object is a
manual link or the server was not open.

FOLELinksUpdate

BOOL FOLELinksUpdate(HWND hWnd, HANDLE hInst, LPDOCUMENT pDoc)

Checks if the recently loaded file had objects requiring update. If so, then prompt the user to
update links, and if they answer Yes, then call OleUpdate for all linked objects. If any of the
links cannot be updated, then we prompt the user and invoke the Links dialog if they so choose.

Parameter Type Description

hWnd HWND Window handle to use as the parent of dialogs.
hInst HANDLE Application instance.
pDoc LPDOCUMENT

Pointer to DOCUMENT holding list of object.

Return Type Description

BOOL TRUE if all objects could be updated or if the user used the
Links dialog. FALSE if there are still non-updated links.

B.12 Links Dialog: OLELINK1.C and OLELINK2.C

FOLELinksEdit
BOOL FOLELinksEdit(HWND hWnd, HANDLE hInst, LPDOCUMENT pDoc)

Handles the Links dialog and the Update Now, Cancel Link, and Change Link commands.

Parameter Type Description

hWnd HWND Window to use as the parent of the dialog.
hInst HANDLE Application instance.
pDoc LPDOCUMENT

Pointer to the owner of all objects.

Return Type Description

BOOL FALSE if we could not create the dialog or if the user
pressed Cancel. TRUE otherwise.

FLinksEnumerate

BOOL FLinksEnumerate(HWND hList, LPDOCUMENT pDoc, LPFNLINKENUM pfn,
WORD wSelection, DWORD dwData)

Enumerates links of a specific selection state in a listbox. Each item is passed to the pfn callback
function which should appear as:

BOOL EnumFunc(HLIST hList, WORD i, LPDOCUMENT pDoc, LPOBJECT pObj,
DWORD dwData)

Where hList is the listbox handle and i is the index of the current item. These are necessary if
the callback needs to send any messages to the listbox to retrieve more item information.

The return value of EnumFunc is TRUE to continue the enumeration, FALSE otherwise. This
function provides a different enumeration method than OleEnumObjects since it contains the
loop instead of embedding OleEnumObjects inside your own loop. The enumeration provided
by this function is more consistent with other Windows Enum* functions. If EnumFinc sees
OLE_WAIT_FOR_RELEASE it should wait for that object immediately.

Parameter Type Description

hList HWND Handle to the listbox containing the items to enumerate.
pDoc LPDOCUMENT Pointer to DOCUMENT containing OLE information.
pfn LPFNOBJECTENUM

Pointer to the callback function to which each item is
passed.

wSelection WORD Specifies the type of items to enumerate:
ENUMLINK_SELECTED, ENUMLINK_UNSELECTED,
or ENUMLINK_ALL.

dwData DWORD Extra data to pass to the callback function.

Return Type Description

BOOL TRUE if ALL objects were enumerated, FALSE if the
callback returned FALSE.

CchLinkStringCreate

WORD CchLinkStringCreate(LPSTR psz, LPDOCUMENT pDoc, LPOBJECT pObj)

Creates a Links... listbox string from an linked object. The ObjectLink data is stored in three
ATOMs in this object which we created in PObjectAllocate (OLEOBJ.C). We also append the
type of link (Automatic, Manual, or Unavailable) to the string. Each string is visually limited to
a tab space in the listbox.

Parameter Type Description

psz LPSTR Pointer to the buffer to receive the string.
pDoc LPDOCUMENT

Pointer to DOCUMENT containing OLE information.
pObj LPOBJECT Pointer to the object whose string we're building. We use

the ATOMs from this object to create the string.

Return Type Description

WORD Number of characters in the string.

CchTextLimit

WORD CchTextLimit(LPSTR psz, HDC hDC, WORD cx)

Truncates a string at a point where it will fit into cx pixels using the display context in hDC.

Parameter Type Description

psz LPSTR Pointer to the string to limit.
hDC HDC Device context into which this string will be draw, assumed

to have the correct font selected.
cx WORD Number of pixels to which we limit text.

Return Type Description

WORD Number of characters in psz.

LinkStringChange

void LinkStringChange(HWND hList, WORD i, LPSTR psz)

Changes a string in a listbox item to a new string, preserving the positioning, selection, and item
data of the old string.

Parameter Type Description

hList HWND Window handle of the listbox.
i WORD Index of the item to change.
psz LPSTR Pointer to the new string.

Return Type Description

None

	Microsoft
	
	, Software Design Engineer
	Systems Developer Relations
	
	Version 1.01

	1 Introduction
	2 Required Windows Programming Knowledge
	3 Conventions
	os=OleUpdate(pObj);
	if (OLE_WAIT_FOR_RELEASE==os)
	FOLEReleaseWait(FALSE, pDoc, pObj);

	4 Sample Client: PATRON
	5 Source Code Structure
	6 Isolation of Global Data and Strings

	7 OLE Technical Background
	8 OLECLI.DLL and OLECLI.LIB
	9 OLE.H

	10 SHELL.DLL, SHELL.LIB, and SHELLAPI.H
	11 Library Redistribution and Installation
	12 OLE Communication Routes
	13 OLE Data Structures and Application-Specific Variations
	typedef struct _OLECLIENT
	{
	LPOLECLIENTVTBL lpvtbl;
	} OLECLIENT;
	typedef struct _OLESTREAM
	{
	LPOLESTREAMVTBL lpstbl;
	} OLESTREAM;
	14 OLECLIENT CallBack and OLESTREAM Methods
	15 OLE Client Streams and Persistent Naming
	16 OLE Use of Pointers

	17 Handling Asynchronous Operations
	OLESTATUS os;
	...
	os=OleUpdate(pObj->pObj);
	if (OLE_WAIT_FOR_RELEASE==os)
	{
	//FOLEReleaseWait processes messages while waiting for pObj.
	FOLEReleaseWait(FALSE, pDoc, pObj);
	os=OleQueryReleaseError(pObj->pObj);
	}
	if (OLE_OK!=os)
	//Signal error condition
	;
	18 Waiting for All Objects
	19 The OLE_BUSY Return Code
	20 Debugging Asynchronous Operations

	21 Clipboard Formats and Conventions
	22 Native, OwnerLink, and ObjectLink Formats

	23 Registration Database: OLE Keys and Values

	24 Preparing an Application to Become an OLE Client
	25 Decide How to Reference Objects in Files; Version Numbers
	26 Isolate Data
	27 Isolate Initialization and Cleanup Procedures
	28 Isolate Painting and Printing Code for Objects
	29 Isolate Menu Enabling/Disabling Functions
	30 Isolate Clipboard I/O
	31 Isolate Your Dirty Flag
	32 Isolate Background Processing Schedulers
	33 Isolate Mapping Mode Conversions

	34 Step-By-Step OLE Client
	35 Define OLE Data Structures
	typedef struct _OLECLIENT
	{
	LPOLECLIENTVTBL lpvtbl;
	} OLECLIENT;
	typedef struct _OLESTREAM
	{
	LPOLESTREAMVTBL lpstbl;
	} OLESTREAM;
	36 The DOCUMENT Structure
	typedef struct
	{
	LPOLECLIENTVTBL pvt; //Stores the global VTBL for all objects
	LHCLIENTDOC lh; //Required for later OLE calls.
	ATOM aCaption; //Caption of the application.
	ATOM aFile; //Filename for the document
	LPFNMSGPROC pfnMsgProc; //Message translate/dispatch function.
	LPFNMSGPROC pfnBackProc; //Background processing function.
	LPSTREAM pStream; //Pointer to our document STREAM
	HWND hWnd; //HWND of document window.
	HANDLE hMemStrings; //Memory containing OLE strings.
	WORD cObjects; //Number of objects in the list.
	LPOBJECT pObjFirst; //Pointer to start of OBJECT list.
	LPOBJECT pObjLast; //Pointer to end of OBJECT list.
	WORD cfNative; //OLE Clipboard formats.
	WORD cfOwnerLink;
	WORD cfObjectLink;
	HWND hList; //Listbox handle for use in Links dialog
	HWND cxList; //Tab width of the links dialog.
	WORD cLinks; //Number of links we load from a file.
	WORD cWait; //Number of objects awaiting release.
	HANDLE hData; //Global handle to scratch area.
	LPSTR pszData1; //Pointers to blocks in hData
	LPSTR pszData2; //each containing CBSCRATCH
	LPSTR pszData3; //bytes.
	} DOCUMENT;

	37 The OBJECT Structure
	typedef struct _OBJECT
	{
	LPOLECLIENTVTBL pvt; //Lets us use this as an OLECLIENT.
	LPOLEOBJECT pObj; //Identifies the object in OLECLI
	BOOL fRelease; //Released flag.
	BOOL fOpen; //Was this object activated?
	struct _OBJECT FAR *pPrev; //Previous and next OBJECTs in
	struct _OBJECT FAR *pNext; //the object list.
	LPDOCUMENT pDoc; //Parent document
	ATOM aName; //Name of object.
	ATOM aClass; //Classname of the object.
	ATOM aLink; //Path of linked document.
	ATOM aSel; //Selection information.
	DWORD dwType; //Object type from OleQueryType
	OLEOPT_UPDATE dwLink; //Type of link, auto, manual, or static
	BOOL fNoMatch; //Marks the object when updating links.
	LPOLEOBJECT pObjUndo; //Clone OLEOBJECT for undo usage.
	BOOL fUndoOpen; //Indicates if the cloned object is open.
	BOOL fLinkChange; //Indicates modification in Links dialog.
	HANDLE hData; //App-defined data.
	} OBJECT;

	38 The STREAM Structure
	typedef struct
	{
	LPOLESTREAMVTBL pvt; //Standard
	HANDLE hFile; //File handle we need in methods.
	} STREAM;

	39 Constructors, Initializers, and Destructors

	40 Create Registration Database Utility Functions
	41 Enumerate Class Descriptions: WFillClassList
	42 Find Class Name Given a Descriptive Name: WClassFromDescription
	43 Find Class Name Given a File Extension: WClassFromExtension
	44 Enumerate Verbs for a Class: CVerbEnum
	45 Find Descriptive Name Given a Class Name: WDescriptionFromClass

	46 Implement Basic Methods
	47 CallBack
	int FAR PASCAL ClientCallback(LPOBJECT pObj, OLE_NOTIFICATION wCode,
	LPOLEOBJECT pOLEObj)
	{
	switch (wCode)
	{
	case OLE_CLOSED: //Server closed for an embedded object.
	SetFocus(pGlob->hWnd);
	pObj->fOpen=FALSE;
	PostMessage((HWND)pObj->hData, BBM_OBJECTNOTIFY, wCode, (LONG)pObj);
	break;
	case OLE_SAVED:
	case OLE_CHANGED:
	case OLE_RENAMED: //Server renamed a link file.
	Call no OLE functions on the given object from within CallBack. OLE functions will usually return OLE_BUSY since OLECLI sends notifications to CallBack from within an asynchronous operation. Applications generally need to post a message that affects the desired operation. In addition, do not perform any action in CallBack that might display a message box or dialog or anything else that might enter another message loop. PostMessage((HWND)pObj->hData, BBM_OBJECTNOTIFY, wCode, (LONG)pObj);
	break;
	case OLE_RELEASE:
	pObj->fRelease=TRUE;
	pObj->pDoc->cWait--;
	break;
	case OLE_QUERY_RETRY:
	return FALSE;
	case OLE_QUERY_PAINT:
	return TRUE;
	default:
	break;
	}
	return FALSE;
	}

	48 StreamGet and StreamPut
	DWORD FAR PASCAL StreamGet(LPSTREAM pStream, LPBYTE pb, DWORD cb)
	{
	DWORD cbRead;
	/*
	* With a file handle, just read cb bytes of the data into pb from that file
	* handle. This assumes that we are in the process of reading a file and
	* store objects directly in the file.
	*/
	if (NULL==pStream->hFile)
	return 0L;
	cbRead=DwReadHuge(pStream->hFile, (LPVOID)pb, cb);
	//Return the number of bytes actually read.
	return cbRead;
	}
	DWORD FAR PASCAL StreamPut(LPSTREAM pStream, LPBYTE pb, DWORD cb)
	{
	DWORD cbWritten;
	/*
	* With a file handle, just write cb bytes of the data from pb to that file
	* handle. This assumes that we are in the process of writing a file and
	* store objects directly in the file.
	*/
	if (NULL==pStream->hFile)
	return 0L;
	cbWritten=DwWriteHuge(pStream->hFile, (LPVOID)pb, cb);
	//Return the number of bytes actually written.
	return cb;
	}

	49 Initialize the Application and VTBLs
	50 Register Clipboard Formats
	pDoc->cfNative =RegisterClipboardFormat("Native");
	pDoc->cfOwnerLink =RegisterClipboardFormat("OwnerLink");
	pDoc->cfObjectLink=RegisterClipboardFormat("ObjectLink");

	51 Allocate and Initialize VTBLs and VTBL Pointers
	52 Allocate and Initialize Your OLESTREAM Structure
	53 Load and Register the Initial Document(s)
	54 Register the Window for Drag/Drop

	55 Handle Simple Shutdown: File Close
	56 Create an Object Manager
	57 Example: The OBJECT Structure and OLEOBJ.C

	58 Add OLE Menu Items
	59 Enabling and Disabling OLE Menu Items
	60 Example: MenuOLEClipboardEnable in OLEMENU.C

	61 Create Objects and Other Object Operations
	62 Wait For Release
	63 Example: FOLEReleaseWait in OLEOBJ.C
	BOOL FAR PASCAL FOLEReleaseWait(BOOL fWaitForAll, LPDOCUMENT pDoc, LPOBJECT pObj)
	{
	BOOL fRet=FALSE;
	MSG msg;
	while (TRUE)
	{
	//Test terminating condition.
	if (fWaitForAll)
	{
	if (0==pDoc->cWait)
	break;
	}
	else
	{
	if (pObj->fRelease)
	break;
	}
	if (PeekMessage(&msg, NULL, NULL, NULL, PM_REMOVE))
	{
	if (NULL!=pDoc->pfnMsgProc)
	(*pDoc->pfnMsgProc)(&msg);
	}
	else
	{
	if (NULL==pDoc->pfnBackProc)
	WaitMessage();
	else
	{
	if (!(*pDoc->pfnBackProc)(&msg))
	WaitMessage();
	}
	fRet=TRUE;
	}
	}
	return fRet;
	}

	64 Implement the Paste Commands
	65 Implement the Insert Object Command
	66 Example: FEditInsertObject (INSDROP.C), FOLEObjectInsert (OLEINS.C)

	67 Handle WM_DROPFILES
	68 Copy and Cut Objects to the Clipboard
	69 Selections that Include Objects and Other Data

	70 Convert Objects to Static
	71 Close, Release, and Delete Objects

	72 Display and Print Objects; Resizing
	73 Handle Object Resizing

	74 Add the Object Verb Menu and Execute Verbs
	75 Executing Verbs and Handling Notifications
	76 Examples: FObjectPaint in OLEOBJ.C
	BOOL FAR PASCAL FObjectPaint(HDC hDC, LPRECT pRect, LPOBJECT pObj)
	{
	OLESTATUS os;
	HBRUSH hBr, hBrT;
	//Draw the object
	OleDraw(pObj->pObj, hDC, pRect, NULL, NULL);
	//If this object is open, patch a hatch over the image.
	if (OLE_OK==os && OT_EMBEDDED==pObj->dwType && TRUE==pObj->fOpen)
	{
	hBr=CreateHatchBrush(HS_BDIAGONAL, GetSysColor(COLOR_HIGHLIGHT));
	hBrT=SelectObject(hDC, hBr);
	/*
	* The 0x00A000C9L ROP code does an AND between the pattern and
	* the destination; there is no standard definition for this
	* ROP code, but it's exactly what we want to draw COLOR_HIGHLIGHT
	* lines across the object when it's open.
	*/
	PatBlt(hDC, pRect->left, pRect->top,
	pRect->right-pRect->left, pRect->bottom-pRect->top, 0xA000C9L);
	SelectObject(hDC, hBrT);
	DeleteObject(hBr);
	}
	return (OLE_OK==os);
	}

	77 Creating the Object Verb Menu

	78 File Menu Commands: Close, New, Open, and Save [As]
	typedef struct
	{
	RECT rc; //Rectangle of object
	WORD wID; //ID value of object
	char szName[40]; //Persistent name of object.
	DWORD cbObject; //Size of OLE object--just for demonstration
	} FILEOBJECT;
	79 Closing a File: Prompt the User to Save Changes
	80 File New
	81 File Open
	82 File Save [As]

	83 Update Links and Create the Links Dialog
	Update Links After Loading a Document
	84 Create a Links Dialog
	85 Implement Utility Functions
	86 Enable Buttons According to List Selections
	87 Initialize List Tabstops and Items
	GetClientRect(hList, &rc);
	//Convert pixel width to dialog width for LB_SETTABSTOPS
	dwBase=GetDialogBaseUnits();
	cx=((rc.right-rc.left) * 4)/LOWORD(dwBase);

	88 Prepare for Undo on Cancel
	89 Change Update Options
	90 Update Links
	91 Cancel Links
	92 Change Links

	93 Additional OLE Client Functions
	94 Object Creation
	95 Object Handling
	96 Server-Related Functions
	97 Miscellaneous

	Appendix A: Definitions
	Appendix B: Guide to OLE Code in Patron
	B.1 Registration Database Helpers: REGISTER.C, REGISTER.H
	B.2 Resources: OCLIENT.RC
	B.3 Utility Functions: OLELIB.C
	B.4 VTBL Constructors/Destructors: OLEVTBL.C
	B.5 The DOCUMENT Structure and PSZOLE: OLEDOC.C
	B.6 STREAM and Default Methods: OLESTREA.C
	B.7 OBJECT Manager: OLEOBJ.C
	B.8 OBJECT Manipulations: OLEOBJ.C
	B.9 Insert Object Dialog: OLEINS.C
	B.10 Menu Manipulations: OLEMENU.C
	B.11 Updating Links: OLELOAD.C
	B.12 Links Dialog: OLELINK1.C and OLELINK2.C

