
x

.

.

.

.

.

.

.

.

.

.

.

< >

< >

GUSI Reference ACKNOWLEDGEMENTS

communication

domains

chdir getcwd

symlink readlink

1. Introduction.

Files

Unix

Appletalk

PPC

Internet

2. Copying.

3. Design Objectives.

4. Acknowledgements.

GUSI MPW

MPW

ADSP DDP

PPC Toolbox

TCP UDP MacTCP

GUSI UNIX

UNIX

GUSI

GUSIINET.cp GUSITCP.cp GUSIUDP.cp

:Headers:

1 1

is an extension and partial replacement of the runtime library. Its main

objective is to provide a more or less simple and consistent interface across the following

:

Ordinary Macintosh �les and pseudo devices.

Memory based communication within a single machine (This name exists for historical

reasons).

(and possibly in the future) communication over a network.

Local and remote connections with the System 7

and connections over .

Additionally, adds some library calls dealing with �les which were missing, like (), (),

(), and (), and changes a few other library calls to behave more like their counterparts.

Copyright
c
1992 Matthias Neeracher

Permission is granted to anyone to use this software for any purpose on any computer system, and to

redistribute it freely, subject to the following restrictions:

The author is not responsible for the consequences of use of this software, no matter how awful,

even if they arise from defects in it.

The origin of this software must not be misrepresented, either by explicit claim or by omission.

Altered versions must be plainly marked as such, and must not be misrepresented as being the

original software.

was developed according to at least three mutually con
icting standards:

The de�nition of the existing C library.

The behavior of the corresponding UNIX calls.

The author's judgement, prejudices, laziness, and limited resources.

In general, the behavior of the corresponding UNIX library call was implemented, since this faciliates porting

UNIX utilities to the Macintosh.

I would like to thank all who have agreed to beta test this code and who have

provided feedback.

The TCP/IP code in , , and is derived from a socket library written

by Charlie Reiman creiman@ncsa.uiuc.edu , which in turn is based on code written by Tom Milligan

milligan@madhaus.utcs.utoronto.ca .

The header �les in the subdirectory are borrowed from BSD Unix, therefore: This product

includes software developed by the University of California, Berkeley and its contributors.

Every capitalized word in this documentation might be a trademark of somebody. Everything relating to

Macs is probably a trademark of Apple. UNIX is a trademark of AT&T. AT&T is a modem initialization

command.

x

< >

FSSpec

ioctl

before

5. Installing and using GUSI.

6.

7.

8.

GUSI Reference INSTALLING AND USING GUSI

GUSI

GUSI

BuildProgram Install Enter

{CIncludes} {CLibraries}

GUSI

GUSI.h

TFileSpec.h

dirent.h

sys/stat.h

netdb.h

netinet/in.h

sys/errno.h

sys/ioctl.h

sys/socket.h

sys/types.h

sys/uio.h

``{CLibraries}GUSI.o''

``{CLibraries}GUSI_F.o''

5 2

This section discusses how you can install on your disk and use

it for your programs.

To install , change in the MPW Shell to its directory and type:

This will install all necessary header �les in , and the library �le in .

To use , include one or more of the following header �les in your program:

The main �le. This includes almost everything else.

manipulation routines.

Routines to access all entries in a directory.

Getting information about �les.

Looking up TCP/IP host names.

The address format for TCP/IP sockets.

The errors codes returned by GUSI routines.

Codes to pass to ().

Data types for socket calls.

More data types.

Data types for scatter/gather calls.

Additionally, you have to link your program with either , if you are using

sockets, or , if you are using only the �le system component. It's important that

these �les appear all other libraries. You will get lots of warning messages about duplicate de�nitions,

but that's ok (Which means I can't do anything about it).

; ;

x

�

MacTCP

GUSI

GUSI

GUSI Reference PROMPTING THE USER FOR AN ADDRESS

9. Overview.

10. Creating and destroying sockets.

11. int int int int

12. void int

13. Prompting the user for an address.

errno

EBADF

ENOMEM

EINTR

ENOTCONN

socket close

socket af type protocol

af

AF UNIX

AF INET

AF APPLETALK

AF PPC

type

SOCK STREAM

SOCK DGRAM

protocol

EINVAL af

EMFILE

close fd

choose

9 3

This section discusses the routines common to all, or almost all communication domains.

These routines return 1 if an error occurred, and set the variable to an error code. On success, the

routines return 0 or some positive value.

Some common error codes are:

The descriptor number you passed doesn't refer to a valid �le or socket.

Some memory error occurred.

The user interrupted a lengthy operation by pressing Command-Period.

The socket is not connected and must be connected for this operation.

A socket is created with () and destroyed with ().

() creates an endpoint for communication and returns a

descriptor. speci�es the communication domain to be used. Valid values are:

Communication internal to a single Mac.

TCP/IP, using .

Appletalk, using ADSP.

The Program-to-Program Communication Toolbox.

speci�es the semantics of the communication. The following two types are available:

A two way, reliable, connection based byte stream.

Connectionless, unreliable messages of a �xed maximum length.

would be used to specify an alternate protocol to be used with a socket. In , however, this

parameter is always ignored.

Error codes:

The you speci�ed doesn't exist.

The descriptor table is full.

() removes the access path associated with the descriptor, and closes the �le or socket

if the last access path referring to it was removed.

To give the user the opportunity of entering an address

for a socket to be bound or connected to, the () routine was introduced in . This routine has no

counterpart in UNIX implementations.

x

� � � �

�

� �

; ; ; ; ; ;

s; ;

s;

s; ;

GUSI Reference ESTABLISHING CONNECTIONS BETWEEN SOCKETS

14. int int int char void int void int

15. Establishing connections between sockets.

16. int int void int

17. int int int

18. int int void int

choose domain type prompt constraint
ags name nlen

domain

socket type

prompt constraint

ags

CHOOSE DEFAULT name

CHOOSE NEW bind

connect

name CHOOSE DEFAULT

EINVAL
ags

CHOOSE DEFAULT

EINTR

bind listen

accept bind

connect

connect

bind name namelen

choose

EAFNOSUPPORT name

EADDRINUSE

listen qlen qlen

accept addr addrlen on a new socket

addr NULL

select reading

ENOTCONN listen

EWOULDBLOCK

14 4

()

puts up a modal dialog prompting the user to choose an address. speci�es the communication do-

main, like in . may be used by future communication domains to further di�erentiate within a

domain, but is ignored by current domains. is a message that will appear in the dialog.

may be used to restrict the types of acceptable addresses (For more information, consult the section of the

communication domain). The following two are de�ned for most socket types:

O�er the contents passed in as the default choice.

Prompt for a new address, suitable for passing to (). Default is prompting for

an existing address, to be used by ().

on input contains a default address if is set. On output, it is set to the address

chosen.

Error codes:

One of the is not (yet) supported by this communications domain. This error

is never reported for , which might get silently ignored.

The user chose \Cancel" in the dialog.

Before you can transmit data on a stream socket,

it must be connected to a peer socket. Connection establishment is asymmetrical: The server socket registers

its address with (), calls () to indicate its willingness to accept connections and accepts them by

calling (). The client socket, after possibly having registered its address with () (This is not

necessary for all socket families as some will automatically assign an address) calls () to establish a

connection with a server.

It is possible, but not required, to call () for datagram sockets.

() binds a socket to its address. The format of the address is

di�erent for every socket family. For some families, you may ask the user for an address by calling ().

Error codes:

speci�es an illegal address family for this socket.

There is already another socket with this address.

() turns a socket into a listener. determines how many sockets can

concurrently wait for a connection, but is ignored for almost all socket families.

() accepts a connection for a socket and

returns the descriptor of the new socket. If is not , the address of the connecting socket will be

assigned to it.

You can �nd out if a connection is pending by calling () to �nd out if the socket is ready for .

Error codes:

You did not call () for this socket.

The socket is nonblocking and no socket is trying to connect.

GUSI

x

�

�

�

f

� �

� �

g

�

� � �

�

f

� �

� �

� � �

� �

� �

g

s; ;

s; ;

s; ;

= =

= =

s; ; ;

s; ; ; ; ;

s; ;

= =

= =

= =

= =

= =

GUSI Reference TRANSMITTING DATA BETWEEN SOCKETS

19. int int void int

20. Transmitting data between sockets.

21. int int char unsigned

22. int int struct int

struct

int

23. int int void int int

24. int int void int int void int

25. int int struct int

struct

int

struct

int

int

connect addr addrlen

addr connect

EINPROGRESS select

writing

EAFNOSUPPORT name

EISCONN

EADDRNOAVAIL

ECONNREFUSED

EINPROGRESS

write writev

send sendto sendmsg read readv recv recvfrom

recvmsg

read bu�er bu
en bu
en read

read

EWOULDBLOCK

readv iovec iov count

count iov

iovec

iovec

caddr t iov base

iov len

recv bu�er bu
en
ags read
ags

MSG OOB recv

recvfrom bu�er bu
en
ags from fromlen

recv from NULL

recvmsg msghdr msg
ags

readv recvfrom msghdr

msghdr

caddr t msg name from recvfrom

msg namelen fromlen recvfrom

iovec msg iov

msg iovlen msg iov

caddr t msg accrights

msg accrightslen

19 5

() tries to connect to the socket whose address is in

. If the socket is nonblocking and the connection cannot be made immediately, () returns

. You can �nd out if the connection has been established by calling () to �nd out if

the socket is ready for .

Error codes:

speci�es an illegal address family for this socket.

The socket is already connected.

There is no socket with the given address.

The socket refused the connection.

The socket is nonblocking and the connection is being established.

You can write data to a socket using (), (),

(), (), or (). You can read data from a socket using (), (), (), (),

or ().

() reads up to bytes from the socket. () for

sockets di�ers from () for �les mainly in that it may read fewer than the requested number of bytes

without waiting for the rest to arrive.

Error codes:

The socket is nonblocking and there is no data immediately available.

() performs the same action, but scatters the input data

into the bu�ers of the narray, always �lling one bu�er completely before proceeding to the next.

is de�ned as follows:

; Address of this bu�er

; Length of the bu�er

;

() is identical to (), except for the

parameter. If the
ag is set for a stream socket that supports out-of-band data, () reads

out-of-band data.

() is the equivalent

of () for unconnected datagram sockets. If is not , it will be set to the address of the sender

of the message.

() is the most general routine, combining the

possibilities of () and (). is de�ned as follows:

; Like in ()

; Like in ()

; Scatter/gather array

; Number of elements in

; Access rights sent/received. Not used in

;

;

x

�

�

�

� � �

�

� � � �

� � �

� � �

� � �

� � �

� � �

� �

s; ;

s; ;

s; ; ;

s; ; ; ; ;

s; ;

; ; ; ;

= =

n; = n =

n; = n =

n; = n =

s; ;

GUSI Reference GETTING AND CHANGING PROPERTIES OF SOCKETS

26. int int char unsigned

27. int int struct int

28. int int void int int

29. int int void int int void int

30. int int struct int

31. I/O multiplexing.

32. int int struct

33.

34. Getting and changing properties of sockets.

35. int int void int

write bu�er bu
en bu
en

read write

EWOULDBLOCK

writev iovec iov count

count iov

send bu�er bu
en
ags write
ags

MSG OOB send

sendto bu�er bu
en
ags to tolen

send

to

sendmsg msghdr msg
ags writev

sendto

select width fd set readfds fd set writefds fd set exceptfds timeval timeout

readfs writefs exceptfs

width

select

timeout NULL

timeout NULL select timeval

timeout readfds writefds exceptfds NULL

EBADF

FD ZERO fds fds

FD SET fds fds

FD CLR fds fds

FD ISSET fds fds

getsockname getpeername

ioctl fcntl getsockopt setsockopt

dup dup2

getsockname name namelen name

namelen name getsockname

26 6

() writes up to bytes to the socket. As opposed

to (), () for nonblocking sockets always blocks until all bytes are written or an error occurs.

Error codes:

The socket is nonblocking and data can't be immediately written.

() performs the same action, but gathers the output

data from the bu�ers of the narray, always sending one bu�er completely before proceeding to the

next.

() is identical to (), except for the

parameter. If the
ag is set for a stream socket that supports out-of-band data, () sends

an out-of-band message.

() is the equivalent of

() for unconnected datagram sockets. The message will be sent to the socket whose address is given in

.

() combines the possibilities of () and

().

()

examines the I/O descriptors speci�ed by the bit masks , , and to see if they are ready

for reading, writing, or have an exception pending. is the number of signi�cant bits in the bit mask.

() replaces the bit masks with masks of those descriptors which are ready and returns the total number

of ready descriptors. , if not , speci�es the maximum time to wait for a descriptor to become

ready. If is , () waits inde�nitely. To do a poll, pass a pointer to a zero value

in . Any of , , or may be given as if no descriptors are of interest.

Error codes:

One of the bit masks speci�ed an invalid descriptor.

The descriptor bit masks can be manipulated with the following macros:

(); Clear all bits in

(); Set bit in

(); Clear bit in

(); Return 1 if bit in is set, else 0

You can obtain the address of a socket and

the socket it is connected to by calling () and () respectively. You can query and

manipulate other properties of a socket by calling (), (), (), and (). You can

create additional descriptors for a socket by calling () or ().

() returns in the address the socket is bound

to. should be set to the maximum length of and will be set by () to the actual

length of the name.

GUSI

GUSI

x

� � �

� �

�

�

�

� �

�

s; ;

d; ;

s; ;

s; ; ; ;

s; ; ; ;

;

GUSI Reference GETTING AND CHANGING PROPERTIES OF SOCKETS

36. int int void int

37. int int unsigned int long

long

38. int int unsigned int int

39. int int int int char int

40. int int int int char int

41. int int

42. int int int

getpeername name namelen name

namelen name

getpeername

ioctl request argp

request

FIONBIO

FIONREAD argp

EOPNOTSUPP request

fcntl cmd arg

cmd

F DUPFD arg

F GETFL

F SETFL arg

FNDELAY

EOPNOTSUPP cmd

getsockopt level optname optval optlen

setsockopt level optname optval optlen

dup fd fd

dup2 oldfd newfd newfd oldfd

36 7

() returns in the address of the socket that

this socket is connected to. should be set to the maximum length of and will be set by

() to the actual length of the name.

() performs various operations on the socket,

depending on the . The following codes are valid for all socket families:

Make the socket blocking if the pointed to by argp is 0, else make it nonblocking.

Set to the number of bytes waiting to be read.

Error codes:

The operation you requested with is not supported by this socket family.

() provides additional control over a socket. The following

values of are de�ned for all socket families:

Return a new descriptor which refers to the same socket.

Return descriptor status
ags.

Set descriptor status
ags to .

The only status
ag implemented is which is true if the socket is nonblocking.

Error codes:

The operation you requested with is not supported by this socket family.

() is used to request information

about sockets. It is not implemented in .

() is used to set options

associated with a socket. It is not implemented in .

() returns a new descriptor referring to the same socket as . The old and new descriptors

are indistinguishible. The new descriptor will always be the smallest free descriptor.

() closes if it was open and makes it a duplicate of . The old

and new descriptors are indistinguishible.

= =

= =

x

f

� �

� �

g

GUSI Reference ROUTINES SPECIFIC TO THE FILE SYSTEM

43. Detail Description.

44. File system calls.

45. Di�erences to generic behavior.

46.

47.

48.

typedef struct

short

49.

50.

51. Routines speci�c to the �le system.

EOPNOTSUPP

socket

bind

listen

accept

connect

getsockname

getpeername

getsockopt

setsockopt

will

recv

recvfrom

recvmsg

send

sendto

sendmsg

choose name CHOOSE DIR

choose

constraint

numTypes

SFTypeList types

sa constr �le

select always

never

ioctl fcntl

43 8

This section discusses for each socket domain the routines that behave

di�erent from their description in the previous section and a few calls speci�c to one domain.

Files are unlike sockets in many respects: Their length is never changed by

other processes, they can be rewound. There are also many calls which are speci�c to �les.

The following calls make no sense for �les and return an error of :

()

()

()

()

()

()

()

()

()

The following calls work, but might be frowned upon by your friends (besides, UNIX systems

generally wouldn't like them):

()

()

()

()

()

()

() returns zero terminated C strings in . It accepts an additional
ag . If

this is set, () will select directories instead of �les.

You may restrict the �les presented for choosing by passing a pointer to the following structure for the

argument:

; Number of legitimate �le types

; The types, like 'TEXT'

;

() will give boring results. File descriptors are considered ready to read or write, and

give exceptions.

() and () don't support manipulating the blocking state of a �le descriptor or reading the

number of bytes available for reading, but will accept lots of other requests|Check with your trusty MPW

C documentation.

In this section, you'll meet lots of good old friends.

MPW

UNIX

;

= =

= =

= =

= =

= =

= =

= =

= =

;

;

; ;

x

� �

f

� �

� �

� �

� �

� �

� �

� �

� �

g

� �

�

�

�

GUSI Reference ROUTINES SPECIFIC TO THE FILE SYSTEM

52. int char struct struct

struct

short

short

short

long

long

53.

54. int char struct

55. int int struct

56. int int

57. long int long int

58. int const char

59. int const char

stat path stat buf stat

stat

dev t st dev

ino t st ino

u short st mode

st nlink

st uid

st gid

dev t st rdev

o� t st size

time t st atime st mtime

time t st mtime

time t st ctime

st blksize

st blocks

st mode

S IFREG

S IFDIR

S IFCHR

S IFSOCK

lstat path stat buf stat path lstat

fstat fd stat buf stat

fstat

isatty fd fd

lseek ESPIPE

remove �lename �lename

unlink �lename remove unlink

52 9

() returns information about a �le. is de�ned as

follows:

; Volume reference number of �le

; File or directory ID

; Type and permission of �le

; Always 1

; Set to 0

; Set to 0

; Set to 0

;

; Set to

;

;

;

;

;

is composed of a �le type and of �le permissions. The �le type may be one of the following:

A regular �le.

A directory.

A console �le under MPW or SIOW.

A �le representing a UNIX domain socket.

Permissions consist of an octal digit repeated three times. The three bits in the digit have the following

meaning:

4 File can be read.

2 File can be written.

1 File can be executed, i.e., its type is `APPL', `MPST' or `TEXT'

() works just like (), but if is a symbolic link, ()

will return information about the link and not about the �le it points to.

() is the equivalent of () for descriptors representing open �les.

While it is legal to call () for sockets, the information returned is not really interesting.

() returns 1 if represents a terminal (i.e. is connected to "Dev:StdIn" and the like),

0 otherwise.

() works the same as the routine, and will return if called

for a socket.

() removes the named �le. If is a symbolic link, the link will

be removed and not the �le.

() is identical to (). Note that on the Mac, () on open

�les behaves di�erently from .

;

;

;

; ;

;

; ;

;

MPW

MPW

UNIX

x

� �

�

�

� �

� �

� �

�

�

�

� �

GUSI Reference DIFFERENCES TO GENERIC BEHAVIOR

60. int const char const char

61. int const char int

62. int char

63. int const char unsigned int long

64. int char char

65. int char char int

66. int char

67. int char

68. int char

69. char char int

70. Unix domain sockets.

71. Di�erences to generic behavior.

rename oldname newname oldname

newname

open
ags
ags

O RDONLY

WR ONLY

O RDWR

O APPEND

O RSRC

O CREAT

O EXCL O CREAT

O TRUNC

O ALIAS

creat �lename open �lename O WRONLY O TRUNC O CREAT

faccess �lename cmd arg

chdir

symlink linkto linkname linkname

linkto

readlink path buf bufsiz buf path

mkdir path

rmdir path

chdir path

getcwd buf size buf

NULL size malloc

ENAMETOOLONG size

ENOMEM buf NULL malloc

60 10

() renames and/or moves a �le.

and must specify the same volume, but as opposed to the routine, they may specify di�erent

folders.

() opens a named �le. The consist of one of the following modes:

Open for reading only.

Open for writing only.

Open for reading and writing.

Optionally combined with one or more of:

The �le pointer is set to the end of the �le before each write.

Open resource fork.

If the �le does not exist, it is created.

In combination with , return an error if �le already exists.

If the �le exists, its length is truncated to 0; the mode is unchanged.

If the named �le is a symbolic link, open the link, not the �le it points to (This is

most likely an incredibly bad idea).

() is identical to (+ +).

() works the same as the correspond-

ing routine, but respects calls to () for partial �lenames.

() creates a �le named that contains an alias

resource pointing to . The created �le should be indistinguishible from an alias �le created by the

System 7 Finder. Note that aliases bear only super�cial similiarities to symbolic links, especially once

you start renaming �les.

() returns in the name of the �le that points

to.

() creates a new directory.

() deletes an empty directory.

() makes all future partial pathnames relative from this directory.

() returns a pointer to the current directory pathname. If is

, bytes will be allocated using ().

Error codes:

The pathname of the current directory is greater than .

was and () failed.

This domain is quite regular and supports all calls that work on any

domain, except for out-of-band data.

GUSI

GUSI

= =

= =

= =

= =

= =

= =

= =

= =

= =

= =

x

f

� �

� �

g

f

� �

� �

g

f

� �

� �

g

f

� �

� �

g

f

� �

� �

g

GUSI Reference DIFFERENCES TO GENERIC BEHAVIOR

72.

struct

short

char

73.

74. Appletalk sockets.

75. Di�erences to generic behavior.

76.

struct

short

77.

struct

short

78.

typedef struct

short

79. PPC sockets.

80. Di�erences to generic behavior.

81.

struct

short

sockaddr un

sun family AF UNIX

sun path

choose

sockaddr atlk

family AF APPLETALK

AddrBlock addr

bind connect bind

connect

returns

sockaddr atlk sym

family ATALK SYMADDR

EntityName name

choose

constraint

numTypes

NLType types

sa constr atlk

sockaddr ppc

family AF PPC

LocationNameRec location

PPCPortRec port

72 11

Addresses are �le system pathnames. complies to the Unix implementation in that it doesn't

require the name to be terminated by a zero. Names that are generated by , however, will always be

zero terminated (but the zero won't be included in the count).

; Always

[108]; A pathname to a �le

;

() works both for existing and new addresses, and no restriction is possible (or necessary).

Currently, only stream sockets (including out-of-band data) are supported.

Two classes of addresses are supported for AppleTalk. The main address type speci�es numeric

addresses.

; Always

; The numeric AppleTalk socket address

;

For () and (), however, you are also allowed to specify symbolic addresses. () registers

an NBP address, and () performs an NBP lookup. Registered NBP adresses are automatically

released when the socket is closed. No call ever a symbolic address.

; Always

; The symbolic NBP address

;

() currently only works for existing sockets. The peer must have registered a symbolic address.

To restrict the choice of addresses presented, pass a pointer to the following structure for the

argument:

; Number of allowed types

; List of types

;

These provide authenticated stream sockets without out-of-band data.

PPC socket addresses have the following format:

; Always

; Check your trusty Inside Macintosh

;

;

= =

= =

= =

= =

= =

= =

= =

= =

= =

; ;

x

f

g

f

g

f

� �

� �

� �

� �

g

f

� � �

�� � �

� �

� �

�� � �

g

� �

� �

�

GUSI Reference ROUTINES SPECIFIC TO TCP/IP SOCKETS

82.

typedef struct

83.

84. Internet sockets.

85. Di�erences to generic behavior.

86.

struct

struct

struct

char

87. Routines speci�c to TCP/IP sockets.

88.

struct

char

char

int

int

char

89. struct char

90. struct struct int int

91. char struct

choose

constraint

Str32 type

sa constr ppc

connect

in addr

u long s addr

sockaddr in

u char sin len

u char sin family AF INET

u short sin port

in addr sin addr

sin zero

hostent

h name

h aliases

h addrtype AF INET

h length

h addr list

hostent gethostbyname name name

NULL

hostent gethostbyaddr in addr addrP

NULL

inet ntoa in addr inaddr

82 12

() currently only works for existing sockets. To restrict the choice of addresses presented, pass

a pointer to the following structure for the argument:

;

;

() will block even if the socket is nonblocking. In practice, however, delays are likely to be

quite short, as it never has to block on a higher level protocol and the PPC ToolBox will automatically

establish the connection.

These are the real thing for real programmers. Out-of-band data only works

for sending. Both stream (TCP) and datagram (UDP) sockets are supported.

Internet socket addresses have the following format:

;

;

; Ignored

; Always

; Port number

; Host ID

[8];

;

There are several routines to convert between numeric

and symbolic addresses.

Hosts are represented by the following structure:

; O�cial name of the host

; A zero terminated array of alternate names for the host

; Always

; The length, in bytes, of the address

; A zero terminated array of network addresses for the host

;

() returns an entry for the host with the given or

if a host with this name can't be found.

() returns an entry for the host

with the given address or if a host with this name can't be found. The last two parameters are

ignored.

() converts an internet address into the usual numeric string

representation (e.g., 0x8184023C is converted to "129.132.2.60")

GUSI

GUSI

GUSI

GUSI Reference BLOCKING CALLS

x

x x

;

= =

= =

= =

= =

;

= =

= =

= =

;

; ; x x

; ;

; ;

x

�

�

�

f

� � �

�� � �

� �

� � �

g

� � �

f

� � �

�� � �

� �

g

� �

�

�

� �

� �

92. struct char

93. int char long

94.

struct

char

char

int

char

95. struct char char

96.

struct

char

char

int

97. struct char

98. Miscellaneous.

99. BSD memory routines.

100. void void int

101. void int int

102. void void void int

103. int void void int

104. Blocking calls.

in addr inet addr address

inet addr inet ntoa

gethostname machname bu
en bu�er

servent

s name

s aliases NULL

s port

s proto

servent getservbyname name proto

protoent

p name

p aliases NULL

p proto

protoent getprotobyname name

bzero from len len from

b�ll from len len from

bcopy from to len len from to

bcmp s1 s2 len len s1 len s2

92 13

() converts a numeric string into an internet address (If is a

valid address, (())).

() gets our name into .

Services are represented by the following data structure:

; o�cial service name

; alias list (always for)

; port number

; protocol to use ("tcp" or "udp")

;

() �nds a named service. The current

implementation relies on a hardcoded table of services, which is not very nice.

Protocols are represented by the following data structure:

; o�cial protocol name

; alias list (always for)

; protocol number

;

() �nds a named protocol. This call is rather unexcit-

ing.

() zeroes bytes, starting at .

() �lls bytes, starting at with .

() copies bytes from to .

() compares bytes at against bytes at , returning

zero if the two areas are equal, nonzero otherwise.

Since the Macintosh doesn't have preemptive task switching, it is important that

other applications get a chance to run during blocking calls. This section discusses the mechanism uses

for that purpose.

GUSI

SIOW

x

f

� �

� �

� �

� �

� �

� �

� �

� �

� �

g

�

�

� �

GUSI Reference BLOCKING CALLS

;

= =

; = =

; = =

; = =

; = =

; = =

; = =

; = =

= =

;

105.

typedef enum

typedef int long

106.

int

void

107.

int

void

108.

typedef void

typedef

extern

spin msg SP MISC

SP SELECT

SP NAME

SP ADDR

SP STREAM READ

SP STREAM WRITE

SP DGRAM READ

SP DGRAM WRITE

SP SLEEP

spin msg

GUSISpinFn spin msg msg param

GUSISetSpin GUSISpinFn routine

GUSISpinFn GUSIGetSpin

GetNextEvent WaitNextEvent

GUSIEvtTable GUSISetEvents

GUSISetEvents GUSIEvtTable table

GUSIEvtHandler GUSIGetEvents

GUSIEvtTable GUSIEvtHandlers

GetNextEvent WaitNextEvent

GUSIEvtHandler EventRecord ev

GUSIEvtHandler GUSIEvtTable

GUSIEvtHandler GUSISIOWEvents

105 14

While a routine is waiting for a blocking call to terminate, it repeatedly calls a spin routine with the

following parameters:

some weird thing, usually just return immediately if you get this

in a select call

getting a host by name

getting a host by address

Stream read call

Stream write call

Datagram read call

Datagram write call

sleeping, passes ticks left to sleep

;

() () ;

You can modify the spin routine with the following calls:

();

() ;

Usually, however, the default spin routine will do what you want: It spins a cursor and occasionally

calls () or (). By default, only mouse down and suspend/resume events are

handled, but you can change that by passing your own to ().

();

();

A is a table of , indexed by event code. Presence of a non-nil entry

in the table will cause that event class to be allowed for () or (). includes

one event table to be used with the library.

()();

[24];

[];

x

.

.

.

.

.

C C

GUSI Reference FSSPEC ROUTINES

GUSI

GUSI

GUSI_P.h

GUSIDispatch.cp GUSISocket.cp

GUSIUnix.cp

GUSI GUSI

TFileSpec.h

FSSpecs

GUSI MAX DOMAINS

SocketDomain choose open socket

open

Socket recvfrom

sendto read write

109. Advanced techniques.

110. Building subset libraries.

111. Adding your own communication families.

112. FSSpec routines.

109 15

This section discusses building specialized subset libraries, adding your

own communication families, and some routines for manipulating .

Unfortunately, even if you use only one socket family, the MPW

Linker has to include code for all of them, as it is impossible to determine which of them will be used

beforehand. To remedy this situation, you might want to build a library conating only a subset of all �les.

The make�le contains already a few examples of such subsets.

It is rather easy to add your own socket types to

:

Pick an unused number between 6 and to use for your address family.

Include .

Write a subclass of and override () and either () or (). If you

override (), you have to write your own routine to create sockets of this type.

Write a subclass of and override whatever you want. If you override () and

(), () and () are automatically de�ned.

For more information, study the code in and , which imple-

ment the generic socket code. The easiest actual socket implementation to study is probably

.

If you need to do complicated things with the Mac �le system, the normal

routines are probably not su�cient, but you still might want to use the internal mechanism uses.

This mechanism is provided in the header �le , which de�nes both and ++ interfaces.

#.

x

113. Known problems.

O NRESOLVE

O ALIAS

O NRESOLVE

GUSI Reference KNOWN PROBLEMS113 16

, as introduced in the E.T.O 8 Prerelease libraries, is interpreted the same way

as , i.e. intermediate aliases are silently resolved. On the other hand, I can't think of a

good reason why anybody would use .

x GUSI Reference REFERENCES

114. References.

Appl85

Appl88

Crow13

LMKQ89

Stev90

Stev92

Sun88

Inside Macintosh Volume I{VI

Macintosh Programmer's Workshop C

The Book of Lies

The Design and Implementation of the 4.3BSD UNIX Operating System

UNIX Network Programming

Advanced Programming in the UNIX Environment

SunOS Reference Manual

114 17

The following books might provide you with more information about various aspects.

[] Apple Computer, Inc., , Addison Wesley, 1985{91

[] Apple Computer, Inc., , 1988

[] Aleister Crowley, , 1913

[] Samuel J. Le�er, Marshall Kirk McKusick, Michael J. Karels, John S. Quarterman,

, Addison

Wesley, 1989

[] W. Richard Stevens, , Prentice Hall, 1990

[] W. Richard Stevens, , Prentice

Hall, 1992

[] Sun Microsystems, Inc., , 1988

x

115. Index.

GUSI Reference INDEX115 18

: 15, 18, 46.

: 18, 19, 76.

: 76.

: 92.

: 18, 19.

: 90.

: 11.

: 11, 76.

: 11, 86, 88.

: 11, 81.

: 11, 72.

: 38, 63.

: 37.

: 77.

: 103.

: 102.

: 101.

: 14, 15, 16, 46, 77.

: 52, 54, 55, 65, 69.

: 21, 23, 24, 26, 28, 29, 93.

: 21, 23, 24, 26, 28, 29, 93.

: 65.

: 100.

: 22, 25.

: 1, 63, 68.

: 13, 14, 16, 48, 73, 78, 82, 111.

: 14.

: 48.

: 14.

: 10, 12.

: 38, 63.

: 14, 15, 19, 46, 77, 83.

: 14, 48, 78, 82.

: 22, 27.

: 62.

: 52.

: 14.

: 34, 41.

: 34, 42.

: 16.

: 19.

: 16, 19.

: 9, 32.

: 19.

: 19.

: 9, 14.

: 11, 14.

: 19.

: 11.

: 69.

: 9, 69.

: 9, 18.

: 77.

: 37, 38, 46.

: 9.

: 57.

: 108.

: 108.

: 18, 21, 26.

: 32.

: 32.

: 38.

: 38.

: 38.

: 63.

: 76, 77, 81.

: 34, 38, 50.

: 12, 41, 55, 56.

: 33.

: 33.

: 33.

: 32.

: 33.

: 33.

: 58, 59, 62, 63.

: 37.

: 37.

: 14, 23, 24, 25, 28, 29, 30, 61.

: 38.

: 24, 25, 100, 101, 102.

: 24, 25.

: 7.

: 109.

: 55.

: 1, 69.

: 90.

: 89.

: 93.

: 107, 108.

: 34, 36, 46.

: 97.

: 95.

: 34, 35, 46.

: 34, 39, 46.

: 111.

: 107, 108.

: 108.

: 107, 108.

accept

addr

AddrBlock

address

addrlen

addrP

af

AF APPLETALK

AF INET

AF PPC

AF UNIX

arg

argp

ATALK SYMADDR

bcmp

bcopy

b�ll

bind

buf

bu�er

bu
en

bufsiz

bzero

caddr t

chdir

choose

CHOOSE DEFAULT

CHOOSE DIR

CHOOSE NEW

close

cmd

connect

constraint

count

creat

dev t

domain

dup

dup2

EADDRINUSE

EADDRNOAVAIL

EAFNOSUPPORT

EBADF

ECONNREFUSED

EINPROGRESS

EINTR

EINVAL

EISCONN

EMFILE

ENAMETOOLONG

ENOMEM

ENOTCONN

EntityName

EOPNOTSUPP

errno

ESPIPE

ev

EventRecord

EWOULDBLOCK

exceptfds

exceptfs

F DUPFD

F GETFL

F SETFL

faccess

family

fcntl

fd

FD CLR

FD ISSET

FD SET

fd set

FD ZERO

fds

�lename

FIONBIO

FIONREAD

ags

FNDELAY

from

fromlen

FSSpec

FSSpecs

fstat

getcwd

gethostbyaddr

gethostbyname

gethostname

GetNextEvent

getpeername

getprotobyname

getservbyname

getsockname

getsockopt

GUSI MAX DOMAINS

GUSIEvtHandler

GUSIEvtHandlers

GUSIEvtTable

x GUSI Reference INDEX115 19

: 107.

: 106.

: 107.

: 106.

: 108.

: 105, 106.

: 88.

: 88.

: 88.

: 88.

: 88.

: 88, 89, 90.

: 86, 90, 91, 92.

: 91.

: 92.

: 91, 92.

: 52.

: 7, 34, 37, 50.

: 22, 27.

: 22.

: 22.

: 22, 25, 27.

: 56.

: 100, 101, 102, 103.

: 39, 40.

: 64.

: 64.

: 15, 17, 18, 46.

: 81.

: 81.

: 57.

: 54.

: 93.

: 69.

: 66.

: 25, 30, 105.

: 25.

: 25.

: 25.

: 25.

: 25.

: 25.

: 23, 28.

: 25, 30.

: 14, 16, 19, 35, 36, 48, 77, 89, 95, 97.

: 16, 35, 36.

: 42.

: 60.

: 14.

: 78.

: 18, 24, 32, 69, 89, 90, 94, 96.

: 48, 78.

: 61, 113.

: 61.

: 61, 62.

: 61.

: 113.

: 61.

: 61.

: 61.

: 61, 62.

: 62.

: 52.

: 42.

: 60.

: 61, 62, 111.

: 39, 40.

: 39, 40.

: 39, 40.

: 96.

: 96.

: 96.

: 105.

: 52, 54, 65, 66, 67, 68.

: 81.

: 81.

: 14.

: 95.

: 11.

: 96, 97.

: 17.

: 20, 21, 23, 26, 111.

: 32.

: 32.

: 1, 65.

: 20, 22, 25.

: 20, 23, 24, 47.

: 20, 24, 25, 47, 111.

: 20, 25, 47.

: 58, 59.

: 60.

: 37.

: 67.

: 106.

: 86.

: 94.

: 53.

: 53.

: 53.

: 53.

GUSIGetEvents

GUSIGetSpin

GUSISetEvents

GUSISetSpin

GUSISIOWEvents

GUSISpinFn

h addr list

h addrtype

h aliases

h length

h name

hostent

in addr

inaddr

inet addr

inet ntoa

ino t

ioctl

iov

iov base

iov len

iovec

isatty

len

level

linkname

linkto

listen

location

LocationNameRec

lseek

lstat

machname

malloc

mkdir

msg

msg accrights

msg accrightslen

msg iov

msg iovlen

msg name

msg namelen

MSG OOB

msghdr

name

namelen

newfd

newname

nlen

NLType

NULL

numTypes

O ALIAS

O APPEND

O CREAT

O EXCL

O NRESOLVE

O RDONLY

O RDWR

O RSRC

O TRUNC

O WRONLY

o� t

oldfd

oldname

open

optlen

optname

optval

p aliases

p name

p proto

param

path

port

PPCPortRec

prompt

proto

protocol

protoent

qlen

read

readfds

readfs

readlink

readv

recv

recvfrom

recvmsg

remove

rename

request

rmdir

routine

s addr

s aliases

S IFCHR

S IFDIR

S IFREG

S IFSOCK

x GUSI Reference INDEX115 20

: 94.

: 94.

: 94.

: 78.

: 48.

: 82.

: 18, 19, 32, 49.

: 20, 28, 29, 47.

: 20, 30, 47.

: 20, 29, 30, 47, 111.

: 94, 95.

: 34, 40, 46.

: 48.

: 86.

: 86.

: 86.

: 86.

: 86.

: 69.

: 11.

: 11.

: 76.

: 77.

: 86.

: 81.

: 72.

: 111.

: 10, 11, 14, 46, 111.

: 111.

: 105.

: 105.

: 105.

: 105.

: 105.

: 105.

: 105.

: 105.

: 105.

: 105.

: 52.

: 52.

: 52.

: 52.

: 52.

: 52.

: 52.

: 52, 53.

: 52.

: 52.

: 52.

: 52.

: 52.

: 52, 54, 55.

: 82.

: 72.

: 72.

: 1, 64.

: 103.

: 103.

: 107.

: 52.

: 32.

: 32.

: 29, 102.

: 29.

: 11, 14, 82.

: 48, 78.

: 86.

: 86.

: 52, 86.

: 59.

: 107, 108.

: 32.

: 61.

: 20, 26, 28, 111.

: 32.

: 32.

: 20, 27, 30.

s name

s port

s proto

sa constr atlk

sa constr �le

sa constr ppc

select

send

sendmsg

sendto

servent

setsockopt

SFTypeList

sin addr

sin family

sin len

sin port

sin zero

size

SOCK DGRAM

SOCK STREAM

sockaddr atlk

sockaddr atlk sym

sockaddr in

sockaddr ppc

sockaddr un

Socket

socket

SocketDomain

SP ADDR

SP DGRAM READ

SP DGRAM WRITE

SP MISC

SP NAME

SP SELECT

SP SLEEP

SP STREAM READ

SP STREAM WRITE

spin msg

st atime

st blksize

st blocks

st ctime

st dev

st gid

st ino

st mode

st mtime

st nlink

st rdev

st size

st uid

stat

Str32

sun family

sun path

symlink

s1

s2

table

time t

timeout

timeval

to

tolen

type

types

u char

u long

u short

unlink

WaitNextEvent

width

WR ONLY

write

writefds

writefs

writev

GUSI | Grand Uni�ed Socket Interface

Introduction

Installing and using GUSI

Overview

Detail Description

Advanced techniques

Known problems

References

Index

Section Page

. 1 1

Copying . 2 1

Design Objectives . 3 1

Acknowledgements . 4 1

. 5 2

. 9 3

Creating and destroying sockets . 10 3

Prompting the user for an address . 13 3

Establishing connections between sockets . 15 4

Transmitting data between sockets . 20 5

I/O multiplexing . 31 6

Getting and changing properties of sockets . 34 6

. 43 8

File system calls . 44 8

Di�erences to generic behavior . 45 8

Routines speci�c to the �le system . 51 8

Unix domain sockets . 70 10

Di�erences to generic behavior . 71 10

Appletalk sockets . 74 11

Di�erences to generic behavior . 75 11

PPC sockets . 79 11

Di�erences to generic behavior . 80 11

Internet sockets . 84 12

Di�erences to generic behavior . 85 12

Routines speci�c to TCP/IP sockets . 87 12

Miscellaneous . 98 13

BSD memory routines . 99 13

Blocking calls . 104 13

. 109 15

Building subset libraries . 110 15

Adding your own communication families . 111 15

FSSpec routines . 112 15

. 113 16

. 114 17

. 115 18

