
jade

jade ii

COLLABORATORS

TITLE :

jade

ACTION NAME DATE SIGNATURE

WRITTEN BY January 8, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

jade iii

Contents

1 jade 1

1.1 jade.guide . 1

1.2 jade.guide/Copying . 1

1.3 jade.guide/Introduction . 2

1.4 jade.guide/Systems Supported . 2

1.5 jade.guide/Amiga Jade . 3

1.6 jade.guide/Unix and X11 Jade . 3

1.7 jade.guide/Editor Concepts . 4

1.8 jade.guide/Key Definitions . 5

1.9 jade.guide/Modifiers . 6

1.10 jade.guide/Keys . 6

1.11 jade.guide/Example Keys . 8

1.12 jade.guide/Starting Jade . 8

1.13 jade.guide/Invocation . 9

1.14 jade.guide/Startup Options . 9

1.15 jade.guide/Startup Procedure . 11

1.16 jade.guide/Using Jade . 12

1.17 jade.guide/The Help System . 13

1.18 jade.guide/Loading and Saving Files . 14

1.19 jade.guide/Commands To Load Files . 14

1.20 jade.guide/Commands To Save Files . 15

1.21 jade.guide/Backup Files . 15

1.22 jade.guide/Auto-Saving Files . 16

1.23 jade.guide/Loading and Saving Tabs . 17

1.24 jade.guide/Automatic Mode Selection . 17

1.25 jade.guide/Embedding Lisp In Files . 18

1.26 jade.guide/Editing Buffers . 19

1.27 jade.guide/Moving Around Buffers . 20

1.28 jade.guide/Cutting And Pasting . 22

1.29 jade.guide/Using Blocks . 23

jade iv

1.30 jade.guide/Marking Blocks . 24

1.31 jade.guide/Commands on Blocks . 25

1.32 jade.guide/Rectangular Blocks . 25

1.33 jade.guide/Searching and Replacing . 26

1.34 jade.guide/Regular Expressions . 26

1.35 jade.guide/Commands for Searching . 28

1.36 jade.guide/Commands for Replacing . 28

1.37 jade.guide/Editing Modes . 28

1.38 jade.guide/Invoking a Mode . 29

1.39 jade.guide/Generic-mode . 29

1.40 jade.guide/C-mode . 29

1.41 jade.guide/Lisp-mode . 30

1.42 jade.guide/Texinfo-mode . 31

1.43 jade.guide/Info-mode . 33

1.44 jade.guide/Using Buffers . 34

1.45 jade.guide/Displaying Buffers . 35

1.46 jade.guide/Deleting Buffers . 35

1.47 jade.guide/Other Buffer Commands . 36

1.48 jade.guide/Using Windows . 36

1.49 jade.guide/Creating Windows . 37

1.50 jade.guide/Killing Windows . 38

1.51 jade.guide/Other Window Commands . 38

1.52 jade.guide/Using the Prompt . 39

1.53 jade.guide/The Simple Prompt . 39

1.54 jade.guide/The Buffer Prompt . 39

1.55 jade.guide/Using Marks . 40

1.56 jade.guide/Compiling Programs . 41

1.57 jade.guide/Running a Compilation . 41

1.58 jade.guide/Finding Errors . 42

1.59 jade.guide/Using Grep . 43

1.60 jade.guide/Keeping ChangeLogs . 43

1.61 jade.guide/Simple Customisation . 44

1.62 jade.guide/Programming Jade . 45

1.63 jade.guide/Reporting Bugs . 45

1.64 jade.guide/Function Index . 46

1.65 jade.guide/Variable Index . 46

1.66 jade.guide/Key Index . 47

1.67 jade.guide/Concept Index . 50

jade 1 / 53

Chapter 1

jade

1.1 jade.guide

Jade

Jade is a highly flexible text editor for the Unix (with X11) and
Amiga operating systems.

This is Edition 1 of its documentation, last updated 19 April 1994
for Jade version 3.0.

Copying Distribution conditions
Introduction Brief introduction to Jade
Systems Supported The Operating Systems Jade supports
Editor Concepts Some key ideas you should understand
Key Definitions How keys are described in this manual
Starting Jade How to start the editor
Using Jade Instructions for using the editor
Programming Jade How to extend Jade -- its Lisp system
Reporting Bugs How to contact me

Function Index Menu of all documented functions
Variable Index All variables which have been mentioned
Key Index Menu of all key bindings
Concept Index Main index, references to all sections

1.2 jade.guide/Copying

Copying

Jade is distributed under the terms of the GNU General Public
License, this basically means that you can give it to anyone for any
price as long as full source code is included. For the actual legalese
see the file ‘COPYING’ in the distribution. I reserve the right to use

jade 2 / 53

a different license in future releases.

The only parts of Jade which are not my own work are the regexp
code, this is by Henry Spencer (though I have made some small
modifications) and is distributed under his conditions, and the ARexx
interface in the Amiga version which is based on ‘MinRexx’ by Radical
Eye Software.

Be aware that there is absolutely NO WARRANTY for this program, you
use it at your own risk. Obviously I hope there are no bugs, but I make
no promises reguarding the reliability of this software.

1.3 jade.guide/Introduction

Introduction

Jade is a text editor primarily designed for programmers. It is
easily customised through a Lisp-style extension language and can be
tailored to the user’s own requirements.

Jade is designed to run under a graphical windowing system, systems
currently supported are the Commodore Amiga and the X Window System
version 11 (but only under Unix).

It is the successor to the editor ‘Jed 2.10’ which I released for the
Amiga in early 1993. I have decided to rename it now that I have made a
Unix version since there is already an editor called ‘Jed’ available
(there is no connection between the two, I haven’t even looked at the
other one). "Jade" is an anagram of "A Jed", if you want an acronym you
could use "Just Another Damn Editor", if you can think of anything
better please tell me.

Jade is compatible with GNU Emacs in terms of keystrokes and command
names to a certain extent but it is not intended as a simple copy of
Emacs (indeed, when I started this I had never actually used Emacs!). I
have tried to take my favourite aspects of all the editors I have used
as well as adding features that I have not found elsewhere.
Consequently, it is very much the editor that *I* want -- you may not
find it so appealing.

The feature that the most people will dislike is that it doesn’t
support "proper" tabs. By this I mean that it expands all tabs to a
sequence of spaces when loading a file, they are not converted back to
tabs until the file is saved back to disk (though this is optional).

1.4 jade.guide/Systems Supported

Requirements

jade 3 / 53

Jade will only run on certain operating systems, this chapter
details just what it needs as well as some notes relevant to each
system.

Amiga Jade
Unix and X11 Jade

1.5 jade.guide/Amiga Jade

Amiga Jade
==========

The only real requirement for Jade running on an Amiga is that it
must run an operating system revision of at least V37 (thats V2.04) and
have about 300K free memory available.

It also needs more stack than the average Amiga application. For
normal use 20K should be okay. If you want to use the Lisp compiler 50K
would be a better bet.

It assumes that its directory is pointed to by the ‘JADE:’
assignment. This means that the main Lisp files are stored in
‘JADE:lisp/’ and the file of doc-strings is ‘JADE:DOC-strings’.

1.6 jade.guide/Unix and X11 Jade

Unix and X11 Jade
=================

Jade will only run on version 11 of X, it has absolutely no support
for character terminals or different windowing systems. As long as it
compiles it should work on your system.

One problem you might find is that the BackSpace and Delete keys
don’t work properly. As far as I have been able to find out, most X
terminals map both the BackSpace (normally at the top-right of the
alpha-keyboard) and the Delete (normally somewhere above the cursor
keys) keys to the ‘Delete’ keysym. Obviously, since I want these keys
to have different effects (1) this is no good. What I decided to do
about this was two things,

1. Use ‘xmodmap’ to map the Delete key to the ‘BackSpace’ keysym.
This may sound backwards but most programs seem to use the
‘Delete’ keysym as what I call ‘BackSpace’ so mapping as I
described doesn’t break this.

To do this, I have the following in my ‘.Xmodmap’ file

jade 4 / 53

keycode 107 = BackSpace

Note that the ‘107’ is the Delete key’s keycode on *my* keyboard,
your keyboard may, and probably will, be different.

2. In the function which binds descriptions of keystrokes to Lisp
forms, swap the meanings of the ‘BackSpace’ and ‘Delete’ keysyms.

This means that everything works okay! You can bind to Delete key
and it will work properly.

---------- Footnotes ----------

(1) BackSpace should rub out the key before the cursor and Delete
should delete the character under the cursor

1.7 jade.guide/Editor Concepts

Editor Concepts

Before I describe the editor in detail there are several concepts
which you should be familiar with. Some will be explained in more
detail later.

"buffer"
Buffers are used by the editor to store the text that you are
editing. Broadly speaking, each buffer holds the contents of one
text-file loaded into the editor (it is not necessary for each
buffer to be associated with a file, some buffers exist for other
purposes for example the ‘*jade*’ buffer is used to interact with
the Lisp system.

"current buffer"
The buffer being edited in the current window (see below), most
editor commands work on this buffer unless told otherwise.

"window"
Corresponds to a window in the window-system. Each window can
display one buffer at a single time (although a buffer may be
displayed in more than one window at once).

"current window"
Jade always keeps track of which one of its windows is active. It
is called the current window. Whenever you type a key or press a
mouse button in one of Jade’s windows, that window automatically
becomes the current window. Amongst other things, all messages
from the editor are displayed in the status line of the current
window.

"cursor"
The cursor marks your current position in the current buffer (see
above), when you type something it is inserted into the buffer
between the cursor and the character preceding it (unless you type

jade 5 / 53

a command).

"status line"
One line in a window is devoted to displaying messages from the
editor, Using Windows.

"Lisp"
The programming language which Jade uses, although the internals
of the editor are written in C, all commands are written in a
dialect of Lisp (even if the command only calls a C function).
Jade contains an interpreter, compiler and debugger for this
language. See Programming Jade.

"variable"
Variables are used to store Lisp values, each variable has a
unique name. Note that unlike many programming languages
variables in Lisp are *not* typed, the data values themselves have
a type associated with them.

"form"
A form is a single Lisp expression. For example, all of these are
forms:

foo
42
"hello"
(setq foo 200)

"command"
A command is a sequence of Lisp forms which may be called
interactively (ie, from the keyboard). It may be a key sequence
(such as ‘Ctrl-x Ctrl-f’) or a Lisp function to evaluate (such as
‘ESC x find-file’).

"regular expression"
A regular expression is a string which is used to match against
other strings. It has a special syntax which allows you to form a
kind of template against which the other strings can be matched.
They are used extensively by the editor, but you -- the user --
will mainly encounter them when searching and replacing strings in
buffers.

1.8 jade.guide/Key Definitions

Key Definitions

In this manual I have adopted a consistent notation for all
keypresses, since most editor commands are invoked via a typed
key-sequence it is very important that you can decipher this notation.

Every keypress has a set of "modifiers"; these are the keys such as
"Shift" or "Control" which don’t actually produce a character when
typed, they only effect the rest of the keyboard. Each key, then, can

jade 6 / 53

have one or more modifiers.

The actual key definition consists of zero or more hyphen-separated
modifiers, followed by a hyphen and the name of the actual key (or
event).

Some commands are triggered by a sequence of one or more of these key
definitions, press each key definition in turn to invoke the command.

Note that the case of modifiers is not important, however some of
the keys *are*, so you should always specify them in their correct case.

Modifiers Names of modifier keys
Keys Names of actual keys
Example Keys Some examples and what they mean

1.9 jade.guide/Modifiers

Modifiers
=========

"Shift"
"SFT"

The shift key.

"Ctrl"
"CTL"

The control key, or its equivalent.

"Meta"
This depends on the window-system, on X11 it is the "Mod1"
modifier, on the Amiga the "Alt" key.

"LMB"
The left mouse button.

"MMB"
The middle mouse button.

"RMB"
The right mouse button.

As well as these, there are also some others, "Mod1" to "Mod2"
represent the X11 modifiers of the same name. "Button1" to "Button5"
also correspond to their X11 conterparts (Button1 to Button3 are LMB to
RMB). For Amiga users, "Amiga" corresponds to the Amiga key (this is
the same as Mod2).

1.10 jade.guide/Keys

jade 7 / 53

Keys
====

As far as possible each single character key-definition corresponds
to where that character is on the keyboard (a is ‘a’, etc...).

When using an Amiga this should be true for *all* keys since the
Amiga’s "keymap.library" makes it easy to look up what key a character
belongs to. However, this is not so easy on X11. All of the standard
ASCII character set should be okay, but the more esoteric characters
may have to be specified by the names of their X11 keysym (without the
‘XK_’ prefix). Look in the <X11/keysymdef.h> include file for all
keysyms, for example ‘XK_question’ would have to be used for ‘?’ if the
editor didn’t treat it, and many others, specially.

Some keys which don’t follow this pattern are

"Space"
"SPC"
"SpaceBar"

The space bar.

"TAB"
The tab key.

"RET"
"Return"

The return key.

"ESC"
"Escape"

The escape key.

"BS"
"BackSpace"

The backspace key.

"DEL"
"Delete"

The delete key.

"HELP"
The help key, not all keyboards have this.

"UP"
The cursor up key.

"DOWN"
The cursor down key

"LEFT"
The cursor left key.

"RIGHT"
The cursor right key.

jade 8 / 53

"KP_Enter"
"KP_Multiply"
"KP_Divide"
"KP_Minus"
"KP_Add"
"KP_Decimal"
"KP_N"

Keys on the numeric keypad. For KP_N, N is a digit.

"Click1"
Single clicking a mouse button.

"Click2"
Double clicking a mouse button.

"Off"
Releasing a mouse button.

"Move"
Moving the mouse. This doesn’t work on X11 yet.

1.11 jade.guide/Example Keys

Example Keys
============

Some examples of proper key definitions are,

‘Ctrl-x’
Hold down Control, type x.

‘Meta-Shift-RET’
Hold down Meta and Shift, then type the Return key.

‘LMB-Click1’
Click the left mouse button once.

‘Meta-RMB-Click1’
Hold down Meta then click the right mouse button once.

1.12 jade.guide/Starting Jade

Starting Jade

This chapter describes Jade’s initialisation process. This includes
how to start it, what options it will accept and what it actually does
after being started.

jade 9 / 53

Invocation How to start the editor
Startup Options Arguments specified on the command line
Startup Procedure What happens on startup

1.13 jade.guide/Invocation

Invocation
==========

Since Jade supports two vastly different operating systems they both
need to be covered separately.

* Amiga

The normal way to start Jade on the Amiga is to type its name at
the Shell (or CLI) together with any options (see Startup Options)
you want. Note that these options are in the traditional Unix
style, a dash followed by the option name and any arguments, not
the standard AmigaDOS method.

It is also possible to invoke the editor from the Workbench,
simply double clicking on its icon will cause Jade to open its
initial window. Unfortunately there is no support for passing
arguments via Tool Types, nor is there any way to create icons
with saved files. This is largely due to the fact that I rarely
use the Workbench -- if enough people complain about this I will
probably fix it. Jade doesn’t have an icon yet, you’ll have to
make one yourself.

* Unix with X11

Jade should be started like most other Unix programs, type its
name and any arguments to a shell. It must be able to connect to
an X server (preferably the one controlling your terminal), the
‘-display’ option can be used if needed.

1.14 jade.guide/Startup Options

Startup Options
===============

The acceptable options can be split into three classes. Note that
they must be specified on the command line in order of their class.
This means that, for example, the ‘-rc’ option must be after the ‘-font’
option.

So, the general usage pattern is

jade [SYSTEM-DEPENDANT-OPTIONS] [STANDARD-OPTIONS] [LISP-OPTIONS]

jade 10 / 53

Note that the LISP-OPTIONS may include files to be loaded.

1. System dependant options.

* Options for the Amiga system.

‘-pubscreen SCREEN-NAME’
Defines the name of the public screen on which the first
window is opened. By default (or if SCREEN-NAME doesn’t
exits) the ‘Workbench’ screen is used.

‘-font FONT-STRING’
Defines the font used in the first window. FONT-STRING
is the font to use, it is the name of the font (for
example, ‘topaz.font’), followed by a hyphen and the
point size to use. For example, a FONT-STRING of
‘topaz.font-8’ gives 8-point topaz. This is the default.

* Options for X11.

There are two types of options to the X11 version of the
editor, those specified on the command line and those defined
in the resource database (ie, in your ‘.Xdefaults’ file).
Resources are looked for under two names, firstly the name
under which the editor was invoked (normally ‘jade’), if this
fails it tries again with the name ‘Jade’. Naturally, options
specified on the command line overide those in the resource
database.

‘-display DISPLAY-NAME’
Defines the name of X display to open, by default the
contents of the environment variable ‘DISPLAY’. It is a
string of the form ‘hostname:number.screen_number’.

‘-name NAME’
The name to use when looking up resource values, this
replaces the base name of the executable (normally
‘jade’).

‘-geometry GEOM-SPEC’
Specifies where to place the first window on the screen.
This is a standard X style geometry specification.

‘-fg FOREGROUND-COLOUR’
‘fg: FOREGROUND-COLOUR’ *RESOURCE*

The colour of the window’s foreground (ie, the text).

‘-bg BACKGROUND-COLOUR’
‘bg: BACKGROUND-COLOUR’ *RESOURCE*

The background colour of the window.

‘-font FONT-NAME’
‘font: FONT-NAME’ *RESOURCE*

The name of the font used for all text in the initial
window.

2. Standard options.

jade 11 / 53

‘-rc LISP-FILE’
Load the Lisp script LISP-FILE instead of the normal
initialisation script (‘init’). Warning: the editor depends
heavily on the normal file, if you change this without due
care the editor could be unusable -- no keys will be bound
and many standard functions won’t exist.

‘-v’
Print the version and revision numbers of this copy of the
editor then quit.

‘-log-msgs’
This option makes all messages which are displayed in the
status line also be written to the standard error stream.
This is sometimes useful for debugging purposes.

3. All other options are passed to the Lisp initialisation process in
the variable ‘command-line-args’, these are available to any Lisp
packages loaded in the initialisation script. Any left after that
are scanned for the following options,

‘-f FUNCTION’
Call the Lisp function FUNCTION.

‘-l FILE’
Load the Lisp file FILE.

‘-q’
Quit cleanly.

‘FILE’
Load the file of text FILE into a new buffer.

An example command line for starting Jade from a Unix shell could be

$ jade -fg white -bg black -log-msgs foo.c bar.jl

This means white text, black background, save messages and load the
files ‘foo.c’ and ‘bar.jl’.

1.15 jade.guide/Startup Procedure

Startup Procedure
=================

This is a description of what happens when the editor initialises
itself.

1. Firstly lots of internal data structures are created, memory
pools, symbols and their symbol-table (including all the primitive
Lisp functions).

2. The window-system is initialised (parse the system-dependant

jade 12 / 53

options, and the xrdb resources if in X).

3. Parse the standard options.

4. Create the initial window and the first buffer to display in it
(this is the buffer called ‘*jade*’).

5. Load the initialisation script, this is either the Lisp file
called ‘init’ or whatever was given to the ‘-rc’ command line
option.

Some selected highlights of what the standard file does are,

* Load lots of Lisp files, some notable ones are

‘loadsyms’
Initialise the autoload stubs.

‘loadkeys’
Creates the standard keymaps and keybindings.

* Try to find the user’s personal startup file, this is
normally the file ‘.jaderc’ in their home directory (1).

* Load any files which were specified on the command line.

6. Start the top-level recursive edit, this doesn’t exit until the
editor does.

---------- Footnotes ----------

(1) The Amiga has no notion of a user’s home directory, Jade uses
the contents of the environment variable ‘HOME’, or if this doesn’t
exist the ‘SYS:’ assignment.

1.16 jade.guide/Using Jade

Using Jade

This chapter of the manual is meant to teach you to *use* the editor,
because of this I have attempted to reduce references to the Lisp
extension language to an absolute minimum. The only things that you
need to know about at this time are how to set or reference Lisp
variables and how to invoke Lisp commands.

Luckily, it is very easy to do this by typing one of the following
sequences to the editor,

‘ESC x FUN’
Calls the command called FUN and displays its result in the status
line.

‘ESC x set-variable RET FOO RET BAR’

jade 13 / 53

This sets the Lisp variable FOO to the value BAR.

‘ESC x show-variable RET FOO’
This displays the value of the variable FOO in the status line.

Note that throughout this manual it is assumed that you press the RET
(return) key after each ‘ESC x’ command. For example, to invoke the
command ‘ESC x find-file’ you would actually type the following (but
not the spaces -- they are for readability).

‘ESC x f i n d - f i l e RET’

The Help System Online help facilities
Loading and Saving Files Manipulating files into buffers
Editing Buffers Simple editing commands
Moving Around Buffers Commands for moving the cursor
Using Blocks Highlighting regions to manipulate
Cutting And Pasting How to insert text from the clipboard
Searching and Replacing Searching the buffer for a regexp
Editing Modes Editing different types of files
Using Buffers Selecting & deleting buffers
Using Windows Opening new windows
Using the Prompt Entering strings and completion
Using Marks Recording positions in files
Compiling Programs Help for developing programs
Simple Customisation Configuring Jade

1.17 jade.guide/The Help System

The Help System
===============

To invoke the help system type the key sequence ‘Ctrl-h’ or if your
keyboard has it the ‘HELP’ key.

A prompt will be displayed in the status line showing you which keys
you can press next to enter one of the main options of the help system
explained below. Alternatively, you can type either ‘Ctrl-h’ or ‘HELP’
again to display some text telling you more about the help system and
how to use it.

The help system is exited after successfully invoking one of the
commands described below or typing anything which is not a recognised
command to the help system.

‘a’
To list all function names matching REGEXP, type ‘a REGEXP RET’
when in the help system.

‘e’
Similarly, to list all variable names matching REGEXP, type ‘e
REGEXP RET’ when in the help system.

jade 14 / 53

‘f’
Displays the online documentation for a function. After invoking
this option type the name of the function.

‘h’
Shows some helpful text describing how to use the help system.

‘i’
Enters the Info viewer. This allows you to browse through files
written in the Info hypertext format. For more information see
Info-mode, for more information on Info files in general see Info.

‘m’
Display the current editing modes documentation.

‘v’
Displays the online documentation and current value of a variable.
Type the name of the variable after invoking this option.

1.18 jade.guide/Loading and Saving Files

Loading and Saving Files
========================

Since ‘jade’ is a text editor its main function is to edit files of
text. This means that you must be able to read the text contained in a
file into one of the editor’s buffers, then save it back to disk when
you have finished editing it. That is what this section deals with.

Commands To Load Files Keystrokes to load files
Commands To Save Files How to save a buffer
Backup Files Making backups
Auto-Saving Files Files can be saved periodically
Loading and Saving Tabs How tabs are handled
Automatic Mode Selection File suffixes can select editing modes
Embedding Lisp In Files Lisp to evaluate when a file is loaded

1.19 jade.guide/Commands To Load Files

Commands To Load Files

There are several commands used to load files into buffers, these
are,

‘Ctrl-x Ctrl-f’
Prompts for the name of a file (using file-completion) and display
the buffer containing that file. If the file has not already been
loaded it will be read into a new buffer.

jade 15 / 53

‘Ctrl-x Ctrl-v’
Prompts for the name of a file, the current buffer is killed and
the buffer in which the prompted-for file is being edited is
displayed. As in ‘find-file’ it will be read into a new buffer if
it is not already in memory.

‘Ctrl-x Ctrl-r’
Similar to ‘find-file’ except that the buffer is marked as being
read-only. This means that no modifications can be made to the
buffer.

‘Ctrl-x i’
Prompts for a file, then inserts it into the current buffer at the
cursor position.

You can use the prompt’s completion feature to expand abbreviated
filenames typed to the prompt, for more information see
The Buffer Prompt.

1.20 jade.guide/Commands To Save Files

Commands To Save Files

These are the commands used to save buffers and the keystrokes
associated with them,

‘Ctrl-x Ctrl-s’
Saves the current buffer to the file that it is associated with
(this is either the file that it was loaded from or something else
set by the function ‘set-file-name’). If no modifications have
been made to the file since it was loaded it won’t be saved (a
message will be displayed warning you of this).

‘Ctrl-x Ctrl-w’
Prompts for a name to save the file as. The file associated with
this buffer is renamed and the file is saved as its new name.

‘Ctrl-x s’
For each buffer which has been modified since it was loaded, ask
the user if it should be saved or not. If so, the command
‘save-file’ is used to save the file

1.21 jade.guide/Backup Files

Backup Files

The editor can optionally preserve the previous contents of a file

jade 16 / 53

when they are about to be overwritten by saving a buffer. It does this
by renaming the old file, ‘foo’ as ‘foo~’ (the original name plus a
tilde appended to it).

- Variable: make-backup-files
This variable controls whether or not backups are made of files
about to overwritten by the function ‘write-buffer’ (ie, the
commands ‘save-file’ and ‘save-file-as’). When non-nil the old
instance of the file is renamed so that it has a tilde appended to
its old name.

- Variable: backup-by-copying
When non-nil all backups are made by copying the original file
instead of renaming it as the backup file. This is slower but less
destructive.

If ‘backup-by-copying’ is nil and renaming the original file as its
backup would be damaging (ie, changing the ownership of the file or
breaking a link) no backup will be made.

1.22 jade.guide/Auto-Saving Files

Auto-Saving Files

Jade is able to save snapshots of a buffer’s contents at set time
intervals. When this time interval expires and the buffer has been
modified since it was last (auto-) saved to disk (and the editor is
idle) the buffer is saved to a special file (usually the base component
of the file’s name surrounded by ‘#’ characters in the file’s
directory).

- Variable: auto-save-p
When non-nil this makes the function ‘open-file’ (and therefore the
commands ‘find-file’, etc) flag that the file it just read should
be auto saved regularly.

- Variable: default-auto-save-interval
This is the default number of seconds between each auto save. This
variable is only referenced when each file is opened.

Its standard value is 120 seconds.

- Variable: auto-save-interval
This buffer-local variable controls the number of seconds between
each auto-save of the buffer it belongs to. A value of zero means
never auto-save.

When the buffer is saved properly (ie, with ‘save-file’ and friends)
its auto-save file is deleted. Note that this doesn’t happen when you
kill a buffer and an auto-save file exists (in case you didn’t mean to
kill the buffer).

If you want to change the format of the name of auto-saved files

jade 17 / 53

look at the function ‘make-auto-save-name’ and its documentation.

1.23 jade.guide/Loading and Saving Tabs

Tab Expansion

The editor does not leave tab characters (ASCII 9) as they are. They
are expanded into one or more spaces when the file is read into its
buffer. The size of the expansion depends upon the column number at
which the tab has occured and the value of the variable ‘disk-tab’.

- Variable: disk-tab
This buffer-local variable determines the size of tab stops used
when a file is read from disk (by the ‘read-buffer’ function) into
a buffer.

It is desirable that the files which the editor produces have tabs
in them though, so something has to be done.

The variable ‘save-tabs’ controls exactly how files are saved (in
respect to saving tab characters).

- Variable: save-tabs
The value of this buffer-local variable is used to decide exactly
which sequences of spaces are changed to tab characters when a
buffer is saved to disk (with the ‘write-buffer’ and
‘write-buffer-area’ functions). There are three possible options
(all of which are Lisp symbols):

‘nil’

No tabs are saved at all. All whitespace is left untouched,
this may be necessary with some types of file whose format is
strongly defined.

‘leading’
Any whitespace at the start of each line is translated into
tabs and spaces such that the first non-whitespace character
in the line is at the same logical position as it was in the
buffer.

‘all’
Any sequence of two or more space characters is translated
into tab characters when the logical structure of the line
would be unaltered by doing so. *No* translations take place
after the first quote character (ie, ‘’’, ‘‘’ or ‘"’) in the
line (this is to try and prevent errors).

1.24 jade.guide/Automatic Mode Selection

jade 18 / 53

Automatic Mode Selection

As described elsewhere in this manual, each buffer can have an
editing mode associated with it (ie, ‘c-mode’ for editing buffers of C
source code).

Since it would be extremely tedious to have to invoke the mode’s
initialisation function manually whenever a new file is loaded the
editor can initialise the mode automatically. It does this by scanning
an association list called ‘mode-alist’ for a regular expression
matching the name of the file (or the string in the buffer-local
variable ‘mode-name’ if it is non-nil). If a match is found the function
associated with the matching regular expression is called, thereby
initialising the mode.

If you don’t understand this, don’t worry -- it works.

For example, the mode-alist contains this fragment as one of its
elements:

("\.[ch]$" . c-mode)

which means call the function ‘c-mode’ for any file ending in ‘.c’ or
‘.h’.

- Variable: mode-alist
A list of elements of ‘(MATCH-REGEXP . MODE-FUN)’. When a file is
loaded each MATCH-REGEXP is compared with the name of the file in
question (or it’s ‘mode-name’ value). When a match is found the
corresponding MODE-FUN function is called.

1.25 jade.guide/Embedding Lisp In Files

Embedding Lisp In Files

It is possible to include Lisp commands in the text of a file so
that they will be read and evaluated when that file is loaded into a
buffer.

This is normally used to set buffer-local options which are specific
to one particular file, ie, to set the name of the editing mode, or the
size of tab characters in this file.

The way to do this is to include a section of text of the form in
the file:

...
XXX ::jade-code::
XXX Lisp Line1
XXX Lisp Line2
XXX ...

jade 19 / 53

XXX Lisp LineN
XXX ::end::
...

The ‘XXX’ just means that any text to the left of the column in which
the ‘jade-code’ begins is ignored (This is mainly to allow for any
comments needed to make sure that the Lisp text is not used by whatever
uses the file).

Only one block such as this is allowed per file, it is not evaluated
until the whole of the file has been read.

Some examples uses of this could be,

In a lisp file:
;;; ::jade-code::
;;; (setq lisp-mode-tab 4)
;;; (setq mode-name "lisp-mode")
;;; ::end::

Or in a C source file:
/* ::jade-code::

* (setq c-mode-tab 4)

* (setq mode-name "c-mode")

*/::end::

It is also possible to prohibit the evaluation of these special
sections.

- Variable: no-file-code-p
When non-nil the section of a file marked for auto-evaluation
(with the ‘::jade-code::’ marker) is *not* evaluated.

1.26 jade.guide/Editing Buffers

Editing Buffers
===============

The majority of keys when typed will simply insert themselves into
the buffer (this is not always true but it’s a good assumption) since
they have not been bound. Typically this includes all normal characters
(ie, alphanumeric, puntuation, etc) as well as any of the more obtuse
key-sequences which have not been bound to a function (‘Ctrl-l’ is one
of the more useful of these).

The behaviour of the TAB key is different to many other editors -- it
doesn’t insert anything (unless a specific editing mode has bound it to
something else, like ‘c-mode’ for example), generally it just moves the
cursor to the next tab stop. This is partly because Jade doesn’t use
"proper" tabs and partly because it makes it easier to move around a
line (because the keystroke ‘Shift-TAB’ moves to the previous tab stop).

Some miscellaneous editing commands are,

jade 20 / 53

‘RET’
This generally splits the line into two at the position of the
cursor, some editing modes may provide an option which
automatically indents the line after it’s split.

‘BS’
Deletes the character before the cursor.

‘DEL’
Deletes the character under the cursor.

‘Shift-BS’
Kills the characters between the start of the line and the cursor.

‘Shift-DEL’
‘Ctrl-d’

Kills the characters from the cursor to the end of the line.

‘Ctrl-DEL’
Kills the whole line.

‘Ctrl-o’
Splits the line in two at the cursor, but leaves the cursor in its
original position.

‘ESC d’
‘ESC DEL’

Kills from the cursor to the end of the current word.

‘ESC i’
Inserts spaces to fill from the cursor to the next tab stop.

‘ESC l’
Makes the characters from the cursor to the end of the word lower
case.

‘ESC u’
Upper cases the characters from the cursor to the end of the word.

‘ESC BS’
Kills from the cursor to the beginning of the word.

1.27 jade.guide/Moving Around Buffers

Moving Around Buffers
=====================

These are the commands which are used to move the cursor around the
current buffer,

‘UP’
‘Ctrl-p’

Move one line up.

jade 21 / 53

‘DOWN’
‘Ctrl-n’

Move one line down.

‘LEFT’
Move one column to the left, stopping at the first column.

‘Ctrl-b’
Move to the previous character, at the beginning of the line moves
to the end of the previous line.

‘RIGHT’
Move one column to the right. This keeps moving past the end of
the line.

‘Ctrl-f’
Move to the next character, at the end of a line moves to the
start of the next line.

‘Shift-UP’
Move to the first line in the buffer.

‘Shift-DOWN’
Move to the last line in the buffer.

‘ESC <’
Move to the first character in the buffer.

‘ESC >’
Move to the last character in the buffer.

‘Shift-LEFT’
‘Ctrl-a’

Move to the beginning of the current line.

‘Shift-RIGHT’
‘Ctrl-e’

Move to the last character in the current line.

‘Ctrl-UP’
‘ESC v’

Move to the previous screenful of text.

‘Ctrl-DOWN’
‘Ctrl-v’

Move to the next screenful of text.

‘Meta-LEFT’
‘ESC b’

Move to the previous word.

‘Meta-RIGHT’
‘ESC f’

Move to the next word.

‘Meta-UP’
‘ESC [’

jade 22 / 53

Move to the start of the previous paragraph.

‘Meta-DOWN’
‘ESC]’

Move to the start of the next paragraph.

‘TAB’
‘ESC TAB’

Move to the next tab position. Note that some editing modes
redefine TAB to make it indent the current line.

‘Shift-TAB’
Move to the position of the previous tab.

‘Ctrl-TAB’
‘ESC i’

Insert a tab (ie, enough spaces to move to the next tab position).

‘Ctrl-j’
‘ESC x goto-line’

Prompt for a line number and go to it.

‘ESC m’
Move to the first non-space character in the current line.

There are several variables which affect the commands described
above, these are,

- Variable: screen-tab
This buffer-local variable controls the size of tab characters in
a buffer. Its standard value is 8. This variable does not affect
the size of tabs in files read into the buffer, that is controlled
by ‘disk-tab’.

- Variable: y-scroll-step-ratio
A window-local variable which controls what happens when you move
the cursor off the top or bottom of the window. A value of zero
means move as much as needed to get the cursor back into view, for
example, if you move down one line, it will scroll the window one
line only. If the value is not zero the screen is moved by the
number of rows in the window divided by the value. For example, a
value of 2 means scroll the window in chunks half the size of the
window -- this is useful for when you are working with a slow
updating display.

- Variable: x-scroll-step-ratio
Similar to ‘y-scroll-step-ratio’ except for horizontal movement.

1.28 jade.guide/Cutting And Pasting

Cutting And Pasting
===================

One of the main functions of any editor is to allow you to move

jade 23 / 53

around chunks of text, jade makes this very easy.

Generally, to paste down some text you have to get the text to be
inserted into the window-system’s clipboard (1). If the text you wish
to paste is in one of the editor’s buffers jade has a number of
commands for doing this, this is sometimes referred to as "killing" the
text.

If the text to be pasted is in the same buffer as the position to
which you want to copy it there is an easier way than putting it into
the clipboard. For more details see Commands on Blocks and the command
‘Ctrl-i’.

Once the text to be pasted is in the clipboard there are two
commands which can be used to insert it into the buffer before the
cursor,

‘Ctrl-y’
Inserts the contents of the standard clipboard into the buffer at
the cursor position.

‘Ctrl-Y’
This is a variant of ‘Ctrl-y’, it treats the string that it is
pasting as a "rectangle" of text. That is, each successive line in
the string (each separated by a newline character) is inserted on
successive lines in the buffer but at the same column position.
For more details see Rectangular Blocks and the function
‘insert-rect’.

---------- Footnotes ----------

(1) When using an Amiga, unit zero of the ‘clipboard.device’ is
used. For X11, the first cut-buffer.

1.29 jade.guide/Using Blocks

Using Blocks
============

A "block" is a section of a buffer, you mark it by specifying its
edges (ie, the first and last characters). This part of the buffer can
then have various things done to it, for example insert it somewhere
else.

Each window can only have a single block marked at any one time, it
will be displayed in the reverse of normal text (ie white on black, not
black on white).

Marking Blocks Commands to define the current block
Commands on Blocks How to work with blocks
Rectangular Blocks Columns of text as blocks

jade 24 / 53

1.30 jade.guide/Marking Blocks

Marking Blocks

To mark a block you must specify its outermost points, note that the
text marked by the block ends one character before the marked position
(this is so that it easy to mark whole lines).

Rectangular blocks are a bit different for more information, see
Rectangular Blocks.

Note also that block marks shrink and grow as text is deleted and
inserted inside them, similar to what normal marks do.

These are the commands used to mark a block,

‘Ctrl-m’
If a block is currently marked in this window it will unmark it.
Otherwise it will either mark the beginning or end of the block
depending on whether or not a block has previously been partially
marked.

The normal method for marking a few characters is to first make
sure that no block is currently marked (the status line displays
the status of the block marks, a ‘b’ means that one end of a block
has been marked and a ‘B’ means that both ends of a block are
marked in which case it will be highlighted somewhere in the
buffer) then press ‘Ctrl-m’ at one end, move the cursor to the
opposite end and press ‘Ctrl-m’ again.

‘Meta-m’
Set the beginning of the block to the current cursor position.

‘Meta-M’
Set the end of the block.

‘Ctrl-x h’
Mark the whole of the buffer.

‘ESC @’
Mark the current word.

‘ESC h’
Mark the current paragraph.

‘Ctrl-SPC’
Mark from the position of the auto-mark to the cursor.

Another method for marking a block is to use the mouse, double
clicking the left mouse button on a character has the same effect as
moving to that character and typing ‘Ctrl-m’. Similarly, clicking the
left mouse button while pressing the SHIFT key clears a marked block.

jade 25 / 53

1.31 jade.guide/Commands on Blocks

Commands on Blocks

‘Ctrl-i’
Inserts the block marked in this window, at the cursor position,
then unmarks the block.

‘Ctrl-w’
Copies the contents of the marked block to the standard clipboard
and then deletes the block.

‘ESC w’
Copies the marked block to the standard clipboard, then unmarks
the block. This is a less destructive version of ‘Ctrl-w’.

‘Ctrl-z’
Deletes the text in the currently marked block.

‘Ctrl-x Ctrl-l’
Makes all alpha characters in the current block lower case.

‘Ctrl-x Ctrl-u’
Makes all characters in the block upper case.

1.32 jade.guide/Rectangular Blocks

Rectangular Blocks

Normally blocks are thought of sequentially from their first to last
characters, this does not have to be so. It is also possible to mark
rectangles, the block marks being thought of as the opposite corners of
the rectangle.

‘Ctrl-M’
Toggle between marking sequential and rectangular blocks, each
window has its own value for this attribute (ie one window can be
marking rectangles while the rest don’t).

‘Ctrl-Y’
Similar to ‘Ctrl-y’ except that the string inserted is treated as a
rectangle -- newline characters don’t get inserted, instead the
next line is inserted in the next line in the buffer at the same
column as that inserted into the previous line. For more details
see the function ‘insert-rect’.

At present there is a problem with changing the case of a
rectangular block with ‘Ctrl-x Ctrl-l’ or ‘Ctrl-x Ctrl-u’, they treat
it as a sequential block. This will be fixed soon.

jade 26 / 53

1.33 jade.guide/Searching and Replacing

Searching and Replacing
=======================

It is very easy to search any of jade’s buffers for a specific
string, the standard search command will search the current buffer for
a specified regular expression.

Once you have found an occurrence of the string you are looking for
it is then possible to replace it with something else.

Regular Expressions The syntax of regular expressions
Commands for Searching How to search for regexps
Commands for Replacing Replacing found regexps

1.34 jade.guide/Regular Expressions

Regular Expressions

Jade uses the regexp(3) package by Henry Spencer, with some
modifications that I have added. It comes with this heading:

Copyright (c) 1986 by University of Toronto.
Written by Henry Spencer. Not derived from licensed software.

Permission is granted to anyone to use this software for any
purpose on any computer system, and to redistribute it freely,
subject to the following restrictions:

1. The author is not responsible for the consequences of use of
this software, no matter how awful, even if they arise from
defects in it.

2. The origin of this software must not be misrepresented, either
by explicit claim or by omission.

3. Altered versions must be plainly marked as such, and must not
be misrepresented as being the original software.

The syntax of a regular expression (or regexp) is as follows (this
is quoted from the regexp(3) manual page):

A regular expression is zero or more "branches", separated by ‘|’.
It matches anything that matches one of the branches.

A branch is zero or more "pieces", concatenated. It matches a
match for the first, followed by a match for the second, etc.

A piece is an "atom" possibly followed by ‘*’, ‘+’, or ‘?’. An
atom followed by ‘*’ matches a sequence of 0 or more matches of

jade 27 / 53

the atom. An atom followed by ‘+’ matches a sequence of 1 or more
matches of the atom. An atom followed by ‘?’ matches a match of
the atom, or the null string.

An atom is a regular expression in parentheses (matching a match
for the regular expression), a "range" (see below), ‘.’ (matching
any single character), ‘^’ (matching the null string at the
beginning of the input string), ‘$’ (matching the null string at
the end of the input string), a ‘\’ followed by a single character
(matching that character), or a single character with no other
significance (matching that character).

A "range" is a sequence of characters enclosed in ‘[]’. It
normally matches any single character from the sequence. If the
sequence begins with ‘^’, it matches any single character *not*
from the rest of the sequence. If two characters in the sequence
are separated by ‘-’, this is shorthand for the full list of ASCII
characters between them (e.g. ‘[0-9]’ matches any decimal digit).
To include a literal ‘]’ in the sequence, make it the first
character (following a possible ‘^’). To include a literal ‘-’,
make it the first or last character.

Some example legal regular expressions could be:

‘ab*a+b’
Matches an ‘a’ followed by zero or more ‘b’ characters, followed by
one or more ‘a’ characters, followed by a ‘b’. For example,
‘aaab’, ‘abbbab’, etc...

‘(one|two)_three’
Matches ‘one_three’ or ‘two_three’.

‘^cmd_[0-9]+’
Matches ‘cmd_’ followed by one or more digits, it must start at the
beginning of the line.

As well as being matched against, regexps also provide a means of
"remembering" portions of the string that they match. The first 9
parenthesised expressions and the whole string that matched are
recorded so that they can be used later.

The main use for this is in the command to replace a previously
found regexp (‘ESC p’) and the Lisp functions ‘regexp-expand’,
‘regexp-expand-line’ and ‘replace-regexp’. The string which is given as
the template (ie, the string that replaces the matched string) is
expanded inserting these recorded strings where asked to.

Each occurrence of ‘\C’ in the template is a candidate for
expansion. C can be one of:

‘&’
‘0’

Replaces the whole substring matched by the regular expression.

‘1’ to ‘9’
The numbered parenthesised expression.

jade 28 / 53

‘\’
The character ‘\’.

For example, if a regexp of ‘:([0-9]+):’ matches a line
‘foo:123:bar’, the expansion template ‘x_\1’ would produce ‘x_123’.

1.35 jade.guide/Commands for Searching

Commands for Searching

‘Ctrl-s’
Asks for a regular expression then tries to move to the start of
the next match in this buffer.

‘Ctrl-S’
Attempts to move to the next occurrence of the regexp which was
last entered for the ‘Ctrl-s’ or ‘Ctrl-r’ commands.

‘Ctrl-r’
Asks for a regexp, then moves to the start of previous occurrence
of that regexp.

‘Ctrl-R’
Attempts to move to the previous occurrence of the regexp which
was last entered for the ‘Ctrl-s’ or ‘Ctrl-r’ commands.

1.36 jade.guide/Commands for Replacing

Commands for Replacing

‘ESC p’
Asks for a template to replace the string under the cursor (which
should match the regexp which the search commands last looked for.
This string is then replaced with the expansion (re the string
under the cursor) of the template you entered.

‘ESC P’
Variant of the above, doesn’t prompt for the template, uses the
last one that you gave.

1.37 jade.guide/Editing Modes

Editing Modes
=============

jade 29 / 53

Modes are used to tailor the editor to the *type* of the file being
edited in a buffer. They are normally a file of Lisp which installs the
buffer-local keybindings and variables which are needed for that type of
file.

For example, C-mode is a mode used to edit C source code, its main
function is to try to indent each line to its correct position
automatically.

At present there are only a small number of modes available. It is
fairly straightforward to write a mode for most types of files though.

Invoking a Mode How editing modes are invoked on a buffer

Generic-mode The foundations which all modes build from
C-mode Mode for C source code
Lisp-mode Mode for Lisp
Texinfo-mode Mode for editing Texinfo source
Info-mode The Info browser

1.38 jade.guide/Invoking a Mode

Invoking a Mode

When a new file is loaded the function ‘init-mode’ tries to find the
mode that it should be edited with. If it is successful the mode will be
automatically invoked. For more information see Automatic Mode Selection
and the documentation for ‘init-mode’.

1.39 jade.guide/Generic-mode

Generic-mode

This is not a mode as such since there is no Lisp code associated
with it. When no mode is being used to edit the buffer, it is said to
use the "Generic" mode.

This is the base from which all other modes build, it consists of
all the standard keybindings. Words are defined as one or more
alphanumeric characters, paragraphs are separated by a single blank
line.

1.40 jade.guide/C-mode

jade 30 / 53

C-mode

‘c-mode’ is used for editing C source code files. Any files which
end in ‘.c’ or ‘.h’ are automatically edited in this mode.

It’s one and only function is to try and indent lines to their
correct depth, it doesn’t always get it right but it works fairly well.
The keys that it rebinds to achieve this are,

‘RET’
Splits the line in two like normal. If ‘c-mode-auto-indent’ is
non-nil then the line that the cursor ends up on is automatically
indented.

‘Shift-RET’
Splits the line in two, doesn’t take any notice of
‘c-mode-auto-indent’.

‘{’
‘}’
‘:’

These keys are handled specially since the indentation of the line
that they are inserted on may have to be adjusted.

‘TAB’
Indents the current line to what the editor thinks is the correct
position.

‘Meta-TAB’
Moves the cursor to the next tab stop.

Words are defined as being a sequence of alphanumeric or underscore
characters, paragraphs as being separated by a ‘{’ as the first
character of a line.

- Function: c-mode
Editing mode for C source code. Automatically used for files
ending in ‘.c’ or ‘.h’.

- Hook: c-mode-hook
Called by ‘c-mode’ each time it is called.

- Variable: c-mode-tab
Size of tab stops used by ‘c-mode’.

- Variable: c-mode-auto-indent
When non-nil ‘RET’ will indent the line after splitting it.

1.41 jade.guide/Lisp-mode

Lisp-mode

jade 31 / 53

‘lisp-mode’ is used to edit files of Lisp intended to be read by the
editor. It is *very* basic, all it does is count the number of unmatched
parentheses in each line and indent it accordingly. I find this okay
though.

There is also support for using a buffer as a simple shell-interface
to the editor’s Lisp subsystem.

Special keybindings are,

‘RET’
Splits the line in two like normal. If ‘lisp-mode-auto-indent’ is
non-nil then the line that the cursor ends up on is automatically
indented.

‘Shift-RET’
Splits the line in two, doesn’t take any notice of
‘c-mode-auto-indent’.

‘Ctrl-RET’
Evaluates the paragraph preceding the cursor, prints the value on
the next line.

‘TAB’
Indents the current line.

‘Meta-TAB’
Moves the cursor to the next tab stop.

‘ESC Ctrl-x’
Evaluates the paragraph before the cursor, prints it’s value in
the status line.

- Function: lisp-mode
Editing mode for Jade’s Lisp. Automatically invoked for files
ending in ‘.jl’.

- Hook: lisp-mode-hook
Evaluated as soon as ‘lisp-mode’ is called.

- Variable: lisp-mode-tab
Size of tabs in ‘lisp-mode’.

- Variable: lisp-mode-auto-indent
When non-nil ‘RET’ indents lines after splitting them.

1.42 jade.guide/Texinfo-mode

Texinfo-mode

‘texinfo-mode’ is used to edit Texinfo source files, it is
automatically selected for files ending in ‘.texi’ or ‘.texinfo’. It

jade 32 / 53

provides a few basic keybindings to take some of the tedium out of
editing these files.

Paragraphs are separated by the regexp ‘^@node’, ie, each node is a
separate paragraph.

The provided keybindings are,

‘Ctrl-c Ctrl-c c’
Insert the string ‘@code{}’, positioning the cursor between the
braces.

‘Ctrl-c Ctrl-c d’
Insert the string ‘@dfn{}’, positioning the cursor between the
braces.

‘Ctrl-c Ctrl-c e’
Inserts the string ‘@end’.

‘Ctrl-c Ctrl-c f’
Inserts the string ‘@file{}’, the cursor is put between the braces.

‘Ctrl-c Ctrl-c i’
Inserts the string ‘@item’.

‘Ctrl-c Ctrl-c l’
Inserts the string ‘@lisp\n’.

‘Ctrl-c Ctrl-c m’
Inserts the string ‘@menu\n’.

‘Ctrl-c Ctrl-c Ctrl-m’
Prompts for the name of a node and makes a menuitem for it.

‘Ctrl-c Ctrl-c n’
Prompts for each part of a node definition (name, next, prev, up)
and inserts the ‘@node ...’ string needed.

‘Ctrl-c Ctrl-c s’
Inserts the string ‘@samp{}’ and puts the cursor between the
braces.

‘Ctrl-c Ctrl-c v’
Inserts the string ‘@var{}’, the cursor is put between the braces.

‘Ctrl-c Ctrl-c {’
Inserts a pair of braces with the cursor between them.

‘Ctrl-c Ctrl-c }’
‘Ctrl-c Ctrl-c]’

Moves the cursor to the character after the next closing brace.

- Function: texinfo-mode
Mode for editing Texinfo source files.

- Hook: texinfo-mode-hook
Evaluated when ‘texinfo-mode’ is invoked.

jade 33 / 53

1.43 jade.guide/Info-mode

Info-mode

Despite the name of this section there is actually no such thing as
the ‘info-mode’. The Lisp file ‘info.jl’ is what this section documents
-- it is a set of Lisp functions which make a buffer (the ‘*Info*’
buffer) into a simple browser for Info files.

To invoke it type ‘Ctrl-h i’ or ‘ESC x info’, the ‘*Info’ buffer
will be displayed showing the ‘(dir)’ node (the root of the Info
documentation tree).

When in the ‘*Info*’ buffer these keybindings are in effect,

‘SPC’
Moves to the next page.

‘BS’
Moves to the previous page.

‘1’
‘2’
‘3’
‘4’
‘5’

Move to the specified menuitem (‘1’ means the first, etc) in the
menu in this node.

‘b’
Move to the beginning of the current node.

‘f’
Follow a reference, the one under the cursor if it exists. This
command is still unimplemented.

‘g’
Prompt for the name of a node and try to display it.

‘l’
Go back to the last node that was displayed before this one.

‘m’
Prompts for a menuitem (the one on the same line as the cursor is
the default) and display the node it points to.

‘n’
Display the next node.

‘p’
Display the previous node.

jade 34 / 53

‘u’
Display the node "above" this one.

‘q’
Quit the Info browser.

This mode has a number of disadvantages over the other Info browsers
available (ie, the standalone ‘info’ program, or Emacs’ Info viewer):

* It depends wholly on being able to find a tag table in the Info
file, if it can’t it will complain and exit.

* There is no support for the ‘*’ node name.

* As yet, no automatic following of references.

* Seems not to work 100% with files formatted by Emacs, ‘makeinfo’
formatted files work properly though.

* No editing of modes.

- Function: info [NODE-NAME]
Invoke the Info viewer. If NODE-NAME is given display it, otherwise
the node ‘(dir)’ is used.

1.44 jade.guide/Using Buffers

Using Buffers
=============

As you have probably realised, buffers are probably the most
important part of the editor. Each file that is being edited must be
stored in a buffer. They are not restricted to editing files though,
all buffers are reguarded as simply being a list of lines which can be
displayed in a window and modified as needed.

This means that they are very flexible, for example, the Lisp
debugger uses a buffer for its user interface, the Info reader uses two
buffers - one to display the current node, the other to store the
file’s tag table (never displayed, just used to look up the position of
nodes).

Each buffer has a name, generally buffers which contain proper files
use the base part of the filename, while buffers which don’t correspond
to files use a word which starts and ends with asterisks (ie, ‘*jade*’).

Each window can display one buffer at any time. There is no
restriction on the number of windows which may display the same buffer
at once.

Displaying Buffers How to make a window display a buffer
Deleting Buffers Killing unwanted buffers
Other Buffer Commands General buffer manipulation

jade 35 / 53

1.45 jade.guide/Displaying Buffers

Displaying Buffers

There are two main commands for switching to a different buffer,

‘Ctrl-x b’
Prompt for the name of a buffer and display it in the current
window.

‘Ctrl-x 4 b’
In a different window (opens a new window if there is currently
only one) prompt for the name of a buffer and display it in that
window.

Both commands are very similar, the ‘Ctrl-x 4 b’ variant simply
invokes a command to switch to a different window before calling the
‘Ctrl-x b’ command.

When typing the name of the new buffer you can use the prompt’s
completion mechanism to expand abbreviations (see see
The Buffer Prompt). If you just press RET with an empty prompt the
default choice will be used. This will be the the buffer that was
being shown in this window before the current buffer was selected (its
name is displayed in the prompt’s title).

The ‘Ctrl-x Ctrl-f’ command and its variants also switch buffers
since they look an existing copy of the file in a buffer before loading
it from disk, see Commands To Load Files.

1.46 jade.guide/Deleting Buffers

Deleting Buffers

There is no real need to delete buffers, those that haven’t been
used for a while just hang around at the end of the list. If you’re
short on memory though it can help to kill some of the unused buffers
which you have accumulated.

The command to kill a buffer is,

‘Ctrl-x k’
Prompts for the name of a buffer (with completion) then deletes
that buffer (if the buffer contains unsaved modifications you are
asked if you really want to lose them). It is removed from all
window’s buffer-lists and any window which is displaying it is
switched to another buffer (the next in its list). Any marks

jade 36 / 53

which point to the buffer are made "non-resident" (that is, they
point to the name of the file in the buffer) and the buffer is
discarded.

1.47 jade.guide/Other Buffer Commands

Other Buffer Commands

‘ESC x rotate-buffers-forward’
Rotates the current window’s list of buffers.

‘ESC x recover-file’
Loads the auto-saved copy of the file stored in this buffer
overwriting its current contents (if any changes are to be lost
the user will have to agree to losing them).

‘ESC x revert-buffer’
Restores the contents of the current buffer to the contents of the
file that it was loaded from, if an auto-save file exists you are
asked if you want to revert to that instead.

‘Ctrl-x s’
Ask whether to save any modified buffers that exist.

‘ESC x clear-buffer’
Deletes the contents of the current buffer. Beware, you *won’t* be
warned if you’re about to lose any unsaved modifications!

1.48 jade.guide/Using Windows

Using Windows
=============

Windows have two main functions: to display the contents of buffers
(but only one buffer at a time) and to collect input from you, the user.

The editor *must* have at least one window open at all times, when
you close the last window jade will exit, there is no limit to the
number of windows which you may have open though.

Each window is split into two parts, they are

"The Main Display Area"
This is the largest part of the window, it is where the buffer
that this window is displaying is drawn.

"The Status Line"
A single line of text associated with the window, under X11 this
is the area of the beneath the horizontal line at the bottom of

jade 37 / 53

the window, on the Amiga it is the title of the window. The status
line is normally used to display information about this window and
what it is displaying, it has this format:

BUFFER-NAME [MODE-NAME] (COL,ROW) N line(s) [FLAGS]

Where the individual parts mean

BUFFER-NAME
The name of the buffer being edited, it can have either a ‘+’
or a ‘-’ appended to it, a plus means the buffer has been
modified since it was saved, a minus means that the buffer is
read-only.

MODE-NAME
Most editing modes set this to their name.

COL
The column that the cursor is at.

ROW
The row number of the cursor.

N
The number of lines in this buffer

FLAGS
General one-character flags related to the status of the
window and its buffer.

Each window maintains a list of all buffers which are available for
displaying, this is kept in order, from the most recently used to the
least. This list (called ‘buffer-list’) is used by some of the buffer
manipulation commands when they are working out which buffer should be
displayed.

Creating Windows Opening a new window
Killing Windows How to close windows
Other Window Commands General window manipulation

1.49 jade.guide/Creating Windows

Creating Windows

‘Ctrl-x 2’
‘Ctrl-x 5’

Opens a new window, it will have the most of the attributes that
the current window does, things like: size, buffer, font, etc...
If you are using X11 you will probably have to use your mouse to
select its position, depending on the window manager you use, on
the Amiga it will be created at the same position as the current
window.

jade 38 / 53

‘Ctrl-x 4 Ctrl-f’
‘Ctrl-x 4 f’

In a different window, one will be created if only one window is
open, find a file, for more details see Commands To Load Files.

‘Ctrl-x 4 a’
In a different window add an entry to a change-log file. See
Keeping ChangeLogs.

‘Ctrl-x 4 b’
In a different window, choose a buffer to display, similar to the
‘Ctrl-x b’ command. See Displaying Buffers.

‘Ctrl-x 4 h’
Enter the help system in a different window. See The Help System.

‘Ctrl-x 4 i’
Enter the Info browser in a different window. See Info-mode.

‘Ctrl-x 4 ‘’
Display the next error (or whatever) in the ‘*compilation*’ buffer
in a different window. See Finding Errors.

1.50 jade.guide/Killing Windows

Killing Windows

‘Ctrl-x 0’
Close the current window, if it is the last window that the editor
has open it will exit (after asking you if you wish to lose any
unsaved modifications to buffers).

‘Ctrl-x 1’
Close all windows except the current one.

1.51 jade.guide/Other Window Commands

Other Window Commands

‘Ctrl-x o’
Activate the next window of the editor’s. Under X11 this involves
warping the [mouse-]cursor to the top left corner of the newly
activated window.

jade 39 / 53

1.52 jade.guide/Using the Prompt

Using the Prompt
================

There are two different styles of prompt that the editor uses when it
wants you to enter a string.

The Simple Prompt The prompt at the bottom of the window
The Buffer Prompt Prompt with its own buffer and completion

1.53 jade.guide/The Simple Prompt

The Simple Prompt

The simplest prompt uses the the bottom-most line in the window, it
prints the prompt’s title on the left hand side, you should type your
response and then press the RET key. This prompt is very primitive, the
only special commands that it has are,

‘BS’
Delete the previous character.

‘UP’
‘DOWN’

Replace the contents of the prompt with the last string entered.
When you type ‘UP’ or ‘DOWN’ again the original contents are
restored.

‘ESC’
Cancel the prompt.

All other keys are simply printed in the prompt -- whatever they are.

1.54 jade.guide/The Buffer Prompt

The Buffer Prompt

This type of prompt is more sophisticated. It creates a new buffer
for you to type your response into (called ‘*prompt*’), the title of the
prompt is displayed in the buffer’s first line.

Normally you type the answer to the prompt into the buffer and then
press the RET key. All normal editor commands are available while you
are using the prompt, you can switch buffers, load new files, whatever
you like.

jade 40 / 53

Another advantage of this type of prompt is that it supports
"completion", this allows you to type the beginning of your response
then press the TAB key. What you have typed will be matched against the
list of responses that the editor has (ie, when being prompted for the
name of a file it will be matched against all available files), if a
unique match is found your response will be completed to that match.

If several potential completions are found, these will be displayed
after the line ‘::Completions::’ in the buffer and your response will
only be completed as far as the potential completions are similar. For
example, if you enter ‘fo’ then press TAB and files called ‘foo’ and
‘foobar’ exist, the contents of the prompt will become ‘foo’.

Completion is provided for many different things, some are: files,
buffers, symbols, functions, variables, Info nodes, etc...

The special commands for this type of prompt are,

‘TAB’
Complete the contents of the prompt. If more than one potential
completion exists they are printed in the buffer.

‘RET’
Enter the result of this prompt. If you press RET while the cursor
is on a printed potential completion (those under the
‘::Completions::’ line) the whole line will be entered. Otherwise,
just the text to the left of the cursor is entered.

‘ESC ?’
Print all possible completions of the current prompt but do not
try to actually change the contents of the prompt.

‘Ctrl-g’
Cancel the prompt.

1.55 jade.guide/Using Marks

Using Marks
===========

Marks are used to record a position in a file, as the file’s buffer
is modifed so does the position that the mark points to -- a mark will
keep pointing at the same character no matter what happens (unless the
character is deleted!).

The other good thing about marks is that they point to files *not*
buffers. This means that you can set a mark in a buffer, delete the
buffer and then move to the position of the mark, the file will be
reloaded and the cursor will point at the original character.

Normally there are three user-accessible marks (1) and one special
‘auto-mark’ which is used, amongst other things, to record the
"previous" position of the cursor, allowing you to retrace your last
major step.

jade 41 / 53

The commands available on marks are,

‘F1’
‘F2’
‘F3’

Move to the mark #1, #2 or #3, depending on which function key is
pressed (F1 means mark #1, etc...). If the file pointed to is not
in memory it will be loaded into a new buffer.

‘Shift-F1’
‘Shift-F2’
‘Shift-F3’

Set the position of mark #1, #2 or #3, depending on the function
key.

‘Ctrl-x Ctrl-x’
Swap the positions of the cursor and the ‘auto-mark’.

‘Ctrl-@’
Set the position of the ‘auto-mark’.

---------- Footnotes ----------

(1) There is no reason why you can’t have more, the editor sets no
limitation on the number of marks available. This is just how I have
set the editor up.

1.56 jade.guide/Compiling Programs

Compiling Programs
==================

Jade has a number of features to help you develop programs, foremost
is the ability to run a compilation inside one of the editor’s buffers.
Unfortunately, this is only possible when using the Unix operating
system at the present.

Once the compilation has finished you can then step through each
error produced.

Running a Compilation
Finding Errors Stepping through compile errors
Using Grep Searching files for a regexp
Keeping ChangeLogs Simple recording of file revisions

1.57 jade.guide/Running a Compilation

jade 42 / 53

Running a Compilation

The command to run a shell command in a buffer is,

‘ESC x compile’
Prompts you for the command to execute, with a default of the last
command you ran (starts as ‘make’). A shell process is created
which runs asynchronously to the editor in the same directory as
the current buffer’s file was loaded from. The buffer
‘*compilation*’ is selected and this is where all output from the
program is printed.

When the process finishes running a message is printed in the
‘*compilation*’ buffer telling you its exit-code.

Only one process may be run with the ‘compile’ function at once.

This command is not available on the Amiga version yet.

1.58 jade.guide/Finding Errors

Finding Errors

When you have compiled something with the ‘ESC x compile’ command it
is possible to step through each of the errors that it produces. To do
this use the command,

‘Ctrl-x ‘’
‘ESC x next-error’

Displays the next error in the ‘*compilation*’ buffer. The file
that is in is loaded (if necessary) and the line with the error is
found.

If you edit a file which has errors in it, then try to find the next
error (which is in the same file) everything will still work. The
positions of errors are updated as the buffers are modified.

The only exception to this is when you invoke the ‘next-error’
function while the ‘*compilation*’ buffer is still being written to. If
more errors are produced in a file which has been modified since the
compilation started it is likely that the positions will get out of
sync.

By default, the ‘next-error’ function understands the type of error
output that ‘gcc’ produces. This is of the form,

FILE:LINE-NUMBER:DESCRIPTION

It is possible to use other formats though, the variables which
control this are,

jade 43 / 53

- Variable: compile-error-regexp
Regular expression to match a line containing an error. For ‘gcc’
this is ‘^(.*):([0-9]+):(.+)’.

- Variable: compile-file-expand
Expansion template to produce the name of the file with the error,
using ‘compile-error-regexp’ and the line containing the error. By
default this is ‘\1’.

- Variable: compile-line-expand
Similar to ‘compile-file-expand’ except that it expands to a string
defining the number of the line with the error. By default, ‘\2’.

- Variable: compile-error-expand
Similar to ‘compile-file-expand’, but produces the description of
the error. By default, ‘\3’.

1.59 jade.guide/Using Grep

Using Grep

It is often very useful to grep through a set of files looking for a
regular expression, this is what the ‘grep’ command does. With jade it
is possible to run an external ‘grep’ program in the ‘*compilation*’
buffer. This then enables you to step through each grep hit using the
‘Ctrl-x ‘’ command, Finding Errors.

The commands to use grep are,

‘ESC x grep’
Prompt for a string of arguments to give ‘grep’, you do not need to
provide the name of the program, or the ‘-n’ switch, this is done
automatically. The shell will do any filename-globbing on the
arguments so it is advisable to surround the regular expression
with single quotes.

Note that the regular expression syntax will be different to that
which jade uses. Also this command won’t work on an Amiga.

‘ESC x grep-buffer’
This command provides a method for scanning the current buffer for
all lines matching a regular expression (which you are prompted
for). It is written entirely in Lisp -- this means that the normal
regular expression syntax is needed and it will work on an Amiga.

1.60 jade.guide/Keeping ChangeLogs

Keeping ChangeLogs

jade 44 / 53

A ChangeLog is a file (usually called ‘ChangeLog’) which keeps a log
of all changes you have made to the files in its directory. For
example, the ‘src/ChangeLog’ file for Jade keeps a list of changes made
to the editor’s source code.

There is no magic involved, you simply use a command to add a new
entry to a directory’s log after modifying a file in that directory.
You then have to enter a summary of the changes that you made.

The command to do this is,

‘ESC a’
Prompts for the name of a directory then lets you type a
description of the changes you have made.

If you enter more than one change in the same day (and from the same
host) the same heading will be used. The heading consists of the time
and date, your name, your login and the name of the host you’re on. (1)

---------- Footnotes ----------

(1) On the Amiga there is no way to get these details. So, Jade
looks for some environment variables, ‘USERNAME’ for the login name,
‘HOSTNAME’ for the name of the host and ‘REALNAME’ for your actual name.

1.61 jade.guide/Simple Customisation

Simple Customisation
====================

The best way to tailor the editor to your own requirements is with
your personal startup file. This is called ‘.jaderc’ in your home
directory (1), it is a file of Lisp forms evaluated when Jade
initialises itself.

Usually, setting the values of variables in your startup file is
enough to configure Jade how you want, the Lisp function to set a
variable is called ‘setq’, it’s first argument is the name of the
variable, it’s second the value you wish to set it to. Normally this
value will be one of the following data types,

‘"xyz"’
A string ‘xyz’.

‘123’
‘0173’
‘0x7b’

A number, all of the above have the value 123 (in decimal, octal
and hexadecimal).

‘nil’
‘t’

A boolean value, ‘nil’ means false, or not true. ‘t’ is the

jade 45 / 53

opposite (in fact, any value not ‘nil’ is true).

My ‘.jaderc’ file looks something like this (note that semicolons
introduce comments),

;; Size of tabs for C source is 4
(setq c-mode-tab 4)

;; Size of tabs for Lisp source is 2
(setq lisp-mode-tab 2)

;; On X11 scroll quarter of a screen at once, else a line at a time
(setq y-scroll-step-ratio (if (x11-p) 4 0))

;; When on an Amiga, flag that I don’t want pulldown menus
(when (amiga-p)

(setq amiga-no-menus t))

---------- Footnotes ----------

(1) On the Amiga, your home directory is defined as the contents of
the environment variable ‘HOME’.

1.62 jade.guide/Programming Jade

Programming Jade

Unfortunately I haven’t written this section yet. If you wan’t to
program Jade your best bet is to look at the files in the ‘lisp/’
directory. Online documentation is available for all editor functions,
The Help System.

If you don’t know Lisp look at any Lisp book. Jade’s Lisp is fairly
similar to Emacs-Lisp (though the editor-related functions differ
greatly) so a good starting point may be the Emacs-Lisp manual.

1.63 jade.guide/Reporting Bugs

Reporting Bugs

If you think you’ve found a bug in Jade I want to know about it,
there is a list of problems that I am aware of in the ‘BUGS’ file, if
your’s appears in here tell me anyway to make me fix it.

When submitting bug reports I need to know as much as possible, both
about the problem and the circumstamces in which it occurs. In general,
send me as much information as possible, even if you think it’s probably
irrelevant.

jade 46 / 53

If you can, contact me via email, my address is ‘jsh@ukc.ac.uk’. If
you don’t get a reply within about a week it’s probably a university
vacation -- this means that I won’t get your message for a while, if
it’s important try my postal address, this is,

John Harper
91 Springdale Road
Broadstone
Dorset
BH18 9BW
England

As well as bugs I’m interested in any comments you have about the
editor, even if you just tell me you hate it (as long as you say *why*
you hate it!).

1.64 jade.guide/Function Index

Function Index

c-mode C-mode
compile Running a Compilation
grep Using Grep
grep-buffer Using Grep
info Info-mode
lisp-mode Lisp-mode
next-error Finding Errors
recover-file Other Buffer Commands
revert-buffer Other Buffer Commands
rotate-buffers-forward Other Buffer Commands
texinfo-mode Texinfo-mode

1.65 jade.guide/Variable Index

Variable Index

auto-save-interval Auto-Saving Files
auto-save-p Auto-Saving Files
backup-by-copying Backup Files
c-mode-auto-indent C-mode
c-mode-hook C-mode
c-mode-tab C-mode
compile-error-expand Finding Errors

jade 47 / 53

compile-error-regexp Finding Errors
compile-file-expand Finding Errors
compile-line-expand Finding Errors
default-auto-save-interval Auto-Saving Files
disk-tab Loading and Saving Tabs
lisp-mode-auto-indent Lisp-mode
lisp-mode-hook Lisp-mode
lisp-mode-tab Lisp-mode
make-backup-files Backup Files
mode-alist Automatic Mode Selection
no-file-code-p Embedding Lisp In Files
save-tabs Loading and Saving Tabs
screen-tab Moving Around Buffers
texinfo-mode-hook Texinfo-mode
x-scroll-step-ratio Moving Around Buffers
y-scroll-step-ratio Moving Around Buffers

1.66 jade.guide/Key Index

Key Index

1 Info-mode
2 Info-mode
3 Info-mode
4 Info-mode
5 Info-mode
: C-mode
BS Info-mode
BS Editing Buffers
DEL Editing Buffers
DOWN Moving Around Buffers
ESC < Moving Around Buffers
ESC > Moving Around Buffers
ESC ? The Buffer Prompt
ESC @ Marking Blocks
ESC BS Editing Buffers
ESC DEL Editing Buffers
ESC TAB Moving Around Buffers
ESC a Keeping ChangeLogs
ESC b Moving Around Buffers
ESC Ctrl-x Lisp-mode
ESC d Editing Buffers
ESC f Moving Around Buffers
ESC h Marking Blocks
ESC i Moving Around Buffers
ESC i Editing Buffers
ESC l Editing Buffers
ESC m Moving Around Buffers
ESC P Commands for Replacing
ESC p Commands for Replacing
ESC u Editing Buffers

jade 48 / 53

ESC v Moving Around Buffers
ESC w Commands on Blocks
ESC x clear-buffer Other Buffer Commands
ESC x compile Running a Compilation
ESC x goto-line Moving Around Buffers
ESC x grep Using Grep
ESC x grep-buffer Using Grep
ESC x recover-file Other Buffer Commands
ESC x revert-buffer Other Buffer Commands
ESC x rotate-buffers-forward Other Buffer Commands
ESC [Moving Around Buffers
ESC] Moving Around Buffers
F1 Using Marks
F2 Using Marks
F3 Using Marks
HELP The Help System
HELP a The Help System
HELP e The Help System
HELP f The Help System
HELP h The Help System
HELP i The Help System
HELP m The Help System
HELP v The Help System
LEFT Moving Around Buffers
RET The Buffer Prompt
RET Lisp-mode
RET C-mode
RET Editing Buffers
RIGHT Moving Around Buffers
SPC Info-mode
TAB The Buffer Prompt
TAB Lisp-mode
TAB C-mode
TAB Moving Around Buffers
UP Moving Around Buffers
{ C-mode
} C-mode
b Info-mode
Ctrl Modifiers
Ctrl-@ Using Marks
Ctrl-DEL Editing Buffers
Ctrl-DOWN Moving Around Buffers
Ctrl-RET Lisp-mode
Ctrl-SPC Marking Blocks
Ctrl-TAB Moving Around Buffers
Ctrl-UP Moving Around Buffers
Ctrl-a Moving Around Buffers
Ctrl-b Moving Around Buffers
Ctrl-c Ctrl-c { Texinfo-mode
Ctrl-c Ctrl-c } Texinfo-mode
Ctrl-c Ctrl-c c Texinfo-mode
Ctrl-c Ctrl-c Ctrl-m Texinfo-mode
Ctrl-c Ctrl-c d Texinfo-mode
Ctrl-c Ctrl-c e Texinfo-mode
Ctrl-c Ctrl-c f Texinfo-mode
Ctrl-c Ctrl-c i Texinfo-mode
Ctrl-c Ctrl-c l Texinfo-mode

jade 49 / 53

Ctrl-c Ctrl-c m Texinfo-mode
Ctrl-c Ctrl-c n Texinfo-mode
Ctrl-c Ctrl-c s Texinfo-mode
Ctrl-c Ctrl-c v Texinfo-mode
Ctrl-c Ctrl-c] Texinfo-mode
Ctrl-d Editing Buffers
Ctrl-e Moving Around Buffers
Ctrl-f Moving Around Buffers
Ctrl-g The Buffer Prompt
Ctrl-h The Help System
Ctrl-h a The Help System
Ctrl-h e The Help System
Ctrl-h f The Help System
Ctrl-h h The Help System
Ctrl-h i The Help System
Ctrl-h m The Help System
Ctrl-h v The Help System
Ctrl-i Commands on Blocks
Ctrl-j Moving Around Buffers
Ctrl-M Rectangular Blocks
Ctrl-m Marking Blocks
Ctrl-n Moving Around Buffers
Ctrl-o Editing Buffers
Ctrl-p Moving Around Buffers
Ctrl-R Commands for Searching
Ctrl-r Commands for Searching
Ctrl-S Commands for Searching
Ctrl-s Commands for Searching
Ctrl-v Moving Around Buffers
Ctrl-w Commands on Blocks
Ctrl-x 0 Killing Windows
Ctrl-x 1 Killing Windows
Ctrl-x 2 Creating Windows
Ctrl-x 4 a Creating Windows
Ctrl-x 4 b Creating Windows
Ctrl-x 4 b Displaying Buffers
Ctrl-x 4 Ctrl-f Creating Windows
Ctrl-x 4 f Creating Windows
Ctrl-x 4 h Creating Windows
Ctrl-x 4 i Creating Windows
Ctrl-x 4 ‘ Creating Windows
Ctrl-x 5 Creating Windows
Ctrl-x b Displaying Buffers
Ctrl-x Ctrl-f Commands To Load Files
Ctrl-x Ctrl-l Commands on Blocks
Ctrl-x Ctrl-r Commands To Load Files
Ctrl-x Ctrl-s Commands To Save Files
Ctrl-x Ctrl-u Commands on Blocks
Ctrl-x Ctrl-v Commands To Load Files
Ctrl-x Ctrl-w Commands To Save Files
Ctrl-x Ctrl-x Using Marks
Ctrl-x h Marking Blocks
Ctrl-x i Commands To Load Files
Ctrl-x k Deleting Buffers
Ctrl-x s Other Buffer Commands
Ctrl-x s Commands To Save Files
Ctrl-x ‘ Finding Errors

jade 50 / 53

Ctrl-Y Rectangular Blocks
Ctrl-Y Cutting And Pasting
Ctrl-y Cutting And Pasting
Ctrl-z Commands on Blocks
f Info-mode
g Info-mode
l Info-mode
LMB Modifiers
m Info-mode
Meta Modifiers
Meta-DOWN Moving Around Buffers
Meta-LEFT Moving Around Buffers
Meta-RIGHT Moving Around Buffers
Meta-TAB Lisp-mode
Meta-TAB C-mode
Meta-UP Moving Around Buffers
Meta-M Marking Blocks
Meta-m Marking Blocks
MMB Modifiers
n Info-mode
p Info-mode
q Info-mode
RMB Modifiers
Shift Modifiers
Shift-BS Editing Buffers
Shift-DEL Editing Buffers
Shift-DOWN Moving Around Buffers
Shift-F1 Using Marks
Shift-F2 Using Marks
Shift-F3 Using Marks
Shift-LEFT Moving Around Buffers
Shift-RET Lisp-mode
Shift-RET C-mode
Shift-RIGHT Moving Around Buffers
Shift-TAB Moving Around Buffers
Shift-UP Moving Around Buffers
Space Keys
u Info-mode

1.67 jade.guide/Concept Index

Concept Index

Address, my Reporting Bugs
Arguments, startup Startup Options
Auto-saving files Auto-Saving Files
Automatic mode selection Automatic Mode Selection
Backup files Backup Files
Blocks, commands Commands on Blocks
Blocks, marking Marking Blocks
Blocks, rectangular Rectangular Blocks
Blocks, using Using Blocks
Buffer Editor Concepts

jade 51 / 53

Buffer prompt The Buffer Prompt
Buffer, current Editor Concepts
Buffers, deleting Deleting Buffers
Buffers, displaying Displaying Buffers
Buffers, editing Editing Buffers
Buffers, moving around Moving Around Buffers
Buffers, other commands Other Buffer Commands
Buffers, searching and replacing Searching and Replacing
Buffers, using Using Buffers
Bugs, reporting Reporting Bugs
C-mode C-mode
ChangeLogs, keeping Keeping ChangeLogs
Columnar blocks Rectangular Blocks
Command Editor Concepts
Commands for replacing Commands for Replacing
Commands for searching Commands for Searching
Commands on blocks Commands on Blocks
Commands to load files Commands To Load Files
Commands to save files Commands To Save Files
Commands, window Other Window Commands
Compilation, finding errors Finding Errors
Compilation, running Running a Compilation
Compiling programs Compiling Programs
Concepts, editor Editor Concepts
Copying Copying
Copying text Cutting And Pasting
Creating windows Creating Windows
Current buffer Editor Concepts
Current window Editor Concepts
Cursor Editor Concepts
Customisation, simple Simple Customisation
Cutting and pasting Cutting And Pasting
Deleting buffers Deleting Buffers
Deleting text Cutting And Pasting
Displaying buffers Displaying Buffers
Distribution conditions Copying
Editing buffers Editing Buffers
Editing modes Editing Modes
Editing modes, automatic selection Automatic Mode Selection
Editing modes, invoking Invoking a Mode
Editor concepts Editor Concepts
Email, my address Reporting Bugs
Embedding lisp in files Embedding Lisp In Files
Example key definitions Example Keys
Files, auto-saving Auto-Saving Files
Files, backups Backup Files
Files, loading and loading Loading and Saving Files
Finding errors Finding Errors
Form Editor Concepts
Generic-mode Generic-mode
Grep, using Using Grep
Help system The Help System
Help, starting The Help System
Info browser Info-mode
Info-mode Info-mode
Initialisation procedure Startup Procedure
Introduction Introduction

jade 52 / 53

Invocation Invocation
Invoking a mode Invoking a Mode
Jade, Using Using Jade
Keeping ChangeLogs Keeping ChangeLogs
Key definitions Key Definitions
Key definitions, examples Example Keys
Key Definitions, keys Keys
Key definitions, modifiers Modifiers
Keys Keys
Killing windows Killing Windows
License Copying
Lisp Editor Concepts
Lisp-interactive-mode Lisp-mode
Lisp-mode Lisp-mode
Loading files Loading and Saving Files
Marking blocks Marking Blocks
Marks, using Using Marks
Modes, automatic selection Automatic Mode Selection
Modes, editing Editing Modes
Modes, invoking Invoking a Mode
Modifiers Modifiers
Moving around buffers Moving Around Buffers
Options, startup Startup Options
Other buffer commands Other Buffer Commands
Other window commands Other Window Commands
Pasting text Cutting And Pasting
Programs, running Running a Compilation
Prompt, buffer The Buffer Prompt
Prompt, simple The Simple Prompt
Prompt, using Using the Prompt
Rectangular blocks Rectangular Blocks
Regexps Regular Expressions
Regular expression, definition Editor Concepts
Regular expressions Regular Expressions
Replace, search and Searching and Replacing
Replacing, commands for Commands for Replacing
Reporting bugs Reporting Bugs
Requirements Systems Supported
Running a compilation Running a Compilation
Saving files Loading and Saving Files
Searching and replacing Searching and Replacing
Searching, commands for Commands for Searching
Simple customisation Simple Customisation
Simple prompt The Simple Prompt
Starting jade Starting Jade
Startup options Startup Options
Startup procedure Startup Procedure
Tab Expansion Loading and Saving Tabs
Tabs, loading Loading and Saving Tabs
Texinfo-mode Texinfo-mode
Unix and X11 Jade Unix and X11 Jade
Using blocks Using Blocks
Using buffers Using Buffers
Using grep Using Grep
Using jade Using Jade
Using marks Using Marks
Using the prompt Using the Prompt

jade 53 / 53

Using windows Using Windows
Variable Editor Concepts
Window Editor Concepts
Window, current Editor Concepts
Windows, creating Creating Windows
Windows, killing Killing Windows
Windows, other commands Other Window Commands
Windows, using Using Windows

	jade
	jade.guide
	jade.guide/Copying
	jade.guide/Introduction
	jade.guide/Systems Supported
	jade.guide/Amiga Jade
	jade.guide/Unix and X11 Jade
	jade.guide/Editor Concepts
	jade.guide/Key Definitions
	jade.guide/Modifiers
	jade.guide/Keys
	jade.guide/Example Keys
	jade.guide/Starting Jade
	jade.guide/Invocation
	jade.guide/Startup Options
	jade.guide/Startup Procedure
	jade.guide/Using Jade
	jade.guide/The Help System
	jade.guide/Loading and Saving Files
	jade.guide/Commands To Load Files
	jade.guide/Commands To Save Files
	jade.guide/Backup Files
	jade.guide/Auto-Saving Files
	jade.guide/Loading and Saving Tabs
	jade.guide/Automatic Mode Selection
	jade.guide/Embedding Lisp In Files
	jade.guide/Editing Buffers
	jade.guide/Moving Around Buffers
	jade.guide/Cutting And Pasting
	jade.guide/Using Blocks
	jade.guide/Marking Blocks
	jade.guide/Commands on Blocks
	jade.guide/Rectangular Blocks
	jade.guide/Searching and Replacing
	jade.guide/Regular Expressions
	jade.guide/Commands for Searching
	jade.guide/Commands for Replacing
	jade.guide/Editing Modes
	jade.guide/Invoking a Mode
	jade.guide/Generic-mode
	jade.guide/C-mode
	jade.guide/Lisp-mode
	jade.guide/Texinfo-mode
	jade.guide/Info-mode
	jade.guide/Using Buffers
	jade.guide/Displaying Buffers
	jade.guide/Deleting Buffers
	jade.guide/Other Buffer Commands
	jade.guide/Using Windows
	jade.guide/Creating Windows
	jade.guide/Killing Windows
	jade.guide/Other Window Commands
	jade.guide/Using the Prompt
	jade.guide/The Simple Prompt
	jade.guide/The Buffer Prompt
	jade.guide/Using Marks
	jade.guide/Compiling Programs
	jade.guide/Running a Compilation
	jade.guide/Finding Errors
	jade.guide/Using Grep
	jade.guide/Keeping ChangeLogs
	jade.guide/Simple Customisation
	jade.guide/Programming Jade
	jade.guide/Reporting Bugs
	jade.guide/Function Index
	jade.guide/Variable Index
	jade.guide/Key Index
	jade.guide/Concept Index

