
ARx_Instr3.ag

ARx_Instr3.ag ii

COLLABORATORS

TITLE :

ARx_Instr3.ag

ACTION NAME DATE SIGNATURE

WRITTEN BY January 8, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

ARx_Instr3.ag iii

Contents

1 ARx_Instr3.ag 1

1.1 main . 1

1.2 ARexxGuide | Instruction Reference (16 of 25) | PROCEDURE . 1

1.3 ARexxGuide | Instruction Reference | Procedure (1 of 1) | EXPOSE . 2

1.4 ARexxGuide | Instruction Reference (17 of 25) | PULL . 3

1.5 ARexxGuide | Instruction Reference (18 of 25) | PUSH . 3

1.6 ... Instruction Reference | Push/Queue (1 of 2) | DATA-STREAM I/O . 4

1.7 ... Instruction Reference | Push/Queue (2 of 2) | SCRATCHPAD . 4

1.8 ARexxGuide | Instruction Reference (19 of 25) | QUEUE . 5

1.9 ARexxGuide | Instruction Reference (20 of 25) | RETURN . 6

1.10 ARexxGuide | Instruction Reference (21 of 25) | SAY . 6

1.11 ARexxGuide | Instruction Reference (22 of 25) | SELECT . 7

1.12 ARexxGuide | Instruction Reference | Select (1 of 1) | WHEN . 7

1.13 ARexxGuide | Instruction Reference | Select (1 of 1) | OTHERWISE . 8

1.14 ARexxGuide | Instruction Reference (23 of 25) | SIGNAL . 9

1.15 ARexxGuide | Instruction Ref. | SIGNAL (1 of 2) | TRAPS . 9

1.16 ARexxGuide | Instruction Ref. | SIGNAL (2 of 2) | TRANSFER . 10

1.17 ARexxGuide | Instructions | Signal | Traps (1 of 8) | BREAK_C . 10

1.18 ARexxGuide | Instructions | Signal | Traps (2 of 8) | BREAK . 11

1.19 ARexxGuide | Instructions | Signal | Traps (3 of 8) | ERROR . 12

1.20 ARexxGuide | Instructions | Signal | Traps (4 of 8) | FAILURE . 12

1.21 ARexxGuide | Instructions | Signal | Traps (5 of 8) | HALT . 13

1.22 ARexxGuide | Instructions | Signal | Traps (6 of 8) | IOERR . 14

1.23 ARexxGuide | Instructions | Signal | Traps (7 of 8) | NOVALUE . 15

1.24 ARexxGuide | Instructions | Signal | Traps (8 of 8) | SYNTAX . 15

1.25 ARexxGuide | Instruction Reference (24 of 25) | TRACE . 16

1.26 ... Instruction Reference | Trace (1 of 3) | OPTIONS . 17

1.27 ... Instruction Reference | Trace (2 of 3) | INTERACTIVE . 17

1.28 ...Instruction Reference | Trace (3 of 3) | COMMAND INHIBITION . 18

1.29 ... Instruction Reference | Trace | Options (1 of 1) | TRACE I CODES . 19

1.30 ARexxGuide | Instruction Reference (25 of 25) | UPPER . 20

ARx_Instr3.ag 1 / 20

Chapter 1

ARx_Instr3.ag

1.1 main

AN AMIGAGUIDE® TO ARexx Edition: 1.0b
by Robin Evans

Note: This is a subsidiary file to ARexxGuide.guide. We recommend
using that file as the entry point to this and other parts of the
full guide.

Copyright © 1993, Robin Evans. All rights reserved.

1.2 ARexxGuide | Instruction Reference (16 of 25) | PROCEDURE

PROCEDURE [EXPOSE <variable> [<variable>] [...]] ;

Creates a new symbol table for an internal function . The optional EXPOSE
keyword makes <variable> available to the function from the calling
environment’s symbol table.

By default, a subroutine has access to all variables defined in the main
program. It may retrieve the values of those variables and change them.
The PROCEDURE instruction protects variables in the main program by giving
the subroutine a new symbol table, as though a new script were being
executed.

Example:
/**/
Var = ’I came on a kind of crossroads’
CALL SubR
SAY Var >>> From time to time.
EXIT

SubR:
SAY Var >>> I came on a kind <...>
Var = ’From time to time.’

RETURN

ARx_Instr3.ag 2 / 20

/**/
Var = ’I came on a kind of crossroads’
CALL SubR
SAY Var >>> I came on a kind <...>
EXIT

SubR: PROCEDURE
SAY Var >>> VAR
Var = ’From time to time.’

RETURN

In the first program fragment, [Var] in the subroutine inherits the value
assigned to it in the main program and is able to change the assignment
and affect the value of [Var] in the main program.

In the second fragment, on the other hand, the use of PROCEDURE turns
[Var] into what is, essentially, a different variable. It is uninitialized
when the subroutine begins. The assignment clause within the subroutine
has no effect upon the variable used in the main program.

Also see @{ " Basic elements: Internal functions " link ARx_Elements3.ag/ ←↩
PROGFUNC} explanation

Next: PULL | Prev: PARSE | Contents: Instruction ref.

1.3 ARexxGuide | Instruction Reference | Procedure (1 of 1) | EXPOSE

procedure [EXPOSE <variable> <variable> <...>]

The EXPOSE option keyword can be used only in conjunction with the
PROCEDURE instruction. It moderates the effect of PROCEDURE by allowing

each listed <variable> to be treated as part of the symbol table of both
the subroutine and the calling environment.

Each listed <variable> in the subroutine will be treated as it would be in
a subroutine that was not modified by the PROCEDURE instruction.

Any number of individual variables can be listed after the keyword, but it
is often useful to expose a group of variables in one step. That can be
done in either of two ways:

The first method is to maintain the globals as compound variables . If
the stem variable is used by itself in an EXPOSE list, then all
variables formed from that stem will also be exposed. A short stem name
like { g!. } is useful in this situation.

Example:
/* Formatting strings are stored under the g!. stem */

csi=’9b’x;g!.slant=csi’3m’; g!.bold=csi’1m’; g!.norm=csi’0m’
/* intervening code */

say PrettyUp(’This is the’, ’absolute’, ’finest.’)
exit

PrettyUp: PROCEDURE EXPOSE g!.
Emphasis = g!.slant||arg(2)||g!.norm

ARx_Instr3.ag 3 / 20

return g!.bold||arg(1) Emphasis g!.bold||arg(3)||g!.norm

Another method suggested by ARexx guru Marvin Weinstein is store
symbols to be used as globals in a string and then expand the string with
the interpret instruction:

Example:
/* symbols for color strings are stored in another variable */

csi=’9b’x;Black=csi’31m’; White=csi’32m’; Blue=csi’33m’
Globals = ’Black White Blue’
say PrettyUp(’This is the’, ’absolute’, ’finest.’)
exit

PrettyUp: interpret ’PROCEDURE EXPOSE’ Globals
return White||arg(1) Blue||arg(2) White||arg(3)||Black

Next, Prev & Contents: PROCEDURE

1.4 ARexxGuide | Instruction Reference (17 of 25) | PULL

PULL <template>;

Retrieves a line of input from the command line, translating it to
uppercase. PULL is an abbreviation of PARSE UPPER PULL <template> .

Next: PUSH | Prev: PROCEDURE | Contents: Instruction ref.

1.5 ARexxGuide | Instruction Reference (18 of 25) | PUSH

PUSH <expression>;

Places <expression> with a newline appended into the STDIN stream. The
stacked commands are placed in a last-in, first-out order.

PUSH is a near-twin of the instruction QUEUE , except that the latter
stores lines in first-in, first-out order.

PUSH, QUEUE and REXX data-stream I/O

Commands pushed or queued to STDIN may be retrieved with the PARSE PULL
instruction. Any stacked lines remaining when the ARexx program exits will
be executed as though they had been typed onto the shell. The built-in
function LINES() returns the number of stacked lines at STDIN.

Example:
/**/
PUSH ’run ppage:ppage’
PUSH ’stack 10000’
PUSH ’cd dtp:docs’
exit

/* Amigados commands would be run in this order: **
** CD, STACK, RUN */

ARx_Instr3.ag 4 / 20

/**/
push ’I take a stone from the right pocket’
say lines() >>> 1
pull Input
say input >>> I TAKE A STONE FROM THE RIGHT POCKET

In the second example, the PULL instruction will not wait for user
input, but will pull the first (and, in this case, only) item from the
stack.

Next: QUEUE | Prev: PULL | Contents: Instruction ref.

1.6 ... Instruction Reference | Push/Queue (1 of 2) | DATA-STREAM I/O

PUSH and QUEUE use a model of communication based on the concept of a
stack. Strings are stored one on top of another and can then be retrieved
one at a time from the stack.

The PARSE PULL instruction first tries to pull a string from that stack.
If there is nothing there (in other words, if LINES() = 0) then PULL
will wait until the user has typed in a line of input.

PUSH and QUEUE are defined as part of the standard REXX language that
was developed on and for IBM mainframe systems. On some of the systems
where REXX is used, the PUSH and QUEUE instructions are used as a primary
method of communicating with the system itself and with other programs.

Despite that, the instructions are rarely used in ARexx. Why? A major
reason is that some CLI/shell programs used on the Amiga do not support
the instructions. PUSH and QUEUE have always been supported on any shell
using the the shareware console-management utility ConMan and on the
replacement shell WShell (both authored by ARexx creator Bill Hawes),
but it was not until Release 2.04 that the standard Amiga shell supported
use of the instructions.

The Amiga’s interprocess communication features make it possible, in most
cases, to use the ADDRESS instruction to send commands directly to the
environment that will execute them. Commands invoked that way can also
send an error code and result string back to the script that called them,
giving it a chance to handle error conditions -- something that can’t be
done using PUSH and QUEUE, where the commands must be invoked blindly.

Next: DATA SCRATCHPAD | Prev: PUSH | Contents: Instruction ref.

1.7 ... Instruction Reference | Push/Queue (2 of 2) | SCRATCHPAD

PUSH and QUEUE can be used for more than just stacking commands on the
shell. In his ARexx manual, Bill Hawes mentions use of the instructions
to create a ’private scratchpad’ for a program. Strings stacked with the
instructions can be retrieved later in the same script using the
PARSE PULL instruction, but are also available to another script

launched from the first one. (Note, however, that if the scripts terminate

ARx_Instr3.ag 5 / 20

for some reason before data has been pulled from the scratchpad, the shell
will treat whatever remains as commands, probably causing a messy series
of error messages. Using SIGNAL traps to intercept error conditions and
clean up the data stack is recommended in this instance.)

Although there are more efficient and elegant ways to do this, the
following example suggests how PUSH and QUEUE can be used as a data
scratchpad.

Datafile format Program
---------------- --
01-Aug-1993 1400 /* Demo of PUSH and QUEUE */
02-Aug-1993 1300 arg AptFN .
01-Aug-1993 1000 TDt = upper(translate(date(),’-’,’ ’))
03-Aug-1993 1700 if open(1AptFile, AptFN, R) then do
06-Aug-1993 1100 do until eof(1AptFile)
03-Aug-1993 1430 Apt = readln(1AptFile)
01-Aug-1993 0900 if word(upper(Apt), 1) >= TDt then
04-Aug-1993 1030 if abbrev(upper(Apt), TDt) then
01-Aug-1993 0800 PUSH Apt

else
QUEUE Apt

end
end
do for lines()

parse pull Apt
say Apt

end

The PUSH instruction is used to place a record with the current date at
the top of the stack while QUEUE is used to put other dates at the end of
the stack. (Sorting the file -- even with the AmigaDOS Sort command --
would make this step unnecessary.) Dates earlier than [TDt] are discarded.
In this example, the data is simply printed to the shell. A more useful
alternative might be to rewrite it to an updated file. More significantly,
the PARSE PULL instruction could be left out of this script and included
in another one called from here. The second script could then read the
data from the stack and perform whatever actions are needed.

Next: QUEUE | Prev: Data-stream I/O | Contents: PUSH

1.8 ARexxGuide | Instruction Reference (19 of 25) | QUEUE

QUEUE <expression>;
Places <expression> with a newline appended into the STDIN stream. The
stacked commands are placed in a first-out, last-in order.

QUEUE is a near-twin of the instruction PUSH , except that the latter
stores lines in last-in, first-out order.

PUSH, QUEUE and REXX data-stream I/O

Commands pushed or queued to STDIN can be retrieved with the PARSE PULL
instruction. Any stacked lines remaining when the ARexx program exits will
be executed as though they had been typed onto the shell. The built-in

ARx_Instr3.ag 6 / 20

function LINES() returns the number of lines that have been stacked at
STDIN.

Example:
/**/
QUEUE ’cd dtp:docs’
QUEUE ’stack 10000’
QUEUE ’run ppage:ppage’
EXIT

/* AmigaDOS commands would be run in this order: **
** CD, STACK, RUN */

Next: RETURN | Prev: PUSH | Contents: Instruction ref.

1.9 ARexxGuide | Instruction Reference (20 of 25) | RETURN

RETURN [<expression>];

Transfers program control (and an optional result of <expression>) from
an internal function or a program back to the point from which it was
called.

Also see @{ " EXIT " link ARx_Instr.ag/EXIT}

Next: SAY | Prev: QUEUE | Contents: Instruction ref.

1.10 ARexxGuide | Instruction Reference (21 of 25) | SAY

SAY [<expression>];

Outputs <expression> with a newline appended to STDOUT -- the active
standard output device (usually the shell).

Example:
/**/
Str = ’circumstances better left unspoken’
SAY Str

This sample would output to the shell the following:

circumstances better left unspoken

The keyword ECHO may be used as a synonym for SAY.

@{ " NOTE: Redirection of standard input " alink ARx_Notes.ag/STDIO}

Throughout this guide, the SAY instruction is used in examples for
other instructions and for functions since it provides a way to output
the results of a program action to the shell. The output of the SAY
command is usually represented on the same line, preceded by the
characters ’>>> ’.

ARx_Instr3.ag 7 / 20

Also see @{ " WRITELN() " link ARx_Func3.ag/WRITELN()} function

Next: SELECT | Prev: RETURN | Contents: Instruction ref.

1.11 ARexxGuide | Instruction Reference (22 of 25) | SELECT

SELECT;
WHEN <conditional> THEN ; <action>
WHEN <conditional> THEN ; <action>

...
OTHERWISE ; [<action list>]

END

Executes the <action> associated with the first <conditional> in the
list of WHEN clauses that evaluates to TRUE. If none of the WHEN
<conditional>s are true, then the list of clauses between OTHERWISE and
END will be executed.

<conditional> may be any expression that returns a Boolean value.

<action> can be an instruction , assignment , or command . Only one
such clause will be executed after THEN, however. To execute multiple
clauses, enclose them within a DO/END block.

Multiple clauses (or no clauses) are allowed in the <action list>
following OTHERWISE.

The range of a SELECT statement must always be closed with the END
keyword. All other clauses and expressions must bind to one of the WHEN
keywords, or be included in the list of clauses following OTHERWISE.

Also see @{ " IF " link ARx_Instr.ag/IF}

Next: SIGNAL | Prev: SAY | Contents: Instruction ref.

1.12 ARexxGuide | Instruction Reference | Select (1 of 1) | WHEN

select
WHEN <conditional> then <action>
< ... >
otherwise

end

WHEN is a secondary keyword that has meaning only within the range of a
SELECT instruction. It must be the first word in the clause in which it
is used. THEN is required to introduce the instruction, assignment, or
command that is to be executed when the <conditional> is true.

Next: OTHERWISE | Prev: Select | Contents: Select

ARx_Instr3.ag 8 / 20

1.13 ARexxGuide | Instruction Reference | Select (1 of 1) | OTHERWISE

select
when <condition> then <action>
when <condition> then <action>
OTHERWISE <action>

end

OTHERWISE is a required part of each SELECT instruction, but failure to
include the keyword may cause a subtle condition that will not generate a
syntax error. Because ARexx interprets each clause as it is encountered in
the flow of a script, it will skip over any clause that is not required.
In the following fragment, the OTHERWISE clause will never be executed
since the condition specified for WHEN will always be true:

select
when 1 < 2 then

say ’WHEN clause executed’
otherwise

say ’WHEN clause skipped.’
end

If OTHERWISE had been omitted in this instance, a syntax error would not
be generated since ARexx would not look for the OTHERWISE clause. It might
therefore seem more efficient to leave out the OTHERWISE if the WHEN
clauses have exhausted all possible matches. That is not recommended,
however, since future changes to the language or third-party extensions to
ARexx might detect the error before the program is run. Dropping the
OTHERWISE to save a line of code could cause future problems with the
non-compliment code.

It is acceptable to include the OTHERWISE keyword followed immediately by
the END of the SELECT instruction:

select
when 1 < 2 then

say ’WHEN clause executed’
otherwise

end

OTHERWISE may be followed by multiple clauses that are not enclosed
within a DO/END block:

select
when 1 > 2 then

say ’WHEN clause executed’
otherwise

say ’1 is never greater than 2!’
say ’But, of course, you knew that.’

end

Next: Select | Prev: When | Contents: Select

ARx_Instr3.ag 9 / 20

1.14 ARexxGuide | Instruction Reference (23 of 25) | SIGNAL

SIGNAL | { ON | OFF } <interrupt>
| [VALUE] <label name>

This instruction causes an unconditional and abnormal transfer of control
to a subroutine within the same script. It is used mainly to handle error
conditions in a program or special termination conditions for a script or a
subroutine within a script.

With the { ON|OFF } option, the instruction controls the way interrupt
conditions are handled. The other options cause an abnormal change in the
flow of a program.

If called within a multi-clause control-structure (DO , IF , WHEN ,
or INTERPRET), the control instruction will be terminated and cannot be
reactivated.

The special variable SIGL is set to the line number of the clause that
triggered the transfer of control.

A SIGNAL instruction of either kind can be used within a subroutine
without breaking the flow of a program. If RETURN is encountered within
a subroutine signaled from another subroutine, it is treated as it would
be in the first subroutine: Control is returned to the environment that
called the first subroutine.

The search for the labels <interrupt> or <name> is not case sensitive.

Also see @{ " CALL " link ARx_Instr.ag/CALL}

Next: TRACE | Prev: OTHERWISE | Contents: Instruction ref.

1.15 ARexxGuide | Instruction Ref. | SIGNAL (1 of 2) | TRAPS

Condition traps
~~~~~~~~~~~~~~~

SIGNAL ON <interrupt> causes special handling of the exception condition
identified by <interrupt> and will transfer control to a subroutine that
is identified by a label using the same name as <interrupt>.

For instance, if the instruction { SIGNAL ON Syntax } issued in the script,
then any syntax error will cause a jump to the subroutine identified by
the label { Syntax: }.

SIGNAL OFF <interrupt> returns the program to its default manner of
handling the specified interrupt.

<interrupt> may be any of the following:

Interrupt name Caused by Default handling
-------------- ------------------------------ -------------------
BREAK_C a control-C break Execution halted

| BREAK_D a control-D break Ignored



ARx_Instr3.ag 10 / 20

| BREAK_E a control-E break Ignored
| BREAK_F a control-F break Ignored
ERROR a non-0 return code from Ignored

a command
FAILURE a failure-level return code Error msg. printed

from a command
HALT an external HALT request Execution halted
IOERR an error detected by IO system Ignored
NOVALUE an uninitialized variable used Ignored
SYNTAX a syntax or execution error Execution halted

-----------------------------------------------------------------------

The special variable SIGL is set to the line that was being interpreted
when the trap condition was triggered.

Next: Signal transfers | Prev: Signal | Contents: Signal

1.16 ARexxGuide | Instruction Ref. | SIGNAL (2 of 2) | TRANSFER

SIGNAL [VALUE] <label name>
Unconditional transfer of program flow
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Used in this way, the instruction causes an unconditional transfer of
control to the subroutine identified by <label name>, which is treated
as a literal value if the sub-keyord VALUE is not used.

When the VALUE option is specified, <label name> may be any expression
that evaluates to the name of a subroutine within the current program.

The instruction acts in a way similar to the egregious GOTO command in
some languages.

Example:
/*...*/
if Input = ’GETOUT’ then

SIGNAL Cleanup
/* the program continues */
exit 0

Cleanup:
/* Any conditions set by the program that should be changed **
** before exit can be included here. */
exit 5

Next: Signal | Prev: Signal traps | Contents: Signal

1.17 ARexxGuide | Instructions | Signal | Traps (1 of 8) | BREAK_C

The BREAK_C condition is triggered when the user presses the Control and C
keys together. That input, however, is usually recognized only by a script
started from a shell or another environment that establishes a STDIN

ARx_Instr3.ag 11 / 20

device.

The default action of ARexx is to issue a halt request to the affected
program. A BREAK_C trap will allow the script to take special action when
a Control-C input is detected.

SIGNAL ON BREAK_C allows special steps to be taken in the BREAK_C
subroutine, which will be called when the keys are pressed.

Next: BREAK_ | Prev: SIGTRAP | Contents: SIGTRAP

1.18 ARexxGuide | Instructions | Signal | Traps (2 of 8) | BREAK

The BREAK conditions are triggered when the user presses the Control key
along with the letter key specified in the condition option. Such input is
usually recognized only by a script started from a shell or another
environment that establishes a STDIN device.

If a SIGNAL trap for these keys is not set, ARexx will ignore them.

BREAK traps can be used anywhere in a program, but they are especially
useful in an internal function since they recognize asynchronous user
input, and can be used to stop execution of the current subroutine without
halting the primary environment:

Example:
/**/
Say " Press Control and E to stop the obnoxious listing that"
say " will follow this message."
NumRepeats = AdInfinit()
say ’0a’x’The message was repeated’ NumRepeats ’times.’
exit

/* The subroutine being called by SIGNAL can be anywhere in **
** program. PROCEDURE , used in AdInfinit blinds it to **
** variables in the main program, but still allows the **
** BREAK_E subroutine to retrieve the [Rep] variable. */

BREAK_E:
say ’Break detected at line’ SIGL’:’
say sourceline(SIGL)
return Rep

AdInfinit: PROCEDURE
/* turning on the signal within the subroutine means **
** it will be effective only while this subroutine is **
** active */

signal on break_e
do Rep = 1

say ’Press Ctrl-E at any time.’
call delay 25
say ’Stop me. Please.’

end
/* because the loop above is endless, this RETURN **
** will never be reached. */

ARx_Instr3.ag 12 / 20

return 0

Run example

Next: ERROR | Prev: BREAK_C | Contents: SIGTRAP

1.19 ARexxGuide | Instructions | Signal | Traps (3 of 8) | ERROR

The ERROR condition is triggered by a command that sets its return code
at some value other than 0. If the FAILURE trap is not set, then the
ERROR trap will be triggered by any non-0 return code. If the the FAILURE
trap is in effect, then only those codes less than the current failure
level will be trapped by this option.

ARexx normally ignores error returns lower than the failure level since
they are often intended as informational codes. Some editors and
word-processors, for instance, will send an error code as a matter of
course when a search/replace operation is complete to indicate that the
final search was unsuccessful. The frequently-used command WaitForPort
will send an error code of 5 when in times out without finding the
specified port.

Rather than trapping error codes with SIGNAL, it is often better to
examine the system variable RC , which is set to the error code, within
the script so that trivial errors can be handled without breaking the flow
of the script.

Next: FAILURE | Prev: BREAK_ | Contents: SIGTRAP

1.20 ARexxGuide | Instructions | Signal | Traps (4 of 8) | FAILURE

The FAILURE condition is triggered by a command that sets its return
code at a value higher than the currently set failure level. ARexx
inherits the failure level from its calling environment. The default
failure level for AmigaDOS is 10, but that can be changed with the
AmigaDOS command ’Failat’. The failure level can also be changed locally
in a script with the OPTIONS FAILAT instruction.

ARexx will usually generate an error and halt execution of a script when a
failure-level value is returned by a command.

Example:
rx "address command copy foo"

If issued from the shell, this command would output the following:

copy: required argument missing
copy failed (returncode 20)

1 *-* address command copy foo;
+++ Command returned 20

The first two lines were generated by AmigaDOS and the last 2 by ARexx.

ARx_Instr3.ag 13 / 20

Signal ON FAILURE allows for special handling of such events:

Example:
/**/
signal on failure
address command ’copy foo’

failure:
signal off failure /* It’s a good idea to turn off any trap **

** within the subroutine that handles **
** the condition to avoid looping */

say ’Command failed:’
say SIGL’:’ sourceline(SIGL)
say ’ The command returned’ rc’.’

Although it’s not much of an improvement, the text output this time is
supplied by the [Failure:] subroutine:

copy: required argument missing
copy failed (returncode 20)
Command failed:
3: address command ’copy foo’

The command returned 20.

A FAILURE trap is especially useful in some macros since an output window
may not be available for error message. The subroutine that handles the
failure could open a console window and print the error message there,
or send the error message to a file. (See node on SYNTAX for an
example.)

Next: HALT | Prev: ERROR | Contents: SIGTRAP

1.21 ARexxGuide | Instructions | Signal | Traps (5 of 8) | HALT

The HALT condition is triggered when an external halt request, usually
issued by the HI command, is recieved by a script. (A HALT trap will not
be called by the Ctrl-C condition recognized by BREAK C .)

ARexx normally stops execution of all programs as quickly as possible when
such a request is received. Setting this SIGNAL trap will allow a script
to take needed cleanup measures before exiting.

The TurboText text editor includes a useful command that can be dangerous
if it is not handled with SIGNAL traps. It is ’SetInputLock ON,’ which
deactivates all input to the program (except by a macro). If that command
is in effect when a macro ends unexpectedly, then an external ARexx
command must be sent to reactivate the TTX window. A more elegant solution
is to turn it off before a program exits.

Notice in this example that several interrupt conditions are handled with
one subroutine identified by stacked labels .

Example:
/* Turbotext macro */

ARx_Instr3.ag 14 / 20

signal on break_c
signal on failure
signal on halt
signal on syntax
’SetInputLock ON’

/* more commands */
’SetInputLock OFF’
exit

/* This subroutine will turn off locks in emergency exits */
BREAK_C:
FAILURE:
HALT:
SYNTAX:

’SetInputLock OFF’
’SetDisplayLock OFF’
exit

Next: IOERR | Prev: FAILURE | Contents: SIGTRAP

1.22 ARexxGuide | Instructions | Signal | Traps (6 of 8) | IOERR

The IOERR condition is triggered when an error is detected by ARexx in the
I/O system. It is, however, rare for ARexx to become aware of such

errors since AmigaDOS traps many of them before they get to ARexx. The OS
will put up a system requester asking that a missing device be mounted, or
informing the user of a full disk. I/O errors that make it through to
ARexx usually occur when conditions are changed (a disk is removed or
write-protected) after a file was successfully opened on the disk.

An IOERR condition will be generated, for instance, under these conditions:

1.) a file is successfully opened on a disk
2.) the disk is removed from the drive
3.) ARexx script attempts to write to, read from, or close the file
4.) user cancels the system requester asking for the disk

Sullivan & Zamara point out another condition that will pass an IOERROR
through to ARexx: an attempt to read from PRT: , the printer device.

Example:
/**/
signal on ioerr
if open(.Printer, ’PRT:’, w) then

foo = readln(.Printer)
exit

IOERR:
signal off ioerr
say ’I/O error #’RC ’detected in line’ SIGL’:’
say sourceline(SIGL)

This will output:

ARx_Instr3.ag 15 / 20

I/O error #253 detected in line 4:
foo = readln(.Printer)

The error number assigned to RC is determined by AmigaDOS.

Next: NOVALUE | Prev: HALT | Contents: Signal traps

1.23 ARexxGuide | Instructions | Signal | Traps (7 of 8) | NOVALUE

The NOVALUE condition is triggered when a symbol that has not been
assigned a value is used as a variable in an expression .

An unassigned variable in ARexx is normally treated as a string -- the
variable’s name shifted to uppercase. That can lead to unexpected results,
especially in a program under development.

The NOVALUE trap allows the programmer to detect unassigned variables and
to debug the script so that a variable cannot be used until it has an
appropriate value.

Next: SYNTAX | Prev: IOERR | Contents: Signal traps

1.24 ARexxGuide | Instructions | Signal | Traps (8 of 8) | SYNTAX

The SYNTAX condition is triggered by a range of programming errors. It is
a condition that will quickly become familiar to ARexx programmers since
it normally calls the error message printed (too frequently for some of
us) when a program is in development.

Setting a SIGNAL trap for SYNTAX errors allows the script to take special
action when a syntax error occurs.

Since it allows an error message to be sent to a non-standard device, a
SYNTAX trap is especially useful in a script called from an environment
that does not provide a STDOUT or STDERR device to which ARexx can
send error messages.

In the following example, error messages are saved to a file:

Example:
/* ... */
signal on syntax
if foo then

/* program code */
exit 0

syntax:
signal off syntax
ErrFile = ’T:ErrRpt’

/* Get the name of the program (which may include spaces) */
parse source . . . Prg

ARx_Instr3.ag 16 / 20

Prg = subword(Prg, 1, words(Prg) - 2)
/* Append to the file if it exists, else open it */

if exists(ErrFile) then
OType = ’A’

else
OType = ’W’

if open(.Errf, ErrFile, OType) then do
call writeln(.Errf, ’Error’ RC’:’ errortext(RC))
call writeln(.Errf, ’ In file "’Prg’"’)
call writeln(.Errf, ’ Line’ SIGL’:’ sourceline(SIGL))
call close(.Errf)

end
exit 16

This example might output to the file ’T:ErrRpt’ the following:

Error 46: Boolean value not 0 or 1
In file "Ram Disk:T/test.rexx"
Line 4: if foo then

Next: Signal traps | Prev: NOVALUE | Contents: Signal traps

1.25 ARexxGuide | Instruction Reference (24 of 25) | TRACE

| [{?|!}] [<option>]
TRACE | VALUE <expression>

| -<number>

Provides a powerful debugging facility for ARexx scripts. If a
trace console has been opened with the TCO command, then the tracing

output will be sent to there. Otherwise, ARexx will attempt to output the
results of the trace to the current standard output device -- usually the
shell.

<option> controls the type and format of information presented.

If the sub-keyword VALUE is used, then <expression> must evaluate to one
of the <option> keywords.

The { ? } and { ! } characters may be used alone { TRACE ? } or together
with any of the letter options { TRACE ?R }. They act as toggles: Used
once, they turn the option on; used a second time, they turn it off

? is the toggle for interactive tracing
! is the toggle for command inhibition

When a negative number (such as { TRACE -20 }) is entered as the option,
the tracing will the remain quiet for the absolute number of lines
specified. Entering a positive number { TRACE 20 } will cause the trace to
be output for that number of lines without stopping for interactive input.

Experiment with trace options:
Run interactive example *

Also see @{ " TRACE() " link ARx_Func3.ag/TRACE()} function

ARx_Instr3.ag 17 / 20

Next: UPPER | Prev: SIGNAL | Contents: Instruction ref.

1.26 ... Instruction Reference | Trace (1 of 3) | OPTIONS

These tracing options may be used both with the TRACE instruction and
the TRACE() function. The options work the same way except that the
function { call trace(’o’) }, entered in a program, will end tracing
started with the TS command utility.

Only the first letter of the option keyword need be used. The TRACE
instruction treats the option letter or keyword as a literal unless the
VALUE sub-keyword is used. The option to the TRACE() function, on the
other hand is always treated as an expression , so variable substitutions
will be made before the function is executed.

<option> Action
------------- --
I[ntermediates] Everything in the program is traced. The intermediate

result of each expression is output along with the
resolved value of each variable. The output is
identified by special formatting codes .

R[esults] Everything in the program is traced, but only the
final result of each expression is output.

A[ll] Each clause is output to the console as it is executed,
but the results are not shown.

C[ommands] Only command clauses are traced.
L[abels] Only labels are traced. This option shows when a script

has jumped to a subroutine.
E[rrors] Any command clause that generated an error is output

with an extra line indicating the error number returned.
N[ormal] The default trace option outputs only those command

clauses that generate an non-zero return value higher
than the currently set failure level.

O[ff] All tracing is suppressed, but an external tracing
request (from the TS command) will allow tracing of the
program.

B[ackground] Suppresses all tracing like the OFF option, but --
unlike that option -- not even an external request for
tracing will trace the program.

S[can] This mode traces all clauses, and checks for errors,
but doesn’t actually execute any of them, making it
useful for in initial check for syntax errors.

Next: INTERACTIVE TRACING | Prev: TRACE | Contents: TRACE

1.27 ... Instruction Reference | Trace (2 of 3) | INTERACTIVE

Interactive tracing can be specified by using the { ? } option with either
the TRACE instruction or TRACE() function. The command utility TS
also starts interactive tracing.

ARx_Instr3.ag 18 / 20

When interactive tracing is in effect, the tracing and the program itself
will stop after almost every clause is executed. A prompt string of ’>+>’
will be presented. The user has three options in responding to the prompt:

Pressing <Enter> without other characters will cause the program to
continue to the next pause point.

Entering a { = } character before pressing <Enter> will cause the
previous clause in the program to be reinterpreted.

Any other characters entered at the prompt will be treated as program
input and interpreted as an ARexx clause . Any type of valid clause
can be entered -- an instruction , a command , or an assignment .
Multiple clauses can be entered if each is separated by a semicolon.

The input accepted at the prompt in interactive tracing is similar to the
types of input accepted for the INTERPRET instruction.

Any command, assignment clause, or instruction that can be included in a
program can be entered at the ’>+>’ prompt of the trace console. Because
clauses entered at the trace prompt are treated as part of the program
being traced, the value of variables in the program can be changed from
the console by entering an assignment clause at the prompt.

Even a trace instruction can be entered. The instruction

TRACE off

will stop tracing of the current program.

Another way to control the tracing is to use the last of the TRACE
options: When a negative number (such as TRACE -20) is entered as the
option, the tracing will the remain quiet for the number of lines
specified. Entering a positive number (such as TRACE 20) will cause the
trace to be output to the console for that number of lines, but without
stopping for input.

Using the numeric options on the interactive trace console, is one way to
limit tracing of sections of code that are not causing a problem.

Next: COMMAND INHIBITION | Prev: Trace options | Contents: TRACE

1.28 ...Instruction Reference | Trace (3 of 3) | COMMAND INHIBITION

The option controlled by ’!’ is called ’command inhibition.’ It prevents
commands from being sent to the external host . The commands are still

evaluated, however; variable substitutions and other expression
operations are performed.

Since all of the ARexx clauses are evaluated and executed, the program
logic can be checked using this option before commands are actually sent
to an outside host.

Next: TRACE | Prev: Interactive tracing | Contents: TRACE

ARx_Instr3.ag 19 / 20

1.29 ... Instruction Reference | Trace | Options (1 of 1) | TRACE I CODES

Output codes for Intermediates option to TRACE
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The output of the TRACE I instruction or function is specially coded to
identify the types of information being presented.

Output code What it identifies
~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
>V> The resolved value of a variable symbol
>L> A literal value that is not altered by ARexx
>F> The value returned by a function
>O> The result of a dyadic operation
>P> The result of a prefix operation
>C> Resolved name of a compound variable
>.> The value taken by a placeholder token
>U> The name (symbol) of an unassigned variable
>>> The final result of the clause. This code is used for

other trace options as well

In the interactive example to the main node, the following assignment is
one of the clauses traced:

Filename = substr(FilePath, 1 + max(lastpos(’:’, FilePath),,
lastpos(’/’, FilePath)))

The output of TRACE I on that clause is listed below

Reference TRACE output
--------- ---

6 *-* Filename = substr(FilePath,max(lastpos(’:’, FilePath),...
[a] >V> "sys:system/rexxmast"
[b] >L> ":"
[c] >V> "sys:system/rexxmast"
[d] >F> "4"
[e] >L> "/"
[f] >V> "sys:system/rexxmast"
[g] >F> "11"
[h] >F> "11"
[i] >L> "1"
[j] >O> "12"
[k] >>> "12"
[l] >F> "rexxmast"
[m] >>> "rexxmast"

Listed below is the clause with reference letters added to indicate which
parts of the clause produced the output above:

[m]Filename = [l]substr([a]FilePath,[j&k] [h]max([d]lastpos([b]’:’,,
[c]FilePath),[g]lastpos([e]’/’, [f]FilePath)) + [i]1)

Next, Prev & Contents: Trace Options

ARx_Instr3.ag 20 / 20

1.30 ARexxGuide | Instruction Reference (25 of 25) | UPPER

UPPER <variable> [<variable>] [<...

Translates <variable> to upper-case letters.

This instruction will work more quickly than the similar UPPER()
function if a group of variables is to be translated to uppercase.

Example:
/**/
v1 = ’smoke’
v2 = ’delusion’
v3 = ’stranger’
UPPER v1 v2 v3
SAY v1 v2 v3 >>> SMOKE DELUSION STRANGER

Also see @{ " UPPER() " link ARx_Func.ag/UPPER()} function

Next: Instruction ref. | Prev: TRACE | Contents: Instruction ref.

	ARx_Instr3.ag
	main
	ARexxGuide | Instruction Reference (16 of 25) | PROCEDURE
	ARexxGuide | Instruction Reference | Procedure (1 of 1) | EXPOSE
	ARexxGuide | Instruction Reference (17 of 25) | PULL
	ARexxGuide | Instruction Reference (18 of 25) | PUSH
	... Instruction Reference | Push/Queue (1 of 2) | DATA-STREAM I/O
	... Instruction Reference | Push/Queue (2 of 2) | SCRATCHPAD
	ARexxGuide | Instruction Reference (19 of 25) | QUEUE
	ARexxGuide | Instruction Reference (20 of 25) | RETURN
	ARexxGuide | Instruction Reference (21 of 25) | SAY
	ARexxGuide | Instruction Reference (22 of 25) | SELECT
	ARexxGuide | Instruction Reference | Select (1 of 1) | WHEN
	ARexxGuide | Instruction Reference | Select (1 of 1) | OTHERWISE
	ARexxGuide | Instruction Reference (23 of 25) | SIGNAL
	ARexxGuide | Instruction Ref. | SIGNAL (1 of 2) | TRAPS
	ARexxGuide | Instruction Ref. | SIGNAL (2 of 2) | TRANSFER
	ARexxGuide | Instructions | Signal | Traps (1 of 8) | BREAK_C
	ARexxGuide | Instructions | Signal | Traps (2 of 8) | BREAK
	ARexxGuide | Instructions | Signal | Traps (3 of 8) | ERROR
	ARexxGuide | Instructions | Signal | Traps (4 of 8) | FAILURE
	ARexxGuide | Instructions | Signal | Traps (5 of 8) | HALT
	ARexxGuide | Instructions | Signal | Traps (6 of 8) | IOERR
	ARexxGuide | Instructions | Signal | Traps (7 of 8) | NOVALUE
	ARexxGuide | Instructions | Signal | Traps (8 of 8) | SYNTAX
	ARexxGuide | Instruction Reference (24 of 25) | TRACE
	... Instruction Reference | Trace (1 of 3) | OPTIONS
	... Instruction Reference | Trace (2 of 3) | INTERACTIVE
	...Instruction Reference | Trace (3 of 3) | COMMAND INHIBITION
	... Instruction Reference | Trace | Options (1 of 1) | TRACE I CODES
	ARexxGuide | Instruction Reference (25 of 25) | UPPER

