
ARx_Notes.ag

ARx_Notes.ag ii

COLLABORATORS

TITLE :

ARx_Notes.ag

ACTION NAME DATE SIGNATURE

WRITTEN BY January 8, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

ARx_Notes.ag iii

Contents

1 ARx_Notes.ag 1

1.1 Comments and other notes . 1

1.2 Finding VALUE() . 1

1.3 Formatting output with RIGHT(), LEFT(), and TRUNC() . 3

1.4 Checking unique datatypes with VERIFY() . 3

1.5 The elapsed time counter . 4

1.6 Note: Persistence of DATE() and TIME() settings . 4

1.7 Locating file names with LASTPOS() and MAX() . 5

1.8 Using ports in ARexx programs . 6

1.9 Counting characters using COMPRESS() . 6

1.10 In-line data . 7

1.11 Global variables on the clip list . 8

1.12 ARexxGuide | Functions reference | File I/O (1 of 4) | OVERVIEW . 9

1.13 ARexxGuide | Functions reference | File I/O (2 of 4) | FILE NAMES . 10

1.14 ARexxGuide | Functions reference | File I/O (3 of 4) | OTHER DEVICES . 11

1.15 ARexxGuide | Functions reference | File I/O (4 of 4) | STANDARD I/O . 12

ARx_Notes.ag 1 / 13

Chapter 1

ARx_Notes.ag

1.1 Comments and other notes

AN AMIGAGUIDE® TO ARexx Edition: 1.0c
by Robin Evans

Note: This is a subsidiary file to ARexxGuide.guide. We recommend
using that file as the entry point to this and other parts of the
full guide.

Copyright © 1993, Robin Evans. All rights reserved.

1.2 Finding VALUE()

The VALUE() function is similar to a localized INTERPRET instruction.
It allows an expression to be used as a variable name that is then
treated as the variable itself would be if entered directly in the clause.

VALUE() may only be used where an expression is expected. It cannot, for
instance, be used as the left-value of an assignment clause since only a
symbol is valid in that position.

With VALUE(), the contents of one variable can be used to name another
variable:

/**/
[1] SunshineMom = ’Winnie’
[2] Winnie = ’Foo.1’
[3] Foo.1 = ’Minnie’’s Daughter’
[4] say SunshineMom >>> Winnie
[5] say value(SunshineMom) >>> Foo.1
[6] say value(value(SunshineMom)) >>> Minnie’s Daughter
[7] Child = ’Sunshine’; Relat = ’Mom’

/* a dynamically constructed variable is used below */
[9] say value(Child||Relat) >>> Winnie

/* [SunshineMom]’s value is output since that’s the derived var */

ARx_Notes.ag 2 / 13

Lines 1 through 3 are standard assignment clauses , just as line 4 is the
same kind of SAY instruction used throughout this Guide.

The output of line 5, however, might seem strange. The value of
[SunshineMom], is ’Winnie’. It is the name [Winnie] that becomes the
object of the SAY instruction, so line 5 outputs the same result as the
simpler instruction {SAY Winnie}.

VALUE() is doubled up in line 6, showing that a function can be used as
the argument to VALUE(). Two substitutions have taken place here, giving
the same result as {SAY Foo.1}.

Line 9 demonstrates the use of variables in a concatenation operation
to build the variable name used in the instruction.

As explained in the section on compound variables , the value of the
stem symbol -- unlike that of the symbols forming its branches -- is

never a target of substitution when ARexx interprets the derived name
of a compound variable, but the VALUE() function allows even the stem to
have a derived name.

In the second example below, the value of [A] is substituted for the
unquoted variable and then concatenated with the string ’.1’. The
concatenation results in the variable FOO.1 whose value is output by
the SAY instruction.

foo.1 = 67; a = foo; say a.1 >>> A.1
foo.1 = 67; a = foo; say value(a’.1’) >>> 67

VALUE() can also be used in some circumstances to substitute a value for
the branches of a compound variable, which might be useful when the name
of one branch is assigned to another compound variable:

a.12 = ’foo’; c.1 = 12; say a.c.1; >>> A.C.1
a.12 = ’foo’; c.1 = 12; say value(’a.’c.1) >>> foo

The same result could be obtained more safely, however, by transferring
the value of the second compound variable to a simple variable:

a.12 = ’foo’; c.1 = 12; Hold = c.1; say a.Hold >>> foo

The argument to VALUE() must be a valid symbol. If it is not an error will
be generated:

/**/
Name = ’Winnie Foo’; Foo.Name = 1; Test.1 = ’Winnie Foo’
say Foo.Name
say value(’Foo.’Test.1)

This will output:
1
+++ Error 31 in line 4: Symbol expected

Line 3 will generate the expected value { 1 }, showing that a compound
variable with a derived name of ’FOO.Winnie Foo’ is valid. Line 4 causes
an error because the space in ’Winnie Foo’ makes it an invalid symbol name.

ARx_Notes.ag 3 / 13

The SYMBOL() function can be used to validate the argument to VALUE().

1.3 Formatting output with RIGHT(), LEFT(), and TRUNC()

Because they will pad a string with spaces as well as truncate it, the
RIGHT() and LEFT() functions are useful in preparing formatted output

for tables and lists.

The following program segment demonstrates the technique:

(The comma continuation character is used in three of the assignments
below, allowing the long definition of the assignment to be spread over
two line.)

/************* TableFormat.rexx **************************
************** Format variables for a table *************************/

Prod = ’Widget wacker’; Price = 99; Code = ’WID01-W’
PrdWd = 20; PrcWd = ’9’; CdWd = 8

Heading = center(’Product’, PrdWd) || center(’Price’, PrcWd) ||,
center(’Code’, CdWd)

Divider = copies(’-’, PrdWd - 1) copies(’-’, PrcWd - 1),
copies(’-’, CdWd - 1)

Listed = left(Prod, PrdWd) || right(trunc(Price, 2),PrcWd-2)’ ’,
left(Code, CdWd)

say Heading; say Divider; say Listed

/* OUTPUTS: >>>
Product Price Code

------------------- -------- -------
Widget wacker 99.00 WID01-W

*/
/***/

In constructing the [Listed] variable, three functions are used: TRUNC()
adds two decimal places to [Price] while RIGHT() pads the number with
spaces on the left side so that numbers up to four digits will be
decimal-aligned.

COPIES() replicates the ’-’ enough times to produce a dashed divider of
the appropriate size under each heading.

All three concatenation operators are used in building the [Listed]
variable. The ’||’ operator is used to prevent an extra space from being
introduced between the [Prod] and [Price]. But extra spaces are wanted
between [Price] and [Code]. To get them, a one-space string is added to
the right side of [Price] using the abuttal operator and another space is
added by concatenating that value to [Code] using the space operator.

1.4 Checking unique datatypes with VERIFY()

ARx_Notes.ag 4 / 13

The VERIFY() function can be used to expand the range of DATATYPE()
checking in ARexx since it allows for validation of a specific range of
characters. A product number, for instance, might be constructed of any
3-digit number, followed by a dash, followed by any of the upper case
letters ’A’ through ’G’. The DATATYPE() function can’t validate anything
that specific. VERIFY() can, however, check for such a limited range of
values:

/************ CheckProductNum.rexx ***********************************/
parse arg Num

if LENGTH(Num) ~= 7 then do
say ’Number must be 7 characters’
exit

end
/* xrange() returns a string of characters between those **
** specified as its arguments */

if VERIFY(Num, xrange(0,9)||xrange(’A’,’G’)’-’) = 0 then
if DATATYPE(left(Num,3), N) & DATATYPE(right(Num,3), U) then

say ’Good Number’
else

say ’Number is improper format.’
else

say ’Invalid data at position’ VERIFY(Num, xrange(0,9)||xrange(’A’,’G’)’-’)

1.5 The elapsed time counter

The ’E’ and ’R’ options to TIME() control a clock that allows an ARexx
script to measure time intervals. The clock is started with the first call
to either TIME(E) or TIME(R). The result of the first call will always be
’0.00’. The next call to TIME(E) will report the interval in the form
<ss.tt> where <s> is seconds and <t> is ticks of the internal clock (1/50
second on NTSC systems).

TIME(R) will reset the interval counter to 0.00.

Changes to the interval counter made within a subroutine are local to
that subroutine and do not affect the settings of the clock in the calling
environment.

Next, Prev, & Contents: TIME()

1.6 Note: Persistence of DATE() and TIME() settings

The DATE() and TIME() settings are persistent within a single
clause . A record is made of the initial value of both functions when

either of them is first used in a clause. Thereafter, each call within the
clause to one of the functions will return the initial value recorded at
the first call.

The following, entered as three distinct clauses will return a different
value for time() because of the delay() between the clauses:

ARx_Notes.ag 5 / 13

say time();call delay(100);say time()
>>> 11:45:29
>>> 11:45:31

When the function calls are combined into a single clause, however, the
value of the first call is returned on both calls to time():

say time() delay(100) time()
>>> 11:45:43 0 11:45:43

A call to either date() or time() will freeze the values returned by both
functions:

say time();say date() delay(100) time()
>>> 11:54:03
>>> 02 Nov 1993 0 11:54:03

This persistence guarantees that calls to the functions will return a
consistent value within a single clause.

Next: TIME() | Prev: DATE() | Contents: Information func.

1.7 Locating file names with LASTPOS() and MAX()

It is often necessary to separate a file name in a program from the full
path specification. LASTPOS() is ideally suited to this task since it
will locate the last divider character ’/’ even in a deeply nested file
specification.

In the following program, the LASTPOS() function is used twice, once to
locate the device ’:’ specification (which could also have been found with
POS() since there should be only one colon in the name), and again to

find the last directory divider. MAX() , then, returns the larger of
those numbers.

/********** FileName.rexx ***/

parse arg FilePath
DivPos = max(lastpos(’:’, FilePath),lastpos(’/’, FilePath)) +1
parse var FilePath PathSpec =DivPos FileName
say ’File name is’ Filename’, located in’ PathSpec

/************************ End of program segment***********************/

In this example, a PARSE instruction was used with [DivPos] as a
positional marker . This has the advantage of setting both the [PathSpec]

and [FileName] variables at the same time, but it could be replaced with
these two calls to SUBSTR() and LEFT() :

PathSpec = left(FilePath, DivPos-1)
FileName = substr(FilePath, DivPos)

ARx_Notes.ag 6 / 13

1.8 Using ports in ARexx programs

This program fragment demonstrates the use of the repertoire of port
functions available in ARexx.

/************ Ports example ***/

/* ’MYPORT’ will appear on ports list */
/* [OPort] holds the address that will be used to close the port */

OPort = openport(’MYPORT’)
/* Loop until a Cmd changes the value of [Status] */

do until Status = ’CLOSE’
call waitpkt(’MYPORT’)
Packet = getpkt(’MYPORT’)

/* Make sure we have a real message in [Packet] */
if Packet ~= null() then do

Cmd = getarg(Packet)
/* Do something with Cmd **
** Since the command and its arguments are usually provided **
** as a single string, the following could be used as well: **
** interpret Cmd **
** It’s a good idea to check the command, however, to make **
** sure it’s valid for this context. */

call reply(Packet, rv)
/* [rv], above, should be an appropriate return code */

end
end
call closeport OPort
exit

/**/

Because of the loop at DO UNTIL , this example will keep a port open
until it is specifically closed with a command such as ’Status = CLOSED’
received from an external process.

Commands would be sent to this process by ADDRESS MYPORT <Cmd> ’ where
<Cmd> is a command that will be understood by other routines in this
program.

1.9 Counting characters using COMPRESS()

Used in conjunction with LENGTH() , the COMPRESS() function presents a
way to count characters in a string. The following fragment demonstrates
the technique:

/* Count characters */
Str = ’Molloy|Mollone|Godot|Krapp|’
CharNum = length(Str)-length(compress(Str,’|’))
say ’There are’ CharNum ’"|" characters in’ Str’.’

If the character counted is used as a field divider, as it is in this
example, then this technique will count the number of fields in the string.

ARx_Notes.ag 7 / 13

Using the SHOW() function, the following fragment will return a count of
public message ports even if some of them use names with spaces:

/* Count ports */
PLIST = show(’P’,,’0a’x)
NumPorts = length(PList) - length(compress(PList, ’0a’x))
say Numports ’ports are open.’

The count can include multiple characters:

/* Count digits */
PrdNum = ’1289-ABC’
Dig = length(PrdNum) - length(compress(PrdNum, xrange(0,9)))
say ’There are’ Dig ’digits in "’PrdNum’".’

This technique could be generalized as a function. The string should be
sent as the first argument to the function and the character(s) to be
counted as the second argument.

CountChar:
return length(arg(1)) - length(compress(arg(1), arg(2)))

1.10 In-line data

Combined with the special variable SIGL , the SOURCELINE() function
provides a way to copy data from the program code. In the following
fragment, a range of compound variables is set in this manner:

InLineData:
DataL = GetLine()
do i = 0 until Data.i.FVal = ’ENDDATA’

parse value sourceline(i + DataL) with Data.i.FVal Data.i.SVal .
end
return

SendLine:
return SIGL + 2

GetLine:
/* this sets the location of the data to be copied */

signal SendLine
/* DATA:
FooBar 78
MooBar 98
FooIsh 89
ENDDATA

*/

The location of the data is determined by calling the internal function
GetLine(), which tranfers control, using the SIGNAL instruction, to the
subroutine SendLine(). The special variable SIGL is set to the line
number of the clause that called the subroutine. Since the clause is known
to be two lines above the first line of data, SendLine() returns the
proper line number to the calling environment.

ARx_Notes.ag 8 / 13

1.11 Global variables on the clip list

The clip list gives an ARexx script access to a pool of global variables
maintained by the resident process.

Clip list variables are set or cleared in a special way by using the
SETCLIP() function or the RXSET command utility. Their values are

retrieved using the GETCLIP() function.

Because they retain their values even after the program that sets them
exits, clip list variables can be used to maintain user settings called by
different scripts.

The following fragment demonstrates how the clip list might be used to
hold information for a set of ARexx scripts used as an online message
reader. The file containing these instructions can be called by the script
that launches the reader. Any other script needing the information can
then retrieve (or change) the values set in the initial script.

/* Preferences clips for a message reader */
call setclip("Rd_Sig", "Robin Evans")
call setclip("Rd_RepDir", "temp:")
call setclip("Rd_DlDir", "temp:")
call setclip("Rd_MalFile", "cap:Email.snd")
call setclip("Rd_InsName", "1")
call setclip("Rd_InsMsg", "0")

Macros in an ARexx command host like TurboText could retrieve values from
the clip list whenever needed, giving an overall consistency to a complex
set of related scripts. In TurboText and several other programs an
in-line script can be bound to a particular key, so that pressing that

key will call the macro. The following line from a TurboText
key-definitions file would cause a name from the clip list to be inserted
in the document when the key combination Alt-I is pressed:

ALT-I ExecARexxString Insert getclip(’Rd_Sig’)

An application using the clip list in this way will need some way to save
preferences that were changed while the scripts were running, and should,
ideally, clean up the clip list when the values it has set are no longer
needed. The following program accomplishes both tasks and could be called
by the script that closes the reader:

/* Save values from clip list to a file and clear the clips */

if open(PrfFile, "rexx:Rd_Prefs.rexx", ’w’) then do
/* This file will be called as a program, so add comment */

call writeln(PrfFile, ’/* Preferences clips for a message reader */’)
/* The SHOW(’C’) function returns a list of all clips */

Clips = show(’C’)
/* The INDEX() function is used to verify that there is **
** at least one more clip matching format used by this app. */

do while index(Clips, ’Rd_’) > 0
/* An iterative PARSE is used to separate the name of **
** each clip. */

parse var clips "Rd_" OneNam Clips

ARx_Notes.ag 9 / 13

/* The current value is saved in a format that can be **
** called as a subroutine. */

call writeln(PrfFile, ’call setclip("Rd_’OneNam’", "’,
getclip(’Rd_RTnam’||OneNam)’")’)

/* Each clip set by the application is now cleared */
call setclip(’Rd_’OneClip)

end
call close(PrfFile)

end

The values in the clips need not be limited to short items like those
listed above. They may be used to hold sections of frequently-used code
that can be entered in the form of an in-line script and executed using
the INTERPRET instruction.

As an example, the string files defined in the TurboText key definitions
mentioned above are limited to a length of 255 characters. The limitation
isn’t severe, since disk macros can be called via key definitions, but
there are times when the performance penalty of calling a disk file can be
problematic. The clip list provides a middle ground: A complex in-line
script that is not bound by the 255 character limitation could be stored
on the clip list. The following key definition could then be used to
launch the script:

ALT-CURSOR_RIGHT ExecARexxString interpret getclip(’Rd_MoveDn’)

1.12 ARexxGuide | Functions reference | File I/O (1 of 4) | OVERVIEW

Overview of file I/O functions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The most basic of the file I/O functions is OPEN() , which gives the
opened file a ’logical name’ that the other functions like READLN(),
WRITECH(), and SEEK() will then use when acting on that file. The logical
name used with the OPEN() function can be any literal string or
symbol . The name has significance only for the current script.

The input functions are READLN() , which reads characters from the
specified file until an ASCII 13 end-of-line character is encountered, and
READCH() , which reads one character by default but can be made to read a

specified number of characters.

The complimentary output functions are WRITELN() , which adds a specified
string to a file and appends an end-of-line (EOL) character to the string,
and WRITECH() , which adds characters to the file without adding the EOL
character.

The EOF() function returns a Boolean flag of TRUE or 1 when the end of a
file has been reached. The SEEK() function moves to a specified point
within the file.

As information is read from or written to a disk file, ARexx (through
AmigaDOS) keeps track of the current position within the file with what is
called a file pointer. When a file is first opened, the initial position
of the pointer is determined by the <mode> argument in OPEN(<handle>,
<file name>, <mode>).



ARx_Notes.ag 10 / 13

The <mode> may be ’R’ for read (the default -- used when nothing else is
specified), which opens an existing file with the file pointer at the
beginning of the file; ’A’ for append, which also opens an existing file,
but with the file pointer at the end of the file. The OPEN() function will
fail and return a value of 0 if a ’R’ or ’A’ mode is specified for a file
that does not yet exist. The third mode option is ’W’ for write, which
will create a new file or clear out everything in an existing file of the
same name.

The mode used to open a file does not affect the other I/O functions. It
is possible to read from a file opened in ’W’ or ’A’ mode and it is
possible to write to a file opened in ’R’ mode. Unless SEEK() is used to
reposition the pointer, however, there will be nothing to read with the
file pointer is located at the end of a file as it is in ’A’ and ’W’
modes. Writing to an existing file with the pointer located at its
beginning will overwrite existing data.

The SEEK() function performs two tasks: it returns the current byte
location within a file and may be used to move the file pointer to a new
location. Because the AmigaDOS file system is byte-oriented rather than
line-oriented, there is no simple way to move to the beginning of a new
line unless the lines are all of the same length.

AmigaDOS allows for different levels of access protection for opened
files. ARexx uses two of those levels. Files opened in write mode are
given an exclusive lock: until it is closed, the file cannot be accessed
except through use of its ARexx handle by the script that opened the file.
Files opened in the other modes are given a non-exclusive lock: not only
may other processes have access to the file, but the same file can be the
subject of multiple OPEN() statements.

Next: LOGICAL FILE NAMES | Prev: File I/O | Contents: File I/O

1.13 ARexxGuide | Functions reference | File I/O (2 of 4) | FILE NAMES

Naming logical files
~~~~~~~~~~~~~~~~~~~~

When a file or other device is opened using the OPEN() function, it is
given a logical name. In the original manual to ARexx, Bill Hawes uses a
string for the logical name:

say open(’outfile’, ’ram:temp’, ’W’)

Using a literal string makes it apparent that no assignment takes place in
the function. ’outfile’ is simply a name used to refer to the file. It
isn’t assigned an address or anything else.

The problem with this usage is that the name becomes case sensitive. The
following will generate an error:

call writeln(’Outfile’, String)

’Outfile’ and ’outfile’ are not the same name because of the difference in
letter-case. Such a subtle difference might give rise to what Cowlishaw

ARx_Notes.ag 11 / 13

calls a "high astonishment factor." He notes, "If a feature, accidentally
misused, gives apparently unpredictable results, then it has a high
astonishment factor and is therefore undesirable."

That’s a good test for each programmer of the best method to use when
naming files. If a using a literal string often gives rise to errors, then
it is probably better to avoid the usage.

Fortunately, REXX is a language designed to be adaptable to different
styles, but most of all it is a language designed to use something as
close as possible to a natural English-like style.

Any valid symbol can be used as the logical name. Entering the names
without quotation marks -- as simple symbols -- means that the name will
be treated as upper-case by ARexx no matter how it is written. The
disadvantage of this construction is that the name could be used later in
a variable assignment , which would change its value and make it no
longer the same name for the purposes of the file I/O functions -- another
astonishing situation.

There is an interesting third alternative to using a literal (quoted)
string or a variable symbol; an alternative which, like using a literal
string, prevents the accidental assignment of a new value to <name>, but
which also -- like the use a simple symbol -- preserves the general case
insensitivity of REXX statements. The third alternative? Use a
constant symbol for the name.

Unlike the symbols used for variables, constants cannot be assigned a
value. There’s no danger of accidentally using the symbol for something
else. Constants are usually numbers (567.43 is a constant symbol, for
instance), but they don’t have to be. Any token beginning with a digit or
a period (such as {.InputFile} or {2File}) is considered a constant. Such
a symbol can be used as <name> in the OPEN() function. The name will be
case insensitive since ARexx will translate it each time to uppercase.

An assigned variable may also be used as the file <name>. In that case,
the logical name of the file is the value of the variable and not the name
of the variable. There are times (opening multiple files in a loop, for
example) when it is far more elegant to use a variable.

This will write a line to the file ’t:vartest’:

/**/
LFname = ’TFile’

/* the variable’s name can be written in any mixture of U&lc */
if open(LFName, ’t:vartest’, ’W’) then

/* ’TFile’ is now the logical name of the file */
call writeln(’TFile’, ’See, it works with a variable.’)

call close LFName

Next: NON-FILE DEVICES | Prev: Overview | Contents: File I/O

1.14 ARexxGuide | Functions reference | File I/O (3 of 4) | OTHER DEVICES

ARx_Notes.ag 12 / 13

Using I/O functions with other devices
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The Amiga operating system makes the file I/O functions even more useful
because it extends the concept of ’file’ to cover a range of devices
including text windows and printers. Because the OS is able to treat a
printer as a file-like device, ARexx can send output to a printer using a
simple variation of the file I/O functions: The device ’PRT:’ may be
specified as the file name in the OPEN() function:

/**/
if open(Printer, ’prt:’, ’W’) then do

call writeln(Printer, ’Hello world’)
end

(The READLN() input function cannot be used when communicating with the
PRT: printer device.)

Using the operating system’s console device, a window can be opened and
treated in much the same way as a disk file:

/**/
if open(OutWin, "con:8/8/272/88/Output Window", W) then do

call writeln(OutWin, ’Hello there, you big bad world.’)
call delay 500
call close OutWin

end

Even the input functions READLN() and READCH() can be used with the
console device and will act much like the instruction PARSE PULL does on
the standard input window.

Next: STANDARD I/O FILES | Prev: Logical file name | Contents: File I/O

1.15 ARexxGuide | Functions reference | File I/O (4 of 4) | STANDARD I/O

Standard input/output files: STDOUT, STDIN, STDERR
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The instructions SAY and PARSE PULL are closely related to the
functions WRITELN() and READLN() . SAY and PULL output and retrieve
items from a defined logical file, except that the file used by the two
instruction need not be opened because it will always be available in some
form to a script.

The function SHOW(’F’) will return the names of all currently open
logical files. The logical name of any file added with OPEN() will appear
on the list. In virtually all cases, the returned list will also contain
the names of at least two files that were not explicitly opened within the
script: STDIN and STDOUT are logical files that are available by default
to all scripts. The names refer to the standard input and output devices.

SAY outputs a specified string to STDOUT, making it a simpler variation of
the clause { call writeln(STDOUT, <string>) }. In the same way, PULL
retrieves its input from the STDIN device much like { Input =
readln(STDIN) }. The instruction PARSE EXTERNAL also retrieves output

ARx_Notes.ag 13 / 13

from a logical file, one named STDERR , that is normally available only
when the trace console is open.

The STDIN and STDOUT files can be redirected to other devices using a
standard AmigaDOS facility: When a command is followed by the character
{ < }, STDIN -- the standard input device -- is redirected to the device
specified after that character. Similarly, the { > } redirects standard
output or STDOUT to a specified device.

The interactive example uses the following simple script to demonstrate
the effect of redirection.

/**/
options prompt "0a"x||"Enter any text then press <Enter>: "
pull T$
say T$

Run interactive example *

Redirection is often used on the Amiga to suppress output by setting up a
dummy device called ’nil:’ as the destination and source for a command.
When the output of an ARexx program is redirected to nil: with the {>NIL:}
option, the instruction SAY will have no effect. Its output will
disappear. Similarly, the instruction PULL will return with an empty
string when input is redirected to nil: with {<NIL:}.

Next: File I/O | Prev: Non-file devices | Contents: File I/O

	ARx_Notes.ag
	 Comments and other notes
	 Finding VALUE()
	 Formatting output with RIGHT(), LEFT(), and TRUNC()
	 Checking unique datatypes with VERIFY()
	 The elapsed time counter
	 Note: Persistence of DATE() and TIME() settings
	 Locating file names with LASTPOS() and MAX()
	 Using ports in ARexx programs
	 Counting characters using COMPRESS()
	 In-line data
	 Global variables on the clip list
	ARexxGuide | Functions reference | File I/O (1 of 4) | OVERVIEW
	ARexxGuide | Functions reference | File I/O (2 of 4) | FILE NAMES
	ARexxGuide | Functions reference | File I/O (3 of 4) | OTHER DEVICES
	ARexxGuide | Functions reference | File I/O (4 of 4) | STANDARD I/O

