
ARx_UcrTutor2.ag



ARx_UcrTutor2.ag ii

COLLABORATORS

TITLE :

ARx_UcrTutor2.ag

ACTION NAME DATE SIGNATURE

WRITTEN BY January 8, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME



ARx_UcrTutor2.ag iii

Contents

1 ARx_UcrTutor2.ag 1

1.1 main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 SetDest: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 parse arg AProg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.4 cdir = pragma(’D’) /* Store the current directory */ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 /* Change archive filename... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.6 prg63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.7 when pos(’:’, FileName) > 1 then . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.8 when left(FileName, 1) == ’/’ then . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.9 do while left(FileName, 1) == ’/’ /* is 1st char ’/’? */ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.10 FileName = substr(FileName, 2) /* strip it off */ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.11 DivPos = max(lastpos(’/’, FDir,Pln)„ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.12 FDir = left(FDir, DivPos) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.13 when left(FileName,1) = ’:’ then . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.14 parse var CDir FDir ’:’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.15 if verify(right(FDir, 1), ’/:’, ’M’) ~= 0 then . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.16 FileName = FDir||FileName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.17 /* Perform the uncrunching */ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.18 ’cd \ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.19 ”AProg ’\ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.20 return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.21 if arg(1, ’E’) then . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.22 say arg(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7



ARx_UcrTutor2.ag 1 / 7

Chapter 1

ARx_UcrTutor2.ag

1.1 main

AN AMIGAGUIDE® TO ARexx Edition: 1.0a
by Robin Evans

Note: This is a subsidiary file to ARexxGuide.guide. We recommend
using that file as the entry point to this and other parts of the
full guide.

Copyright © 1993, Robin Evans. All rights reserved.

1.2 SetDest:

Return to program listing

SetDest is called an internal function because it is defined within the
program from which it is called. The colon after ’SetDest:’ identifies it
as a label . It tells ARexx that the following program lines are part of
a function.

In this case, all of the variables that were declared in the main
program section will be available within the function definition. They
could even be changed in the function. That behavior can be avoided by
using the keyword PROCEDURE immediately following the function label.

The keyword RETURN at the end of the listing indicates the end of the
function and returns control to the place in the main code of the program
from which the function was called.

1.3 parse arg AProg



ARx_UcrTutor2.ag 2 / 7

Return to program listing

The unabbreviated form of the ARG instruction which was used at the
beginning of the program is used here. Adding PARSE prevents the received
value from being translated to upper case. That may be important here
because the case of the letters used in an option string is significant to
some of archive programs.

The instruction picks up the argument that was included within the
parentheses when the function was called.

1.4 cdir = pragma(’D’) /* Store the current directory */

Return to program listing

PRAGMA() returns information about the system environment in which an
ARexx script is executing and allows the script to change some aspects of
that environment. Here it is used for purely informational purposes; it
retrieves the name of the current directory.

1.5 /* Change archive filename...

Return to program listing

This comment partly explains the purpose of the code within the SELECT
block that follows.

The code is not absolutely necessary, but is included because it makes the
script friendlier to the user by allowing any valid file specification to
be used, even something like { :dl/flooey.lzh } or { //flooey.lzh }.

It is useful because we might be changing directories later in the script
to a volume different than the one where [FileName] is located. In order
to properly identify [FileName] from the changed directory, we’ll need a
complete path specification for the file.

1.6 prg63

Return to program listing

The variable [CDir] contains the name of the current directory. That
value will be altered later in the program, but we’ll have to remember its
original value to restore the system to its original state. [FDir] can now
be changed without affecting [CDir].



ARx_UcrTutor2.ag 3 / 7

1.7 when pos(’:’, FileName) > 1 then

Return to program listing

This is the first of four conditionals (three WHENs and the OTHERWISE
instruction). Using the built-in function POS() , it checks for a
[FileName] that contains ’:’ somewhere other than the first character:
{ foo:dl/flooey.lha }. That positioning of ’:’ means that a volume
designation is included in [FileName], so it need not be modified.

1.8 when left(FileName, 1) == ’/’ then

Return to program listing

This checks for a relative file specification like { //flooey.lzh } in
which [FileName] is specified relative to the current directory without
including the name of the directory.

Notice that the comparative operator ’==’ is used here rather than ’=’.
Either one would work since a single character is returned by the
function, but the sign for exact equality makes it clear that the
comparison must be exact -- without extra spaces.

1.9 do while left(FileName, 1) == ’/’ /* is 1st char ’/’? */

Return to program listing

We’ve used a DO block several times to group a block of instructions
together under an IF clause. This one does the same thing but it also
introduces one of several iteration specifiers that can be used to make
a program loop through a block of instructions repeatedly.

Like IF and WHEN , the WHILE subkeyword must be followed by an
expression that results in a Boolean value . The expression is evaluated
before any clauses in the block are executed. As long as the expression
returns a TRUE value, the following block will be executed.

In this case, the LEFT() function pulls off the first character in
[FileName], which is then compared to ’/’.

If the value of the expression is FALSE, (which will happen when there is
no longer a ’/’ character at the beginning of [FileName]) the block
between this line and the matched END will be skipped and program
execution will continue with the next line.

1.10 FileName = substr(FileName, 2) /* strip it off */



ARx_UcrTutor2.ag 4 / 7

Return to program listing

As it’s used here, with only the first and second arguments specified, the
SUBSTR() function returns the portion of the string [FileName] beginning

at the second character; in other words, the first character of the value
is stripped from [FileName]. { //flooey.lha } would become { /flooey.lha }.

1.11 DivPos = max(lastpos(’/’, FDir,Pln)„

Return to program listing

This is the first part of one clause divided over two lines. The extra
comma at the end of this line tells ARexx to combine this line with the

next one and treat them both as a single line.

The technique used here for locating a filename and path is explained in a
note to the LASTPOS() function. The nested functions tell us where the
final directory or volume divider character is located in [FDir].

The variable [Pln] was defined on the previous line. It is a number one
less than the length of [FDir] and is used to start the search for the ’/’
or ’:’ one character from the end of the string, resulting in a path that
includes either ’:’ or ’/’ as the final character. That path will be used
when we combine [FDir] with [FileName] to create a fully qualified file
name.

1.12 FDir = left(FDir, DivPos)

Return to program listing

The value of [DivPos] tells us the length of the string that contains the
file path to the current definition of [FileName]. The LEFT() function
will truncate [FDir] to just that length.

This loop is performing much the same task as entering { cd / } on the
CLI: it steps down one level in the file path each time this clause is
called within the loop.

1.13 when left(FileName,1) = ’:’ then

Return to program listing

This conditional checks for a relative file name that refers to the root
directory in its specification -- something like { :flooey.lha }



ARx_UcrTutor2.ag 5 / 7

1.14 parse var CDir FDir ’:’ .

Return to program listing

PARSE is a powerful variation of the assignment clause , which we’ve used
several times already -- powerful because it is able to assign values to
several variables at once and to perform, in one step, the tasks of
functions like LEFT() , RIGHT() , and SUBSTR() as well as the location
functions like POS() .

We’ve used variations of the instruction at three other spots in this
script. Twice it was used to retrieve an argument, and once to pull a
value from an interactive prompt presented to the user.

This time, it is used to break down a variable. The subkeyword VAR
indicates that the symbol [CDir] is a variable that will supply the source
string for the instruction. The following symbols -- (FDir ’:’ .) -- form
a template that guides PARSE in splitting the input value into its parts.

The ’:’ in the template used here is enclosed in quotation marks, which
identify it as a pattern marker . PARSE will look for that character
within the string [CDir] and assign all characters to the left of it to
the variable [FDir]. All characters to the right of the first ’:’ will be
assigned to [.]. That dot is a placeholder token . It works like a
variable would in that position, except that the value that would have
been assigned to the variable is thrown away. We use it here because we
don’t care about characters to the right of the ’:’.

This same operation could have been performed using the following
functions:

FDir = left(CDir, pos(’:’, CDir) - 1)

1.15 if verify(right(FDir, 1), ’/:’, ’M’) ~= 0 then

Return to program listing

What’s left? Only a filename entered without a path -- one for a file
located in the current directory.

The VERIFY() function will return 0 if neither of the characters ’/’ or
’:’ is used at the end of the path specification. If the value is not 0
(the comparison operator meaning ’not equal’ is used here), then a ’/’
character is added in the next line.

1.16 FileName = FDir||FileName

Return to program listing

The final step in the process is to combine the path determined by the
routine above with [FileName]. This gives us a fully qualified file name



ARx_UcrTutor2.ag 6 / 7

that will be understood by AmigaDOS no matter what the current directory
may be.

1.17 /* Perform the uncrunching */

Return to program listing

Now that we’re sure we have a good file name, we’ll perform the work that
we really came here for: uncrunch a file. The following three commands
will be sent to AmigaDOS.

1.18 ’cd \

Return to program listing

Since this function is used for programs like ARC and ZOO that output
unarchived files to the current directory, the first task is to move to
the uncrunch directory defined in the main program. The { CD } statements
are surrounded by quotation marks. That tells ARexx to treat them as
commands to be run by the host -- AmigaDOS in our case. These commands

will have the same effect as they would have if they were typed directly
on the CLI.

Notice the odd collection of quotation marks. The single quotation (’)
marks are there for ARexx and will be removed before the command is sent
to the host, but the double marks (") are there for AmigaDOS (in case one
of the directory specifications used here contains a space or ’?’ mark)
and will be sent on by ARexx because they are enclosed within the
single-marks.

Both { CD } statements include ARexx variables outside the quotation
marks. The variables will be expanded by ARexx before the command is sent
to AmigaDOS.

1.19 ”AProg ’\

Return to program listing

Here, finally, is the heart of the matter -- another command that will
be sent to AmigaDOS. Notice though, that the command is a variable this
time. Both variables in this clause will be expanded by ARexx before they
are sent on to the host . The resulting command will be something like

Arc x "work:foo/flooey.arc"

It will be executed by AmigaDOS just as would be if it had been typed on
the CLI.



ARx_UcrTutor2.ag 7 / 7

The doubled quote marks that begin the line { ’’AProg ...} are a useful
way to indicate that the clause is a command. The quotes form a null
string which tells ARexx that the clause is neither an instruction nor

an assignment .

Note: the ’\’ characters that may appear in the titlebar when viewing this
listing are an odd effect of AmigaGuide and not a part of the program line.

1.20 return

Return to program listing

Program control is RETURNed to the line after the place where SetDest:
was called.

1.21 if arg(1, ’E’) then

Return to program listing

The ARG() function may be used instead of the instructions ARG or
PARSE ARG . It offers some options not available with its instruction

cousin. In this line, the ’Exists’ option is used to check for the
existence of a string in the first argument slot.

1.22 say arg(1)

Return to program listing

The SAY command prints out a message on the currently active shell. It is
used in this subroutine to print a more complete explanation of how the
UnCrunch program is used.

In this line, the instruction prints out the string that was sent as an
argument to the function. That string is retrieved using the ARG()

function.

Once the information is displayed, the program exits with an (arbitrary)
error code of 20. (You could use any number you wish in this spot. 20,
though, is the error number supplied by AmigaDOS in similar situations.)


	ARx_UcrTutor2.ag
	main
	 SetDest: 
	 parse arg AProg 
	 cdir = pragma('D') /* Store the current directory */ 
	 /* Change archive filename...
	prg63
	 when pos(':', FileName) > 1 then 
	 when left(FileName, 1) == '/' then
	 do while left(FileName, 1) == '/' /* is 1st char '/'? */
	 FileName = substr(FileName, 2) /* strip it off */ 
	 DivPos = max(lastpos('/', FDir,Pln),,
	 FDir = left(FDir, DivPos)
	 when left(FileName,1) = ':' then
	 parse var CDir FDir ':' .
	 if verify(right(FDir, 1), '/:', 'M') ~= 0 then
	 FileName = FDir||FileName
	 /* Perform the uncrunching */
	 'cd \
	 ''AProg '\
	 return
	 if arg(1, 'E') then
	 say arg(1)


