Mac2E

Mac2E

COLLABORATORS
TITLE :
Mac2E
ACTION NAME DATE SIGNATURE
WRITTEN BY January 8, 2025
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Mac2E iii

Contents

1 Mac2E 1
1.1 Mac2E 1
1.2 Introduction L e e e |
1.3 Howitall started... e e 2
1.4 General Presentation 2
1.5 SPIrit . . o e e 2
1.6 Whatisamacro ? o e e e e 3
1.7 Example 1 o 3
1.8 Example 2 o o e e e e e e 3
1.9 Example 3 e e 3
1.10 Defining amacro oo v it e e e e e e e e 4
1.11 Definition of a macro without parameters o v vt e e e e e e e e e e 4
1.12 Definition of a macro with parameter(s) oL e e e 4
1.13 Advanced macro definition L e e e 5
1.14 USINZAMACTO v v ot v i e 6
1.15 Identifyingamacroname Lo e e 6
1.16 Handling of argument passing it e e e e e 7
1.17 Replacin@ amacro o v v i it e e e e e e e e e e e e e e e e e 8
1.18 Advanced use L e e e 8
1.19 Macros, comments and character stringso 8
1.20 Macrosinamacrobody L e e 9
1.21 Macro calls as macro argUmentsttt e e e e e e e e e e e 9
1.22 Special Characters i i e e e e e e e e e e e e 10
1.23 Using Mac2E e e 10
1.24 Macrofiles e 11
1.25 Calling PreMac2E e e e e 11
1.26 Calling Mac2E e e 12
1.27 EITOr MESSAZES . .« « v v v v v v e i e 12
1.28 Mac2Eand MUIL o e e 13
1.29 muiim e 13

Mac2E

1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38

MUIMASIELIN .« . o o v v v e e e i e e e e e e e e e e e e e e e e e 13
MULE . o o o ottt e e e e e e e e e e e e 14
OptiMUIZE o e 14
Bugs . . e 15
History . . . o 15
Future o e e e e 15
Distribution e e e 15
The author L e e e e 16

Mac2E

1/17

Chapter 1

Mac2E

1.1 Mac2E

KK A KRR A A A A A A A A I A A I A A A I A A A A A I A A I A I A AR I A A I A AR A A A A AR I A A I A A I A A I A A A A A A A A A A Ak A kA kK

Mac2E (v3.0)
Macro preprocessor for the E language
Archive of 10 March 1994
© Copyright 1993, 1994, Lionel Vintenat

R R R S R S R S R R R R I I R I I R I I I I I I I I I I b S I b S I SR I I b b b dh Ah b b b

WARNING ! All the executables in this archive require Workbench 2.0 or higher
to run. Sorry to 1.3 users.

Introduction

What is a macro ?
Using Mac2E

Mac2E and MUI
Bugs

History

Future
Distribution

The author
Acknowledgments

1.2 Introduction

This paragraph answers the 3 essential questions
— Why Mac2E ?

— What does Mac2E do ?

- How does it do it ?

How it all started
General presentation
Spirit

Mac2E 2/17

1.3 How it all started...

In the beginning, there was Amiga E and me. It was great, the two of
us, we wrote wonderful programs in record time. As I didn’t have (and still
don’t have) the RKM’s, these programs were very ugly, without graphical
interfaces, but no matter, they were good times...

And then, MUI arrived, and nothing has been the same since between
Amiga E and me. Why? Well, Amiga E does not permit the use of macros, and
programming MUI without macros is almost crazy! On the other hand, it was
inconceivable to pass up something like MUI. So, I retreated for a while to
the language C: it was the beginning of dark times for my Amiga...

Then I got access to the INTERNET. I spoke about my problem with Wouter
who advised me to use a C preprocessor: there was a great idea! But after
trying, it turned out to be very tedious to use: compilation times were
increased by a factor of 100, and the compiler didn’t give the correct line
numbers for errors. It was then that I got the idea for Mac2E...

1.4 General Presentation

Mac2E is a preprocessor for the Amiga E compiler by Wouter van Oortmerssen,
but it only knows how to do one thing: replace macros in an E source. In other
words, the "conditional compilation" and "file inclusion" aspects, for example,
are not handled by Mac2E, whereas they are with most C preprocessors.

Oh! I almost forgot: all the executables in this archive are of course
written in Amiga E!

1.5 Spirit

I designed Mac2E with 3 ideas in mind:

- make something easy to use (in the spirit of Amiga E)

— solve the problems that I encountered in using a C preprocessor with
Amiga E (see how it all started...)

- make a preprocessor whose use doesn’t make E sources dependant on it;
in other words, if another version of Amiga E which contains a preprocessor
comes out, the conversion of your sources from Mac2E to the new preprocessor
should require very few modifications

I think that this version 3.0 effectively implements these 3 ideas,

in that:

- Mac2E remains very close to the level of use of a classical
C preprocessor, so learning it will be very quick for most programmers

- using Mac2E on a file takes about the same amount of time as the
compilation itself, which, taking into account the speed of Amiga E itself,
aught to be acceptable even for slow Amigas

— Mac2E never introduces line feeds when it replaces a macro, so that
the compiler always indicates the correct line number when reporting errors

— Macro definition is done in separate files from the source, and the
macro files are passed directly to the command Mac2E without your source
needing to be modified by a single character, so the passage from Mac2E to the
future (maybe) Amiga E preprocessor will be very simple and will require a
minimum of modifications to your source code.

Mac2E 3/17

1.6 What is a macro ?

In a simple manner, we define a macro by associating an identifier
(the macro’s name) with a chain of characters (the body of the macro). Then,
instead of putting the body of the macro in your source, you simply put it’s
name and the preprocessor replaces the name of the macro with the body.

In my opinion, the macros are very useful in 3 cases

- to avoid rewriting the same sequence several times
-> see example 1

- to facilitate the use of abstract values
-> see example 2

- to logically regroup a program seguence
-> see example 3

Of course, this is a very superficial view of the notion of macros.
Macros, as implemented in almost all preprocessors today, permit lots of
things. The following paragraphs present the use of macros in detail.

Defining a macro
Using a macro
Advanced usage

1.7 Example 1

Consider the example of a program which reads memory sequentially. For
this purpose, 2 variables are defined:
DEF memory_pointer:PTR TO CHAR, character

Accessing a byte is done in the following manner:
character:=Char (memory_pointer++)

Without macros, you need to type that line with each read. If you are
performing reads in several procedures, this can quickly become tedious. The
solution is to define a macro with the name ReadMemory and the body
character:=Char (memory_pointer++). You then need only type ReadMemory
each time.

1.8 Example 2

To open a library, you need to pass it’s name in lowercase to the
function OpenLibrary (). If you write Openlibrary(’Dos.library’,0), there will
be no error during compilation, but the library will not be found during
execution. The solution is to define a macro with the name DosLibraryName and
the body ’dos.library’. This way, you need only type
OpenlLibrary (DosLibraryName, 0) to open the dos library, without worrying about
making a typing mistake.

1.9 Example 3

Mac2E 4/17

If you want to be sure that stdout is non null, the Amiga E
documentation advises placing a WriteF (’’) at the beginning of your program. A
more elegant solution is to define a macro with the name OpenStdout
and the body WriteF(’’). You then simply use OpenStdout in your source,
which is much more eloquent.

In this simple example, the difference between this case and the 2
previous ones 1is not very clear, but what is important to understand is that
the OpenStdout macro is not local to one program (as in example 1), but can be
used in all programs where it is necessary for stdout to be non null. In
addition, OpenStdout behaves like a mini-procedure (as opposed to example 2)
which accomplishes a task.

1.10 Defining a macro

The following paragraphs explain the different syntaxes for defining
a macro, from the simplest to the most complex.

Definition of a macro without parameters
Definition of a macro with parameter (s)
Advanced definition of a macro

1.11 Definition of a macro without parameters

A simple macro definition has the following syntax:

#define macro_name macro_body
| | \ | \ |
(1) (2) (3) (2) (4) (5)
where
(1) #define marks the beginning of the definition and can be found
anywhere on the line (not necessarily at the beginning)
(2) 1 or more spaces and tabs
(3) the name of the macro (any combination of numbers, uppercase
and lowercase letters, and "_" characters)
(4) the body of the macro (any combination of characters other than
carriage returns)
(5) carriage return which marks the end of the macro definition

Examples
#define ReadMemory character:=Char (memory_pointer++)
#define DosLibraryName 'dos.library’
#define OpenStdout WriteF ('')

1.12 Definition of a macro with parameter(s)

Like a procedure, a macro can have parameters. The definition syntax is
then:

Mac2E 5/17

#define macro_name (parameterl,parameter?2, ..., parameterN) macro_body
| | | | \ | \ | \ | \ | |
(1) (2) (3) (4) \ (5) \ (5) (5) | (7) (8) (9)
o o —— +
\
(6)
where

(1) #define marks the beginning of the definition and can be placed
anywhere on the line (not necessarily the beginning)

(2) 1 or more spaces and tabs

(3) the name of the macro (any combination of numbers, uppercase and
lowercase letters, and "_" characters)

(4) opening parenthesis immediately following the macro’s name

(5) comma separating each parameter

(6) 1 or more parameters (any combination of numbers, uppercase and
lowercase letters, and "_" characters); each parameter can be preceded and
followed by any number of spaces and tabs

(7) closing parenthesis which can be followed by any number of spaces
and tabs

(8) the body of the macro (any combination of characters other than
carriage returns)

(9) carriage return marking the end of the macro definition

Examples
#define Power2(x) ((x)*(x))
#define SwapVariablesXY (X,Y, TEMP) TEMP:=X; X:=Y; Y:=TEMP
#define Max(x , v) (IF (x)>(y) THEN (x) ELSE (y))

Parameters specified in the macro definition are called formal
parameters.

1.13 Advanced macro definition

It can happen that the body of a macro is too long to fit in one line
on the screen. It is possible to break the body of the macro into several
pieces. To tell the preprocessor that the body is continued on the next
line, place a "\" character before the carriage return ending the line. The
preprocessor will skip the "\" character and the carriage return and will
interpret the next line, starting with the first character, as part of the
body of the macro. A macro can extend over several lines in this manner.
The definition syntax in this case is:

#define macro_name (parameters) body_piecel \
body_piece2 \

body_pieceN
Warning: the "\" character must be immediately followed by a carriage
return for the preprocessor to interpret it correctly.

1st example
#define SwapVariablesXY (X,Y,TEMP) TEMP:=X; \
X:=Y; \
Y :=TEMP
is a macro which has as it’s body TEMP:=X; X:=Y; Y:=TEMP
(note that the ";" characters are necessary preprocessor skips the carriage

Mac2E

6/17

returns after the "\" characters)

2nd example
#define SayHello WriteF ("Hello, I'm the one who wrote \
the great program Mac2E (pub) !\n’)

is a macro which has as it’s body
WriteF ('Hello, I’'m the one who wrote the great program Mac2E (pub) !\n’)
(note that the single "\" character followed by a carriage return was
interpreted as a signal that the body of the macro is continued)

3rd example
#define UselessMacro [1 space —>\
]1[2 spaces —>\
1[3 spaces —>\
] and that’s all !
it a macro which has as it’s body
[1 space ->][2 spaces —->][3 spaces —>] and that’s all !

1.14 Using a macro

Defining macros is not everything, we also want to use them! To do

that, you simply have to place the names of the macros you have defined where

you need them in your source code the same way you would use normal
instructions. But be careful, a macro is not an instruction recognized by
the compiler. Before compiling a program containing macros, you must use
the preprocessor. The purpose of this program is to find all the macro
names in a source code file and replace them with the body of the
associated macro. The body of a macro should contain instructions

recognized by the compiler! Once the preprocessor is finished, the file can

be compiled.
The following paragraphs explain in detail how the preprocessor
proceeds to find and replace a macro name.

Identifying a macro name
Handling of argument passing
Replacing a macro

1.15 Identifying a macro name

For a macro name to be recognized by the preprocessor, the name which
you put in the source code file must be:

- exactly the same as the one specified in the definition; the
preprocessor distinguishes between uppercase and lowercase

— preceded and followed by a character other than a letter, a number
or a "_" character

If these 2 conditions are met, the preprocessor will recognize the
macro name.

Examples
Suppose that you have defined a macro name toto (the body’s

contents don’t matter). It will be recognized in the following instruction

sequences:

Mac2E

7/17

a:=toto+l
WriteF (/Silly string to introduce \d !\n’,toto)

However, the preprocessor will not recognize it in the following
instructions sequences:
a:=different_than_toto+l
WriteF (/Silly string to introduce \d !\n’,totol)

1.16 Handling of argument passing

You have seen in a previous section that we can give parameters (called
formal) to a macro in it’s definition, as you would for a procedure.
Then, as for a procedure, when you use a macro you must provide it with
arguments (called real parameters). The calling syntax for a macro (I use
the word call as an analogy to procedures) is the following:

macro_name (parameterl, parameter?2, ..., parameterN)
| | | | | | | | |
(1) (2) | (4) | (4) (4) | (5)
o o —————— +
|
(3)
where
(1) the name of the macro

)

(2) opening parenthesis immediately following the macro name

(3) 1 or more parameters (any combination of characters other than
carriage returns)

(4) comma to separate each parameter

(5) closing parenthesis

Warning: the parameters are bounded by commas and parentheses, and
between these 2 consecutive symbols, all the characters are taken into
account and interpreted as being part of a parameter.

If a macro was defined without parameters, it’s calling syntax is
simply macro_name.

When the preprocessor analyses a macro call, it naturally expects to
find as many real parameters as formal parameters! In particular, a macro

defined without arguments should not be followed by a " (" character, otherwise

the preprocessor will think that the macro is being called with arguments.

If the calling syntax for a macro is correct, the preprocessor

associates each real parameter with the corresponding formal parameter, as the

compiler does for a procedure.

Examples
Suppose that you have defined a macro toto like this:
#define toto(paraml, param2) any_body
Here’s a table of what will happen for several calling sequences:

e mmtnt e e o o +
| calling sequence lassoc’d to paraml |assoc’d to param2

| toto(a,l) | |
| toto(a , 1) | a | 1
| toto((3+2)*5 ,WriteF("Ah !\n’")) | |

WriteF ("Ah !'\n’)

Mac2E

8/17

| toto (a,l1) | ERROR
| toto(l,2,3) | ERROR
o o Fo e +

1.17 Replacing a macro

If a macro to be replaced was defined without parameters, the
preprocessor simply substitutes the macro’s name with it’s body.

If, on the other hand, the macro to be replaced was defined with
parameters, the preprocessor still replaces the macro’s name with it’s
body, but also substitutes all the formal parameters in the body with the
corresponding real parameters.

lst example:

Consider the following macro definition:
#define DosLibraryName ’dos.library’

We will then have, for example, the call Openlibrary (DosLibraryName
which will be replaced by OpenlLibrary(’dos.library’).

2nd example:
Consider the following macro definition:
#define Square(x) ((x)*(x))
#define Max(x,y) (IF (x)>(y) THEN (x) ELSE (y))
We will then have, for example, the call
a:=Square (4+3) * Max(7,2*(8-2)) which will be replaced by
a:=((443)*x(4+3)) * (IF (7)>(2%(8-2)) THEN (7) ELSE (2x(8-2)))

Note how the many parentheses present in the bodies of these 2 macros
control the evaluation priority of the expression. Without them, the result
will not be what was expected. Generally, you must be very careful in
creating a macro. In effect, even if a macro resembles a procedure or a
function, it’s not exactly the same! The body of a macro is never evaluated
during a call, it is simply substituted for the macro name. It can
therefore find itself stuck right next to another expression. The example
macro Square is a good example of this kind of problem.

1.18 Advanced use

By now you should have mastered the definition and the usage of macros.
If this is not the case, return to the preceding sections.

The following paragraphs explain more technical aspects of macro use,
but they are nonetheless still important to be aware of.

Macros, comments and strings
Macros in a macro body

Macro calls as macro arguments
Special characters

1.19 Macros, comments and character strings

Mac2E 9/17

It has been previously stated that a macro call can be placed anywhere
in a source code file. Well, that’s not true! In reality, the preprocessor does
not look for macro calls in comments (including nested comments) or in
strings. In effect, macros are there to regroup under one name a section
of code. There is therefore no reason to put macro calls within comments and
strings.

In practice, this signifies that you can put whatever you want in
comments and strings, the preprocessor will not touch it.

1.20 Macros in a macro body

When you define a macro, you can put whatever you want in it’s body,
even calls to other macros. The preprocessor will handle this kind of call
during the substitution of the surrounding macro’s name. In effect, the
preprocessor makes as many substitutions as possible, and when it is
finished, there will not be a single macro call left in the source code
file. Of course, the calling arguments for a macro within the body of
another macro can be the formal parameters of the outer macro. There is no
limit to the depth of these imbrications.

Warning: the body of a macro cannot contain calls to itself, otherwise
the preprocessor would make the same substitution infinitely, until all
free memory is used up... or the user’s patience is!

lst example
Suppose you define 2 macros as follows:
#define InfiniteValue S$FFFFFFFF
#define FinitePositiveNumber (x) (((x)>0) AND ((x)<>InfiniteValue))
Then you can, for example, make the call:
IF FinitePositiveNumber (AxB)=FALSE THEN WriteF ('Error !'\n’) which will
be replaced by
IF (((A*B)>0) AND ((A*B)<>$FFFFFFFF))=FALSE THEN WriteF ('Error !\n’).

2nd example

Suppose you define two macros as follows:
#define AbsoluteValue (x) (IF (x)>0 THEN (x) ELSE - (x))
#define MaxOfAbsoluteValues (x,y) (IF AbsoluteValue (x)>AbsoluteValue (y) THEN
(x) ELSE (y))

You can then, for example, make the call
a:=MaxOfAbsoluteValues (5,-(AxB)) which will be replaced by
(IF (IF (5)>0 THEN (5) ELSE —-(5))>(IF (-(A%B))>0 THEN (- (AxB)) ELSE - (-(A*B)))
THEN (5) ELSE (- (AxB))).

1.21 Macro calls as macro arguments

In the preceding examples, you probably noticed that the arguments
passed to a macro can be anything, as long as they are coherent, obviously
(carriage returns are not, for example, allowed in an argument). You can
even use a macro call as the argument for another macro. Again, the
preprocessor will handle first the macro call included in the argument, and
then afterwards the surrounding macro call with the substituted argument.
There is no limit to the depth of these imbrications.

Mac2E 10/17

Remember: the general rule is that the preprocessor handles absolutely
all the macro calls in a source code file, where it finds them, except
in comments and strings.

1st example

Consider the following examples:
#define SillyValue 12
#define Double (x) (2% (X))

The macro call Double(SillyValue) would be replaced by
(2% (12)) .

2nd example
Consider the following examples:

#define MaskWeightStrong(x) ((x) AND $SFFFF)
#define Average (x,y) (((x)+(y))/2)

The macro call Average (100,MaskWeightStrong(100000))
would be replaced by (((100)+((100000) AND SFFFF))/2).

1.22 Special Characters

You have no doubt wondered what would happen if a macro’s argument
contained the characters " (", ")" or ",". As they are used to delimit the
arguments, their presence can cause confusion with their recognition. Well,
it doesn’t matter; the preprocessor is intelligent enough to distinguish
which of these characters are there to delimit the arguments and which are
part of the arguments.

Warning: the arguments must nonetheless remain coherent! For example,
every opening parenthesis must have a corresponding closing parenthesis.
Also, a comma must be enclosed within quotes or in a string enclosed
within quotes.

Examples
Consider a macro toto defined as having 2 formal parameters.
Here is a table of what will happen for different calling sequences:

e o o +
| calling sequence | 1lst parameter | 2nd parameter |
e fom fom +
| toto((3+4)*(5-6),’1, 2 et 3') | (3+4) % (5-6) | 71, 2 et 3’ |
| toto((((O) (O)) () (O ,character ", ") O 0)0) 0 |character "," \
| toto(),4) \ ERROR

| toto(4,,) \ ERROR |
o o fom +

1.23 Using Mac2E

To understand what follows, you should know what a macro is, and
particularly how to define and use a macro as it is done in the language C.
If this is not the case, return to the section What is a macro?

If you already know all about C macros before getting this program, reading
this section is not necessary. However, you should refer to it to verify
syntax. Basically, the following paragraphs discuss the use of PreMac2E

and Mac2E only, without recalling anything about macros.

Mac2E

11/17

The goal of these programs is, let me remind you, to permit the use of
macros in your source code.

The first thing to do is therefore to define some macros. This is done
in a file separate from your source code, called the macro file. Next, you
should pre—analyze this file with PreMac2E. Finally, you can use Mac2E to
replace the macro calls in your source code files. The handling of a source
code file thus requires 3 steps, which are described in detail by the
following paragraphs.

Macro files
Calling PreMac2E
Calling Mac2E
Error messages

1.24 Macro files

A macro file is an ASCII file containing only macro definitions. I
remind you that you cannot define macros in your source code, you must do it
separately in a macro file.

These files may also contain comments. These can be placed anywhere
except within a macro definition. In other words, the comments are placed
between the macro definitions. Note that the comments can be placed in the
file as they are, with neither beginning nor ending delimiters.

Normally, the macro files are placed in the sub-directory MacroFiles/
which is in the directory where you installed Amiga E.

See Defining a macro

1.25 Calling PreMac2E

When you have defined a macro file, it is not directly usable by Mac?2E,
the preprocessor in this archive. In effect, you must first pre-analyze
it. This is done by PreMac2E, which is called as follows:

PreMac2E macro_file pre_analyzed_macro_file
where

- macro_file designates the macro file (eventually with path)

- pre_analyzed_macro_file designates the file (eventually with path)
resulting from the pre—-analysis

For example, to pre—analyze the macro file mui.e provided with this
archive, I typed PreMac2E MacroFiles/mui.e PreAnalysedMacroFiles/mui.e.

Normally, the pre-analyzed macro files are placed in the sub-directory

PreAnalysedMacroFiles/ which is in the directory where you installed Amiga E.

During a pre-analysis, PreMac2E tries to replace all macro calls within
the bodies of other macros. In addition, it sorts the macros and classes
them in a hash-coded table. Finally, it writes the contents of this table to
the output file. Thus, when Mac2E processes a source code file, it will
not use the original macro file but rather the pre-analyzed macro file. The
speed increase 1is enormous.

Mac2E 12/17

The pre—analysis of a macro file is thus done only once (assuming there
are no errors in the file, of course). Afterwards, you use only the
pre—analyzed file. If you modify the original macro file, you must
obviously redo the pre-analysis with PreMac2E for the changes to take
effect.

The exact usage for PreMac2E is
"FROM/A, TO/A, VER=VERBOSE/S, KS=KEEPSPACES/S". You can specify 2 supplementary
parameters when calling it.

VERBOSE is explained in the section on error messages
Messages_erreur}.

KEEPSPACES forces PreMac2E to conserve within the body of a macro the
spaces and tabs at the start of the line, when the body of the macro spans
several lines. By default, PreMac2E eliminates them, reducing the size of
the pre-analyzed file and accelerating handling by Mac2E.

1.26 Calling Mac2E

Mac2E is the actual preprocessor in this archive. It is, in reality,
the one that looks after replacing the macro calls in your source code file
with the appropriate body. It has the following syntax:

Mac2E e_source_file e_destination_file pre_analyzed_file_list
where

— e_source_file is a source file (eventually with path) which contains
the macro calls to be processed

— e_destination_file is the file (eventually with path) which will
contain the e_source_file code but with the processed macro calls

— pre_analyzed_file_list is a list of 1 or more files of pre—analyzed
macros (eventually with path)

The exact usage for Mac2E is "FROM/A,TO/A,WITH/A/M".

Called like this, Mac2E loads all the pre-analyzed macro files
specified on the command line and, according to the macros defined within them,
processes the source file accordingly.

See using a macro and advanced use

1.27 Error messages

All the error messages returned by PreMac2E and Mac2E are sufficiently
self-explanatory. The line number where the error was found is also given.

The only exception to this is when PreMac2E processes macro calls
within the bodies of other macros in a macro file. This phase of the
pre—analysis is done after all the macro definitions are recorded.
Therefore, PreMac2E is no longer working with line numbers. To find the
location of an error reported during this phase, you must rerun PreMac2E
with the VERBOSE option. This will force PreMac2E to show the name of every
macro who’s body it is processing. Thus, when it gives an error, you simply
look at the name of the macro which was being processed when the error
occurred, and find that macro in the file. The error is in the actual body of
that macro.

Mac2E

13/17

1.28 Mac2E and MUI

If you read how it all started... , you know that Mac2E
owes 1it’s existence to the fact that MUI is infinitely easier to use with
macros than without. That is why the first example (and the only one for
the time being) of using Mac2E concerns MUI. You will find in this archive
everything you need to use MUI with Amiga E, practically in the same manner
that you would do it in C. To do this, you need 6 things:

— PreMac2E

- Mac2E

- mui.m

- muimaster.m

- mui.e

- OptiMUIZE

The general idea which governed the conception of mui.m and mui.e was,
I recall, to make a "MUI-Amiga E interface" very close to that of C, so that
during programming, it is quite useful to refer to the include file mui.h
intended for C. It contains an impressive number of comments which are not all
present in "the E version".

All of "this interface" is based on MUI 2.0. In the MUI archive, there
are already some files for use in E, but neither as complete nor as practical
as those supplied here, so forget about them and use these ones!

Mac2E
PreMac2E
mui.m
muimaster.m
mui.e

Opt iMUI2E

1.29 mui.m

mui.m is, as it’s name implies, a classical Amiga E include file. It
contains all the structures defined in mui.h with the difference that all
the names (of structures and their fields) are in lowercase. This limitation
is due to Iconvert.

To use MUI structures in your programs, you need to put
MODULE ’libraries/mui.m’ at the beginning of your source code file.

1.30 muimaster.m

muimaster is, as it’s name implies, a classical Amiga E file. It
contains all the function definitions for the library muimaster.library. The
function names are the same as in C except they all start with Mui instead
of MUI (example: Mui_NewObjectA). This limitation is imposed by Amiga E as
function names must have the first letter in uppercase and the second in
lowercase.

To use the functions of the library muimaster.library in your programs

Mac2E

14 /17

(and chances are you do use them!), you must put MODULE ’'muimaster.m’
at the beginning of your source code file.

1.31 mui.e

mui.e is the key to the gateway to "this MUI-Amiga E interface" since
it contains all the macros (constants and more complex things like the object
definitions) of the file mui.h, but adapted for the E language. The syntax
of the mui.e macros, as well as the syntax of their bodies, is exactly the
same as in mui.h.

As well as it’s advantage for using MUI, this file also constitutes a
large library of examples of macro definitions.

The file mui.e is supplied in 2 copies: one in the MacroFiles/
directory and the other in the PreAnalysedMacroFiles/ directory. The first is
a readable version, as opposed to the second which has been pre-analyzed with
PreMac?2E.

To use all these MUI macros in your E programs, you must run Mac2E on
your source code file before compiling it:
Mac2E source.e destination.e PreAnalyzedMacroFiles/mui.e

1.32 OptiMUI2E

If you take a look at mui.e, you will see in the body of the macros
defining new objects "TAG_IGNORE, 0", for example
"#define WindowObject Mui_NewObjectA (’Window.mui’, TAG_IGNORE, 0)"
This tag does, as it’s name implies, absolutely nothing during execution.
However, I was obliged to introduce them to keep the same usage syntax as in
C. It’s at this level that OptiMUIZE intervenes. It’s Jjob is to remove
these useless "TAG_IGNORE, 0"’'s from E source code. It’s calling syntax is
as follows:
OptiMUI2E e_source_file e_destination_file
where

— e_source_file designates the name of the source file (eventually with
path) where there are "TAG_IGNORE, 0"’'s to remove

— e_destination_file designates the name of the file (eventually with
path) which will contain e_source_file with the "TAG_IGNORE, 0"’s
suppressed.

The usage for OptiMUI2E is "FROM/A,TO/A".

Warning: OptiMUI2E sometimes removes carriage returns from your source
code to respect line breaks on a comma, obligatory in E. Thus the file
produced will not necessarily contain the same number of lines as the
original file, which can cause possible problems with the line numbers
reported by the compiler. It is therefore strongly advised not to use
OptiMUI2E except for the final compilation when the finished program is
tested. In any case, OptiMUI2E is absolutely not necessary to use MUI with
Amiga E. It reduces the size of source code files and executables using the
MUI macros, but only by a small amount.

Mac2E 15/17

1.33 Bugs

Don’t panic, none of the following points are bugs, but rather
limitations.

* PreMac2E does not verify if the macro declarations are recursive, if
they are, PreMac2E will fail

* PreMac2E and Mac2E do not verify if a macro is defined more than
once. In this case, Mac2E will use one of them, but the question is, which
one?!?!

* The length of a macro name is limited to 255 characters.

* The number of arguments is limited to 32.

* The length of a macro body before pre-—-analysis is limited to 4Kb. If
this is not sufficient, you don’t need a macro, you need a procedure!

* The length of a macro body after pre-—-analysis is limited to 64Kb, and
that should be sufficient, should it not?

* PreMac2E does not verify that the 4 preceding limitations are
respected.

1.34 History

Version 1.0 : - 1st functional version (VERY VERY SLOW...)
Version 2.0 : - modified version of v1.0 with lots of assembly
optimizations in the E source (10 times faster!)
— addition of OptiMUI2E v1.0
— 1st distributed version
Version 3.0 : - addition of PreMac2E v1.0 to pre—-analyze macro
files
— use of an encoded hash-table (14 times faster!)
— PreMac2E and Mac2E now give explicit error messages
- verification of all memory allocations
— a few minor bugs fixed
- OptiMUI2E v1.1 works with 68000
- mui.e 1s now commented
- source for the function doMethod() supplied
- source to all executables supplied
— better documentation
- update of mui.e according to MUI v2.0
Version 3.1 : - a few minor bugs fixed
- update of mui.e according to MUI v2.1

1.35 Future

I'm awaiting (as you are) the next version of Amiga E, which shouldn’t
take much longer according to Wouter... Of course, I’'m also awaiting your
suggestions!

1.36 Distribution

Mac2E 16 /17

This archive can be freely distributed, as long as no person gains any
benefit from this distribution. No other type of sale can be made without
the author’s authorization.

This archive can be included in public domain program collections, as
long as the above conditions are satisfied.

The archive must be distributed in it’s entirety and must contain the
following file structure:

Mac2E/Bin/Mac2E

Mac2E/Bin/OptiMUI2E

Mac2E/Bin/PreMac2E

Mac2E/Docs/Mac2E.guideD

Mac2E/Docs/Mac2E.guideD.info

Mac2E/Docs/Mac2E.guidek

Mac2E/Docs/Mac2E.guideE.info

Mac2E/Docs/Mac2E.guideF

Mac2E/Docs/Mac2E.guideF.info

Mac2E/MacroFiles/mui.e

Mac2E/MacroFiles/mui.e.info

Mac2E/Modules/libraries/mui.m

Mac2E/Modules/muimaster.m

Mac2E/PreAnalyzedMacroFiles/mui.e

Mac2E/Sources/doMethod.e

Mac2E/Sources/doMethod.e.info

Mac2E/Sources/Mac2E.e

Mac2E/Sources/Mac2E.e.info

Mac2E/Sources/OptiMUI2E.e

Mac2E/Sources/OptiMUI2E.e.info

Mac2E/Sources/PreMac2E.e

Mac2E/Sources/PreMac2E.e.info

Mac2E/Liesmich.zuerst

Mac2E/Liesmich.zuerst.info

Mac2E/LisezMoi.d_abord

Mac2E/LisezMoi.d_abord.info

Mac2E/ReadMe.first

Mac2E/ReadMe.first.info

Mac2E/ReadMe.mui

Mac2E.info

All of these files (except mui.m, muimaster.m, mui.e, ReadMe.mui and all
the icons) are copyrighted by the author. None of them can be modified without
my permission.

I cannot be held responsible for the use of this program and any
damages that it may cause: use it at your own risk!

This program is distributed according to the Freeware concept,
that is to say, you are not obligated to send me anything! However, I would

be happy to receive something, from an Amiga 4000/40 to a simple postal
card from your holidays, 20FF or a simple letter! (see The author)

1.37 The author

You can reach me by mail at:

Mac2E

17 /17

- my student address, up to and including July 1994

Lionel Vintenat
appartement 21

11 rue Francois Oulié
31500 TOULOUSE

FRANCE

- my family address:

Lionel Vintenat

3 impasse Boileau
Lotissement Les Termes
87270 COUZEIX

FRANCE

Write to me at my student address until July 1994 as I'm there much
more often than at my family address.

You can also reach me on the INTERNET. My e-mail address is
vintenat@irit.fr. I would prefer that you contact me by e-mail
rather than mail. I will reply to all questions that are sent to me by
e-mail, but don’t expect a reply by mail (I am very lazy when it comes to
picking up a pen...).

1.38 Acknowledgments

A big thank you:
- to the Amiga for being the best personal computer
- to Wouter van Oortmerssen for his work in the field
of compilers (try his FALSE, guaranteed surprise!) in general and for
Amiga E in particular
- to Brian Mury for the English translation of the documentation
— to Marc Schrder for the German translation of the documentation
- to Xavier Billault for his help in the conception
of this documentation
- to all those on the French Amiga mailing list who
have helped me
— to all those who write public domain programs in general

Finally, thank you to all those who alert me to bugs or
send me suggestions, or who send me corrections or translations of this
document (see The author)

Happy E programming and...

NEVER FORGET, ONLY AMIGA MAKES IT POSSIBLE!

	Mac2E
	Mac2E
	Introduction
	How it all started...
	General Presentation
	Spirit
	What is a macro ?
	Example 1
	Example 2
	Example 3
	Defining a macro
	Definition of a macro without parameters
	Definition of a macro with parameter(s)
	Advanced macro definition
	Using a macro
	Identifying a macro name
	Handling of argument passing
	Replacing a macro
	Advanced use
	Macros, comments and character strings
	Macros in a macro body
	Macro calls as macro arguments
	Special Characters
	Using Mac2E
	Macro files
	Calling PreMac2E
	Calling Mac2E
	Error messages
	Mac2E and MUI
	mui.m
	muimaster.m
	mui.e
	OptiMUI2E
	Bugs
	History
	Future
	Distribution
	The author
	Acknowledgments

