Copyright 1993 Jeremy Slade.

You are free to use all or any parts of the Locus project
however you wish, just give credit where credit is due.
The author (Jeremy Slade) shall not be held responsible
for any damages that result out of use or misuse of any
part of this project.

JGS Tue Apr 13 17:59:13 PDT 1993

Backwads-Compatibility For Archived Objects

It is important for new versions of Locus to maintain reverse-compatibility (at least
read compatible) with older versions, so that it can read files written by older versions.
Since the files are written using NXTypedStreams, we rely on versioning information in the
stream to determine how the file should be read. Each class has its own version number,
which is set through the +initialize method. The version number MUST be incremented
(at least) whenever the archived structure of the object gets changed (that is, when the
way the the object is archived is changed by adding new instance variables, etc).

In the -read: method of each of these archived classes, it first gets the version number
for the archived object. It then reads the archived object according to this version
number. This is done thorugh a series of if .. then ... else loops, where there is a different
if test for each different archive version that is supported. Each code block for the test

containse all the code required to read a given version. If the version number isn't
recognized by any of these tests, an error occurs and the read fails.

For example, consider the class Foo. In the first version (1), it contained two integers
that were archived. After other changes, it became version 5 when a string was added
that also gets archived. In version 8, another string and integer were added. So, the
-read: method would look something like this:

- read:(NXTypedStream *)stream
{

Int version;
[super read:stream];

version = NXTypedStreamClassVersion (stream, [[self class] name]);

if (version <=4) {
NXReadTypes (stream, "ii", &intl, &int2);
stringl = NULL;
string2 = NULL;
int3 = 0;
} else

if (version <=7) {
NXReadTypes (stream, "ii*", &intl, &int2, &stringl);
string2 = NULL;
int3 = 0;

} else

if (version <= Foo_VERSION) {// Up thru the current version
NXReadTypes (stream, "ii**I", &intl, &int2, &stringl, &string2, &int3);
} else
{ /I Error: unrecognized archive version
printf ("Error: Unrecognized version %d of class Foo\n", version);
}

return (self);

Moving Away from Depedence on NXTypedStreams

It would be nice (and probably wise) to get away from using NXTypedStreams to do
the archiving. My biggest concern is if any of the standard classes on which the archived

objects are based get changed. This is especially true for the Cell class, of which
ItemCell is a subclass. Folder and Group are subclasses of List, and it would be good to
totally separate these classes from the standard Appkit and Common classes. Not using
typed streams would allow employing a mechanism that uses flat ASCII files, which is
more consistent with the paradigm for UNIX (and derivative) systems.

