
CVSClient/Server

1 Goals

� Do not assume any access to the repository other than via this protocol. It does not depend

on NFS, rdist, etc.

� Providing a reliable transport is outside this protocol. It is expected that it runs over TCP,

UUCP, etc.

� Security and authentication are handled outside this protocol (but see below about `cvs

kserver').

� This might be a �rst step towards adding transactions to CVS (i.e. a set of operations is either

executed atomically or none of them is executed), improving the locking, or other features.

The current server implementation is a long way from being able to do any of these things.

The protocol, however, is not known to contain any defects which would preclude them.

� The server never has to have any CVS locks in place while it is waiting for communication

with the client. This makes things robust in the face of
aky networks.

� Data is transferred in large chunks, which is necessary for good performance. In fact, currently

the client uploads all the data (without waiting for server responses), and then waits for one

server response (which consists of a massive download of all the data). There may be cases in

which it is better to have a richer interraction, but the need for the server to release all locks

whenever it waits for the client makes it complicated.

2 Notes on the Current Implementation

The client is built in to the normal cvs program, triggered by a CVSROOT variable containing a

colon, for example cygnus.com:/rel/cvsfiles.

The client stores what is stored in checked-out directories (including `CVS'). The way these

are stored is totally compatible with standard CVS. The server requires no storage other than the

repository, which also is totally compatible with standard CVS.

The server is started by cvs server. There is no particularly compelling reason for this rather

than making it a separate program which shares a lot of sources with cvs.

The server can also be started by cvs kserver, in which case it does an initial Kerberos authen-

tication on stdin. If the authentication succeeds, it subsequently runs identically to cvs server.

The current server implementation can use up huge amounts of memory when transmitting a

lot of data. Avoiding this would be a bit tricky because it is not acceptable to have the server

block on the network (which may be very slow) when it has locks open. The bu�er code has been

rewritten so that this does not appear to be a serious problem in practice. However, if it is seen to

be a problem several solutions are possible. The two-pass design would involve �rst noting what

versions of everything we need (with locks in place) and then sending the data, blocking on the

network, with no locks needed. The lather-rinse-repeat design would involve doing things as it does

now until a certain amount of server memory is being used (10M?), then releasing locks, and trying

the whole update again (some of it is presumably already done). One problem with this is getting

merges to work right.

3 How to addmore remote commands

It's the usual simple twelve step process. Let's say you're making the existing cvs fix command

work remotely.

� Add a declaration for the fix function, which already implements the cvs fix command, to

`server.c'.

� Now, the client side. Add a function client_fix to `client.c', which calls parse_cvsroot

and then calls the usual fix function.

� Add a declaration for client_fix to `client.h'.

� Add client_fix to the "�x" entry in the table of commands in `main.c'.

� Now for the server side. Add the serve_fix routine to `server.c'; make it do:

static void

serve_fix (arg)

char *arg;

{

do_cvs_command (fix);

}

� Add the server command "fix" to the table of requests in `server.c'.

� The fix function can now be entered in three di�erent situations: local (the old situation),

client, and server. On the server side it probably will not need any changes to cope. Modify

the fix function so that if it is run when the variable client_active is set, it starts the

server, sends over parsed arguments and possibly �les, sends a "�x" command to the server,

and handles responses from the server. Sample code:

if (!client_active) {

/* Do whatever you used to do */

} else {

/* We're the local client. Fire up the remote server. */

start_server ();

if (local)

if (fprintf (to_server, "Argument -l\n") == EOF)

error (1, errno, "writing to server");

send_option_string (options);

send_files (argc, argv, local);

if (fprintf (to_server, "fix\n") == EOF)

error (1, errno, "writing to server");

err = get_responses_and_close ();

}

� Build it locally. Copy the new version into somewhere on the remote system, in your path so

that rsh host cvs �nds it. Now you can test it.

� You may want to set the environment variable CVS_CLIENT_PORT to -1 to prevent the client

from contacting the server via a direct TCP link. That will force the client to fall back to

using rsh, which will run your new binary.

� Set the environment variable CVS_CLIENT_LOG to a �lename pre�x such as `/tmp/cvslog'.

Whenever you run a remote CVS command, the commands and responses sent across the

client/server connection will be logged in `/tmp/cvslog.in' and `/tmp/cvslog.out'. Examine

them for problems while you're testing.

This should produce a good �rst cut at a working remote cvs fix command. You may have

to change exactly how arguments are passed, whether �les or just their names are sent, and how

some of the deeper infrastructure of your command copes with remoteness.

4 Notes on the Protocol

A number of enhancements are possible:

� The Modified request could be speeded up by sending di�s rather than entire �les. The client

would need some way to keep the version of the �le which was originally checked out, which

would double client disk space requirements or require coordination with editors (e.g. maybe

it could use emacs numbered backups). This would also allow local operation of cvs diff

without arguments.

� Have the client keep a copy of some part of the repository. This allows all of cvs diff and

large parts of cvs update and cvs ci to be local. The local copy could be made consistent

with the master copy at night (but if the master copy has been updated since the latest nightly

re-sync, then it would read what it needs to from the master).

� Provide encryption using kerberos.

� The current procedure for cvs update is highly sub-optimal if there are many modi�ed �les.

One possible alternative would be to have the client send a �rst request without the contents

of every modi�ed �le, then have the server tell it what �les it needs. Note the server needs

to do the what-needs-to-be-updated check twice (or more, if changes in the repository mean

it has to ask the client for more �les), because it can't keep locks open while waiting for the

network. Perhaps this whole thing is irrelevant if client-side repositories are implemented, and

the rcsmerge is done by the client.

5 The CVS client/server protocol

5.1 Entries Lines

Entries lines are transmitted as:

/ name / version / con
ict / options / tag or date

tag or date is either `T' tag or `D' date or empty. If it is followed by a slash, anything after the

slash shall be silently ignored.

version can be empty, or start with `0' or `-', for no user �le, new user �le, or user �le to be

removed, respectively.

con
ict, if it starts with `+', indicates that the �le had con
icts in it. The rest of con
ict is `=' if

the timestamp matches the �le, or anything else if it doesn't. If con
ict does not start with a `+',

it is silently ignored.

5.2 Modes

A mode is any number of repetitions of

mode-type = data

separated by `,'.

mode-type is an identi�er composed of alphanumeric characters. Currently speci�ed: `u' for

user, `g' for group, `o' for other, as speci�ed in POSIX. If at all possible, give these their POSIX

meaning and use other mode-types for other behaviors. For example, on VMS it shouldn't be hard

to make the groups behave like POSIX, but you would need to use ACLs for some cases.

data consists of any data not containing `,', `\0' or `\n'. For `u', `g', and `o' mode types, data

consists of alphanumeric characters, where `r' means read, `w' means write, `x' means execute, and

unrecognized letters are silently ignored.

5.3 Requests

File contents (noted below as �le transmission) can be sent in one of two forms. The simpler

form is a number of bytes, followed by a newline, followed by the speci�ed number of bytes of �le

contents. These are the entire contents of the speci�ed �le. Second, if both client and server support

`gzip-file-contents', a `z' may precede the length, and the `�le contents' sent are actually

compressed with `gzip'. The length speci�ed is that of the compressed version of the �le.

In neither case are the �le content followed by any additional data. The transmission of a �le

will end with a newline i� that �le (or its compressed form) ends with a newline.

Root pathname \n

Response expected: no. Tell the server which CVSROOT to use.

Valid-responses request-list \n

Response expected: no. Tell the server what responses the client will accept. request-

list is a space separated list of tokens.

valid-requests \n

Response expected: yes. Ask the server to send back a Valid-requests response.

Repository repository \n

Response expected: no. Tell the server what repository to use. This should be a

directory name from a previous server response. Note that this both gives a default

for Entry and Modified and also for ci and the other commands; normal usage is to

send a Repository for each directory in which there will be an Entry or Modified ,

and then a �nal Repository for the original directory, then the command.

Directory local-directory \n

Additional data: repository \n. This is like Repository, but the local name of the

directory may di�er from the repository name. If the client uses this request, it a�ects

the way the server returns pathnames; see Section 5.4 [Responses], page 11. local-

directory is relative to the top level at which the command is occurring (i.e. the last

Directory or Repository which is sent before the command).

Max-dotdot level \n

Tell the server that level levels of directories above the directory which Directory

requests are relative to will be needed. For example, if the client is planning to use a

Directory request for `../../foo', it must send a Max-dotdot request with a level of

at least 2. Max-dotdot must be sent before the �rst Directory request.

Static-directory \n

Response expected: no. Tell the server that the directory most recently speci�ed with

Repository or Directory should not have additional �les checked out unless explicitly

requested. The client sends this if the Entries.Static
ag is set, which is controlled

by the Set-static-directory and Clear-static-directory responses.

Sticky tagspec \n

Response expected: no. Tell the server that the directory most recently speci�ed with

Repository has a sticky tag or date tagspec. The �rst character of tagspec is `T' for a

tag, or `D' for a date. The remainder of tagspec contains the actual tag or date.

Checkin-prog program \n

Response expected: no. Tell the server that the directory most recently speci�ed

with Directory has a checkin program program. Such a program would have been

previously set with the Set-checkin-prog response.

Update-prog program \n

Response expected: no. Tell the server that the directory most recently speci�ed

with Directory has an update program program. Such a program would have been

previously set with the Set-update-prog response.

Entry entry-line \n

Response expected: no. Tell the server what version of a �le is on the local machine.

The name in entry-line is a name relative to the directory most recently speci�ed with

Repository. If the user is operating on only some �les in a directory, Entry requests

for only those �les need be included. If an Entry request is sent without Modified,

Unchanged, or Lost for that �le the meaning depends on whether UseUnchanged has

been sent; if it has been it means the �le is lost, if not it means the �le is unchanged.

Modified �lename \n

Response expected: no. Additional data: mode, \n, �le transmission. Send the server

a copy of one locally modi�ed �le. �lename is relative to the most recent repository

sent with Repository. If the user is operating on only some �les in a directory, only

those �les need to be included. This can also be sent without Entry, if there is no

entry for the �le.

Lost �lename \n

Response expected: no. Tell the server that �lename no longer exists. The name is

relative to the most recent repository sent with Repository. This is used for any case

in which Entry is being sent but the �le no longer exists. If the client has issued the

UseUnchanged request, then this request is not used.

Unchanged �lename \n

Response expected: no. Tell the server that �lename has not been modi�ed in the

checked out directory. The name is relative to the most recent repository sent with

Repository. This request can only be issued if UseUnchanged has been sent.

UseUnchanged \n

Response expected: no. Tell the server that the client will be indicating unmodi�ed

�les with Unchanged, and that �les for which no information is sent are nonexistent

on the client side, not unchanged. This is necessary for correct behavior since only the

server knows what possible �les may exist, and thus what �les are nonexistent.

Argument text \n

Response expected: no. Save argument for use in a subsequent command. Argu-

ments accumulate until an argument-using command is given, at which point they are

forgotten.

Argumentx text \n

Response expected: no. Append \n followed by text to the current argument being

saved.

Global_option option \n

Transmit one of the global options `-q', `-Q', `-l', `-t', `-r', or `-n'. option must be one

of those strings, no variations (such as combining of options) are allowed. For graceful

handling of valid-requests, it is probably better to make new global options separate

requests, rather than trying to add them to this request.

expand-modules \n

Response expected: yes. Expand the modules which are speci�ed in the arguments.

Returns the data in Module-expansion responses. Note that the server can assume

that this is checkout or export, not rtag or rdi�; the latter do not access the working

directory and thus have no need to expand modules on the client side.

co \n

update \n

ci \n

diff \n

tag \n

status \n

log \n

add \n

remove \n

rdiff \n

rtag \n

import \n

admin \n

export \n

history \n

release \n

Response expected: yes. Actually do a cvs command. This uses any previous Argument,

Repository, Entry, Modified, or Lost requests, if they have been sent. The last

Repository sent speci�es the working directory at the time of the operation. No

provision is made for any input from the user. This means that ci must use a -m

argument if it wants to specify a log message.

update-patches \n

This request does not actually do anything. It is used as a signal that the server is

able to generate patches when given an update request. The client must issue the -u

argument to update in order to receive patches.

gzip-file-contents level \n

This request asks the server to �lter �les it sends to the client through the `gzip'

program, using the speci�ed level of compression. If this request is not made, the

server must not do any compression.

This is only a hint to the server. It may still decide (for example, in the case of very

small �les, or �les that already appear to be compressed) not to do the compression.

Compression is indicated by a `z' preceding the �le length.

Availability of this request in the server indicates to the client that it may compress

�les sent to the server, regardless of whether the client actually uses this request.

other-request text \n

Response expected: yes. Any unrecognized request expects a response, and does not

contain any additional data. The response will normally be something like `error

unrecognized request', but it could be a di�erent error if a previous command which

doesn't expect a response produced an error.

When the client is done, it drops the connection.

5.4 Responses

After a command which expects a response, the server sends however many of the following

responses are appropriate. Pathnames are of the actual �les operated on (i.e. they do not contain

`,v' endings), and are suitable for use in a subsequent Repository request. However, if the client

has used the Directory request, then it is instead a local directory name relative to the directory

in which the command was given (i.e. the last Directory before the command). Then a newline

and a repository name (the pathname which is sent if Directory is not used). Then the slash and

the �lename. For example, for a �le `i386.mh' which is in the local directory `gas.clean/config'

and for which the repository is `/rel/cvsfiles/devo/gas/config':

gas.clean/config/

/rel/cvsfiles/devo/gas/config/i386.mh

Any response always ends with `error' or `ok'. This indicates that the response is over.

Valid-requests request-list \n

Indicate what requests the server will accept. request-list is a space separated list of

tokens. If the server supports sending patches, it will include `update-patches' in this

list. The `update-patches' request does not actually do anything.

Checked-in pathname \n

Additional data: New Entries line, \n. This means a �le pathname has been success-

fully operated on (checked in, added, etc.). name in the Entries line is the same as the

last component of pathname.

New-entry pathname \n

Additional data: New Entries line, \n. Like Checked-in, but the �le is not up to date.

Updated pathname \n

Additional data: New Entries line, \n, mode, \n, �le transmission. A new copy of the

�le is enclosed. This is used for a new revision of an existing �le, or for a new �le, or

for any other case in which the local (client-side) copy of the �le needs to be updated,

and after being updated it will be up to date. If any directory in pathname does not

exist, create it.

Merged pathname \n

This is just like Updated and takes the same additional data, with the one di�erence

that after the new copy of the �le is enclosed, it will still not be up to date. Used for

the results of a merge, with or without con
icts.

Patched pathname \n

This is just like Updated and takes the same additional data, with the one di�erence

that instead of sending a new copy of the �le, the server sends a patch produced by

`diff -u'. This client must apply this patch, using the `patch' program, to the existing

�le. This will only be used when the client has an exact copy of an earlier revision of

a �le. This response is only used if the update command is given the `-u' argument.

Checksum checksum\n

The checksum applies to the next �le sent over via Updated, Merged, or Patched. In

the case of Patched, the checksum applies to the �le after being patched, not to the

patch itself. The client should compute the checksum itself, after receiving the �le or

patch, and signal an error if the checksums do not match. The checksum is the 128

bit MD5 checksum represented as 32 hex digits. This response is optional, and is only

used if the client supports it (as judged by the Valid-responses request).

Copy-file pathname \n

Additional data: newname \n. Copy �le pathname to newname in the same directory

where it already is. This does not a�ect CVS/Entries.

Removed pathname \n

The �le has been removed from the repository (this is the case where cvs prints `file

foobar.c is no longer pertinent').

Remove-entry pathname \n

The �le needs its entry removed from CVS/Entries, but the �le itself is already gone

(this happens in response to a ci request which involves committing the removal of a

�le).

Set-static-directory pathname \n

This instructs the client to set the Entries.Static
ag, which it should then send

back to the server in a Static-directory request whenever the directory is operated

on. pathname ends in a slash; its purpose is to specify a directory, not a �le within a

directory.

Clear-static-directory pathname \n

Like Set-static-directory, but clear, not set, the
ag.

Set-sticky pathname \n

Additional data: tagspec \n. Tell the client to set a sticky tag or date, which should

be supplied with the Sticky request for future operations. pathname ends in a slash;

its purpose is to specify a directory, not a �le within a directory. The �rst character of

tagspec is `T' for a tag, or `D' for a date. The remainder of tagspec contains the actual

tag or date.

Clear-sticky pathname \n

Clear any sticky tag or date set by Set-sticky.

Set-checkin-prog dir \n

Additional data: prog \n. Tell the client to set a checkin program, which should be

supplied with the Checkin-prog request for future operations.

Set-update-prog dir \n

Additional data: prog \n. Tell the client to set an update program, which should be

supplied with the Update-prog request for future operations.

Module-expansion pathname \n

Return a �le or directory which is included in a particular module. pathname is relative

to cvsroot, unlike most pathnames in responses.

M text \n A one-line message for the user.

E text \n Same as M but send to stderr not stdout.

error errno-code ` ' text \n

The command completed with an error. errno-code is a symbolic error code (e.g.

ENOENT); if the server doesn't support this feature, or if it's not appropriate for this

particular message, it just omits the errno-code (in that case there are two spaces after

`error'). Text is an error message such as that provided by strerror(), or any other

message the server wants to use.

ok \n The command completed successfully.

5.5 Example

Lines beginning with `c>' are sent by the client; lines beginning with `s>' are sent by the server;

lines beginning with `#' are not part of the actual exchange.

c> Root /rel/cvsfiles

In actual practice the lists of valid responses and requests would

be longer

c> Valid-responses Updated Checked-in M ok error

c> valid-requests

s> Valid-requests Root co Modified Entry Repository ci Argument Argumentx

s> ok

cvs co devo/foo

c> Argument devo/foo

c> co

s> Updated /rel/cvsfiles/devo/foo/foo.c

s> /foo.c/1.4/Mon Apr 19 15:36:47 1993 Mon Apr 19 15:36:47 1993//

s> 26

s> int mein () { abort (); }

s> Updated /rel/cvsfiles/devo/foo/Makefile

s> /Makefile/1.2/Mon Apr 19 15:36:47 1993 Mon Apr 19 15:36:47 1993//

s> 28

s> foo: foo.c

s> $(CC) -o foo $<

s> ok

In actual practice the next part would be a separate connection.

Here it is shown as part of the same one.

c> Repository /rel/cvsfiles/devo/foo

foo.c relative to devo/foo just set as Repository.

c> Entry /foo.c/1.4/Mon Apr 19 15:36:47 1993 Mon Apr 19 15:36:47 1993//

c> Entry /Makefile/1.2/Mon Apr 19 15:36:47 1993 Mon Apr 19 15:36:47 1993//

c> Modified foo.c

c> 26

c> int main () { abort (); }

cvs ci -m <log message> foo.c

c> Argument -m

c> Argument Well, you see, it took me hours and hours to find this typo and I

c> Argumentx searched and searched and eventually had to ask John for help.

c> Argument foo.c

c> ci

s> Checked-in /rel/cvsfiles/devo/foo/foo.c

s> /foo.c/1.5/ Mon Apr 19 15:54:22 CDT 1993//

s> M Checking in foo.c;

s> M /cygint/rel/cvsfiles/devo/foo/foo.c,v <-- foo.c

s> M new revision: 1.5; previous revision: 1.4

s> M done

s> ok

