
Version Management

with

CVS

release 0.9, for cvs 1.3+

Per Cederqvist

last updated 2 Nov 1993

Copyright
c

 1992, 1993 Signum Support AB

Permission is granted to make and distribute verbatim copies of this manual provided the copyright

notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the conditions

for verbatim copying, provided also that the section entitled \GNU General Public License" is

included exactly as in the original, and provided that the entire resulting derived work is distributed

under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,

under the above conditions for modi�ed versions, except that the section entitled \GNU General

Public License" and this permission notice may be included in translations approved by the Free

Software Foundation instead of in the original English.

About this manual 1

About thismanual

Up to this point, one of the weakest parts of cvs has been the documentation. cvs is a complex

program. Previous versions of the manual were written in the manual page format, which is not

really well suited for such a complex program.

When writing this manual, I had several goals in mind:

� No knowledge of rcs should be necessary.

� No previous knowledge of revision control software should be necessary. All terms, such as

revision numbers, revision trees and merging are explained as they are introduced.

� The manual should concentrate on the things cvs users want to do, instead of what the cvs

commands can do. The �rst part of this manual leads you through things you might want to

do while doing development, and introduces the relevant cvs commands as they are needed.

� Information should be easy to �nd. In the reference manual in the appendices almost all

information about every cvs command is gathered together. There is also an extensive index,

and a lot of cross references.

This manual was contributed by Signum Support AB in Sweden. Signum is yet another in the

growing list of companies that support free software. You are free to copy both this manual and

the cvs program. See Appendix E [Copying], page 95, for the details. Signum Support o�ers

support contracts and binary distribution for many programs, such as cvs, gnu Emacs, the gnu

C compiler and others. You can also buy hardcopies of this manual from us. Write to us for more

information.

Signum Support AB

Box 2044

S-580 02 Linkoping

Sweden

Email: info@signum.se

Phone: +46 (0)13 - 21 46 00

Fax: +46 (0)13 - 21 47 00

Checklist for the impatient reader

cvs is a complex system. You will need to read the manual to be able to use all of its capabilities.

There are dangers that can easily be avoided if you know about them, and this manual tries to

warn you about them. This checklist is intended to help you avoid the dangers without reading

the entire manual. If you intend to read the entire manual you can skip this table.

Binary �les

cvs can handle binary �les, but you must have rcs release 5.5 or later and a release

of gnu di� that supports the `-a'
ag (release 1.15 and later are OK). You must also

con�gure both rcs and cvs to handle binary �les when you install them.

Keword substitution can be a source of trouble with binary �les. See Chapter 15

[Keyword substitution], page 45, for solutions.

2 CVS|Concurrent Versions System

The admin command

Uncareful use of the admin command can cause cvs to cease working. See Section A.6

[admin], page 57, before trying to use it.

Credits

Roland Pesch, Cygnus Support <pesch@cygnus.com> wrote the manual pages which were dis-

tributed with cvs 1.3. Appendix A and B contain much text that was extracted from them. He

also read an early draft of this manual and contributed many ideas and corrections.

The mailing-list info-cvs is sometimes informative. I have included information from postings

made by the following persons: David G. Grubbs <dgg@think.com>.

Some text has been extracted from the man pages for rcs.

The cvs faq (see Chapter 1 [What is CVS?], page 3) by David G. Grubbs has been used as a

check-list to make sure that this manual is as complete as possible. (This manual does however not

include all of the material in the faq). The faq contains a lot of useful information.

In addition, the following persons have helped by telling me about mistakes I've made:

Roxanne Brunskill <rbrunski@datap.ca>, Kathy Dyer <dyer@phoenix.ocf.llnl.gov>, Karl

Pingle <pingle@acuson.com>, Thomas A Peterson <tap@src.honeywell.com>, Inge Wallin

<ingwa@signum.se>, Dirk Koschuetzki <koschuet@fmi.uni-passau.de> and Michael Brown

<brown@wi.extrel.com>.

BUGS

This manual is still very new. Here is a list of known de�ciencies in it:

� In the examples, the output from cvs is sometimes displayed, sometimes not.

� The input that you are supposed to type in the examples should have a di�erent font than the

output from the computer.

� This manual should be clearer about what �le permissions you should set up in the repository,

and about setuid/setgid.

� Some of the chapters are not yet complete. They are noted by comments in the `cvs.texinfo'

�le.

� This list is not complete. If you notice any error, omission, or something that is unclear, please

send mail to ceder@signum.se.

I hope that you will �nd this manual useful, despite the above-mentioned shortcomings.

Linkoping, October 1993

Per Cederqvist

Chapter 1: What is CVS? 3

1 What is CVS?

cvs is a version control system. Using it, you can record the history of your source �les.

For example, bugs sometimes creep in when software is modi�ed, and you might not detect

the bug until a long time after you make the modi�cation. With cvs, you can easily retrieve old

versions to see exactly which change caused the bug. This can sometimes be a big help.

You could of course save every version of every �le you have ever created. This would however

waste an enormous amount of disk space. cvs stores all the versions of a �le in a single �le in a

clever way that only stores the di�erences between versions.

cvs also helps you if you are part of a group of people working on the same project. It is all

too easy to overwrite each others' changes unless you are extremely careful. Some editors, like

gnu Emacs, try to make sure that the same �le is never modi�ed by two people at the same time.

Unfortunately, if someone is using another editor, that safeguard will not work. cvs solves this

problem by insulating the di�erent developers from each other. Every developer works in his own

directory, and cvs merges the work when each developer is done.

cvs started out as a bunch of shell scripts written by Dick Grune, posted to comp.sources.unix

in the volume 6 release of December, 1986. While no actual code from these shell scripts is present

in the current version of cvs much of the cvs con
ict resolution algorithms come from them.

In April, 1989, Brian Berliner designed and coded cvs. Je� Polk later helped Brian with the

design of the cvs module and vendor branch support.

You can get cvs via anonymous ftp from a number of sites, for instance prep.ai.mit.edu in

`pub/gnu'.

There is a mailing list for cvs where bug reports can be sent, questions can be asked, an

FAQ is posted, and discussion about future enhancements to cvs take place. To submit a mes-

sage to the list, write to <info-cvs@prep.ai.mit.edu>. To subscribe or unsubscribe, write to

<info-cvs-request@prep.ai.mit.edu>. Please be speci�c about your email address.

Work is in progress on creating a newsgroup for cvs-related topics. It will appear somewhere

under the `gnu.' hierarchy. Gateways to and from the mailing list will be set up.

The ftp site think.com has some cvs material in the `/pub/cvs' subdirectory. Currently (late

summer 1993) it contains an excellent faq (Frequently Asked Questions, with answers), and an

improved (but uno�cial) version of cvs.

CVS is not: : :

cvs can do a lot of things for you, but it does not try to be everything for everyone.

cvs is not a build system.

Though the structure of your repository and modules �le interact with your build

system (e.g. `Makefile's), they are essentially independent.

4 CVS|Concurrent Versions System

cvs does not dictate how you build anything. It merely stores �les for retrieval in a

tree structure you devise.

cvs does not dictate how to use disk space in the checked out working directories.

If you write your `Makefile's or scripts in every directory so they have to know the

relative positions of everything else, you wind up requiring the entire repository to be

checked out. That's simply bad planning.

If you modularize your work, and construct a build system that will share �les (via

links, mounts, VPATH in `Makefile's, etc.), you can arrange your disk usage however

you like.

But you have to remember that any such system is a lot of work to construct and

maintain. cvs does not address the issues involved. You must use your brain and a

collection of other tools to provide a build scheme to match your plans.

Of course, you should place the tools created to support such a build system (scripts,

`Makefile's, etc) under cvs.

cvs is not a substitute for management.

Your managers and project leaders are expected to talk to you frequently enough to

make certain you are aware of schedules, merge points, branch names and release dates.

If they don't, cvs can't help.

cvs is an instrument for making sources dance to your tune. But you are the piper

and the composer. No instrument plays itself or writes its own music.

cvs is not a substitute for developer communication.

When faced with con
icts within a single �le, most developers manage to resolve them

without too much e�ort. But a more general de�nition of \con
ict" includes problems

too di�cult to solve without communication between developers.

cvs cannot determine when simultaneous changes within a single �le, or across a whole

collection of �les, will logically con
ict with one another. Its concept of a con
ict is

purely textual, arising when two changes to the same base �le are near enough to spook

the merge (i.e. diff3) command.

cvs does not claim to help at all in �guring out non-textual or distributed con
icts in

program logic.

For example: Say you change the arguments to function X de�ned in �le `A'. At the same

time, someone edits �le `B', adding new calls to function X using the old arguments.

You are outside the realm of cvs's competence.

Acquire the habit of reading specs and talking to your peers.

cvs is not a con�guration management system.

cvs is a source control system. The phrase \con�guration management" is a marketing

term, not an industry-recognized set of functions.

A true \con�guration management system" would contain elements of the following:

� Source control.

� Dependency tracking.

� Build systems (i.e. What to build and how to �nd things during a build. What is

shared? What is local?)

� Bug tracking.

� Automated Testing procedures.

� Release Engineering documentation and procedures.

� Tape Construction.

� Customer Installation.

Chapter 1: What is CVS? 5

� A way for users to run di�erent versions of the same software on the same host at

the same time.

cvs provides only the �rst.

This section is taken from release 2.3 of the cvs faq.

6 CVS|Concurrent Versions System

Chapter 2: Basic concepts 7

2 Basic concepts

cvs stores all �les in a centralized repository : a directory (such as `/usr/local/cvsroot' or

`user@remotehost:/usr/local/cvsroot') which is populated with a hierarchy of �les and direc-

tories. (see Section 4.5 [Remote repositories], page 16 for information about keeping the repository

on a remote machine.)

Normally, you never access any of the �les in the repository directly. Instead, you use cvs

commands to get your own copy of the �les, and then work on that copy. When you've �nished a

set of changes, you check (or commit) them back into the repository.

The �les in the repository are organized in modules. Each module is made up of one or more

�les, and can include �les from several directories. A typical usage is to de�ne one module per

project.

2.1 Revision numbers

Each version of a �le has a unique revision number. Revision numbers look like `1.1', `1.2',

`1.3.2.2' or even `1.3.2.2.4.5'. A revision number always has an even number of period-separated

decimal integers. By default revision 1.1 is the �rst revision of a �le. Each successive revision is

given a new number by increasing the rightmost number by one. The following �gure displays a

few revisions, with newer revisions to the right.

+-----+ +-----+ +-----+ +-----+ +-----+

! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 !

+-----+ +-----+ +-----+ +-----+ +-----+

cvs is not limited to linear development. The revision tree can be split into branches, where

each branch is a self-maintained line of development. Changes made on one branch can easily be

moved back to the main trunk.

Each branch has a branch number, consisting of an odd number of period-separated decimal

integers. The branch number is created by appending an integer to the revision number where the

corresponding branch forked o�. Having branch numbers allows more than one branch to be forked

o� from a certain revision.

8 CVS|Concurrent Versions System

All revisions on a branch have revision numbers formed by appending an ordinal number to the

branch number. The following �gure illustrates branching with an example.

+-------------+

Branch 1.2.2.3.2 -> ! 1.2.2.3.2.1 !

/ +-------------+

/

/

+---------+ +---------+ +---------+ +---------+

Branch 1.2.2 -> _! 1.2.2.1 !----! 1.2.2.2 !----! 1.2.2.3 !----! 1.2.2.4 !

/ +---------+ +---------+ +---------+ +---------+

/

/

+-----+ +-----+ +-----+ +-----+ +-----+

! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 ! <- The main trunk

+-----+ +-----+ +-----+ +-----+ +-----+

!

!

! +---------+ +---------+ +---------+

Branch 1.2.4 -> +---! 1.2.4.1 !----! 1.2.4.2 !----! 1.2.4.3 !

+---------+ +---------+ +---------+

The exact details of how the branch number is constructed is not something you normally need

to be concerned about, but here is how it works: When cvs creates a branch number it picks the

�rst unused even integer, starting with 2. So when you want to create a branch from revision 6.4 it

will be numbered 6.4.2. All branch numbers ending in a zero (such as 6.4.0) are used internally by

cvs (see Section D.1 [Magic branch numbers], page 93). The branch 1.1.1 has a special meaning.

See Chapter 12 [Tracking sources], page 39.

2.2 Versions, revisions and releases

A �le can have several versions, as described above. Likewise, a software product can have

several versions. A software product is often given a version number such as `4.1.1'.

Versions in the �rst sense are called revisions in this document, and versions in the second sense

are called releases. To avoid confusion, the word version is almost never used in this document.

Chapter 3: A sample session 9

3 A sample session

This section describes a typical work-session using cvs. It assumes that a repository is set up

(see Chapter 4 [Repository], page 13).

Suppose you are working on a simple compiler. The source consists of a handful of C �les and

a `Makefile'. The compiler is called `tc' (Trivial Compiler), and the repository is set up so that

there is a module called `tc'.

3.1 Getting the source

The �rst thing you must do is to get your own working copy of the source for `tc'. For this, you

use the checkout command:

$ cvs checkout tc

This will create a new directory called `tc' and populate it with the source �les.

$ cd tc

$ ls tc

CVS Makefile backend.c driver.c frontend.c parser.c

The `CVS' directory is used internally by cvs. Normally, you should not modify or remove any

of the �les in it.

You start your favorite editor, hack away at `backend.c', and a couple of hours later you have

added an optimization pass to the compiler. A note to rcs and sccs users: There is no need to lock

the �les that you want to edit. See Chapter 6 [Multiple developers], page 21 for an explanation.

3.2 Committing your changes

When you have checked that the compiler is still compilable you decide to make a new version

of `backend.c'.

$ cvs commit backend.c

cvs starts an editor, to allow you to enter a log message. You type in \Added an optimization

pass.", save the temporary �le, and exit the editor.

The environment variable $CVSEDITOR determines which editor is started. If $CVSEDITOR is

not set, then if the environment variable $EDITOR is set, it will be used. If both $CVSEDITOR and

$EDITOR are not set then the editor defaults to vi. If you want to avoid the overhead of starting an

editor you can specify the log message on the command line using the `-m'
ag instead, like this:

$ cvs commit -m "Added an optimization pass" backend.c

10 CVS|Concurrent Versions System

3.3 Cleaning up

Before you turn to other tasks you decide to remove your working copy of tc. One acceptable

way to do that is of course

$ cd ..

$ rm -r tc

but a better way is to use the release command (see Section A.15 [release], page 74):

$ cd ..

$ cvs release -d tc

M driver.c

? tc

You have [1] altered files in this repository.

Are you sure you want to release (and delete) module `tc': n

** `release' aborted by user choice.

The release command checks that all your modi�cations have been committed. If history

logging is enabled it also makes a note in the history �le. See Section B.9 [history �le], page 90.

When you use the `-d'
ag with release, it also removes your working copy.

In the example above, the release command wrote a couple of lines of output. `? tc' means

that the �le `tc' is unknown to cvs. That is nothing to worry about: `tc' is the executable

compiler, and it should not be stored in the repository. See Section B.8 [cvsignore], page 89, for

information about how to make that warning go away. See Section A.15.2 [release output], page 74,

for a complete explanation of all possible output from release.

`M driver.c' is more serious. It means that the �le `driver.c' has been modi�ed since it was

checked out.

The release command always �nishes by telling you how many modi�ed �les you have in your

working copy of the sources, and then asks you for con�rmation before deleting any �les or making

any note in the history �le.

You decide to play it safe and answer n RET when release asks for con�rmation.

3.4 Viewing di�erences

You do not remember modifying `driver.c', so you want to see what has happened to that �le.

$ cd tc

$ cvs diff driver.c

This command runs diff to compare the version of `driver.c' that you checked out with your

working copy. When you see the output you remember that you added a command line option that

enabled the optimization pass. You check it in, and release the module.

Chapter 3: A sample session 11

$ cvs commit -m "Added an optimization pass" driver.c

Checking in driver.c;

/usr/local/cvsroot/tc/driver.c,v <-- driver.c

new revision: 1.2; previous revision: 1.1

done

$ cd ..

$ cvs release -d tc

? tc

You have [0] altered files in this repository.

Are you sure you want to release (and delete) module `tc': y

12 CVS|Concurrent Versions System

Chapter 4: The Repository 13

4 TheRepository

Figure 3 below shows a typical setup of a repository. Only directories are shown below.

/usr

|

+--local

| |

| +--cvsroot

| | |

| | +--CVSROOT

| (administrative files)

|

+--gnu

| |

| +--diff

| | (source code to gnu diff)

| |

| +--rcs

| | (source code to rcs)

| |

| +--cvs

| (source code to cvs)

|

+--yoyodyne

|

+--tc

| |

| +--man

| |

| +--testing

|

+--(other Yoyodyne software)

There are a couple of di�erent ways to tell cvs where to �nd the repository. You can name the

repository on the command line explicitly, with the -d (for "directory") option:

cvs -d /usr/local/cvsroot checkout yoyodyne/tc

Or you can set the $CVSROOT environment variable to an absolute path to the root of the

repository, `/usr/local/cvsroot' in this example. To set $CVSROOT, all csh and tcsh users should

have this line in their `.cshrc' or `.tcshrc' �les:

setenv CVSROOT /usr/local/cvsroot

sh and bash users should instead have these lines in their `.profile' or `.bashrc':

CVSROOT=/usr/local/cvsroot

export CVSROOT

14 CVS|Concurrent Versions System

A repository speci�ed with -d will override the $CVSROOT environment variable. Once you've

checked a working copy out from the repository, it will remember where its repository is (the

information is recorded in the `cvs/Root' �le in the working copy).

The -d option and the `cvs/Root' �le both override the $CVSROOT environment variable; how-

ever, CVS will complain if the `-d' argument and the `cvs/Root' �le disagree.

There is nothing magical about the name `/usr/local/cvsroot'. You can choose to place the

repository anywhere you like. See Section 4.5 [Remote repositories], page 16 to learn how the

repository can be on a di�erent machine than your working copy of the sources.

The repository is split in two parts. `$CVSROOT/CVSROOT' contains administrative �les for cvs.

The other directories contain the actual user-de�ned modules.

4.1 User modules

$CVSROOT

|

+--yoyodyne

| |

| +--tc

| | |

+--Makefile,v

+--backend.c,v

+--driver.c,v

+--frontend.c,v

+--parser.c,v

+--man

| |

| +--tc.1,v

|

+--testing

|

+--testpgm.t,v

+--test2.t,v

The �gure above shows the contents of the `tc' module inside the repository. As you can see

all �le names end in `,v'. The �les are history �les. They contain, among other things, enough

information to recreate any revision of the �le, a log of all commit messages and the user-name of

the person who committed the revision. cvs uses the facilities of rcs, a simpler version control

system, to maintain these �les. For a full description of the �le format, see the man page rcs�le(5).

4.1.1 File permissions

All `,v' �les are created read-only, and you should not change the permission of those �les. The

directories inside the repository should be writable by the persons that have permission to modify

the �les in each directory. This normally means that you must create a UNIX group (see group(5))

Chapter 4: The Repository 15

consisting of the persons that are to edit the �les in a project, and set up the repository so that it

is that group that owns the directory.

This means that you can only control access to �les on a per-directory basis.

cvs tries to set up reasonable �le permissions for new directories that are added inside the tree,

but you must �x the permissions manually when a new directory should have di�erent permissions

than its parent directory.

Since cvs was not written to be run setuid, it is unsafe to try to run it setuid. You cannot use

the setuid features of rcs together with cvs.

4.2 The administrative �les

The directory `$CVSROOT/CVSROOT' contains some administrative �les. See Appendix B [Admin-

istrative �les], page 83, for a complete description. You can use cvs without any of these �les, but

some commands work better when at least the `modules' �le is properly set up.

The most important of these �les is the `modules' �le. It de�nes all modules in the repository.

This is a sample `modules' �le.

CVSROOT -i mkmodules CVSROOT

modules -i mkmodules CVSROOT modules

cvs gnu/cvs

rcs gnu/rcs

diff gnu/diff

tc yoyodyne/tc

The `modules' �le is line oriented. In its simplest form each line contains the name of the

module, whitespace, and the directory where the module resides. The directory is a path relative

to $CVSROOT. The last for lines in the example above are examples of such lines.

Each module de�nition can contain options. The `-i mkmodules' is an example of an option.

It arranges for cvs to run the mkmodules program whenever any �le in the module CVSROOT is

committed. That program is responsible for checking out read-only copies from the rcs history

�les of all the administrative �les. These read-only copies are used internally by cvs. You should

never edit them directly.

The line that de�nes the module called `modules' uses features that are not explained here. See

Section B.1 [modules], page 83, for a full explanation of all the available features.

4.2.1 Editing administrative �les

You edit the administrative �les in the same way that you would edit any other module. Use

`cvs checkout CVSROOT' to get a working copy, edit it, and commit your changes in the normal

way.

16 CVS|Concurrent Versions System

It is possible to commit an erroneous administrative �le. You can often �x the error and check in

a new revision, but sometimes a particularly bad error in the administrative �le makes it impossible

to commit new revisions.

4.3 Multiple repositories

In some situations it is a good idea to have more than one repository, for instance if you have

two development groups that work on separate projects without sharing any code. All you have to

do to have several repositories is to set $CVSROOT to the repository you want to use at the moment.

There are disadvantages to having more than one repository. In cvs 1.3 youmust make sure that

$CVSROOT always points to the correct repository. If the same �lename is used in two repositories,

and you mix up the setting of $CVSROOT, you might lose data. cvs 1.4 solves this problem by

saving the repository information in the local `CVS' administration �les. If you try to use the wrong

repository, cvs will warn you of the attempt and then exit.

Notwithstanding, it can be confusing to have two or more repositories.

All examples in this manual assume that you have a single repository.

4.4 Creating a repository

See the instructions in the `INSTALL' �le in the cvs distribution.

4.5 Remote repositories

The repository and your working copy of the sources can be on di�erent machines. To access a

remote repository, use the following format for its name:

user@hostname:/path/to/repository

(The `user@' can be omitted if it's the same on both the local and remote hosts.)

CVS uses the `rsh' protocol to perform these operations, so the remote user host needs to have

a `.rhosts' �le which grants access to the local user.

For example, suppose you are the user `mozart' on the local machine `anklet.grunge.com'.

You want to access the module `foo' in the repository `/usr/local/sources/', on machine

`chainsaw.brickyard.com'.

If your username is also `bach' on `chainsaw.brickyard.com', then you need only type

cvs -d bach@chainsaw.brickyard.com:/user/local/sources checkout foo

Remember, for this to work, `bach''s `.rhosts' �le must contain the line:

Chapter 4: The Repository 17

anklet.grunge.com mozart

Once the working copy is checked out, it is not necessary to specify the repository explicitly for

every subsequent operation | the working copy records it in the `CVS/Root' �le.

18 CVS|Concurrent Versions System

Chapter 5: Starting a project with CVS 19

5 Starting a project with CVS

Since cvs 1.x is bad at renaming �les and moving them between directories, the �rst thing

you do when you start a new project should be to think through your �le organization. It is not

impossible|just awkward|to rename or move �les in cvs 1.x. See Chapter 13 [Moving �les],

page 41.

What to do next depends on the situation at hand.

5.1 Setting up the �les

The �rst step is to create the �les inside the repository. This can be done in a couple of di�erent

ways.

5.1.1 Creating a module from a number of �les

When you begin using cvs, you will probably already have several projects that can be put

under cvs control. In these cases the easiest way is to use the import command. An example is

probably the easiest way to explain how to use it. If the �les you want to install in cvs reside in

`dir', and you want them to appear in the repository as `$CVSROOT/yoyodyne/dir', you can do this:

$ cd dir

$ cvs import -m "Imported sources" yoyodyne/dir yoyo start

Unless you supply a log message with the `-m'
ag, cvs starts an editor and prompts for a

message. The string `yoyo' is a vendor tag, and `start' is a release tag. They may �ll no purpose

in this context, but since cvs requires them they must be present. See Chapter 12 [Tracking

sources], page 39, for more information about them.

You can now verify that it worked, and remove your original source directory.

$ cd ..

$ mv dir dir.orig

$ cvs checkout yoyodyne/dir # Explanation below

$ ls -R yoyodyne

$ rm -r dir.orig

Erasing the original sources is a good idea, to make sure that you do not accidentally edit them in

dir, bypassing cvs. Of course, it would be wise to make sure that you have a backup of the sources

before you remove them.

The checkout command can either take a module name as argument (as it has done in all

previous examples) or a path name relative to $CVSROOT, as it did in the example above.

It is a good idea to check that the permissions cvs sets on the directories inside `$CVSROOT'

are reasonable, and that they belong to the proper groups. See Section 4.1.1 [File permissions],

page 14.

20 CVS|Concurrent Versions System

5.1.2 Creating a module from scratch

For a new project, the easiest thing to do is probably to create an empty directory structure,

like this:

$ mkdir tc

$ mkdir tc/man

$ mkdir tc/testing

After that, you use the import command to create the corresponding (empty) directory structure

inside the repository:

$ cd tc

$ cvs import -m "Created directory structure" yoyodyne/dir yoyo start

Then, use add to add �les (and new directories) as they appear.

Check that the permissions cvs sets on the directories inside `$CVSROOT' are reasonable.

5.2 De�ning the module

The next step is to de�ne the module in the `modules' �le. Some cvs commands work without

this step, but others (most notably release) require that all modules are properly de�ned in the

`modules' �le.

In simple cases these steps are su�cient to de�ne a module.

1. Get a working copy of the modules �le.

$ cvs checkout modules

$ cd modules

2. Edit the �le and insert a line that de�nes the module. See Section 4.2 [Intro administrative

�les], page 15, for an introduction. See Section B.1 [modules], page 83, for a full description

of the modules �le. You can use the following line to de�ne the module `tc':

tc yoyodyne/tc

3. Commit your changes to the modules �le.

$ cvs commit -m "Added the tc module." modules

4. Release the modules module.

$ cd ..

$ cvs release -d modules

Chapter 6: Multiple developers 21

6 Multiple developers

When more than one person works on a software project things often get complicated. Often,

two people try to edit the same �le simultaneously. Some other version control systems (including

rcs and sccs) try to solve that particular problem by introducing �le locking, so that only one

person can edit each �le at a time. Unfortunately, �le locking can be very counter-productive. If

two persons want to edit di�erent parts of a �le, there may be no reason to prevent either of them

from doing so.

cvs does not use �le locking. Instead, it allows many people to edit their own working copy of

a �le simultaneously. The �rst person that commits his changes has no automatic way of knowing

that another has started to edit it. Others will get an error message when they try to commit the

�le. They must then use cvs commands to bring their working copy up to date with the repository

revision. This process is almost automatic, and explained in this chapter.

There are many ways to organize a team of developers. cvs does not try to enforce a certain

organization. It is a tool that can be used in several ways. It is often useful to inform the group

of commits you have done. cvs has several ways of automating that process. See Section 6.4

[Informing others], page 24. See Chapter 16 [Revision management], page 49, for more tips on how

to use cvs.

6.1 File status

After you have checked out a �le out from cvs, it is in one of these four states:

Up-to-date

The �le is identical with the latest revision in the repository.

Locally modi�ed

You have edited the �le, and not yet committed your changes.

Needing update

Someone else has committed a newer revision to the repository.

Needing merge

Someone else have committed a newer revision to the repository, and you have also

made modi�cations to the �le.

You can use the status command to �nd out the status of a given �le. See Section A.18 [status],

page 78.

6.2 Bringing a �le up to date

When you want to update or merge a �le, use the update command. For �les that are not up to

date this is roughly equivalent to a checkout command: the newest revision of the �le is extracted

from the repository and put in your working copy of the module.

22 CVS|Concurrent Versions System

Your modi�cations to a �le are never lost when you use update. If no newer revision exists,

running update has no e�ect. If you have edited the �le, and a newer revision is available, cvs will

merge all changes into your working copy.

For instance, imagine that you checked out revision 1.4 and started editing it. In the meantime

someone else committed revision 1.5, and shortly after that revision 1.6. If you run update on the

�le now, cvs will incorporate all changes between revision 1.4 and 1.6 into your �le.

If any of the changes between 1.4 and 1.6 were made too close to any of the changes you have

made, an overlap occurs. In such cases a warning is printed, and the resulting �le includes both

versions of the lines that overlap, delimited by special markers. See Section A.20 [update], page 79,

for a complete description of the update command.

6.3 Con
icts example

Suppose revision 1.4 of `driver.c' contains this:

#include <stdio.h>

void main()

{

parse();

if (nerr == 0)

gencode();

else

fprintf(stderr, "No code generated.\n");

exit(nerr == 0 ? 0 : 1);

}

Revision 1.6 of `driver.c' contains this:

#include <stdio.h>

int main(int argc,

char **argv)

{

parse();

if (argc != 1)

{

fprintf(stderr, "tc: No args expected.\n");

exit(1);

}

if (nerr == 0)

gencode();

else

fprintf(stderr, "No code generated.\n");

exit(!!nerr);

}

Chapter 6: Multiple developers 23

Your working copy of `driver.c', based on revision 1.4, contains this before you run `cvs update':

#include <stdlib.h>

#include <stdio.h>

void main()

{

init_scanner();

parse();

if (nerr == 0)

gencode();

else

fprintf(stderr, "No code generated.\n");

exit(nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE);

}

You run `cvs update':

$ cvs update driver.c

RCS file: /usr/local/cvsroot/yoyodyne/tc/driver.c,v

retrieving revision 1.4

retrieving revision 1.6

Merging differences between 1.4 and 1.6 into driver.c

rcsmerge warning: overlaps during merge

cvs update: conflicts found in driver.c

C driver.c

cvs tells you that there were some con
icts. Your original working �le is saved unmodi�ed in

`.#driver.c.1.4'. The new version of `driver.c' contains this:

#include <stdlib.h>

#include <stdio.h>

int main(int argc,

char **argv)

{

init_scanner();

parse();

if (argc != 1)

{

fprintf(stderr, "tc: No args expected.\n");

exit(1);

}

if (nerr == 0)

gencode();

else

fprintf(stderr, "No code generated.\n");

<<<<<<< driver.c

exit(nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE);

=======

exit(!!nerr);

24 CVS|Concurrent Versions System

>>>>>>> 1.6

}

Note how all non-overlapping modi�cations are incorporated in your working copy, and that the

overlapping section is clearly marked with `<<<<<<<', `=======' and `>>>>>>>'.

You resolve the con
ict by editing the �le, removing the markers and the erroneous line. Suppose

you end up with this �le:

#include <stdlib.h>

#include <stdio.h>

int main(int argc,

char **argv)

{

init_scanner();

parse();

if (argc != 1)

{

fprintf(stderr, "tc: No args expected.\n");

exit(1);

}

if (nerr == 0)

gencode();

else

fprintf(stderr, "No code generated.\n");

exit(nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE);

}

You can now go ahead and commit this as revision 1.7.

$ cvs commit -m "Initialize scanner. Use symbolic exit values." driver.c

Checking in driver.c;

/usr/local/cvsroot/yoyodyne/tc/driver.c,v <-- driver.c

new revision: 1.7; previous revision: 1.6

done

If you use release 1.04 or later of pcl-cvs (a gnu Emacs front-end for cvs) you can use an Emacs

package called emerge to help you resolve con
icts. See the documentation for pcl-cvs.

6.4 Informing others about commits

It is often useful to inform others when you commit a new revision of a �le. The `-i' option

of the `modules' �le, or the `loginfo' �le, can be used to automate this process. See Section B.1

[modules], page 83. See Section B.6 [loginfo], page 88. You can use these features of cvs to, for

instance, instruct cvs to mail a message to all developers, or post a message to a local newsgroup.

Chapter 7: Branches 25

7 Branches

So far, all revisions shown in this manual have been on the main trunk of the revision tree, i.e.,

all revision numbers have been of the form x.y. One useful feature, especially when maintaining

several releases of a software product at once, is the ability to make branches on the revision tree.

Tags, symbolic names for revisions, will also be introduced in this chapter.

7.1 Tags{Symbolic revisions

The revision numbers live a life of their own. They need not have anything at all to do with the

release numbers of your software product. Depending on how you use cvs the revision numbers

might change several times between two releases. As an example, some of the source �les that make

up rcs 5.6 have the following revision numbers:

ci.c 5.21

co.c 5.9

ident.c 5.3

rcs.c 5.12

rcsbase.h 5.11

rcsdiff.c 5.10

rcsedit.c 5.11

rcsfcmp.c 5.9

rcsgen.c 5.10

rcslex.c 5.11

rcsmap.c 5.2

rcsutil.c 5.10

You can use the tag command to give a symbolic name to a certain revision of a �le. You

can use the `-v'
ag to the status command to see all tags that a �le has, and which revision

numbers they represent. (The output of status unfortunately uses the word \version" instead of

\revision".)

The following example shows how you can add a tag to a �le. The commands must be issued

inside your working copy of the module. That is, you should issue the command in the directory

where `backend.c' resides.

$ cvs tag release-0-4 backend.c

T backend.c

$ cvs status -v backend.c

===

File: backend.c Status: Up-to-date

Version: 1.4 Tue Dec 1 14:39:01 1992

RCS Version: 1.4 /usr/local/cvsroot/yoyodyne/tc/backend.c,v

Sticky Tag: (none)

Sticky Date: (none)

Sticky Options: (none)

26 CVS|Concurrent Versions System

Existing Tags:

release-0-4 (revision: 1.4)

There is seldom reason to tag a �le in isolation. A more common use is to tag all the �les that

constitute a module with the same tag at strategic points in the development life-cycle, such as

when a release is made.

$ cvs tag release-1-0 .

cvs tag: Tagging .

T Makefile

T backend.c

T driver.c

T frontend.c

T parser.c

(When you give cvs a directory as argument, it generally applies the operation to all the �les

in that directory, and (recursively), to any subdirectories that it may contain. See Chapter 9

[Recursive behavior], page 33.)

The checkout command has a
ag, `-r', that lets you check out a certain revision of a module.

This
ag makes it easy to retrieve the sources that make up release 1.0 of the module `tc' at any

time in the future:

$ cvs checkout -r release-1-0 tc

This is useful, for instance, if someone claims that there is a bug in that release, but you cannot

�nd the bug in the current working copy.

You can also check out a module as it was at any given date. See Section A.7.1 [checkout

options], page 61.

When you tag more than one �le with the same tag you can think about the tag as "a curve

drawn through a matrix of �lename vs. revision number." Say we have 5 �les with the following

revisions:

file1 file2 file3 file4 file5

1.1 1.1 1.1 1.1 /--1.1* <-*- TAG

1.2*- 1.2 1.2 -1.2*-

1.3 \- 1.3*- 1.3 / 1.3

1.4 \ 1.4 / 1.4

\-1.5*- 1.5

1.6

At some time in the past, the * versions were tagged. You can think of the tag as a handle

attached to the curve drawn through the tagged revisions. When you pull on the handle, you get

all the tagged revisions. Another way to look at it is that you "sight" through a set of revisions

that is "
at" along the tagged revisions, like this:

Chapter 7: Branches 27

file1 file2 file3 file4 file5

1.1

1.2

1.1 1.3 _

1.1 1.2 1.4 1.1 /

1.2*----1.3*----1.5*----1.2*----1.1 (--- <--- Look here

1.3 1.6 1.3 _

1.4 1.4

1.5

7.2 What branches are good for

Suppose that release 1.0 of tc has been made. You are continuing to develop tc, planning to

create release 1.1 in a couple of months. After a while your customers start to complain about a

fatal bug. You check out release 1.0 (see Section 7.1 [Tags], page 25) and �nd the bug (which turns

out to have a trivial �x). However, the current revision of the sources are in a state of
ux and

are not expected to be stable for at least another month. There is no way to make a bug�x release

based on the newest sources.

The thing to do in a situation like this is to create a branch on the revision trees for all the �les

that make up release 1.0 of tc. You can then make modi�cations to the branch without disturbing

the main trunk. When the modi�cations are �nished you can select to either incorporate them on

the main trunk, or leave them on the branch.

7.3 Creating a branch

The rtag command can be used to create a branch. The rtag command is much like tag, but

it does not require that you have a working copy of the module. See Section A.17 [rtag], page 77.

(You can also use the tag command; see Section A.19 [tag], page 78).

$ cvs rtag -b -r release-1-0 release-1-0-patches tc

The `-b'
ag makes rtag create a branch (rather than just a symbolic revision name). `-r

release-1-0' says that this branch should be rooted at the node (in the revision tree) that

corresponds to the tag `release-1-0'. Note that the numeric revision number that matches

`release-1-0' will probably be di�erent from �le to �le. The name of the new branch is

`release-1-0-patches', and the module a�ected is `tc'.

To �x the problem in release 1.0, you need a working copy of the branch you just created.

$ cvs checkout -r release-1-0-patches tc

$ cvs status -v driver.c backend.c

===

File: driver.c Status: Up-to-date

Version: 1.7 Sat Dec 5 18:25:54 1992

28 CVS|Concurrent Versions System

RCS Version: 1.7 /usr/local/cvsroot/yoyodyne/tc/driver.c,v

Sticky Tag: release-1-0-patches (branch: 1.7.2)

Sticky Date: (none)

Sticky Options: (none)

Existing Tags:

release-1-0-patches (branch: 1.7.2)

release-1-0 (revision: 1.7)

===

File: backend.c Status: Up-to-date

Version: 1.4 Tue Dec 1 14:39:01 1992

RCS Version: 1.4 /usr/local/cvsroot/yoyodyne/tc/backend.c,v

Sticky Tag: release-1-0-patches (branch: 1.4.2)

Sticky Date: (none)

Sticky Options: (none)

Existing Tags:

release-1-0-patches (branch: 1.4.2)

release-1-0 (revision: 1.4)

release-0-4 (revision: 1.4)

As the output from the status command shows the branch number is created by adding a digit

at the tail of the revision number it is based on. (If `release-1-0' corresponds to revision 1.4,

the branch's revision number will be 1.4.2. For obscure reasons cvs always gives branches even

numbers, starting at 2. See Section 2.1 [Revision numbers], page 7).

7.4 Sticky tags

The `-r release-1-0-patches'
ag that was given to checkout is sticky, that is, it will apply

to subsequent commands in this directory. If you commit any modi�cations, they are committed on

the branch. You can later merge the modi�cations into the main trunk. See Chapter 8 [Merging],

page 31.

$ vi driver.c # Fix the bugs

$ cvs commit -m "Fixed initialization bug" driver.c

Checking in driver.c;

/usr/local/cvsroot/yoyodyne/tc/driver.c,v <-- driver.c

new revision: 1.7.2.1; previous revision: 1.7

done

$ cvs status -v driver.c

===

File: driver.c Status: Up-to-date

Version: 1.7.2.1 Sat Dec 5 19:35:03 1992

RCS Version: 1.7.2.1 /usr/local/cvsroot/yoyodyne/tc/driver.c,v

Sticky Tag: release-1-0-patches (branch: 1.7.2)

Chapter 7: Branches 29

Sticky Date: (none)

Sticky Options: (none)

Existing Tags:

release-1-0-patches (branch: 1.7.2)

release-1-0 (revision: 1.7)

The sticky tags will remain on your working �les until you delete them with `cvs update -A'.

See Section A.20 [update], page 79.

Sticky tags are not just for branches. If you check out a certain revision (such as 1.4) it will also

become sticky. Subsequent `cvs update' will not retrieve the latest revision until you reset the tag

with `cvs update -A'.

See the descriptions in Appendix A for more information about sticky tags. Dates and some

other options can also be sticky. Again, see Appendix A for details.

30 CVS|Concurrent Versions System

Chapter 8: Merging 31

8 Merging

You can include the changes made between any two revisions into your working copy, bymerging.

You can then commit that revision, and thus e�ectively copy the changes onto another branch.

8.1 Merging an entire branch

You can merge changes made on a branch into your working copy by giving the `-j branch'
ag

to the update command. With one `-j branch' option it merges the changes made between the

point where the branch forked and newest revision on that branch (into your working copy).

The `-j' stands for \join". In previous versions of cvs there was a special command, `cvs join',

that was used to merge changes between branches.

Consider this revision tree:

+-----+ +-----+ +-----+ +-----+ +-----+

! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 ! <- The main trunk

+-----+ +-----+ +-----+ +-----+ +-----+

!

!

! +---------+ +---------+ +---------+

Branch R1fix -> +---! 1.2.2.1 !----! 1.2.2.2 !----! 1.2.2.3 !

+---------+ +---------+ +---------+

The branch 1.2.2 has been given the tag (symbolic name) `R1fix'. The following example assumes

that the module `mod' contains only one �le, `m.c'.

$ cvs checkout mod # Retrieve the latest revision, 1.5

$ cvs update -j R1fix m.c # Merge all changes made on the branch,

i.e. the changes between revision 1.2

and 1.2.2.3, into your working copy

of the �le.

$ cvs commit -m "Included R1fix" # Create revision 1.6.

A con
ict can result from a merge operation. If that happens, you should resolve it before

committing the new revision. See Section 6.3 [Con
icts example], page 22.

The checkout command also supports the `-j branch'
ag. The same e�ect as above could be

achieved with this:

$ cvs checkout -j R1fix mod

$ cvs commit -m "Included R1fix"

32 CVS|Concurrent Versions System

8.2 Merging di�erences between any two revisions

With two `-j revision'
ags, the update (and checkout) command can merge the di�erences

between any two revisions into your working �le.

$ cvs update -j 1.5 -j 1.3 backend.c

will remove all changes made between revision 1.3 and 1.5. Note the order of the revisions!

If you try to use this option with the checkout command, remember that the numeric revisions

will probably be very di�erent between the various �les that make up a module. You almost always

use symbolic tags rather than revision numbers with the checkout command.

Chapter 9: Recursive behavior 33

9 Recursive behavior

Almost all of the subcommands of cvs work recursively when you specify a directory as an

argument. For instance, consider this directory structure:

$HOME

|

+--tc

| |

+--CVS

| (internal cvs files)

+--Makefile

+--backend.c

+--driver.c

+--frontend.c

+--parser.c

+--man

| |

| +--CVS

| | (internal cvs files)

| +--tc.1

|

+--testing

|

+--CVS

| (internal cvs files)

+--testpgm.t

+--test2.t

If `tc' is the current working directory, the following is true:

� `cvs update testing' is equivalent to `cvs update testing/testpgm.t testing/test2.t'

� `cvs update testing man' updates all �les in the subdirectories

� `cvs update .' or just `cvs update' updates all �les in the tc module

If no arguments are given to update it will update all �les in the current working directory and

all its subdirectories. In other words, `.' is a default argument to update. This is also true for

most of the cvs subcommands, not only the update command.

The recursive behavior of the cvs subcommands can be turned o� with the `-l' option.

$ cvs update -l # Don't update �les in subdirectories

34 CVS|Concurrent Versions System

Chapter 10: Adding �les to a module 35

10 Adding �les to a module

To add a new �le to a module, follow these steps.

� You must have a working copy of the module. See Section 3.1 [Getting the source], page 9.

� Create the new �le inside your working copy of the module.

� Use `cvs add �lename' to tell cvs that you want to version control the �le.

� Use `cvs commit �lename' to actually check in the �le into the repository. Other developers

cannot see the �le until you perform this step.

� If the �le contains binary data it might be necessary to change the default keyword substitution.

See Chapter 15 [Keyword substitution], page 45. See Section A.6.2 [admin examples], page 59.

You can also use the add command to add a new directory inside a module.

Unlike most other commands, the add command is not recursive. You cannot even type `cvs

add foo/bar'! Instead, you have to

$ cd foo

$ cvs add bar

See Section A.5 [add], page 55, for a more complete description of the add command.

36 CVS|Concurrent Versions System

Chapter 11: Removing �les from a module 37

11 Removing �les from amodule

Modules change. New �les are added, and old �les disappear. Still, you want to be able to

retrieve an exact copy of old releases of the module.

Here is what you can do to remove a �le from a module, but remain able to retrieve old revisions:

� Make sure that you have not made any uncommitted modi�cations to the �le. See Section 3.4

[Viewing di�erences], page 10, for one way to do that. You can also use the status or update

command. If you remove the �le without committing your changes, you will of course not be

able to retrieve the �le as it was immediately before you deleted it.

� Remove the �le from your working copy of the module. You can for instance use rm.

� Use `cvs remove �lename' to tell cvs that you really want to delete the �le.

� Use `cvs commit �lename' to actually perform the removal of the �le from the repository.

What happens when you commit the removal of the �le is that inside the source repository, it

is moved into a subdirectory called `Attic'. cvs normally doesn't look in that directory when you

run e.g. checkout. However, if you are retrieving a certain revision via e.g. `cvs checkout -r

some-tag ', it will look at the �les inside the `Attic' and include any �les that contain the speci�ed

tag.

38 CVS|Concurrent Versions System

Chapter 12: Tracking third-party sources 39

12 Tracking third-party sources

If you modify a program to better �t your site, you probably want to include your modi�cations

when the next release of the program arrives. cvs can help you with this task.

In the terminology used in cvs, the supplier of the program is called a vendor. The unmodi�ed

distribution from the vendor is checked in on its own branch, the vendor branch. cvs reserves

branch 1.1.1 for this use.

When you modify the source and commit it, your revision will end up on the main trunk. When

a new release is made by the vendor, you commit it on the vendor branch and copy the modi�cations

onto the main trunk.

Use the import command to create and update the vendor branch. After a successful import

the vendor branch is made the `head' revision, so anyone that checks out a copy of the �le gets

that revision. When a local modi�cation is committed it is placed on the main trunk, and made

the `head' revision.

12.1 Importing a module for the �rst time

Use the import command to check in the sources for the �rst time. When you use the import

command to track third-party sources, the vendor tag and release tags are useful. The vendor tag

is a symbolic name for the branch (which is always 1.1.1, unless you use the `-b branch'
ag|See

Section A.12.1 [import options], page 70). The release tags are symbolic names for a particular

release, such as `FSF_0_04'.

Suppose you use wdiff (a variant of diff that ignores changes that only involve whitespace),

and are going to make private modi�cations that you want to be able to use even when new releases

are made in the future. You start by importing the source to your repository:

$ tar xfz wdiff-0.04.tar.gz

$ cd wdiff-0.04

$ cvs import -m "Import of FSF v. 0.04" fsf/wdiff FSF WDIFF_0_04

The vendor tag is named `FSF' in the above example, and the only release tag assigned is

`WDIFF_0_04'.

12.2 Updating a module with the import command

When a new release of the source arrives, you import it into the repository with the same import

command that you used to set up the repository in the �rst place. The only di�erence is that you

specify a di�erent release tag this time.

$ tar xfz wdiff-0.05.tar.gz

$ cd wdiff-0.05

$ cvs import -m "Import of FSF v. 0.05" fsf/wdiff FSF WDIFF_0_05

40 CVS|Concurrent Versions System

For �les that have not been modi�ed locally, the newly created revision becomes the head

revision. If you have made local changes, import will warn you that you must merge the changes

into the main trunk, and tell you to use `checkout -j' to do so.

$ cvs checkout -jFSF:yesterday -jFSF wdiff

The above command will check out the latest revision of `wdiff', merging the changes made on the

vendor branch `FSF' since yesterday into the working copy. If any con
icts arise during the merge

they should be resolved in the normal way (see Section 6.3 [Con
icts example], page 22). Then,

the modi�ed �les may be committed.

cvs assumes that you do not import more than one release of a product per day. If you do, you

can always use something like this instead:

$ cvs checkout -jWDIFF_0_04 -jWDIFF_0_05 wdiff

In this case, the two above commands are equivalent.

Chapter 13: Moving and renaming �les 41

13 Moving and renaming �les

Moving �les to a di�erent directory or renaming them is not di�cult, but some of the ways

in which this works may be non-obvious. (Moving or renaming a directory is even harder. See

Chapter 14 [Moving directories], page 43).

The examples below assume that the �le old is renamed to new.

13.1 The Normal way to Rename

The normal way to move a �le is to copy old to new, and then issue the normal cvs commands

to remove old from the repository, and add new to it. (Both old and new could contain relative

paths, for example `foo/bar.c').

$ mv old new

$ cvs remove old

$ cvs add new

$ cvs commit -m "Renamed old to new" old new

This is the simplest way to move a �le, it is not error-prone, and it preserves the history of what

was done. Note that to access the history of the �le you must specify the old or the new name,

depending on what portion of the history you are accessing. For example, cvs log old will give

the log up until the time of the rename.

When new is committed its revision numbers will start at 1.0 again, so if that bothers you, use

the `-r rev' option to commit (see Section A.8.1 [commit options], page 63)

13.2 Moving the history �le

This method is more dangerous, since it involves moving �les inside the repository. Read this

entire section before trying it out!

$ cd $CVSROOT/module

$ mv old,v new,v

Advantages:

� The log of changes is maintained intact.

� The revision numbers are not a�ected.

Disadvantages:

� Old releases of the module cannot easily be fetched from the repository. (The �le will show up

as new even in revisions from the time before it was renamed).

� There is no log information of when the �le was renamed.

42 CVS|Concurrent Versions System

� Nasty things might happen if someone accesses the history �le while you are moving it. Make

sure no one else runs any of the cvs commands while you move it.

13.3 Copying the history �le

This way also involves direct modi�cations to the repository. It is safe, but not without draw-

backs.

Copy the rcs �le inside the repository

$ cd $CVSROOT/module

$ cp old,v new,v

Remove the old �le

$ cd ~/module

$ rm old

$ cvs remove old

$ cvs commit old

Remove all tags from new

$ cvs update new

$ cvs log new # Remember the tag names

$ cvs tag -d tag1

$ cvs tag -d tag2

: : :

By removing the tags you will be able to check out old revisions of the module.

Advantages:

� Checking out old revisions works correctly, as long as you use `-rtag ' and not `-Ddate' to

retrieve the revisions.

� The log of changes is maintained intact.

� The revision numbers are not a�ected.

Disadvantages:

� You cannot easily see the history of the �le across the rename.

� Unless you use the `-r rev' (see Section A.8.1 [commit options], page 63)
ag when new is

committed its revision numbers will start at 1.0 again.

Chapter 14: Moving and renaming directories 43

14 Moving and renaming directories

If you want to be able to retrieve old versions of the module, you must move each �le in the

directory with the cvs commands. See Section 13.1 [Outside], page 41. The old, empty directory

will remain inside the repository, but it will not appear in your workspace when you check out the

module in the future.

If you really want to rename or delete a directory, you can do it like this:

1. Inform everyone who has a copy of the module that the directory will be renamed. They should

commit all their changes, and remove their working copies of the module, before you take the

steps below.

2. Rename the directory inside the repository.

$ cd $CVSROOT/module

$ mv old-dir new-dir

3. Fix the cvs administrative �les, if necessary (for instance if you renamed an entire module).

4. Tell everyone that they can check out the module and continue working.

If someone had a working copy of the module the cvs commands will cease to work for him,

until he removes the directory that disappeared inside the repository.

It is almost always better to move the �les in the directory instead of moving the directory.

If you move the directory you are unlikely to be able to retrieve old releases correctly, since they

probably depend on the name of the directories.

44 CVS|Concurrent Versions System

Chapter 15: Keyword substitution 45

15 Keyword substitution

As long as you edit source �les inside your working copy of a module you can always �nd out

the state of your �les via `cvs status' and `cvs log'. But as soon as you export the �les from your

development environment it becomes harder to identify which revisions they are.

Rcs uses a mechanism known as keyword substitution (or keyword expansion) to help identifying

the �les. Embedded strings of the form $keyword$ and $keyword:: : :$ in a �le are replaced with

strings of the form $keyword:value$ whenever you obtain a new revision of the �le.

15.1 RCS Keywords

This is a list of the keywords that rcs currently (in release 5.6.0.1) supports:

$Author$ The login name of the user who checked in the revision.

$Date$ The date and time (UTC) the revision was checked in.

$Header$ A standard header containing the full pathname of the rcs �le, the revision number,

the date (UTC), the author, the state, and the locker (if locked). Files will normally

never be locked when you use cvs.

Id Same as $Header$, except that the rcs �lename is without a path.

$Locker$ The login name of the user who locked the revision (empty if not locked, and thus

almost always useless when you are using cvs).

Log The log message supplied during commit, preceded by a header containing the rcs

�lename, the revision number, the author, and the date (UTC). Existing log messages

are not replaced. Instead, the new log message is inserted after $Log:: : :$. Each new

line is pre�xed with a comment leader which rcs guesses from the �le name extension.

It can be changed with cvs admin -c. See Section A.6.1 [admin options], page 57.

This keyword is useful for accumulating a complete change log in a source �le, but for

several reasons it can be problematic. See Section 15.5 [Log keyword], page 47.

$RCSfile$

The name of the RCS �le without a path.

$Revision$

The revision number assigned to the revision.

$Source$ The full pathname of the RCS �le.

$State$ The state assigned to the revision. States can be assigned with cvs admin -s|See

Section A.6.1 [admin options], page 57.

15.2 Using keywords

To include a keyword string you simply include the relevant text string, such as Id, inside the

�le, and commit the �le. cvs will automatically expand the string as part of the commit operation.

46 CVS|Concurrent Versions System

It is common to embed Id string in the C source code. This example shows the �rst few lines

of a typical �le, after keyword substitution has been performed:

static char *rcsid="$Id: samp.c,v 1.5 1993/10/19 14:57:32 ceder Exp $";

/* The following lines will prevent gcc version 2.x

from issuing an "unused variable" warning. */

#if __GNUC__ == 2

#define USE(var) static void * use_##var = (&use_##var, (void *) &var)

USE (rcsid);

#endif

Even though a clever optimizing compiler could remove the unused variable rcsid, most com-

pilers tend to include the string in the binary. Some compilers have a #pragma directive to include

literal text in the binary.

The ident command (which is part of the rcs package) can be used to extract keywords and

their values from a �le. This can be handy for text �les, but it is even more useful for extracting

keywords from binary �les.

$ ident samp.c

samp.c:

$Id: samp.c,v 1.5 1993/10/19 14:57:32 ceder Exp $

$ gcc samp.c

$ ident a.out

a.out:

$Id: samp.c,v 1.5 1993/10/19 14:57:32 ceder Exp $

Sccs is another popular revision control system. It has a command, what, which is very similar

to ident and used for the same purpose. Many sites without rcs have sccs. Since what looks for

the character sequence @(#) it is easy to include keywords that are detected by either command.

Simply pre�x the rcs keyword with the magic sccs phrase, like this:

static char *id="@(#) $Id: ab.c,v 1.5 1993/10/19 14:57:32 ceder Exp $";

15.3 Avoiding substitution

Keyword substitution has its disadvantages. Sometimes you might want the literal text string

`$Author$' to appear inside a �le without rcs interpreting it as a keyword and expanding it into

something like `$Author: ceder $'.

There is unfortunately no way to selectively turn o� keyword substitution. You can use `-ko'

(see Section 15.4 [Substitution modes], page 47) to turn o� keyword substitution entirely. (If you

put binaries under version control you are strongly encouraged to use that option, for obvious

reasons).

In many cases you can avoid using rcs keywords in the source, even though they appear in the

�nal product. For example, the source for this manual contains `$@asis{}Author$' whenever the

Chapter 15: Keyword substitution 47

text `$Author$' should appear. In nroff and troff you can embed the null-character \& inside

the keyword for a similar e�ect.

15.4 Substitution modes

You can control how rcs expands keywords through the use of the `-k' option (see Section A.4

[Common options], page 53). The `-k' option is available with the add, checkout, diff and update

commands.

Five di�erent modes are available. They are:

`-kkv' Generate keyword strings using the default form, e.g. $Revision: 5.7 $ for the

Revision keyword.

`-kkvl' Like `-kkv', except that a locker's name is always inserted if the given revision is

currently locked. This option is normally not useful when cvs is used.

`-kk' Generate only keyword names in keyword strings; omit their values. For example, for

the Revision keyword, generate the string $Revision$ instead of $Revision: 5.7 $.

This option is useful to ignore di�erences due to keyword substitution when comparing

di�erent revisions of a �le.

`-ko' Generate the old keyword string, present in the working �le just before it was checked in.

For example, for the Revision keyword, generate the string $Revision: 1.1 $ instead

of $Revision: 5.7 $ if that is how the string appeared when the �le was checked in.

This can be useful for binary �le formats that cannot tolerate any changes to substrings

that happen to take the form of keyword strings.

`-kv' Generate only keyword values for keyword strings. For example, for the Revision key-

word, generate the string 5.7 instead of $Revision: 5.7 $. This can help generate �les

in programming languages where it is hard to strip keyword delimiters like $Revision:

$ from a string. However, further keyword substitution cannot be performed once the

keyword names are removed, so this option should be used with care.

This option is always use by cvs export|see Section A.10 [export], page 66.

15.5 Problems with the Log keyword.

The Log keyword is somewhat controversial. As long as you are working on your development

system the information is easily accessible even if you do not use the Log keyword|just do a

cvs log. Once you export the �le the history information might be useless anyhow.

A more serious concern is that rcs is not good at handling Log entries when a branch is

merged onto the main trunk. Con
icts often result from the merging operation.

People also tend to "�x" the log entries in the �le (correcting spelling mistakes and maybe

even factual errors). If that is done the information from cvs log will not be consistent with the

information inside the �le. This may or may not be a problem in real life.

48 CVS|Concurrent Versions System

It has been suggested that the Log keyword should be inserted last in the �le, and not in the

�les header, if it is to be used at all. That way the long list of change messages will not interfere

with everyday source �le browsing.

Chapter 16: Revision management 49

16 Revisionmanagement

If you have read this far, you probably have a pretty good grasp on what cvs can do for you.

This chapter talks a little about things that you still have to decide.

If you are doing development on your own using cvs you could probably skip this chapter. The

questions this chapter takes up become more important when more than one person is working in

a repository.

16.1 When to commit?

Your group should decide which policy to use regarding commits. Several policies are possible,

and as your experience with cvs grows you will probably �nd out what works for you.

If you commit �les too quickly you might commit �les that do not even compile. If your partner

updates his working sources to include your buggy �le, he will be unable to compile the code. On

the other hand, other persons will not be able to bene�t from the improvements you make to the

code if you commit very seldom, and con
icts will probably be more common.

It is common to only commit �les after making sure that they can be compiled. Some sites

require that the �les pass a test suite. Policies like this can be enforced using the commitinfo �le (see

Section B.4 [commitinfo], page 86), but you should think twice before you enforce such a convention.

By making the development environment too controlled it might become too regimented and thus

counter-productive to the real goal, which is to get software written.

50 CVS|Concurrent Versions System

Appendix A: Reference manual for CVS commands 51

AppendixA Referencemanual for CVS commands

This appendix describes every subcommand of cvs in detail. It also describes how to invoke

CVS.

A.1 Overall structure of CVS commands

The �rst release of cvs consisted of a number of shell-scripts. Today cvs is implemented as a

single program that is a front-end to rcs and diff. The overall format of all cvs commands is:

cvs [cvs_options] cvs_command [command_options] [command_args]

cvs The program that is a front-end to rcs.

cvs_options

Some options that a�ect all sub-commands of cvs. These are described below.

cvs_command

One of several di�erent sub-commands. Some of the commands have aliases that can

be used instead; those aliases are noted in the reference manual for that command.

There are only two situations where you may omit `cvs_command': `cvs -H' elicits a

list of available commands, and `cvs -v' displays version information on cvs itself.

command_options

Options that are speci�c for the command.

command_args

Arguments to the commands.

There is unfortunately some confusion between cvs_options and command_options. `-l', when

given as a cvs_option, only a�ects some of the commands. When it is given as a command_option

is has a di�erent meaning, and is accepted by more commands. In other words, do not take the

above categorization too seriously. Look at the documentation instead.

A.2 Default options and the ~/.cvsrc �le

There are some command_options that are used so often that you might have set up an alias or

some other means to make sure you always specify that option. One example

1

is that many people

�nd the default output of the `diff' command to be very hard to read, and that either context

di�s or unidi�s are much easier to understand.

The `~/.cvsrc' �le is a way that you can add default options to cvs_commands within cvs,

instead of relying on aliases or other shell scripts.

The format of the `~/.cvsrc' �le is simple. The �le is searched for a line that begins with the

same name as the cvs_command being executed. If a match is found, then the remainder of the line

1

being the one that drove the implementation of the .cvsrc support

52 CVS|Concurrent Versions System

is split up (at whitespace characters) into separate options and added to the command arguments

before any options from the command line.

If a command has two names (e.g., checkout and co), only the name used on the command line

will be used to match against the �le. So if this is the contents of the user's `~/.cvsrc' �le:

log -N

diff -u

update -P

co -P

the command `cvs checkout foo' would not have the `-P' option added to the arguments, while

`cvs co foo' would.

With the example �le above, the output from `cvs diff foobar' will be in unidi� format. `cvs

diff -c foobar' will provide context di�s, as usual. Since diff doesn't have an option to specify

use of the "old" format, you would need to use the `-f' option to `cvs' to turn o� use of the

`~/.cvsrc' options.

A.3 Global options

The available `cvs_options' (that are given to the left of `cvs_command') are:

-b bindir Use bindir as the directory where rcs programs are located. Overrides the setting

of the $RCSBIN environment variable and any precompiled directory. This parameter

should be speci�ed as an absolute pathname.

-d cvs_root_directory

Use cvs root directory as the root directory pathname of the repository. Overrides the

setting of the $CVSROOT environment variable. This parameter should be speci�ed as

an absolute pathname.

-e editor Use editor to enter revision log information. Overrides the setting of the $CVSEDITOR

and $EDITOR environment variables.

-f Do not read the `~/.cvsrc' �le. This option is most often used because of the non-

orthogonality of the cvs option set. For example, the `cvs log' option `-N' (turn o�

display of tag names) does not have a corresponding option to turn the display on. So

if you have `-N' in the `~/.cvsrc' entry for `diff', you may need to use `-f' to show

the tag names.

2

-H Display usage information about the speci�ed `cvs_command' (but do not actually exe-

cute the command). If you don't specify a command name, `cvs -H' displays a summary

of all the commands available.

-l Do not log the cvs command in the command history (but execute it anyway). See

Section A.11 [history], page 67, for information on command history.

-n Do not change any �les. Attempt to execute the `cvs_command', but only to issue

reports; do not remove, update, or merge any existing �les, or create any new �les.

2

Yes, this really should be �xed, and it's being worked on

Appendix A: Reference manual for CVS commands 53

-Q Cause the command to be really quiet; the command will only generate output for

serious problems.

-q Cause the command to be somewhat quiet; informational messages, such as reports of

recursion through subdirectories, are suppressed.

-r Make new working �les �les read-only. Same e�ect as if the $CVSREAD environment

variable is set (see Appendix C [Environment variables], page 91). The default is to

make working �les writable.

-t Trace program execution; display messages showing the steps of cvs activity. Particu-

larly useful with `-n' to explore the potential impact of an unfamiliar command.

-v Display version and copyright information for cvs.

-w Make new working �les read-write. Overrides the setting of the $CVSREAD environment

variable. Files are created read-write by default, unless $CVSREAD is set or `-r' is given.

A.4 Common command options

This section describes the `command_options' that are available across several cvs commands.

These options are always given to the right of `cvs_command'. Not all commands support all of

these options; each option is only supported for commands where it makes sense. However, when a

command has one of these options you can almost always count on the same behavior of the option

as in other commands. (Other command options, which are listed with the individual commands,

may have di�erent behavior from one cvs command to the other).

Warning: the `history' command is an exception; it supports many options that con
ict even

with these standard options.

-D date_spec

Use the most recent revision no later than date spec. date spec is a single argument,

a date description specifying a date in the past.

The speci�cation is sticky when you use it to make a private copy of a source �le;

that is, when you get a working �le using `-D', cvs records the date you speci�ed, so

that further updates in the same directory will use the same date (unless you explicitly

override it; see Section A.20 [update], page 79).

A wide variety of date formats are supported by the underlying rcs facilities, similar

to those described in co(1), but not exactly the same. The date spec is interpreted as

being in the local timezone, unless a speci�c timezone is speci�ed. Examples of valid

date speci�cations include:

1 month ago

2 hours ago

400000 seconds ago

last year

last Monday

yesterday

a fortnight ago

3/31/92 10:00:07 PST

January 23, 1987 10:05pm

22:00 GMT

54 CVS|Concurrent Versions System

`-D' is available with the checkout, diff, export, history, rdiff, rtag, and update

commands. (The history command uses this option in a slightly di�erent way; see

Section A.11.1 [history options], page 67).

Remember to quote the argument to the `-D'
ag so that your shell doesn't interpret

spaces as argument separators. A command using the `-D'
ag can look like this:

$ cvs diff -D "1 hour ago" cvs.texinfo

-f When you specify a particular date or tag to cvs commands, they normally ignore �les

that do not contain the tag (or did not exist prior to the date) that you speci�ed. Use

the `-f' option if you want �les retrieved even when there is no match for the tag or

date. (The most recent revision of the �le will be used).

`-f' is available with these commands: checkout, export, rdiff, rtag, and update.

Warning: The commit command also has a `-f' option, but it has a di�erent behavior

for that command. See Section A.8.1 [commit options], page 63.

-H Help; describe the options available for this command. This is the only option sup-

ported for all cvs commands.

-k k
ag Alter the default rcs processing of keywords. See Chapter 15 [Keyword substitution],

page 45, for the meaning of k
ag. Your k
ag speci�cation is sticky when you use it

to create a private copy of a source �le; that is, when you use this option with the

checkout or update commands, cvs associates your selected k
ag with the �le, and

continues to use it with future update commands on the same �le until you specify

otherwise.

The `-k' option is available with the add, checkout, diff and update commands.

-l Local; run only in current working directory, rather than recursing through subdirec-

tories.

Warning: this is not the same as the overall `cvs -l' option, which you can specify to

the left of a cvs command!

Available with the following commands: checkout, commit, diff, export, log,

remove, rdiff, rtag, status, tag, and update.

-m message

Use message as log information, instead of invoking an editor.

Available with the following commands: add, commit and import.

-n Do not run any checkout/commit/tag program. (A program can be speci�ed to run on

each of these activities, in the modules database (see Section B.1 [modules], page 83);

this option bypasses it).

Warning: this is not the same as the overall `cvs -n' option, which you can specify to

the left of a cvs command!

Available with the checkout, commit, export, and rtag commands.

-P Prune (remove) directories that are empty after being updated, on checkout, or

update. Normally, an empty directory (one that is void of revision-controlled �les)

is left alone. Specifying `-P' will cause these directories to be silently removed from

your checked-out sources. This does not remove the directory from the repository, only

from your checked out copy. Note that this option is implied by the `-r' or `-D' options

of checkout and export.

-p Pipe the �les retrieved from the repository to standard output, rather than writing

them in the current directory. Available with the checkout and update commands.

-W Specify �le names that should be �ltered. You can use this option repeatedly. The spec

can be a �le name pattern of the same type that you can specify in the `.cvswrappers'

�le. Avaliable with the following commands: import, and update.

Appendix A: Reference manual for CVS commands 55

-r tag Use the revision speci�ed by the tag argument instead of the default head revision.

As well as arbitrary tags de�ned with the tag or rtag command, two special tags are

always available: `HEAD' refers to the most recent version available in the repository,

and `BASE' refers to the revision you last checked out into the current working directory.

The tag speci�cation is sticky when you use this option with checkout or update to

make your own copy of a �le: cvs remembers the tag and continues to use it on future

update commands, until you specify otherwise. The tag can be either a symbolic or

numeric tag. See Section 7.1 [Tags], page 25.

Specifying the `-q' global option along with the `-r' command option is often useful, to

suppress the warning messages when the rcs history �le does not contain the speci�ed

tag.

Warning: this is not the same as the overall `cvs -r' option, which you can specify to

the left of a cvs command!

`-r' is available with the checkout, commit, diff, history, export, rdiff, rtag, and

update commands.

A.5 add|Add a new �le/directory to the repository

� Synopsis: add [-k k
ag] [-m 'message'] �les: : :

� Requires: repository, working directory.

� Changes: working directory.

� Synonym: new

Use the add command to create a new �le or directory in the source repository. The �les

or directories speci�ed with add must already exist in the current directory (which must have

been created with the checkout command). To add a whole new directory hierarchy to the source

repository (for example, �les received from a third-party vendor), use the import command instead.

See Section A.12 [import], page 69.

If the argument to add refers to an immediate sub-directory, the directory is created at the

correct place in the source repository, and the necessary cvs administration �les are created in

your working directory. If the directory already exists in the source repository, add still creates the

administration �les in your version of the directory. This allows you to use add to add a particular

directory to your private sources even if someone else created that directory after your checkout of

the sources. You can do the following:

$ mkdir new_directory

$ cvs add new_directory

$ cvs update new_directory

An alternate approach using update might be:

$ cvs update -d new_directory

(To add any available new directories to your working directory, it's probably simpler to use

checkout (see Section A.7 [checkout], page 60) or `update -d' (see Section A.20 [update], page 79)).

56 CVS|Concurrent Versions System

The added �les are not placed in the source repository until you use commit to make the change

permanent. Doing an add on a �le that was removed with the remove command will resurrect the

�le, unless a commit command intervened. See Section A.16.2 [remove examples], page 76 for an

example.

Unlike most other commands add never recurses down directories. It cannot yet handle relative

paths. Instead of

$ cvs add foo/bar.c

you have to do

$ cd foo

$ cvs add bar.c

A.5.1 add options

There are only two options you can give to `add':

-k k
ag This option speci�es the default way that this �le will be checked out. See rcs(1) and

co(1). The k
ag argument (see Section 15.4 [Substitution modes], page 47) is stored

in the rcs �le and can be changed with admin -k (see Section A.6.1 [admin options],

page 57). Specifying `-ko' is useful for checking in binaries that should not have the

rcs id strings expanded.

Warning: this option is reported to be broken in version 1.3 and 1.3-s2 of cvs. Use

`admin -k' after the commit instead. See Section A.6.2 [admin examples], page 59.

-m description

Using this option, you can give a description for the �le. This description appears in

the history log (if it is enabled, see Section B.9 [history �le], page 90). It will also be

saved in the rcs history �le inside the repository when the �le is committed. The log

command displays this description.

The description can be changed using `admin -t'. See Section A.6 [admin], page 57.

If you omit the `-m description'
ag, an empty string will be used. You will not be

prompted for a description.

A.5.2 add examples

To add the �le `backend.c' to the repository, with a description, the following can be used.

$ cvs add -m "Optimizer and code generation passes." backend.c

$ cvs commit -m "Early version. Not yet compilable." backend.c

A.6 admin|Administration front end for rcs

� Requires: repository, working directory.

Appendix A: Reference manual for CVS commands 57

� Changes: repository.

� Synonym: rcs

This is the cvs interface to assorted administrative rcs facilities, documented in rcs(1). admin

simply passes all its options and arguments to the rcs command; it does no �ltering or other

processing. This command does work recursively, however, so extreme care should be used.

A.6.1 admin options

Not all valid rcs options are useful together with cvs. Some even makes it impossible to use

cvs until you undo the e�ect!

This description of the available options is based on the `rcs(1)' man page, but modi�ed to

suit readers that are more interrested in cvs than rcs.

-Aold�le Might not work together with cvs. Append the access list of old�le to the access list

of the rcs �le.

-alogins Might not work together with cvs. Append the login names appearing in the comma-

separated list logins to the access list of the rcs �le.

-b[rev] Breaks cvs. When used with bare rcs, this option sets the default branch to rev. If

rev is omitted, the default branch is reset to the (dynamically) highest branch on the

trunk. Use sticky tags instead, as in cvs co -r. See Section 7.4 [Sticky tags], page 28.

-cstring Useful with cvs. Sets the comment leader to string. The comment leader is printed

before every log message line generated by the keyword Log (see Chapter 15 [Keyword

substitution], page 45). This is useful for programming languages without multi-line

comments. Rcs initially guesses the value of the comment leader from the �le name

extension when the �le is �rst committed.

-e[logins]

Might not work together with cvs. Erase the login names appearing in the comma-

separated list logins from the access list of the RCS �le. If logins is omitted, erase the

entire access list.

-I Run interactively, even if the standard input is not a terminal.

-i Useless with cvs. When using bare rcs, this is used to create and initialize a new rcs

�le, without depositing a revision.

-ksubst Useful with cvs. Set the default keyword substitution to subst. See Chapter 15

[Keyword substitution], page 45. Giving an explicit `-k' option to cvs update or cvs

checkout overrides this default. cvs export always uses -kv, regardless of which

keyword substitution is set with cvs admin.

-l[rev] Probably useless with cvs. With bare rcs, this option can be used to lock the revision

with number rev. If a branch is given, lock the latest revision on that branch. If rev is

omitted, lock the latest revision on the default branch.

-L Probably useless with cvs. Used with bare rcs to set locking to strict. Strict locking

means that the owner of an RCS �le is not exempt from locking for checkin.

-mrev:msg

Replace the log message of revision rev with msg.

58 CVS|Concurrent Versions System

-Nname[:[rev]]

Act like `-n', except override any previous assignment of name.

-nname[:[rev]]

Associate the symbolic name name with the branch or revision rev. It is normally

better to use `cvs tag' or `cvs rtag' instead. Delete the symbolic name if both `:'

and rev are omitted; otherwise, print an error message if name is already associated

with another number. If rev is symbolic, it is expanded before association. A rev

consisting of a branch number followed by a `.' stands for the current latest revision in

the branch. A `:' with an empty rev stands for the current latest revision on the default

branch, normally the trunk. For example, `rcs -nname: RCS/*' associates name with

the current latest revision of all the named RCS �les; this contrasts with `rcs -nname:$

RCS/*' which associates name with the revision numbers extracted from keyword strings

in the corresponding working �les.

-orange Useful, but dangerous, with cvs (see below). Deletes (outdates) the revisions given by

range. A range consisting of a single revision number means that revision. A range

consisting of a branch number means the latest revision on that branch. A range of

the form `rev1:rev2 ' means revisions rev1 to rev2 on the same branch, `:rev ' means

from the beginning of the branch containing rev up to and including rev, and `rev:'

means from revision rev to the end of the branch containing rev. None of the outdated

revisions may have branches or locks.

Due to the way cvs handles branches rev cannot be speci�ed symbolically if it is a

branch. See Section D.1 [Magic branch numbers], page 93, for an explanation.

Make sure that no-one has checked out a copy of the revision you outdate. Strange

things will happen if he starts to edit it and tries to check it back in. For this reason,

you should never use this option to take back a bogus commit unless you work alone.

Instead, you should �x the �le and commit a new revision.

-q Run quietly; do not print diagnostics.

-sstate[:rev]

Useful with cvs. Set the state attribute of the revision rev to state. If rev is a branch

number, assume the latest revision on that branch. If rev is omitted, assume the latest

revision on the default branch. Any identi�er is acceptable for state. A useful set

of states is `Exp' (for experimental), `Stab' (for stable), and `Rel' (for released). By

default, the state of a new revision is set to `Exp' when it is created. The state is visible

in the output from cvs log (see Section A.13 [log], page 70), and in the `Log' and

`$State$' keywords (see Chapter 15 [Keyword substitution], page 45).

-t[�le] Useful with cvs. Write descriptive text from the contents of the named �le into the

RCS �le, deleting the existing text. The �le pathname may not begin with `-'. If

�le is omitted, obtain the text from standard input, terminated by end-of-�le or by

a line containing `.' by itself. Prompt for the text if interaction is possible; see `-I'.

The descriptive text can be seen in the output from `cvs log' (see Section A.13 [log],

page 70).

-t-string Similar to `-t�le'. Write descriptive text from the string into the rcs �le, deleting the

existing text.

-U Probably useless with cvs. Used with bare rcs to set locking to non-strict. Non-strict

locking means that the owner of a �le need not lock a revision for checkin.

-u[rev] Probably useless with cvs. With bare rcs, unlock the revision with number rev. If a

branch is given, unlock the latest revision on that branch. If rev is omitted, remove

the latest lock held by the caller. Normally, only the locker of a revision may unlock

it. Somebody else unlocking a revision breaks the lock. This causes a mail message

to be sent to the original locker. The message contains a commentary solicited from

Appendix A: Reference manual for CVS commands 59

the breaker. The commentary is terminated by end-of-�le or by a line containing . by

itself.

-Vn Emulate rcs version n. Use -Vn to make an rcs �le acceptable to rcs version n by

discarding information that would confuse version n.

-xsu�xes Useless with cvs. Use su�xes to characterize RCS �les.

A.6.2 admin examples

A.6.2.1 Outdating is dangerous

First, an example of how not to use the admin command. It is included to stress the fact that

this command can be quite dangerous unless you know exactly what you are doing.

The `-o' option can be used to outdate old revisions from the history �le. If you are short on

disc this option might help you. But think twice before using it|there is no way short of restoring

the latest backup to undo this command!

The next line is an example of a command that you would not like to execute.

$ cvs admin -o:R_1_02 .

The above command will delete all revisions up to, and including, the revision that corresponds

to the tag R 1 02. But beware! If there are �les that have not changed between R 1 02 and R 1 03

the �le will have the same numerical revision number assigned to the tags R 1 02 and R 1 03. So

not only will it be impossible to retrieve R 1 02; R 1 03 will also have to be restored from the tapes!

A.6.2.2 Handling binary �les

If you use cvs to store binary �les, where keyword strings (see Chapter 15 [Keyword substitu-

tion], page 45) might accidentally appear inside the �le, you should use cvs admin -ko to make

sure that they are not modi�ed automatically. Here is an example of how you can create a new �le

using the `-ko'
ag:

$ echo 'Id' > kotest

$ cvs add -m"A test file" kotest

$ cvs ci -m"First checkin; contains a keyword" kotest

$ cvs admin -ko kotest

$ rm kotest

$ cvs update kotest

When you check in the �le `kotest' the keywords are expanded. (Try the above example, and

do a cat kotest after every command!) The cvs admin -ko command sets the default keyword

substitution method for this �le, but it does not alter the working copy of the �le that you have.

The easiest way to get the unexpanded version of `kotest' is to remove it and check it out again.

60 CVS|Concurrent Versions System

A.6.2.3 Comment leaders

If you use the Log keyword and you do not agree with the guess for comment leader that cvs

has done, you can enforce your will with cvs admin -c. This might be suitable for nroff source:

$ cvs admin -c'.\" ' *.man

$ rm *.man

$ cvs update

The two last steps are to make sure that you get the versions with correct comment leaders in

your working �les.

A.7 checkout|Check out sources for editing

� Synopsis: checkout [options] modules: : :

� Requires: repository.

� Changes: working directory.

� Synonyms: co, get

Make a working directory containing copies of the source �les speci�ed by modules. You must

execute checkout before using most of the other cvs commands, since most of them operate on

your working directory.

The modules part of the command are either symbolic names for some collection of source

directories and �les, or paths to directories or �les in the repository. The symbolic names are

de�ned in the `modules' �le. See Section B.1 [modules], page 83.

Depending on the modules you specify, checkoutmay recursively create directories and populate

them with the appropriate source �les. You can then edit these source �les at any time (regardless

of whether other software developers are editing their own copies of the sources); update them

to include new changes applied by others to the source repository; or commit your work as a

permanent change to the source repository.

Note that checkout is used to create directories. The top-level directory created is always added

to the directory where checkout is invoked, and usually has the same name as the speci�ed module.

In the case of a module alias, the created sub-directory may have a di�erent name, but you can be

sure that it will be a sub-directory, and that checkout will show the relative path leading to each

�le as it is extracted into your private work area (unless you specify the `-Q' global option).

Running checkout on a directory that was already built by a prior checkout is also permitted,

and has the same e�ect as specifying the `-d' option to the update command, that is, any new

directories that have been created in the repository will appear in your work area. See Section A.20

[update], page 79.

Appendix A: Reference manual for CVS commands 61

A.7.1 checkout options

These standard options are supported by checkout (see Section A.4 [Common options], page 53,

for a complete description of them):

-D date Use the most recent revision no later than date. This option is sticky, and implies `-P'.

-f Only useful with the `-D date' or `-r tag '
ags. If no matching revision is found,

retrieve the most recent revision (instead of ignoring the �le).

-k k
ag Process rcs keywords according to k
ag. See co(1). This option is sticky; future

updates of this �le in this working directory will use the same k
ag. The status

command can be viewed to see the sticky options. See Section A.18 [status], page 78.

-l Local; run only in current working directory.

-n Do not run any checkout program (as speci�ed with the `-o' option in the modules �le;

see Section B.1 [modules], page 83).

-P Prune empty directories.

-p Pipe �les to the standard output.

-r tag Use revision tag. This option is sticky, and implies `-P'.

In addition to those, you can use these special command options with checkout:

-A Reset any sticky tags, dates, or `-k' options. (If you get a working �le using one of

the `-r', `-D', or `-k' options, cvs remembers the corresponding tag, date, or k
ag

and continues using it for future updates; use the `-A' option to make cvs forget these

speci�cations, and retrieve the `head' revision of the �le).

-c Copy the module �le, sorted, to the standard output, instead of creating or modifying

any �les or directories in your working directory.

-d dir Create a directory called dir for the working �les, instead of using the module name.

Unless you also use `-N', the paths created under dir will be as short as possible.

-j tag Merge the changes made between the resulting revision and the revision that it is based

on (e.g., if tag refers to a branch, cvs will merge all changes made on that branch into

your working �le).

With two `-j tag ' options, cvs will merge in the changes between the two respective

revisions. This can be used to undo changes made between two revisions (see Section 8.2

[Merging two revisions], page 32) in your working copy, or to move changes between

di�erent branches.

In addition, each -j option can contain an optional date speci�cation which, when used

with branches, can limit the chosen revision to one within a speci�c date. An optional

date is speci�ed by adding a colon (:) to the tag. An example might be what import

tells you to do when you have just imported sources that have con
icts with local

changes:

$ cvs checkout -jTAG:yesterday -jTAG module

-N Only useful together with `-d dir'. With this option, cvs will not shorten module paths

in your working directory. (Normally, cvs shortens paths as much as possible when

you specify an explicit target directory).

-s Like `-c', but include the status of all modules, and sort it by the status string. See

Section B.1 [modules], page 83, for info about the `-s' option that is used inside the

modules �le to set the module status.

62 CVS|Concurrent Versions System

A.7.2 checkout examples

Get a copy of the module `tc':

$ cvs checkout tc

Get a copy of the module `tc' as it looked one day ago:

$ cvs checkout -D yesterday tc

A.8 commit|Check �les into the repository

� Version 1.3 Synopsis: commit [-lnR] [-m 'log message' | -f �le] [-r revision] [�les: : :]

� Version 1.3.1 Synopsis: commit [-lnRf] [-m 'log message' | -F �le] [-r revision] [�les: : :]

� Requires: working directory, repository.

� Changes: repository.

� Synonym: ci

Warning: The `-f �le' option will probably be renamed to `-F �le', and `-f' will be given a new

behavior in future releases of cvs.

Use commit when you want to incorporate changes from your working source �les into the source

repository.

If you don't specify particular �les to commit, all of the �les in your working current directory

are examined. commit is careful to change in the repository only those �les that you have really

changed. By default (or if you explicitly specify the `-R' option), �les in subdirectories are also

examined and committed if they have changed; you can use the `-l' option to limit commit to the

current directory only.

commit veri�es that the selected �les are up to date with the current revisions in the source

repository; it will notify you, and exit without committing, if any of the speci�ed �les must be

made current �rst with update (see Section A.20 [update], page 79). commit does not call the

update command for you, but rather leaves that for you to do when the time is right.

When all is well, an editor is invoked to allow you to enter a log message that will be written

to one or more logging programs (see Section B.1 [modules], page 83, and see Section B.6 [loginfo],

page 88) and placed in the rcs history �le inside the repository. This log message can be retrieved

with the log command; See Section A.13 [log], page 70. You can specify the log message on the

command line with the `-m message' option, and thus avoid the editor invocation, or use the `-f

�le' option to specify that the argument �le contains the log message.

A.8.1 commit options

These standard options are supported by commit (see Section A.4 [Common options], page 53,

for a complete description of them):

Appendix A: Reference manual for CVS commands 63

-l Local; run only in current working directory.

-n Do not run any module program.

-R Commit directories recursively. This is on by default.

-r revision

Commit to revision. revision must be either a branch, or a revision on the main trunk

that is higher than any existing revision number. You cannot commit to a speci�c

revision on a branch.

commit also supports these options:

-F �le This option is present in cvs releases 1.3-s3 and later. Read the log message from �le,

instead of invoking an editor.

-f This option is present in cvs 1.3-s3 and later releases of cvs. Note that this is not the

standard behavior of the `-f' option as de�ned in See Section A.4 [Common options],

page 53.

Force cvs to commit a new revision even if you haven't made any changes to the �le.

If the current revision of �le is 1.7, then the following two commands are equivalent:

$ cvs commit -f �le

$ cvs commit -r 1.8 �le

-f �le This option is present in cvs releases 1.3, 1.3-s1 and 1.3-s2. Note that this is not the

standard behavior of the `-f' option as de�ned in See Section A.4 [Common options],

page 53.

Read the log message from �le, instead of invoking an editor.

-m message

Use message as the log message, instead of invoking an editor.

A.8.2 commit examples

A.8.2.1 New major release number

When you make a major release of your product, you might want the revision numbers to track

your major release number. You should normally not care about the revision numbers, but this is

a thing that many people want to do, and it can be done without doing any harm.

To bring all your �les up to the rcs revision 3.0 (including those that haven't changed), you

might do:

$ cvs commit -r 3.0

Note that it is generally a bad idea to try to make the rcs revision number equal to the current

release number of your product. You should think of the revision number as an internal number

that the cvs package maintains, and that you generally never need to care much about. Using the

tag and rtag commands you can give symbolic names to the releases instead. See Section A.19

[tag], page 78 and See Section A.17 [rtag], page 77.

64 CVS|Concurrent Versions System

Note that the number you specify with `-r' must be larger than any existing revision number.

That is, if revision 3.0 exists, you cannot `cvs commit -r 1.3'.

A.8.2.2 Committing to a branch

You can commit to a branch revision (one that has an even number of dots) with the `-r' option.

To create a branch revision, use the `-b' option of the rtag or tag commands (see Section A.19 [tag],

page 78 or see Section A.17 [rtag], page 77). Then, either checkout or update can be used to base

your sources on the newly created branch. From that point on, all commit changes made within

these working sources will be automatically added to a branch revision, thereby not disturbing

main-line development in any way. For example, if you had to create a patch to the 1.2 version of

the product, even though the 2.0 version is already under development, you might do:

$ cvs rtag -b -r FCS1_2 FCS1_2_Patch product_module

$ cvs checkout -r FCS1_2_Patch product_module

$ cd product_module

[[hack away]]

$ cvs commit

This works automatically since the `-r' option is sticky.

A.8.2.3 Creating the branch after editing

Say you have been working on some extremely experimental software, based on whatever revision

you happened to checkout last week. If others in your group would like to work on this software

with you, but without disturbing main-line development, you could commit your change to a new

branch. Others can then checkout your experimental stu� and utilize the full bene�t of cvs con
ict

resolution. The scenario might look like:

[[hacked sources are present]]

$ cvs tag -b EXPR1

$ cvs update -r EXPR1

$ cvs commit

The update command will make the `-r EXPR1' option sticky on all �les. Note that your changes

to the �les will never be removed by the update command. The commit will automatically commit

to the correct branch, because the `-r' is sticky. You could also do like this:

[[hacked sources are present]]

$ cvs tag -b EXPR1

$ cvs commit -r EXPR1

but then, only those �les that were changed by you will have the `-r EXPR1' sticky
ag. If you hack

away, and commit without specifying the `-r EXPR1'
ag, some �les may accidentally end up on

the main trunk.

To work with you on the experimental change, others would simply do

Appendix A: Reference manual for CVS commands 65

$ cvs checkout -r EXPR1 whatever_module

A.9 di�|Run di�s between revisions

� Synopsis: di� [-l] [rcsdi� options] [[-r rev1 | -D date1] [-r rev2 | -D date2]] [�les: : :]

� Requires: working directory, repository.

� Changes: nothing.

The diff command is used to compare di�erent revisions of �les. The default action is to

compare your working �les with the revisions they were based on, and report any di�erences that

are found.

If any �le names are given, only those �les are compared. If any directories are given, all �les

under them will be compared.

The exit status will be 0 if no di�erences were found, 1 if some di�erences were found, and 2 if

any error occurred.

A.9.1 di� options

These standard options are supported by diff (see Section A.4 [Common options], page 53, for

a complete description of them):

-D date Use the most recent revision no later than date. See `-r' for how this a�ects the

comparison.

cvs can be con�gured to pass the `-D' option through to rcsdiff (which in turn

passes it on to diff. Gnu di� uses `-D' as a way to put cpp-style `#define' statements

around the output di�erences. There is no way short of testing to �gure out how cvs

was con�gured. In the default con�guration cvs will use the `-D date' option.

-k k
ag Process rcs keywords according to k
ag. See co(1).

-l Local; run only in current working directory.

-R Examine directories recursively. This option is on by default.

-r tag Compare with revision tag. Zero, one or two `-r' options can be present. With no `-r'

option, the working �le will be compared with the revision it was based on. With one

`-r', that revision will be compared to your current working �le. With two `-r' options

those two revisions will be compared (and your working �le will not a�ect the outcome

in any way).

One or both `-r' options can be replaced by a `-D date' option, described above.

Any other options that are found are passed through to rcsdiff, which in turn passes them to

diff. The exact meaning of the options depends on which diff you are using. The long options

introduced in gnu di� 2.0 are not yet supported in cvs. See the documentation for your diff to

see which options are supported.

66 CVS|Concurrent Versions System

A.9.2 di� examples

The following line produces a Unidi� (`-u'
ag) between revision 1.14 and 1.19 of `backend.c'.

Due to the `-kk'
ag no keywords are substituted, so di�erences that only depend on keyword

substitution are ignored.

$ cvs diff -kk -u -r 1.14 -r 1.19 backend.c

Suppose the experimental branch EXPR1 was based on a set of �les tagged RELEASE 1 0. To

see what has happened on that branch, the following can be used:

$ cvs diff -r RELEASE_1_0 -r EXPR1

A command like this can be used to produce a context di� between two releases:

$ cvs diff -c -r RELEASE_1_0 -r RELEASE_1_1 > diffs

If you are maintaining ChangeLogs, a command like the following just before you commit your

changes may help you write the ChangeLog entry. All local modi�cations that have not yet been

committed will be printed.

$ cvs diff -u | less

A.10 export|Export sources from CVS, similar to checkout

� Synopsis: export [-
NnQq] -r rev|-D date [-d dir] module: : :

� Requires: repository.

� Changes: current directory.

This command is a variant of checkout; use it when you want a copy of the source for module

without the cvs administrative directories. For example, you might use export to prepare source

for shipment o�-site. This command requires that you specify a date or tag (with `-D' or `-r'), so

that you can count on reproducing the source you ship to others.

The keyword substitution option `-kv' is always set when export is used. This causes any rcs

keywords to be expanded such that an import done at some other site will not lose the keyword

revision information. There is no way to override this. Note that this breaks the ident command

(which is part of the rcs suite|see ident(1)) which looks for rcs keyword strings. If you want to

be able to use ident you must use checkout instead.

A.10.1 export options

These standard options are supported by export (see Section A.4 [Common options], page 53,

for a complete description of them):

-D date Use the most recent revision no later than date.

Appendix A: Reference manual for CVS commands 67

-f If no matching revision is found, retrieve the most recent revision (instead of ignoring

the �le).

-l Local; run only in current working directory.

-n Do not run any checkout program.

-R Export directories recursively. This is on by default.

-r tag Use revision tag.

In addition, these options (that are common to checkout and export) are also supported:

-d dir Create a directory called dir for the working �les, instead of using the module name.

Unless you also use `-N', the paths created under dir will be as short as possible.

-N Only useful together with `-d dir'. With this option, cvs will not shorten module paths

in your working directory. (Normally, cvs shortens paths as much as possible when

you specify an explicit target directory.)

A.11 history|Show status of �les and users

� Synopsis: history [-report] [-
ags] [-options args] [�les: : :]

� Requires: the �le `$CVSROOT/CVSROOT/history'

� Changes: nothing.

cvs can keep a history �le that tracks each use of the checkout, commit, rtag, update, and

release commands. You can use history to display this information in various formats.

Logging must be enabled by creating the �le `$CVSROOT/CVSROOT/history'.

Warning: history uses `-f', `-l', `-n', and `-p' in ways that con
ict with the normal use inside

cvs (see Section A.4 [Common options], page 53).

A.11.1 history options

Several options (shown above as `-report') control what kind of report is generated:

-c Report on each time commit was used (i.e., each time the repository was modi�ed).

-e Everything (all record types); equivalent to specifying `-xMACFROGWUT'.

-m module

Report on a particular module. (You can meaningfully use `-m' more than once on the

command line.)

-o Report on checked-out modules.

-T Report on all tags.

68 CVS|Concurrent Versions System

-x type Extract a particular set of record types type from the cvs history. The types are

indicated by single letters, which you may specify in combination.

Certain commands have a single record type:

F release

O checkout

T rtag

One of four record types may result from an update:

C Amerge was necessary but collisions were detected (requiring manual merg-

ing).

G A merge was necessary and it succeeded.

U A working �le was copied from the repository.

W The working copy of a �le was deleted during update (because it was gone

from the repository).

One of three record types results from commit:

A A �le was added for the �rst time.

M A �le was modi�ed.

R A �le was removed.

The options shown as `-flags' constrain or expand the report without requiring option argu-

ments:

-a Show data for all users (the default is to show data only for the user executing history).

-l Show last modi�cation only.

-w Show only the records for modi�cations done from the same working directory where

history is executing.

The options shown as `-options args' constrain the report based on an argument:

-b str Show data back to a record containing the string str in either the module name, the

�le name, or the repository path.

-D date Show data since date. This is slightly di�erent from the normal use of `-D date', which

selects the newest revision older than date.

-p repository

Show data for a particular source repository (you can specify several `-p' options on

the same command line).

-r rev Show records referring to revisions since the revision or tag named rev appears in

individual rcs �les. Each rcs �le is searched for the revision or tag.

-t tag Show records since tag tag was last added to the the history �le. This di�ers from

the `-r'
ag above in that it reads only the history �le, not the rcs �les, and is much

faster.

-u name Show records for user name.

Appendix A: Reference manual for CVS commands 69

A.12 import|Import sources into CVS, using vendor branches

� Synopsis: import [-options] repository vendortag releasetag: : :

� Requires: Repository, source distribution directory.

� Changes: repository.

Use import to incorporate an entire source distribution from an outside source (e.g., a source

vendor) into your source repository directory. You can use this command both for initial creation

of a repository, and for wholesale updates to the module from the outside source. See Chapter 12

[Tracking sources], page 39, for a discussion on this subject.

The repository argument gives a directory name (or a path to a directory) under the cvs root

directory for repositories; if the directory did not exist, import creates it.

When you use import for updates to source that has been modi�ed in your source repository

(since a prior import), it will notify you of any �les that con
ict in the two branches of development;

use `checkout -j' to reconcile the di�erences, as import instructs you to do.

By default, certain �le names are ignored during import: names associated with cvs adminis-

tration, or with other common source control systems; common names for patch �les, object �les,

archive �les, and editor backup �les; and other names that are usually artifacts of assorted utilities.

Currently, the default list of ignored �les includes �les matching these names:

RCSLOG RCS SCCS

CVS* cvslog.*

tags TAGS

.make.state .nse_depinfo

~ # .#* ,*

*.old *.bak *.BAK *.orig *.rej .del-*

*.a *.o *.so *.Z *.elc *.ln

core

If the �le `$CVSROOT/CVSROOT/cvsignore' exists, any �les whose names match the speci�cations

in that �le will also be ignored.

If the �le `$CVSROOT/CVSROOT/cvswrappers' exists, any �le whose names match the speci�ca-

tions in that �le will be treated as packages and the appropriate �ltering will be performed on the

�le/directory before being imported, See Section B.2 [Wrappers], page 84.

The outside source is saved in a �rst-level rcs branch, by default 1.1.1. Updates are leaves of

this branch; for example, �les from the �rst imported collection of source will be revision 1.1.1.1,

then �les from the �rst imported update will be revision 1.1.1.2, and so on.

At least three arguments are required. repository is needed to identify the collection of source.

vendortag is a tag for the entire branch (e.g., for 1.1.1). You must also specify at least one releasetag

to identify the �les at the leaves created each time you execute import.

70 CVS|Concurrent Versions System

A.12.1 import options

This standard option is supported by import (see Section A.4 [Common options], page 53, for

a complete description):

-m message

Use message as log information, instead of invoking an editor.

There are three additional special options.

-b branch Specify a �rst-level branch other than 1.1.1. Unless the `-b branch'
ag is given, re-

visions will always be made to the branch 1.1.1|even if a vendortag that matches

another branch is given! What happens in that case, is that the tag will be reset to

1.1.1. Warning: This behavior might change in the future.

-k subst Indicate the RCS keyword expansion mode desired. This setting will apply to all �les

created during the import, but not to any �les that previously existed in the repository.

See co(1) for a complete list of valid `-k' settings.

If you are checking in sources that contain rcs keywords, and you wish those keywords

to remain intact, use the `-ko'
ag when importing the �les. This setting indicates

that no keyword expansion is to be performed by rcs when checking �les out. It is

also useful for checking in binaries.

-I name Specify �le names that should be ignored during import. You can use this option

repeatedly. To avoid ignoring any �les at all (even those ignored by default), specify

`-I !'.

name can be a �le name pattern of the same type that you can specify in the

`.cvsignore' �le. See Section B.8 [cvsignore], page 89.

-W spec Specify �le names that should be �ltered during import. You can use this option

repeatedly.

spec can be a �le name pattern of the same type that you can specify in the

`.cvswrappers' �le. See Section B.2 [Wrappers], page 84.

A.12.2 import examples

See Chapter 12 [Tracking sources], page 39, and See Section 5.1.1 [From �les], page 19.

A.13 log|Print out 'rlog' information for �les

� Synopsis: log [-l] rlog-options [�les: : :]

� Requires: repository, working directory.

� Changes: nothing.

� Synonym: rlog

Display log information for �les. log calls the rcs utility rlog, which prints all available

information about the rcs history �le. This includes the location of the rcs �le, the head revision

Appendix A: Reference manual for CVS commands 71

(the latest revision on the trunk), all symbolic names (tags) and some other things. For each

revision, the revision number, the author, the number of lines added/deleted and the log message

are printed. All times are displayed in Coordinated Universal Time (UTC). (Other parts of cvs

print times in the local timezone).

A.13.1 log options

Only one option is interpreted by cvs and not passed on to rlog:

-l Local; run only in current working directory. (Default is to run recursively).

By default, rlog prints all information that is available. All other options (including those that

normally behave di�erently) are passed through to rlog and restrict the output. See rlog(1) for

a complete description of options. This incomplete list (which is a slightly edited extract from

rlog(1)) lists all options that are useful in conjunction with cvs.

Please note: There can be no space between the option and its argument, since rlog parses its

options in a di�erent way than cvs.

-b Print information about the revisions on the default branch, normally the highest

branch on the trunk.

-ddates Print information about revisions with a checkin date/time in the range given by the

semicolon-separated list of dates. The following table explains the available range

formats:

d1<d2

d2>d1 Select the revisions that were deposited between d1 and d2 inclusive.

<d

d> Select all revisions dated d or earlier.

d<

>d Select all revisions dated d or later.

d Select the single, latest revision dated d or earlier.

The date/time strings d, d1, and d2 are in the free format explained in co(1). Quoting

is normally necessary, especially for < and >. Note that the separator is a semicolon

(;).

-h Print only the rcs pathname, working pathname, head, default branch, access list,

locks, symbolic names, and su�x.

-N Do not print the list of tags for this �le. This option can be very useful when your site

uses a lot of tags, so rather than "more"'ing over 3 pages of tag information, the log

information is presented without tags at all.

-R Print only the name of the rcs history �le.

-rrevisions

Print information about revisions given in the comma-separated list revisions of revi-

sions and ranges. The following table explains the available range formats:

rev1:rev2 Revisions rev1 to rev2 (which must be on the same branch).

:rev Revisions from the beginning of the branch up to and including rev.

72 CVS|Concurrent Versions System

rev: Revisions starting with rev to the end of the branch containing rev.

branch An argument that is a branch means all revisions on that branch. You can

unfortunately not specify a symbolic branch here. You must specify the

numeric branch number. See Section D.1 [Magic branch numbers], page 93,

for an explanation.

branch1:branch2

A range of branches means all revisions on the branches in that range.

branch. The latest revision in branch.

A bare `-r' with no revisions means the latest revision on the default branch, normally

the trunk.

-sstates Print information about revisions whose state attributes match one of the states given

in the comma-separated list states.

-t Print the same as `-h', plus the descriptive text.

-wlogins Print information about revisions checked in by users with login names appearing in

the comma-separated list logins. If logins is omitted, the user's login is assumed.

rlog prints the intersection of the revisions selected with the options `-d', `-l', `-s', and `-w',

intersected with the union of the revisions selected by `-b' and `-r'.

A.13.2 log examples

Contributed examples are gratefully accepted.

A.14 rdi�|'patch' format di�s between releases

� rdi� [-
ags] [-V vn] [-r t|-D d [-r t2|-D d2]] modules: : :

� Requires: repository.

� Changes: nothing.

� Synonym: patch

Builds a Larry Wall format patch(1) �le between two releases, that can be fed directly into the

patch program to bring an old release up-to-date with the new release. (This is one of the few cvs

commands that operates directly from the repository, and doesn't require a prior checkout.) The

di� output is sent to the standard output device.

You can specify (using the standard `-r' and `-D' options) any combination of one or two

revisions or dates. If only one revision or date is speci�ed, the patch �le re
ects di�erences between

that revision or date and the current head revisions in the rcs �le.

Note that if the software release a�ected is contained in more than one directory, then it may

be necessary to specify the `-p' option to the patch command when patching the old sources, so

that patch is able to �nd the �les that are located in other directories.

Appendix A: Reference manual for CVS commands 73

A.14.1 rdi� options

These standard options are supported by rdiff (see Section A.4 [Common options], page 53,

for a complete description of them):

-D date Use the most recent revision no later than date.

-f If no matching revision is found, retrieve the most recent revision (instead of ignoring

the �le).

-l Local; don't descend subdirectories.

-r tag Use revision tag.

In addition to the above, these options are available:

-c Use the context di� format. This is the default format.

-s Create a summary change report instead of a patch. The summary includes information

about �les that were changed or added between the releases. It is sent to the standard

output device. This is useful for �nding out, for example, which �les have changed

between two dates or revisions.

-t A di� of the top two revisions is sent to the standard output device. This is most useful

for seeing what the last change to a �le was.

-u Use the unidi� format for the context di�s. This option is not available if your di�

does not support the unidi� format. Remember that old versions of the patch program

can't handle the unidi� format, so if you plan to post this patch to the net you should

probably not use `-u'.

-V vn Expand rcs keywords according to the rules current in rcs version vn (the expansion

format changed with rcs version 5).

A.14.2 rdi� examples

Suppose you receive mail from foo@bar.com asking for an update from release 1.2 to 1.4 of

the tc compiler. You have no such patches on hand, but with cvs that can easily be �xed with a

command such as this:

$ cvs rdiff -c -r FOO1_2 -r FOO1_4 tc | \

$$ Mail -s 'The patches you asked for' foo@bar.com

Suppose you have made release 1.3, and forked a branch called `R_1_3fix' for bug�xes. `R_1_3_1'

corresponds to release 1.3.1, which was made some time ago. Now, you want to see how much

development has been done on the branch. This command can be used:

$ cvs patch -s -r R_1_3_1 -r R_1_3fix module-name

cvs rdiff: Diffing module-name

File ChangeLog,v changed from revision 1.52.2.5 to 1.52.2.6

File foo.c,v changed from revision 1.52.2.3 to 1.52.2.4

File bar.h,v changed from revision 1.29.2.1 to 1.2

74 CVS|Concurrent Versions System

A.15 release|Indicate that aModule is no longer in use

� release [-dQq] modules: : :

� Requires: Working directory.

� Changes: Working directory, history log.

This command is meant to safely cancel the e�ect of `cvs checkout'. Since cvs doesn't lock

�les, it isn't strictly necessary to use this command. You can always simply delete your working

directory, if you like; but you risk losing changes you may have forgotten, and you leave no trace in

the cvs history �le (see Section B.9 [history �le], page 90) that you've abandoned your checkout.

Use `cvs release' to avoid these problems. This command checks that no uncommitted changes

are present; that you are executing it from immediately above a cvs working directory; and that

the repository recorded for your �les is the same as the repository de�ned in the module database.

If all these conditions are true, `cvs release' leaves a record of its execution (attesting to your

intentionally abandoning your checkout) in the cvs history log.

A.15.1 release options

The release command supports one command option:

-d Delete your working copy of the �le if the release succeeds. If this
ag is not given your

�les will remain in your working directory.

Warning: The release command uses `rm -r `module'' to delete your �le. This has

the very serious side-e�ect that any directory that you have created inside your checked-

out sources, and not added to the repository (using the add command; see Section A.5

[add], page 55) will be silently deleted|even if it is non-empty!

A.15.2 release output

Before release releases your sources it will print a one-line message for any �le that is not

up-to-date.

Warning: Any new directories that you have created, but not added to the cvs directory

hierarchy with the add command (see Section A.5 [add], page 55) will be silently ignored (and

deleted, if `-d' is speci�ed), even if they contain �les.

U �le There exists a newer revision of this �le in the repository, and you have not modi�ed

your local copy of the �le.

A �le The �le has been added to your private copy of the sources, but has not yet been

committed to the repository. If you delete your copy of the sources this �le will be lost.

R �le The �le has been removed from your private copy of the sources, but has not yet

been removed from the repository, since you have not yet committed the removal. See

Section A.8 [commit], page 62.

Appendix A: Reference manual for CVS commands 75

M �le The �le is modi�ed in your working directory. There might also be a newer revision

inside the repository.

? �le �le is in your working directory, but does not correspond to anything in the source

repository, and is not in the list of �les for cvs to ignore (see the description of the `-I'

option, and see Section B.8 [cvsignore], page 89). If you remove your working sources,

this �le will be lost.

Note that no warning message like this is printed for spurious directories that cvs

encounters. The directory, and all its contents, are silently ignored.

A.15.3 release examples

Release the module, and delete your local working copy of the �les.

$ cd .. # You must stand immediately above the

sources when you issue `cvs release'.

$ cvs release -d tc

You have [0] altered files in this repository.

Are you sure you want to release (and delete) module `tc': y

$

A.16 remove|Remove an entry from the repository

� remove [-lR] [�les: : :]

� Requires: Working directory.

� Changes: Working directory.

� Synonyms: rm, delete

Use this command to declare that you wish to remove �les from the source repository. Like

most cvs commands, `cvs remove' works on �les in your working directory, not directly on the

repository. As a safeguard, it also requires that you �rst erase the speci�ed �les from your working

directory.

The �les are not actually removed until you apply your changes to the repository with commit; at

that point, the corresponding rcs �les in the source repository are moved into the `Attic' directory

(also within the source repository).

This command is recursive by default, scheduling all physically removed �les that it �nds for

removal by the next commit. Use the `-l' option to avoid this recursion, or just specify the actual

�les that you wish removed.

A.16.1 remove options

Two of the standard options are the only options supported by remove.

-l Local; run only in current working directory.

76 CVS|Concurrent Versions System

-R Commit directories recursively. This is on by default.

A.16.2 remove examples

A.16.2.1 Remove a couple of �les.

$ cd test

$ rm ?.c

$ cvs remove

cvs remove: Removing .

cvs remove: scheduling a.c for removal

cvs remove: scheduling b.c for removal

cvs remove: use 'cvs commit' to remove these files permanently

$ cvs ci -m "Removed unneeded files"

cvs commit: Examining .

cvs commit: Committing .

A.16.2.2 Resurrecting removed �les

If you change your mind you can easily resurrect the �le before you commit it, using the add

command.

$ ls

CVS ja.h oj.c

$ rm oj.c

$ cvs remove oj.c

cvs remove: scheduling oj.c for removal

cvs remove: use 'cvs commit' to remove this file permanently

$ cvs add oj.c

U oj.c

cvs add: oj.c, version 1.1.1.1, resurrected

If you realize your mistake before you run the remove command you can use update to resurrect

the �le:

$ rm oj.c

$ cvs update oj.c

cvs update: warning: oj.c was lost

U oj.c

A.17 rtag|Add a tag to the RCS �le

� rtag [-falnRQq] [-b] [-d] [-r tag | -Ddate] symbolic tag modules: : :

� Requires: repository.

Appendix A: Reference manual for CVS commands 77

� Changes: repository.

� Synonym: rfreeze

You can use this command to assign symbolic tags to particular, explicitly speci�ed source

revisions in the repository. rtag works directly on the repository contents (and requires no prior

checkout). Use tag instead (see Section A.19 [tag], page 78), to base the selection of revisions on

the contents of your working directory.

If you attempt to use a tag name that already exists, cvs will complain and not overwrite that

tag. Use the `-F' option to force the new tag value.

A.17.1 rtag options

These standard options are supported by rtag (see Section A.4 [Common options], page 53, for

a complete description of them):

-D date Tag the most recent revision no later than date.

-f Only useful with the `-D date' or `-r tag '
ags. If no matching revision is found, use

the most recent revision (instead of ignoring the �le).

-F Overwrite an existing tag of the same name on a di�erent revision. This option is new

in cvs 1.4. The old behavior is matched by `cvs tag -F'.

-l Local; run only in current working directory.

-n Do not run any tag program that was speci�ed with the `-t'
ag inside the `modules'

�le. (see Section B.1 [modules], page 83).

-R Commit directories recursively. This is on by default.

-r tag Only tag those �les that contain tag. This can be used to rename a tag: tag only the

�les identi�ed by the old tag, then delete the old tag, leaving the new tag on exactly

the same �les as the old tag.

In addition to the above common options, these options are available:

-a Use the `-a' option to have rtag look in the `Attic' (see Chapter 11 [Removing �les],

page 37) for removed �les that contain the speci�ed tag. The tag is removed from these

�les, which makes it convenient to re-use a symbolic tag as development continues (and

�les get removed from the up-coming distribution).

-b Make the tag a branch tag. See Chapter 7 [Branches], page 25.

-d Delete the tag instead of creating it.

In general, tags (often the symbolic names of software distributions) should not be

removed, but the `-d' option is available as a means to remove completely obsolete

symbolic names if necessary (as might be the case for an Alpha release, or if you

mistagged a module).

78 CVS|Concurrent Versions System

A.18 status|Status info on the revisions

� status [-lR] [-v] [�les: : :]

� Requires: working directory, repository.

� Changes: nothing.

Display a brief report on the current status of �les with respect to the source repository, including

any sticky tags, dates, or `-k' options.

You can also use this command to determine the potential impact of a `cvs update' on your

working source directory|but remember that things might change in the repository before you run

update.

A.18.1 status options

These standard options are supported by status (see Section A.4 [Common options], page 53,

for a complete description of them):

-l Local; run only in current working directory.

-R Commit directories recursively. This is on by default.

There is one additional option:

-v Verbose. In addition to the information normally displayed, print all symbolic tags,

together with the numerical value of the revision or branch they refer to.

A.19 tag|Add a symbolic tag to checked out version of RCS �le

� tag [-lQqR] [-b] [-d] symbolic tag [�les: : :]

� Requires: working directory, repository.

� Changes: repository.

� Synonym: freeze

Use this command to assign symbolic tags to the nearest repository versions to your working

sources. The tags are applied immediately to the repository, as with rtag, but the versions are

supplied implicitly by the cvs records of your working �les' history rather than applied explicitly.

One use for tags is to record a snapshot of the current sources when the software freeze date of

a project arrives. As bugs are �xed after the freeze date, only those changed sources that are to be

part of the release need be re-tagged.

The symbolic tags are meant to permanently record which revisions of which �les were used

in creating a software distribution. The checkout and update commands allow you to extract

an exact copy of a tagged release at any time in the future, regardless of whether �les have been

changed, added, or removed since the release was tagged.

Appendix A: Reference manual for CVS commands 79

This command can also be used to delete a symbolic tag, or to create a branch. See the options

section below.

If you attempt to use a tag name that already exists, cvs will complain and not overwrite that

tag. Use the `-F' option to force the new tag value.

A.19.1 tag options

These standard options are supported by tag (see Section A.4 [Common options], page 53, for

a complete description of them):

-F Overwrite an existing tag of the same name on a di�erent revision. This option is new

in cvs 1.4. The old behavior is matched by `cvs tag -F'.

-l Local; run only in current working directory.

-R Commit directories recursively. This is on by default.

Two special options are available:

-b The -b option makes the tag a branch tag (see Chapter 7 [Branches], page 25), allow-

ing concurrent, isolated development. This is most useful for creating a patch to a

previously released software distribution.

-d Delete a tag.

If you use `cvs tag -d symbolic_tag', the symbolic tag you specify is deleted instead

of being added. Warning: Be very certain of your ground before you delete a tag; doing

this permanently discards some historical information, which may later turn out to be

valuable.

A.20 update|Bring work tree in sync with repository

� update [-Ad
PpQqR] [-d] [-r tag|-D date] �les: : :

� Requires: repository, working directory.

� Changes: working directory.

After you've run checkout to create your private copy of source from the common repository,

other developers will continue changing the central source. From time to time, when it is convenient

in your development process, you can use the update command from within your working directory

to reconcile your work with any revisions applied to the source repository since your last checkout

or update.

A.20.1 update options

These standard options are available with update (see Section A.4 [Common options], page 53,

for a complete description of them):

80 CVS|Concurrent Versions System

-D date Use the most recent revision no later than date. This option is sticky, and implies `-P'.

-f Only useful with the `-D date' or `-r tag '
ags. If no matching revision is found,

retrieve the most recent revision (instead of ignoring the �le).

-k k
ag Process rcs keywords according to k
ag. See co(1). This option is sticky; future

updates of this �le in this working directory will use the same k
ag. The status

command can be viewed to see the sticky options. See Section A.18 [status], page 78.

-l Local; run only in current working directory.

-P Prune empty directories.

-p Pipe �les to the standard output.

-R Commit directories recursively. This is on by default.

-r tag Retrieve revision tag. This option is sticky, and implies `-P'.

These special options are also available with update.

-A Reset any sticky tags, dates, or `-k' options. (If you get a working copy of a �le by

using one of the `-r', `-D', or `-k' options, cvs remembers the corresponding tag, date,

or k
ag and continues using it on future updates; use the `-A' option to make cvs

forget these speci�cations, and retrieve the head revision of the �le).

-d Create any directories that exist in the repository if they're missing from the working

directory. Normally, update acts only on directories and �les that were already enrolled

in your working directory.

This is useful for updating directories that were created in the repository since the

initial checkout; but it has an unfortunate side e�ect. If you deliberately avoided

certain directories in the repository when you created your working directory (either

through use of a module name or by listing explicitly the �les and directories you

wanted on the command line), then updating with `-d' will create those directories,

which may not be what you want.

-I name Ignore �les whose names match name (in your working directory) during the update.

You can specify `-I' more than once on the command line to specify several �les to

ignore. By default, update ignores �les whose names match any of the following:

RCSLOG RCS SCCS

CVS* cvslog.*

tags TAGS

.make.state .nse_depinfo

~ # .#* ,*

*.old *.bak *.BAK *.orig *.rej .del-*

*.a *.o *.so *.Z *.elc *.ln

core

Use `-I !' to avoid ignoring any �les at all. See Section B.8 [cvsignore], page 89, for

other ways to make cvs ignore some �les.

-Wspec Specify �le names that should be �ltered during update. You can use this option

repeatedly.

spec can be a �le name pattern of the same type that you can specify in the

`.cvswrappers' �le. See Section B.2 [Wrappers], page 84.

-jbranch Merge the changes made between the resulting revision and the revision that it is based

on (e.g., if the tag refers to a branch, cvs will merge all changes made in that branch

into your working �le).

Appendix A: Reference manual for CVS commands 81

With two `-j' options, cvs will merge in the changes between the two respective re-

visions. This can be used to remove a certain delta from your working �le; if the �le

`foo.c' is based on revision 1.6 and you want to remove the changes made between 1.3

and 1.5, you might do:

$ cvs update -j1.5 -j1.3 foo.c # note the order: : :

In addition, each -j option can contain an optional date speci�cation which, when used

with branches, can limit the chosen revision to one within a speci�c date. An optional

date is speci�ed by adding a colon (:) to the tag: `-jSymbolic Tag:Date Speci�er'.

A.20.2 update output

update keeps you informed of its progress by printing a line for each �le, preceded by one

character indicating the status of the �le:

U �le The �le was brought up to date with respect to the repository. This is done for any

�le that exists in the repository but not in your source, and for �les that you haven't

changed but are not the most recent versions available in the repository.

A �le The �le has been added to your private copy of the sources, and will be added to the

source repository when you run commit on the �le. This is a reminder to you that the

�le needs to be committed.

R �le The �le has been removed from your private copy of the sources, and will be removed

from the source repository when you run commit on the �le. This is a reminder to you

that the �le needs to be committed.

M �le The �le is modi�ed in your working directory.

`M' can indicate one of two states for a �le you're working on: either there were no

modi�cations to the same �le in the repository, so that your �le remains as you last

saw it; or there were modi�cations in the repository as well as in your copy, but they

were merged successfully, without con
ict, in your working directory.

cvs will print some messages if it merges your work, and a backup copy of your working

�le (as it looked before you ran update) will be made. The exact name of that �le is

printed while update runs.

C �le A con
ict was detected while trying to merge your changes to �le with changes from

the source repository. �le (the copy in your working directory) is now the output of

the rcsmerge(1) command on the two revisions; an unmodi�ed copy of your �le is also

in your working directory, with the name `.#�le.revision' where revision is the rcs

revision that your modi�ed �le started from. (Note that some systems automatically

purge �les that begin with `.#' if they have not been accessed for a few days. If you

intend to keep a copy of your original �le, it is a very good idea to rename it.)

? �le �le is in your working directory, but does not correspond to anything in the source

repository, and is not in the list of �les for cvs to ignore (see the description of the

`-I' option, and see Section B.8 [cvsignore], page 89).

Note that no warning message like this is printed for spurious directories that cvs

encounters. The directory, and all its contents, are silently ignored.

82 CVS|Concurrent Versions System

A.20.3 update examples

The following line will display all �les which are not up-to-date without actually change anything

in your working directory. It can be used to check what has been going on with the project.

$ cvs -n -q update

Appendix B: Reference manual for the Administrative �les 83

AppendixB Referencemanual for the Administrative

�les

Inside the repository, in the directory `$CVSROOT/CVSROOT', there are a number of supportive

�les for cvs. You can use cvs in a limited fashion without any of them, but if they are set up

properly they can help make life easier.

The most important of these �les is the `modules' �le, which de�nes the modules inside the

repository.

B.1 The modules �le

The `modules' �le records your de�nitions of names for collections of source code. cvs will use

these de�nitions if you create a �le with the right format in `$CVSROOT/CVSROOT/modules,v'. The

mkmodules(1) command should be run whenever the modules �le changes, so that the appropriate

�les can be generated (depending on how you have con�gured cvs operation).

To allow convenient editing of the `modules' �le itself, the �le should include an entry like the

following (where localbin represents the directory where your site installs programs like mkmod-

ules(1)):

modules -i /localbin/mkmodules CVSROOT modules

This de�nes the name `modules' as the module name for the �le itself, so that you can use

$ cvs checkout modules

to get a copy of the �le that you can edit. You should de�ne similar module entries for the other

con�guration �les described in this appendix, except `history').

The `modules' �le may contain blank lines and comments (lines beginning with `#') as well as

module de�nitions. Long lines can be continued on the next line by specifying a backslash (`\') as

the last character on the line.

A module de�nition is a single line of the `modules' �le, in either of two formats. In both cases,

mname represents the symbolic module name, and the remainder of the line is its de�nition.

mname -a aliases: : :

This represents the simplest way of de�ning a module mname. The `-a'
ags the

de�nition as a simple alias: cvs will treat any use of mname (as a command argument)

as if the list of names aliases had been speci�ed instead. aliases may contain either

other module names or paths. When you use paths in aliases, checkout creates all

intermediate directories in the working directory, just as if the path had been speci�ed

explicitly in the cvs arguments.

mname [options] dir [�les: : :] [&module: : :]

In the simplest case, this form of module de�nition reduces to `mname dir'. This de�nes

all the �les in directory dir as module mname. dir is a relative path (from $CVSROOT)

to a directory of source in the source repository. In this case, on checkout, a single

84 CVS|Concurrent Versions System

directory called mname is created as a working directory; no intermediate directory

levels are used by default, even if dir was a path involving several directory levels.

By explicitly specifying �les in the module de�nition after dir, you can select particular

�les from directory dir. The sample de�nition for `modules' is an example of a module

de�ned with a single �le from a particular directory. Here is another example:

m4test unsupported/gnu/m4 foreach.m4 forloop.m4

With this de�nition, executing `cvs checkout m4test' will create a single working

directory `m4test' containing the two �les listed, which both come from a common

directory several levels deep in the cvs source repository.

A module de�nition can refer to other modules by including `&module' in its de�nition.

checkout creates a subdirectory for each such module, in your working directory.

-d name Name the working directory something other than the module name.

-i prog Specify a program prog to run whenever �les in a module are committed.

prog runs with a single argument, the full pathname of the a�ected direc-

tory in a source repository. The `commitinfo', `loginfo', and `editinfo'

�les provide other ways to call a program on commit.

-o prog Specify a program prog to run whenever �les in a module are checked out.

prog runs with a single argument, the module name.

-s status Assign a status to the module. When the module �le is printed with `cvs

checkout -s' the modules are sorted according to primarily module status,

and secondarily according to the module name. This option has no other

meaning. You can use this option for several things besides status: for

instance, list the person that is responsible for this module.

-t prog Specify a program prog to run whenever �les in a module are tagged with

rtag. prog runs with two arguments: the module name and the symbolic

tag speci�ed to rtag. There is no way to specify a program to run when

tag is executed.

-u prog Specify a program prog to run whenever `cvs update' is executed from

the top-level directory of the checked-out module. prog runs with a single

argument, the full path to the source repository for this module.

B.2 The cvswrappers �le

Wrappers are essentially directories that are to be treated as "�les." This package allows such

wrappers to be "processed" on the way in and out of CVS. The intended use is to wrap up a wrapper

into a single tar, such that that tar can be treated as a single binary �le in CVS. Apparently this

is particularly useful on NEXTSTEP. To solve the problem e�ectively, it was also necessary to be

able to prevent rcsmerge application at appropriate times.

The �le `cvswrappers' de�nes the script that will be run on a �le when its name matches a

regular expresion. There are two scripts that can be run on a �le or directory. A script to �lter the

directory/�le before it gets checked in and another that is run when the �le/directory gets checked

out.

The `cvswrappers' also speci�es the merge methodology that should be used when the �le is

updated, that is should a MERGE or a straight COPY of the diferences be used when checking

into the repository.

Appendix B: Reference manual for the Administrative �les 85

The basic format of the �le `cvswrappers' is given as such:

wildcard [option value][option value]...

where option is one of

-f from cvs filter value: path tofilter

-t to cvs filter value: path to filter

-m update methodology value: MERGE or COPY

and value is a single-quote delimited value.

*.nib -f 'uncom %s' -t 'comb %s %s' -m 'COPY'

*.rtfd -f 'uncom %s' -t 'comb %s %s' -m 'COPY'

The above example of a `cvswrappers' �le states that all �les/directories that end with a .nib

should be �ltered with the `comb' program before checking the �le into the repository. The �le

should be �ltered though the `uncom' program when the �le is checked out of the repository. The

`cvswrappers' �le also states that a COPY methodology should be used when updating the �les in

the repository (that is no merging should be performed).

The `comb' �lter is called with two arguments, the �rst is the name of the �le/directory to �lter

and the second is the pathname to where the resulting �ltered �le should be placed.

The `uncom' �lter is called with one argument, which is the name of the �le to �lter from. The

end result of the `uncom' �lter will be a �le/directory in the users current working directory, that

represents the source before being �ltered.

B.3 The commit support �les

The `-i'
ag in the `modules' �le can be used to run a certain program whenever �les are

committed (see Section B.1 [modules], page 83). The �les described in this section provide other,

more
exible, ways to run programs whenever something is committed.

There are three kind of programs that can be run on commit. They are speci�ed in �les in the

repository, as described below. The following table summarizes the �le names and the purpose of

the corresponding programs.

`commitinfo'

The program is responsible for checking that the commit is allowed. If it exits with a

non-zero exit status the commit will be aborted.

`editinfo'

The speci�ed program is used to edit the log message, and possibly verify that it

contains all required �elds. This is most useful in combination with the `rcsinfo' �le,

which can hold a log message template (see Section B.7 [rcsinfo], page 89).

`loginfo' The speci�ed program is called when the commit is complete. It receives the log message

and some additional information and can store the log message in a �le, or mail it to

appropriate persons, or maybe post it to a local newsgroup, or: : : Your imagination is

the limit!

86 CVS|Concurrent Versions System

B.3.1 The common syntax

The four �les `commitinfo', `loginfo', `rcsinfo' and `editinfo' all have a common format.

The purpose of the �les are described later on. The common syntax is described here.

Each line contains the following:

� A regular expression

� A whitespace separator|one or more spaces and/or tabs.

� A �le name or command-line template.

Blank lines are ignored. Lines that start with the character `#' are treated as comments. Long lines

unfortunately can not be broken in two parts in any way.

The �rst regular expression that matches the current directory name in the repository is used.

The rest of the line is used as a �le name or command-line as appropriate.

B.4 Commitinfo

The `commitinfo' �le de�nes programs to execute whenever `cvs commit' is about to execute.

These programs are used for pre-commit checking to verify that the modi�ed, added and removed

�les are really ready to be committed. This could be used, for instance, to verify that the changed

�les conform to to your site's standards for coding practice.

As mentioned earlier, each line in the `commitinfo' �le consists of a regular expression and a

command-line template. The template can include a program name and any number of arguments

you wish to supply to it. The full path to the current source repository is appended to the template,

followed by the �le names of any �les involved in the commit (added, removed, and modi�ed �les).

The �rst line with a regular expression matching the relative path to the module will be used.

If the command returns a non-zero exit status the commit will be aborted.

If the repository name does not match any of the regular expressions in this �le, the `DEFAULT'

line is used, if it is speci�ed.

All occurances of the name `ALL' appearing as a regular expression are used in addition to the

�rst matching regular expression or the name `DEFAULT'.

Note: when CVS is accessing a remote repository, `commitinfo' will be run on the remote (i.e.,

server) side, not the client side (see Section 4.5 [Remote repositories], page 16).

B.5 Editinfo

If you want to make sure that all log messages look the same way, you can use the `editinfo' �le

to specify a program that is used to edit the log message. This program could be a custom-made

Appendix B: Reference manual for the Administrative �les 87

editor that always enforces a certain style of the log message, or maybe a simple shell script that

calls an editor, and checks that the entered message contains the required �elds.

If no matching line is found in the `editinfo' �le, the editor speci�ed in the environment variable

$CVSEDITOR is used instead. If that variable is not set, then the environment variable $EDITOR is

used instead. If that variable is not set a precompiled default, normally vi, will be used.

The `editinfo' �le is often most useful together with the `rcsinfo' �le, which can be used to

specify a log message template.

Each line in the `editinfo' �le consists of a regular expression and a command-line template.

The template must include a program name, and can include any number of arguments. The full

path to the current log message template �le is appended to the template.

One thing that should be noted is that the `ALL' keyword is not supported. If more than one

matching line is found, the �rst one is used. This can be useful for specifying a default edit script

in a module, and then overriding it in a subdirectory.

If the repository name does not match any of the regular expressions in this �le, the `DEFAULT'

line is used, if it is speci�ed.

If the edit script exits with a non-zero exit status, the commit is aborted.

Note: when CVS is accessing a remote repository, `editinfo' will be run on the remote (i.e.,

server) side, not the client side (see Section 4.5 [Remote repositories], page 16).

B.5.1 Editinfo example

The following is a little silly example of a `editinfo' �le, together with the corresponding

`rcsinfo' �le, the log message template and an editor script. We begin with the log message tem-

plate. We want to always record a bug-id number on the �rst line of the log message. The rest of log

message is free text. The following template is found in the �le `/usr/cvssupport/tc.template'.

BugId:

The script `/usr/cvssupport/bugid.edit' is used to edit the log message.

#!/bin/sh

#

bugid.edit filename

#

Call $EDITOR on FILENAME, and verify that the

resulting file contains a valid bugid on the first

line.

if ["x$EDITOR" = "x"]; then EDITOR=vi; fi

if ["x$CVSEDITOR" = "x"]; then CVSEDITOR=$EDITOR; fi

$CVSEDITOR $1

until head -1|grep '^BugId:[]*[0-9][0-9]*$' < $1

do echo -n "No BugId found. Edit again? ([y]/n)"

88 CVS|Concurrent Versions System

read ans

case ${ans} in

n*) exit 1;;

esac

$CVSEDITOR $1

done

The `editinfo' �le contains this line:

^tc /usr/cvssupport/bugid.edit

The `rcsinfo' �le contains this line:

^tc /usr/cvssupport/tc.template

B.6 Loginfo

The `loginfo' �le is used to control where `cvs commit' log information is sent. The �rst entry

on a line is a regular expression which is tested against the directory that the change is being made

to, relative to the $CVSROOT. If a match is found, then the remainder of the line is a �lter program

that should expect log information on its standard input.

The �lter program may use one and only one % modi�er (a la printf). If `%s' is speci�ed in the

�lter program, a brief title is included (enclosed in single quotes) showing the modi�ed �le names.

If the repository name does not match any of the regular expressions in this �le, the `DEFAULT'

line is used, if it is speci�ed.

All occurances of the name `ALL' appearing as a regular expression are used in addition to the

�rst matching regular expression or `DEFAULT'.

The �rst matching regular expression is used.

See Section B.3 [commit �les], page 85, for a description of the syntax of the `loginfo' �le.

Note: when CVS is accessing a remote repository, `loginfo' will be run on the remote (i.e.,

server) side, not the client side (see Section 4.5 [Remote repositories], page 16).

B.6.1 Loginfo example

The following `loginfo' �le, together with the tiny shell-script below, appends all log messages

to the �le `$CVSROOT/CVSROOT/commitlog', and any commits to the administrative �les (inside the

`CVSROOT' directory) are also logged in `/usr/adm/cvsroot-log' and mailed to ceder.

ALL /usr/local/bin/cvs-log $CVSROOT/CVSROOT/commitlog

^CVSROOT Mail -s %s ceder

Appendix B: Reference manual for the Administrative �les 89

^CVSROOT /usr/local/bin/cvs-log /usr/adm/cvsroot-log

The shell-script `/usr/local/bin/cvs-log' looks like this:

#!/bin/sh

(echo "---";

echo -n $USER" ";

date;

echo;

sed '1s+'${CVSROOT}'++') >> $1

B.7 Rcsinfo

The `rcsinfo' �le can be used to specify a form to edit when �lling out the commit log.

The `rcsinfo' �le has a syntax similar to the `editinfo', `commitinfo' and `loginfo' �les. See

Section B.3.1 [syntax], page 86. Unlike the other �les the second part is not a command-line

template. Instead, the part after the regular expression should be a full pathname to a �le containing

the log message template.

If the repository name does not match any of the regular expressions in this �le, the `DEFAULT'

line is used, if it is speci�ed.

All occurances of the name `ALL' appearing as a regular expression are used in addition to the

�rst matching regular expression or `DEFAULT'.

The log message template will be used as a default log message. If you specify a log message

with `cvs commit -m message' or `cvs commit -f �le' that log message will override the template.

See Section B.5.1 [editinfo example], page 87, for an example `rcsinfo' �le.

Note: when CVS is accessing a remote repository, `rcsinfo' will be run on the remote (i.e.,

server) side, not the client side (see Section 4.5 [Remote repositories], page 16).

B.8 Ignoring �les via cvsignore

There are certain �le names that frequently occur inside your working copy, but that you don't

want to put under cvs control. Examples are all the object �les that you get while you compile

your sources. Normally, when you run `cvs update', it prints a line for each �le it encounters that

it doesn't know about (see Section A.20.2 [update output], page 81).

cvs has a list of �les (or sh(1) �le name patterns) that it should ignore while running update,

import and release. This list is constructed in the following way.

� The list is initialized to the following �le name patterns:

RCSLOG RCS SCCS

CVS* cvslog.*

90 CVS|Concurrent Versions System

tags TAGS

.make.state .nse_depinfo

~ # .#* ,*

*.old *.bak *.BAK *.orig *.rej .del-*

*.a *.o *.so *.Z *.elc *.ln

core

� The per-repository list in `$CVSROOT/CVSROOT/cvsignore' is appended to the list, if that �le

exists.

� The per-user list in `.cvsignore' in your home directory is appended to the list, if it exists.

� Any entries in the environment variable $CVSIGNORE is appended to the list.

� Any `-I' options given to cvs is appended.

� As cvs traverses through your directories, the contents of any `.cvsignore' will be appended

to the list. The patterns found in `.cvsignore' are only valid for the directory that contains

them, not for any sub-directories.

In any of the 5 places listed above, a single exclamation mark (`!') clears the ignore list. This

can be used if you want to store any �le which normally is ignored by cvs.

B.9 The history �le

The �le `$CVSROOT/CVSROOT/history' is used to log information for the history command

(see Section A.11 [history], page 67). This �le must be created to turn on logging. This is done

automatically if the cvsinit script is used to set up the repository.

The �le format of the `history' �le is unfortunately not yet documented anywhere, but it is

fairly easy to understand most of it.

B.10 Setting up the repository

When you install cvs for the �rst time, you should follow the instructions in the `INSTALL' �le

to set up the repository.

If you want to set up another repository, the easiest way to get a reasonable set of working

administrative �les is to run the cvsinit shell script. It will set up an empty repository in the

directory de�ned by the environment variable $CVSROOT. (cvsinit is careful to never overwrite

any existing �les in the repository, so no harm is done if you run cvsinit on an already set-up

repository. In fact, running it on an already set-up repository is the best way to update the various

scripts from the `contrib' directory.)

Appendix C: All environment variables which a�ect CVS 91

AppendixC All environment variableswhich a�ect CVS

This is a complete list of all environment variables that a�ect cvs.

$CVSIGNORE

A whitespace-separated list of �le name patterns that cvs should ignore. See Sec-

tion B.8 [cvsignore], page 89.

$CVSWRAPPERS

A whitespace-separated list of �le name patterns that cvs should treat as wrappers.

See Section B.2 [Wrappers], page 84.

$CVSREAD If this is set, checkout and update will try hard to make the �les in your working

directory read-only. When this is not set, the default behavior is to permit modi�cation

of your working �les.

$CVSROOT Should contain the full pathname to the root of the cvs source repository (where

the rcs history �les are kept). This information must be available to cvs for most

commands to execute; if $CVSROOT is not set, or if you wish to override it for one

invocation, you can supply it on the command line: `cvs -d cvsroot cvs_command: : :'

You may not need to set $CVSROOT if your cvs binary has the right path compiled in.

$EDITOR

$CVSEDITOR

Speci�es the program to use for recording log messages during commit. If not set, the

default is `/usr/ucb/vi'. $CVSEDITOR overrides $EDITOR. $CVSEDITOR does not exist

in cvs 1.3, but the next release will probably include it.

$PATH If $RCSBIN is not set, and no path is compiled into cvs, it will use $PATH to try to �nd

all programs it uses.

$RCSBIN Speci�es the full pathname of the location of rcs programs, such as co(1) and ci(1). If

not set, a compiled-in value is used, or your $PATH is searched.

cvs is a front-end to rcs. The following environment variables a�ect rcs:

$LOGNAME

$USER If set, they a�ect who rcs thinks you are. If you have trouble checking in �les it might

be because your login name di�ers from the setting of e.g. $LOGNAME.

$RCSINIT Options prepended to the argument list, separated by spaces. A backslash escapes

spaces within an option. The $RCSINIT options are prepended to the argument lists of

most rcs commands.

$TMPDIR

$TMP

$TEMP Name of the temporary directory. The environment variables are inspected in the

order they appear above and the �rst value found is taken; if none of them are set, a

host-dependent default is used, typically `/tmp'.

92 CVS|Concurrent Versions System

Appendix D: Troubleshooting 93

AppendixD Troubleshooting

D.1 Magic branch numbers

Externally, branch numbers consist of an odd number of dot-separated decimal integers. See

Section 2.1 [Revision numbers], page 7. That is not the whole truth, however. For e�ciency

reasons cvs sometimes inserts an extra 0 in the second rightmost position (1.2.3 becomes 1.2.0.3,

8.9.10.11.12 becomes 8.9.10.11.0.12 and so on).

cvs does a pretty good job at hiding these so called magic branches, but in at least four places

the hiding is incomplete.

� The magic branch can appear in the output from cvs status in vanilla cvs 1.3. This is �xed

in cvs 1.3-s2.

� The magic branch number appears in the output from cvs log. This is much harder to �x,

since cvs log runs rlog (which is part of the rcs distribution), and modifying rlog to know

about magic branches would probably break someone's habits (if they use branch 0 for their

own purposes).

� You cannot specify a symbolic branch name to cvs log.

� You cannot specify a symbolic branch name to cvs admin.

You can use the admin command to reassign a symbolic name to a branch the way rcs expects it

to be. If R4patches is assigned to the branch 1.4.2 (magic branch number 1.4.0.2) in �le `numbers.c'

you can do this:

$ cvs admin -NR4patches:1.4.2 numbers.c

It only works if at least one revision is already committed on the branch. Be very careful so that

you do not assign the tag to the wrong number. (There is no way to see how the tag was assigned

yesterday).

94 CVS|Concurrent Versions System

Appendix E: GNU GENERAL PUBLIC LICENSE 95

AppendixE GNUGENERAL PUBLIC LICENSE

96 CVS|Concurrent Versions System

Index 97

Index

If you cannot �nd what you are looking for here write to <ceder@signum.se> so that an entry

can be added to the next release of this manual.

-

-j (merging branches) . 31

-k (RCS k
ags) . 47

.

.bashrc . 13

.cshrc . 13

.cvsrc �le . 51

.pro�le. 13

.tcshrc . 13

/

/usr/local/cvsroot . 13

=

======= . 24

>

>>>>>>> .. 24

<

<<<<<<< .. 24

A

A sample session . 9

About this manual . 1

Add (subcommand) . 55

Add options . 56

Adding a tag . 25

Adding �les . 35

Admin (subcommand) . 57

Administrative �les (intro) . 15

Administrative �les (reference) . 83

Administrative �les, editing them 15

ALL in commitinfo . 86

Author keyword . 45

Automatically ignored �les . 89

Avoiding editor invocation . 54

B

Binary �les (inhibit keyword expansion) 59

Branch merge example . 31

Branch number . 7

Branch numbers . 28

Branch, creating a . 27

Branch, vendor- . 39

Branches . 25

Branches motivation . 27

Branches, copying changes between 31

Branches, sticky . 28

Bringing a �le up to date . 21

Bugs, known in this manual . 2

Bugs, reporting (manual) . 2

C

Changes, copying between branches 31

Changing a log message . 58

Checkin program . 84

Checking commits . 86

Checking out source . 9

Checkout (subcommand) . 60

Checkout program . 84

Checkout, example . 9

Cleaning up . 10

Client/Server Operation . 16

Co (subcommand) . 60

Command reference . 51

Command structure . 51

Comment leader . 60

Commit (subcommand) . 62

Commit �les . 85

Commit, when to . 49

Commitinfo . 86

Committing changes . 9

Common options . 53

Common syntax of info �les . 86

Con
ict markers . 24

Con
ict resolution . 24

Con
icts (merge example) . 23

Contributors (CVS program) . 3

Contributors (manual) . 2

Copying changes . 31

Correcting a log message . 58

Creating a branch . 27

Creating a project . 19

Creating a repository . 90

Credits (CVS program) . 3

Credits (manual). 2

CVS command structure . 51

CVS FAQ . 3

CVS FTP site . 3

CVS, history of . 3

CVS, introduction to . 3

CVSEDITOR . 91

CVSEDITOR, environment variable 9

CVSIGNORE . 91

Cvsignore, global . 89

98 CVS|Concurrent Versions System

CVSREAD . 91

CVSREAD, overriding . 53

cvsroot . 13

CVSROOT . 91

CVSROOT (�le) . 83

CVSROOT, environment variable 13

CVSROOT, module name . 15

CVSROOT, multiple repositories 16

CVSROOT, overriding . 52

cvswrappers (admin �le) . 84

CVSWRAPPERS, environment variable. 84

D

Date keyword . 45

Dates . 53

Decimal revision number . 7

DEFAULT in commitinfo . 86

DEFAULT in editinfo . 87

De�ning a module . 20

De�ning modules (intro) . 15

De�ning modules (reference manual) 83

Deleting �les. 37

Deleting revisions . 58

Deleting sticky tags . 29

Descending directories . 33

Di� . 10

Di� (subcommand) . 65

Di�erences, merging . 32

Directories, moving . 43

Directory, descending . 33

Disjoint repositories. 16

Distributing log messages . 88

driver.c (merge example) . 22

E

Editinfo . 86

Editing administrative �les . 15

Editing the modules �le . 20

EDITOR . 91

Editor, avoiding invocation of . 54

EDITOR, environment variable . 9

EDITOR, overriding . 52

Editor, specifying per module . 86

emerge . 24

Environment variables . 91

Errors, reporting (manual) . 2

Example of a work-session . 9

Example of merge . 22

Example, branch merge . 31

Export (subcommand) . 66

F

FAQ . 3

Fetching source . 9

File locking . 21

File permissions . 14

File status . 21

Files, moving . 41

Files, reference manual . 83

Fixes to CVS . 3

Fixing a log message . 58

Forcing a tag match . 54

Form for log message . 89

Format of CVS commands . 51

Four states of a �le . 21

FTP site . 3

G

Getting started . 9

Getting the source . 9

Global cvsignore . 89

Global options . 52

Group . 14

H

Header keyword . 45

History (subcommand). 67

History �le . 90

History �les . 14

History of CVS . 3

I

Id keyword . 45

Ident (shell command) . 46

Identifying �les . 45

Ignored �les . 89

Ignoring �les. 89

Import (subcommand) . 69

Importing �les . 19

Importing modules. 39

Index . 97

Info �les (syntax) . 86

Informing others . 24

Inhibiting keyword expansion . 59

Introduction to CVS . 3

Invoking CVS. 51

J

Join . 31

K

Keyword expansion . 45

Keyword expansion, inhibiting . 59

Keyword substitution . 45

K
ag . 47

Known bugs in this manual . 2

L

Layout of repository . 13

Left-hand options . 52

Linear development . 7

List, mailing list . 3

Locally modi�ed . 21

Index 99

Locker keyword . 45

Locking �les . 21

Log (subcommand) . 70

Log information, saving . 90

Log keyword . 45

Log keyword, selecting comment leader 60

Log message entry . 9

Log message template . 89

Log message, correcting . 58

Log messages . 88

Log messages, editing . 86

Loginfo . 88

LOGNAME . 91

M

Mail, automatic mail on commit 24

Mailing list . 3

Mailing log messages . 88

Main trunk (intro) . 7

Main trunk and branches . 25

Many repositories . 16

Markers, con
ict . 24

Merge, an example . 22

Merge, branch example . 31

Merging . 31

Merging a branch . 31

Merging a �le . 21

Merging two revisions . 32

mkmodules . 15

Modi�cations, copying between branches 31

Module status . 84

Module, de�ning . 20

Modules (admin �le) . 83

Modules (intro) . 7

Modules �le . 15

Modules �le, changing . 20

Motivation for branches . 27

Moving directories . 43

Moving �les . 41

Multiple developers . 21

Multiple repositories . 16

N

Name, symbolic (tag) . 25

Needing merge . 21

Needing update . 21

Nro� (selecting comment leader) 60

Number, branch . 7

Number, revision- . 7

O

option defaults . 51

Options, global . 52

Outdating revisions . 58

Overlap. 22

Overriding CVSREAD . 53

Overriding CVSROOT . 52

Overriding EDITOR . 52

Overriding RCSBIN . 52

P

Parallel repositories . 16

Patches to CVS . 3

PATH . 91

Per-module editor . 86

Policy . 49

Precommit checking . 86

Preface . 1

R

RCS history �les . 14

RCS keywords . 45

RCS revision numbers . 25

RCS, CVS uses RCS . 14

RCSBIN . 91

RCSBIN, overriding . 52

RCS�le keyword . 45

Rcsinfo . 89

RCSINIT . 91

Rdi� (subcommand) . 72

Read-only �les . 53

Read-only mode . 52

Recursive (directory descending) 33

Reference manual (�les) . 83

Reference manual for variables . 91

Reference, commands . 51

Release (subcommand). 74

Releases, revisions and versions . 8

Releasing your working copy . 10

Remote repositories . 16

Remove (subcommand) . 75

Removing a change . 32

Removing �les . 37

Removing your working copy . 10

Renaming directories . 43

Renaming �les . 41

Replacing a log message . 58

Reporting bugs (manual) . 2

Repositories, multiple . 16

Repositories, remote . 16

Repository (intro). 7

Repository, example . 13

Repository, setting up. 90

Repository, user parts . 14

Resetting sticky tags . 29

Resolving a con
ict . 24

Retrieving an old revision using tags 26

Revision keyword . 45

Revision management . 49

Revision numbers . 7

Revision tree. 7

Revision tree, making branches. 25

Revisions, merging di�erences between 32

Revisions, versions and releases . 8

Right-hand options . 53

100 CVS|Concurrent Versions System

Rtag (subcommand) . 77

rtag, creating a branch using . 27

S

Saving space . 58

Security . 14

setgid . 15

Setting up a repository . 90

setuid . 15

Signum Support . 1

Source keyword . 45

Source, getting CVS source . 3

Source, getting from CVS . 9

Specifying dates . 53

Spreading information . 24

Starting a project with CVS . 19

State keyword . 45

Status (subcommand). 78

Status of a �le . 21

Status of a module . 84

Sticky tags . 28

Sticky tags, resetting. 29

Storing log messages . 88

Structure . 51

Subdirectories . 33

Support, getting CVS support. 1

Symbolic name (tag) . 25

Syntax of info �les . 86

T

Tag (subcommand) . 78

Tag program . 84

tag, command, introduction . 25

tag, example . 25

Tag, retrieving old revisions . 26

Tag, symbolic name . 25

Tags . 25

Tags, sticky . 28

tc, Trivial Compiler (example) . 9

Team of developers . 21

TEMP. 91

Template for log message . 89

Third-party sources . 39

Time . 53

TMP . 91

TMPDIR . 91

Trace . 53

Tracking sources . 39

Trivial Compiler (example) . 9

Typical repository . 13

U

Undoing a change . 32

Up-to-date . 21

Update (subcommand) . 79

Update program . 84

update, introduction . 21

Updating a �le. 21

USER . 91

User modules . 14

V

Vendor . 39

Vendor branch . 39

Versions, revisions and releases . 8

Viewing di�erences . 10

W

Wdi� (import example) . 39

What (shell command) . 46

What branches are good for . 27

What is CVS? . 3

When to commit . 49

Work-session, example of . 9

Working copy . 21

Working copy, removing . 10

Wrappers . 84

i

Short Contents

About this manual . 1

1 What is CVS? . 3

2 Basic concepts . 7

3 A sample session . 9

4 The Repository . 13

5 Starting a project with CVS . 19

6 Multiple developers . 21

7 Branches . 25

8 Merging . 31

9 Recursive behavior . 33

10 Adding �les to a module . 35

11 Removing �les from a module . 37

12 Tracking third-party sources . 39

13 Moving and renaming �les . 41

14 Moving and renaming directories . 43

15 Keyword substitution . 45

16 Revision management . 49

Appendix A Reference manual for CVS commands 51

Appendix B Reference manual for the Administrative �les 83

Appendix C All environment variables which a�ect CVS 91

Appendix D Troubleshooting . 93

Appendix E GNU GENERAL PUBLIC LICENSE 95

Index . 97

ii CVS|Concurrent Versions System

iii

Table of Contents

About this manual . 1

Checklist for the impatient reader . 1

Credits . 2

BUGS . 2

1 What is CVS? . 3

CVS is not: : : . 3

2 Basic concepts . 7

2.1 Revision numbers . 7

2.2 Versions, revisions and releases . 8

3 A sample session . 9

3.1 Getting the source. 9

3.2 Committing your changes . 9

3.3 Cleaning up . 10

3.4 Viewing di�erences . 10

4 The Repository . 13

4.1 User modules . 14

4.1.1 File permissions . 14

4.2 The administrative �les . 15

4.2.1 Editing administrative �les . 15

4.3 Multiple repositories . 16

4.4 Creating a repository . 16

4.5 Remote repositories . 16

5 Starting a project with CVS . 19

5.1 Setting up the �les . 19

5.1.1 Creating a module from a number of �les 19

5.1.2 Creating a module from scratch . 20

5.2 De�ning the module . 20

6 Multiple developers . 21

6.1 File status . 21

6.2 Bringing a �le up to date . 21

6.3 Con
icts example . 22

6.4 Informing others about commits . 24

7 Branches . 25

7.1 Tags{Symbolic revisions . 25

7.2 What branches are good for . 27

7.3 Creating a branch . 27

7.4 Sticky tags . 28

8 Merging . 31

8.1 Merging an entire branch . 31

8.2 Merging di�erences between any two revisions 32

iv CVS|Concurrent Versions System

9 Recursive behavior . 33

10 Adding �les to a module . 35

11 Removing �les from a module 37

12 Tracking third-party sources . 39

12.1 Importing a module for the �rst time . 39

12.2 Updating a module with the import command 39

13 Moving and renaming �les . 41

13.1 The Normal way to Rename . 41

13.2 Moving the history �le. 41

13.3 Copying the history �le . 42

14 Moving and renaming directories 43

15 Keyword substitution . 45

15.1 RCS Keywords . 45

15.2 Using keywords . 45

15.3 Avoiding substitution. 46

15.4 Substitution modes . 47

15.5 Problems with the Log keyword. 47

16 Revision management . 49

16.1 When to commit? . 49

Appendix A Reference manual for CVS commands

. 51

A.1 Overall structure of CVS commands . 51

A.2 Default options and the ~/.cvsrc �le . 51

A.3 Global options . 52

A.4 Common command options . 53

A.5 add|Add a new �le/directory to the repository 55

A.5.1 add options . 56

A.5.2 add examples . 56

A.6 admin|Administration front end for rcs . 56

A.6.1 admin options . 57

A.6.2 admin examples . 59

A.6.2.1 Outdating is dangerous . 59

A.6.2.2 Handling binary �les . 59

A.6.2.3 Comment leaders . 60

A.7 checkout|Check out sources for editing . 60

A.7.1 checkout options . 61

A.7.2 checkout examples . 62

A.8 commit|Check �les into the repository . 62

A.8.1 commit options . 62

A.8.2 commit examples . 63

A.8.2.1 New major release number 63

A.8.2.2 Committing to a branch . 64

A.8.2.3 Creating the branch after editing 64

A.9 di�|Run di�s between revisions . 65

A.9.1 di� options . 65

v

A.9.2 di� examples . 66

A.10 export|Export sources from CVS, similar to checkout 66

A.10.1 export options . 66

A.11 history|Show status of �les and users . 67

A.11.1 history options . 67

A.12 import|Import sources into CVS, using vendor branches 69

A.12.1 import options . 70

A.12.2 import examples . 70

A.13 log|Print out 'rlog' information for �les . 70

A.13.1 log options . 71

A.13.2 log examples . 72

A.14 rdi�|'patch' format di�s between releases . 72

A.14.1 rdi� options . 73

A.14.2 rdi� examples. 73

A.15 release|Indicate that a Module is no longer in use 74

A.15.1 release options . 74

A.15.2 release output . 74

A.15.3 release examples . 75

A.16 remove|Remove an entry from the repository 75

A.16.1 remove options. 75

A.16.2 remove examples . 76

A.16.2.1 Remove a couple of �les. 76

A.16.2.2 Resurrecting removed �les. 76

A.17 rtag|Add a tag to the RCS �le . 76

A.17.1 rtag options . 77

A.18 status|Status info on the revisions . 78

A.18.1 status options . 78

A.19 tag|Add a symbolic tag to checked out version of RCS �le 78

A.19.1 tag options . 79

A.20 update|Bring work tree in sync with repository 79

A.20.1 update options . 79

A.20.2 update output . 81

A.20.3 update examples . 82

Appendix B Reference manual for the Administrative

�les . 83

B.1 The modules �le . 83

B.2 The cvswrappers �le . 84

B.3 The commit support �les . 85

B.3.1 The common syntax . 86

B.4 Commitinfo . 86

B.5 Editinfo . 86

B.5.1 Editinfo example . 87

B.6 Loginfo . 88

B.6.1 Loginfo example . 88

B.7 Rcsinfo . 89

B.8 Ignoring �les via cvsignore . 89

B.9 The history �le . 90

B.10 Setting up the repository . 90

Appendix C All environment variables which a�ect

CVS . 91

Appendix D Troubleshooting . 93

D.1 Magic branch numbers . 93

vi CVS|Concurrent Versions System

Appendix E GNU GENERAL PUBLIC LICENSE

. 95

Index . 97

