
I. System Description

Creating and running models with Ents is fairly straightforward after

some basic concepts have been explained.

1. The opening window.

When the application starts up there are two windows present: the

simulation window and a palette that contains symbols for various network

blocks. Figure 1 shows a typical arrangement. The main menu (not shown)

is typically placed at its default spot, the upper left hand corner of the screen.

Figure 1. The Opening Screen.

To add a node to the model, click on the appropriate symbol with the

mouse and drag it over to the simulation window, then release the button.

The node will be added to the window. If you attempt to release the node in

an inappropriate area—the background or the window of another application,

say—the node will appear to travel back to the palette and no action will be

taken.

2. Network symbols.

Ents defines eight network blocks from which simulation networks can

be built. The model is created by placing blocks into a window, connecting

them by drawing lines with a mouse, and then setting parameters for

individual nodes. A network block that represents an activity is shown in

Figure 2.

Figure 2. A network block

Each block type has its own icon; in this case, a clock face that

represents the passage of time. The block’s name is below the node. It can

be edited by clicking on the text with the mouse and typing in new information.

The node can be dragged to a new location on the background by clicking on

it with the mouse and then, with the mouse button still down, moving to the

desired location.

The parameters of the network node, such as the activity duration and

the random number stream, can be viewed and set by double clicking on the

icon. A panel to display and set the various network parameters will come up,

and the user can select and specify values in the normal NeXT Step ways.

This node has two connectors, the small black boxes on the right and left of

the icon. Entities arrive through the connector on the left hand side, and are sent to

the next node through the connector on the right hand side. No source or destination

nodes are shown for the node in figure 2.

To specify the next node an entity will go to, click down with the mouse

somewhere in the right hand connector box and then drag, with the mouse button still

down, to another connector. A line is drawn from the connector box to the current

mouse location to let the user know something is happening.

When the mouse is over another connector box that is capable of accepting the

entity, the receiving connector box will highlight. If the user releases the mouse

button while over the accepting connector the line will attach to it; if not, the line will

disappear. The line signifies that an entity path exists between the two nodes.

A connector is either an inlet connector or an outlet connector. An outlet

connector specifies what node to send an entity to next. It may have one and only one

line connecting it to another node, since the entity can be sent to only one node. Once

a line has been drawn to an outlet connector no further associations are allowed. The

user must first delete the existing link and then create a new one.

An inlet connector can have many lines connecting it to other nodes, since

many blocks might need to send entities to the same node.

Outlet connectors must be linked to inlet connectors, and vice versa. This is

just common sense—it serves no purpose to have two outlets connected to each other.

The program will disallow any attempts to make such a connection.

The concepts above are applicable to all the process classes defined in Ents.

Specific information on what the nodes do is described below.

i. Create nodes. The create nodes manufacture new entities at a user-selected

interval. The symbol for the create node is shown in Figure 3.

Figure 3. The create node.

The create node only sends entities on to other nodes and does not receive

them. It has one outlet connector but no inlet connector.

The inspector panel for the create node is shown in Figure 4. As with the other

nodes, the inspector panel is called up by double clicking on the icon of the block in

question in the simulation window.

Figure 4. Create node inspector panel.

The inspector uses the usual NeXT Step conventions, including the close box

in the upper right hand corner, buttons, fields, and pop-up lists. Fields that cannot be

edited are denoted by light grey text. These only display information and cannot be

changed.

By default the node creates an entity every time unit, though the parameter can

be changed by editing the field at the top of the window. To select a random number

distribution other than Fixed, click on the button in the Time Between Creations box

and then drag to one of the other distributions. Exponential, normal, fixed, and

uniform distributions may be selected from the list. The names for the distribution’s

parameters will appear in the form to the right, where the user can enter new values.

The random number stream can also be selected in a similar manner from another

pop-up list.

Negative values for time between creations are meaningless, and are therefore

disallowed. If the user attempts to enter a negative number he will be alerted by a

beep and the cursor will not advance to the next field. Restrictions on other random

number parameters are also enforced so that the user cannot enter negative values for

the normal distribution’s variance or other obviously incorrect data.

If the reporting check box is on the node’s summary statistics will be printed

to a window if the user decides to print a report. If node statistics are of no interest,

switch the check box off by clicking in it.

The create node can stop creating entities after either a specific time in the

simulation or after a certain number of entities have been created. To enable either

option, click on the appropriate check box and then edit the field in the form below it.

By default there are no limits on entity creation.

Any comments or notes about the node can be entered in the scrolling text

field at the bottom of the panel.

Once the create node parameters are set to your satisfaction, click on the Set

button in the lower right corner of the panel to save the settings. The Revert button

restores the node to the state it was in the last time the Set button was pressed. If the

inspector panel is closed without pressing the Set button the parameters will not be

changed.

A count of the entities created and the total entities created are displayed in the

form. The Entities Created field refers to the number of entities created since the

statistics were last cleared, while Total Entities Created is the running count of

entities created since the simulation began. It is the Total Entities Created field that

the entity creation limit refers to.

ii. The destroy node. The destroy node is the counterpart to the create node—

where the create node makes instances of new entities, the destroy node disposes of

them and frees the computer system resources taken up by the entity representation.

A destroy node does not forward entities to any other node, and therefore has only an

inlet connector. The icon for the destroy node, the late, lamented black hole from

release 1.0 of the operating system, is shown in Figure 5.

Figure 5. The destroy node.

The inspector panel for the destroy node is shown in Figure 6.

Figure 6. Destroy node inspector panel.

The destroy node inspector panel is quite similar to the other inspector panels

and operates in an identical way. The Disposed and Total Disposed fields refer to the

number of entities received since the last time the statistics were cleared and since the

simulation began, respectively. Some statistics on the entities disposed by the system

are shown in the Time In System form in the middle of the panel. The mean, variance,

minimum, and maximum amount of time the entities disposed by this node have spent

in the system are shown in fields that cannot be edited.

The simulation can be stopped after a specific number of entities have passed

through the destroy node by selecting the Limit Disposals check box. The Disposal

Limit field will become active and a new value can be entered. When the disposal

limit has been equalled by the total number of entities disposed the simulation will

stop execution.

iii. The assign node. Entities are objects which travel through the network and

have attribute/value pairs that describe the entity. Instances of entities are

manufactured at create nodes and disposed of (usually) at destroy nodes. The entities

are given user-specified attribute/value pairs at assign nodes, the icon for which is

shown in Figure 7.

Figure 7. The assign node.

Entities have a few predefined attributes assigned by the system and an

unlimited number of user-defined attributes. The system-defined attributes cannot be

redefined or assigned new value, but user-defined attributes can be added or changed

at will. The restriction on system-defined attributes ensures that they always return

the values expected of them.

The attribute names are text strings that can be any length and can include

spaces or other characters; capitalization is not important, so “This Attribute” is

equivalent to “THIS ATTRIBUTE” or “tHiS attRIBute.” While any text string can be

used as an attribute name, it is unwise to use text that might be interpreted as a

number, such as “12” or “1.4”. Though case is not important, the capitalization

originally used is preserved to enhance readability.

The values associated with an attribute name are double-precision floating

point variables.

For example, an entity might have attribute/value pairs as follows:

Time In System 10.4

TNOW 145.7

Creation Time 135.3

Repair Trips 2.0

Regular Trips 5.0

The first three attributes, Time in System, TNOW, and Creation Time, are

system-defined. They always return the time the entity has spent in the system since

it was created, the current simulation clock time, and the simulation time at which the

entity was created. If the Time In System and TNOW attributes had been examined

at another point in the simulation they might well have contained different values,

while for a given entity the time of creation will always be the same. Repair Trips

and Regular Trips are user-defined attribute/value pairs. The modeler is responsible

for assigning and updating their values.

It should be emphasized that the attribute/value pairs are unique to each entity.

Another entity might have different attributes and values, and changing the value of

an attribute in one entity has no effect on the attribute in another entity.

The inspector panel for the assign node is shown in Figure 8.

Figure 8. Assign node inspector panel.

The name of the attribute is entered in the field at the top of the panel. The

user selects which of several values to assign to the attribute based on the state of the

so-called “radio buttons” at the top left of the panel.

To assign a random variable to an attribute, click on the random variable radio

button. All the other radio buttons will switch off and the selected button will switch

on, just as a push-button car radio works when selecting a new station. Enter the

parameters for the random variable in the field, and then make the selection

permanent by pushing the Set button.

The current system time—the value of the system clock when the entity

arrives at the node—can be assigned by clicking on the current time radio button.

The attribute will retain the same value until it is reassigned, unlike the TNOW

system assigned variable, which always reflects the current simulation time.

The attribute can also be assigned the length of a queue or the number of

queue servers available. When either of these radio buttons is pressed, the Queue

Name field becomes active. Enter the name of the queue you want to monitor. (The

queue name is the text that appears underneath the node icon.)

The queue must already exist, and must be uniquely named. The inspector

panel will refuse to accept a queue name that does not exist or which is used by two

queues. The assign node is also checked at runtime for ambiguous name references;

if another queue with the same name has been added after assignment node was

specified, an alert panel will warn the user and prevent the program from running.

Queues that are not mentioned in assignment nodes are allowed to have identical

names.

The Queue Length and Servers Available assignment options are useful

primarily for decision making. Often the entity will be routed to a different network

branch when all the servers are busy or when the line exceeds a certain length1.

When an entity arrives, the node checks to see if the attribute already exists.

If it does, the attribute’s value is replaced by the value shown in the inspector

window. If the entity does not have the attribute it is created automatically and added

to the list of attribute/value pairs. There are no limits on the number of attributes an

entity may have, aside from computer system restrictions.

iv. The activity node. The activity node delays an entity by a specified

amount of time. Any number of entities may be undergoing an activity at one time.

An example of an activity might be the delay associated with moving a part from one

station to another via conveyor belt. There is essentially no limit on the number of

entities that can be engaged in the activity, and the process takes some amount of time

1Routing to a different node when the line becomes too long can also be acheived with the

balking feature of queue nodes.

to complete.

The icon for the activity node is a clock face, shown in Figure 9. An activity

node has one inlet connector on the left hand side of the node icon and one outlet

connector on the right hand side.

Figure 9. The activity node.

The inspector panel for activity nodes is shown in Figure 10.

Figure 10. Activity node inspector panel.

The length of the activity can be set by selecting a random number distribution

from the pop-up list and then entering the distribution’s parameters. Either constant

numbers or entity attributes can be entered as random number distribution parameters.

If the latter option is used, the entity will be examined and the value of the attribute

looked up and used as the parameter. If an entity arrives without the attribute shown

or a value that is obviously invalid (a negative variance for the Normal distribution or

a fixed length activity time of less than zero, for example), the simulation will stop

with an error message.

Constant numeric values and entity names are distinguished by first

attempting to resolve the data entered into the field as a number. If a negative number

is entered the field will disallow entry; if a positive number is entered the field will

accept the data. If the data cannot be interpreted as a number it is assumed to be an

attribute that will be present in all entities that arrive at the node. It is for this reason

that giving an attribute a name that might be construed as a number is a bad idea; an

attribute named “13” would always be resolved as the value 13, and the value

associated with the name would never be referenced.

 The random number stream used by the random variable generator is selected

through the other pop-up list in the box.

Reporting for the node can be turned on or off via the labeled check box.

Assorted statistics and status information on the node are displayed in greyed-

out text, since they reflect a system state that cannot be changed by the user. The

number of entities currently engaged in the activity is shown near the top of the panel,

and statistics on the time the entities have spent in the activity and the level of the

activity, or average number of entities occupied in the activity over time, are shown in

two forms near the bottom of the panel. This is a statistic based on a time-persistent

variable.

v. Branch nodes. Branch nodes route the entity based on the values of its

attributes. For example, all entities that have a time of creation less than 500.0 might

be sent to one branch of the network, while those created after that time would be sent

to a branch that did special processing for late arrivals. The icon for the branch node

is shown in Figure 11.

Figure 11. The branch node.

The branch node has one inlet connector and two outlet connectors. The

upper outlet connector routes the entity to one branch if a boolean test is true, and the

lower connector routes the entity to another branch if the test is false.

The inspector panel for branch nodes is shown in Figure 12.

Figure 12. Branch node inspector panel.

The branch node performs a single boolean test on the value of an attribute

given by the user. The name of the attribute is entered into the field at the upper left

hand side of the panel, while the value it is being compared against is entered in the

field to its right. The comparison operator, one of =, <=, >=, >, <, or <>, is selected

from the pop-up scrolling list between the two fields.

The value on the right hand side may be either a constant value or another

attribute contained by the entity. For example, the user might specify a left-hand

attribute of TNOW, a comparison operator of <, and a right hand value of 550. If the

current clock time is less than 550 the entity will be routed to the true branch.

Alternatively, the right hand field could contain another entity attribute. The value of

the right-hand attribute will be compared to the value of the left-hand attribute, and

the entity routed accordingly. Suppose that an entity has been assigned attributes of

“Max line length” and “Current line length,” and that the comparison operator is “≥”.

Entering the names of the attributes in the left-hand and right-hand fields will ensure

that the entity is routed to the true node when the value contained in “Max line

length” is greater than or equal to the value contained in “Current line length.”

The inspector panel differentiates between values and attribute names in the

same manner that the activity node does: by first attempting to resolve the entry as a

number, and then by assuming it is an attribute. Therefore attribute names that might

be interpreted as numbers should not be used.

An ambiguity exists if an entity arrives at the branch node without one or both

of the attributes referenced in the boolean statement: how can we determine the truth

of a statement if we have no data upon which to base a comparison? As a safety

measure the user can state what should occur if this situation occurs. The simulation

can stop, the default state; the entity can take the true branch, or the entity can take

the false branch. Any of these options can be selected by clicking on the appropriate

radio button.

Statistics are kept on the number of entities arriving at the node, taking the

true branch, the false branch, and default branches (an entity arrived without an

attribute).

vi. The arithmetic node. The arithmetic nodes performs arithmetic operations

on attribute values. An attribute might have one added to its pre-existing value

whenever it comes to the node, for example, or it might be multiplied by another

entity attribute. The icon for the arithmetic node is shown in Figure 13.

Figure 13. The arithmetic node.

The arithmetic node has one inlet connector and one outlet connector.

The inspector panel for the arithmetic node is shown in Figure 14.

Figure 14. Arithmetic node inspector panel.

As with the assignment node, the name of the attribute is put into the field at

the upper left of the inspector panel. The operation to be performed on the attribute,

+, -, /, or *, is selected from the scrolling pop-up list button. The attribute that the

result will be placed in is entered into the left hand field, and a number or attribute is

entered into the right hand field. As before, the value on the right hand side is first

resolved as a number; if that operation fails the string is resolved as an attribute name.

This allows either constant values or attribute values to be used on the right hand side

of the expression.

If the left hand attribute did not exist prior to the entity’s arrival at the node

the attribute is created with a value of zero, and then the arithmetic operation is

performed; if the right hand attribute name does not exist in the entity its value is

assumed to be zero.

Suppose an arithmetic node has is specified such that “Loopcount” is in the

left hand field, the operator is “+”, and the number “1” in the right and field. If an

entity arrives without the attribute “Łoopcount,” it will be created and added to the

entity’s attribute list with an initial value of zero. Then operation will be performed;

in this case, one will be added to zero, and the attribute will have a value of one. If

the entity returns to the node the value of “Łoopcount” will be incremented by one

each time from its existing value: 2, 3, 4….

vii. The statistics node. The statistics node collects summary data on a given

entity attribute. The icon for the statistics node is shown if Figure 15.

Figure 15. The statistics node.

The statistics node has one inlet connector and one outlet connector.

The inspector panel for the statistics node is shown in Figure 16.

Figure 16. Statistics node inspector panel.

The attribute name that observation statistics are to be collected on is specified

in the field at the top of the inspector panel. All entities that have an attribute by that

name and that pass through this node contribute their data to the summary statistics.

If an entity arrives at the node that does not contain the attribute, it is passed on

without further action.

The mean, minimum, maximum, count and variance are calculated and shown

from those entities that do contain an attribute with the name shown in the form. The

statistics can, as usual, be reset to the zero state by pressing the Clear Statistics

button.

Occasionally the user might want to confirm that no entities arrived at the

node without an attribute by the name shown in the inspector panel. This can be done

by comparing the number of arrivals to the node with the observation count in the

statistics form. If such an entity passed through the node the number of arrivals will

exceed the number of observations in the summary statistics.

viii. The queue node. This process class is one of the most complex and

useful node types. Many business simulations become, in effect, a network of

interacting queues, activities, and decision actions that are too complex to be solved

by classical queuing theory techniques. The icon for the queue node is shown in

Figure 17.

Figure 17. The queue node.

The queue node has one inlet connector and two outlet connectors. The

connector at the right of the node is the normal outlet connector, where entities are

sent when the complete service. The connector at the top of the icon is the balk

connector.

Balking is a user-selected option. If an entity arrives and finds that the line is

too long it immediately balks and goes to the node pointed to by the balk connector.

If balking is not enabled the connector is not required to point to another node. This

is the only exception to the rule that all connectors must point to another connector.

The inspector panel for the queue node is shown in Figure 18.

Figure 18. Queue node inspector panel.

The entity will arrive at the node and check for an available server. If no

server is available the entity goes into a line and waits until one becomes free, then

enters service. The time the entity spends in service is a random variable; afterwards

the entity is sent on to the next node.

Balking is enabled by clicking in the marked check box. The maximum line

length field becomes active, and the user may enter the largest size the line can grow

to. For example, a drive-up teller window might have physical or logical constraints

on the number of cars that can wait for service at one time: limited space for cars in

the line or impatient customers, perhaps. If balking is enabled the balk output

connector must point to another node. An error is reported by the program when it

attempts to run if no balking connection exists and balking is enabled.

The length of service random variable is selected in the usual way from the

pop-up lists and field entries in the box at the top of the inspector. The queue

discipline can be selected from the pop-up list to the left; the options are FIFO, LIFO,

and Priority. If the priority option is selected the priority attribute field is activated in

the form below it and the user is allowed to enter the attribute name.

If the queue is in priority order the line is arranged in ascending, FIFO order:

the entities that have the highest attribute value are placed first in line, and if any ties

occur they are broken by putting the later arrival further back in the line. If an entity

arrives at a priority queue node without the attribute the line is ordered by, the entity

is placed at the back of the line in FIFO order. New entities with the attribute will

always be placed in front of older entities without the attribute.

The number of servers is set through the Servers field, which can be set to any

non-negative integer. If servers are added while a line for service exists, the waiting

entities are taken in order from the line and placed into service immediately. If the

number of servers is reduced below the number already busy the servers will be

removed when the entity they are occupied with finish service.

The number of servers that are busy and the length of the current line are

shown in greyed-out text to signify that the user cannot directly change these

parameters.

Several summary statistics on the performance parameters of the queue can be

shown in the two forms towards the bottom of the inspector panel. Observation based

statistics are displayed in the left hand form and statistics based on time persistent

variables in the form to the right. Each form can display statistics for a number of

variables by selecting the pop-up list above the form. Observation based statistics

that are collected automatically include Time in Node, Time in Line, Time Being

Serviced, and Time Between Balks. Time in Node refers to the cumulative waiting

time and service time, while Time in Line and Time Being Serviced are a more

detailed breakdown of the same performance data. The remaining statistics are self

explanatory.

The statistics based on time-persistent variables are displayed in the form to

the right. These include Server Utilization, Entities in Line, and Entities in the Node.

 Server Utilization is the average number of servers busy, over time. This is

particularly useful information for use in determining how many servers are required

to efficiently serve customers. High utilization is the usual design objective when

optimizing a model, but this also has a side effect of increasing line length and

customer waiting time.

The average number of entities in line and the average number in the node are

two other summary statistics that are useful in optimizing models. The Entities in

Line statistic refers to the time-averaged number of entities waiting for service,

generally a parameter that should be minimized. The Entities in Node statistic is the

time-averaged number of entities both waiting and undergoing service.

3. Running simulations. Building and running a simulation is simple. A

typical window arrangement is shown in Figure 1. Drag the node objects over from

the palette, drop them into the simulation window, and then hook up the objects by

dragging between connectors with the mouse. The simulation window can be made

larger to view models that take up more space, and the background upon which the

network nodes rest can be scrolled with the sliders on the edge of the window. The

background will scroll automatically when the user drags an existing node beyond the

right hand or upper edges of the visible region.

All the connectors with the possible exception of queue node balk connector

should point to another node. Enter the time to stop the simulation by typing in the

text data entry field in the upper center of the simulation window, and then press the

Run button. The simulation will execute until it reaches the end time or until one of

the nodes in the model meets the simulation termination criteria.

The program checks for obviously incorrect data before running the

simulation. If a node has incorrect or incompletely specified data an alert panel will

pop up with the name of the node and a description of the problem.

The simulation window is in a so-called modal loop when the model is

running and ignores input to menus, panels, or windows other than the running

simulation window. The active simulation window still accepts input, however; the

simulation can be stopped by pressing the Stop button, a node inspector panel can be

opened, and the speed of the animation can be changed by moving the slider

(animation and other features are discussed below). Allowing a model to run in

background while the user continues to work in other windows would require

multiple threaded execution of the application. The NeXT supplies the tools to do

this, but this feature has not been implemented in the current version of the program.

The application’s main menu is shown in Figure 19. For the most part the

menu contains standard NeXT Step items that will be familiar to any NeXT user.

Figure 19. The main menu.

The menu items with arrow heads to their right signify submenus, and those

ending with a “…” signify that a dialog box or some other panel will come up when

the item is selected. Submenus can be “torn off” from the main menu and made into

stand alone menus; all the menus can be dragged to more convenient locations on the

screen. Most NeXTs are set up to place the main menu in the upper left hand corner

of the screen when the application starts.

The menu that is most concerned with simulation proper is the Simulation

submenu, a submenu of the main menu. It is shown in Figure 20.

Figure 20. The Simulation submenu.

The Run and Step menu items are alternatives to the buttons in the simulation

window. The have keyboard equivalents of command-r and command-N,

respectively.

A textual summary of the model’s performance can be shown in a window at

any time by selecting the Report menu item. All nodes that have the reporting check

box enabled in their inspector windows will have their relevant statistics summarized

and tabulated. Animation and execution tracing are discussed in the debugging

section below.

Many models have a so-called “warm-up period” during which the model

reaches steady-state conditions. The statistics gathered while the model is in the

transient state can bias the estimate of the true steady-state system behavior, if

ascertaining steady-state behavior is in fact the objective of the modeler. The

statistics gathered by each node can be cleared by bringing up the inspector panel and

pressing the Clear Statistics button, but doing this for each of the nodes in a large

model would be very tedious. All the node statistics can be cleared at once by

selecting the Clear Statistics… item from the Simulation menu, which has exactly the

same effect as bringing up the inspector panel for each node and clicking the Clear

Statistics button. An alert panel will come up to confirm the user’s intent and then

continue with the operation.

The model can be reset to its original, time zero state by selecting the Reset…

item from the Simulation menu in a similar manner. It is necessary to reset the

simulation to make topology changes or to add nodes to the model. Changing the

parameters of existing nodes does not require a reset.

If the palette window disappears, a new one can be opened or the old one

brought to the front by selecting the Palette… item from the main menu.

The above submenus and menu items are the only unique additions to the

main menu. The remaining menus and menu items are standard NeXT Step

application features which should be familiar to most users. For example, the model

can be saved to disk at any time by selecting the Document menu item. This will

present a standard NeXT Step save menu, which can call up the usual file saving and

opening panels. The model will be saved with its current state—including the current

simulation clock, event list, and node statistics.

The Windows menu item in the main menu shows all the application’s open

windows in a submenu. The Windows menu is another of the standard NeXT Step

menu items that should be familiar to NeXT users.

The Services menu provides access to NeXT “Services,” or cooperating

programs that provide some utility function. While the services available will differ

from system to system depending upon how the system administrator has set up the

computer, it is almost certain that the user will be able to look up words in the Digital

Webster on-line dictionary and to send text to another user by electronic mail. All the

user needs to do is select an area of text with the mouse and then select the

corresponding menu item from the Services menu. A program called nxyplot,

available from NeXT-related electronic bulletin boards at no charge, can take textual

numeric data that has been selected with the mouse and create charts and plots.

�4. Output features. Ents uses the normal NeXT Step conventions for printing.

Simply click on the Print… item in the main menu and a dialog box comes up that

allows the user to pick a printer or file to which to send output.

5. Debugging. It is the rare analyst indeed who can always correctly specify

the simulation model the first time. Ents includes debugging tools that let the user

trace through program execution and entity flow.

Clicking on the Trace Execution menu item of the Simulation menu brings up

a text window that prints a record of every event executed by the simulation engine.

The event time, event type, and name of the node at which the event occurred are

printed to the window for every event that is executed.

The Step menu item in the same menu and the Step button in the simulation

window single-step through the event list. Both have the same effect—dispatching a

single event and then stopping the simulation for examination. Stepping through the

model execution is most useful when the simulation is in the execution tracing mode.

One particularly powerful debugging tool is the animation capability. When

animation is turned on from the Simulation menu the movement of entities between

nodes is shown by a small sphere that travels from one icon to another. A few

minutes examination of a running simulation is usually all that’s needed to determine

that a model is routing entities incorrectly. The animation can be sped up or slowed

down by adjusting the animation speed slider.

II. Application Examples

The specifications of the simulation process nodes were discussed in detail in

the previous chapter, but no simulation is made of nodes working in isolation. At

least a few nodes need to be used in a typical model, and increasing the scale from

single nodes to an interconnected network presents hurdles that users often find

difficult to overcome. This chapter gives two examples of modeling entire systems

with Ents: a TV repair line and a Quarry operation, two examples that have been used

throughout the literature.

1. TV repair problem.

One of the canonical examples used in simulation texts is that of a TV repair

line, originally developed by Schriber (1974). Pritsker and Pegden (1979) restate the

critical parameters of the system and model it using SLAM. Pritsker and Pegden’s

description is repeated here, and then the model will be developed step by step in

Ents.

A television inspection and repair line has units arrive to its entry point at a

rate uniformly distributed between 3.5 and 7.5 minutes. Two inspectors work at the

entry point side by side, each examining sets as they arrive. An inspector takes

between 6 and 12 minutes, uniformly distributed, to check over a TV. If the set

passes scrutiny it is sent on to the packing department and out of the system of

interest, but if it fails it is sent to an adjustment station where another worker tunes it.

Once that operation has been completed the adjusted set is sent back to the incoming

inspection station. On average 85% of the units pass inspection and 15% are in need

of an adjustment; the adjustment takes 20-40 minutes, again uniformly distributed.

Sets that have been adjusted are just as likely as new arrivals to be found defective. A

schematic diagram of the system is shown in Figure 21.

Arrival Inspection

Adjustment

Exit

System

Figure 21. TV Inspection and Repair Line schematic diagram.

The TV sets arrive, are inspected, and either sent out of the system or to the

adjustment station. At the adjustment station they are fixed, perhaps, and then sent

back to the arrival station to be inspected with the other new TVs.

A model of this system is characterized by an entity creation mechanism to

correspond to the entry of new TVs into the inspection line; a queue with two servers

acting in parallel related to the inspection station; another queue for the adjustment

station, this one manned by a single person; and a way to send some of the entities to

the adjustment queue and the rest out of the system model. The creation mechanism,

queues, and entity disposal parts of the model are easy to implement since they have

exact equivalents in the defined process classes. Finding a way to route the entities is

slightly more difficult. Two Ents nodes are needed to do this, one to assign an

attribute and one to dispatch entities based on the attribute value.

From the opening screen shown in Figure 1, drag over a create node, two

queue nodes, an assign node, a branch node, and a destroy node from the palette.

Arrange them in the simulation window as shown in Figure 22. More meaningful

captions can be placed on the nodes by clicking on the text with the mouse and

entering new names.

Figure 22. Initial node layout for TV inspection.

Using the mouse, specify the routes an entity can take as it travels through the

model by connecting the nodes to each other. At the create node, click on the

connector box and drag out a line to the inspection queue. When the pointer makes

contact with the inlet connector the small box will highlight, signifying that a

connection is possible. Release the mouse and the line will become permanent.

Specify the other routes so that the entity travels from the create node to the

inspection queue, the assignment node, and the branch node. Draw a line between the

true outlet connector and the destroy node, and from the false branch connector and

the adjustment queue. From the adjustment queue the entities return to the inspection

station, so draw another line from the queue output connector to the inlet connector of

the adjustment queue. There is no need to connect any of the queue balk nodes, since

balking will not be allowed in this model. The network should resemble that shown

in Figure 23. when finished. The network topology has been completely specified.

Figure 23. The connected TV inspection model.

The next step is to correctly set the parameters for the various nodes. The

nodes have reasonable default values, but these need to be changed to match the

requirements of our this system.

Double click on the TV creation node. An inspector panel in which the time

between creations can be set appears. Change it to a uniform distribution of 3.5 to 7.5

minutes.

The inspection queue node needs two servers, but by default it has only one.

That needs to be changed. Double click on the inspection queue icon and edit the

inspector panel so that two servers are present and the service time is uniformly

distributed between 6 and 12 minutes. Click on the Set button to make the changes

permanent. The inspector panel should look as Figure 24. does.

Figure 24. TV inspection queue panel.

The assignment node will put a random variable into an entity attribute and

then the branch node will examine the attribute and route the entity accordingly.

Since the requirement is that 85% of TV sets to exit the system and 15% of them to

be sent to the adjustment station, the we can assign a random variable from the

uniform (0,1) distribution to the attribute. The branch node will examine the attribute

and route the entity either out of the system or to the adjustment queue.

Double click on the assignment node, which is named “Repair?” in Figure 23,

and edit the inspector panel so that an attribute named “Branch RV” is assigned a

random variable from the Uniform (0,1) distribution. Click on the Set button to make

the changes permanent and then close the inspector panel.

Open the inspector panel for the branch node and enter the attribute name

“Branch RV” in the left hand side of the form, then put the value 0.15 in the right

hand portion of the form. Select the comparison operator “≥” from the pop-up list

and then click on the Set button. When entities arrive at the branch node, the value

associated with the attribute “Branch RV” will be compared to 0.15; if it is greater, as

it should be 85% of the time, the entity will be routed to the disposal node.

Finally, edit the adjustment queue’s inspector panel so that the service time is

uniformly distributed between 20 and 40 minutes.

Enter “480” in the simulation window’s End Time field. New models often

have subtle bugs that aren’t readily apparent, so—just to be careful—turn on the

animation feature so that the paths the entities take are shown on the screen. Under

the Simulation menu, click on the menu item that turns the animation on. Then, click

on the Run button in the simulation window and watch the simulation execute.

The first 100 minutes or so of model execution time shows that most of the

entities are going where expected. According to the specification 15% of the entities

should be traveling to the adjustment node, and that looks about right.

Model verification and validation by “just watching the simulation run” is a

dangerous habit to get into. It often gives rise to a false sense of security and

discourages detailed scrutiny of the model. A serious simulation effort would include

a much more in-depth examination of the model’s correctness and its correspondence

to the system being studied; however, many bugs and pitfalls that are not readily

apparent in a textual simulation tool can be quickly discovered and eliminated by

viewing the flow of entities through the network.

Some summary statistics on the model’s performance can be viewed by

double clicking on the nodes of interest and viewing the inspector panels. When the

simulation finishes the inspection node shows that, on average, 1.8 servers were busy,

and that TVs waited for just over two minutes to be inspected, with a maximum of 11

minutes. The branch node routed about 12% of its entities to the adjustment station.

The 82 entities that exited the system spent an average of 16 minutes being inspected,

adjusted, and moved, according to the summaries in the TV Exit node inspector2.

A comparison between the results Ents produced and the results from Pritsker

and Pegden’s SLAM model are shown in Appendix B.

This example is not intended to serve as a complete analysis of the system’s

performance, but merely as a brief example to illustrate the operation of the program.

The statistical results should be viewed with caution since the simulation has

probably not run long enough nor been repeated often enough to obtain statistically

valid results. The “warm-up period,” the time during which the system has not yet

reached its steady state, is probably also skewing the statistics.

To get a text report on the performance of all the nodes, select the Report item

from the Simulation menu. A new window will open and a summary of each node’s

performance will be printed out. The text can be cut and pasted into documents from

other applications in the usual NeXT Step way.

2. Quarry operations problem.

Pritsker and Pegden (1979) present another example, this time based on the

operations of a quarry, and create a simulation model using SLAM. The same system

is modeled here using Ents.

In a quarry, trucks are loaded from three shovels and deliver ore to a single

crusher machine. Each shovel has three trucks assigned to it, one with 50 tons of

capacity and two that can carry 20 tons. The trucks are loaded at the shovel, travel to

the crusher and dump their load, and then return to the same shovel. A schematic

diagram of the system is shown if Figure 25.

2The exact values for all the results quoted here will vary with the random number streams

used and other factors.

Crusher

Shovels

1

2

3

Trucks return to

assigned shovel

Figure 25. Schematic diagram of quarry operations.

The trucks do not all travel at the same speed or get loaded as quickly. The

larger trucks take longer to fill, take longer to dump, and travel more slowly, but carry

more ore. The time it takes a truck to perform each step in the operation is shown in

Table 2. (Loading and dumping times are exponentially distributed random

variables.)

Table 2. Quarry operation times (in minutes).

Truck Size Loading Travel Dumping Return

20 Ton EXP(5) 2.5 EXP(2) 1.5

50 Ton EXP(10) 3 EXP(4) 2

The shovels load the trucks on a first-come, first-served basis, but the crusher

takes any 50 ton trucks that are waiting before it will unload any 20 ton trucks.

The process can be modeled rather easily with 4 queues and two activities:

one queue for each of the shovels and a queue for the crusher, and activity nodes for

traveling to and returning from the crusher. The entities in this model are the trucks

which travel back and forth from the shovels to the crusher. However, some

complexities arise: the trucks should be present at time zero and never exit the

system. They must return to the same shovel from which they came, and depending

on their size, take differing amounts of time to perform operations . These features

require that several nodes be added to the model that perform initialization functions

on the truck entities: creating them, assigning attributes that identify them as 50 ton or

20 ton trucks, and so on. A few branching nodes also need to be added to route the

entities back to the shovel they are assigned to.

SLAM can add entities to a model at time zero with attribute/value pairs

already defined through the use of the ENTRY statement. Ents has no counterpart to

that facility, so several creation and assignment nodes need to be used to achieve the

same effect.

Two creation nodes will feed into each of the shovel queues. One of the

creation nodes will create two truck entities and then stop production, while the other

creation node will produce just one entity. Once created the entities will have an

attribute that reflects the truck size assigned (twenty to or fifty ton), and then be

assigned an attribute to reflect its assigned shovel: one, two or three . Each shovel

will require two creation nodes, for a total of six creation nodes for the entire model.

The truck entities also need to be assigned attributes that correspond to the

times for the various quarry operations, depending on their carrying capacity. An

attribute for each of the operations in Table 6 is needed; the attributes will be used as

parameters to the random number generators in the activity and queue nodes.

The nodes required to initialize all the truck entities are shown in Figure 26.

The create nodes have a time between creations of zero and stop producing entities

after the required number of trucks of each type have been produced: two for twenty-

ton truck nodes, one for fifty-ton truck nodes. The entities are immediately assigned

an attribute to reflect the carrying capacity of the truck created, and then assigned a

shovel number. The network feeds into a branch node, where the entities are

separated based on truck size: twenty-ton trucks take the upper branch, and fifty-ton

trucks take the lower branch. In each branch the attributes “loading time,” “travel

time,” “dumping time,” and “return time” are assigned fixed numbers based on the

values shown in Table 6. “Loading time,” for example, is assigned a fixed value of 5

in the upper branch; the value of that attribute is later used as the expected value in

the shovel queue’s exponential random number generator.

Figure 26. Initializing truck entities.

Once the entities have been initialized the real work of the simulation can

begin. The nodes for this portion of the network are shown in Figure 27. (The two

inputs to the first branch node are from the upper and lower branches of the

initialization phase.)

Figure 27. Quarry operations model.

The network feeds into a single branch node that routes entities based on the

“shovel number” attribute. If the attribute has the value of one, it is sent to shovel

queue one; otherwise, it is sent to another branch node. In that node if the attribute

has a value of two, it is sent to shovel queue two. All the remaining entities must

have a “shovel number” attribute of three, so they are sent to the third shovel.

At the shovels the service time is specified to be exponential with a mean of

“loading time,” the attribute assigned earlier in the initialization phase of the network.

All the entities will have a “loading time” attribute with a value of 5.0 for the twenty-

ton trucks or 10.0 for the fifty-ton trucks. The node looks up the value associated

with that attribute and uses it to calculate a random service length.

When the entity has completed service it enters an activity node . The length

of the activity is a fixed or constant value, “travel time,” another attribute that was

assigned a value in the initialization phase.

The truck entities wait for service at the Crusher queue node. The queue is

ordered by the attribute “truck capacity” so that fifty-ton trucks are served before any

twenty-ton trucks, and the service time is set to be exponential with a mean of

“dumping time.” The entities then travel to another activity node, where they are

delayed by a fixed amount “return time,” then routed back to the original branch

node.

To follow the events as they occur, select the Trace Execution item from the

Simulation menu. A window similar to what appears in Figure 28 will be created. As

the program runs, each event dispatched by the executive is displayed in the window.

At each node, the system clock time, the type of event, and the attribute/value pairs

associated with the entity are shown.

Figure 28. Tracing program execution.

The model’s performance can be examined by double-clicking on a node and

examining the summary statistics, or by selecting the Report item from the Simulation

menu. The inspector panel for the return trip activity node after the simulation had

run for 480 minutes is shown below in Figure 29.

Figure 29. Return trip inspector panel.

On average, 0.59 trucks are returning to their shovels at any one time, and the

trip takes a mean of 1.6 minutes.

The results of the SLAM simulation and the Ents simulation are compared in

Appendix B.

