
Message is an application for interactively sending Speaker (Objective-C interface to 
Mach messaging) messages to other applications.    Familiarity with the documentation 
for the Speaker/Listener objects as well as Mach messaging in general will help in 
understanding the use of this application.    The top box in the window contains fields to fill 
out in order to send a message:

Host: The name of the host to receive the message, by default localhost.    
You can enter other host names by typing them in the text field and they 
will be added to the pop-up list.    You can add hosts to be in the pop-up list 
at startup by adding them to the machines directory in NetInfo. 

The NetInfo domain used is determined by the NetInfoDomain default for 



the Message application (initially '.', the local domain).    If your local and 
parent domains have too many hosts, you can set this to a dummy value 
which will cause only localhost to be in the list.

You should review the notes in the NXPortFromName section of the 
NextStep/Reference/03_CFunctions/NXFunctFtoP.rtfd 
document about messaging remote Workspace Managers.

Application: The name of the application to receive the message.    You can enter other 
application names by typing them in the text field and they will be added to 
the pop-up list.



You can add other applications to be in the pop-up list at startup by setting 
the ApplicationPaths default for the Message application to a list of colon 
(:) separated directories (its default value is '/NextApps').

Port: A port assigned to the recipient application to which the message is sent.    
By default, the value of this field is public which sends the message to 
the application's public port.    Other legal values include integers 
representing ports provided by the remote application.

As with the other fields, you can type in new values into this field that will 
be added to the pop-up button.    You can make additions to the pop-up list 
at startup by adding named ports to the ports.strings file in the 



Message.app directory.

Message: The message to send to the application.    You can add other message 
names by typing them in the text field and they will be added to the pop-up 
list.    When you hit return, the messages argument fields will be expanded 
in the argument box, awaiting variable type assignments.

When the message is actually sent, then the message is added to the pop-
up list and the argument types are stored by the program and will be 
automatically set the next time the message is used.    You can add a 
message to be in the pop-up list at startup by adding it and its argument 
types to the messages.strings file in the Message.app directory.



The argument box contains fields that either need to be filled out to send a message 
(inputs) or are the results of a message having been sent (outputs).    Input fields are 
white and can be edited;    output fields are gray and cannot be changed.    The expected 
type of the data is listed in the pop-up list in the center.    If you are entering a new 
message, you will need to set this pop-up list to the appropriate type as well as filling in 
the arguments.

Byte array arguments are treated like character string arguments for purposes of the user 
interface.    However, the string is followed by its length as a separate argument in the 
arguments to selectorRPC:paramTypes:, excluding the terminal null byte.



For the send and receive port_t types (both inputs), you can also use the special value 
public rather than a port number.    For the send port, public will be replaced with the 
Listener object's receive port and for the receive port it will be replaced with the 
Speaker object's send port.

Once all the fields are filled in, you can send the message by clicking the Send! button in 
the bottom box.    The result code for the message will be displayed in the Status: field 
along with a textual translation of the code if one is known.    (Additional result code 
translations can be added to the status.strings file in the Message.app directory.)    
Any output fields in the arguments box will also be filled in based on the results returned 
by the application.



The Message application has the following known limitations:

· The contents of various *.strings file is sorted (to undo the hash ordering of the 
NXStringTable) when entered into the pop-up list as is the list of applications 
determined from the directories on the ApplicationPaths default.    However, the first item 
in each pop-up list is set by the Message application and is not alphabetical.

· A single Message application can not respond to its own queries.    However, if you run 
more than one Message application, it can.

· Byte arrays entered through the text field cannot have terminal characters (e.g. null 
bytes) in the middle of them though they are perfectly legal elements of a byte array.


