
MailService
by Eric Celeste (AppTech)
version 1.0 released on 28 January 1991

This application is free to all. Source code should be available on the major ftp archive sites. Nothing about
it is guaranteed, but I do use it on my own machine, so I believe it works! Enjoy.

MailService is designed to make it easy for folks reading mail with the Terminal application (probably
because they've dialed somewhere with a modem) to incorporate that mail into their NeXT Mailbox. This is
achieved through a service added to the Mail submenu of the Services menu.

To send a message which you see in the terminal window to your own active mailbox (in the NeXT Mail
sense of the term), you simply need to select the message and choose "Send As A Message" from the

"Mail" submenu of the "Services" menu. I recommend that you select the message including its headers so
that you can later tell who the message came from and when it was sent. If the message includes a NeXT
attachment (in other words, it looks like gobbledygook in the terminal window), select it and send it anyway
Ð the NeXT Mail application will correctly interpret the attachment and in most cases you will be able to
read and use the results.

MailService can be used from any application which has a Services menu and lets you select text. This
means you can automatically send messages from WriteNow and Edit, in addition to Terminal.

If you want the messages sent by MailService to go to someone other than yourself, just change the user
name in the MailService window. Any subsequent messages sent by MailService will go to the user listed in
that window.

There are two additional sections to this readme file, the first describes how to install this application and
the second describes what went into writing it and offers some hints about writing services.

Installation

1. Make sure you are running System Release 2.0 or later. If not, get the upgrade and then come back to
this installation.

2. If you received an application called MailService with this readme file, then skip to step 6. If you don't
have that application yet, but you have a directory with the source files, then go on to step 2. If you have
neither, then you are out of luck!

3. Make sure you have the System Release 2.0 Extended edition installed. The important point here is that
you will need to have the development system online or you won't be able to go on with this process.

4. Open a terminal window and change directory (cd) to the directory which contains the MailService
code.

5. Type make and hit return. Wait. When you get a shell prompt again (usually %) you will also have the
MailService application in this directory.

6. Use the File Viewer to copy or link the MailService application into either your own Apps directory or
the /NextApps directory.

7. Log out and then log back in. (The system only recognizes new services when logging in.)

There! You've done it. MailService is now installed. To test it, do the following:

A. Open up the Edit or WriteNow application.

B. Create or open a document and select some text in it.

C. Choose "Send As A Message" from the "Mail" submenu of the "Services" menu.

D. Watch as neat, cool things happen.

E. Open up the Mail application from the Dock or the /NextApps directory.

F. Look for a new message from yourself to yourself containing the text you had selected earlier.

If this process creates results, then the MailService application is working.

Writing Services

If you do not have the document "Welcome to 2.0: An Entry Point for Developers" Ð get it! This is a terrific
little doc that makes many things about 2.0 more comprehensible. Appendix G of that document is also
online as /NextLibrary/Documentation/NextDev/ReleaseNotes/AppKit.rtf. Both of these

documents give very valuable instructions in the creation of services. Of course, I still spent all night trying
to figure out why some things worked the way they did, so this little note is to try to explain some of these
gottchas to you ahead of time.

The source code for MailService should include:

IB.proj
MailCarrier.h
MailCarrier.m
MailService.iconheader
MailService.icon.tiff
MailService.nib
MailService.services
MailService_main.m
Makefile

Makefile.preamble

The first step in creating a service is to create its description file. The description file for MailService is
called MailService.services, though the name could be anything. The format of this description file
is given in the AppKit.rtf document, so I won't go into here except to note that this is where I specified
that the MailService menu item should appear as a submenu of the Mail item. Clustering similar services
together will help us avoid cluttered Services menus.

The next step is to insert a reference to the service description file in the Mach-O file. I had no idea what a
Mach-O file was, but learned that it is, essentially, the executable version of the application, and that the
way to insert things there is through modifications of the Makefile. I chose to do this by creating a
Makefile.preamble document which the unaltered Makefile automatically includes if present. This
preamble simply makes sure that the compiler will include the contents of my service description file in the
final executable code. (If you do a strings MailService you can see that it really is in the code!)

Now came the time for the real work. Services are built on the foundation of Speaker/Listener. MailService
had to make sure an object that knew what to do was getting service messages from the applications
Listener, appListener. I chose to call that object MailCarrier. It implements a method called
carryMail:userData:error: which you will also see referred to as carryMail in the
MailService.services description file. The message named in the description file must be the first part of the
method's name in the implementing object. Equally important, the full method name must include the
userData and error parameters even if you do not make use of them.

The way to let the application know that your new object should get service messages is by telling the
appListener that it is the services delegate. At first I had MailCarrier do this in the init method.
As I learned after a long and frustrating search, the init method of MailCarrier got called before the
appListener was ready to set its services delegate. I had to wait until the whole application was done
with its initialization process before sending the appListener the setServicesDelegate: method.
This is why you will see the little juggling tournament with appDidInit: in the source code. If anyone

knows a better way to do this, please tell me! The rest of the source code should explain itself pretty well.

The final hurdle to developing a service is testing it. I could find no document from NeXT which describes
exactly which directories are searched when the Services menu is created. Unfortunately, the list of
directories does not seem to include /LocalApps. I could not get MailService recognized by the Services
menu while it was only installed in /LocalApps. I also learned that changes in the services description
file would not force a recompile unless some other file (like the .nib) were also touched. I instructed IB to
use make instead of make debug (so that the Listener port would have the correct name) and then
linked (with File Viewer) a copy of the application from my development directory over to my Apps
directory (so that the Services menu would know where to find it). I learned that re-logging in is only
necessary after changes are made to the service description file. I also learned that the workspace caches
what it knows about services between logins and so I had to delete the files called
~/.NeXT/services/.cache and ~/.NeXT/services/.applist whenever I changed the service
description or else the new description would not be read from the Mach-O file!

I hope all this helps anyone else developing services out there. I think services are a great addition to
NeXTstep, and I hope we see a lot of them. You can reach me at the address below Ð if you have any
questions or answers I'd love to hear from you.

| | | Eric Celeste
| | |
____ ProLine: eric@pro-angmar
 \ Internet: pro-angmar!eric@alfalfa.com
 / UUCP: uunet!alfalfa!pro-angmar!eric
,---- (:
____ 5 Exeter Street
| | Belmont, MA 02178
\ /
 \ 617-484-5040

