
Message Header
The C type definition for the message header is as follows
(from the header file mach/message.h):

typedef struct {
 unsigned int msg_unused : 24,
 msg_simple : 8;
 unsigned int msg_size;
 int msg_type;
 port_t msg_local_port;
 port_t msg_remote_port;
 int msg_id;
msg_header_t;¬} msg_header_t;

The msg_simple field indicates whether the message is

simple or nonsimple; the message is simple if its body
contains neither ports nor out-of-line data (pointers).

The msg_size field specifies the size of the message to be
sent, or the maximum size of the message that can be
received.    When a message is received, Mach sets
msg_size to the size of the received message.    The size
includes the header and in-line data and is given in bytes.

The msg_type field specifies the general type of the
message.    For hand-built messages, it's
MSG_TYPE_NORMAL; MiG-generated servers use the type
MSG_TYPE_RPC.    Other values for the msg_type field are
defined in the header files mach/message.h and
mach/msg_type.h.

The msg_local_port and msg_remote_port fields name the
ports on which a message is to be received or sent.    Before
a message is sent, msg_local_port must be set to the port to
which a reply, if any, should be sent; msg_remote_port must
specify the port to which the message is being sent.    Before
a message is received, msg_local_port must be set to the
port or port set to receive on.    When a message is received,
Mach sets msg_local_port to the port the message is
received on, and msg_remote_port to the port any reply
should be sent to (the sender's msg_local_port).

The msg_id field can be used to identify the meaning of the
message to the intended recipient.    For example, a program
that can send two kinds of messages should set the msg_id
field to indicate to the receiver which kind of message is

being sent.    MiG automatically generates values for the
msg_id field.

Message Body
The body of a message consists of an array of type
descriptors and data.    Each type descriptor contains the
following structure:

typedef struct {
// Type of data
unsigned int msg_type_name : MSG_TYPE_BYTE,
// Number of bits per item

msg_type_size : 8,
// Number of items
msg_type_number : 12,
// If true, data follows; else a ptr to data

follows
msg_type_inline : 1,
// Name, size, number follow
msg_type_longform : 1,
// Deallocate port rights or memory
msg_type_deallocate : 1,
msg_type_unused : 1;

msg_type_t;¬} msg_type_t;

The msg_type_name field describes the basic type of data
comprising this object.    The system-defined data types
include:

· Ports, including combinations of send and receive
rights.

· Port and port set names.    This is the same language
data type as port rights, but the message only carries a task's
name for a port and doesn't cause any transferral of rights.

· Simple data types, such as integers, characters, and
floating-point values.

The msg_type_size field indicates the size in bits of the
basic object named in the msg_type_name field.

The msg_type_number field indicates the number of items
of the basic data type present after the type descriptor.

The msg_type_inline field indicates that the actual data is

included after the type descriptor; otherwise, the word
following the descriptor is a pointer to the data to be sent.

The msg_type_longform field indicates that the name, size,
and number fields were too long to fit into the msg_type_t
structure.    These fields instead follow the msg_type_t
structure, and the type descriptor consists of a
msg_type_long_t:

typedef struct {
 msg_type_t msg_type_header;
 short msg_type_long_name;
 short msg_type_long_size;
 int msg_type_long_number;
} msg_type_long_t;

When msg_type_deallocate is nonzero, it indicates that

Mach should deallocate this data item from the sender's
address space after the message is queued.    You can
deallocate only port rights or out-of-line data.

A data item, an array of data items, or a pointer to data
follows each type descriptor.

Setting Up a Simple Message
As described earlier, a message is simple if its body doesn't
contain any ports or out-of-line data (pointers).    The
msg_remote_port field must contain the port the message is
to be sent to.    The msg_local_port field should be set to the
port a reply message (if any) is expected on.

The following example shows the creation of a simple
message.    Because every item in the body of the message is
of the same type (int), only one type descriptor is necessary,
even though the items are in two different fields.

#define BEGIN_MSG 0 /* Constants to identify the

different messages */
#define END_MSG 1
#define REPLY_MSG 2

#define MAXDATA 3

struct simp_msg_struct {
msg_header_t h; /* message header */

msg_type_t t; /* type descriptor
*/

int inline_data1; /* start of data array*/
int inline_data2[2];

};
struct simp_msg_struct msg_xmt;
port_t comm_port, reply_port;

/* Fill in the message header. */
msg_xmt.h.msg_simple = TRUE;
msg_xmt.h.msg_size = sizeof(struct simp_msg_struct);
msg_xmt.h.msg_type = MSG_TYPE_NORMAL;
msg_xmt.h.msg_local_port = reply_port;
msg_xmt.h.msg_remote_port = comm_port;
msg_xmt.h.msg_id = BEGIN_MSG;

/* Fill in the type descriptor. */

msg_xmt.t.msg_type_name = MSG_TYPE_INTEGER_32;
msg_xmt.t.msg_type_size = 32;
msg_xmt.t.msg_type_number = MAXDATA;
msg_xmt.t.msg_type_inline = TRUE;
msg_xmt.t.msg_type_longform = FALSE;
msg_xmt.t.msg_type_deallocate = FALSE;

/* Fill in the array of data items. */
msg_xmt.inline_data1 = value1;
msg_xmt.inline_data2[1] = value2;
msg_xmt.inline_data2[2] = value3;

port_allocate()

SUMMARY Create a port

SYNOPSIS #import <mach/mach.h>

port_allocate;¬kern_return_t port_allocate(task_t task,
port_name_t *port_name)

ARGUMENTS task:    The task in which the new port is
created (for example, use task_self() to specify the caller's
task).

port_name:    Returns the name used by task for the new port.

DESCRIPTION The function port_allocate() causes a port
to be created for the specified task; the resulting port is
returned in port_name.    The target task initially has both

send and receive rights to the port.    The new port isn't a
member of any port set.

EXAMPLE port_t myport;
kern_return_t error;

if ((error=port_allocate(task_self(), &myport)) !=
KERN_SUCCESS) {
 mach_error("port_allocate failed", error);
 exit(1);
}

RETURN KERN_SUCCESS:    A port has been
allocated.

KERN_INVALID_ARGUMENT:    task was invalid.

KERN_RESOURCE_SHORTAGE:    No more port slots are
available for this task.

DPSAddPort;¬void DPSAddPort(port_t port, DPSPortProc
handler, int maxMsgSize, void *userData, int priority)
void DPSRemovePort(port_t port)

DESCRIPTION DPSAddPort() registers the function
handler to be called each time your application asks for an
event or peeks at the event queue.    The function is called
provided the following are true:

· The Mach port port    must be valid and it must hold a
message waiting to be read.

· priority, an integer from 0 to 30, must be equal to or
greater than the application's current priority threshold.    See
DPSAddTimedEntry() for a further explanation.

DPSPortProc, handler's defined type, takes the form

void *handler(msg_header_t *msg, void *userData)

where msg is a pointer to the message that was received at
the port and userData is the same pointer that was passed as
the fourth argument to DPSAddPort().    The userData pointer
is provided as a convenience, allowing you to pass arbitrary
data to handler.

#import <mach/cthreads.h>

cthread_fork;¬cthread_t cthread_fork(any_t (*function)(),
any_t arg)

DESCRIPTION The function cthread_fork() takes two
arguments:    a function for the new thread to execute, and an
argument to this function.    The cthread_fork() function
creates a new thread of control in which the specified function
is executed concurrently with the caller's thread.    This is the
sole means of creating new threads.

The any_t type represents a pointer to any C type.    The
cthread_t type is an integer-size handle that uniquely
identifies a thread of control.    Values of type cthread_t will
be referred to as thread identifiers.    Arguments larger than a
pointer must be passed by reference.    Similarly, multiple

arguments must be simulated by passing a pointer to a
structure containing several components.    The call to
cthread_fork() returns a thread identifier that can be passed
to cthread_join() or cthread_detach().    Every thread must
be either joined or detached exactly once.

cthread_abort;¬kern_return_t cthread_abort(cthread_t t)

DESCRIPTION This function provides the functionality of
thread_abort() to C threads.    The cthread_abort() function
interrupts system calls; it's usually used along with
thread_suspend(), which stops a thread from executing any
more user code.    Calling cthread_abort() on a thread that
isn't suspended is risky, since it's difficult to know exactly

what system trap, if any, the thread might be executing and
whether an interrupt return would cause the thread to do
something useful.

See thread_abort() for a full description of the use of this
function.

thread_set_state;¬kern_return_t thread_set_state(thread_t
target_thread, int flavor, thread_state_data_t new_state,
unsigned int new_state_count)

DESCRIPTION The function thread_get_state() returns the
state component (that is, the machine registers) of
target_thread as specified by flavor.    The old_state is an

array of integers that's provided by the caller and returned
filled with the specified information.    You should set
old_state_count to the maximum number of integers in
old_state.    On return, old_state_count is equal to the actual
number of integers in old_state.

The function thread_set_state() sets the state component of
target_thread as specified by flavor.    The new_state is an
array of integers that the caller fills.    You should set
new_state_count to the number of elements in new_state.   
The entire set of registers is reset.

target_thread must not be thread_self() for either of these
calls.

The state structures are defined in the header file

mach/machine/thread_status.h.

AppKitProgramming;¬AppKit Programming

AppKit_Application;¬Class: Application
workspace;¬workspace

+ (id <NXWorkspaceRequestProtocol>)workspace

Returns the Workspace Manager. You need that in order to
send it a message asking it to do such things as open a file.
The Workspace Manager responds to the
NXWorkspaceRequest protocol. Here's an example of
asking the Workspace Manager for the icon for the file
"x.draw":

NXImage *i = [[Application workspace]
getIconForFile:"x.draw"];

