Reversing VB Crackme 3.0 Eternal Bliss
by Rhytm [Dread]

(This short tutorial was written in Wordpad)

Collecting Information

Hello all !! Well I guess you're reading this to learn how to reverse Eternal Bliss' third Vb
crackme. Let's start with collecting some info. First read the .txt file:

Find the correct hardcoded code in this CrackMe.

What you won't see:

1) The correct code using Hexeditor
2) The correct code in Softice

3) The correct code in SmartCheck

ok, nice to know, now get ready for the real work :)

Load the target in Smartcheck, enter a dummy serial, notice that the register button will be
enabled after typing a minumum of six characters.

That's why you'll see the Text] Change function in the smartcheck code.

Press the register button, and look at the Smartcheck code again :P

Maybe it's nice to explain the Mid function in detail, you don't need much info about this
function in this crackme, but it can come out handy:

Dim MyString

MyString = "The dog jumps" ' Initialize string.
Mid(MyString, 5, 3) = "fox" ' MyString = "The fox jumps".
Mid(MyString, 5) ="cow" ' MyString = "The cow jumps".
Mid(MyString, 5) = "cow jumped over" ' MyString = "The cow jumpe".
Mid(MyString, 5, 3) = "duck"” ' MyString = "The duc jumpe".

Did it help ?? I hope so :)
We see that every number of our serial is converted to the ascii value..

After this the program suddenly tells us we've entered the wrong serial :(

Analyzing the Info and Reversing the Target

Lets switch to advanced mode, by selecting "Show All Event".
What do see here ?? For every number you entered you see this row of functions:

Textl.text ; Get the text from the messagebox

__vbal4Var ; String to long

Mid ; Get the x-th number from your serial

__vbaStrVvarVal ; ALWAYS HERE

Asc ; Get the ascii value of this number

__vbaFreeStr ; Free the memory that was used by a string ALWAYS HERE

__vbaFreeObj ; Free some more memory ALWAYS HERE



SysFreeString ;s ALWAYS HERE
SysFreeString ; ALWAYS HERE
__vbaVarForNext ; ALWAYS HERE
Textbox::Addref ;s ALWAYS HERE
__vbaObjSet ; ALWAYS HERE

Just load Eternal Bliss' 2nd crackme to see this structure :)

First in needed some more info, especially about the address where a check is done... So lets
dissassemble our target in W32Dasm, do some stepping in SoftICE and isolate this loop:

:00402C47 8B4508
:00402C4A 8B00
:00402C4C FF7508
:00402C4F FF9000030000
:00402C55 50

:00402C56 8D4594
:00402C59 50

:00402C5A ES8O9E6FFFF
:00402CSF 8985C8FEFFFF
:00402C65 8D45AC
:00402C68 50

:00402C69 8B85CBFEFFFF
:00402C6F 8B00

:00402C71 FFB5C8FEFFFF
:00402C77 FF90A0000000
:00402C7D DBE2
:00402C7F 8985CAFEFFFF
:00402C85 83BDCAFEFFFF00
:00402C8C 7D23
:00402C8E 68A 0000000
:00402C93 6898234000
:00402C98 FFB5C8FEFFFF
:00402C9E FFB5CAFEFFFF
:00402CA4 E8BIESFFFF
:00402CA9 898564FEFFFF
:00402CAF EBO07
:00402CB1 83A564FEFFFF00

mov eax, dword ptr [ebp+08]
mov eax, dword ptr [eax]
push [ebp+08]
call dword ptr [eax+00000300]
push eax
lea eax, dword ptr [ebp-6C]
push eax
Call 00401268 <-- vbaObjSet
mov dword ptr [ebp+FFFFFECS], eax
lea eax, dword ptr [ebp-54]
push eax
mov eax, dword ptr [ebp+FFFFFECS]
mov eax, dword ptr [eax]
push dword ptr [ebp+FFFFFECS)]
call dword ptr [eax+000000A0]
fclex
mov dword ptr [ebp+FFFFFEC4], eax
cmp dword ptr [ebp+FFFFFEC4], 00000000
jge 00402CBl1
push 000000A0
push 00402398
push dword ptr [ebp+FFFFFECS]
push dword ptr [ebp+FFFFFEC4]
Call 00401262
mov dword ptr [ebp+FFFFFE64], eax
jmp 00402CBS8
and dword ptr [ebp+FFFFFE64], 00000000

:00402CB8 C78574FFFFFF01000000 mov dword ptr [ebp+FFFFFEF74], 00000001

:00402CC2 C7856CFFFFFF02000000
:00402CCC 8B45AC

:00402CCF 898578FEFFFF
:00402CD5 8365AC00

:00402CD9 8B8578FEFFFF
:00402CDF 894584

:00402CE2 C7857CFFFFFF08000000
:00402CEC 8D856CFFFFFF
:00402CF2 50

:00402CF3 8D45D0

:00402CF6 50

:00402CF7 E842E5FFFF

:00402CFC 50

mov dword ptr [ebp+FFFFFF6C], 00000002
mov eax, dword ptr [ebp-54]
mov dword ptr [ebp+FFFFFE78], eax
and dword ptr [ebp-54], 00000000
mov eax, dword ptr [ebp+FFFFFE78]
mov dword ptr [ebp-7C], eax
mov dword ptr [ebp+FFFFFF7C], 00000008
lea eax, dword ptr [ebptFFFFFF6C]
push eax
lea eax, dword ptr [ebp-30]
push eax
Call 0040123E
push eax

<-- vbal4Var

<-- vbaHresultCheckObj



:00402CFD 8D857CFFFFFF
:00402D03 50

:00402D04 8D855CFFFFFF
:00402D0A 50

:00402D0B E834ES5FFFF
:00402D10 8D855CFFFFFF
:00402D16 50

:00402D17 8D45A8
:00402D1A 50

:00402D1B E82AESFFFF
:00402D20 50

:00402D21 E82AESFFFF
:00402D26 OFBFCO
:00402D29 8B4DCO
:00402D2C 03C8
:00402D2E 0F80F90A0000
:00402D34 894DCO0
:00402D37 8D4DAS
:00402D3A E81DESFFFF
:00402D3F 8D4D9%4
:00402D42 ESOFESFFFF
:00402D47 8D855CFFFFFF
:00402D4D 50

:00402D4E 8D856CFFFFFF
:00402D54 50

:00402D55 8D857CFFFFFF
:00402D5B 50

:00402D5C 6A03
:00402D5E E8DSE4FFFF
:00402D63 83C410
:00402D66 8DS8590FEFFFF
:00402D6C 50

:00402D6D 8D85SAOFEFFFF
:00402D73 50

:00402D74 8D45D0
:00402D77 50

:00402D78 ESBSE4FFFF
:00402D7D 89857CFEFFFF

:00402D83 83BD7CFEFFFF00

:00402D8A 0F85B7FEFFFF

lea eax, dword ptr [ebp+FFFFFF7C]

push eax
lea eax, dword ptr [ebptFFFFFF5C]
push eax
Call 00401244 <-- rtcMidCharVar
lea eax, dword ptr [ebp+FFFFFF5C]
push eax
lea eax, dword ptr [ebp-58]
push eax
Call 0040124A <-- vbaStrVarVal
push eax
Call 00401250 <-- rtcAnsiValueBstr

movsx eax, ax
mov ecx, dword ptr [ebp-40]
add ecx, eax

jo 0040382D

mov dword ptr [ebp-40], ecx
lea ecx, dword ptr [ebp-58]

Call 0040125C <-- vbaFreeStr
lea ecx, dword ptr [ebp-6C]
Call 00401256 <-- vbaFreeObj
lea eax, dword ptr [ebp+FFFFFF5C]
push eax
lea eax, dword ptr [ebp+FFFFFF6C]
push eax
lea eax, dword ptr [ebp+FFFFFF7C]
push eax
push 00000003
Call 00401238 <-- vbaFreeVarList

add esp, 00000010
lea eax, dword ptr [ebp+FFFFFE90]
push eax
lea eax, dword ptr [ebp+FFFFFEAOQ]
push eax
lea eax, dword ptr [ebp-30]
push eax
Call 00401232 <-- vbaVarForNext
mov dword ptr [ebp+FFFFFE7C], eax
cmp dword ptr [ebp+FFFFFE7C], 00000000
jne 00402C47

So this is the whole loop we see in smartcheck, just look at the structure of the VB calls..
The jump to 402C47 won't be taken anymore when every number has walked through the loop..

After that we see this :)

:00402D8A OF85B7FEFFFF
:00402D90 8B45E0
:00402D93 0345BC
:00402D96 0F80910A0000
:00402D9C 0345B0
:00402D9F 0F80880A0000

jne 00402C47
mov eax, dword ptr [ebp-20]
add eax, dword ptr [ebp-44]

jo 0040382D <-- jo stands for jump overflow

add eax, dword ptr [ebp-50]
jo 0040382D



:00402DAS5 0345BC
:00402DAS8 0F807F0A0000
:00402DAE 0345CC
:00402DB1 0F80760A0000
:00402DB7 0345C4
:00402DBA 0F806D0A0000
:00402DCO0 0345BC
:00402DC3 0F80640A0000
:00402DC9 8945C8
:00402DCC 8B45C0
:00402DCF 3B45C8
:00402DD2 0F85B9060000

add eax, dword ptr [ebp-44]

jo 0040382D

add eax, dword ptr [ebp-34]

jo 0040382D

add eax, dword ptr [ebp-3C]
jo 0040382D

add eax, dword ptr [ebp-44]

jo 0040382D

mov dword ptr [ebp-38], eax
mov eax, dword ptr [ebp-40]
cmp eax, dword ptr [ebp-38]
jne 00403491

<-- Important Compare

Well just look at the values behind ebp-xx, add them together (Total: 2DC).

You'll notice that the characters form the word "Reverse"

This value is compared with the total of the the ascii values of your serial..

Enter the serial and you've reversed this program !!!!

Now I tried to enter a code containing my nickname and some other characters that form a total
of 2DC. And it didn't work :((

So there is more work to do for us :)

Open smartcheck, load the program enter the correct code and take a look at the new
information:

MID(Variant:String:"Reverse",long:2, Variant:Integer:1)
MID(Variant:String:"Reverse",long:4, Variant:Integer:1)
MID(Variant:String:"Reverse",long: 7, Variant:Integer:1)

Thus we see that the program checks is the characters at position 2, 4 and 7 are the same as the
ones in the word reverse. Knowing this we can find ourselves some other good serials.
Examples:

Reserve, Veserre,Peveste etc..

You could have done this at the SoftICE way too, two of the checks would be at addresses:
403115 and 403147

I like to thank Eternal Bliss for his great page on the web. Where Fravia+ gives all the theoretical
information Eternal Bliss gives us the BEST page on the web with lots of bits and bytes to
practice.

Also I like to great all the guys from #cracking4newbies #dread #faith2000 and #win32asm :))
I want to tell all the people reading this essay to START REVERSING CRACKME'S

THEMSELVES since loads of crackmes on Eternal Bliss' site haven't been reversed yet :))
Feel free to send all your questions & comments to Rhytm@newmail.net




Bye !!!!
Rhytm, Hope to see you soon in #cracking4newbies



