
Reversing f0dder's CrackMe #2

by Cardenal Mendoza

February 26, 2000

1 Introduction

This essay is not for absolute beginners, although reversing the crackme is not

very hard, but coding a keygen is. Heh, coding a 90% keygen is hard, but i

guess coding a 100% keygen is impossible because you could only brutforce the

last part of the crackme :(Apart from that it is a very nice crackme, but decide

by yourself...

2 Tools used

1. SoftIce 4.05 for NT (I use Win 2000 for cracking)

2. Win32dasm (I guess IDA would be better - but I don't have it)

3. Ultraedit

4. f0dder's crackme #2 (of course ;)

5. some imagination or a great mathematical knowledge (for coding the key-

gen)

3 Reversing the crackme

First start the crackme and look what intresting stu� you can �nd. Well, since

there is only one box to enter something, do that and press the bitmap. A

nice message pops up telling you that the door is still locked. You stupid idiot,

didn't you set a breakpoint on GetWindowTextA and GetDlgItemTextA �rst?

Ok, put those breakpoints and click again... Again the message pops up, well,

some smart people would now set a breakpoint on hmemcpy, but remember, I

crack under Win 2000, there is no hmemcpy, so we must use another way. Again

many people would say now, that we could use memcpy, but memcpy is not the

same as hmemcpy, for cracking purposes memcpy is useless, trust me.

Well, I got some background information from f0dder on irc :) He said I should

use the dead listing, at least he said this for #1, but I hope it will help us here,

too. Just disassemble it in your preferred disassembler, I will use Win32dasm

1

since I don't have IDA. Anyway, if you did this, just trace a little bit through

the code. Better print it completly (I hope you have a nice printer ;). First look

at the imports. This are the two most important ones:

1. CreateFileA

2. GetDlgItemTextA

So what do this two imports tell us?

1. Its a key�le protection (We should have read the readme.txt *g*)

2. It probably uses GetDlgItemTextA for getting the user input. (Hmm, '

we check this?)

I must admit that we could get the �rst information from the readme.txt, too,

but who reads such txts? The second one is more intresting, how can it use

GetDlgItemTextA without breaking on it? Perhaps f0dder thinks he is smart

and only checks for the serial if a valid key�le is found.

Now lets jump to programs entry point:

//*****************Program Entry Point**************

:004013F3 push 00000000

:004013F8 call dword ptr[00402014]

:004012FE mov dword ptr[0040334C], eax

:00401403 xor ebx, ebx

:00401405 xor eax, eax

:00401407 push eax

:00401408 push 00401320

:0040140D push ebx

:0040140E push 00000065

:00401413 push eax

:00401414 call dword ptr[0040202C]

:0040141A push eax

:0040141B call dword ptr[00402004]

:00401421 ret

What does us that part of the code tell? You should know this by yourself, if

not, read iczelions win32asm tutorials. This is just the start of every Win32

dialog based application. Beside that it tells us nothing usefull, but it is always

better to check, because the coder could check for the key�le even before the

call to DialogBoxParamA. Now lets scroll up again until we see the start of the

code:

++++++++++++++++++++++++ASSEMBLY CODE LISTING+++++++++++++++++

//*******************Start of Code in Object .text************

Program Entry Point=004013F3

2

:00401000 mov edi, 004030A7

:00401005 mov cl, 03

:00401007 dec byte ptr[edi]

:00401009 dec byte ptr[edi+01]

:0040100C dec byte ptr[edi+02]

:0040100F dec byte ptr[edi+03]

:00401012 add edi, 00000004

:00401015 dec cl

:00401017 jne 00401007

This part is also easy to understand. We see that 004030A7 is a string reference

to 'tlfmfupo/lfz'. try to analyze it before you read on, its not that hard if you

understand assembly. All it does is decreasing each byte in the string by one,

lets do it on a paper, too. Yes, the result is 'skeleton.key'. This looks like the

name of our key�le. After this code, the location 004012C0 is called, lets take

a look at it:

:004012C0 push 00000000

:004012C5 push 00000000

:004012CA push 00000003

:004012CF push 00000000

:004012D4 push 00000000

:004012D9 push 80000000

:004012DE push eax

:004012DF call dword ptr[0040200C]

:004012E5 cmp eax, FFFFFFFF

:004012EA jne 004012EE

:004012EC xor eax, eax

:004012EE ret

As expected this code snippet does nothing more than opening the key�le. If it

is succesfully, it returns, if not, it sets eax=0 before returning. After returning

the eip will be 00401021. I won't list every small piece of code, as I said you

should print it by yourself. After returning, the program checks if the �le is

present (00401021), if not it jumps to 0040104C. Now trace into the following

calls and see what happens there. I assume not to use SoftIce, yet, in order to

see how useful a dead listing can be. Lets analyze the code, the call at 00401034

does nothing more than reading the whole �le into memory and the call at

00401045 closes the �le again. Notice the cmps/jmps after these two calls, if

one of them fails, it jumps to 0040104C, setting a �ag that the key�le is not

found. This is the reason we couldn't break on GetDlgItemTextA If you examine

the call at 004012F7 you will notice that it reads 256 bytes, so our key�le must

be at least 256 bytes long. After those we could append something like �Key�le

generated by Cardenal Mendoza�, but this is not an expensive app and I don't

care if somebody steals a keygen for a crackme :P

Lets go reversing again. Write down the address of the key�le in memory. Now

3

search through the dead listig for this address... ahh we are lucky, it occurs only

two times, for the �rst time when the �le is read into memory, for the second

time at 00401134. The second location seems quite intresting. We should take

a closer look at it:

:00401134 mov esi, 004030B4

:00401139 mov edi, 004031B4

:0040113E xor ecx, ecx

:00401140 mov cl, 80

:00401142 mov al, byte ptr[esi]

:00401144 cmp al, 30

:00401146 jb 004012A8

:0040114C cmp al, 39

:0040114E ja 00401158

:00401154 sub al, 30

:00401156 jmp 0040116A

:00401158 cmp al, 41

:0040115A jb 004012A8

:00401160 cmp al, 46

:00401162 ja 004012A8

:00401168 sub al, 37

:0040116A mov ah, al

:0040116C shl ah, 04

:0040116F mov al, byte ptr[esi+01]

:00401172 cmp al, 30

:00401174 jb 004012A8

:0040117A cmp al, 39

:0040117C ja 00401186

:00401182 sub al, 30

:00401184 jmp 00401198

:00401186 cmp al, 41

:00401188 jb 004012A8

:0040118E cmp al, 46

:00401190 ja 004012A8

:00401196 sub al, 37

:00401198 or ah, al

:0040119A mov byte ptr[edi], ah

:0040119C inc esi

:0040119D inc esi

:0040119E inc edi

:0040119F dec cl

:004011A1 jne 00401142

:004011A3 ret

I suggest that either you have a good knowledge of that shift and logical opera-

tions or you simply look in SoftIce what happens. I did the second one because

4

I hate stu� like or and shl. I make it short, the key�le is only valid, if it has

only characters between '0' and '9' and 'A' and 'F'. Think about this, that are

all possible chracters for hexadecimal numbers. If you analyze the code after

the check you will know why. Just look what happens:

Key�le: A 2 D 1 F 9 E 1 7 F

Array: A2 D1 F9 E1 7F

The code simply converts two ASCII values (for example 'A' and '2') to one

byte (A2).

I guess this is clear. How should we go on? Starting to trace with SoftIce? Oh,

no, just look at the �rst part of the code snippet: �Referenced by a Call...�. Lets

look where the code part is called from. There you should see 5 calls. In my

opinion tgis looks like a protection =) I think we should look into the next call.

Hehe, a reference to GetDlgItemTextA, now we know that we are right.

:004011A4 push 00000011

:004011A9 push 00403334

:004011AE push 000003E8

:004011B3 push dword ptr[00403350]

:004011B9 call dword ptr[00402024]

:004011BF cmp eax, 00000010

:004011C4 ja 004012A8

:004011CA je 004011E8

:004011CC mov esi, 00403334

:004011D1 mov edi, 00403334

:004011D6 add edi, eax

:004011D8 sub eax, 00000010

:004011DD neg eax

:004011DF mov dl, byte ptr[esi]

:004011E1 mov byte ptr[edi], dl

:004011E3 inc esi

:004011E4 inc edi

:004011E5 dec eax

:004011E6 jne 004011DF

:004011E8 mov esi, 00403334

:004011ED mov edi, 00403234

:004011F2 mov ecx, 00000004

:004011F7 repz

:004011F8 movsd

:004011F9 mov ecx, 00000070

:004011FE mov esi, 00403234

:00401203 mov al, byte ptr[esi]

:00401205 xor al, byte ptr[esi+01]

:00401208 mov byte ptr[edi], al

:0040120A inc esi

5

:0040120B inc esi

:0040120C dec ecx

:0040120D jne 00401203

:0040120F ret

Slowly the dead listing begins to bore me, so let's make it fast ;)

As you can see, this part does nothing more than getting our serial, then checking

if it is lower than 16 in length, and if yes, it appends the serial from the beginning

until the serial is 16 characters long. Any serial which is longer is invalid. This

is easy to see out of the dead listing. If not you should learn assembler. I won't

explain all instructions, because I said this is not for the very beginner. If the

serial is 16 byte long, it is xored in a special way. It xors the �rst and the second

array element and writes the result into the 17th, then it xors the 3rd and the

4th to the 18th and so on. This is done until the serial-array is 128 bytes long.

Now look into the next call, as you can easily see, it does nothing more than

just xoring those two arrays, which are both 128 bytes long. I thunk this is even

fr newbies easy to understand.

Ok, the next call is a important one, so lets take a deeper look at it:

:00401234 mov esi, 004032B4

:00401239 mov ecx, 00000080

:0040123E mov eax, dword ptr[0040309A]

:00401243 xor al, byte ptr[esi]

:00401245 rol eax, 1

:00401247 inc esi

:00401248 dec ecx

:00401249 jne 00401243

:0040124B cmp eax, dword ptr[0040309E]

:00401251 jne 004012B4

:00401253 ret

Well, I got heavy headaches because of this call when I coded a keygen for the

crackme. The code itself should be clear. �rst eax is set to 0BADC0DEh and

then it xors al with each byte of teh array and rols eax after every xor. Then

after doing the whole loop eax is compared to the dword in 0040309E. Look in

SoftIce to look whats in it. Yes, it is 0FCC5A375h. Hmm, that are all simply

instructions. But now think how to reverse it. Of course it is easy to get a

right start or ending value with a good array, but how to get the array with

just two values? Well, �gure out by yourself, you can always look at my keygen

in appendix A. My keygen is very crappy and if I am honest, I now don't know

why it works, erm, I know the prinziple but it was alot of try&error testing until

I got it working. In appendix B there is a mail by +spath about a mathematical

way to solve it, but I must admit that I am not so good in mathematics and I

don't understand too much of it.

Code a keygen by yourself, you will see that it is senseless:(

If you analyze the next call you will see why. Did you notice that strange looking

code at 00401064 before? We jump to it after the last call, which does nothing

6

more than xoring the code with our array. This means that we can't make a

good keygen, we have to brute force a valid array �rst. But that is not my task,

in my opinion a crackme must be crackable, bruteforcing is no cracking at all.

f0dder should have called this a brute force me or at least write in to the readme

that it is only brute force able, hehe, I didn't read it anyway ;) f0dder says that

he wanted to show with this crackme that it is possible to code a protection

which is not easily to crack. Sure, this is possible, but i knew it before. But

apart from this last part cracking the crackme was fun.

4 Conclusions

So what did we learn from this crackme? I don't know what you learned, but I

learned that dead listings can be very useful, at least if the protection is coded

in assembly. Ok, I sometimes used SoftIce, for example when the key�le is

converted to the array. Decide by yourself what you learned from it. Always

remember, this is my 3rd tutorial and my English is very bad :P If you have

any questions mail me at Cardenal@gmx.net.

Please visit these webpages:

1. http://mendoza.tsx.org < my webpage

2. http://www.learn2crack.com < learn2crack

3. http://codex.cjb.net < the codex

5 Appendix I - My keygen source

; keymaker.asm

; I know this code is very crappy, but hey, it is only a keygen

; I hope you understand that I don't optimize it if it works ;)

; coded by Cardenal Mendoza [01/29/2000]

; compiles/runs without problems under Win 2000 and Masm

.386

.model flat, stdcall

option casemap:none

; Includes

include \masm32\include\windows.inc

include \masm32\include\kernel32.inc

include \masm32\include\user32.inc

includelib \masm32\lib\kernel32.lib

includelib \masm32\lib\user32.lib

MAINDLG equ 103

ID_EDITNAME equ 1000

ID_EDITSERIAL equ 1001

ID_STATIC equ -1

7

KeyGenDlgProc PROTO :DWORD,:DWORD,:DWORD,:DWORD

MakeKey PROTO :DWORD

; The Data Section

.DATA

fmat db �%d�,0

hInst dd 0

KeyGenDlg db �MAINDLG�,0

fname db �skeleton.key�,0

fhandle dd 0

xor_array db 128 dup(0)

ser_array db 128 dup(0)

fil1array db 128 dup(0)

fil2array db 256 dup(0)

bread dd 0

bwrite dd 0

; The uninitialized data

.DATA?

szName db 250 dup(?)

szSerial db 40 dup(?)

szTmp db 6 dup(?)

DlgRect RECT <>

DlgWidth dd 0

DlgHeight dd 0

DeskRect RECT <>

; The code section

.CODE

main:

invoke GetModuleHandle, NULL

mov hInst, eax

invoke DialogBoxParam,hInst, ADDR KeyGenDlg, 0, ADDR KeyGenDlgProc, 0

invoke ExitProcess, eax

KeyGenDlgProc PROC hDlg:DWORD, wMsg:DWORD, wParam:DWORD, lParam:DWORD

.IF wMsg==WM_INITDIALOG

push OFFSET DlgRect

push hDlg

call GetWindowRect

call GetDesktopWindow

push OFFSET DeskRect

push eax

call GetWindowRect

push 0

mov eax, DlgRect.bottom

sub eax, DlgRect.top

mov DlgHeight, eax

push eax

mov eax, DlgRect.right

8

sub eax, DlgRect.left

mov DlgWidth, eax

push eax

mov eax, DeskRect.bottom

sub eax, DlgHeight

shr eax, 1

push eax

mov eax, DeskRect.right

sub eax, DlgWidth

shr eax, 1

push eax

push hDlg

call MoveWindow

.ELSEIF wMsg == WM_DESTROY

jmp wmclose

.ELSEIF wMsg == WM_CLOSE

jmp wmclose

.ELSEIF wMsg == WM_COMMAND

jmp wmcommand

.ENDIF

xor eax, eax

ret

wmclose:

invoke EndDialog, hDlg, TRUE

invoke ExitProcess, NULL

ret

wmcommand:

cmp word ptr[wParam], IDOK

jne notn

invoke MakeKey, hDlg

jmp rt

notn:

cmp wParam, IDOK

je wmclose

rt:

ret

KeyGenDlgProc ENDP

MakeKey PROC USES eax ebx ecx edx esi edi _hDlg:DWORD

xor ecx, ecx

mov ebx, 666h

mov esi, offset xor_array

rnd_lop:

invokde GetTickCount

imul eax, ebx

rol eax, 2

mov dword ptr[esi], eax

9

add esi, 4

inc ecx

rol ebx, 5

add ebx, eax

cmp eax, 24

jl rnd_lop

mov edi, offset xor_array

mov ecx, 96

mov eax, 0BADC0DEh

encr2_lop:

xor al, byte ptr[edi]

rol eax, 1

inc edi

dec ecx

jnz encr2_lop

xor al, 075h

mov byte ptr[esi], al

inc esi

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

inc esi

mov edi, offset xor_array

mov ecx, 104

mov eax, 0BADC0DEh

encr1_lop:

xor al, byte ptr[edi]

rol eax, 1

inc edi

dec ecx

jnz encr1_lop

xor al, 0FCh

mov byte ptr[esi], al

inc esi

mov byte ptr[esi], 00

inc esi

10

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

rol eax, 8

xor al, 0C5h

mov byte ptr[esi], al

inc esi

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

rol eax, 8

xor al, 0A3h

mov byte ptr[esi], al

inc esi

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

inc esi

11

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

inc esi

mov byte ptr[esi], 00

rol eax, 8

xor al, 075h

mov byte ptr[esi], al

inc esi

xor eax, eax

xor esi, esi

xor edi, edi

xor edx, edx

mov esi, offset ser_array

mov edi, offset xor_array

cp_lop:

mov dl, byte ptr[edi]

dada:

cmp dl, 48

jg dudu

add dl, 9

jmp dada

dudu:

cmp dl, 57

jl huhu

sub dl, 9

jmp dudu

huhu:

mov byte ptr[esi], dl

inc eax

inc edi

inc esi

cmp eax, 16

jnz cp_lop

mov edi, offset ser_array

mov ecx, 70h

xorma:

mov al, byte ptr[edi]

xor al, byte ptr[edi+1]

mov byte ptr[esi], al

inc esi

inc edi

dec ecx

jnz xorma

xor eax, eax

xor ebx, ebx

12

xor ecx, ecx

xor edx, edx

xor esi, esi

xor edi, edi

mov eax, offset fil1array

mov ebx, offset ser_array

mov ecx, offset xor_array

mov esi, 80h

make_file:

mov dl, byte ptr[ecx]

xor dl, byte ptr[ebx]

mov byte ptr[eax], dl

inc ecx

inc ebx

inc eax

dec esi

jnz make_file

xor eax, eax

xor ebx, ebx

xor ecx, ecx

xor edx, edx

xor esi, esi

xor edi, edi

mov edx, 10

mov esi, offset fil1array

mov edi, offset fil2array

mov ecx, 80h

lala:

mov al, byte ptr[esi]

mov bl, al

and al, 0fh

and bl, 0f0h

cmp al, 0Ah

jl zuzu

add al, 37h

jmp iuiu

zuzu:

add al, 30h

iuiu:

ror ebx, 4

cmp bl, 0Ah

jl zuzu2

add bl, 37h

jmp iuiu2

zuzu2:

add bl, 30h

13

iuiu2:

mov byte ptr[edi], bl

inc edi

mov byte ptr[edi], al

inc edi

inc esi

dec ecx

jnz lala

invoke CreateFileA, ADDR fname, GENERIC_WRITE + GENERIC_READ,

NULL, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL

mov fhandle, eax

invoke WriteFile, fhandle, ADDR fil2array, 256, ADDR bread, 0

invoke CloseHandle, fhandle

mov eax, offset ser_array

mov byte ptr[eax+16], 0

invoke SetDlgItemTextA, _hDlg, ID_EDITSERIAL, ADDR ser_array

exit_proc:

mov eax, 1

ret

MakeKey ENDP

end main

; keymaker.rc

#include �\masm32\include\resource.h�

#define ID_KeyGenDlg 103

#define ID_EDITNAME 1000

#define ID_EDITSERIAL 1001

#define ID_STATIC -1

MAINDLG DIALOGEX DISCARDABLE 0, 0, 160, 75

STYLE DS_3DLOOK | DS_CENTER | WS_POPUP | WS_VISIBLE | WS_CAPTION |

WS_SYSMENU | WS_EX_CLIENTEDGE | WS_DLGFRAME

CAPTION �*KeyMaker* for f0dders crkme #2*�

FONT 8, �MS Sans Serif�

BEGIN

DEFPUSHBUTTON �&Randomize!�,IDOK, 10, 10, 60, 12

EDITTEXT ID_EDITSERIAL, 10, 40, 140, 12, ES_READONLY | ES_CENTER

GROUPBOX �Serial:�, ID_STATIC, 5, 30, 150, 25

CTEXT �Coded by Cardenal Mendoza [01/29/2000]�, ID_STATIC, 5,

60, 150, 10, SS_SUNKEN | WS_DISABLED

END

; makefile

NAME = keymaker

OBJS = $(NAME).obj

RES = $(NAME).res

14

$(NAME).EXE:$(OBJS) $(RES)

link /SUBSYSTEM:WINDOWS,4.0 $(OBJS) $(RES)

.asm.obj:

ml /c /coff $(NAME).asm

.rc.res:

rc $(NAME).rc

6 Appendix II - +spath's mail

Hi mendo,

Ok, here´s how I see the problem:

from what I understood you have something like this:

mov esi, offset StartArray

Eloop:

xor al, byte ptr[esi]

rol eax, 1

inc esi

cmp esi, offset(StartArray+127)

jle ELoop

The corresponding decrypt loop would be

mov esi, offset(StartArray+127)

Dloop:

xor al, byte ptr[esi]

ror eax, 1

dec esi

cmp esi, offset StartArray

jge DLoop

Now let me de�ne some notations:

C is the resulting dword, C(n) is bit n of this dword

P is the starting dword (BADC0DE ?), P(n) is bit n of this dword

T(n)(k) is bit k of the temporary value in EAX after decryption round n

K(x)(y) is bit y of byte x of the array

+ is XOR

You know C and P, and want to generate plenty of K values; let's say you �ll

the array with all random values, the you start decrypting; for the �rst round

you have 32 equations:

T(1)(0) = C(1) + K(127)(1)

T(1)(1) = C(2) + K(127)(2)

..

15

T(1)(6) = C(7) + K(127)(7)

T(1)(7) = C(8)

..

T(1)(30) = C(31)

T(1)(31) = C(0) + K(127)(0)

for any round n you have (A):

T(n)(0) = T(n-1)(1) + K(128-n)(1)

T(n)(1) = T(n-1)(2) + K(128-n)(2)

..

T(n)(6) = T(n-1)(7) + K(128-n)(7)

T(n)(7) = T(n-1)(8)

..

T(n)(30) = T(n-1)(31)

T(n)(31) = T(n-1)(0) + K(128-n)(0)

with T0 = C and T(128) = P, so that at last you have:

P(0) = T(128)(0) = T(127)(1) + K(0)(1)

P(1) = T(128)(1) = T(127)(2) + K(0)(2)

..

but using (A) we can extend P(0) as

P(0) = T(127)(1) + K(0)(1)

= T(126)(2) + K(1)(2) + K(0)(1)

= T(125)(3) + K(2)(3) + K(1)(2) + K(0)(1)

= ...

note that some parts will be easier, when the bit is in the range 8-31, for in-

stance:

P(7) = T(127)(8)

= T(126)(9)

= ...

= T(104)(31)

= T(103)(0) + K(24)(0)

So basically any bit of P can be written as a combination of T(103) and key

bytes from K(0) to K(24); you can expand these equations a bit more until you

get 32 equations describing each bit of P from T(96) and K(0) ... K(31). If

you decrypt with random K bytes until T(96), you have 32 equations with 32

unknown variables.

> From here you can solve it using a gaussion pivot or a martix inversion;

a good idea would be to �rst use gaussian elimination to obtain a triangu-

lar matrix, so that you can easily calculate the determinant, which should

give you constraints on some K bits. You can get infos about these meth-

ods at http://www.geog.ubc.ca/numeric/labs/lab3/lab3/lab3.html, this case is

just sligthly di�erent since you work in Z/2Z.

regards, Spath.

16

