
All Packages This Package Previous Next

Class java.net.URLConnection

java.lang.Object
 |
 +−−−−java.net.URLConnection

public class URLConnection

extends Object

A class to represent an active connection to an object represented by a URL. It is an

abstract class that must be subclassed to provide implementation of connect.

Version:

1.16, 10/24/95

Author:

James Gosling

Variable Index

o allowUserInteraction

o connected

o doInput

o doOutput

o ifModifiedSince

o url

o useCaches

Constructor Index

o URLConnection(URL)

Constructs a URL connection to the specified URL.

Method Index

o connect()

URLConnection objects go through two phases: first they are created, then they

are connected.

o getAllowUserInteraction()

o getContent()

Gets the object referred to by this URL.

o getContentEncoding()

Gets the content encoding.

o getContentLength()

Gets the content length.

o getContentType()

Gets the content type.

o getDate()

Gets the sending date of the object.

o getDefaultAllowUserInteraction()

o getDefaultRequestProperty(String)

o getDefaultUseCaches()

Set/get the default value of the UseCaches flag.

o getDoInput()

o getDoOutput()

o getExpiration()

Gets the expriation date of the object.

o getHeaderField(String)

Gets a header field by name.

o getHeaderField(int)

Return the value for the nth header field.

o getHeaderFieldDate(String, long)

Gets a header field by name.

o getHeaderFieldInt(String, int)

Gets a header field by name.

o getHeaderFieldKey(int)

Return the key for the nth header field.

o getIfModifiedSince()

o getInputStream()

Calls this routine to get an InputStream that reads from the object.

o getLastModified()

Gets the last modified date of the object.

o getOutputStream()

Calls this routine to get an OutputStream that writes to the object.

o getRequestProperty(String)

o getURL()

Gets the URL for this connection.

o getUseCaches()

o guessContentTypeFromName(String)

A useful utility routine that tries to guess the content−type of an object based upon

its extension.

o guessContentTypeFromStream(InputStream)

This disgusting hack is used to check for files have some type that can be

determined by inspection.

o setAllowUserInteraction(boolean)

Some URL connections occasionally need to to interactions with the user.

o setContentHandlerFactory(ContentHandlerFactory)

Sets the ContentHandler factory.

o setDefaultAllowUserInteraction(boolean)

Set/get the default value of the allowUserInteraction flag.

o setDefaultRequestProperty(String, String)

Set/get the default value of a general request property.

o setDefaultUseCaches(boolean)

o setDoInput(boolean)

A URL connection can be used for input and/or output.

o setDoOutput(boolean)

A URL connection can be used for input and/or output.

o setIfModifiedSince(long)

Some protocols support skipping fetching unless the object is newer than some

time.

o setRequestProperty(String, String)

Set/get a general request property.

o setUseCaches(boolean)

Some protocols do caching of documents.

o toString()

Returns the String representation of the URL connection.

Variables

o url

 protected URL url

o doInput

 protected boolean doInput

o doOutput

 protected boolean doOutput

o allowUserInteraction

 protected boolean allowUserInteraction

o useCaches

 protected boolean useCaches

o ifModifiedSince

 protected long ifModifiedSince

o connected

 protected boolean connected

Constructors

o URLConnection

 protected URLConnection(URL url)

Constructs a URL connection to the specified URL.

Parameters:

url − the specified URL

Methods

o connect

 public abstract void connect() throws IOException

URLConnection objects go through two phases: first they are created, then they

are connected. After being created, and before being connected, various option can

be specified (eg. doInput, UseCaches, ...). After connecting, it is an Error to try to

set them. Operations that depend on being connected, like getContentLength, will

implicitly perform the connection if necessary. Connecting when already connected

does nothing.

o getURL

 public URL getURL()

Gets the URL for this connection.

o getContentLength

 public int getContentLength()

Gets the content length. Returns −1 if not known.

o getContentType

 public String getContentType()

Gets the content type. Returns null if not known.

o getContentEncoding

 public String getContentEncoding()

Gets the content encoding. Returns null if not known.

o getExpiration

 public long getExpiration()

Gets the expriation date of the object. Returns 0 if not known.

o getDate

 public long getDate()

Gets the sending date of the object. Returns 0 if not known.

o getLastModified

 public long getLastModified()

Gets the last modified date of the object. Returns 0 if not known.

o getHeaderField

 public String getHeaderField(String name)

Gets a header field by name. Returns null if not known.

Parameters:

name − the name of the header field

o getHeaderFieldInt

 public int getHeaderFieldInt(String name,
 int Default)

Gets a header field by name. Returns null if not known. The field will be parsed as

an integer. This form of getHeaderField exists because some connection types (eg.

http−ng) have pre−parsed headers & this allows them to override this method and

short−circuit the parsing.

Parameters:

name − the name of the header field

Default − the value to return if the field is missing or malformed.

o getHeaderFieldDate

 public long getHeaderFieldDate(String name,
 long Default)

Gets a header field by name. Returns null if not known. The field will be parsed as

a date. This form of getHeaderField exists because some connection types (eg.

http−ng) have pre−parsed headers & this allows them to override this method and

short−circuit the parsing.

Parameters:

name − the name of the header field

Default − the value to return if the field is missing or malformed.

o getHeaderFieldKey

 public String getHeaderFieldKey(int n)

Return the key for the nth header field. Returns null if there are fewer than n

fields. This can be used to iterate through all the headers in the message.

o getHeaderField

 public String getHeaderField(int n)

Return the value for the nth header field. Returns null if there are fewer than n

fields. This can be used in conjunction with getHeaderFieldKey to iterate through

all the headers in the message.

o getContent

 public Object getContent() throws IOException

Gets the object referred to by this URL. For example, if it refers to an image the

object will be some subclass of Image. The instanceof operator should be used to

determine what kind of object was returned.

Returns:

the object that was fetched.

Throws: UnknownServiceException

If the protocol does not support content.

o getInputStream

 public InputStream getInputStream() throws IOException

Calls this routine to get an InputStream that reads from the object. Protocol

implementors should implement this if appropriate.

Throws: UnknownServiceException

If the protocol does not support input.

o getOutputStream

 public OutputStream getOutputStream() throws IOException

Calls this routine to get an OutputStream that writes to the object. Protocol

implementors should implement this if appropriate.

Throws: UnknownServiceException

If the protocol does not support output.

o toString

 public String toString()

Returns the String representation of the URL connection.

Overrides:

toString in class Object

o setDoInput

 public void setDoInput(boolean doinput)

A URL connection can be used for input and/or output. Set the DoInput flag to true

if you intend to use the URL connection for input, false if not. The default is true

unless DoOutput is explicitly set to true, in which case DoInput defaults to false.

o getDoInput

 public boolean getDoInput()

o setDoOutput

 public void setDoOutput(boolean dooutput)

A URL connection can be used for input and/or output. Set the DoOutput flag to

true if you intend to use the URL connection for output, false if not. The default is

false.

o getDoOutput

 public boolean getDoOutput()

o setAllowUserInteraction

 public void setAllowUserInteraction(boolean allowuserinteraction)

Some URL connections occasionally need to to interactions with the user. For

example, the http protocol may need to pop up an authentication dialog. But this is

only appropriate if the application is running in a situation where there is a user.

The allowUserInteraction flag allows these interactions when true. When it is

false, they are not allowed an exception is tossed. The default value can be

set/gotten using setDefaultAllowUserInteraction, which defaults to false.

o getAllowUserInteraction

 public boolean getAllowUserInteraction()

o setDefaultAllowUserInteraction

 public static void setDefaultAllowUserInteraction(boolean defaultallowuserinteraction)

Set/get the default value of the allowUserInteraction flag. This default is "sticky",

being a part of the static state of all URLConnections. This flag applies to the next,

and all following, URLConnections that are created.

o getDefaultAllowUserInteraction

 public static boolean getDefaultAllowUserInteraction()

o setUseCaches

 public void setUseCaches(boolean usecaches)

Some protocols do caching of documents. Occasionally, it is important to be able to

"tunnel through" and ignore the caches (eg. the "reload" button in a browser). If

the UseCaches flag on a connection is true, the connection is allowed to use

whatever caches it can. If false, caches are to be ignored. The default value comes

from DefaultUseCaches, which defaults to true.

o getUseCaches

 public boolean getUseCaches()

o setIfModifiedSince

 public void setIfModifiedSince(long ifmodifiedsince)

Some protocols support skipping fetching unless the object is newer than some

time. The ifModifiedSince field may be set/gotten to define this time.

o getIfModifiedSince

 public long getIfModifiedSince()

o getDefaultUseCaches

 public boolean getDefaultUseCaches()

Set/get the default value of the UseCaches flag. This default is "sticky", being a

part of the static state of all URLConnections. This flag applies to the next, and all

following, URLConnections that are created.

o setDefaultUseCaches

 public void setDefaultUseCaches(boolean defaultusecaches)

o setRequestProperty

 public void setRequestProperty(String key,
 String value)

Set/get a general request property.

Parameters:

key − The keyword by which the request is known (eg "accept")

value − The value associated with it.

o getRequestProperty

 public String getRequestProperty(String key)

o setDefaultRequestProperty

 public static void setDefaultRequestProperty(String key,
 String value)

Set/get the default value of a general request property. When a URLConnection is

created, it gets initialized with these properties.

Parameters:

key − The keyword by which the request is known (eg "accept")

value − The value associated with it.

o getDefaultRequestProperty

 public static String getDefaultRequestProperty(String key)

o setContentHandlerFactory

 public static synchronized void setContentHandlerFactory(ContentHandlerFactory fac)

Sets the ContentHandler factory.

Parameters:

fac − the desired factory

Throws: Exception

If the factory has already been defined.

o guessContentTypeFromName

 protected static String guessContentTypeFromName(String fname)

A useful utility routine that tries to guess the content−type of an object based upon

its extension.

o guessContentTypeFromStream

 protected static String guessContentTypeFromStream(InputStream is) throws IOException

This disgusting hack is used to check for files have some type that can be

determined by inspection. The bytes at the beginning of the file are examined

loosely. In an ideal world, this routine would not be needed, but in a world where

http servers lie about content−types and extensions are often non−standard, direct

inspection of the bytes can make the system more robust. The stream must

support marks (eg. have a BufferedInputStream somewhere).

All Packages This Package Previous Next

