
All Packages This Package Previous Next

Class java.util.Date

java.lang.Object
 |
 +−−−−java.util.Date

public class Date

extends Object

A wrapper for a date. This class lets you manipulate dates in a system independent way.

To print today’s date use:

 Date d = new Date();
 System.out.println("today = " + d);

To find out what day corresponds to a particular date:

 Date d = new Date(63, 0, 16); // January 16, 1963
 System.out.println("Day of the week: " + d.getDay());

The date can be set and examined according to the local time zone into the year, month,

day, hour, minute and second.

While the API is intended to reflect UTC, Coordinated Universal Time, it doesn’t do so

exactly. This inexact behavior is inherited from the time system of the underlying OS.

All modern OS’s that I (jag) am aware of assume that 1 day = 24*60*60 seconds. In UTC,

about once a year there is an extra second, called a "leap second" added to a day to

account for the wobble of the earth. Most computer clocks are not accurate enough to be

able to reflect this distinction. Some computer standards are defined in GMT, which is

equivalent to UT, Universal Time. GMT is the "civil" name for the standard, UT is the

"scientific" name for the same standard. The distinction between UTC and UT is that the

first is based on an atomic clock and the second is based on astronomical observations,

which for all practical purposes is an invisibly fine hair to split. An interesting source of

further information is the US Naval Observatory, particularly the Directorate of Time

and their definitions of Systems of Time.

Version:

1.14, 28 Jul 1995

Author:

James Gosling, Arthur van Hoff

Constructor Index

o Date()

Creates today’s date/time.

o Date(long)

Creates a date.

o Date(int, int, int)

Creates a date.

o Date(int, int, int, int, int)

Creates a date.

o Date(int, int, int, int, int, int)

Creates a date.

o Date(String)

Creates a date from a string according to the syntax accepted by parse().

Method Index

o UTC(int, int, int, int, int, int)

Calculates a UTC value from YMDHMS.

o after(Date)

Checks whether this date comes after the specified date.

o before(Date)

Checks whether this date comes before the specified date.

o equals(Object)

Compares this object against the specified object.

o getDate()

Returns the day of the month.

o getDay()

Returns the day of the week.

o getHours()

Returns the hour.

o getMinutes()

Returns the minute.

o getMonth()

Returns the month.

o getSeconds()

Returns the second.

o getTime()

Returns the time in milliseconds since the epoch.

o getTimezoneOffset()

Return the time zone offset in minutes for the current locale that is appropriate for

this time.

o getYear()

Returns the year after 1900.

o hashCode()

Computes a hashCode.

o parse(String)

Given a string representing a time, parse it and return the time value.

o setDate(int)

Sets the date.

o setDay(int)

Sets the day of the week.

o setHours(int)

Sets the hours.

o setMinutes(int)

Sets the minutes.

o setMonth(int)

Sets the month.

o setSeconds(int)

Sets the seconds.

o setTime(long)

Sets the time.

o setYear(int)

Sets the year.

o toGMTString()

Converts a date to a String, using the Internet GMT conventions.

o toLocaleString()

Converts a date to a String, using the locale conventions.

o toString()

Converts a date to a String, using the UNIX ctime conventions.

Constructors

o Date

 public Date()

Creates today’s date/time.

o Date

 public Date(long date)

Creates a date. The fields are normalized before the Date object is created. The

argument does not have to be in the correct range. For example, the 32nd of

January is correctly interpreted as the 1st of February. You can use this to figure

out what day a particular date falls on.

Parameters:

date − the value of the argument to be created

o Date

 public Date(int year,

 int month,
 int date)

Creates a date. The fields are normalized before the Date object is created. The

arguments do not have to be in the correct range. For example, the 32nd of

January is correctly interpreted as the 1st of February. You can use this to figure

out what day a particular date falls on.

Parameters:

year − a year after 1900

month − a month between 0−11

date − day of the month between 1−31

o Date

 public Date(int year,
 int month,
 int date,
 int hrs,
 int min)

Creates a date. The fields are normalized before the Date object is created. The

arguments do not have to be in the correct range. For example, the 32nd of

January is correctly interpreted as the 1st of February. You can use this to figure

out what day a particular date falls on.

Parameters:

year − a year after 1900

month − a month between 0−11

date − day of the month between 1−31

hrs − hours between 0−23

min − minutes between 0−59

o Date

 public Date(int year,
 int month,
 int date,
 int hrs,
 int min,
 int sec)

Creates a date. The fields are normalized before the Date object is created. The

arguments do not have to be in the correct range. For example, the 32nd of

January is correctly interpreted as the 1st of February. You can use this to figure

out what day a particular date falls on.

Parameters:

year − a year after 1900

month − a month between 0−11

date − day of the month between 1−31

hrs − hours between 0−23

min − minutes between 0−59

sec − seconds between 0−59

o Date

 public Date(String s)

Creates a date from a string according to the syntax accepted by parse().

Methods

o UTC

 public static long UTC(int year,
 int month,
 int date,
 int hrs,
 int min,
 int sec)

Calculates a UTC value from YMDHMS. Interpretes the parameters in UTC, not

in the local time zone.

Parameters:

year − a year after 1900

month − a month between 0−11

date − day of the month between 1−31

hrs − hours between 0−23

min − minutes between 0−59

sec − seconds between 0−59

o parse

 public static long parse(String s)

Given a string representing a time, parse it and return the time value. It accepts

many syntaxes, but most importantly, in accepts the IETF standard date syntax:

"Sat, 12 Aug 1995 13:30:00 GMT". It understands the continental US time zone

abbreviations, but for general use, a timezone offset should be used: "Sat, 12 Aug

1995 13:30:00 GMT+0430" (4 hours, 30 minutes west of the Greenwich meridian).

If no time zone is specified, the local time zone is assumed. GMT and UTC are

considered equivalent.

o getYear

 public int getYear()

Returns the year after 1900.

o setYear

 public void setYear(int year)

Sets the year.

Parameters:

year − the year value

o getMonth

 public int getMonth()

Returns the month. This method assigns months with the values 0−11, with

January beginning at value 0.

o setMonth

 public void setMonth(int month)

Sets the month.

Parameters:

month − the month value (0−11)

o getDate

 public int getDate()

Returns the day of the month. This method assigns days with the values of 1 to 31.

o setDate

 public void setDate(int date)

Sets the date.

Parameters:

date − the day value

o getDay

 public int getDay()

Returns the day of the week. This method assigns days of the week with the values

0−6, with 0 being Sunday.

o setDay

 public void setDay(int day)

Sets the day of the week.

Parameters:

day − the value of the day if the week

o getHours

 public int getHours()

Returns the hour. This method assigns the value of the hours of the day to range

from 0 to 23, with midnight equal to 0.

o setHours

 public void setHours(int hours)

Sets the hours.

Parameters:

hours − the hour value

o getMinutes

 public int getMinutes()

Returns the minute. This method assigns the minutes of an hour to be any value

from 0 to 59.

o setMinutes

 public void setMinutes(int minutes)

Sets the minutes.

Parameters:

minutes − the value of the minutes

o getSeconds

 public int getSeconds()

Returns the second. This method assigns the seconds of a minute to values of 0−59.

o setSeconds

 public void setSeconds(int seconds)

Sets the seconds.

Parameters:

seconds − the second value

o getTime

 public long getTime()

Returns the time in milliseconds since the epoch.

o setTime

 public void setTime(long time)

Sets the time.

Parameters:

time − The new time value in milliseconds since the epoch.

o before

 public boolean before(Date when)

Checks whether this date comes before the specified date.

Parameters:

when − the date to compare

Returns:

true if the original date comes before the specified one; false otherwise.

o after

 public boolean after(Date when)

Checks whether this date comes after the specified date.

Parameters:

when − the date to compare

Returns:

true if the original date comes after the specified one; false otherwise.

o equals

 public boolean equals(Object obj)

Compares this object against the specified object.

Parameters:

obj − the object to compare with

Returns:

true if the objects are the same; false otherwise.

Overrides:

equals in class Object

o hashCode

 public int hashCode()

Computes a hashCode.

Overrides:

hashCode in class Object

o toString

 public String toString()

Converts a date to a String, using the UNIX ctime conventions.

Overrides:

toString in class Object

o toLocaleString

 public String toLocaleString()

Converts a date to a String, using the locale conventions.

o toGMTString

 public String toGMTString()

Converts a date to a String, using the Internet GMT conventions.

o getTimezoneOffset

 public int getTimezoneOffset()

Return the time zone offset in minutes for the current locale that is appropriate for

this time. This value would be a constant except for daylight savings time.

All Packages This Package Previous Next

