All Packages This Package Previous Next

Class java.util.Vector

ava.lang.Object

+-———-java.util.Vector

public class Vector
extends Object

Vector class (a growable array).

Each vector tries to optimize storage management by maintaining a capacity and a
capacityIncrement. The capacity is always at least as large as the vector size; it is
usually larger because as elements are added to the vector, the vector’s storage increases
in chunks the size of capacityIncrement. Setting the capacity to what you want before
inserting a large number of objects will reduce the amount of incremental reallocation.
You can safely ignore the capacity and the vector will still work correctly.

Version:
1.27, 08/18/95
Author:
Jonathan Payne, Lee Boynton

Variable Index

o capacitylncrement

The size of the increment.
o elementCount

The number of elements in the buffer.
o elementData

The buffer where elements are stored.

Constructor Index

o Vector(int, int)
Constructs an empty vector with the specified storage capacity and the specified
capacitylncrement.



o Vector(int)

Constructs an empty vector with the specified storage capacity.
o Vector()

Constructs an empty vector.

Method Index

o addElement(Object)
Adds the specified object as the last element of the vector.
o capacity()
Returns the current capacity of the vector.
o clone()
Clones this vector.
o contains(Object)
Returns true if the specified object is a value of the collection.
o copylInto(Object[])
Copies the elements of this vector into the specified array.
o elementAt(int)
Returns the element at the specified index.
o elements()
Returns an enumeration of the elements.
o ensureCapacity(int)
Ensures that the vector has at least the specified capacity.
o firstElement()
Returns the first element of the sequence.
o indexOf(Object)
Searches for the specified object, starting from the first position and returns an
index to it.
o indexOf(Object, int)
Searches for the specified object, starting at the specified position and returns an
index to it.
o insertElementAt(Object, int)
Inserts the specified object as an element at the specified index.
o isEmpty()
Returns true if the collection contains no values.
o lastElement()
Returns the last element of the sequence.
o lastIndexOf(Object)
Searches backwards for the specified object, starting from the last position and
returns an index to it.
o lastIndexOf(Object, int)
Searches backwards for the specified object, starting from the specified position
and returns an index to it.
o removeAllElements()
Removes all elements of the vector.
o removeElement(Object)
Removes the element from the vector.
o removeElementAt(int)




Deletes the element at the specified index.
o setElementAt(Object, int)

Sets the element at the specified index to be the specified object.
o setSize(int)

Sets the size of the vector.
o size()

Returns the number of elements in the vector.
o toString()

Converts the vector to a string.
o trimToSize()

Trims the vector’s capacity down to size.

Variables
o elementData
protected Object elementDatal]
The buffer where elements are stored.
o elementCount
protected int elementCount
The number of elements in the buffer.

o capacitylncrement

protected int capacityIncrement

The size of the increment. If it is 0 the size of the the buffer is doubled everytime it
needs to grow.

Constructors

o Vector

public Vector (int initialCapacity,
int capacityIncrement)

Constructs an empty vector with the specified storage capacity and the specified
capacitylncrement.
Parameters:
initialCapacity — the initial storage capacity of the vector
capacitylncrement — how much to increase the element’s size by.

o Vector



public Vector (int initialCapacity)
Constructs an empty vector with the specified storage capacity.
Parameters:
initialCapacity — the initial storage capacity of the vector
o Vector

public Vector ()

Constructs an empty vector.

Methods

o copylnto

public final synchronized void copyInto(Object anArrayl[])

Copies the elements of this vector into the specified array.
Parameters:
anArray — the array where elements get copied into

o trimToSize

public final synchronized void trimToSize ()

Trims the vector’s capacity down to size. Use this operation to minimize the

storage of a vector. Subsequent insertions will cause reallocation.

o ensureCapacity

public final synchronized void ensureCapacity (int minCapacity)

Ensures that the vector has at least the specified capacity.
Parameters:
minCapacity — the desired minimum capacity

o setSize

public final synchronized void setSize (int newSize)

Sets the size of the vector. If the size shrinks, the extra elements (at the end of the
vector) are lost; if the size increases, the new elements are set to null.

Parameters:
newSize — the new size of the vector

o capacity



public final int capacity ()
Returns the current capacity of the vector.
o size
public final int size()

Returns the number of elements in the vector. Note that this is not the same as the
vector’s capacity.

o isEmpty
public final boolean isEmpty ()
Returns true if the collection contains no values.
o elements

public final synchronized Enumeration elements ()

Returns an enumeration of the elements. Use the Enumeration methods on the
returned object to fetch the elements sequentially.

o contains

public final boolean contains (Object elem)

Returns true if the specified object is a value of the collection.
Parameters:
elem - the desired element

o indexOf

public final int indexOf (Object elem)

Searches for the specified object, starting from the first position and returns an

index to it.
Parameters:

elem - the desired element
Returns:

the index of the element, or -1 if it was not found.

o indexOf

public final synchronized int indexOf (Object elem,
int index)

Searches for the specified object, starting at the specified position and returns an



index to it.
Parameters:
elem - the desired element
index — the index where to start searching

Returns:
the index of the element, or -1 if it was not found.

o lastIndexOf

public final int lastIndexOf (Object elem)

Searches backwards for the specified object, starting from the last position and
returns an index to it.
Parameters:
elem - the desired element
Returns:
the index of the element, or -1 if it was not found.

o lastIndexOf

public final synchronized int lastIndexOf (Object elem,
int index)

Searches backwards for the specified object, starting from the specified position
and returns an index to it.
Parameters:
elem - the desired element
index — the index where to start searching
Returns:
the index of the element, or -1 if it was not found.

o elementAt

public final synchronized Object elementAt (int index)

Returns the element at the specified index.
Parameters:
index — the index of the desired element
Throws: ArrayIndexOutOfBoundsException
If an invalid index was given.

o firstElement

public final synchronized QObject firstElement ()

Returns the first element of the sequence.

Throws: NoSuchElementException
If the sequence is empty.



o lastElement

public final synchronized Object lastElement ()

Returns the last element of the sequence.
Throws: NoSuchElementException
If the sequence is empty.

o setElementAt

public final synchronized void setElementAt (Object obj,
int index)

Sets the element at the specified index to be the specified object. The previous
element at that position is discarded.
Parameters:
obj — what the element is to be set to
index — the specified index
Throws: ArrayIndexOutOfBoundsException
If the index was invalid.

o removeElementAt

public final synchronized void removeElementAt (int index)

Deletes the element at the specified index. Elements with an index greater than
the current index are moved down.
Parameters:

index — the element to remove

Throws: ArrayIndexOutOfBoundsException
If the index was invalid.

o insertElementAt

public final synchronized void insertElementAt (Object obj,
int index)

Inserts the specified object as an element at the specified index. Elements with an
index greater or equal to the current index are shifted up.
Parameters:
obj — the element to insert
index — where to insert the new element
Throws: ArraylndexOutOfBoundsException
If the index was invalid.

o0 addElement

public final synchronized void addElement (Object obj)



Adds the specified object as the last element of the vector.
Parameters:
obj — the element to be added

o removeElement

public final synchronized boolean removeElement (Object obj)

Removes the element from the vector. If the object occurs more than once, only the
first is removed. If the object is not an element, returns false.
Parameters:
obj — the element to be removed
Returns:
true if the element was actually removed; false otherwise.

o removeAllElements

public final synchronized void removeAllElements ()
Removes all elements of the vector. The vector becomes empty.

o clone

public synchronized Object clone ()

Clones this vector. The elements are not cloned.
Overrides:
clone in class Object

o toString

public final synchronized String toString()

Converts the vector to a string. Useful for debugging.
Overrides:
toString in class Object

All Packages This Package Previous Next




