
All Packages This Package Previous Next

Class java.lang.ClassLoader

java.lang.Object
 |
 +−−−−java.lang.ClassLoader

public class ClassLoader

extends Object

ClassLoader is an abstract Class that can be used to define a policy for loading Java

classes into the runtime environment. By default, the runtime system loads classes that

originate as files by reading them from the directory defined by the CLASSPATH

environment variable (this is platform dependent). The default mechanism does not

involve a Class loader.

However, some classes may not originate from a file; they could be loaded from some

other source, e.g., the network. Classes loaded from the network are an array of bytes. A

ClassLoader can be used to tell the runtime system to convert an array of bytes into an

instance of class Class. This conversion information is passed to the runtime using the

defineClass() method.

Classes that are created through the defineClass() mechanism can reference other

classes by name. To resolve those names, the runtime system calls the ClassLoader that

originally created the Class. The runtime system calls the abstract method loadClass() to

load the referenced classes.

 ClassLoader loader = new NetworkClassLoader(host, port);
 Object main = loader.loadClass("Main").newInstance();

The NetworkClassLoader subclass must define the method loadClass() to load a Class

from the network. Once it has downloaded the bytes that make up the Class it should

use the method defineClass() to create a Class instance. A sample implementation could

be:

 class NetworkClassLoader {
 String host;
 int port;
 Hashtable cache = new Hashtable();
 private byte loadClassData(String name)[] {
 // load the class data from the connection
 ...

 }
 public synchronized Class loadClass(String name) {
 Class c = cache.get(name);
 if (c == null) {
 byte data[] = loadClassData(name);
 cache.put(name, defineClass(data, 0, data.length));
 }
 return c;
 }
 }

See Also:

Class

Version:

1.27, 08/21/95

Author:

Arthur van Hoff

Constructor Index

o ClassLoader()

Constructs a new Class loader and initializes it.

Method Index

o defineClass(byte[], int, int)

Converts an array of bytes to an instance of class Class.

o findSystemClass(String)

Loads a system Class.

o loadClass(String, boolean)

Resolves the specified name to a Class.

o resolveClass(Class)

Resolves classes referenced by this Class.

Constructors

o ClassLoader

 protected ClassLoader()

Constructs a new Class loader and initializes it.

Methods

o loadClass

 protected abstract Class loadClass(String name,
 boolean resolve) throws ClassNotFoundException

Resolves the specified name to a Class. The method loadClass() is called by the

virtual machine. As an abstract method, loadClass() must be defined in a subclass

of ClassLoader. By using a Hashtable, you can avoid loading the same Class more

than once.

Parameters:

name − the name of the desired Class

resolve − true if the Class needs to be resolved

Returns:

the resulting Class, or null if it was not found.

See Also:

Hashtable

o defineClass

 protected final Class defineClass(byte data[],
 int offset,
 int length)

Converts an array of bytes to an instance of class Class. Before the Class can be

used it must be resolved.

Parameters:

data − the bytes that make up the Class

offset − the start offset of the Class data

length − the length of the Class data

Returns:

the Class object which was created from the data.

Throws: ClassFormatError

If the data does not contain a valid Class.

See Also:

loadClass, resolveClass

o resolveClass

 protected final void resolveClass(Class c)

Resolves classes referenced by this Class. This must be done before the Class can

be used. Class names referenced by the resulting Class are resolved by calling

loadClass().

Parameters:

c − the Class to be resolved

See Also:

defineClass

o findSystemClass

 protected final Class findSystemClass(String name) throws ClassNotFoundException

Loads a system Class. A system Class is a class with the primordial Class loader

(which is null).

Parameters:

name − the name of the system Class

Throws: NoClassDefFoundError

If the Class is not found.

All Packages This Package Previous Next

