
All Packages This Package Previous Next

Class java.awt.GridBagLayout

java.lang.Object
 |
 +−−−−java.awt.GridBagLayout

public class GridBagLayout

extends Object

implements LayoutManager

GridBagLayout is a flexible layout manager that aligns components vertically and

horizontally, without requiring that the components be the same size. Each

GridBagLayout uses a rectangular grid of cells, with each component occupying one or

more cells (called its display area). Each component managed by a GridBagLayout is

associated with a GridBagConstraints instance that specifies how the component is laid

out within its display area. How a GridBagLayout places a set of components depends on

each component’s GridBagConstraints and minimum size, as well as the preferred size of

the components’ container.

To use a GridBagLayout effectively, you must customize one or more of its components’

GridBagConstraints. You customize a GridBagConstraints object by setting one or more

of its instance variables:

gridx, gridy

Specifies the cell at the upper left of the component’s display area, where the

upper−left−most cell has address gridx=0, gridy=0. Use

GridBagConstraints.RELATIVE (the default value) to specify that the component

be just placed just to the right of (for gridx) or just below (for gridy) the component

that was added to the container just before this component was added.

gridwidth, gridheight

Specifies the number of cells in a row (for gridwidth) or column (for gridheight) in

the component’s display area. The default value is 1. Use

GridBagConstraints.REMAINDER to specify that the component be the last one in

its row (for gridwidth) or column (for gridheight). Use

GridBagConstraints.RELATIVE to specify that the component be the next to last

one in its row (for gridwidth) or column (for gridheight).

fill

Used when the component’s display area is larger than the component’s requested

size to determine whether (and how) to resize the component. Valid values are

GridBagConstraint.NONE (the default), GridBagConstraint.HORIZONTAL (make

the component wide enough to fill its display area horizontally, but don’t change

its height), GridBagConstraint.VERTICAL (make the component tall enough to fill

its display area vertically, but don’t change its width), and

GridBagConstraint.BOTH (make the component fill its display area entirely).

ipadx, ipady

Specifies the internal padding: how much to add to the minimum size of the

component. The width of the component will be at least its minimum width plus

ipadx*2 pixels (since the padding applies to both sides of the component).

Similarly, the height of the component will be at least the minimum height plus

ipady*2 pixels.

insets

Specifies the external padding of the component −− the minimum amount of space

between the component and the edges of its display area.

anchor

Used when the component is smaller than its display area to determine where

(within the area) to place the component. Valid values are

GridBagConstraints.CENTER (the default), GridBagConstraints.NORTH,

GridBagConstraints.NORTHEAST, GridBagConstraints.EAST,

GridBagConstraints.SOUTHEAST, GridBagConstraints.SOUTH,

GridBagConstraints.SOUTHWEST, GridBagConstraints.WEST, and

GridBagConstraints.NORTHWEST.

weightx, weighty

Used to determine how to distribute space; this is important for specifying resizing

behavior. Unless you specify a weight for at least one component in a row

(weightx) and column (weighty), all the components clump together in the center of

their container. This is because when the weight is zero (the default), the

GridBagLayout puts any extra space between its grid of cells and the edges of the

container.

The following figure shows ten components (all buttons) managed by a GridBagLayout:

[IMAGE]

All the components have fill=GridBagConstraints.BOTH. In addition, the components

have the following non−default constraints:

Button1, Button2, Button3: weightx=1.0

Button4: weightx=1.0, gridwidth=GridBagConstraints.REMAINDER

Button5: gridwidth=GridBagConstraints.REMAINDER

Button6: gridwidth=GridBagConstraints.RELATIVE

Button7: gridwidth=GridBagConstraints.REMAINDER

Button8: gridheight=2, weighty=1.0,

Button9, Button 10: gridwidth=GridBagConstraints.REMAINDER

Here is the code that implements the example shown above:

import java.awt.*;
import java.util.*;
import java.applet.Applet;

public class GridBagEx1 extends Applet {
 protected void makebutton(String name,
 GridBagLayout gridbag,
 GridBagConstraints c) {
 Button button = new Button(name);
 gridbag.setConstraints(button, c);
 add(button);
 }
 public void init() {
 GridBagLayout gridbag = new GridBagLayout();
 GridBagConstraints c = new GridBagConstraints();

 setFont(new Font("Helvetica", Font.PLAIN, 14));
 setLayout(gridbag);

 c.fill = GridBagConstraints.BOTH;
 c.weightx = 1.0;
 makebutton("Button1", gridbag, c);
 makebutton("Button2", gridbag, c);
 makebutton("Button3", gridbag, c);

 c.gridwidth = GridBagConstraints.REMAINDER; //end row
 makebutton("Button4", gridbag, c);

 c.weightx = 0.0; //reset to the default
 makebutton("Button5", gridbag, c); //another row

 c.gridwidth = GridBagConstraints.RELATIVE; //next−to−last in row
 makebutton("Button6", gridbag, c);

 c.gridwidth = GridBagConstraints.REMAINDER; //end row
 makebutton("Button7", gridbag, c);

 c.gridwidth = 1; //reset to the default
 c.gridheight = 2;
 c.weighty = 1.0;
 makebutton("Button8", gridbag, c);

 c.weighty = 0.0; //reset to the default
 c.gridwidth = GridBagConstraints.REMAINDER; //end row
 c.gridheight = 1; //reset to the default
 makebutton("Button9", gridbag, c);
 makebutton("Button10", gridbag, c);

 resize(300, 100);
 }

 public static void main(String args[]) {
 Frame f = new Frame("GridBag Layout Example");
 GridBagEx1 ex1 = new GridBagEx1();

 ex1.init();

 f.add("Center", ex1);
 f.pack();
 f.resize(f.preferredSize());
 f.show();
 }
}

Version:

1.2, 10/19/95

Author:

Doug Stein

Variable Index

o MAXGRIDSIZE

o MINSIZE

o PREFERREDSIZE

o comptable

o defaultConstraints

Constructor Index

o GridBagLayout()

Creates a gridbag layout.

Method Index

o AdjustForGravity(GridBagConstraints, Rectangle)

o ArrangeGrid(Container)

o DumpConstraints(GridBagConstraints)

Print the layout constraints.

o DumpLayoutInfo(GridBagLayoutInfo)

Print the layout information.

o GetLayoutInfo(Container, int)

o GetMinSize(Container, GridBagLayoutInfo)

o addLayoutComponent(String, Component)

Adds the specified component with the specified name to the layout.

o getConstraints(Component)

Retrieves the constraints for the specified component.

o layoutContainer(Container)

Lays out the container in the specified panel.

o lookupConstraints(Component)

Retrieves the constraints for the specified component.

o minimumLayoutSize(Container)

Returns the minimum dimensions needed to layout the components contained in

the specified panel.

o preferredLayoutSize(Container)

Returns the preferred dimensions for this layout given the components in the

specified panel.

o removeLayoutComponent(Component)

Removes the specified component from the layout.

o setConstraints(Component, GridBagConstraints)

Sets the constraints for the specified component.

o toString()

Returns the String representation of this GridLayout’s values.

Variables

o MAXGRIDSIZE

 protected final static int MAXGRIDSIZE

o MINSIZE

 protected final static int MINSIZE

o PREFERREDSIZE

 protected final static int PREFERREDSIZE

o comptable

 protected Hashtable comptable

o defaultConstraints

 protected GridBagConstraints defaultConstraints

Constructors

o GridBagLayout

 public GridBagLayout()

Creates a gridbag layout.

Methods

o setConstraints

 public void setConstraints(Component comp,
 GridBagConstraints constraints)

Sets the constraints for the specified component.

Parameters:

comp − the component to be modified

constraints − the constraints to be applied

o getConstraints

 public GridBagConstraints getConstraints(Component comp)

Retrieves the constraints for the specified component. A copy of the constraints is

returned.

Parameters:

comp − the component to be queried

o lookupConstraints

 protected GridBagConstraints lookupConstraints(Component comp)

Retrieves the constraints for the specified component. The return value is not a

copy, but is the actual constraints class used by the layout mechanism.

Parameters:

comp − the component to be queried

o addLayoutComponent

 public void addLayoutComponent(String name,
 Component comp)

Adds the specified component with the specified name to the layout.

Parameters:

name − the name of the component

comp − the component to be added

o removeLayoutComponent

 public void removeLayoutComponent(Component comp)

Removes the specified component from the layout. Does not apply.

Parameters:

comp − the component to be removed

o preferredLayoutSize

 public Dimension preferredLayoutSize(Container parent)

Returns the preferred dimensions for this layout given the components in the

specified panel.

Parameters:

parent − the component which needs to be laid out

See Also:

minimumSize

o minimumLayoutSize

 public Dimension minimumLayoutSize(Container parent)

Returns the minimum dimensions needed to layout the components contained in

the specified panel.

Parameters:

parent − the component which needs to be laid out

See Also:

preferredSize

o layoutContainer

 public void layoutContainer(Container parent)

Lays out the container in the specified panel.

Parameters:

parent − the specified component being laid out

See Also:

Container

o toString

 public String toString()

Returns the String representation of this GridLayout’s values.

Overrides:

toString in class Object

o DumpLayoutInfo

 protected void DumpLayoutInfo(GridBagLayoutInfo s)

Print the layout information. Useful for debugging.

o DumpConstraints

 protected void DumpConstraints(GridBagConstraints constraints)

Print the layout constraints. Useful for debugging.

o GetLayoutInfo

 protected GridBagLayoutInfo GetLayoutInfo(Container parent,
 int sizeflag)

o AdjustForGravity

 protected void AdjustForGravity(GridBagConstraints constraints,
 Rectangle r)

o GetMinSize

 protected Dimension GetMinSize(Container parent,
 GridBagLayoutInfo info)

o ArrangeGrid

 protected void ArrangeGrid(Container parent)

All Packages This Package Previous Next

