
All Packages This Package Previous Next

Class sun.tools.debug.RemoteDebugger

java.lang.Object
 |
 +−−−−sun.tools.debug.RemoteDebugger

public class RemoteDebugger

extends Object

The RemoteDebugger class defines a client interface to the Java debugging classes. It is

used to instantiate a connection with the Java interpreter being debugged.

Version:

1.0 26 June 1995

Author:

Thomas Ball

Constructor Index

o RemoteDebugger(String, String, DebuggerCallback, boolean)

Create a remote debugger.

Method Index

o close(boolean)

Close the connection to the remote debugging agent.

o findClass(String)

Find a specified class.

o freeMemory()

Report the free memory available to the Java interpreter being debugged.

o gc()

Free all unreferenced objects.

o get(Integer)

Get an object from the remote object cache.

o getExceptionCatchList()

Return the list of the exceptions the debugger will stop on.

o getSourcePath()

Return the source file path the Agent is currently using.

o itrace(boolean)

Turn on/off instruction tracing.

o listBreakpoints()

Return a list of the breakpoints which are currently set.

o listClasses()

List the currently known classes.

o listThreadGroups(RemoteThreadGroup)

List threadgroups

o run(int, String[])

Load and run a runnable Java class, with any optional parameters.

o setSourcePath(String)

Specify the list of paths to use when searching for a source file.

o totalMemory()

Report the total memory usage of the Java interpreter being debugged.

o trace(boolean)

Turn on/off method call tracing.

Constructors

o RemoteDebugger

 public RemoteDebugger(String host,
 String password,
 DebuggerCallback client,
 boolean verbose) throws Exception

Create a remote debugger.

Parameters:

host − the name of the system where a debuggable Java instance is running

(default is localhost)

password − the password reported by the debuggable Java instance

client − the object to which notification messages are sent (it must support

the DebuggerCallback interface)

verbose − turn on internal debugger message text

Methods

o close

 public void close(boolean closeRemoteAgent)

Close the connection to the remote debugging agent.

Parameters:

closeRemoteAgent − terminate the Java interpreter being debugged

o get

 public RemoteObject get(Integer id)

Get an object from the remote object cache.

Parameters:

id − the remote object’s id

Returns:

the specified RemoteObject, or null if not cached.

o listClasses

 public RemoteClass[] listClasses() throws Exception

List the currently known classes.

o findClass

 public RemoteClass findClass(String name) throws Exception

Find a specified class. If the class isn’t already known by the remote debugger, the

lookup request will be passed to the Java interpreter being debugged. NOTE:

Substrings, such as "String" for "java.lang.String" will return with the first match,

and will not be successfully found if the request is passed to the remote

interpreter.

Parameters:

name − the name (or a substring of the name)of the class

Returns:

the specified (Remote)Class, or null if not found.

o listThreadGroups

 public RemoteThreadGroup[] listThreadGroups(RemoteThreadGroup tg) throws Exception

List threadgroups

Parameters:

tg − the threadgroup which hold the groups to be listed, or null for all

threadgroups

o gc

 public void gc() throws Exception

Free all unreferenced objects. The remote debugger maintains a copy of each object

it has examined, so that references won’t become invalidated by the garbage

collector of the Java interpreter being debugged.

o trace

 public void trace(boolean traceOn) throws Exception

Turn on/off method call tracing. When turned on, each method call is reported to

the stdout of the Java interpreter being debugged. This output is not captured in

any way by the remote debugger.

Parameters:

traceOn − turn tracing on or off

o itrace

 public void itrace(boolean traceOn) throws Exception

Turn on/off instruction tracing. When turned on, each Java instruction is reported

to the stdout of the Java interpreter being debugged. This output is not captured

in any way by the remote debugger.

Parameters:

traceOn − turn tracing on or off

o totalMemory

 public int totalMemory() throws Exception

Report the total memory usage of the Java interpreter being debugged.

o freeMemory

 public int freeMemory() throws Exception

Report the free memory available to the Java interpreter being debugged.

o run

 public RemoteThreadGroup run(int argc,
 String argv[]) throws Exception

Load and run a runnable Java class, with any optional parameters. The class is

started inside a new threadgroup in the Java interpreter being debugged. NOTE:

Although it is possible to run multiple runnable classes from the same Java

interpreter, there is no guarantee that all applets will work cleanly with each

other. For example, two applets may want exclusive access to the same shared

resource,such as a specific port.

Parameters:

argc − the number of parameters

argv − the array of parameters: the class to be run is first, followed by any

optional parameters used by that class.

Returns:

the new ThreadGroup the class is running in, or null on error

o listBreakpoints

 public String[] listBreakpoints() throws Exception

Return a list of the breakpoints which are currently set.

Returns:

an array of Strings of the form "class_name:line_number".

o getExceptionCatchList

 public String[] getExceptionCatchList() throws Exception

Return the list of the exceptions the debugger will stop on.

Returns:

an array of exception class names, which may be zero−length.

o getSourcePath

 public String getSourcePath() throws Exception

Return the source file path the Agent is currently using.

Returns:

a string consisting of a list of colon−delineated paths.

o setSourcePath

 public void setSourcePath(String pathList) throws Exception

Specify the list of paths to use when searching for a source file.

Parameters:

pathList − a string consisting of a list of colon−delineated paths.

All Packages This Package Previous Next

