
Common Desktop Environment (CDE) 5.2

Tooltalk Programmer’s Guide

Document Number 860-0211-003

Copyright © 1999-2002 Silicon Graphics, Inc.
Copyright © 1994-1995 TriTeal Corporation
Copyright © 1993-1995 Hewlett-Packard Company
Copyright © 1993-1995 International Business MachinesCorp.
Copyright © 1993-1995 Novell, Inc.
Copyright © 1993-1995 Sun Microsystems, Inc.

All Rights Reserved
This product and related documentation are protected by copyright and distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of this product or related documentation may be reproduced in any form by any
means without prior written authorization. The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set forth in
subdivision (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/or in similar or successor
clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the United States.
Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94043-1389.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE
PUBLICATION. SILICON GRAPHICS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

TRADEMARKS
The code and documentation for the DtComboBox and DtSpinBox widgets were contributed by Interleaf, Inc. Copyright 1993,
Interleaf, Inc. UNIX is a trademark exclusively licensed through X/Open Company, Ltd. OSF/Motif and Motif are trademarks
of Open Software Foundation, Ltd. X Window System is a trademark of X Consortium, Inc. PostScript is a trademark of Adobe
Systems, Inc., which may be registered in certain jurisdictions.TriTeal, TED, TEDFAX, TEDSECURE, TEDVISION, LOCALTED
and WIN TED are trademarks of TriTeal Corporation. ToolTalk is a registered trademark of Sun Microsystems, Inc. AIX is a
trademark of International Business Machines Corp. HP/UX is a trademark of Hewlett Packard Company. Solaris is a trademark
of Sun Microsystems, Inc. UnixWare is a trademark of Novell, Inc. Microsoft Windows is a trademark of Microsoft. OS/2 is a
trademark of International Business Machines Corp. OPEN LOOK is a registered trademark of Novell, Inc. OpenWindows is a
trademark of Sun Microsystems, Inc. NFS is a registered trademark of Sun Microsystems, Inc. Microsoft is a registered trademark
of Microsoft Corporation. IRIX, SGI and Silicon Graphics are registered trademarks of Silicon Graphics, Inc.

RECORD OF REVISION
Version Description
001 June 2002. Common Desktop Environment 5.2.

Common Desktop Environment (CDE) 5.2 Tooltalk Programmer's Guide
Document Number 860-0211-003

iii

Contents

Preface. xiii

1. Introducing the ToolTalk Service . 1

What Kind of Work Problems Can the ToolTalk Service Solve? 2

Tool Inter-changeability . 2

Control Integration . 2

Network-Transparent Events . 3

Automatic Tool Invocation . 3

 Distributed-Object System. 3

Persistent Objects . 4

ToolTalk Scenarios . 4

Using the ToolTalk Desktop Services Message Set 4

Using the ToolTalk Document and Media Exchange Message
Set . 6

How Applications Use ToolTalk Messages 8

Sending ToolTalk Messages . 8

Message Patterns . 9

iv CDE ToolTalk Programmer’s Guide

Receiving ToolTalk Messages . 9

ToolTalk Message Distribution. 10

Process-Oriented Messages . 10

Object-Oriented Messages . 10

Determining Message Delivery . 11

Modifying Applications to Use the ToolTalk Service 12

2. ToolTalk Service Overview . 13

ToolTalk Architecture . 13

Starting a ToolTalk Session . 14

Background and Batch Sessions. 16

X Window System . 17

Locating ttsession . 17

Maintaining ToolTalk Files and Databases 17

Demonstration Programs . 18

3. Setting Up and Maintaining the ToolTalk Processes 19

Location of the ToolTalk Service Files . 19

Version. 21

Environment Variables . 21

ToolTalk Environment Variables . 21

Other Environment Variables. 23

Using Context Slots to Create Environment Variables 23

Installing the ToolTalk Database Server 23

When the ToolTalk Service is Installed Elsewhere on the
System. 24

Contents v

Running the New ToolTalk Database Server 24

Redirecting the ToolTalk Database Server 24

Redirecting the Host Machine . 25

Redirecting the File System Partition 26

4. Maintaining Application Information 27

Installing Application Types. 27

Examining ToolTalk Type Information . 28

Removing ToolTalk Type Information. 29

Updating the ToolTalk Service . 29

Process Type Errors . 30

Using TTSnoop to Debug Messages and Patterns 30

About TTSnoop . 30

How to Run TTSnoop . 30

How to Turn Tracing On and Off . 31

How to Create a Message . 31

How to Generate a List of ToolTalk Actions. 31

5. Maintaining Files and Objects Referenced in ToolTalk Messages
33

ToolTalk-Enhanced Shell Commands . 33

Maintaining and Updating ToolTalk Databases. 34

Displaying, Checking, and Repairing Databases 35

6. Participating in ToolTalk Sessions. 37

The ToolTalk Libraries . 37

Including the ToolTalk API Header File 37

vi CDE ToolTalk Programmer’s Guide

Registering with the ToolTalk Service . 38

Registering in the Initial Session . 38

Registering in a Specified Session . 40

Registering in Multiple Sessions . 41

Setting Up to Receive Messages . 42

Sending and Receiving Messages in the Same Process 42

Sending and Receiving Messages in a Networked Environment 43

Unregistering from the ToolTalk Service. 44

7. Sending Messages. 45

How the ToolTalk Service Routes Messages 45

Sending Notices . 45

Sending Requests . 46

Changes in State of Sent Message . 47

Message Attributes . 47

Address Attribute . 48

Scope Attributes. 49

Serialization of Structured Data. 52

ToolTalk Message Delivery Algorithm . 52

Process-Oriented Message Delivery 52

Object-Oriented Message Delivery . 55

Otype Addressing . 58

Modifying Applications to Send ToolTalk Messages. 58

Creating Messages . 58

Adding Message Callbacks. 65

Contents vii

Sending a Message. 68

Examples . 68

8. Message Patterns. 71

Message Pattern Attributes. 72

Scope Attributes . 74

Scoping Only to a Session. 75

Scoping Only to a File . 76

Scoping to a File in a Session . 76

Scoping to a File and/or a Session . 78

Adding Files to Scoped Patterns . 79

Context Attributes . 80

Disposition Attributes . 80

9. Dynamic Message Patterns . 81

Defining Dynamic Messages . 81

Creating a Message Pattern . 84

Adding a Message Pattern Callback 84

Registering a Message Pattern . 85

Deleting and Unregistering a Message Pattern 85

Updating Message Patterns with the Current Session or File . 86

Joining the Default Session. 86

Joining Multiple Sessions . 87

Joining Files of Interest . 88

10. Static Message Patterns . 89

Defining Static Messages. 89

viii CDE ToolTalk Programmer’s Guide

Defining Process Types . 89

Signatures . 90

Creating a Ptype File . 91

Defining Object Types . 94

Signatures . 95

Creating Otype Files . 95

Installing Type Information . 97

Checking for Existing Process Types . 98

Ptypes . 99

Declaring Process Type . 99

Undeclaring Process Types . 100

11. Receiving Messages . 103

Retrieving Messages . 103

Identifying and Processing Messages Easily 104

Recognizing and Handling Replies Easily 105

Checking Message Status . 105

Examining Messages . 105

Callback Routines . 108

Callbacks for Messages Addressed to Handlers 109

Attaching Callbacks to Static Patterns 110

Handling Requests. 110

Replying to Requests . 110

Rejecting or Failing a Request . 111

Destroying Messages . 112

Contents ix

12. Objects . 113

Object-Oriented Messaging . 113

Creating Object Specs . 115

Assigning Otypes. 115

Determining Object Specification Properties 116

Storing Spec Properties . 116

Adding Values to Properties. 116

Writing Object Specs . 116

Updating Object Specs . 117

Maintaining Object Specs . 117

Examining Spec Information . 118

Comparing Object Specs . 119

Querying for Specific Specs in a File 119

Moving Object Specs . 120

Destroying Object Specs . 121

Managing Object and File Information . 121

Managing Files that Contain Object Data 122

Managing Files that Contain ToolTalk Information. 122

An Example of Object-Oriented Messaging 123

13. Managing Information Storage . 125

Information Provided to the ToolTalk Service 125

Information Provided by the ToolTalk Service. 125

Calls Provided to Manage the Storage of Information 126

Marking and Releasing Information 126

x CDE ToolTalk Programmer’s Guide

Allocating and Freeing Storage Space. 127

Special Case: Callback and Filter Routines 128

Callback Routines . 128

Filter Routines . 129

14. Handling Errors. 131

Retrieving ToolTalk Error Status . 132

Checking ToolTalk Error Status . 132

Returned Value Status . 132

Returned Pointer Status . 133

Returned Integer Status. 134

 . 135

Broken Connections. 135

Error Propagation . 135

Initialization Error Messages . 136

 . 137

ToolTalk Error Messages . 138

15. The ToolTalk Enumerated Types . 149

16. The ToolTalk Functional Groupings . 155

Initialization Functions . 156

Message Patterns . 156

Ptypes . 159

Sessions . 159

Files . 161

Messages . 161

Contents xi

Objects . 167

ToolTalk Storage Management . 169

ToolTalk Error Status . 170

Exiting . 170

ToolTalk Error-Handling Macros . 170

Miscellaneous ToolTalk Functions . 170

17. ToolTalk Functions/Commands . 173

ToolTalk Functions . 173

Miscellaneous ToolTalk Functions . 186

Tooltalk Commands. 186

18. Using ToolTalk Messaging . 189

Telling Your Application about ToolTalk Functionality 189

Using the Messaging Toolkit and Including ToolTalk
Commands . 189

Using the ToolTalk Libraries. 190

Before You Start Coding . 190

What Is the Difference Between an Event and an Operation?190

Developing a Scenario. 192

Preparing Your Application for Communication. 193

Creating a Ptype File . 194

Tasks Every ToolTalk-aware Application Needs to Perform 195

Tasks ToolTalk-aware Editor Applications Need to Perform 197

Optional Tasks ToolTalk-aware Editor Applications Can
Perform . 198

19. The Messaging Toolkit. 201

xii CDE ToolTalk Programmer’s Guide

General Description of the ToolTalk Messaging Toolkit 201

Toolkit Conventions. 202

Using the Messaging Toolkit When Writing Applications 203

Accepting Desktop Requests . 204

Registering for Standard Desktop Messages 204

20. ToolTalk Message Sets . 205

A. Frequently Asked Questions . 227

xiii

Preface

This manual describes the application programming interface (API)
components, commands, and error messages of the ToolTalk® service and how
you modify your application to send and receive ToolTalk messages.

The ToolTalk service supports several messaging styles. A sender can address a
ToolTalk message to a particular process, to any interested process, to an object,
or to an object type. Message senders are not concerned with the locations of
processes and objects in any network; the ToolTalk service finds receiving
processes and objects.

 Who Should Use this Book

This guide is for:

• developers who want to write applications that directly use ToolTalk
messaging. (You can get many of the benefits of ToolTalk messaging by
writing actions that send ToolTalk messages.)

• developers who create or maintain applications that use the ToolTalk service
to inter-operate with other applications.

• system administrators who set up workstations.

This guide assumes familiarity with operating system commands, system
administrator commands, and system terminology.

xiv CDE ToolTalk Programmer’s Guide

How This Manual Is Organized

This manual is organized into three general parts: Chapters 1 through 5
introduce ToolTalk and cover concepts and file system layout; Chapters 6
through 17 cover the ToolTalk API; and Chapters 18 through 20 cover message
sets and the messaging toolkit.

This manual contains the following chapters and appendix:

Chapter 1, “Introducing the ToolTalk Service", describes how the ToolTalk
service works and how it uses information that your application supplies to
deliver messages; and how applications use the ToolTalk service.

Chapter 2, “ToolTalk Service Overview", describes applications and ToolTalk
components.

Chapter 3, “Setting Up and Maintaining the ToolTalk Processes", describes
ToolTalk file locations, hardware and software requirements, how to find
ToolTalk version information, and installation for the ToolTalk database server.

Chapter 4, “Maintaining Application Information", describes how to maintain
application information.

Chapter 5, “Maintaining Files and Objects Referenced in ToolTalk
Messages", describes how to maintain file references in ToolTalk messages;
how system administrators and users maintain ToolTalk objects; and how to
perform maintenance on ToolTalk databases.

Chapter 6, “Participating in ToolTalk Sessions", describes the location of the
ToolTalk application programming interface (API) header file; how you
initialize your application and start a session with the ToolTalk service; how
you provide file and session information to the ToolTalk service; how to
manage storage and handle errors; and how to unregister your message
patterns and close your communication with the ToolTalk service when your
process is ready to quit.

Chapter 7, “Sending Messages", describes the complete ToolTalk message
structure; the ToolTalk message delivery algorithm; how to create, fill in, and
send a ToolTalk message; and how to attach to requests a callback that will
automatically call your callback routine when the reply to your request is
delivered to your application.

Chapter 8, “Message Patterns", describes message pattern attributes.

Preface xv

Chapter 9, “Dynamic Message Patterns", describes how to create a dynamic
message pattern and register it with the ToolTalk service; and how to add
callbacks to your dynamic message patterns.

Chapter 10, “Static Message Patterns", describes how to provide process and
object type information at installation time; how to make a static message
pattern available to the ToolTalk Service; and how to declare a ptype.

Chapter 11, “Receiving Messages", describes how to retrieve messages
delivered to your application; how to handle the message once you have
examined it; how to send replies; and when to destroy messages.

Chapter 12, “Objects", describes how to create ToolTalk specification objects
for the objects your process creates and manages.

Chapter 13, “Managing Information Storage", describes how to manage and
remove objects.

Chapter 14, “Handling Errors", describes how to handle error conditions,
errors that may occur during initialization, and Tooltalk error messages found
in the message catalog.

Chapter 15, “The ToolTalk Enumerated Types", describes each of the ToolTalk
enumerated types.

Chapter 16, “The ToolTalk Functional Groupings", lists, in table format, the
ToolTalk functions by the specific operations they perform.

Chapter 17, “ToolTalk Functions/Commands", lists, in table format, each of the
ToolTalk functions and commands, along with their descriptions.

Chapter 18, “Using ToolTalk Messaging", describes how to use ToolTalk
messaging.

Chapter 19, “The Messaging Toolkit", describes the Messaging Toolkit, which
is a higher-level interface of the ToolTalk API.

Chapter 20, “ToolTalk Message Sets", describes the ToolTalk Desktop Services
Message Set and the ToolTalk Document and Media Exchange Message Set that
have been developed to help you develop applications that follow the same
protocol as other applications with which your application wants to inter-
operate.

xvi CDE ToolTalk Programmer’s Guide

Appendix A, “Frequently Asked Questions", provides the answers to some
frequently asked questions about the ToolTalk service.

Related Documentation

The following is a list of related ToolTalk documentation:

• ToolTalk Messaging Overview.

1

Introducing the ToolTalk Service 1

The ToolTalk service enables independent applications to communicate with each
other without having direct knowledge of each other. Applications create and send
ToolTalk messages to communicate with each other. The ToolTalk service receives
these messages, determines the recipients, and then delivers the messages to the
appropriate applications, as shown in Figure 1-1.

Figure 1-1 Applications Using the ToolTalk Service

Applica-
tion A

Applica-
tion B

Applica-
tion C

Applica-
tion D

The ToolTalk Service

2 CDE ToolTalk Programmer’s Guide

1

What Kind of Work Problems Can the ToolTalk Service Solve?

This section describes some of the inter-operability problems the ToolTalk
service is designed to solve. The ToolTalk service is the appropriate technology
to use if your application needs:

• Tool inter-changeability.

• Control integration.

• Network-transparent events that are not owned by any well-known server
(for example, an X server) and that do not have any predictable set of
listeners.

• Automatic tool invocation.

• A widely-available distributed object system.

• Persistent objects.

Of course, there are some inter-operability problems for which the ToolTalk
service may not be the appropriate technology; however, when your
application needs to solve both sorts of problems (that is, a combination of
those inter-operability problems for which the ToolTalk service is designed to
solve and those problems for which it is not designed), you can use the
ToolTalk service in combination with other technologies.

Tool Inter-changeability

Use the ToolTalk service when you want plug-and-play capability. The term
plug-and-play means that any tool can be replaced by any other tool that
follows the same protocol. That is, any tool that follows a given ToolTalk
protocol can be placed (plugged) into your computing environment and
perform (play) those functions indicated by the protocol. Tools can be mixed
and matched, without modification and without having any specific built-in
knowledge of each other.

Control Integration

Use the ToolTalk service when your application requires control integration.
The term control integration indicates a group of tools working together
toward a common end without direct user intervention. The ToolTalk service

Introducing the ToolTalk Service 3

1

enables control integration through its easy and flexible facilities for issuing
arbitrary requests, either to specific tool instances or to anonymous service
providers.

Network-Transparent Events

Use the ToolTalk service when your application needs to generate or receive
network-transparent events. To be useful, traditional event mechanisms (such
as signals and window-system events) require special circumstances; for
example, you must know a process or window ID. The ToolTalk service allows
events to be expressed naturally: in terms of the file to which the event refers,
or the group of processes on the network to which the event is applicable. The
ToolTalk service delivers events (called notices) to any interested process
anywhere on the network. ToolTalk notices are a flexible and easy way to
provide extensibility for your system.

Automatic Tool Invocation

Use the ToolTalk service when your application needs network-transparent
automatic invocation. The ToolTalk service lets you describe the messages that,
when sent from any location on the network, should cause your tool to be
invoked. The ToolTalk auto-start facility is easier to use and less host-specific
than the conventional inetd(1) facility.

 Distributed-Object System

Use ToolTalk when you need to build your application on a distributed-object
system that is available across a wide variety of platforms. ToolTalk's object
system can be used by any application on all the popular UNIX platforms,
regardless of whether the application

• Is single- or multi-threaded.

• Has a command-line or graphical user interface.

• Uses its own event loop, or that of a window-system toolkit.

Note – Programs coded to the ToolTalk object-oriented messaging interface are
not portable to CORBA-compliant systems without source changes.

4 CDE ToolTalk Programmer’s Guide

1

Persistent Objects

Use the ToolTalk service when your application needs to place objects
unobtrusively in the UNIX file system.

ToolTalk Scenarios

The scenarios in this section illustrate how the ToolTalk service helps users
solve their work problems. The message protocols used in these scenarios are
hypothetical.

Using the ToolTalk Desktop Services Message Set

The ToolTalk Desktop Services Message Set allows an application to integrate
and control other applications without user intervention. This section
illustrates two scenarios that show how the Desktop Services Message Set
might be implemented.

The Smart Desktop

A common user requirement for a graphic user interface (GUI) front-end is the
ability to have data files be aware (or “know”) of their applications. To do this,
an application-level program is needed to interpret the user’s requests. An
example of this application-level program (known as smart desktops) is the
Common Desktop Environment (CDE) File Manager. The common
requirements for smart desktops are:

1. Takes a file.

2. Determines its application.

3. Invokes the application.

The ToolTalk Service encompasses additional flexibility by allowing classes of
tools to edit a specific data type. The following scenario illustrates how the
Desktop Services Message Set might be implemented as a smart desktop
transparent to the end-user.

1. Quinn double clicks on the File Manager icon.
• The File Manager opens and displays the files in Quinn’s current

directory.

Introducing the ToolTalk Service 5

1

2. Quinn double clicks on an icon for a data file.

a. The File Manager requests that the file represented by the icon be
displayed. The File Manager encodes the file type in the display message.

b. The ToolTalk session manager matches the pattern in the display message
to a registered application (in this case, the Icon Editor), and finds an
instance of the application running on Quinn’s desktop.

Note – If the ToolTalk session manager does not find a running instance of the
application, it checks the statically defined ptypes and starts an application
that best matches the pattern in the message. If none of the ptypes match, the
session manager returns failure to the File Manager application.

c. The Icon Editor accepts the display message, de-iconifies itself, and raises
itself to the top of the display.

3. Quinn manually edits the file.

Integrated Toolsets

Another significant application for which the Desktop Services Message Set
can be implemented is integrated toolsets. These environments can be applied in
vertical applications or in horizontal environments (such as compound
documents). Common to both of these applications is the premise that the
overall solution is built out of specialized applications designed to perform one
particular task well. Examples of integrated toolset applications are text
editors, drawing packages, video or audio display tools, compiler front-ends,
and debuggers. The integrated toolset environment requires applications to
interact by calling on each other to handle user requests. For example, to
display video, an editor calls a video display program; or to check a block of
completed code, an editor calls a compiler. The following scenario illustrates
how Desktop Services Message Set might be implemented as an integrated
toolset:

1. Kaia is working on a compound document using her favorite editor.

She decides to change some of the source code text.

2. Kaia double clicks on the source code text.

a. The Document Editor first determines that the text represents source
code and then determines what file contains the source code.

6 CDE ToolTalk Programmer’s Guide

1

b. The Document Editor sends an edit message request, using the file name
as a parameter for the message.

c. The ToolTalk session manager matches the pattern in the edit message to
a registered application (in this case, the Source Code Editor), and finds
an instance of the application running on Kaia’s desktop.

Note – If the ToolTalk session manager does not find a running instance of the
application, it checks the statically defined ptypes and starts an application
that best matches the pattern in the message. If none of the ptypes match, the
session manager returns failure to the Document Editor application.

d. The Source Code Editor accepts the edit message request.

e. The Source Code editor determines that the source code file is under
configuration control, and sends a message to check out the file.

f. The Source Code Control application accepts the message and creates a
read/write copy of the requested file. It then passes the name of the file
back to the Source Code Editor.

g. The Source Code Editor opens a window that contains the source file.

3. Kaia edits the source code text.

Using the ToolTalk Document and Media Exchange Message Set

The ToolTalk Document and Media Exchange Message Set is very flexible and
robust. This section illustrates three applications of the ToolTalk Document and
Media Exchange Message Set:

• Integrating multimedia into an authoring application.
• Adding multimedia extensions to an existing application.
• Extending the cut and paste facility of X with a media translation facility.

Introducing the ToolTalk Service 7

1

Integrating Multimedia Functionality

Integrating multimedia functionality into an application allows end-users of
the application to embed various media types in their documents.

Typically, an icon that represents the media object is embedded in the
document. Upon selection of an embedded object, the ToolTalk service
automatically invokes an appropriate external media application and the object
is played as illustrated in the following scenario.

1. Dana opens a document that contains multimedia objects.

2. The window shows the document with several icons representing various
media types (such as sound, video, and graphics).

3. Dana double-clicks on the sound icon.

A sound application (called a player) is launched and the embedded
recording is played.

4. To edit the recording, Dana clicks once on the icon to select it and uses the
third mouse button to bring up an Edit menu.

An editing application is launched and Dana edits the media object.

Adding Multimedia Extensions to Existing Applications

The ToolTalk Document and Media Exchange Message Set also allows an
application to use other multimedia applications to extend its features or
capabilities. For example, a calendar manager can be extended to use the
audiotool to play a sound file as a reminder of an appointment, as illustrated in
the following scenario:

1. Mollie opens her calendar manager and sets an appointment.

2. Mollie clicks on an audio response button, which causes the soundtool to
pop up.

3. Mollie records her message; for example, “Bring the report.”

When Mollie’s appointment reminder is executed, the calendar manager will
start the audiotool and play Mollie’s recorded reminder.

8 CDE ToolTalk Programmer’s Guide

1

Extending the X Cut and Paste Facility

The ToolTalk Document and Media Exchange Message Set can support an
extensible, open-ended translation facility. The following scenario illustrates
how an extensible multimedia cut and paste facility could work:

1. Art opens two documents that are different media types.

2. Art selects a portion of Document A and cuts the portion using the standard
X-windowing cut facility.

3. Art then pastes the cut portion into Document B.

a. Document B negotiates the transfer of the cut data with Document A.

b. If Document B does not understand any of the types offered by
Document B, it requests a tagged media type. Document B uses the tagged
media type to broadcast a ToolTalk message requesting a translation of
the media type to a media type it understands.

c. A registered translation utility accepts the request and returns the
translated version of the media type to Document B.

d. The paste of the translated data into Document B is performed.

How Applications Use ToolTalk Messages

Applications create, send, and receive ToolTalk messages to communicate with
other applications. Senders create, fill in, and send a message; the ToolTalk
service determines the recipients and delivers the message to the recipients.
Recipients retrieve messages, examine the information in the message, and
then either discard the message or perform an operation and reply with the
results.

Sending ToolTalk Messages

ToolTalk messages are simple structures that contain fields for address, subject,
and delivery information. To send a ToolTalk message, an application obtains
an empty message, fills in the message attributes, and sends the message. The
sending application needs to provide the following information:

• Is the message a notice or a request? (that is, should the recipient respond to
the message?)

Introducing the ToolTalk Service 9

1

• What interest does the recipient share with the sender? (for example, is the
recipient running in a specific user session or interested in a specific file?)

To narrow the focus of the message delivery, the sending application can
provide more information in the message.

Message Patterns

An important ToolTalk feature is that senders need to know little about the
recipients because applications that want to receive messages explicitly state
what message they want to receive. This information is registered with the
ToolTalk service in the form of message patterns.

Applications can provide message patterns to the ToolTalk service at
installation time and while the application is running. Message patterns are
created similarly to the way a message is created; both use the same type of
information. For each type of message an application wants to receive, it
obtains an empty message pattern, fills in the attributes, and registers the
pattern with the ToolTalk service. These message patterns usually match the
message protocols that applications have agreed to use. Applications can add
more patterns for individual use.

When the ToolTalk service receives a message from a sending application, it
compares the information in the message to the registered patterns. Once
matches have been found, the ToolTalk service delivers copies of the message
to all recipients.

For each pattern that describes a message an application wants to receive, the
application declares whether it can handle or observe the message. Although
many applications can observe a message, only one application can handle the
message to ensure that a requested operation is performed only once. If the
ToolTalk service cannot find a handler for a request, it returns the message to
the sending application indicating that delivery failed.

Receiving ToolTalk Messages

When the ToolTalk service determines that a message needs to be delivered to
a specific process, it creates a copy of the message and notifies the process that
a message is waiting. If a receiving application is not running, the ToolTalk
service looks for instructions (provided by the application at installation time)
on how to start the application.

10 CDE ToolTalk Programmer’s Guide

1

The process retrieves the message and examines its contents.

• If the message contains a notice that an operation has been performed, the
process reads the information and then discards the message.

• If the message contains a request to perform an operation, the process
performs the operation and returns the result of the operation in a reply to
the original message. Once the reply has been sent, the process discards the
original message.

ToolTalk Message Distribution

The ToolTalk service provides two methods of addressing messages:
process-oriented messages and object-oriented messages.

Process-Oriented Messages

Process-oriented messages are addressed to processes. Applications that create a
process-oriented message address the message to either a specific process or to
a particular type of process. Process-oriented messages are a good way for
existing applications to begin communication with other applications.
Modifications to support process-oriented messages are straightforward and
usually take a short time to implement.

Object-Oriented Messages

Object-oriented messages are addressed to objects managed by applications.
Applications that create an object-oriented message address the message to
either a specific object or to a particular type of object. Object-oriented
messages are particularly useful for applications that currently use objects or
that are to be designed around objects. If an existing application is not
object-oriented, the ToolTalk service allows applications to identify portions of
application data as objects so that applications can begin to communicate about
these objects.

Note – Programs coded to the ToolTalk object-oriented messaging interface are
not portable to CORBA-compliant systems without source changes.

Introducing the ToolTalk Service 11

1

Determining Message Delivery

To determine which groups receive messages, you scope your messages.
Scoping limits the delivery of messages to a particular session or file.

Sessions

A session is a group of processes that have an instance of the ToolTalk message
server in common. When a process opens communication with the ToolTalk
service, a default session is located (or created if a session does not already
exist) and a process identifier (procid) is assigned to the process. Default sessions
are located either through an environment variable (called process tree
sessions) or through the X display (called X sessions).

The concept of a session is important in the delivery of messages. Senders can
scope a message to a session and the ToolTalk service will deliver it to all
processes that have message patterns that reference the current session. To
update message patterns with the current session identifier (sessid), applications
join the session.

Files

A container for data that is of interest to applications is called a file in this
book.

The concept of a file is important in the delivery of messages. Senders can
scope a message to a file and the ToolTalk service delivers it to all processes
that have message patterns that reference the file without regard to the
process’s default session. To update message patterns with the current file path
name, applications join the file.

You can also scope a message to a file within a session. The ToolTalk service
will deliver the message to all processes that reference both the file and session
in their message patterns.

12 CDE ToolTalk Programmer’s Guide

1

Modifying Applications to Use the ToolTalk Service

Before you modify your application to use the ToolTalk service you must
define (or locate) a ToolTalk message protocol: a set of ToolTalk messages that
describe operations that applications agree to perform. The message protocol
specification includes the set of messages and how applications should behave
when they receive the messages.

To use the ToolTalk service, an application calls ToolTalk functions from the
ToolTalk application programming interface (API). The ToolTalk API provides
functions to register with the ToolTalk service, to create message patterns, to
send messages, to receive messages, to examine message information, and so
on. To modify your application to use the ToolTalk service, you must first
include the ToolTalk API header file in your program. You also need to modify
your application to:

• Initialize the ToolTalk service and join a session.
• Register message patterns with the ToolTalk service.
• Send and receive messages.
• Unregister message patterns and leave your ToolTalk session.

13

ToolTalk Service Overview 2

As computer users increasingly demand that independently developed
applications work together, inter-operability is becoming an important theme
for software developers. By cooperatively using each other’s facilities,
inter-operating applications offer users capabilities that would be difficult to
provide in a single application. The ToolTalk service is designed to facilitate the
development of inter-operating applications that serve individuals and work
groups.

ToolTalk Architecture

The following ToolTalk service components work together to provide
inter-application communication and object information management:

• ttsessiond is the ToolTalk communication process.

This process joins together senders and receivers that are either using the
same X server or interested in the same file. One ttsession communicates
with other ttsessions when a message needs to be delivered to an
application in another session.

• rpc.ttdbserverd is the ToolTalk database server process.

One rpc.ttdbserverd is installed on each machine that contains a disk
partition that stores files of interest to ToolTalk clients or files that contain
ToolTalk objects.

File and ToolTalk object information is stored in a records database managed
by rpc.ttdbserverd .

14 CDE ToolTalk Programmer’s Guide

2

• libtt is the ToolTalk application programming interface (API) library.

Applications include the API library in their program and call the ToolTalk
functions in the library.

Applications provide the ToolTalk service with process and object type
information. This information is stored in an XDR format file, which is referred
to as the ToolTalk Types Database in this manual.

Figure 2-1 illustrates the ToolTalk service architecture.

Figure 2-1 ToolTalk Service Architecture

Starting a ToolTalk Session

The ToolTalk message server, ttsession, automatically starts when you
open communication with the ToolTalk server or when CDE is started. This
background process must be running before any messages can be sent or
received. Each message server defines a session.

libtt

Application

libtt

Application

ttsession

 Remote Procedure Call (RPC)

file and
object
data

ToolTalk Types
Database

process
and object

types

The ToolTalk Service

rpc.ttdbserver

ToolTalk Service Overview 15

2

Note – A session can have more than one session identifier.

To manually start a session, enter the following command on the command
line:

ttsession [-hNpsStv][-E| -X][-a level][-d display][-c [command]]

See Table 2-1 for a description of the ttsession command line options.

Table 2-1 ttsession Command Line Options

Argument Description

-a level

-c command

Sets the server authentication level.
The level must be unix or des.

Start process tree session and run the given command. The
ttsession utility sets the environment variable TT_SESSION to the
name of this session. Any process started with this variable in
the environment, defaults to being in this session. If command is
omitted, ttsession invokes the shell named by the SHELL
environment variable. Everything after -c on the command line
is used as the command to be executed.

-d display

-E

Directs ttsession to start an X session for the given display.
Normally, ttsession uses the $DISPLAY environment variable.

Read in the types from the Classing Engine data base. If neither
-E nor -X is given, -X is assumed.

-h

-N

Write a help message to standard error that describes the
command syntax of ttsession, and exit.

Maximize the number of clients allowed to (in other words, open
procids in) this session by attempting to raise the limit of open
file descriptors. The precise number of clients is system-
dependent; on some systems this options may have no effects.

-p Write the name of a new process tree session to standard output,
and then fork a background instance of a new ttsession to
manage this new session.

-s Silent. Do not write any warning messages to standard error.

Note — If neither the -c, -d, or -p options are specified, ttsession starts an X session for
the display specified in the $DISPLAY environment variable.

16 CDE ToolTalk Programmer’s Guide

2

ttsession responds to two signals.

• If it receives the SIGUSR1 signal, it toggles the trace mode on or off.

• If it receives the SIGUSR2 signal, it rereads the types file.

Background and Batch Sessions

Run your application as its own session if it runs as a background job, in a
batch session, or in a session bound to a character terminal. To run your
application in its own session, use the -c parameter with the ttsession
command, as follows:

-S Do not fork a background instance to manage the ttsession
session.

-t Turn on trace mode. If trace mode is turned on while
ttsession is running, messages appear on the console.

Tracing displays the state of a message when it is first seen by
ttsession . The lifetime of the message is then shown by
showing the result of matching the message against type
signatures (dispatch stage) and then showing the result of
matching the message against any registered message patterns
(delivery stage). Any attempt to send the message to a given
process is shown along with the success of that attempt.

-v Write the version number to standard output and exit.

-X Read in the types from the following XDR format databases:
$HOME/.tt/types.xdr
<implementation-specific system and network
databases>
/usr/dt/appconfig/tttypes/types.xdr

The database are listed in order of descending precedence.
Entries in $HOME/.tt/types.xdr override any like entries in
the database lower in the list.

These databases can be overridden by setting the TTPATH
environment variable.

Table 2-1 ttsession Command Line Options (Continued)

Argument Description

Note — If neither the -c, -d, or -p options are specified, ttsession starts an X session for
the display specified in the $DISPLAY environment variable.

ToolTalk Service Overview 17

2

ttsession -c [command-to-run-in-batch]

This command will fork off a shell from which you can run your application.

Note – The -c parameter must be the last option on the command line; any
characters placed after the -c parameter on the command line are taken as the
command to be executed.

X Window System

To establish a session under the X Window System, execute ttsession either
without arguments (which takes the display from the $DISPLAY environment
variable) or specify the display with the -d parameter as follows:

ttsession -d :0

When ttsession is invoked, it immediately forks and the parent copy exits;
the process managing the session executes in the background. The session is
registered as a property, named by _TT_SESSION on the root window of
screen 0; the host and port number is given for communication with the
process managing the session.

Locating ttsession

To display the sessid of the session for the Xdisplay:

xprop -root | grep _TT_SESSION

Maintaining ToolTalk Files and Databases

The ToolTalk package contains a special set of shell commands you can use to
copy, move, and remove ToolTalk files (that is, files mentioned in messages and
files that contain ToolTalk objects). After a standard shell command (such as
cp , mv, or rm) is performed, the ToolTalk service is notified that a file location
has changed.

The ToolTalk package also contains a database check and repair utility for the
ToolTalk database, ttdbck , that you can use to check and repair your ToolTalk
databases.

18 CDE ToolTalk Programmer’s Guide

2

Demonstration Programs

The ToolTalk service files contain the following demonstration program:

• ttsnoop

A demonstration program that allows you to create and send custom-
constructed ToolTalk messages. You can also use this program to selectively
monitor any or all ToolTalk messages on your system.

19

Setting Up and Maintaining the
ToolTalk Processes 3

Note – The ToolTalk database server program must be installed on all
machines storing files that contain ToolTalk objects or files that are the subject
of ToolTalk messages.

Location of the ToolTalk Service Files

This section lists the ToolTalk directories and files.

• ttsession communicates with other ttsession s on the network to
deliver messages. rpc.ttdbserverd stores and manages ToolTalk object
specs and information on files referenced in ToolTalk messages.

/usr/dt/bin/
ttsession
rpc.ttdbserverd

• These commands are standard operating system shell commands that
inform the ToolTalk service when files containing ToolTalk objects or files
that are the subject of ToolTalk messages are copied, moved, or removed.

/usr/dt/bin/
ttcp
ttmv
ttrm
ttrmdir
ttar

20 CDE ToolTalk Programmer’s Guide

3

• ttdbck is a database check and recovery tool for the ToolTalk databases.

/usr/dt/bin/
ttdbck

• tt_type_comp is a compiler for ptypes and otypes. It compiles the ptype
and otype files and automatically installs them in the ToolTalk Types
database.

/usr/dt/bin/
tt_type_comp

• These files are the application programming interface (API) libraries and
header file that contain the ToolTalk functions used by applications to send
and receive messages.

/usr/dt/lib/
libtt.sl
libtt.a

/usr/dt/include/tt
tt_c.h
tttk.h

• This is the location of working files and compiled databases.

/TT_DB

• This is the ptypes database.

/usr/dt/appconfig/tttypes/types.xdr

• This is the location of personal modifications to the ptypes database.

/$HOME/.tt/*.xdr

• These are the man pages for the ToolTalk binary files, type compiler,
enhanced shell commands, API, and database check utility.

/usr/dt/man/man1
tt_type_comp.1
ttcp.1
ttmv.1
ttrm.1
ttrmdir.1
ttsession.1
tttar.1
tttrace.1

Setting Up and Maintaining the ToolTalk Processes 21

3

/usr/dt/man/man1m
rpc.ttdbserverd.1m
ttdbck.1m

/usr/dt/include/tt
(See Chapter 17, “ToolTalk Functions/Commands" for a list of the
ToolTalk message man pages)

/usr/dt/include/tt
(See Chapter 17, “ToolTalk Functions/Commands" for a list of the
ToolTalk message man pages)

/usr/dt/man/man5
Tttt_c.5
Ttttttk.5

/usr/dt/man/man6
ttsnoop.6

Version

All ToolTalk commands support a -v option that prints the version string.

Environment Variables

ToolTalk Environment Variables

There are several ToolTalk environment variables that may be set:

• TTSESSION_CMD
• TT_ARG_TRACE_WIDTH
• TT_FILE
• TT_HOSTNAME_MAP
• TT_PARTITION_MAP
• TT_SESSION
• TT_TOKEN
• TTPATH
• DISPLAY

22 CDE ToolTalk Programmer’s Guide

3

Table 3-1 describes these variables.

A process is given a modified environment when it is automatically started by
the ToolTalk service. The modified environment includes the environment
variables $TT_SESSION, $TT_TOKEN, and any contexts in the start-message

Table 3-1 Environment Variables

Variable Description

TTSESSION_CMD Overrides the standard options specified when tools
automatically start ttsession. If this variable is set, all
ToolTalk clients use this command to automatically start
their X sessions.

TT_ARG_TRACE_WIDTH Defines the number of characters of argument and
context values to print when in trace mode. The default
is to print the first 40 characters.

TT_FILE ttsession places a pathname in this variable when a
tool is invoked by a message scoped to the defined file.

TT_HOSTNAME_MAP Points to a map file. The defined map file is read into the
ToolTalk client for redirecting host machines.

TT_PARTITION_MAP Points to a map file. The defined map file is read into the
ToolTalk client for redirecting file partitions.

TT_SESSION ttsession communicates its session identifier to the
tools that it starts. If this variable is set, the ToolTalk
client library uses its value as the default session
identifier.
NOTE - The string stored in this variable can be passed to
tt_default_session_set .

TT_TOKEN Notifies the ToolTalk client library that it has been started
by ttsession; the client can then confirm to ttsession that
the start was successful.

TTPATH Tells the ToolTalk service where the ToolTalk Types
databases reside. The format of this variable is:
userDB[:systemDB[:networkDB]]

DISPLAY Causes ttsession to communicate its session identifier to
the tools that it starts if the TT_SESSION variable is not set.
If the DISPLAY variable is set, the ToolTalk client library
uses its value as the default session identifier.

Setting Up and Maintaining the ToolTalk Processes 23

3

whose keyword begins with the dollar sign symbol ($). Optionally, the
environment variable $TT_FILE may also be included in the modified
environment if it is a file-scoped message.

Note – If the tt_open call will be invoked by a child process, the parent
process must propagate the modified environment to that child process.

Other Environment Variables

The TMPDIR environment variable is another environment variable that you
can set to manipulate the ToolTalk development environment; for example:

TMPDIR=/var/tmp

redirects files to the /var/tmp directory.

Using Context Slots to Create Environment Variables

Message contexts have a special meaning when the ToolTalk service starts an
application. If the name of a context slot begins with a dollar sign ($), the
ToolTalk service interprets the value as an environment variable: for example,

start "my_application $CON1"

uses the value of context slot $CON1.

Installing the ToolTalk Database Server

The ToolTalk Database server is used to store three types of information:

1. ToolTalk objects specs.

2. ToolTalk session ids of sessions with clients that have joined a file using the
tt_file_join call.

3. File-scoped messages that are queued because the message disposition is
TT_QUEUED and a handler that can handle the message has not yet been
started.

Note – The ToolTalk database server does not store messages that are scoped to
file-in-session.

24 CDE ToolTalk Programmer’s Guide

3

The ToolTalk service requires that a database server run on each machine that
stores files that contain ToolTalk objects or files that are the subject of ToolTalk
messages. When an application attempts to reference a file on a machine that
does not contain a database server, an error similar to the following message is
displayed:

% Error: Tool Talk database server on integral is not running: tcp

where integral is the hostname and tcp is the application protocol. This error
message indicates that the connection failed. A failed connection can also be
caused by network problems.

When the ToolTalk Service is Installed Elsewhere on the System

To install the ToolTalk database server from another machine on the system
that already has the ToolTalk service installed:

1. Login as superuser.

2. Check that the /etc/inetd.conf file contains the following line.

rpc stream tcp swait root /usr/dt/bin/rpc.ttdbserverd 100083 1
/usr/dt/bin/rpc.ttdbserverd

3. Cause inetd to reread the configuration file.

/etc/inetd -c

Running the New ToolTalk Database Server

Once the new version of the ToolTalk database server has been run on a
machine, you cannot revert to a previous version of the ToolTalk database
server. Any attempt to run a previous version of the ToolTalk database server
displays the following error message:

rpc.ttdbserverd: Any data written using a ToolTalk 1.0.x DB server
after using a new ToolTalk DB server will be ignored.

Redirecting the ToolTalk Database Server

You can redirect both the database host machines and the file system
partitions.

Setting Up and Maintaining the ToolTalk Processes 25

3

• Redirecting a database host machine allows a ToolTalk client to physically
access ToolTalk data from a machine that is not running a ToolTalk database
server.

• Redirecting a file system partition allows a ToolTalk database to logically
read and write ToolTalk data from and to a read-only file system partition
(for example, a CD-ROM) by physically accessing a different file system
partition.

Redirecting the Host Machine

When you redirect a database host machine, a ToolTalk client can physically
access ToolTalk data from a machine that is not running a ToolTalk database
server. To redirect the host machine, you need to map the hostnames of the
machines the ToolTalk client is to access. On the machine running the ToolTalk
client that is making the database query:

1. Create a hostname_map file.

For example:

Map first host machine

oldhostname1 newhostname1

Map second host machine

oldhostname2 newhostname2

where oldhostname is the name of the machine the ToolTalk client needs to
access and newhostname is the name of a machine that is running the
ToolTalk database server.

2. If you want to make changes or add types on a system-wide basis, use
/etc/dt/appconfig/tttypes .

Note – A file defined in the TT_HOSTNAME_MAP environment variable has a
higher precedence than the map in the user database.

The map file is read into a ToolTalk client when the client makes a tt_open
call.

26 CDE ToolTalk Programmer’s Guide

3

Redirecting the File System Partition

When you redirect a file system partition, a ToolTalk database can logically
read and write ToolTalk data from and to a read-only file system partition by
physically accessing a different file system partition. To redirect a file partition,
you need to map the partitions to where the ToolTalk database will write. On
the machine running the ToolTalk database server:

1. Create a partition_map file.

For example:

Map first partition
/cdrom /usr

maps the read-only partition /cdrom to /usr , a read-write partition.

2. Store the map file in the same location at which the system ToolTalk Types
databases are stored.

Note – A file partition defined in the TT_PARTITION_MAP environment
variable has a higher precedence than the file partition defined in this map file.

The map file is read when the ToolTalk database server is started, or when the
database receives a USR2 signal.

27

Maintaining Application
Information 4

Applications that want to receive ToolTalk messages, provide information to
the ToolTalk service that describes what kind of messages they want to receive.
This information, known as message patterns, is provided dynamically either
by applications as they run, or through ptype and otype files.

Installing Application Types

Installing application types is an occasional task; you only need to install type
information when an application error condition exists. Ptype and otype files
are run through the ToolTalk type compiler at installation time.
tt_type_comp merges the information into the ToolTalk Types Database. The
application then tells the ToolTalk service to read the type information in the
database.

To install an application’s ptype and otype files, follow these steps:

1. Run tt_type_comp on your type file.

% tt_type_comp <your-file>

tt_type_comp runs your-file through cpp , compiles the type definitions,
and merges the information into a ToolTalk Types table. Table 4-1 describes
location of the XDR-base format tables.

28 CDE ToolTalk Programmer’s Guide

4

By default, tt_type_comp uses the user database. To specify another
database, use the -d option; for example:

% tt_type_comp -d user|system|network <your-file>

Note – When you run tt_type_comp on your ptype or otype files, it first runs
cpp on the file and then checks the syntax before it places the data into the
ToolTalk Types Database format. If syntax errors are found, a message is
displayed that indicates the line number of the cpp file. To find the line, enter

cpp -P source-file temp-file
and view the temp-file to find the error on the line reported by tt_type_comp .

2. Force ttsession to reread the ToolTalk Types Database.

To force ttsession to reread the ToolTalk Types Database, see “Updating
the ToolTalk Service” on page 29.

Examining ToolTalk Type Information

You can examine all type information in a specified ToolTalk Types Database,
only the ptype information, or only the otype information. To specify the
database you want to examine, use the -d option and supply the name of the
user, system, or network to indicate the desired database. If the -d option is not
used, tt_type_comp will use the user database by default.

♦ To examine all the ToolTalk type information in a ToolTalk Types Database,
enter the following line

% tt_type_comp -d user|system|network -p

The type information will be printed out in source format.

♦ To list all ptypes in a ToolTalk Types Database, enter the following line:

Table 4-1 XDR-base Format ToolTalk Types Tables

Database Uses XDR Table

user ~/.tt/types.xdr

system /etc/dt/appconfig/tttypes/types
.xdr

Maintaining Application Information 29

4

% tt_type_comp -d user|system|network -P

The names of the ptypes will be printed out in source format.

♦ To list all otypes in a ToolTalk Types Database, enter the following line:

% tt_type_comp -d user|system|network -O

The names of the otypes will be printed out in source format.

Removing ToolTalk Type Information

You can remove both ptype and otype information from the ToolTalk Types
Databases.

♦ Use tt_type_comp to remove type information. Enter the following line:

% tt_type_comp -d user|system|network -r type

For example, to remove a ptype called EditDemo from the ToolTalk Types
network database of a sample application, enter the line:

% tt_type_comp -d network -r EditDemo

After you remove type information, force any running ttsession s to reread
the ToolTalk Types Database again to bring the ToolTalk service up-to-date.
For more information, see “Updating the ToolTalk Service” on page 29.

Updating the ToolTalk Service

When you make changes to the ToolTalk Types Database, you must force any
ToolTalk sessions that are already running to reread it or the changes will not
be in effect. Use ttsession to force the ToolTalk service to read the type
information.

1. Enter the ps command to find the process identifier (pid) of the ttsession
process

% ps -ef | grep ttsession

2. Enter the kill command to send a SIGUSR2 signal to ttsession .

% kill -USR2 < ttsession pid >

30 CDE ToolTalk Programmer’s Guide

4

Process Type Errors

One or both of the following conditions exists if applications report the error:

Application is not an installed ptype.

1. The ToolTalk service has not been instructed by the application to reread the
recently updated type information in the ToolTalk Types Database. For
instructions on how to force the ToolTalk service to reread type information
from the ToolTalk Types Database, see “Updating the ToolTalk Service” on
page 29.

2. The application’s ptypes and otypes have not been compiled and merged
into the ToolTalk Types Database. For instructions on how to compile and
merge type information, see “Installing Application Types” on page 27.

Using TTSnoop to Debug Messages and Patterns

TTSnoop is a tool that creates and sends custom-constructed ToolTalk
messages. You can also use TTSnoop as a tool to selectively monitor any or all
ToolTalk messages.

About TTSnoop

TTSnoop is an interactive tool that you can use to become familiar with
ToolTalk concepts and API calls as well as to perform demonstrations. In
addition, TTSnoop is a valuable debugging tool when you are developing
applications.

TTSnoop can also be used for:

• creating, receiving and destroying messages.

• creating, opening, and destroying patterns.

• joining a session.

• scoping to a file and generating a list of ToolTalk-based desktop actions.

How to Run TTSnoop

To run TTSnoop, execute the following command:

/usr/dt/bin/ttsnoop

Maintaining Application Information 31

4

TTSnoop has several command line options. See the ttsnoop(6) man page
for details.

How to Turn Tracing On and Off

Tracing is turned on by default. To turn Tracing off, do the following:

♦ From the Snoop menu, toggle the On/Off item.

How to Create a Message

To create a ttmedia Edit request message, do the following:

♦ From the Sessions menu, select Join...

3. Push the Default Session button in the tt_session_join window, then push
the Join button.

4. From the Message menu, select Create...

5. Make the following selections in the Create window:
• Class: REQUEST
• Address: PROCEDURE
• Scope: SESSION
• Op: Edit
• Disposition: DISCARD
• File: <enter file name - the file does not have to exist>
• Push the Add Arg... button and make these selections:

1) Mode: INOUT; 2) vtype: unknown; 3) push the Add button

▼ To Send the Message You Have Created

♦ Push the Message button and select Send.

How to Generate a List of ToolTalk Actions

To generate a list of ToolTalk actions, do the following:

♦ From the Types menu, select TTMsg Actions...

32 CDE ToolTalk Programmer’s Guide

4

33

Maintaining Files and Objects
Referenced in ToolTalk Messages 5

ToolTalk messages can reference files of interest or ToolTalk objects. The
ToolTalk service maintains information about files and objects, and needs to be
informed of changes to these files or objects.

The ToolTalk service provides wrapped shell commands to move, copy, and
remove files. These commands inform the ToolTalk service of any changes.

ToolTalk-Enhanced Shell Commands

The ToolTalk-enhanced shell commands described in Table 5-1 first invoke the
standard shell commands with which they are associated (for example, ttmv
invokes mv) and then update the ToolTalk service with the file changes. It is
necessary to use the ToolTalk-enhanced shell commands when working with
files that contain ToolTalk objects.

Table 5-1 ToolTalk-Enhanced Shell Commands

Command Definition Syntax

ttcp Copies files that contain objects. ttcp source-file destination-file

ttmv Renames files that contain objects. ttmv old new

34 CDE ToolTalk Programmer’s Guide

5

You can cause the ToolTalk-enhanced shell commands to be executed when the
standard shell commands are invoked. To do this, alias the ToolTalk-enhanced
shell commands in the shell startup file so that the enhanced commands
appear as standard shell commands.
ToolTalk-aware shell commands in .cshrc
alias mvttmv
alias cpttcp
alias rmttrm
alias rmdirttrmdir
alias tartttar

Maintaining and Updating ToolTalk Databases

Information about files and objects in the ToolTalk databases can become
outdated if the ToolTalk-enhanced shell commands are not used to copy, move,
and remove them. For example, you can remove a file old_file that contains
ToolTalk objects from the file system with the standard rm command; however,
because the standard shell command does not inform the ToolTalk service that
old_file has been removed, the information about the file and the individual
objects remains in the ToolTalk database.

To remove the file and object information from the ToolTalk database, use the
command:

ttrm -L old_file

ttrm Removes files that contain objects. ttrm file

ttrmdir Removes empty directories that are
associated with ToolTalk objects. You
also create an object spec for a
directory. For example: if a directory
is mentioned in a file-scoped
message, when an object spec is
created, the path name of a file or
directory is supplied.

ttrmdir directory

tttar Archives and de-archives files that
contain ToolTalk objects.

tttar c|t|x pathname1
pathname2

Table 5-1 ToolTalk-Enhanced Shell Commands (Continued)

Command Definition Syntax

Maintaining Files and Objects Referenced in ToolTalk Messages 35

5

Displaying, Checking, and Repairing Databases

Use the ToolTalk database utility ttdbck to display, check, or repair ToolTalk
databases. You also use the ttdbck utility for operations such as:

• Removing all ToolTalk objects of a given otype; for example, an otype that
has been de-installed.

• Moving specific ToolTalk objects from one file to another.

• Searching for all ToolTalk objects that reference nonexistent files.

Note – ToolTalk databases are typically accessible only to root; therefore, the
ttdbck utility is normally run as root.

36 CDE ToolTalk Programmer’s Guide

5

37

Participating in ToolTalk Sessions 6

This chapter provides instructions on how to participate in a ToolTalk session.
It also shows you how to manage the storage of values passed in from the
ToolTalk service and how to handle errors that the ToolTalk service returns.

To use the ToolTalk service, your application calls ToolTalk functions from the
ToolTalk application programming interface (API) library. To modify your
application to use the ToolTalk service, you must first include the ToolTalk API
header file in your program. After you have initialized the ToolTalk service and
joined a session, you can join files and additional user sessions. When your
process is ready to quit, you unregister your message patterns and leave your
ToolTalk session.

The ToolTalk Libraries

The ToolTalk libraries are located in the following directory: /usr/dt/lib .
The name of the archived library is libtt and its extension may vary slightly
between platforms. However, the prefix ofthe name will remain the same.

Including the ToolTalk API Header File

To modify your application to use the ToolTalk service, you must first include
the ToolTalk API header file tt_c.h in your program. This file resides in the
/usr/dt/include/Tt directory.

38 CDE ToolTalk Programmer’s Guide

6

The following code sample shows how a program includes this file.

#include <stdio.h>
#include <sys/param.h>
#include <sys/types.h>

#include <Tt/tt_c.h>

Registering with the ToolTalk Service

Before you can participate in ToolTalk sessions, you must register your process
with the ToolTalk service. You can either register in the ToolTalk session in
which the application was started (the initial session), or locate another session
and register there.

The ToolTalk functions you need to register with the ToolTalk service are
shown in Table 6-1.

Registering in the Initial Session

To initialize and register your process with the initial ToolTalk session, your
application needs to obtain a process identifier (procid). You can then obtain the
file descriptor (fd) that corresponds to the newly initialized ToolTalk process.

The following code sample first initializes and registers the sample program
with the ToolTalk service, and then obtains the corresponding file descriptor.

int ttfd;

Table 6-1 Registering with the ToolTalk Service

Return Type ToolTalk Function Description

char * tt_open(void) Process identifier.

int tt_fd(void) File descriptor.

char * tt_X_session(const char
*xdisplay)

Return the session
identifier of the specified
X display server.

Tt_status tt_default_session_set(const
char *sessid)

Sets the session to which
tt_open will connect.

Participating in ToolTalk Sessions 39

6

char *my_procid;

/*
 * Initialize ToolTalk, using the initial default session
 */

my_procid = tt_open();

/*
 * obtain the file descriptor that will become active whenever
 * ToolTalk has a message for this process.
 */

ttfd = tt_fd();

tt_open returns the procid for your process and sets it as the default procid;
tt_fd returns a file descriptor for your current procid that will become active
when a message arrives for your application.

Caution – Your application must call tt_open before other tt_ calls are
made; otherwise, errors may occur. There are, however, some exceptions, such
as: tt_default_session_set , tt_default_procid , tt_X_session ,
tt_netfile_file , tt_file_netfile , tt_host_file_netfile , and
tt_host_netfile_file .

!

40 CDE ToolTalk Programmer’s Guide

6

Note – Transparent to an application, the CDE action and data typing services
use ToolTalk to execute message-type actions and to notify an application
when the user has changed an action or data typing database. To do this, these
services automatically register an application with a ToolTalk session if the
application is not registered, or the service will reuse the procid if the
application is already registered. In general, an application will only want to
register with one ToolTalk session. Consequently, it is recommended that an
application call tt_open before it uses libDtSvc service functions such as
DtDbLoad , DtActionInvoke , or DtDbReloadNotify .

When tt_open is the first call made to the ToolTalk service, it sets the initial
session as the default session. The default session identifier (sessid) is important
to the delivery of ToolTalk messages. The ToolTalk service automatically fills in
the default sessid if an application does not explicitly set the session message
attribute. If the message is scoped to TT_SESSION, the message will be
delivered to all applications in the default session that have registered interest
in this type of message.

Registering in a Specified Session

To register in a session other than the initial session, your program must find
the name of the other session, set the new session as the default, and register
with the ToolTalk service.

The following code sample shows how to join an X session named
somehost:0 that is not your initial session.

char *my_session;
char *my_procid;

my_session = tt_X_session(“somehost:0”);
tt_default_session_set(my_session);
my_procid = tt_open();
ttfd = tt_fd();

Note – The required calls must be in the specified order.

Participating in ToolTalk Sessions 41

6

1. tt_X_session();

This call retrieves the name of the session associated with an X display
server. tt_X_session() takes the argument

char *xdisplay_name

where xdisplay_name is the name of an X display server (in this example,
somehost:0 , :0).

2. tt_default_session_set();

This call sets the new session as the default session.

3. tt_open();

This call returns the procid for your process and sets it as the default procid.

4. tt_fd();

This call returns a file descriptor for your current procid.

Registering in Multiple Sessions

There may be cases when you want to send and receive your messages in
different sessions. To register in multiple sessions, your program must find the
identifiers of the sessions to which it wants to connect, set the new sessions,
and register with the ToolTalk service.

The following code sample shows how to connect procid to sessid1, and procid2
to sessid2.

tt_default_session_set(sessid1);
my_procid1 = tt_open();
tt_default_session_set(sessid2);
my_procid2 = tt_open();
tt_fd2 = tt_fd();

You can then use tt_default_procid_set to switch between the sessions.

42 CDE ToolTalk Programmer’s Guide

6

Setting Up to Receive Messages

Before your application can receive messages from other applications, you
must set up your process to watch for arriving messages. When a message
arrives for your application, the file descriptor becomes active. The code you
use to alert your application that the file descriptor is active depends on how
your application is structured.

For example, a program can have a callback function invoked when the file
descriptor becomes active. The following code sample invokes
notify_set_input_func with the handle for the message object as a
parameter.

/*
 * Arrange for a program to call receive_tt_message when the
 * ToolTalk file descriptor becomes active.
 */
notify_set_input_func(base_frame,

(Notify_func)receive_tt_message,
ttfd);

Table 6-2 describes various window toolkits and the call used to watch for
arriving messages.

Sending and Receiving Messages in the Same Process

Normally, the receiver deletes the message when it has completed the
requested operation; however, the ToolTalk service uses the same message ID
for both the receiver and the requestor. When sending and receiving messages
in the same process, these features cause the message underneath the requestor
to be deleted as well.

Table 6-2 Code Used to Watch for Arriving Messages

Window Toolkits Code Used

XView notify_set_input_func()

X Window System Xt (Intrinsics) XtAddInput() or XtAddAppInput()

Other toolkits including Xlib
structured around select(2)
or poll(2) system calls

The file descriptor returned by tt_fd()

Note - Once the file descriptor is active and the select call
exits, use tt_message_receive() to obtain a handle
for the incoming message.

Participating in ToolTalk Sessions 43

6

One workaround is to put a refcount on the message. To do this, use the
tt_message_user[_set]() function.

Another workaround is to destroy the message in the receiver only if the
sender is not the current procid; for example:

Tt_callback_action
my_pattern_callback(Tt_message m, Tt_pattern p)
{

/* normal message processing goes here */

if (0!=strcmp(tt_message_sender(m),tt_default_procid()) {
tt_message_destroy(m);

}
return TT_CALLBACK_PROCESSED;

}

Sending and Receiving Messages in a Networked Environment

You can use the ToolTalk service in a networked environment; for example,
you can start a tool on a different machine or join a session that is running on
a different machine. To do this, invoke a ttsession with either the -c or -p
option.

• The -c option will invoke the named program and place the right session id
in its TT_SESSION environment variable. For example, the command

 ttsession -c cmdtool

defines TT_SESSION in that cmdtool and any ToolTalk client you run with
the environment variable $TT_SESSION set to its value will join the session
owned by this ttsession .

• The -p option prints the session id to standard output. ttsession then
forks into the background to run that session.

To join the session, an application must either pass the session id to
tt_default_session_set or place the session id in the environment
variable TT_SESSION before it calls the tt_open function. tt_open will
check the environment variable, TT_SESSION, and join the indicated session (if
it has a value).

44 CDE ToolTalk Programmer’s Guide

6

Unregistering from the ToolTalk Service

When you want to stop interacting with the ToolTalk service and other
ToolTalk session participants, you must unregister your process before your
application exits.

/*
 * Before leaving, allow ToolTalk to clean up.
 */
tt_close();

exit(0);
}

tt_close returns Tt_status and closes the current default procid.

45

Sending Messages 7

This chapter explains how messages are routed, and describes the ToolTalk
message attributes and algorithm. It also describes how to create messages, fill
in message contents, attach callbacks to requests, and send messages.

How the ToolTalk Service Routes Messages

Applications can send two classes of ToolTalk messages: notices and requests. A
notice is informational, a way for an application to announce an event.
Applications that receive a notice absorb the message without returning results
to the sender. A request is a call for an action, with the results of the action
recorded in the message, and the message returned to the sender as a reply.

Sending Notices

When you send an informational message, the notice takes a one-way trip, as
shown in Figure 7-1.

Figure 7-1 Notice Routing

Sender State=Sent State=SentToolTalk
Service

Handler &
Observers

46 CDE ToolTalk Programmer’s Guide

7

The sending process creates a message, fills in attribute values, and sends it.
The ToolTalk service matches message and pattern attribute values, then gives
a copy of the message to one handler and to all matching observers.
File-scoped messages are automatically transferred across session boundaries
to processes that have declared interest in the file.

Sending Requests

When you send a message that is a request, the request takes a round-trip from
sender to handler and back; copies of the message take a one-way trip to
interested observers. Figure 7-2 illustrates the request routing procedure.

Figure 7-2 Request Routing

The ToolTalk service delivers a request to only one handler. The handler adds
results to the message and sends it back. Other processes can observe a request
before or after it is handled, or at both times; observers absorb a request
without sending it back.

Sender

State=Handled State=Sent

ToolTalk
Service Handler

State=Sent

Observers

Observers

State=Sent

or Failed

Sending Messages 47

7

Changes in State of Sent Message

To allow you to track the progress of a request you sent, you will receive a
message every time the request changes state. You will receive these state-
change messages even if no patterns have been registered, or no message
callbacks have been specified.

Message Attributes

ToolTalk messages contain attributes that store message information and
provide delivery information to the ToolTalk service. This delivery information
is used to route the messages to the appropriate receivers.

ToolTalk messages are simple structures that contain attributes for address,
subject (such as operation and arguments), and delivery information (such as
class and scope). Each message contains attributes from Table 7-1.

Table 7-1 ToolTalk Message Attributes

Message
Attribute Value Description

Who Can
Complete

Arguments arguments or results Specifies arguments used
in the operation. If the
message is a reply, these
arguments contain the
results of the operation.

Sender,
receiver

Class TT_NOTICE,
TT_REQUEST

Specifies whether the
recipient needs to perform
an operation.

Sender

File char *pathname Specifies the file involved in
the operation. If the scope
of the message does not
require a file, the file is an
attribute only.

Sender,
ToolTalk

Object char *objid Specifies the object involved
in the operation.

Sender,
ToolTalk

Operation char *opname Specifies the name of
operation to be performed.

Sender

Otype char *otype Specifies the type of object
involved in the operation.

Sender,
ToolTalk

48 CDE ToolTalk Programmer’s Guide

7

Address Attribute

Messages addressed to other applications can be addressed to a particular
process or to any process that has registered a pattern that matches your
message. When you address a message to a process, you need to know the
process identifier (procid) of the other application; however, processes do not

Address TT_PROCEDURE,
 TT_OBJECT,
 TT_HANDLER,
 TT_OTYPE

Specifies where the message
should be sent.

Sender

Handler char *procid Specifies the receiving
process.

Sender,
ToolTalk

Handler_ptype char *ptype Specifies the type of
receiving process.

Sender,
ToolTalk

Disposition TT_DISCARD,
TT_QUEUE,
TT_START
TT_START+TT_QUEUE

Specifies what to do if the
message cannot be received
by any running process.

Sender,
ToolTalk

Scope TT_SESSION,
TT_FILE,
TT_BOTH,
TT_FILE_IN_SESSIO
N

Specifies the applications
that will be considered as
potential recipients based
on their registered interest
in a session or file.

Sender,
ToolTalk

Sender_ptype char *ptype Specifies the type of the
sending process.

Sender,
ToolTalk

Session char *sessid Specifies the sending
process’ session.

Sender,
ToolTalk

Status int status,
char *status_str

Specifies additional
information about the status
of the message.

Receiver,
ToolTalk

Table 7-1 ToolTalk Message Attributes (Continued)

Message
Attribute Value Description

Who Can
Complete

Sending Messages 49

7

usually know each other’s procid. More often, a sender does not care which
process performs an operation (request message) or learns of an event (notice
message).

Scope Attributes

Applications that use the ToolTalk service to communicate usually have
something in common – the applications are running in the same session, or
they are interested in the same file or data. To register this interest, applications
join sessions or files (or both) with the ToolTalk service. This file and session
information is used by the ToolTalk service with the message patterns to
determine which applications should receive a message.

File Scope

When a message is scoped to a file, only those applications that have joined the
file (and match the remaining attributes) will receive the message. Applications
that share interest in a file do not have to be running in the same session.

File-based Scoping in Patterns
Table 7-2 describes the types of scopes that use files that you can use to scope
messages with patterns.

Table 7-2 Scoping a Message with Patterns to a File

Type of Scope Description

TT_FILE Scopes to the specified file only. You can set a session
attribute on this type of pattern to provide a file-in-
session-like scoping but a tt_session_join call will not
update the session attribute of a pattern that is scoped to
TT_FILE .

TT_BOTH Scopes to the union of interest in the file and the session.
A pattern with only this scope will match messages that
are scoped to the file, or scoped to the session, or scoped
to both the file and the session.

TT_FILE_IN_SESSION Scopes to the intersection of interest in the file and the
session. A pattern with only this scope will only match
messages that are scoped to both the file and session.

50 CDE ToolTalk Programmer’s Guide

7

To scope to the union of TT_FILE_IN_SESSION and TT_SESSION, add both
scopes to the same pattern, as shown in the following example:

tt_open();

Tt_pattern pat = tt_create_pattern();
tt_pattern_scope_add(pat, TT_FILE_IN_SESSION);
tt_pattern_scope_add(pat, TT_SESSION);
tt_pattern_file_add(pat, file);
tt_pattern_session_add(pat, tt_default_session());
tt_pattern_register(pat);

File-based Scoping in Messages
Messages have the same types of file-based scoping mechanisms as patterns.
Table 7-3 describes these scopes.

When a message is scoped to TT_FILE or TT_BOTH, the ToolTalk client library
checks the database server for all sessions that have clients that are interested in
the file and sends the message to all of the interested ToolTalk sessions. The
ToolTalk sessions then match the messages to the appropriate clients. The
message sender is not required to explicitly call to tt_file_join .

If a message that is scoped to TT_FILE_IN_SESSION or TT_SESSION contains
a file, the database server is not contacted and the message is sent only to clients
that are scoped to the message's session.

Table 7-3 Scoping Mechanisms for Messages

Type of Scope Description

TT_FILE Scopes the message to all clients that have registered
interest in a file.

TT_BOTH Scopes the message to all clients that have registered
interest in the message's session, the message’s file, or
the message’s session and file.

TT_FILE_IN_SESSION Scopes the message to all clients that have registered
interest in both the message's file and session.

TT_SESSION +
tt_message_file_set()

Scopes the message to every client that has registered
interest in the message's session. When the message is
received by a client whose pattern matches, the
receiving client can call tt_message_file to get the
file name.

Sending Messages 51

7

Session Scope

When a message is scoped to a session, only those applications that have
connected to that session are considered as potential recipients. Note the
following example:

/*Create message*/
Tt_message m= tt_message_create();

/*Add scope to message*/
tt_message_scope_set(m, TT_SESSION);

/*Add file attribute that does not affect message scope*/
tt_message_file_set(m, file);

File-In-Session Scope

Applications can be very specific about the distribution of a message by
specifying TT_FILE_IN_SESSION for the message scope. Only those
applications that have joined both the file and the session indicated are
considered potential recipients.

Applications can also scope a message to every client that has registered
interest in the message’s session by specifying TT_SESSION with
tt_message_file_set for the message scope. When the message is received
by a client whose pattern matches, the receiving client can get the file name by
calling tt_message_file . Here is an example of setting a file:

/*Create message*/
Tt_message m= tt_message_create();

/*Add scope to message*/
tt_message_scope_set(m, TT_FILE_IN_SESSION);

/*Add file to message scope*/
tt_message_file_set(m, file);

52 CDE ToolTalk Programmer’s Guide

7

Serialization of Structured Data

The ToolTalk service supports three types of data for message arguments:
integers, null-terminated strings, and byte strings.

To send any other data type in a ToolTalk message, the client must serialize the
data into a string or byte string and then deserialize it on receipt. The new
XDR-argument API calls provided with the ToolTalk service now handles these
serialization and deserialization functions. The client only needs to provide an
XDR routine and a pointer to the data. After serializing the data into the
internal buffer, the ToolTalk service treats the data in the same manner as it
treats a byte stream.

ToolTalk Message Delivery Algorithm

To help you better understand how the ToolTalk service determines message
recipients, this section describes the creation and delivery of both
process-oriented messages and object-oriented messages.

Process-Oriented Message Delivery

For some process-oriented messages, the sending application knows the ptype
or the procid of the process that should handle the message. For other
messages, the ToolTalk service can determine the handler from the operation
and arguments of the message.

1. Initialize.

The sender obtains a message handle and fills in the address, scope, and class
attributes.

The sender fills in the operation and arguments attributes.

If the sender has declared only one ptype, the ToolTalk service fills in
sender_ptype by default; otherwise, the sender must fill it in.

If the scope is TT_FILE , the file name must be filled in or defaulted. If the
scope is TT_SESSION, the session name must be filled in or defaulted. If the
scope is TT_BOTH or TT_FILE_IN_SESSION , both the file name and
session name must be filled in or defaulted.

Sending Messages 53

7

Note – The set of patterns checked for delivery depends on the scope of the
message. If the scope is TT_SESSION, only patterns for processes in the same
session are checked. If the scope is TT_FILE , patterns for all processes
observing the file are checked. If the scope is TT_FILE_IN_SESSION or
TT_BOTH, both sets of processes are checked.

The sender may fill in the handler_ptype if known; however, this greatly
reduces flexibility because it does not allow processes of one ptype to
substitute for another. Also, the disposition attribute must be specified by
the sender in this case.

2. Dispatch to handler.

The ToolTalk service compares the address, scope, message class, operation, and
argument modes and types to all signatures in the Handle section of each
ptype.

Only one ptype will usually contain a message pattern that matches the
operation and arguments and specifies a handle. If a handler ptype is found,
then the ToolTalk service fills in opnum, handler_ptype, and disposition from
the ptype message pattern.

If the address is TT_HANDLER, the ToolTalk service looks for the specified
procid and adds the message to the handler’s message queue. TT_HANDLER
messages cannot be observed because no pattern matching is done.

3. Dispatch to observers.

The ToolTalk service compares the scope, class, operation, and argument types
to all message patterns in the Observe section of each ptype.

For all observe signatures that match the message and specify TT_QUEUE or
TT_START, the ToolTalk service attaches a record (called an “observe
promise”) to the message that specifies the ptype and the queue or start
options. The ToolTalk service then adds the ptype to its internal
ObserverPtypeList.

4. Deliver to handler.

If a running process has a registered handler message pattern that matches
the message, the ToolTalk service delivers the message to the process;
otherwise, the ToolTalk service honors the disposition (start or queue)
options.

54 CDE ToolTalk Programmer’s Guide

7

If more than one process has registered a dynamic pattern that matches the
handler information, the more specific pattern (determined by counting the
number of non-wildcard matches) is given preference. If two patterns are
equally specific, the choice of handler is arbitrary.

5. Deliver to observers.

The ToolTalk service delivers the message to all running processes that have
registered Observer patterns that match the message. As each delivery is
made, the ToolTalk service checks off any observe promise for the ptype of
the observer. After this process is completed and there are observe promises
left unfulfilled, the ToolTalk service honors the start and queue options in
the promises.

Example

In this example, a debugger uses an editor to display the source around a
breakpoint through ToolTalk messages.

The editor has the following Handle pattern in its ptype:

(HandlerPtype: TextEditor;
Op: ShowLine;
Scope: TT_SESSION;
Session: my_session_id;
File: /home/butterfly/astrid/src/ebe.c)

1. When the debugger reaches a breakpoint, it sends a message that contains
the op (ShowLine), argument (the line number), file (the file name), session
(the current session id), and scope (TT_SESSION) attributes.

2. The ToolTalk service matches this message against all registered patterns
and finds the pattern registered by the editor.

3. The ToolTalk service delivers the message to the editor.

4. The editor then scrolls to the line indicated in the argument.

Sending Messages 55

7

Object-Oriented Message Delivery

Many messages handled by the ToolTalk service are directed at objects but are
actually delivered to the process that manages the object. The message
signatures in an otype, which include the ptype of the process that can handle
each specific message, help the ToolTalk service determine the process to which
it should deliver an object-oriented message.

1. Initialize.

The sender fills in the class, operation, arguments, and the target objid
attributes.

The sender attribute is automatically filled in by the ToolTalk service. The
sender can either fill in the sender_ptype and session attributes or allow the
ToolTalk service to fill in the default values.

If the scope is TT_FILE , the file name must be filled in or defaulted. If the
scope is TT_SESSION, the session name must be filled in or defaulted. If the
scope is TT_BOTH or TT_FILE_IN_SESSION , both the file name and
session name must be filled in or defaulted.

Note – The set of patterns checked for delivery depends on the scope of the
message. If the scope is TT_SESSION, only patterns for processes in the same
session are checked. If the scope is TT_FILE , patterns for all processes
observing the file are checked. If the scope is TT_FILE_IN_SESSION or
TT_BOTH, both sets of processes are checked.

2. Resolve.

The ToolTalk service looks up the objid in the ToolTalk database and fills in
the otype and file attributes.

3. Dispatch to handler.

The ToolTalk service searches through the otype definitions for Handler
message patterns that match the message’s operation and arguments
attributes. When a match is found, the ToolTalk service fills in scope, opnum,
handler_ptype, and disposition from the otype message pattern.

56 CDE ToolTalk Programmer’s Guide

7

4. Dispatch to object-oriented observers.

The ToolTalk service compares the message’s class, operation, and argument
attributes against all Observe message patterns of the otype. When a match
is found, if the message pattern specifies TT_QUEUE or TT_START, the
ToolTalk service attaches a record (called an “observe promise”) to the
message that specifies the ptype and the queue or start options.

5. Dispatch to procedural observers.

The ToolTalk service continues to match the message’s class, operation, and
argument attributes against all Observe message patterns of all ptypes. When
a match is found, if the signature specifies TT_QUEUE or TT_START, the
ToolTalk service attaches an observe promise record to the message,
specifying the ptype and the queue or start options.

6. Deliver to handler.

If a running process has a registered Handler pattern that matches the
message, the ToolTalk service delivers the message to the process; otherwise,
the ToolTalk service honors the disposition (queue or start) options.

If more than one process has registered a dynamic pattern that matches the
handler information, the more specific pattern (determined by counting the
number of non-wildcard matches) is given preference. If two patterns are
equally specific, the choice of handler is arbitrary.

7. Deliver to observers.

The ToolTalk service delivers the message to all running processes that have
registered Observer patterns that match the message. As each delivery is
made, the ToolTalk service checks off any observe promise for the ptype of
the observer. After this process is completed and there are observe promises
left unfulfilled, the ToolTalk service honors the disposition (queue or start)
options in the promises.

Example

In this example, a hypothetical spreadsheet application named FinnogaCalc is
integrated with the ToolTalk service.

1. FinnogaCalc starts and registers with the ToolTalk service by declaring its
ptype, FinnogaCalc , and joining its default session.

Sending Messages 57

7

2. FinnogaCalc loads a worksheet, hatsize.wks , and tells the ToolTalk
service it is observing the worksheet by joining the worksheet file.

3. A second instance of FinnogaCalc (called FinnogaCalc2) starts, loads a
worksheet, wardrobe.wks , and registers with the ToolTalk service in the
same way.

4. The user assigns the value of cell B2 in hatsize.wks to also appear in cell
C14 of wardrobe.wks .

5. So that FinnogaCalc can send the value to FinnogaCalc2, FinnogaCalc2

creates an object spec for cell C14 by calling a ToolTalk function. This object
is identified by an objid.

6. FinnogaCalc2 then gives this objid to FinnogaCalc (for example, through the
clipboard).

7. FinnogaCalc remembers that its cell B2 should appear in the object
identified by this objid and sends a message that contains the value.

8. ToolTalk routes the message. To deliver the message, the ToolTalk service:

a. Examines the spec associated with the objid and finds that the type of the
objid is FinnogaCalc_cell and that the corresponding object is in the
file wardrobe.wks .

b. Consults the otype definition for FinnogaCalc_cell . From the otype,
the ToolTalk service determines that this message is observed by
processes of ptype FinnogaCalc and that the scope of the message
should be TT_FILE .

c. Matches the message against registered patterns and locates all processes
of this ptype that are observing the proper file. FinnogaCalc2 matches,
but FinnogaCalc does not.

d. Delivers the message to FinnogaCalc2.

9. FinnogaCalc2 recognizes that the message contains an object that
corresponds to cell C14. FinnogaCalc2 updates the value in wardrobe.wks
and displays the new value.

58 CDE ToolTalk Programmer’s Guide

7

Otype Addressing

Sometimes you may need to send an object-oriented message without knowing
the objid. To handle these cases, the ToolTalk service provides otype
addressing. This addressing mode requires the sender to specify the operation,
arguments, scope, and otype. The ToolTalk service looks in the specified otype
definition for a message pattern that matches the message’s operation and
arguments to locate handling and observing processes. The dispatch and
delivery then proceed as in messages to specific objects.

Modifying Applications to Send ToolTalk Messages

To send ToolTalk messages, your application must perform several operations:
it must be able to create and complete ToolTalk messages; it must be able to
add message callback routines; and it must be able to send the completed
message.

Creating Messages

The ToolTalk service provides three methods to create and complete messages:

1. General-purpose function
• tt_message_create()

2. Process-oriented notice and request functions
• tt_pnotice_create()
• tt_prequest_create()

3. Object-oriented notice and request functions
• tt_onotice_create()
• tt_orequest_create()

Sending Messages 59

7

The process- and object-oriented notice and request functions make message
creation simpler for the common cases. They are functionally identical to
strings of other tt_message_create() andtt_message_< attribute>_set()
calls, but are easier to write and read. Table 7-4 and Table 7-5 list the ToolTalk
functions that are used to create and complete message

Table 7-4 Functions Used to Create Messages

ToolTalk Function Description

tt_onotice_create(const char *objid,
const char *op)

Creates an object-oriented notice.

tt_orequest_create(const char *objid,
const char *op)

Creates an object-oriented
request.

tt_pnotice_create(Tt_scope scope,
const char *op)

Creates a process-oriented notice.

tt_prequest_create(Tt_scope scope,
const char *op)

Creates a process-oriented
request.

tt_message_create(void) Creates a message. This function
is the ToolTalk general purpose
function to create messages.

Note - The return type for all the create functions is Tt_message .

Table 7-5 Functions Used to Complete Messages

ToolTalk Function Description

tt_message_address_set(Tt_message m,
Tt_address p)

Sets addressing mode (for
example, point-to-point).

tt_message_arg_add(Tt_message m,
Tt_mode n, const char *vtype,
const char *value)

Adds a null-terminated string
argument.

tt_message_arg_bval_set(Tt_message m,
int n, const unsigned char *value,
int len)

Sets an argument’s value to the
specified byte array.

Note - The return type for all the functions used to complete messages is Tt_status .

60 CDE ToolTalk Programmer’s Guide

7

tt_message_arg_ival_set(Tt_message m,
int n, int value)

Sets an argument’s value to the
specified integer.

tt_message_arg_val_set(Tt_message m,
int n, const char *value)

Sets an argument’s value to the
specified null-terminated string.

tt_message_barg_add(Tt_message m, Tt_mode n,
const char *vtype, const unsigned char *value, int
len)

Adds a byte array argument.

tt_message_iarg_add(Tt_message m, Tt_mode n,
const char *vtype, int value)

Adds an integer argument.

tt_message_context_bval(Tt_message m, const
char *slotname, unsigned char **value, int *len)

Gets a context’s value to the
specified byte array.

tt_message_context_ival(Tt_message m, const char
*slotname, int *value)

Gets a context’s value to the
specified integer.

tt_message_context_val(Tt_message m,
const char *slotname)

Gets a context’s value to the
specified string.

tt_message_icontext_set(Tt_message m,
const char *slotname, int value)

Sets a context to the specified
integer.

tt_message_bcontext_set(Tt_message m, const char
*slotname, unsigned char *value, int length);

Sets a context to the specified
byte array.

tt_message_context_set(Tt_message m,
const char *slotname, const char *value)

Sets a context to the specified
null-terminated string.

tt_message_class_set(Tt_message m, Tt_class c) Sets the type of message (either
notice or request).

tt_message_file_set(Tt_message m, const char *file) Sets the file to which the message
is scoped.

tt_message_handler_ptype_set(Tt_message m,
const char *ptid)

Sets the ptype that is to receive
the message.

tt_message_handler_set(Tt_message m,
const char *procid)

Sets the procid that is to receive
the message.

tt_message_object_set(Tt_message m,
const char *objid)

Sets the object that is to receive
the message.

Table 7-5 Functions Used to Complete Messages (Continued)

ToolTalk Function Description

Note - The return type for all the functions used to complete messages is Tt_status .

Sending Messages 61

7

Using the General-Purpose Function to Create ToolTalk Messages

You can use the general-purpose function tt_message_create() to create
and complete ToolTalk messages. If you create a process- or object-oriented
message with tt_message_create() , use the
tt_message_ <attribute>_set() calls to set the attributes.

tt_message_op_set(Tt_message m,
const char *opname)

Sets the operation that is to
receive the message.

tt_message_otype_set(Tt_message m,
const char *otype)

Sets the object type that is to
receive the message.

tt_message_scope_set(Tt_message m, Tt_scope s) Sets the recipients who are to
receive the message (file, session,
both).

tt_message_sender_ptype_set(Tt_message m,
const char *ptid)

Sets the ptype of the application
that is sending the message.

tt_message_session_set(Tt_message m,
const char *sessid)

Sets the session to which the
message is scoped.

tt_message_status_set(Tt_message m, int status) Sets the status of the message;
this status is seen by the receiving
application.

tt_message_status_string_set(Tt_message m,
const char *status_str)

Sets the text that describes the
status of the message; this text is
seen be the receiving application.

tt_message_user_set(Tt_message m, int key,
void *v)

Sets a message that is internal to
the sending application; this
internal message is opaque data
that is not seen by the receiving
application.

Table 7-5 Functions Used to Complete Messages (Continued)

ToolTalk Function Description

Note - The return type for all the functions used to complete messages is Tt_status .

62 CDE ToolTalk Programmer’s Guide

7

Class
• Use TT_REQUEST for messages that return values or status. You will be

informed when the message is handled or queued, or when a process is
started to handle the request.

• Use TT_NOTICE for messages that only notify other processes of events.

Address
• Use TT_PROCEDUREto send the message to any process that can perform

this operation with these arguments. Fill in op and args attributes of this
message.

• Use TT_OTYPE to send the message to this type of object that can perform
this operation with these arguments. Fill in otype, op, and args attributes of
the message.

• Use TT_HANDLER to send the message to a specific process. Specify the
handler attribute value.

Usually, one process makes a general request, picks the handler attribute
from the reply, and directs further messages to that handler. If you specify
the exact procid of the handler, the ToolTalk service will deliver the message
directly — no pattern matching is done and no other applications can
observe the message. This point-to-point (PTP) message passing feature
enables two processes to rendezvous through broadcast message passing
and then communicate explicitly with one another.

• Use TT_OBJECTto send the message to a specific object that performs this
operation with these arguments. Fill in object, op, and args attributes of this
message.

Scope
Fill in the scope of the message delivery. Potential recipients could be joined
to:
• TT_SESSION
• TT_FILE
• TT_BOTH
• TT_FILE_IN_SESSION

Depending on the scope, the ToolTalk service will add the default session or
file, or both to the message.

Sending Messages 63

7

Op
Fill in the operation that describes the notification or request that you are
making. To determine the operation name, consult the ptype definition for
the target recipient or the message protocol definition.

Args
Fill in any arguments specific to the operation. Use the function that best
suits your argument’s data type:
• tt_message_arg_add()

Adds an argument whose value is a zero-terminated character string.

• tt_message_barg_add()

Adds an argument whose value is a byte string.

• tt_message_iarg_add()

Adds an argument whose value is an integer.

For each argument you add (regardless of the value type), specify:
• Tt_mode

Specify TT_IN or TT_INOUT . TT_IN indicates that the argument is
written by the sender and can be read by the handler and any observers.
TT_INOUT indicates that the argument is written by the sender and the
handler and can be read by all. If you are sending a request that requires
the handler to provide an argument in return, use TT_INOUT.

• Value Type
The value type (vtype) describes the type of argument data that is to be
added. The ToolTalk service uses the vtype name when it compares a
message to registered patterns to determine a message’s recipients. The
ToolTalk service does not use the vtype to process a message or pattern
argument value.

The vtype name helps the message receiver interpret data. For example,
if a word processor rendered a paragraph into a PostScript representation
in memory, it could call tt_message_arg_add with the following
arguments:

tt_message_arg_add (m, “PostScript”, buf);

In this case, the ToolTalk service would assume buf pointed to a
zero-terminated string and send it.

64 CDE ToolTalk Programmer’s Guide

7

Similarly, an application could send an enum value in a ToolTalk
message; for example, an element of Tt_status :

tt_message_iarg_add(m, “Tt_status”, (int) TT_OK);

The ToolTalk service sends the value as an integer but the “Tt_status ”
vtype tells the recipient what the value means.

Note – It is very important that senders and receivers define particular vtype
names so that a receiver does not attempt to retrieve a value that was stored in
another fashion; for example, a value stored as an integer but retrieved as a
string.

Creating Process-Oriented Messages

You can easily create process-oriented notices and requests. To get a handle or
opaque pointer to a new message object for a procedural notice or request, use
the tt_pnotice_create or tt_prequest_create function. You can then
use this handle on succeeding calls to reference the message.

When you create a message with tt_pnotice_create or
tt_prequest_create , you must supply the following two attributes as
arguments:

1. Scope

Fill in the scope of the message delivery. Potential recipients could be joined
to:

• TT_SESSION
• TT_FILE
• TT_BOTH
• TT_FILE_IN_SESSION

Depending on the scope, the ToolTalk service fills in the default session or
file (or both).

2. Op

Fill in the operation that describes the notice or request you are making. To
determine the operation name, consult the ptype definition for the target
process or other protocol definition.

Sending Messages 65

7

You use the tt_message_ <attribute>_set calls to complete other message
attributes such as operation arguments.

Creating and Completing Object-Oriented Messages

You can easily create object-oriented notices and requests. To get a handle or
opaque pointer to a new message object for a object-oriented notice or request,
use the tt_onotice_create or tt_orequest_create function. You can
then use this handle on succeeding calls to reference the message.

When you create a message with tt_onotice_create or
tt_orequest_create , you must supply the following two attributes as
arguments:

1. Objid

Fill in the unique object identifier.

2. Op

Fill in the operation that describes the notice or request you are making. To
determine the operation name, consult the ptype definition for the target
process or other protocol definition.

You use the tt_message_ <attribute>_set calls to complete other message
attributes such as operation arguments.

Adding Message Callbacks

When a request contains a message callback routine, the callback routine is
automatically called when the reply is received to examine the results of the
reply and take appropriate actions.

Note – Callbacks are called in reverse order of registration (for example, the
most recently added callback is called first).

You use tt_message_callback_add to add the callback routine to your
request. When the reply comes back and the reply message has been processed
through the callback routine, the reply message must be destroyed before the
callback function returns TT_CALLBACK_PROCESSED. To destroy the reply
message, use tt_message_destroy , as illustrated in the following example:

66 CDE ToolTalk Programmer’s Guide

7

Tt_callback_action

sample_msg_callback(Tt_message m, Tt_pattern p)

{

... process the reply msg ...

tt_message_destroy(m);

return TT_CALLBACK_PROCESSED;

}

The following code sample is a callback routine, cntl_msg_callback , that
examines the state field of the reply and takes action if the state is started,
handled, or failed.

/*

 * Default callback for all the ToolTalk messages we send.

 */

Tt_callback_action

cntl_msg_callback(m, p)

 Tt_message m;

 Tt_pattern p;

{

int mark;

char msg[255];

char *errstr;

mark = tt_mark();

switch (tt_message_state(m)) {

 case TT_STARTED:

 /*Put in code to start the editor*/

 break;

 case TT_HANDLED:

Sending Messages 67

7

 /*Put in code to handle the message*/

 break;

 case TT_FAILED:

 errstr = tt_message_status_string(m);

 if (tt_pointer_error(errstr) == TT_OK && errstr) {

sprintf(msg,"%s failed: %s", tt_message_op(m), errstr);

 } else if (tt_message_status(m) == TT_ERR_NO_MATCH) {

sprintf(msg,"%s failed: Couldn't contact editor",

tt_message_op(m),

tt_status_message(tt_message_status(m)));

 } else {

sprintf(msg,"%s failed: %s",

tt_message_op(m),

tt_status_message(tt_message_status(m)));

 }

 /*Put in code to display the error message*/

 break;

 default:

 break;

}

/*

 * no further action required for this message. Destroy it

 * and return TT_CALLBACK_PROCESSED so no other callbacks will

 * be run for the message.

 */

tt_message_destroy(m);

tt_release(mark);

return TT_CALLBACK_PROCESSED;

}

68 CDE ToolTalk Programmer’s Guide

7

You can also add callbacks to static patterns by attaching a callback to the
opnum of a signature in a ptype. When a message is delivered because it
matched a static pattern with an opnum, the ToolTalk service checks for any
callbacks attached to the opnum and runs them.

• Use tt_otype_opnum_callback_add to attach the callback routine to the
opnum of an osignature.

• Use tt_ptype_opnum_callback_add to attach the callback routine to the
opnum of a psignature.

Sending a Message

When you have completed your message, use tt_message_send to send it.

If the ToolTalk service returns TT_WRN_STALE_OBJID, it has found a
forwarding pointer in the ToolTalk database that indicates the object
mentioned in the message has been moved; however, the ToolTalk service will
send the message with the new objid. You can then use tt_message_object
to retrieve the new objid from the message and put it into your internal data
structure.

If you will not need the message in the future (for example, if the message was
a notice), you can use tt_message_destroy to delete the message and free
storage space.

Note – If you are expecting a reply to the message, do not destroy the message
until you have handled the reply.

Examples

This example illustrates how to create and send a pnotice:

/*

* Create and send a ToolTalk notice message

* ttsample1_value(in int <new value)

*/

msg_out = tt_pnotice_create(TT_SESSION, “ttsample1_value”);

tt_message_arg_add(msg_out, TT_IN, “integer”, NULL);

Sending Messages 69

7

tt_message_arg_ival_set(msg_out, 0, 42;

tt_message_send(msg_out);

/*

* Since this message is a notice, we don’t expect a reply, so

* there’s no reason to keep a handle for the message.

*/

tt_message_destroy(msg_out);

Here is an illustration of how an orequest is created and sent when the callback
routine for cntl_ui_hilite_button is called:

/*

 * Notify callback function for ‘cntl_ui_hilite_button’.

 */

void

cntl_ui_hilite_button_handler(item, event)

Panel_itemitem;

Event *event;

{

Tt_messagemsg;

if (cntl_objid == (char *)0) {

/*Put in code to display an error*/

return;

}

msg = tt_orequest_create(cntl_objid, “hilite_obj”);

tt_message_arg_add(msg, TT_IN, “string”, cntl_objid);

tt_message_callback_add(msg, cntl_msg_callback);

tt_message_send(msg);

}

70 CDE ToolTalk Programmer’s Guide

7

71

Message Patterns 8

This chapter describes how to provide message pattern information to the
ToolTalk service. The ToolTalk service uses message patterns to determine
message recipients. After receiving a message, the ToolTalk service compares
the message to all current message patterns to find a matching pattern. Once a
match is made, the message is delivered to the application that registered the
message pattern.

You can provide message pattern information to the ToolTalk service using
either dynamic or static methods, or both. The method you choose depends on
the type of messages you want to receive.

• If the types of messages you want to receive will vary while your
application is running, the dynamic method allows you to add, change, or
remove message pattern information after your application has started.

• If you want a message to start your application or to be queued if your
application is not running, the static method provides an easy way to specify
these instructions. The static method also provides an easy way to specify
the message pattern information if you want to receive a defined set of
messages. For more information, see Chapter 10, “Static Message Patterns“.

Regardless of the method you choose to provide message patterns to the
ToolTalk service, you will want to update these patterns with each current
session and file information so that you receive all messages that reference the
session or file in which you are interested.

72 CDE ToolTalk Programmer’s Guide

8

Message Pattern Attributes

The attributes in your message pattern specify the type of messages you want
to receive. Although some attributes are set and have only one value, you can
supply multiple values for most of the attributes you add to a pattern.

Table 8-1 provides a complete list of attributes you can put in your message
patterns.

Table 8-1 ToolTalk Message Pattern Attributes

Pattern Attribute Value Description

Category TT_OBSERVE
TT_HANDLE

Declares whether you want to
perform the operation listed in a
message or only observe a
message.

Scope TT_SESSION
TT_FILE
TT_FILE_IN_SESSION
TT_BOTH

Declares interest in messages
about a session or a file, or both;
join a session or file after the
message pattern is registered to
update the sessid and filename.

Arguments arguments or results Declares the positional
arguments for the operation in
which you are interested.

Context <name, value> Declares the keyword or non-
positional arguments for the
operation in which you are
interested

Class TT_NOTICE
TT_REQUEST

Declares whether you want to
receive notices or requests, or
both.

File char *pathname Declares the files in which you
are interested. If the scope of the
pattern does not require a file,
the file is an attribute only.

Object char *objid Declares what objects in which
you are interested.

Operation char *opname Declares the operations in which
you are interested.

Message Patterns 73

8

All your message patterns must at least specify:

• Category — Whether the application wants to perform operations listed in
messages or only view messages.
• Use TT_OBSERVE if you want to observe messages.
• Use TT_HANDLE if you want to perform operations requested by the

messages.

• Scope — Whether the application is interested in messages about a
particular session or file.

Otype char *otype Declares the type of objects in
which you are interested.

address TT_PROCEDURE
TT_OBJECT
TT_HANDLER
TT_OTYPE

Declares the type of address in
which you are interested.

disposition TT_DISCARD
TT_QUEUE
TT_START
TT_START+TT_QUEUE

Instructs the ToolTalk service
how to handle messages to your
application if an instance is not
currently running.

sender char *procid Declares the sender in which you
are interested.

sender_ptype char *ptype Declares the type of sending
process in which you are
interested.

session char *sessid Declares the session in which you
are interested.

state TT_CREATED
TT_SENT
TT_HANDLED
TT_FAILED
TT_QUEUED
TT_STARTED
TT_REJECTED

Declares the state of the message
in which you are interested.

Table 8-1 ToolTalk Message Pattern Attributes (Continued)

Pattern Attribute Value Description

74 CDE ToolTalk Programmer’s Guide

8

• Use TT_SESSION to receive messages from other processes in your
session.

• Use TT_FILE to receive messages about the file you have joined.
• Use TT_FILE_IN_SESSION to receive messages for the file you have

joined while in this session.
• Use TT_BOTH to receive both messages for the file, the session, or the file

and the session you have joined.

The ToolTalk service compares message attributes to pattern attributes as
follows:

• The ToolTalk service counts the message attribute as matched if:
• No pattern attribute is specified.
• The pattern does not name a context slot.
• The pattern has an empty context slot.

The fewer pattern attributes you specify, the more messages you become
eligible to receive.

• If there are multiple values specified for a pattern attribute, one of the
values must match the message attribute value. If no value matches, the
ToolTalk service will not consider your application as a receiver.

• If context slots are contained in the message, the ToolTalk service will not
consider your application as a receiver unless:
• A value specified in a context slot of a pattern matches the value specified

in the message context slot.
• When multiple context slots are specified in a message, each context slot

value in the message matches a corresponding context slot value in the
pattern.

Scope Attributes

You can specify the following types of scopes in your message patterns:

1. Scope to a session only.

2. Scope to a file only.

3. Scope only to a file in a particular session.

4. Scope to either or both a file and a session.

Message Patterns 75

8

Note – File scopes are restricted to NFS® and UFS file systems; you cannot
scope a file across other types of file systems (for example, a tmpfs file system).

Scoping Only to a Session

The type TT_SESSION scopes only to a session. Static session-scoped patterns
require an explicit tt_session_join call to set the scope value; dynamic
session-scoped patterns can be set with either the tt_session_join call or
the tt_pattern_session_add call.

Note – The session specified by these calls must be the default session.

The following code example shows a static session-scoped pattern:

/* Obtain procid */
tt_open();

/* Ptype is scoped to session */
tt_ptype_declare(ptype);

/* Join session */
tt_session_join(tt_default_session());

Now here is an illustration of a dynamic session-scoped pattern:

/* Obtain procid */
tt_open();

/* Create pattern */
Tt_pattern pat = tt_create_pattern();

/* Add scope to pattern */
tt_pattern_scope_add(pat, TT_SESSION);

/* Add session to pattern */
tt_pattern_session_add (tt_default_session());

/* Register pattern */
tt_pattern_register(pat);

76 CDE ToolTalk Programmer’s Guide

8

Scoping Only to a File

The type TT_FILE scopes only to a file. This code example shows a static
file-scoped pattern: .

/* Obtain procid */
tt_open();

/* Ptype is scoped to file */
tt_ptype_declare(ptype);

/* Join file */
tt_file_join(file);

Now here is an example that shows a dynamic file-scoped pattern:

/* Obtain procid */
tt_open();

/* Create pattern */
Tt_pattern pat = tt_create_pattern();

/* Add scope to pattern */
tt_pattern_scope_add(pat, TT_FILE);

/* Add file to pattern */
tt_pattern_file_add (pat, file);

/* Register pattern */
tt_pattern_register(pat);

Scoping to a File in a Session

The type TT_FILE_IN_SESSION scopes to the specified file in the specified
session only. A pattern with this scope set will only match messages that are
scoped to both the file and the session. This code example adds the session and
then registers the pattern.

Message Patterns 77

8

/* Obtain procid */
tt_open();

/* Create pattern */
Tt_pattern pat = tt_create_pattern();

/* Add scope to pattern */
tt_pattern_scope_add(pat, TT_FILE_IN_SESSION);

/* Add file to pattern */
tt_pattern_file_add(pat, file);

/* Add session to pattern */
tt_pattern_session_add(pat, tt_default_session());

/* Register pattern */
tt_pattern_register(pat);

The following example registers the pattern and then joins a session:

/* Obtain procid */
tt_open();

/* Create pattern */
Tt_pattern pat = tt_create_pattern();

/* Add scope to pattern */
tt_pattern_scope_add(pat, TT_FILE_IN_SESSION);

/* Add file to pattern */
tt_pattern_file_add(pat, file);

/* Register pattern */
tt_pattern_register(pat);

/* Join session */
tt_session_join(tt_default_session());

This example sets the scope value for a static pattern:

/* Obtain procid */
tt_open();

78 CDE ToolTalk Programmer’s Guide

8

/* Declare Ptype */
Tt_ptype_declare(ptype);

/* Join File */
tt_file_join(file);

/* Join session */
tt_session_join(tt_default_session());

Scoping to a File and/or a Session

A TT_BOTH-scoped pattern will match messages that are scoped to the file, the
session, or the file and the session. When you use this scope, however, you
must explicitly make a tt_file_join call; otherwise, the ToolTalk service
will only match messages that are scoped to both the file and session of the
registered pattern. The following show code examples of how to use this scope:

/* Obtain procid */
tt_open();

/* Create pattern */
Tt_pattern pat = tt_create_pattern();

/* Add scope to pattern */
tt_pattern_scope_add(pat, TT_BOTH);

/* Add session to pattern */
tt_pattern_session_add(pat, tt_default_session());

/* Add file to pattern */
tt_pattern_file_add (pat, file);

/* Register pattern */
tt_pattern_register(pat);

Or,

/* Obtain procid */
tt_open();

/* Declare Ptype */
Tt_ptype_declare(ptype);

Message Patterns 79

8

/* Join file */
tt_file_join(file);

/* Join session */
tt_session_join(tt_default_session());

Adding Files to Scoped Patterns

To match TT_SESSION-scoped messages and TT_SESSION-scoped patterns
that have the same file attributes, you can add file attributes to
TT_SESSION-scoped patterns with the tt_pattern_file_add call, as shown
in the following example:

Note – The file attribute values do not affect the scope of the pattern.

/* Obtain procid */
tt_open();

/* Create pattern */
Tt_pattern pat = tt_create_pattern();

/* Add scope to pattern */
tt_pattern_scope_add(pat, TT_SESSION);

/* Add session to pattern */
tt_pattern_session_add(tt_default_session());

/* Add first file attribute to pattern */
tt_pattern_file_add(pat, file1);

/* Add second file attribute to pattern */
tt_pattern_file_add(pat, file2);

/* Register pattern */
tt_pattern_register(pat);

80 CDE ToolTalk Programmer’s Guide

8

Context Attributes

ToolTalk contexts are sets of <name, value> pairs explicitly included in both
messages and patterns. ToolTalk contexts allow fine-grain matching.

You can use contexts to associate arbitrary pairs with ToolTalk messages and
patterns, and to restrict the set of possible recipients of a message. One
common use of the restricted pattern matching provided by ToolTalk context
attributes is to create sub-sessions. For example, two different programs could
be debugged simultaneously with tools such as a browser, an editor, a
debugger, and a configuration manager active for each program. The message
and pattern context slots for each set of tools contain different values; the
normal ToolTalk pattern matching of these values keeps the two sub-sessions
separate.

Another use for the restricted pattern matching provided by ToolTalk context
attributes is to provide information in environment variables and command
line arguments to tools started by the ToolTalk service.

Disposition Attributes

Disposition attributes instruct the ToolTalk service how to handle messages to
your application if an instance of the application is not currently running.

The disposition value specified in the static type definition of a pattern is the
default disposition; however, if the message disposition specifies the handler
ptype, the default disposition value is over-ridden. For example, a message
disposition specifies a static type definition for the ptype UWriteIt, which
includes the message signature Display. This message signature does not match
any of the static signatures in the pattern. The ToolTalk service will follow the
instructions for the disposition set in the message; for example, if the message
disposition is TT_START and the UWriteIt ptype specifies a start string, the
ToolTalk service will start an instance of the application if one is not running.

81

Dynamic Message Patterns 9

Defining Dynamic Messages

The dynamic method provides message pattern information while your
application is running. You create a message pattern and register it with the
ToolTalk service. You can add callback routines to dynamic message patterns
that the ToolTalk service will call when it matches a message to the pattern.

To create and register a dynamic message pattern, you allocate a new pattern
object, fill in the proper information, and register it. When you are done with
the pattern (that is, when you are no longer interested in messages that match
it), either unregister or destroy the pattern. You can register and unregister
dynamic message patterns as needed.

82 CDE ToolTalk Programmer’s Guide

9

The ToolTalk functions used to create, register, and unregister dynamic
message patterns are listed in Table 9-1.

Table 9-1 Functions for Creating, Updating, and Deleting Message Patterns

ToolTalk Function Description

tt_pattern_create(void) Create Pattern

tt_pattern_arg_add(Tt_pattern p,
Tt_mode n, const char *vtype, const

char *value)

Add string arguments

tt_pattern_barg_add(Tt_pattern m,
Tt_mode n, const char *vtype, const

unsigned char *value, int len)

Add byte array arguments

tt_pattern_iarg_add(Tt_pattern m,
Tt_mode n, const char *vtype, int

value)

Add integer arguments

tt_pattern_xarg_add(Tt_pattern m,
Tt_mode n, const char *vtype,
xdrproc_t xdr_proc, void *value)

Adds an xdr argument to a byte
array

tt_pattern_bcontext_add(Tt_pattern p,
const char *slotname, const unsigned
char *value, int length)

Add byte array contexts

tt_pattern_context_add(Tt_pattern p,
const char *slotname, const char
*value)

Add string contexts

tt_pattern_icontext_add(Tt_pattern p,
const char *slotname, int value)

Add integer contexts

tt_pattern_address_add(Tt_pattern p,
Tt_address d)

Add address

tt_pattern_callback_add(Tt_pattern p,
Tt__message_callback_action f)

Add message callback

tt_pattern_category_set(Tt_pattern p,
Tt_category c)

Set category

tt_pattern_class_add(Tt_pattern p,
Tt_class c)

Add class

tt_pattern_disposition_add(Tt_pattern
p, Tt_disposition r)

Add disposition

Note - The return type for all functions except tt_pattern_create is Tt_status ;
tt_pattern_create returns Tt_pattern .

Dynamic Message Patterns 83

9

tt_pattern_file_add(Tt_pattern p,
const char *file)

Add file

tt_pattern_object_add(Tt_pattern p,
const char *objid)

Add object

tt_pattern_op_add(Tt_pattern p, const
char *opname)

Add operation

tt_pattern_opnum_add(Tt_pattern p, int
opnum)

Add operation number

tt_pattern_otype_add(Tt_pattern p,
const char *otype)

Add object type

tt_pattern_scope_add(Tt_pattern p,
Tt_scope s)

Ad scope

tt_pattern_sender_add(Tt_pattern p,
const char *procid)

Add sending process identifier

tt_pattern_sender_ptype_add(Tt_pattern
 p, const char *ptid)

Add sending process type

tt_pattern_session_add(Tt_pattern p,
const char *sessid)

Add session identifier

tt_pattern_state_add(Tt_pattern p,
Tt_state s)

Add state

tt_pattern_user_set(Tt_pattern p, int
key, void *v)

Set user

tt_pattern_register(Tt_pattern p) Register pattern

tt_pattern_unregister(Tt_pattern p) Unregister pattern

tt_pattern_destroy(Tt_pattern p) Destroy message pattern

Table 9-1 Functions for Creating, Updating, and Deleting Message Patterns (Continued)

ToolTalk Function Description

Note - The return type for all functions except tt_pattern_create is Tt_status ;
tt_pattern_create returns Tt_pattern .

84 CDE ToolTalk Programmer’s Guide

9

Creating a Message Pattern

To create message patterns, use the tt_pattern_create function. You can
use this function to get a handle or opaque pointer to a new pattern object, and
then use this handle on succeeding calls to reference the pattern.

To fill in pattern information, use the tt_pattern_< attribute>_add and
tt_pattern_< attribute>_set calls. You can supply multiple values for each
attribute you add to a pattern. The pattern attribute matches a message
attribute if any of the values in the pattern match the value in the message. If
no value is specified for an attribute, the ToolTalk service assumes that you
want any value to match. Some attributes are set and, therefore, can only have
one value.

Adding a Message Pattern Callback

To add a callback routine to your pattern, use the
tt_pattern_callback_add function.

Note – Callbacks are called in reverse order of registration (for example, the
most recently added callback is called first).

When the ToolTalk service matches a message, it automatically calls your
callback routine to examine the message and take appropriate actions. When a
message that matches a pattern with a callback is delivered to you, it is
processed through the callback routine. When the routine is finished, it returns
TT_CALLBACK_PROCESSED and the API objects involved in the operation are
freed. You can then use tt_message_destroy to destroy the message, which
frees the storage used by the message, as illustrated in the following code
sample:

Tt_callback_action

sample_msg_callback(Tt_message m, Tt_pattern p)

{

... process the reply msg ...

tt_message_destroy(m);

return TT_CALLBACK_PROCESSED;

}

Dynamic Message Patterns 85

9

Registering a Message Pattern

To register the completed pattern, use the tt_pattern_register function.
After you register your pattern, join the sessions or files of interest.

The following code sample creates and registers a pattern.

/*

 * Create and register a pattern so ToolTalk knows we are
 * interested in “ttsample1_value” messages within the
 * session we join.
 */

pat = tt_pattern_create();

tt_pattern_category_set(pat, TT_OBSERVE);

tt_pattern_scope_add(pat, TT_SESSION);

tt_pattern_op_add(pat, “ttsample1_value”);

tt_pattern_register(pat);

Deleting and Unregistering a Message Pattern

Note – If delivered messages that matched the deleted pattern have not been
retrieved by your application (for example, the messages might be queued), the
ToolTalk service does not destroy these messages.

To delete a message pattern, use the tt_pattern_destroy function. This
function first unregisters the pattern and then destroys the pattern object.

To stop receiving messages that match a message pattern without destroying
the pattern object, use the tt_pattern_unregister to unregister the
pattern.

The ToolTalk service will automatically unregister and destroy all message
pattern objects when you call tt_close .

86 CDE ToolTalk Programmer’s Guide

9

Updating Message Patterns with the Current Session or File

To update your message patterns with the session or file in which you are
currently interested, join the session or file.

Joining the Default Session

When you join a session, the ToolTalk service updates your message pattern
with the sessid. For example, if you have declared a ptype or registered a
message pattern that specifies TT_SESSION or TT_FILE_IN_SESSION , use
tt_session_join to join the default session. The following code sample
shows how to join the default session.

/*

 * Join the default session

 */

tt_session_join(tt_default_session());

Table 9-2 lists the ToolTalk functions you use to join the session in which you
are interested.

Once your patterns are updated, you will begin to receive messages scoped to
the session you joined.

Table 9-2 ToolTalk Functions for Joining Default Sessions

Return Type ToolTalk Function Description

char * tt_default_session(void) Return default session id.

Tt_status tt_default_session_set(const
char *sessid)

Set default session.

char * tt_initial_session(void) Return initial session id.

Tt_status tt_session_join(const char
*sessid)

Join this session .

Tt_status tt_session_quit(const char
*sessid)

Quit session.

Dynamic Message Patterns 87

9

Note – If you had previously joined a session and then registered a ptype or a
new message pattern, you must again join the same session or a new session to
update your pattern before you will receive messages that match your new
pattern.

When you no longer want to receive messages that reference the default
session, use the tt_session_quit function. This function removes the sessid
from your session-scoped message patterns.

Joining Multiple Sessions

When you join multiple sessions, you will automatically get responses to
requests and point-to-point messages, but you will not get notices unless you
explicitly join the new session. The following code sample shows how to join
the multiple sessions.

tt_default_session_set(new_session_identifier);

tt_open();

tt_session_join(new_session);

In order to effectively use multiple sessions, you must store the session ids of
the sessions in which you are interested in order to pass these identifiers to
tt_default_session_set prior to opening a new session with tt_open ;
that is, you need to place the values (which ttsession stores in the
environment variable TT_SESSION) in a file on the system so that other
ToolTalk clients can access the value of a session id contained in that file and
use it to open the non-default session. For example, you can store the session
ids in a “well-known” file and then send a file-scoped message (indicating this
file) to all clients that have registered an appropriate pattern. The client will
then know to open the scoped-to file, read one or more session ids from it, and
use these session ids (with tt_open) to open a non-default session. An
alternative method is advertising the session ids by means of, for example, a
name service or a third-party database.

Note – How ttsession session ids are stored and passed to interested clients
is beyond the scope of the ToolTalk protocol and must be determined based on
the architecture of the system.

88 CDE ToolTalk Programmer’s Guide

9

Joining Files of Interest

When you join a file, the ToolTalk service automatically adds the name of the
file to your file-scoped message patterns. For example, if you have declared a
process type or registered a message pattern that specifies TT_FILE or
TT_FILE_IN_SESSION , use the tt_file_join function to join files of
interest. Table 9-3 lists the ToolTalk functions you use to express your interest
in specific files.

When you no longer want to receive messages that reference the file, use the
tt_file_quit function to remove the file name from your file-scoped
message patterns.

Table 9-3 ToolTalk Functions for Joining Files of Interest

Return Type ToolTalk Function Description

char * tt_default_file(void) Join default file.

Tt_status tt_default_file_set(const char
*docid)

Set default file.

Tt_status tt_file_join(const char *filepath) Join this file.

Tt_status tt_file_quit(const char *filepath) Quit file.

89

Static Message Patterns 10

Defining Static Messages

The static messaging method provides an easy way to specify the message
pattern information if you want to receive a defined set of messages.

To use the static method, you define your process types and object types and
compile them with the ToolTalk type compiler, tt_type_comp . When you
declare your process type, the ToolTalk service creates message patterns based
on that type. These static message patterns remain in effect until you close
communication with the ToolTalk service.

Defining Process Types

Your application can still be considered a potential message receiver even
when no process is running the application. To do this, you provide message
patterns and instructions on how to start the application in a process type
(ptype) file. These instructions tell the ToolTalk service to perform one of the
following actions when a message is available for an application but the
application is not running:

• Start the application and deliver the message.
• Queue the message until the application is running.
• Discard the message.

To make the information available to the ToolTalk service, the ptype file is
compiled with the ToolTalk type compiler, tt_type_comp , at application
installation time.

90 CDE ToolTalk Programmer’s Guide

10

When an application registers a ptype with the ToolTalk service, the message
patterns listed in it are automatically registered, too.

Ptypes provide application information that the ToolTalk service can use when
the application is not running. This information is used to start your process, if
necessary, to receive a message or queue messages until the process starts.

A ptype begins with a process-type identifier (ptid). Following the ptid are:

1. An optional start string — The ToolTalk service will execute this command,
if necessary, to start a process running the program.

2. Signatures — Describes the TT_PROCEDURE-addressed messages that the
program wants to receive. Messages to be observed are described separately
from messages to be handled.

For an example of a ptypes file, see the following file:
/usr/dt/examples/tt/edit_demo/edit.types.model .

Signatures

Signatures describe the messages that the program wants to receive. A
signature is divided by an arrow (=>) into two parts. The first part of a
signature specifies matching attribute values. The more attribute values
specified in a signature, the fewer messages the signature will match. The
second part of a signature specifies receiver values that the ToolTalk service
will copy into messages that match the first part of the signature.

A ptype signature can contain values for disposition and operation numbers
(opnum). The ToolTalk service uses the disposition value (start, queue, or the
default discard) to determine what to do with a message that matches the
signature when no process is running the program. The opnum value is
provided as a convenience to message receivers. When two signatures have the
same operation name but different arguments, different opnums make
incoming messages easy to identify.

Static Message Patterns 91

10

Creating a Ptype File

The following shows the syntax for a ptype file:
ptype::=’ptype’ ptid ‘{’

property *

[‘observe:’ psignature *]
[‘handle:’ psignature *]
‘}’ [‘;’]

property::=property_id value ‘;’
property_id::=‘start’
value::=string
ptid::= identifier
psignature::=[scope] op args [contextdcl]

[‘=>’
[‘start’][‘queue’]
[‘opnum=’number]]
‘;’

scope::=‘file’
| ‘session’
| ‘file_in_session’

args::= ‘(‘ argspec {, argspec} * ‘)’
| ‘(void)’
| ‘()’

contextdcl::=‘context’ ‘(‘ identifier {, identifier}* ‘)’ ‘;’
argspec::=mode type name
mode::= ‘in’ | ‘out’ | ‘inout’
type::= identifier
name::= identifier

Property_id Information

ptid
process-type identifier (ptid). Identifies the process type. A ptid must be
unique for every installation. Because this identifier cannot be changed after
installation time, each chosen name must be unique. For example, you can
use a name that includes the trademarked name of your product or
company. The ptid cannot exceed 32 characters and should not be one of the
reserved identifiers: ptype, otype, start, opnum, queue, file, session, observe,
or handle.

92 CDE ToolTalk Programmer’s Guide

10

start
Start string for the process. If the ToolTalk service needs to start a process, it
executes this command; /usr/bin/sh is used as the shell.

Before executing the command, the ToolTalk service defines TT_FILE as an
environment variable with the value of the file attribute of the message that
started the application. This command runs in the environment of
ttsession , not in the environment of the sender of the message that
started the application, so any context information must be carried by
message arguments or contexts.

Psignature Matching Information

scope
This pattern attribute is matched against the scope attribute in messages.

op
Operation name. This name is matched against the op attribute in messages.

Note – If you specify message signatures in both your ptype and otypes, use
unique operation names in each. For example, do not specify a display
operation in both your ptype and otype.

args
Arguments for the operation. If the args list is (void) , the signature
matches only messages with no arguments. If the args list is empty (that is,
“() ”), the signature matches without regard to the arguments.

contextdcl
Context name. When a pattern with this named context is generated from
the signature, it contains an empty value list.

Static Message Patterns 93

10

Psignature Actions Information

start
If the psignature matches a message and no running process of this ptype
has a pattern that matches the message, start a process of this ptype.

queue
If the psignature matches a message and no running process of this ptype
has a pattern that matches the message, queue the message until a process
of this ptype registers a pattern that matches it.

opnum
Fill in the message’s opnum attribute with the specified number to enable
you to identify the signature that matched the message.

When the message matches the signature, the opnum from the signature is
filled into the message. Your application can then retrieve the opnum with
the tt_message_opnum call. By giving each signature a unique opnum,
you can quickly determine which signature matched the message.

You can attach a callback routine to the opnum with the
tt_ptype_opnum_callback_add call. When the message is matched, the
ToolTalk service will check for any callbacks attached to the opnum and, if
any are found, run them.

The edit.types.model ptypes file and the source file, edit.c (located
in the /usr/dt/examples/tt/edit_demo directory), both include
CDE_EditDemo_opnums.h . This allows both files to share the same
definitions.

94 CDE ToolTalk Programmer’s Guide

10

Defining Object Types

When a message is addressed to a specific object or a type of object, the
ToolTalk service must be able to determine to which application the message is
to be delivered. Applications provide this information in an object type (otype).
An otype names the ptype of the application that manages the object and
describes message patterns that pertain to the object.

These message patterns also contain instructions that tell the ToolTalk service
what to do if a message is available but the application is not running. In this
case, ToolTalk performs one of the following instructions:

• Start the application and deliver the message.
• Queue the message until the application is running.
• Discard the message.

To make the information available to the ToolTalk service, the otype file is
compiled with the ToolTalk type compiler tt_type_comp at application
installation time. When an application that manages objects registers with the
ToolTalk service, it declares its ptype. When a ptype is registered, the ToolTalk
service checks for otypes that mention the ptype and registers the patterns
found in these otypes.

The otype for your application provides addressing information that the
ToolTalk service uses when delivering object-oriented messages. The number
of otypes you have, and what they represent, depends on the nature of your
application. For example, a word processing application might have otypes for
characters, words, paragraphs, and documents; a diagram editing application
might have otypes for nodes, arcs, annotation boxes, and diagrams.

An otype begins with an object-type identifier (otid). Following the otid are:

1. An optional start string — ToolTalk will execute this command, if necessary,
to start a process running the program.

2. Signatures — Code that defines the messages that can be addressed to
objects of the type (that is, the operations that can be invoked on objects of
the type).

Static Message Patterns 95

10

Signatures

Signatures defines the messages that can be addressed to objects of the type. A
signature is divided by an arrow (=>) into two parts. The first part of a
signature defines matching criteria for incoming messages. The second part of
a signature defines receiver values that the ToolTalk service adds to each
message that matches the first part of the signature. These values specify the
ptid of the program that implements the operation and the message’s scope
and disposition.

Creating Otype Files

The following shows the syntax for an otype file:
otype::=obj_header’{’ objbody * ’}’ [’;’]
obj_header::=’otype’ otid [’:’ otid +]
objbody::=‘observe:’ osignature *

| ‘handle:’ osignature *

osignature::=op args [contextdcl] [rhs][inherit] ‘;’
rhs ::= [‘=>’ ptid [scope]]

[‘start’][‘queue’]
[‘opnum=’number]

inherit::=‘from’ otid
args::= ‘(‘ argspec {, argspec} * ‘)’

| ‘(void)’
| ‘()’

contextdcl::=‘context’ ‘(‘ identifier {, identifier}* ‘)’ ‘;’
argspec::=mode type name
mode::= ‘in’ | ‘out’ | ‘inout’
type::= identifier
name::= identifier
otid::= identifier
ptid::= identifier

Obj_Header Information

otid
object type identifier (otid). Identifies the object type. An otid must be unique
for every installation. Because this identifier cannot be changed after
installation time, each chosen name must be unique. For example, begin

96 CDE ToolTalk Programmer’s Guide

10

with the ptid of the tool that implements the otype. The otid is limited to 64
characters and should not be one of the reserved identifiers: ptype, otype,
start, opnum, start, queue, file, session, observe, or handle.

Osignature Information

The object body portion of the otype definition is a list of osignatures for
messages about the object that your application wants to observe and handle.

op
Operation name. This name is matched against the op attribute in messages.

Note – If you specify message signatures in both your ptype and otypes, use
unique operation names in each. For example, do not specify a display
operation in both your ptype and otype.

args
Arguments for the operation. If the args list is (void) , the signature
matches only messages with no arguments. If the args list is empty (just
“()”), the signature matches messages without regard to the arguments.

contextdcl
Context name. When a pattern with this named context is generated from
the signature, it contains an empty value list.

ptid
Process type identifier for the application that manages this type of object.

opnum
Fill in the message’s opnum attribute with the specified number to enable
you to identify the signature that matched the message.

When the message matches the signature, the opnum from the signature is
filled into the message. Your application can then retrieve the opnum with
the tt_message_opnum call. By giving each signature a unique opnum,
you can quickly determine which signature matched the message.

Static Message Patterns 97

10

You can attach a callback routine to the opnum with the
tt_otype_opnum_callback_add call. When the message is matched, the
ToolTalk service will check for any callbacks attached to the opnum and, if
any are found, run them.

inherit
Otypes form an inheritance hierarchy in which operations can be inherited
from base types. The ToolTalk service requires the otype definer to explicitly
name all inherited operations and the otype from which to inherit. This
explicit naming prevents later changes (such as adding a new level to the
hierarchy, or adding new operations to base types) from unexpectedly
affecting the behavior of an otype.

scope
This pattern attribute is matched against the scope attribute in messages. It
appears on the rightmost side of the arrow and is filled in by the ToolTalk
service during message dispatch. This means the definer of the otype can
specify the attributes instead of requiring the message sender to know how
the message should be delivered.

Osignature Actions Information

start
If the osignature matches a message and no running process of this otype
has a pattern that matches the message, start a process of this otype.

queue
If the osignature matches a message and no running process of this otype
has a pattern that matches the message, queue the message until a process
of this otype registers a pattern that matches it.

See the edit.types.model file for an example otype definition.

Installing Type Information

The ToolTalk Types Database makes ptype and otype information available on
the host that executes the sending process, the host that executes the receiving
process, and the hosts that run the sessions to which the processes are joined.

98 CDE ToolTalk Programmer’s Guide

10

• To start applications and to queue messages, the ptype definition must be
placed into the ToolTalk Types Database.

• To receive messages addressed to objects your application creates and
manages, the otype definitions must also be installed in the ToolTalk Types
Database.

To place your type information into the ToolTalk Types Database and make it
available to the ToolTalk service, you compile your type files with the ToolTalk
type compiler, tt_type_comp . This compiler creates ToolTalk types
definitions for your type information and stores them in the ToolTalk Types
Database. See Chapter 4, “Maintaining Application Information“ for detailed
information.

This version of the ToolTalk service provides a function to merge a compiled
ToolTalk type file into the currently running ttsession :

tt_session_types_load(current_session, compiled_types_file)

where current_session is the current default ToolTalk session and
compiled_types_file is the name of the compiled ToolTalk types file. This function
adds new types and replaces existing types of the same name; other existing
types remain unchanged.

Checking for Existing Process Types

The ToolTalk service provides a simple function to test if a given ptype is
already registered in the current session.

tt_ptype_exists(const char *ptid)

where ptid is the identifier of the session to test for registration.

Static Message Patterns 99

10

Ptypes
Table 10-1 Ptypes

Declaring Process Type

Since type information is only specified once (when your application is
installed), your application needs to only declare its ptype each time it starts.

To declare your ptype, use tt_ptype_declare during your application’s
ToolTalk initialization routine. The ToolTalk service will create the message
patterns listed in your ptype and any otypes that reference the specified ptype.

The message patterns created when you declare your ptype exist in memory
until your application exits the ToolTalk session.

Note – The message patterns created when you declare your ptype information
cannot be unregistered with tt_pattern_unregister ; however, you can
unregister these patterns with tt_ptype_undeclare .

The example below illustrates how a ptype is registered during a program’s
initialization.

/*
 * Initialize our ToolTalk environment.
 */
int
edit_init_tt()
{
 int mark;
 char *procid = tt_open();
 int ttfd;
 void edit_receive_tt_message();

Return Type ToolTalk Function Description

Tt_status tt_ptype_declare(const
char *ptid)

Registers the process type with
the ToolTalk service.

Tt_status tt_ptype_exists(const
char *ptid)

Indicates whether a ptype is
already installed.

Tt_status tt_ptype_undeclare(const
char *ptid)

Undeclares a ptype.

100 CDE ToolTalk Programmer’s Guide

10

 mark = tt_mark();

 if (tt_pointer_error(procid) != TT_OK) {
 return 0;
 }
 if (tt_ptype_declare(“CDE_EditDemo”) != TT_OK) {
 fprintf(stderr,”CDE_EditDemo is not an installed
ptype.\n”);
 return 0;
 }
 ttfd = tt_fd();
 tt_session_join(tt_default_session());
 notify_set_input_func(edit_ui_base_window,
 (Notify_func)edit_receive_tt_message,
 ttfd);

 /*
 * Note that without tt_mark() and tt_release(), the above
 * combination would leak storage -- tt_default_session()
returns
 * a copy owned by the application, but since we don’t assign
the
 * pointer to a variable we could not free it explicitly.
 */

 tt_release(mark);
 return 1;
}

Undeclaring Process Types

There may be cases when you need to retract a declared ptype:

• An installation sets up a compile server that declares itself willing to accept
compilation requests when it comes up. Once the server has accepted a
request, it changes state and will no longer accept new compilation requests.

• A generic encapsulation process declares itself as multiple ptypes and then
forwards requests to underlying tools. If an underlying tool exits, the
generic wrapper no longer wants to declare itself as the ptype associated
with that tool.

Static Message Patterns 101

10

To unregister a ptype, use tt_ptype_undeclare . This call reverses the effect
of the tt_ptype_declare call; that is, all patterns generated from the ptype
are unregistered and the process is removed from the session’s list of active
processes with this ptype. This call returns a status of TT_ERR_PTYPE if the
named ptype was not declared by the calling process.

Caution – One invocation of tt_type_undeclare will completely unregister
the ptype regardless of how many times the process has declared the ptype;
that is, multiple declarations of the ptype are the same as declaring it once.

The following is an example of how to retract a a declared ptype:

/* Obtain procid */
tt_open();

/* Undeclare Ptype */
tt_ptype_undeclare(ptype);

!

102 CDE ToolTalk Programmer’s Guide

10

103

Receiving Messages 11

This chapter describes how to retrieve a message delivered to your application
and how to handle the message once you have examined it. It also shows you
how to send replies to requests that you receive.

To retrieve and handle ToolTalk messages, your application must perform
several operations: it must be able to retrieve ToolTalk messages; it must be
able to examine messages; it must provide callback routines; it must be able to
respond to requests; and it must be able to destroy the message when it is no
longer needed.

See the following demo program for an example of sending and receiving
messages: /usr/dt/examples/tt/broadcast.c

Retrieving Messages

When a message arrives for your process, the ToolTalk-supplied file descriptor
becomes active. When notified of the active state of the file descriptor, your
process must call tt_message_receive to get a handle for the incoming
message.

Note – When a message-arrived callback is invoked, the callback function
should call tt_message_receive to receive the message. If a client fails to receive
messages, ttsession could hang and be unusable.

104 CDE ToolTalk Programmer’s Guide

11

The following illustrates how to receive a message:

/*
 * When a ToolTalk message is available, receive it.
 */
void
receive_tt_message()
{

Tt_message msg_in;

msg_in = tt_message_receive();

/*
 * It’s possible that the file descriptor would become active
 * even though ToolTalk doesn’t really have a message for us.
 * The returned message handle is NULL in this case.
 */

if (msg_in == NULL) return;

Handles for messages remain constant. For example, when a process sends a
message, both the message and any replies to the message have the same
handle as the sent message. Here is an example of how you can check the
message state for TT_HANDLED:

Tt_message m, n;
m = tt_message_create();
...
tt_message_send(m);

... wait around for tt_fd to become active

n = tt_message_receive();

Code Checking the Message State (Continued)

Identifying and Processing Messages Easily

To easily identify and process messages you receive:

• Add a callback to a dynamic pattern with tt_pattern_callback_add .
When you retrieve the message, the ToolTalk service will invoke any
message or pattern callbacks. See Chapter 9, “Dynamic Message Patterns“
for more information on placing callbacks on patterns.

Receiving Messages 105

11

• Retrieve the message’s opnum if you are receiving messages that match
your ptype message patterns.

Recognizing and Handling Replies Easily

To easily recognize and handle replies to messages you send:

• Place specific callbacks on requests before you send them with
tt_message_callback_add . See Chapter 7, “Sending Messages“ for
more information on placing callbacks on messages.

• Compare the handle of the message you sent with the message you just
received. The handles will be the same if the message is a reply.

• Add information meaningful to your application on the request with the
tt_message_user_set call.

Checking Message Status

When you receive a message, you must check its status. If the status is
TT_WRN_START_MESSAGE, you must either reply to, reject, or fail the message
(even if the message is a notice), or issue a tt_message_accept call.

Examining Messages

When your process receives a message, you examine the message and take
appropriate action.

Before you start to retrieve values, obtain a mark on the ToolTalk API stack so
that you can release the information the ToolTalk service returns to you all at
once. The following example allocates storage, examines message contents, and
releases the storage:

 /*
 * Get a storage mark so we can easily free all the data
 * ToolTalk returns to us.
 */

 mark = tt_mark();

 tt_message_destroy(msg_in);
 tt_release(mark);
 return;

106 CDE ToolTalk Programmer’s Guide

11

Table 11-1 lists the ToolTalk functions you use to examine the attributes of a
message you have received.

Table 11-1 Functions to Examine Message Attributes

Return Type ToolTalk Function Description

Tt_address tt_message_address(Tt_message m) The address of the
message.

Tt_status tt_message_arg_bval(Tt_message
m, int n, unsigned char **value,
int *len)

The argument value as
a byte array.

Tt_status tt_message_arg_ival(Tt_message
m, int n, int *value)

The argument value as
an integer.

Tt_status tt_message_arg_xval(Tt_message
m, int n, xdrproc_t xdr_proc,
void *value)

The argument value as
an xdr.

Tt_mode tt_message_arg_mode(Tt_message
m, int n)

The argument mode
(in, out, inout).

char * tt_message_arg_type(Tt_message
m, int n)

The argument type.

char * tt_message_arg_val(Tt_message
m, int n)

The argument value as
a string.

int tt_message_args_count(Tt_message
m)

The number of
arguments.

Tt_class tt_message_class(Tt_message m) The type of message
(notice or request).

int tt_message_contexts_count(Tt_mess
age m)

The number of
contexts.

char * tt_message_context_slotname(Tt_me
ssage m, int n)

The name of a
message’s nth context.

Tt_
disposition

tt_message_disposition(Tt_message
 m)

How to handle the
message if there is no
receiving application
running.

Receiving Messages 107

11

char * tt_message_file(Tt_message m) The name of the file to
which the message is
scoped.

gid_t tt_message_gid(Tt_message m) The group identifier of
the sending
application.

char * tt_message_handler(Tt_message m) The procid of the
handler.

char * tt_message_handler_ptype(Tt_messa
ge m)

The ptype of the
handler.

char * tt_message_object(Tt_message m) The object to which the
message was sent.

char * tt_message_op(Tt_message m) The operation name.

int tt_message_opnum(Tt_message m) The operation number.

char * tt_message_otype(Tt_message m) The object type to
which the message
was sent.

Tt_pattern tt_message_pattern(Tt_message m) The pattern to which
the message is to be
matched.

Tt_scope tt_message_scope(Tt_message m) Who is to receive the
message (FILE,
SESSION, BOTH)

char * tt_message_sender(Tt_message m) The procid of the
sending application.

char * tt_message_sender_ptype(Tt_messag
e m)

The ptype of the
sending application.

char * tt_message_session(Tt_message m) The session from
which the message
was sent.

Tt_state tt_message_state(Tt_message m) The current state of the
message.

int tt_message_status(Tt_message m) The current status of
the message.

Table 11-1 Functions to Examine Message Attributes (Continued)

Return Type ToolTalk Function Description

108 CDE ToolTalk Programmer’s Guide

11

Callback Routines

You can tell the ToolTalk service to invoke a callback when a message arrives
because a pattern has been matched.

 p = tt_pattern_create();
 tt_pattern_op_add(p, "EDIT");
 ... other pattern attributes
 tt_pattern_callback_add(p, do_edit_message);
 tt_pattern_register(p);

Note – Callbacks are called in reverse order of registration (for example, the
most recently added callback is called first).

char * tt_message_status_string(Tt_messa
ge m)

Text describing the
current status of the
message.

uid_t tt_message_uid(Tt_message m) The user identifier of
the sending
application.

void * tt_message_user(Tt_message m,
int key)

Opaque data internal
to the application.

Table 11-1 Functions to Examine Message Attributes (Continued)

Return Type ToolTalk Function Description

Receiving Messages 109

11

Figure 11-1 illustrates how the ToolTalk service invokes message and pattern
callbacks when tt_message_receive is called to retrieve a new message.

Figure 11-1 How Callbacks Are Invoked

Callbacks for Messages Addressed to Handlers

After the ToolTalk service determines the receiver for a message addressed to a
handler, it matches the message against any patterns registered by the receiver.
(Messages explicitly addressed to handlers are point-to-point messages and do
not use pattern matching.)

• If the message does not match a pattern, the message is delivered in the
normal manner.

• If the message is matched to a pattern, any callbacks attached to the pattern
are run.

tt_message_receive()
gets new message

any more message
callbacks?

call next message
callback did callback return

Tt_CALLBACK_PROCESSED

any more pattern
callbacks?

call next pattern
callback

return
message

return
NULL

yes

no

no

yes

yes

no

did callback return
Tt_CALLBACK_PROCESSED

yes

110 CDE ToolTalk Programmer’s Guide

11

Attaching Callbacks to Static Patterns

Numeric tags (opnums) can be attached to each signature in a ptype when a
static pattern is created. A callback can now be attached to the opnum. When a
message is delivered because it matched a static pattern with an opnum, the
ToolTalk service checks for any callbacks attached to the opnum and, if any
exists, runs them.

Handling Requests

When your process receives a request (class = TT_REQUEST), you must either
reply to the request, or reject or fail the request.

Replying to Requests

When you reply to a request, you need to:

1. Perform the requested operation.

2. Fill in any argument values with modes of TT_OUT or TT_INOUT.

3. Send the reply to the message.

Table 11-2 lists the ToolTalk functions you use to reply to requests.

Table 11-2 Functions to Reply to Requests

ToolTalk Function Description

tt_message_arg_mode(Tt_message m, int n) The argument mode (in, out,
inout). †

tt_message_arg_bval_set(Tt_message m, int n,
const unsigned char *value, int len)

Sets an argument’s value to the
specified byte array. ‡

tt_message_arg_ival_set(Tt_message m, int n, int
value)

Sets an argument’s value to the
specified integer.‡

tt_message_arg_val_set(Tt_message m, int n,
const char *value)

Sets an argument’s value to the
specified string. ‡

tt_message_arg_xval_set(Tt_message m, int n,
xdrproc_t xdr_proc, void *value)

‡

† Return type is Tt_mode .
‡ Return type is Tt_status .

Receiving Messages 111

11

Rejecting or Failing a Request

If you have examined the request and your application is not currently able to
handle the request, you can use the ToolTalk functions listed in Table 11-3 to
reject or fail a request.

tt_message_context_set(Tt_message m, const char
*slotname, const char *value);

Sets a context to the specified
string. ‡

tt_message_bcontext_set(Tt_message m, const
char *slotname, unsigned char *value, int length);

Sets a context to the specified
byte array. ‡

tt_message_icontext_set(Tt_message m, const char
*slotname, int value);

Sets a context to the specified
integer.‡

tt_message_xcontext_set(Tt_message m, const
char *slotname, xdrproc_t xdr_proc, void *value)

Sets a context to the specific xdr.‡

tt_message_reply(Tt_message m) Replies to message. ‡

Table 11-3 Rejecting or Failing Requests

ToolTalk Function Description

tt_message_reject(Tt_message m) Rejects message.

tt_message_fail(Tt_message m) Fails message.

tt_message_status_set(Tt_message m, int status) Sets the status of the message;
this status is seen by the
receiving application.

tt_message_status_string_set(Tt_message m, const
char *status_str)

Sets the text that describes the
status of the message; this text is
seen be the receiving
application.

Return type for these requests is Tt_status .

Table 11-2 Functions to Reply to Requests (Continued)

ToolTalk Function Description

† Return type is Tt_mode .
‡ Return type is Tt_status .

112 CDE ToolTalk Programmer’s Guide

11

Rejecting a Request

If you have examined the request and your application is not currently able to
perform the operation but another application might be able to do so, use
tt_message_reject to reject the request.

When you reject a request, the ToolTalk service attempts to find another
receiver to handle it. If the ToolTalk service cannot find a handler that is
currently running, it examines the disposition attribute, and either queues the
message or attempts to start applications with ptypes that contain the
appropriate message pattern.

Failing a Request

If you have examined the request and the requested operation cannot be
performed by you or any other process with the same ptype as yours, use
tt_message_fail to inform the ToolTalk service that the operation cannot be
performed. The ToolTalk service will inform the sender that the request failed.

To inform the sender of the reason the request failed, use
tt_message_status_set or tt_message_status_string_set before
you call tt_message_fail .

Note – The status code you specify with tt_message_status_set must be
greater than TT_ERR_LAST.

Destroying Messages

After you have processed a message and no longer need the information in the
message, use tt_message_destroy to delete the message and free storage
space.

113

Objects 12

This chapter describes how to create ToolTalk specs for objects your application
creates and manages. Before you can identify the type of objects, you need to
define otypes and store them in the ToolTalk Types Database. See Chapter 10,
“Static Message Patterns“ for more information on otypes.

The ToolTalk service uses spec and otype information to determine
object-oriented message recipients.

See the demo programs in the following directory for an example of ToolTalk’s
object-oriented messaging: /usr/dt/examples/tt/edit_demo

Note – Programs coded to the ToolTalk object-oriented messaging interface are
not portable to CORBA-compliant systems without source changes.

Object-Oriented Messaging

Object-oriented messages are addressed to objects managed by applications. To
use object-oriented messaging, you need to be familiar with process-oriented
messaging concepts and the ToolTalk concept of object.

Object Data

Object data is stored in two parts as shown in Figure 12-1.

114 CDE ToolTalk Programmer’s Guide

12

Figure 12-1 ToolTalk Object Data

One part is called the object content. The object content is managed by the
application that creates or manages the object and is typically a piece, or
pieces, of an ordinary file, for example, a paragraph, a source code function, or
a range of spreadsheet cells.

The second part is called the object specification (spec). A spec contains standard
properties such as the type of object, the name of the file in which the object
contents are located, and the object owner. Applications can also add their own
properties to a spec, for example, the location of the object content within a file.
Because applications can store additional information in specs, you can
identify data in existing files as objects without changing the formats of the
files. You can also create objects from pieces of read-only files. Applications
create and write specs to the ToolTalk database managed by
rpc.ttdbserverd .

Note – You cannot create objects in files that reside in a read-only file system.
The ToolTalk service must be able to create a database in the same file system
that contains the object.

A ToolTalk object is a portion of application data for which a ToolTalk spec has
been created.

file object content

object spec Managed by the ToolTalk service,
stored in the ToolTalk database

Managed by application,
stored in file

object

Objects 115

12

Creating Object Specs

To instruct the ToolTalk service to deliver messages to your objects, you create
a spec that identifies the object and its otype. Table 12-1 lists the ToolTalk
functions you use to create and write object spec.

To create an object spec in memory and obtain an objid for the object, use
tt_spec_create .

Assigning Otypes

To assign an otype for the object spec, use tt_spec_type_set . You must set
the type before the spec is written for the first time. It cannot be changed.

Table 12-1 Functions to Create

ToolTalk Function Description

tt_spec_create(const char *filepath) Creates spec. †

tt_spec_prop_set(const char *objid,
const char *propname, const char
*value)

Sets property to specified string
value.‡

tt_spec_prop_add(const char *objid,
const char *propname, const char
*value)

Adds string property. ‡

tt_spec_bprop_add(const char *objid,
const char *propname, const unsigned
char *value, int length)

Adds byte array property. ‡

tt_spec_bprop_set(const char *objid,
const char *propname, const unsigned
char *value, int length)

Sets property to specified byte
array value. ‡

tt_spec_type_set(const char *objid,
const char *otid)

Sets object type of spec. ‡

tt_spec_write(const char *objid) Writes spec to database.‡

† Return type is char *.
‡ Return type is Tt_status .

116 CDE ToolTalk Programmer’s Guide

12

Note – If you create an object spec without assigning an otype or with an otype
that is unknown to the ToolTalk Types Database, messages addressed to the
object cannot be delivered. (The ToolTalk service does not verify that the otype
you specified is known to the ToolTalk Types Database.)

Determining Object Specification Properties

You can determine what properties you want associated with an object by
adding these properties to a spec. The ToolTalk service recognizes that it is not
always possible to store information in your own internal data, for example,
the objid for objects in plain ASCII text files. You can store the location of the
objid in a spec property and then use this location to identify where the object
is in your tool’s internal data structures.

The spec properties are also a convenience for the user. Users may want to
associate properties (such as a comment or object name) with the object that
they can view later. Your application or another ToolTalk-based tool can search
for and display these properties for users.

Storing Spec Properties

To store properties in a spec , use tt_spec_prop_set .

Adding Values to Properties

To add to the list of values associated with the property, use
tt_spec_prop_add .

Writing Object Specs

After you set the otype and add properties to an object spec, use
tt_spec_write to make it a permanent ToolTalk item and visible to other
applications. When you call tt_spec_write , the ToolTalk service writes the
spec into the ToolTalk database.

Objects 117

12

Updating Object Specs

To update existing object spec properties, use tt_spec_prop_set and
tt_spec_prop_add specifying the objid of the existing spec. Once the spec
properties are updated, use tt_spec_write to write the changes into the
ToolTalk database.

When you are updating an existing spec and the ToolTalk service returns
TT_WRN_STALE_OBJID when you call tt_spec_write , it has found a
forwarding pointer to the object in the ToolTalk database that indicates the
object has been moved. To obtain the new objid, create an object message that
contains the old objid and send it. The ToolTalk service will return the same
status code, TT_WRN_STALE_OBJID, but updates the message objid attribute
to contain the new objid. Use tt_message_object to retrieve the new objid
from the message and put the new objid into your internal data structure.

Maintaining Object Specs

The ToolTalk service provides the functions to examine, compare, query, and
move object specs. Table 12-2 lists the ToolTalk functions you use to maintain
object specs.

Table 12-2 Functions to Maintain Object Specifications

Return Type ToolTalk Function Description

char * tt_spec_file(const char *objid) The name of the
file on which the
spec is located.

char * tt_spec_type(const char *objid) The object type
of the spec.

char * tt_spec_prop(const char *objid, const
char *propname, int i)

Retrieves the ith
(zero-based)
property value
as a string.

int tt_spec_prop_count(const char *objid,
const char *propname)

The number of
values under
this property
name.

118 CDE ToolTalk Programmer’s Guide

12

Examining Spec Information

You can examine the following spec information with the specified ToolTalk
functions:

• Path name of the file that contains the object: tt_spec_file
• Otype of this object: tt_spec_type
• Properties stored on the spec: tt_spec_prop or tt_spec_bprop

Tt_status tt_spec_bprop(const char *objid,
const char *propname, int i, unsigned
char **value, int *length)

The number of
byte array
values under
this property
name.

char * tt_spec_propname(const char *objid,
int i)

The name of the
ith property.

int tt_spec_propnames_count(const char
*objid)

The number of
properties
located on this
spec.

char * tt_objid_objkey(const char *objid) The unique key
of the spec id.

Tt_status tt_file_objects_query(const char
*filepath, Tt_filter_function filter,
void *context, void *accumulator)

Queries the
database for
object specs.

int tt_objid_equal(const char *objid1,
const char *objid2)

Checks whether
two spec ids are
the same.

char * tt_spec_move(const char *objid, const
char *newfilepath)

Moves object
spec to a new
file.

Table 12-2 Functions to Maintain Object Specifications (Continued)

Return Type ToolTalk Function Description

Objects 119

12

Comparing Object Specs

To compare two objids, use tt_objid_equal . tt_objid_equal returns a
value of 1 even in the case where one objid is a forwarding pointer for the
other.

Querying for Specific Specs in a File

Create a filter function to query for specific specs in a file and obtain the specs
in which you are interested.

Use tt_file_objects_query to find all the objects in the named file. As the
ToolTalk service finds each object, it calls your filter function, and passes it the
objid of the object and the two application-supplied pointers. Your filter
function does some computation and returns a Tt_filter_action value
(TT_FILTER_CONTINUE or TT_FILTER_STOP) to either continue the query, or
to quit the search and return immediately.

120 CDE ToolTalk Programmer’s Guide

12

The following illustrates how to obtain a list of specs:

/*
 * Called to update the scrolling list of objects for a file. Uses
 * tt_file_objects_query to find all the ToolTalk objects.
 */
int
cntl_update_obj_panel()
{
 static int list_item = 0;

char *file;
int i;

cntl_objid = (char *)0;

for (i = list_item; i >= 0; i--) {
/*Insert code to delete an item from the list*/

}

list_item = 0;
file = XmTextGetString(cntl_ui_file_field);
if (tt_file_objects_query(file,

 (Tt_filter_function)cntl_gather_specs,
 &list_item, NULL) != TT_OK) {

/*Insert code to post an error message*/
return 0;

}

return 1;
}

Moving Object Specs

The objid contains a pointer to a particular file system where the spec
information is stored. To keep spec information as available as the object
described by the spec, the ToolTalk service stores the spec information on the
same file system as the object. Therefore, if the object moves, the spec must
move, too.

Use tt_spec_move to notify the ToolTalk service when an object moves from
one file to another (for example, through a cut and paste operation).

Objects 121

12

• If a new objid is not required (because both the new and old files are in the
same file system), the ToolTalk service returns TT_WRN_SAME_OBJID.

• If the object moved to another file system, the ToolTalk service returns a new
objid for the object and leaves a forwarding pointer in the ToolTalk database
from the old objid to the new one.

When your process sends a message to an out-of-date objid (that is, one with a
forwarding pointer), tt_message_send returns a special status code,
TT_WRN_STALE_OBJID, and replaces the object attribute in the message with
a new objid that points to the same object in the new location.

Note – Update any internal data structures that reference the object with the
new objid.

Destroying Object Specs

Use tt_spec_destroy to immediately destroy an object’s spec.

Managing Object and File Information

Caution – Despite the efforts of the ToolTalk service and integrated
applications, object references can still be broken if you remove, move, or
rename files with standard operating system commands such as rm or mv.
Broken references will result in undeliverable messages.

!

122 CDE ToolTalk Programmer’s Guide

12

Managing Files that Contain Object Data

To keep up-to-date the ToolTalk database that services the disk partition where
a file that contains object data is stored, use the ToolTalk functions to copy,
move, or destroy the file. Table 12-3 lists the ToolTalk functions you use to
manage files that contain object data.

Managing Files that Contain ToolTalk Information

The ToolTalk service provides ToolTalk-enhanced shell commands to copy,
move, and remove ToolTalk object and file information. Table 12-4 lists the
ToolTalk-enhanced shell commands that you and users of your application
should use to copy, move, and remove files referenced in messages and files
that contain objects.

Table 12-3 Functions to Copy, Move, or Remove Files that Contain Object Data

ToolTalk Function Description

tt_file_move(const char *oldfilepath,
const char *newfilepath)

Moves the file and the
ToolTalk object data.

tt_file_copy(const char *oldfilepath,
const char *newfilepath)

Copies the file and the
ToolTalk object data.

tt_file_destroy(const char *filepath) Removes the file and
the ToolTalk object
data.

The return type for these functions is Tt_status .

Table 12-4 ToolTalk-Wrapped Shell Commands

Command Description

ttcp Copies file to new location. Updates file and object location information
in ToolTalk database.

ttmv Renames directory or files. Updates file and object location information
in ToolTalk database.

Objects 123

12

An Example of Object-Oriented Messaging

You can run the edit_demo program for a demonstration of ToolTalk
object-oriented messaging. This demo consists of two programs – cntl and
edit . The cntl program uses the ToolTalk service to start an edit process with
which to edit a specified file; the edit program allows you to create ToolTalk
objects and associate the objects with text in the file. Once objects have been
created and associated with text, you can use the cntl program to query the file
for the objects and to send messages to the objects.

The sample code creates an object for its user: it creates the object spec, sets
the otype, writes the spec to the ToolTalk database, and wraps the user’s
selection with C-style comments. The application also sends out a procedure-
addressed notice after it creates the new object to update other applications
that observe messages with the CDE_EditDemo_new_object operation. If
other applications are displaying a list of objects in a file managed by
CDE_EditDemo , they update their list after receiving this notice.

ttrm Removes specified file. Removes file and object information from the
ToolTalk database.

ttrmdir Removes empty directories (directories that contain no files) that have
ToolTalk object specs associated with them. (It is possible to create an
object spec for a directory; when an object spec is created, the path name
of a file or directory is supplied.)
Removes object information from the ToolTalk database.

tttar Archives (or extracts) multiple files and object information into (or
from) a single archive, called a tarfile. Can also be used to only archive
(or extract) ToolTalk file and object information into (or from) a tarfile.

Table 12-4 ToolTalk-Wrapped Shell Commands

Command Description

124 CDE ToolTalk Programmer’s Guide

12

125

Managing Information Storage 13

To simplify your application storage management, the ToolTalk service copies
all information your application provides to the ToolTalk service and also
provides you with a copy of the information it returns to your application.

Information Provided to the ToolTalk Service

When you provide a pointer to the ToolTalk service, the information referenced
by the pointer is copied. You can then dispose of the information you
provided; the ToolTalk service will not use the pointer again to retrieve the
information.

Information Provided by the ToolTalk Service

The ToolTalk service provides an allocation stack in the ToolTalk API library to
store information it gives to you. For example, if you ask for the sessid of the
default session with tt_default_session , the ToolTalk service returns the
address of the character string in the allocation stack (a char * pointer) that
contains the sessid. After you retrieve the sessid, you can dispose of the
character string to clean up the allocation stack.

Note – Do not confuse the API allocation stack with your program’s runtime
stack. The API stack will not discard information until instructed to do so.

126 CDE ToolTalk Programmer’s Guide

13

Calls Provided to Manage the Storage of Information

The ToolTalk service provides the calls listed in Table 13-1 to manage the
storage of information in the ToolTalk API allocation stack:

Marking and Releasing Information

The tt_mark and tt_release functions are a general mechanism to help
you easily manage information storage. The tt_mark and tt_release
functions are typically used at the beginning and end of a routine where the
information returned by the ToolTalk service is no longer necessary once the
routine has ended.

Marking Information for Storage

To ask the ToolTalk service to mark the beginning of your storage space, use
tt_mark . The ToolTalk service returns a mark, an integer that represents a
location on the API stack. All the information that the ToolTalk service
subsequently returns to you will be stored in locations that come after the
mark.

Table 13-1 Managing ToolTalk Storage

Return Type ToolTalk Function Description

int tt_mark(void) Marks information returned by a
series of functions.

void tt_release(int mark) Frees information returned by a
series of functions.

caddr_t tt_malloc(size_t s) Reserves a specified amount of
storage in the allocation stack for
your use.

void tt_free(caddr_t p) Frees storage set aside by
tt_malloc . This function takes an
address returned by the ToolTalk
API and frees the associated storage.

Managing Information Storage 127

13

Releasing Information No Longer Needed

When you no longer need the information contained in your storage space, use
tt_release and specify the mark that signifies the beginning of the
information you no longer need.

Example of Marking and Releasing Information

The following code sample calls tt_mark at the beginning of a routine that
examines the information in a message. When the information examined in the
routine is no longer needed and the message has been destroyed, tt_release
is called with the mark to free storage on the stack.

/*
 * Get a storage mark so we can easily free all the data
 * ToolTalk returns to us.
 */

mark = tt_mark();

if (0==strcmp(“ttsample1_value”, tt_message_op(msg_in))) {
tt_message_arg_ival(msg_in, 0, &val_in);

}

tt_message_destroy(msg_in);
tt_release(mark);
return;

Allocating and Freeing Storage Space

The tt_malloc and tt_free functions are a general mechanism to help you
easily manage storage allocation.

Allocating Storage Space

tt_malloc reserves a specified amount of storage in the allocation stack for
your use. For example, you can use tt_malloc to create a storage location
and copy the sessid of the default session into that location.

128 CDE ToolTalk Programmer’s Guide

13

Freeing Allocated Storage Space

To free storage of individual objects that the ToolTalk service provides pointers
to, use tt_free . For example, you can free up the space in the API allocation
stack that stores the sessid after you have examined the sessid. tt_free takes
an address in the allocation stack (a char * pointer or an address returned
from tt_malloc) as an argument.

Special Case: Callback and Filter Routines

The way that the ToolTalk service behaves toward information passed into
filter functions and callbacks is a special case. Callback and filter routines
called by the ToolTalk service are called with two kinds of arguments:

• Context arguments — the arguments you passed into the API call that
triggered the callback. These arguments point to items owned by your
application.

• Pointers to API objects — the address of message or pattern attributes in
storage.

The context arguments are passed from the ToolTalk service to your
application. The API objects referenced by pointers are freed by the ToolTalk
service as soon as your callback or filter function returns. If you want to keep
any of these objects, you must copy the objects before your function returns.

Note – The way that the ToolTalk service behaves toward information passed
into filter functions and callbacks is a special case. In all other instances, the
ToolTalk service stores the information in the API allocation stack until you
free it.

Callback Routines

One of the features of the ToolTalk service is callback support for messages,
patterns, and filters. Callbacks are routines in your program that ToolTalk calls
when a particular message arrives (message callback) or when a message
matches a particular pattern you registered (pattern callback).

To tell the ToolTalk service about these callbacks, add the callback to a message
or pattern before you send the message or register the pattern.

Managing Information Storage 129

13

Filter Routines

When you call file query functions such as tt_file_objects_query , you
point to a filter routine that the ToolTalk service calls as it returns items from
the query. For example, you could use filter routine used by the ToolTalk file
query function to find a specific object. The tt_file_objects_query
function returns all the objects in a file and runs the objects through a filter
routine that you provide. Once your filter routine finds the specified object,
you can use tt_malloc to create a storage location and copy the object into
the location. When your filter function returns, the ToolTalk service will free all
storage used by the objects in the file but the object you stored with the
tt_malloc call will be available for further use.

130 CDE ToolTalk Programmer’s Guide

13

131

Handling Errors 14

The ToolTalk service returns error status in the function’s return value rather
than in a global variable. ToolTalk functions return one of these error values:

• Tt_status
• int
• char* or opaque handle

Each return type is handled differently to determine if an error occurred. For
example, the return value for tt_default_session_set is a Tt_status
code. If the ToolTalk service sets the default session to the specified sessid:

• Without a problem — the Tt_status code returned is TT_OK.

• With a problem — the Tt_status code returned is TT_ERR_SESSION. This
status code informs you that the sessid you passed was not valid.

132 CDE ToolTalk Programmer’s Guide

14

Retrieving ToolTalk Error Status

You can use the ToolTalk error handling functions shown in Table 14-1 to
retrieve error values.

Checking ToolTalk Error Status

You can use the ToolTalk error macro shown in Table 14-2 to check error
values.

Returned Value Status

Functions with Natural Return Values

If a ToolTalk function has a natural return value such as a pointer or an integer,
a special error value is returned instead of the real value.

Functions with No Natural Return Values

If a ToolTalk function does not have a natural return value, the return value is
an element of Tt_status enum.

Table 14-1 Retrieving ToolTalk Error Status

ToolTalk Function Description

tt_pointer_error(char * return_val) Returns an error encoded in a pointer.

tt_pointer_error((void *) (p)) Returns an error encoded in a pointer
cast to VOID * .

tt_int_error(int return_val) Returns an error encoded in an integer.

The return type for these functions is Tt_status .

Table 14-2 ToolTalk Error Macros

Return Type ToolTalk Macro Expands to

Tt_status tt_is_err(status_code) (TT_WRN_LAST < (status_code))

Handling Errors 133

14

To see if there is an error, use the ToolTalk macro tt_is_err , which returns an
integer.

• If the return value is 0, the Tt_status enum is either TT_OK or a warning.
• If the return value is 1, the Tt_status enum is an error.

If there is an error, you can use the tt_status_message function to obtain
the character string that explains the Tt_status code, as shown below.

char *spec_id, my_application_name;
Tt_status tterr;

tterr = tt_spec_write(spec_id);
if (tt_is_err(tterr)) {

fprintf(stderr, “%s: %s\n”, my_application_name,
tt_status_message(tterr));

}

Returned Pointer Status

If an error occurs during a ToolTalk function that returns a pointer, the
ToolTalk service provides an address within the ToolTalk API library that
indicates the appropriate Tt_status code. To check whether the pointer is
valid, you can use the ToolTalk macro tt_ptr_error . If the pointer is an error
value, you can use tt_status_message to get the Tt_status character
string.

The following checks the pointer and retrieves and prints the Tt_status
character string if an error value is found:

char *old_spec_id, new_file, new_spec_id, my_application_name;
Tt_status tterr;

new_spec_id = tt_spec_move(old_spec_id, new_file);
tterr = tt_ptr_error(new_spec_id);
switch (tterr) {
 case TT_OK:

/*
 * Replace old_spec_id with new_spec_id in my internal
 * data structures.
 */
break;

 case TT_WRN_SAME_OBJID:
/*

134 CDE ToolTalk Programmer’s Guide

14

 * The spec must have stayed in the same filesystem,
 * since ToolTalk is reusing the spec id. Do nothing.
 */
break;

 case TT_ERR_FILE:
 case TT_ERR_ACCESS:
 default:

fprintf(stderr, “%s: %s\n”, my_application_name,
tt_status_message(tterr));

break;
}

Returned Integer Status

If an error occurs during a ToolTalk function that returns an integer, the return
value is out-of-bounds. The tt_int_error function returns a status of TT_OK
if the value is not out-of-bounds.

To check if a value is out-of-bounds, you can use the tt_is_err macro to
determine if an error or a warning occurred.

To retrieve the character string for a Tt_status code, you can use
tt_status_message .

The example below checks a returned integer:

Tt_message msg;
int num_args;
Tt_status tterr;
char *my_application_name;

num_args = tt_message_args_count(msg);
tterr = tt_int_error(num_args);
if (tt_is_err(tterr)) {

fprintf(stderr, “%s: %s\n”, my_application_name,
tt_status_message(tterr));

}

Handling Errors 135

14

Broken Connections

The ToolTalk service provides a function to notify processes if your tool exits
unexpectedly. When you include the tt_message_send_on_exit call, the
ToolTalk service queues the message internally until one of two events happen:

1. Your process calls tt_close .

In this case, the ToolTalk service deletes the message from its queue.

2. The connection between the ttsession server and your process is broken; for
example, the application crashed.

In this case, the ToolTalk service matches the queued message to a pattern
and delivers it in the same manner as if you had sent the message normally
before exiting.

Your process can also send a normal message on a normal termination by
calling tt_message_send before it calls tt_close . In this case, if your
process sends its normal termination message but crashes before it calls
tt_close , the ToolTalk service will deliver both the normal termination
message and the tt_message_send_on_exit message to interested
processes.

Error Propagation

ToolTalk functions that accept pointers always check the pointer passed in and
return TT_ERR_POINTER if the pointer is an error value. This check allows
you to combine calls in reasonable ways without checking the value of the
pointer for every single call.

136 CDE ToolTalk Programmer’s Guide

14

In the following code sample, a message is created, filled in, and sent. If
tt_message_create fails, an error object is assigned to m, and all the
tt_message_ xxx_set and tt_message_send calls fail. To detect the error
without checking between each call, you only need to check the return code
from tt_message_send .

Tt_message m;

m=tt_message_create();
tt_message_op_set(m,”OP”);
tt_message_address_set(m,TT_PROCEDURE);
tt_message_scope_set(m,TT_SESSION);
tt_message_class_set(m,TT_NOTICE);
tt_rc=tt_message_send(m);
if (tt_rc!=TT_OK)...

Initialization Error Messages

The ToolTalk error messages described in Table 14-3 can occur either when the
ToolTalk service, or an application that uses the ToolTalk service, is attempting
to start up.

Table 14-3 Errors that may Occur During Initialization

Error Message Description Solution

ld: libtt*: not
found

The runtime linker could
not find the dynamic
library.

Place a directory that
contains the dynamic
library in the the shared
library search path.

Handling Errors 137

14

/usr/bin/sh:
application_name:
not found

The start string as
installed in the ToolTalk
Types Database does not
correspond to an
executable file in $PATH.

To correct this error:
a. First, start the

application as it would
be started without the
ToolTalk service.

b. After the application has
started, retry the
operation that should
have started the
application with the
ToolTalk service.

To prevent the error from
occurring again, verify
that the start string in the
relevant ptype
corresponds to an
executable file in $PATH.

Cannot open
display

ttsession could not
contact the server named
with the -d display
option or the $DISPLAY
variable.

To start the session:
a. Verify that the named

display is running.
b. Verify that the host on

which ttsession is
running has permission
to connect to the named
display.

ttsession:
Illegal
environment (-c
or -d not
specified and
DISPLAY variable
not set)

Neither the -d display
option or the $DISPLAY
variable is set. This error
typically occurs when you
or your client attempt to
start ttsession after you
have either switched to
another user name or
become superuser.

Set the -d display
option or the $DISPLAY
variable.

Table 14-3 Errors that may Occur During Initialization (Continued)

Error Message Description Solution

138 CDE ToolTalk Programmer’s Guide

14

ToolTalk Error Messages

The ToolTalk error and warning identifiers are allocated as follows:

Table 14-4 is an alphabetical listing of the ToolTalk error messages and their
corresponding message ids.

TT_OK TT_WRN_* APP_WRN_* TT_WRN_LAST TT_ERR_* APP_ERR_* TT_ERR_LAST

0 1 512 1024 1025 1536 2047

Table 14-4 Alphabetical List of ToolTalk Error Messages

Error Message Message ID

TT_ERR_ACCESS TTERR-1032

TT_ERR_ADDRESS TTERR-1039

TT_ERR_APPFIRST TTERR-1536

TT_ERR_CATEGORY TTERR-1057

TT_ERR_CLASS TTERR-1025

TT_ERR_DBAVAIL TTERR-1026

TT_ERR_DBCONSIST TTERR-1060

TT_ERR_DBEXIST TTERR-1027

TT_ERR_DBFULL TTERR-1059

TT_ERR_DBUPDATE TTERR-1058

TT_ERR_DISPOSITION TTERR-1046

TT_ERR_FILE TTERR-1028

TT_ERR_INTERNAL TTERR-1051

TT_ERR_LAST TTERR-2047

TT_ERR_MODE TTERR-1031

Handling Errors 139

14

TT_ERR_NO_MATCH TTERR-1053

TT_ERR_NOMEM TTERR-1062

TT_ERR_NOMP TTERR-1033

TT_ERR_NOTHANDLER TTERR-1034

TT_ERR_NO_VALUE TTERR-1050

TT_ERR_NUM TTERR-1035

TT_ERR_OBJID TTERR-1036

TT_ERR_OP TTERR-1037

TT_ERR_OTYPE TTERR-1038

TT_ERR_OVERFLOW TTERR-1055

TT_ERR_PATH TTERR-1040

TT_ERR_POINTER TTERR-1041

TT_ERR_PROCID TTERR-1042

TT_ERR_PROPLEN TTERR-1043

TT_ERR_PROPNAME TTERR-1044

TT_ERR_PTYPE TTERR-1045

TT_ERR_PTYPE_START TTERR-1056

TT_ERR_READONLY TTERR-1052

TT_ERR_SCOPE TTERR-1047

TT_ERR_SESSION TTERR-1048

TT_ERR_SLOTNAME TTERR-1063

TT_ERR_STATE TTERR-1061

Table 14-4 Alphabetical List of ToolTalk Error Messages

Error Message Message ID

140 CDE ToolTalk Programmer’s Guide

14

Table 14-5 describes the ToolTalk error messages; the error messages are listed
in order of their message id.

TT_ERR_UNIMP TTERR-1054

TT_ERR_VTYPE TTERR-1049

TT_ERR_XDR TTERR-1064

TT_OK TTERR-0

TT_STATUS_LAST TTERR-2048

TT_WRN_APPFIRST TTERR-512

TT_WRN_LAST TTERR-1024

TT_WRN_NOTFOUND TTERR-1

TT_WRN_SAME_OBJID TTERR-4

TT_WRN_STALE_OBJID TTERR-2

TT_WRN_START_MESSAGE TTERR-5

TT_WRN_STOPPED TTERR-3

Table 14-5 ToolTalk Error Messages

Error Message Message ID Error Message String Description Solution

TT_OK TTERR-0 TT_OK
Request successful.

The call was completed
successfully.

TT_WRN_NOTF
OUND

TTERR-1 TT_WRN_NOTFOUND
The object was not removed
because it was not found.

The ToolTalk service could not
find the specified object in the
ToolTalk database. The destroy
operation did not succeed.

Table 14-4 Alphabetical List of ToolTalk Error Messages

Error Message Message ID

Handling Errors 141

14

TT_WRN_STAL
E_OBJID

TTERR-2 TT_WRN_STALE_OBJID
The object attribute in the
message has been replaced
with a newer one. Update
the place from which the
object id was obtained.

When the ToolTalk service
looked up the specified object in
the ToolTalk database, it found
a forwarding pointer to the
object.

The ToolTalk service
automatically puts the new
objid in the message.
a. Use tt_message_object()

to retrieve the new objid.
b. Update any internal

application references to the
new objid.

TT_WRN_STOP
PED

TTERR-3 TT_WRN_STOPPED
The query was halted by the
filter procedure.

The query operation being
performed was halted by the
Tt_filter_function.

TT_WRN_SAME
_OBJID

TTERR-4 TT_WRN_SAME_OBJID
The moved object retains the
same objid.

The object moved stayed within
the same file system. The
ToolTalk service will retain the
same objid and update the
location.

TT_WRN_STAR
T_MESSAGE

TTERR-5 TT_WRN_START_MESSAGE
This message caused this
process to be started. This
message should be replied to
even if it is a notice.

When the ToolTalk service starts
an application to deliver a
message to it, a reply to that
message must be sent even if
the message which ToolTalk is
attempting to deliver is a notice.

Use tt_message_accept()
or tt_message_reply() to
reply to, fail, or reject the
message after the process is
started by the ToolTalk service.

TT_WRN_APPF
IRST

TTERR-512 TT_WRN_APPFIRST
This code should be unused.

This code marks the beginning
of the messages allocated for
ToolTalk application warnings.

TT_WRN_LAST TTERR-1024 TT_WRN_LAST
This code should be unused.

This code marks the last of the
messages allocated for ToolTalk
warnings.

TT_ERR_CLAS
S

TTERR-1025 TT_ERR_CLASS
The Tt_class value passed is
invalid.

The ToolTalk service does not
recognize the class value
specified.

The Tt_class values are
TT_NOTICE and TT_REQUEST.
Retry the call with one of these
values.

TT_ERR_DBAV
AIL

TTERR-1026 TT_ERR_DBAVAIL
A required database is not
available. The condition may
be temporary, trying again
later may work.

The ToolTalk service could not
access the ToolTalk database
needed for this operation.

a. Check if the file server or
workstation that contains the
database is available.

b. Try the operation again later.

Table 14-5 ToolTalk Error Messages (Continued)

Error Message Message ID Error Message String Description Solution

142 CDE ToolTalk Programmer’s Guide

14

TT_ERR_DBEX
IST

TTERR-1027 TT_ERR_DBEXIST
A required database does not
exist. The database must be
created before this action
will work.

The ToolTalk service did not
find the specified ToolTalk
database in the expected place.

Install the rpc.ttdbserve
program on the machine that
stores the file or object involved
in this operation.

TT_ERR_FILE TTERR-1028 TT_ERR_FILE
File object could not be
found.

The file specified does not exist
or is not accessible.

a. Check the file path name and
retry the operation.

b. Check if the machine where
the file is stored is accessible.

TT_ERR_MODE TTERR-1031 TT_ERR_MODE
The Tt_mode value is not
valid.

The ToolTalk service does not
recognize the specified mode
value.

The Tt_mode values are TT_IN ,
TT_OUT, and TT_INOUT. Retry
the call with one of these
values.

TT_ERR_ACCE
SS

TTERR-1032 TT_ERR_ACCESS
An attempt was made to
access a ToolTalk object in a
way forbidden by the
protection system.

You do not have the necessary
access to the object and the
application; for example, you
do not have permission to
destroy an object spec.
Therefore, the operation cannot
be performed.

a. Obtain proper access to the
object.

b. Retry the operation.

TT_ERR_NOMP TTERR-1033 TT_ERR_NOMP
No ttsession process is
running, probably because
tt_open() has not been called
yet. If this code is returned
from tt_open() it means
ttsession could not be
started, which generally
means ToolTalk is not
installed on this system.

The ttsession process is not
available. The ToolTalk service
tries to restart ttsession if it is
not running. This error
indicates that the ToolTalk
service is either not installed or
not installed correctly.

a. Verify that the ToolTalk
service is installed.

b. Verify that ttsession is
installed on the machine in
use.

TT_ERR_NOTH
ANDLER

TTERR-1034 TT_ERR_NOTHANDLE
Only the handler of the
message can do this.

Only the handler of a message
can perform this operation. This
application is not the handler
for this message.

Table 14-5 ToolTalk Error Messages (Continued)

Error Message Message ID Error Message String Description Solution

Handling Errors 143

14

TT_ERR_NUM TTERR-1035 TT_ERR_NUM
The integer value passed is
not valid.

An invalid integer value that
was out-of-range was passed to
the ToolTalk service.

Note - Simple out-of-range
conditions, such as requesting the
third value of a property that has
only two values, return a null
value.

Check the integer specified.

TT_ERR_OBJI
D

TTERR-1036 TT_ERR_OBJID
The object id passed does not
refer to any existing object
spec.

The objid does not reference an
existing object.

Update the spec property that
contains the objid specified.

TT_ERR_OP TTERR-1037 TT_ERR_OP
The operation name passed
is not syntactically valid.

The specified operation name is
null or contains non-
alphanumeric characters.

a. Remove any
non-alphanumeric characters.

b. Retry the operation.

TT_ERR_OTYP
E

TTERR-1038 TT_ERR_OTYPE
The object type passed is not
the name of an installed
object type.

The ToolTalk service could not
locate the specified otype.

Check the type of the object
with tt_spec_type() . If the
application was recently
installed and the ToolTalk
service has not reread the
ToolTalk Types Database:
a. Locate the process id for the

ttsession.
b. Force the reread with the

USR-2 signal:
% ps -elf | grep ttsession
% kill -USR2 <ttsession pid>

TT_ERR_ADDR
ESS

TTERR-1039 TT_ERR_ADDRESS
The Tt_address value passed
is not valid.

The ToolTalk service does not
recognize the address value
specified.

The Tt_address values are
TT_PROCEDURE, TT_OBJECT,
TT_HANDLER, and TT_OTYPE.
Retry the call with one of these
values.

TT_ERR_PATH TTERR-1040 TT_ERR_PATH
One of the directories in the
file path passed does not
exist or cannot be read.

The ToolTalk service was not
able to read a directory in the
specified file path name.

a. Check the pathname to
ensure access to the specified
directories.

b. Check the machine where the
file resides to make sure it is
accessible.

Table 14-5 ToolTalk Error Messages (Continued)

Error Message Message ID Error Message String Description Solution

144 CDE ToolTalk Programmer’s Guide

14

TT_ERR_POIN
TER

TTERR-1041 TT_ERR_POINTER
The opaque pointer (handle)
passed does not indicate an
object of the proper type.

The pointer passed does not
point at an object of the correct
type for this operation. For
example, the pointer may point
to an integer when a character
string is needed.

a. Check the arguments for the
ToolTalk function to find
what arguments the function
expects.

b. Retry the operation with a
pointer for a valid object.

TT_ERR_PROC
ID

TTERR-1042 TT_ERR_PROCID
The process id passed is not
valid.

The process identifier specified
is out of date or invalid.

Retrieve the default procid with
tt_default_procid() .

TT_ERR_PROP
LEN

TTERR-1043 TT_ERR_PROPLEN
The property value passed is
too long.

The ToolTalk service accepts
property values of up to 64
characters.

Shorten the property value to
less than 64 characters.

TT_ERR_PROP
NAME

TTERR-1044 TT_ERR_PROPNAME
The property name passed is
syntactically invalid.

The property name is too long,
contains non-alphanumeric
characters, or is null.

Check the property name,
modify if necessary, and retry
the operation.

TT_ERR_PTYP
E

TTERR-1045 TT_ERR_PTYPE
The process type passed is
not the name of an installed
process type.

The ToolTalk service could not
locate the specified ptype.

If the application was recently
installed and the ToolTalk
service has not reread the
ToolTalk Types Database:
a. Locate the process id for the

ttsession.
b. Force the reread with the

USR-2 signal:
% ps -elf | grep

ttsession

% kill -USR2
<ttsession pid >

TT_ERR_DISP
OSITION

TTERR-1046 TT_ERR_DISPOSITION
The Tt_disposition value
passed is not valid.

The disposition passed is not
recognized by the ToolTalk
service.

The Tt_disposition values
are TT_DISCARD, TT_QUEUE,
and TT_START. Retry the call
with one of these values.

TT_ERR_SCOP
E

TTERR-1047 TT_ERR_SCOPE
The Tt_scope value passed is
not valid.

The scope passed is not
recognized by the ToolTalk
service.

The Tt_scope values are
TT_SESSION and TT_FILE .
Retry the call with one of these
values.

Table 14-5 ToolTalk Error Messages (Continued)

Error Message Message ID Error Message String Description Solution

Handling Errors 145

14

TT_ERR_SESS
ION

TTERR-1048 TT_ERR_SESSION
The session id passed is not
the name of an active
session.

An out-of-date or invalid
ToolTalk session was specified.

Either:
a. obtain the sessid of the

current default session using
tt_default_session()

b. obtain the sessid of the initial
session in which the
application was started
using
tt_initial_session()

TT_ERR_VTYP
E

TTERR-1049 TT_ERR_VTYPE
The value type name passed
is not valid.

The specified property exists in
the ToolTalk database but the
type of value does not match
the specified type; or the value
type is not one that the ToolTalk
service recognizes. The ToolTalk
service supports types of int
and string.

a. Change the type of the value
to either int or string.

b. Retry the operation.

TT_ERR_NO_V
ALUE

TTERR-1050 TT_ERR_NO_VALUE
No property value with the
given name and number
exists.

The ToolTalk service could not
locate a value for the property
specified in the ToolTalk
database.

Retrieve the current list of
properties to find the property.

TT_ERR_INTE
RNAL

TTERR-1051 TT_ERR_INTERNAL
Internal error (bug)

The ToolTalk service has
suffered an internal error.

a. Restart all applications that
are using the ToolTalk
service.

b. Report the error to the your
system vendor support
center.

TT_ERR_READ
ONLY

TTERR-1052 TT_ERR_READONLY
The attribute cannot be
changed.

The application does not have
ownership or write
permissions for the attribute.
Therefore, this operation cannot
be performed.

TT_ERR_NO_M
ATCH

TTERR-1053 TT_ERR_NO_MATCH
No handler could be found
for this message, and the
disposition was not queue or
start.

The message the application
sent could not be delivered.
No applications that are
running have registered interest
in this type of message.

Use tt_disposition_set()
to change the disposition to
TT_QUEUE or TT_START and
resend the message.
If no recipients are found, no
application has registered
interest in this type of message.

Table 14-5 ToolTalk Error Messages (Continued)

Error Message Message ID Error Message String Description Solution

146 CDE ToolTalk Programmer’s Guide

14

TT_ERR_UNIM
P

TTERR-1054 TT_ERR_UNIMP
Function not implemented.

The ToolTalk function called is
not implemented.

TT_ERR_OVER
FLOW

TTERR-1055 TT_ERR_OVERFLOW
Too many active messages
(try again later).

The ToolTalk service has
received the maximum amount
of active messages (2000) it can
properly handle.

Either:
a. Retrieve any messages that

the ToolTalk service may be
queueing for the application,
and send the message again
later.

b. Start ttsession with the -A
option. Specify the maximum
number of messages in
progress before a
TT_ERR_OVERFLOW
condition is returned. The
default is 2000 messages.

TT_ERR_PTYP
E_START

TTERR-1056 TT_ERR_PTYPE_START
Attempt to launch a client
specified in the start attribute
of a ptype failed.

The ToolTalk service could not
start the type of process
specified.

Verify that the application that
the ptype represents is properly
installed and has execute
permission.

TT_ERR_CATE
GORY

TTERR-1057 TT_ERR_CATEGORY
Pattern object has no
category set.

The category was not set.

TT_ERR_DBUP
DATE

TTERR-1058 TT_ERR_DBUPDATE
The database is inconsistent:
another tt_spec_write
updated object first.

The ToolTalk service could not
update the database because the
specified object was already
updated by a previous
tt_spec_write call.

TT_ERR_DBFU
LL

TTERR-1059 ToolTalk database is full. The ToolTalk service could not
write to the database because it
is full.

Create more space on the file
system in which the database is
stored.

TT_ERR_DBCO
NSIST

TTERR-1060 Database is access
information is incomplete or
database is corrupt (run
ttdbck).

The ToolTalk service could not
write to the database because it
is either corrupt, or the access
information is incomplete.

Run the ttdbck utility to repair
the database.

TT_ERR_STAT
E

TTERR-1061 The Tt_message is in a
state that is not valid for the
attempted operation.

The state of the message is
invalid for the type of operation
being requested.

Table 14-5 ToolTalk Error Messages (Continued)

Error Message Message ID Error Message String Description Solution

Handling Errors 147

14

TT_ERR_NOME
M

TTERR-1062 No more memory. There is not enough available
memory to perform the
operation.

Check the swap space, then
retry the operation.

TT_ERR_SLOT
NAME

TTERR-1063 The slot name is syntactically
invalid.

The syntax for the slot name is
not valid.

Correct the syntax for the slot
name.

TT_ERR_XDR TTERR-1065 The XDR procedure failed on
the given data, or evaluated
to a 0 length structure.

The XDR procedure failed on
the given data, or evaluated to a
0 length structure.

TT_ERR_APPF
IRST

TTERR-1536 TT_ERR_APPFIRST
This code should be unused.

This code marks the beginning
of the messages allocated for
ToolTalk application errors.

TT_ERR_LAST TTERR-2047 TT_ERR_LAST
This code should be unused.

This code marks the last of the
messages allocated for ToolTalk
errors.

TT_STATUS_L
AST

TTERR-2048 TT_STATUS_LAST
This code should be unused.

This code marks the last of the
messages allocated for ToolTalk
status.

Table 14-5 ToolTalk Error Messages (Continued)

Error Message Message ID Error Message String Description Solution

148 CDE ToolTalk Programmer’s Guide

14

149

The ToolTalk Enumerated Types 15

This chapter provides reference information for the enumerated types
component of the ToolTalk application programming interface (API).

The ToolTalk enumerated types fall into these categories:

• Tt_address
• Tt_callback
• Tt_category
• Tt_class
• Tt_disposition
• Tt_filter
• Tt_mode
• Tt_scope
• Tt_state
• Tt_status

They are listed in alphabetical order in each section.

Tt_address

Tt_address indicates which message attributes form the address to which the
message will be delivered. Table 15-1 describes the possible values.

150 CDE ToolTalk Programmer’s Guide

15

Tt_callback

These values are used to specify the action taken by the callback attached to
messages or patterns. If no callback returns TT_CALLBACK_PROCESSED,
tt_message_receive() will return the message. Table 15-2 describes the
possible values.

Table 15-1 Possible Values for Tt_address

Value Description

TT_HANDLER Addressed to a specific handler that can perform this operation
with these arguments. Fill in handler, op, and arg attributes of
the message or pattern.

TT_OBJECT Addressed to a specific object that performs this operation with
these arguments. Fill in object, op, and arg attributes of the
message or pattern.

TT_OTYPE Addressed to the type of object that can perform this operation
with these arguments. Fill in otype, op, and arg attributes of the
message or pattern.

TT_PROCEDURE Addressed to any process that can perform this operation with
these arguments. Fill in the op and arg attributes of the message
or pattern.

Table 15-2 Possible Values for Tt_callback

Value Description

TT_CALLBACK_CONTINUE If the callback returns TT_CALLBACK_CONTINUE,
other callbacks will be run.

TT_CALLBACK_PROCESSED If the callback returns
TT_CALLBACK_PROCESSED, no further callbacks
will be invoked for this event, and the message
will not be returned by
tt_message_receive() .

The ToolTalk Enumerated Types 151

15

Tt_category

Tt_category values for the category attribute of a pattern indicate the
receiver’s intent. Table 15-3 describes the possible values.

Tt_class

These values for the class attribute of a message or pattern indicate whether
the sender wants an action to take place after the message has been received.
Table 15-4 describes the possible values.

Table 15-3 Possible Values for Tt_category

Value Description

TT_OBSERVE Just looking at the message. No feedback will be given to the
sender.

TT_HANDLE Will process the message, including filling in return values if
any.

Table 15-4 Possible Values for Tt_class

Value Description

TT_NOTICE Notice of an event. Sender does not want feedback on this
message.

TT_REQUEST Request for some action to be taken. Sender must be notified of
progress, success or failure, and must receive any return
values.

152 CDE ToolTalk Programmer’s Guide

15

Tt_disposition

Tt_disposition values indicate whether the receiving application should be
started to receive the message or if the message should be queued until the
receiving process is started at a later time. The message can also be discarded if
the receiver is not started.

Note that Tt_disposition values can be added together, so that
TT_QUEUE+TT_START means both to queue the message and to try to start a
process. This can be useful if the start can fail (or be vetoed by the user) to
ensure the message is processed as soon as an eligible process does start.

Table 15-5 describes the possible values.

Tt_filter

Tt_filter_action is the return value from a query callback filter procedure.
Table 15-6 describes the possible values.

Table 15-5 Possible Values for Tt_disposition

Value Description

TT_DISCARD = 0 No receiver for this message. Message is returned to sender
with the Tt_status field containing TT_FAILED .

TT_QUEUE = 1 Queue the message until a process of the proper ptype receives
the message.

TT_START = 2 Attempt to start a process of the proper ptype if none is
running.

Table 15-6 Possible Values for Tt_filter

Value Description

TT_FILTER_CONTINUE Continue the query, feed more values to the callback.

TT_FILTER_STOP Stop the query, don’t look for any more values.

The ToolTalk Enumerated Types 153

15

Tt_mode

Tt_mode values specify whether the sender, handler, or observers writes a
message argument. Table 15-7 describes the possible values.

Tt_scope

Tt_scope values for the Scope attribute of a message or pattern indicate the
set of processes eligible to receive the message. Table 15-8 describes the
possible values.

Tt_state

Tt_state values indicate a message’s delivery status. Table 15-9 describes the
possible values.

Table 15-7 Possible Values for Tt_mode

Value Description

TT_IN The argument is written by the sender and read by the handler
and any observers.

TT_OUT The argument is written by the handler and read by the sender
and any reply observers.

TT_INOUT The argument is written by the sender and the handler and
read by all.

Table 15-8 Possible Values for Tt_scope

Value Description

TT_SESSION All processes joined to the indicated session are eligible.

TT_FILE All processes joined to the indicated file are eligible.

TT_BOTH All processes joined to either the indicated file or the
indicated session are eligible.

TT_FILE_IN_SESSIO
N

All processes joined to both the indicated session and the
indicated file are eligible.

154 CDE ToolTalk Programmer’s Guide

15

Tt_status

A Tt_status code is returned by all functions, sometimes directly and
sometimes encoded in an error return value. See Chapter 14, “Handling
Errors“, for instructions on how to determine whether the Tt_status code is
a warning or an error and for retrieving the error message string for a
Tt_status code.

Chapter 14, “Handling Errors“, lists the Tt_status codes. The following
information is provided for each status code:

• Message id
• Error message string
• Description
• Solution

Table 15-9 Possible Values for Tt_state

Value Description

TT_CREATED Message has been created but not yet sent.
(Only the sender of a message will see a message in this state.)

TT_SENT Message has been sent but not yet handled.

TT_HANDLED Message has been handled, return values are valid.

TT_FAILED Message could not be delivered to a handler.

TT_QUEUED Message has been queued for later delivery.

TT_STARTED Attempting to start a process to handle the message.

TT_REJECTED Message has been rejected by a possible handler. This state is
seen only by the rejecting process. The ToolTalk service changes
the state back to TT_SENT before delivering the message to
another possible handler. If all possible handlers have rejected
the message, the ToolTalk service changes the state to
TT_FAILED before returning the message to the sender.

155

The ToolTalk Functional Groupings 16

This chapter describes the ToolTalk functions component of the ToolTalk
application programming interface (API). The functions are grouped to
perform specific operations; for example, the functions required to initialize the
ToolTalk Service. They are grouped under the following headings:

• Initialization Functions
• Message Patterns
• Ptypes
• Sessions
• Files
• Messages
• Objects
• ToolTalk Storage Management
• ToolTalk Error Status
• Exiting
• ToolTalk Error-Handling Macros
• Miscellaneous ToolTalk Functions

See Chapter 17, “ToolTalk Functions/Commands“, for a table listing these
functions and their descriptions. See the Section 3 man pages for details on
these functions.

156 CDE ToolTalk Programmer’s Guide

16

Initialization Functions

Message Patterns

Table 16-1 Initializing and Registering with the ToolTalk Service

Return Type ToolTalk Function

char * tt_X_session(const char *xdisplay)

Tt_status tt_default_session_set(const char *sessid)

char * tt_open(void)

char * tt_default_procid(void)

Tt_status tt_default_procid_set(const char *procid)

Tt_status tt_ptype_declare(const char *ptid)

Tt_status tt_ptype_undeclare(const char *ptid)

Tt_status tt_ptype_exists(const char *ptid)

char * tt_default_ptype(void)

Tt_status tt_default_ptype_set(const char *ptid)

int tt_fd(void)

Table 16-2 Creating, Filling In, Registering,and Destroying Message Patterns

Return Type ToolTalk Function

Tt_pattern tt_pattern_create(void)

Tt_status tt_pattern_arg_add(Tt_pattern p, Tt_mode
n, const char *vtype, const char *value)

Tt_status tt_pattern_barg_add(Tt_pattern m, Tt_mode
n, const char *vtype, const unsigned char
*value, int len)

Tt_status tt_pattern_iarg_add(Tt_pattern m, Tt_mode
n, const char *vtype, int value)

The ToolTalk Functional Groupings 157

16

Tt_status tt_pattern_xarg_add(Tt_pattern m, Tt_mode
n, const char *vtype, xdrproc_t xdr_proc,
void *value)

Tt_status tt_pattern_address_add(Tt_pattern p,
Tt_address d)

Tt_status tt_pattern_callback_add(Tt_pattern m,
Tt_message_callback f)

Tt_category tt_pattern_category(Tt_pattern p)

Tt_status tt_pattern_category_set(Tt_pattern p,
Tt_category c)

Tt_status tt_pattern_class_add(Tt_pattern p,
Tt_class c)

Tt_status tt_pattern_bcontext_add(Tt_pattern p,
const char *slotname, const unsigned char
*value,
int length)

Tt_status tt_pattern_context_add(Tt_pattern p, const
char *slotname, const char *value)

Tt_status tt_pattern_icontext_add(Tt_pattern p,
const char *slotname, int value)

Tt_status tt_pattern_xcontext_add(Tt_pattern p,
const char *slotname, xdrproc_t xdr_proc,
void *value)

Tt_status tt_pattern_destroy(Tt_pattern p)

Tt_status tt_pattern_disposition_add(Tt_pattern p,
Tt_disposition r)

Tt_status tt_pattern_file_add(Tt_pattern p, const
char *file)

Tt_status tt_pattern_object_add(Tt_pattern p, const
char *objid)

Tt_status tt_pattern_op_add(Tt_pattern p, const char
*opname)

Table 16-2 Creating, Filling In, Registering,and Destroying Message Patterns (Continued)

Return Type ToolTalk Function

158 CDE ToolTalk Programmer’s Guide

16

Tt_status tt_pattern_otype_add(Tt_pattern p, const
char *otype)

Tt_status tt_pattern_scope_add(Tt_pattern p,
Tt_scope s)

Tt_status tt_pattern_sender_add(Tt_pattern p, const
char *procid)

Tt_status tt_pattern_sender_ptype_add(Tt_pattern p,
const char *ptid)

Tt_status tt_pattern_session_add(Tt_pattern p, const
char *sessid)

Tt_status tt_pattern_state_add(Tt_pattern p,
Tt_state s)

void * tt_pattern_user(Tt_pattern p, int key)

Tt_status tt_pattern_user_set(Tt_pattern p, int key,
void *v)

Tt_status tt_pattern_register(Tt_pattern p)

Tt_status tt_pattern_unregister(Tt_pattern p)

Tt_status tt_bcontext_join(const char *slotname,
const unsigned *char value, int length)

Tt_status tt_context_join(const char *slotname,
const char *value)

Tt_status tt_icontext_join(const char *slotname, int
value)

Tt_status tt_xcontext_join(const char *slotname,
xdrproc_t xdr_proc, void *value)

Tt_status tt_bcontext_quit(const char *slotname,
const unsigned *char value, int length)

Table 16-2 Creating, Filling In, Registering,and Destroying Message Patterns (Continued)

Return Type ToolTalk Function

The ToolTalk Functional Groupings 159

16

Ptypes

Sessions

Tt_status tt_xcontext_quit(const char *slotname,
xdrproc_t xdr_proc, void *value)

Tt_status tt_context_quit(const char *slotname,
const char *value)

Tt_status tt_icontext_quit(const char *slotname, int
value)

Table 16-3 Declaring, Undeclaring, and Checking Ptypes

Return Type ToolTalk Function

Tt_status tt_ptype_declare(const char *ptid)

Tt_status tt_ptype_exists(const char *ptid)

Tt_status tt_ptype_undeclare(const char *ptid)

Table 16-4 Expressing Interest in Sessions

Return Type ToolTalk Function

char * tt_default_session(void)

Tt_status tt_default_session_set(const char *sessid)

char * tt_initial_session(void)

Tt_status tt_session_join(const char *sessid)

Tt_status tt_session_quit(const char *sessid)

Table 16-2 Creating, Filling In, Registering,and Destroying Message Patterns (Continued)

Return Type ToolTalk Function

160 CDE ToolTalk Programmer’s Guide

16

Table 16-5 Managing Session Information

Return Type ToolTalk Function

char * tt_session_prop(const char *sessid, const
char *propname, int i)

Tt_status tt_session_prop_add(const char *sessid,
const char *propname, const char *value)

int tt_session_prop_count(const char *sessid,
const char *propname)

Tt_status tt_session_prop_set(const char *sessid,
const char *propname, const char *value)

Tt_status tt_session_bprop(const char *sessid, const
char *propname, int i, unsigned char
**value,
int *length)

Tt_status tt_session_bprop_add(const char *sessid,
const char *propname, const unsigned char
*value, int length)

Tt_status tt_session_bprop_set(const char *sessid,
const char *propname, const unsigned char
*value, int length)

char * tt_session_propname(const char *sessid,
int n)

int tt_session_propnames_count(const char
*sessid)

Tt_status tt_session_types_load(const char *session,
const char *filename)

The ToolTalk Functional Groupings 161

16

Files

Messages

Table 16-6 Expressing Interest in Files

Return Type ToolTalk Function

Tt_status tt_file_join(const char *filepath)

Tt_status tt_file_quit(const char *filepath)

char * tt_default_file(void)

Tt_status tt_default_file_set(const char *docid)

Table 16-7 Managing Files

Return Type ToolTalk Function

Tt_status tt_file_move(const char *oldfilepath, const char *newfilepath)

Tt_status tt_file_copy(const char *oldfilepath, const char *newfilepath)

Tt_status tt_file_destroy(const char *filepath)

Table 16-8 Creating Messages

Return Type ToolTalk Function

Tt_message tt_onotice_create(const char *objid, const
char *op)

Tt_message tt_orequest_create(const char *objid,
const char *op)

Tt_message tt_pnotice_create(Tt_scope scope, const
char *op)

Tt_message tt_prequest_create(Tt_scope scope, const
char *op)

Tt_message tt_message_create(void)

Tt_message tt_message_create_super(Tt_message m)

162 CDE ToolTalk Programmer’s Guide

16

Table 16-9 Filling In Messages and Replies

Return Type ToolTalk Function

Tt_status tt_message_address_set(Tt_message m,
Tt_address p)

Tt_status tt_message_accept(Tt_message m)

Tt_status tt_message_arg_add(Tt_message m, Tt_mode
n, const char *vtype, const char *value)

Tt_status tt_message_arg_bval_set(Tt_message m, int
n, unsigned char *value, int len)

Tt_status tt_message_arg_ival_set(Tt_message m, int
n, int value)

Tt_status tt_message_arg_val_set(Tt_message m, int
n, const char *value)

Tt_status tt_message_arg_xval(Tt_message m, int n,
xdrproc_t xdr_proc, void *value)

Tt_status tt_message_arg_xval_set(Tt_message m, int
n, xdrproc_t xdr_proc, void *value)

Tt_status tt_message_barg_add(Tt_message m, Tt_mode
n, const char *vtype,
const unsigned char *value, int len)

Tt_status tt_message_bcontext_set(Tt_message m,
const char *slotname, unsigned char *value,
int length)

Tt_status tt_message_callback_add(Tt_message m,
Tt_message_callback f)

Tt_status tt_message_class_set(Tt_message m,
Tt_class c)

int tt_message_contexts_count(Tt_message m)

Tt_status tt_message_context_set(Tt_message m, const
char *slotname, const char *value)

char * tt_message_context_slotname(Tt_message m,
int n)

The ToolTalk Functional Groupings 163

16

Tt_status tt_message_context_bval(Tt_message m,
const char *slotname, unsigned char
**value, int *len)

Tt_status tt_message_context_ival(Tt_message m,
const char *slotname, int *value)

char * tt_message_context_val(Tt_message m, const
char *slotname)

Tt_status* tt_message_context_xval(Tt_message m,
const char *slotname, xdrproc_t xdr_proc,
void *value)

Tt_status tt_message_disposition_set(Tt_message m,
Tt_disposition r)

Tt_status tt_message_file_set(Tt_message m, const
char *file)

Tt_status tt_message_handler_ptype_set(Tt_message m,
const char *ptid)

Tt_status tt_message_handler_set(Tt_message m, const
char *procid)

Tt_status tt_message_iarg_add(Tt_message m, Tt_mode
n, const char *vtype,
int value)

Tt_status tt_message_icontext_set(Tt_message m,
const char *slotname, int value)

Tt_status tt_message_object_set(Tt_message m, const
char *objid)

Tt_status tt_message_op_set(Tt_message m, const char
*opname)

Tt_status tt_message_otype_set(Tt_message m, const
char *otype)

Tt_status tt_message_scope_set(Tt_message m,
Tt_scope s)

Tt_status tt_message_send_on_exit(Tt_message m)

Table 16-9 Filling In Messages and Replies (Continued)

Return Type ToolTalk Function

164 CDE ToolTalk Programmer’s Guide

16

Tt_status tt_message_sender_ptype_set(Tt_message m,
const char *ptid)

Tt_status tt_message_session_set(Tt_message m, const
char *sessid)

Tt_status tt_message_status_set(Tt_message m, int
status)

Tt_status tt_message_status_string_set(Tt_message m,
const char *status_str)

Tt_status tt_message_user_set(Tt_message m, int key,
void *v)

Tt_status tt_message_xarg_add(Tt_message m, Tt_mode
n, const char *vtype, xdrproc_t xdr_proc,
void *value)

Tt_status tt_message_xcontext_set(Tt_message m,
const char *slotname, xdrproc_t xdr_proc,
void *value)

Tt_status tt_otype_opnum_callback_add(const char
*otid,int opnum, Tt_message_callback f)

Tt_status tt_ptype_opnum_callback_add(const char
*ptid, int opnum, Tt_message_callback f)

Table 16-10 Examining Messages

Return Type ToolTalk Function

Tt_address tt_message_address(Tt_message m)

Tt_status tt_message_arg_bval(Tt_message m, int n,
unsigned char **value,
int *len)

Tt_status tt_message_arg_ival(Tt_message m, int n, int
*value)

Tt_mode tt_message_arg_mode(Tt_message m, int n)

char * tt_message_arg_type(Tt_message m, int n)

Table 16-9 Filling In Messages and Replies (Continued)

Return Type ToolTalk Function

The ToolTalk Functional Groupings 165

16

char * tt_message_arg_val(Tt_message m, int n)

Tt_status tt_message_arg_xval(Tt_message m, int n,
xdrproc_t xdr_proc, void *value)

int tt_message_args_count(Tt_message m)

Tt_class tt_message_class(Tt_message m)

Tt_disposition tt_message_disposition(Tt_message m)

char * tt_message_file(Tt_message m)

gid_t tt_message_gid(Tt_message m)

char * tt_message_handler(Tt_message m)

char * tt_message_handler_ptype(Tt_message m)

char * tt_message_id(Tt_message m)

char * tt_message_object(Tt_message m)

char * tt_message_op(Tt_message m)

int tt_message_opnum(Tt_message m)

char * tt_message_otype(Tt_message m)

Tt_pattern tt_message_pattern(Tt_message m)

Tt_scope tt_message_scope(Tt_message m)

char * tt_message_sender(Tt_message m)

char * tt_message_sender_ptype(Tt_message m)

char * tt_message_session(Tt_message m)

Tt_state tt_message_state(Tt_message m)

int tt_message_status(Tt_message m)

char * tt_message_status_string(Tt_message m)

uid_t tt_message_uid(Tt_message m)

void * tt_message_user(Tt_message m, int key)

Tt_status tt_message_send(Tt_message m)

Tt_status tt_message_destroy(Tt_message m)

Table 16-10 Examining Messages (Continued)

Return Type ToolTalk Function

166 CDE ToolTalk Programmer’s Guide

16

Table 16-11 Sending and Destroying Messages

Return Type ToolTalk Function

Tt_status tt_message_send(Tt_message m)

Tt_status tt_message_destroy(Tt_message m)

Table 16-12 Receiving, Replying to, Rejecting, and Destroying Messages

Return Type ToolTalk Function

Tt_message tt_message_receive(void)

Tt_status tt_message_reply(Tt_message m)

Tt_status tt_message_reject(Tt_message m)

Tt_status tt_message_fail(Tt_message m)

int tt_message_status(Tt_message m)

Tt_status tt_message_status_set(Tt_message m, int
status)

char * tt_message_status_string(Tt_message m)

Tt_status tt_message_status_string_set(Tt_message m,
const char *status_str)

Tt_status tt_message_destroy(Tt_message m)

The ToolTalk Functional Groupings 167

16

Objects

Table 16-13 Creating, Moving, and Destroying Objects

Return Type ToolTalk Function

char * tt_spec_create(const char *filepath)

Tt_status tt_spec_prop_add(const char *objid, const
char *propname, const char *value)

Tt_status tt_spec_prop_set(const char *objid, const
char *propname, const char *value)

Tt_status tt_spec_bprop_add(const char *objid, const
char *propname, const unsigned char *value,
int length)

Tt_status tt_spec_bprop_set(const char *objid, const
char *propname, const unsigned char *value,
int length)

Tt_status tt_spec_type_set(const char *objid, const
char *otid)

Tt_status tt_spec_write(const char *objid)

char * tt_spec_move(const char *objid, const char
*newfilepath)

Tt_status tt_spec_destroy(const char *objid)

Table 16-14 Using ToolTalk Storage

Return Type ToolTalk Function

char * tt_spec_prop(const char *objid, const char
*propname, int i)

int tt_spec_prop_count(const char *objid,
const char *propname)

Tt_status tt_spec_prop_set(const char *objid, const
char *propname, const char *value)

168 CDE ToolTalk Programmer’s Guide

16

Tt_status tt_spec_bprop(const char *objid, const char
*propname, int i, unsigned char **value,
int *length)

char * tt_spec_propname(const char *objid, int n)

int tt_spec_propnames_count(const char *objid)

char * tt_spec_type(const char *objid)

char * tt_spec_file(const char *objid)

Tt_status tt_spec_write(const char *objid)

Tt_status tt_file_objects_query(const char
*filepath, Tt_filter_function filter,
void *context, void *accumulator)

int tt_objid_equal(const char *objid1, const
char *objid2)

char * tt_objid_objkey(const char *objid)

Table 16-15 Examining Object Type Information

Return Type ToolTalk Function

char * tt_otype_base(const char *otype)

char * tt_otype_derived(const char *otype, int i)

int tt_otype_deriveds_count(const char *otype)

Tt_mode tt_otype_hsig_arg_mode(const char *otype,
int sig, int arg)

char * tt_otype_hsig_arg_type(const char *otype,
int sig, int arg)

int tt_otype_hsig_args_count(const char
*otype, int sig)

int tt_otype_hsig_count(const char *otype)

char * tt_otype_hsig_op(const char *otype, int
sig)

Table 16-14 Using ToolTalk Storage (Continued)

Return Type ToolTalk Function

The ToolTalk Functional Groupings 169

16

ToolTalk Storage Management

int tt_otype_is_derived(const char
*derivedotype, const char *baseotype)

Tt_mode tt_otype_osig_arg_mode(const char *otype,
int sig, int arg)

char * tt_otype_osig_arg_type(const char *otype,
int sig, int arg)

int tt_otype_osig_args_count(const char
*otype, int sig)

int tt_otype_osig_count(const char *otype)

char * tt_otype_osig_op(const char *otype, int
sig)

Table 16-16 Managing ToolTalk Storage

Return Type ToolTalk Function

int tt_mark(void)

void tt_release(int mark)

void tt_free(caddr_t p)

caddr_t tt_malloc(size_t s)

Table 16-15 Examining Object Type Information (Continued)

Return Type ToolTalk Function

170 CDE ToolTalk Programmer’s Guide

16

ToolTalk Error Status

Exiting

ToolTalk Error-Handling Macros

Miscellaneous ToolTalk Functions

To use these functions, you need to include the ToolTalk header file:

Table 16-17 Retrieving ToolTalk Error Information

Return Type ToolTalk Function

Tt_status tt_int_error(int return_val)

Tt_status tt_pointer_error(void *pointer)

char * tt_status_message(Tt_status ttrc)

Table 16-18 Encoding Error Values

Return Type ToolTalk Function

int tt_error_int(Tt_status ttrc)

void * tt_error_pointer(Tt_status ttrc)

Table 16-19 Leaving the ToolTalk Session

Return Type ToolTalk Function

Tt_status tt_close(void)

Table 16-20 ToolTalk Error-Handling Macros

Return Type ToolTalk Macro

int tt_is_err(Tt_status s)

Tt_status tt_ptr_error(pointer)

The ToolTalk Functional Groupings 171

16

#include <Tt/tt_c.h>

Table 16-21 Miscellaneous ToolTalk Functions

Return Type ToolTalk Function

char * tt_file_netfile(const char *filename)

char * tt_host_file_netfile(const char *host,
const char *filename)

char * tt_host_netfile_file(const char *host,
const char *netfilename)

char * tt_message_print(Tt_message *m)

char * tt_netfile_file(const char *netfilename)

char * tt_pattern_print(Tt_pattern *p)

172 CDE ToolTalk Programmer’s Guide

16

173

ToolTalk Functions/Commands 17

ToolTalk Functions

This chapter provides a table listing the ToolTalk functions and their
descriptions. See the Section 3 man pages for details on these functions

Table 17-1 ToolTalk Functions and Descriptions

Function Description

tt_bcontext_join Adds the given byte array value to the
list of values for the named contexts of
all the patterns.

tt_bcontext_quit Removes the given byte-array value from
the list of values for the contexts of all
patterns.

tt_close Closes the current procid.

tt_context_join Adds the given string value to the list of
values for the context of all patterns.

tt_context_quit Removes the given string value to the list
of values for the context of all patterns.

tt_default_file Returns the current default file.

tt_default_file_set Sets the default to the specified file.

tt_default_procid Retrieves the current default procid for
your process.

tt_default_procid_set Sets the current default procid.

174 CDE ToolTalk Programmer’s Guide

17

tt_default_ptype Retrieves the current default_ptype.

tt_default_ptype_set Sets the default ptype.

tt_default_session Retrieves the current default session
identifier.

tt_default_session_set Sets the current default session identifier.

tt_error_int Returns an integer error object that
encodes the code.

tt_fd Returns a file descriptor.

tt_file_copy Copies all objects that exist on the
specified file to a new row.

tt_file_destroy Removes all objects that exist on the files
and directories rooted at filepath.

tt_file_join Informs the ToolTalk service that the
process is interested in messages that
involve the specified file.

tt_file_move Destroys all objects that exist on the files
and directories rooted at newfilepath, then
moves all objects that exist on oldfilepath
to newfilepath.

tt_file_objects_query Instructs the ToolTalk service to find all
objects in the named files and pass the
objids to the filter function.

tt_file_quit Informs the ToolTalk service that the
process is no longer interested in
messages that involve the specified file.

tt_free Frees storage from the ToolTalk API
allocation stack.

tt_icontext_join Adds the given integer value to the list of
values for the contexts of all patterns.

tt_icontext_quit Removes the given integer value to the
list of values for the contexts of all
patterns.

Table 17-1 ToolTalk Functions and Descriptions

Function Description

ToolTalk Functions/Commands 175

17

tt_initial_session Returns the initial session identifier of
the ttsession with which the current
process indentifier is associated.

tt_int_error Returns the status of an error object.

tt_is_error Checks whether status is a warning of an
error.

tt_malloc Allocates storage on the ToolTalk API
allocation stack.

tt_mark Marks a storage position in the ToolTalk
API allocation stack.

tt_message_accept Declares that the process has been
initialized and can accept messages.

tt_message_address Retrieves the address attribute from the
specified message.

tt_message_address_set Sets the address attribute from the
specified
message.

tt_message_arg_add Adds a new argument to a message
object.

tt_message_arg_bval Retrieves the byte-array value of the nth
message argument.

tt_message_arg_bval_set Sets the byte-array value and the type of
the nth message argument.

tt_message_arg_ival Retrieves the integer value of the nth
message argument.

tt_message_arg_ival_set Adds an integer value of the nth message
argument.

tt_message_arg_mode Returns the mode of the nth message
argument.

tt_message_arg_type Retrieves the type of the nth message
argument.

tt_message_arg_val Returns a pointer to the value of the nth
message argument.

Table 17-1 ToolTalk Functions and Descriptions

Function Description

176 CDE ToolTalk Programmer’s Guide

17

tt_message_arg_val_set Changes the value of the nth message
argument.

tt_message_arg_xval Retrieves and deserializes the data from
a message argument.

tt_message_arg_xval_set Serializes and sets data into an existing
message argument.

tt_message_arg_count Returns the number of arguments in the
message.

tt_message_barg_add Adds an argument to a pattern that may
have a byte-array value that contains
imbedded nulls.

tt_message_bcontext_set Sets the byte-array value of a message’s
context.

tt_message_callback_add Registers a callback function to be
automatically invoked by
tt_message_receive whenever a
reply or other state-change to this
message is returned.

tt_message_class Retrieves the class attribute from the
specified message.

tt_message_class_set Sets the class attribute for the specified
message.

tt_message_context_bval Retrieves the byte-array value and length
of a message’s context.

tt_message_context_ival Retrieves the integer value of a message’s
context.

tt_message_context_set Sets the character string value of a
message’s context.

tt_message_context_slotname Returns the name of a message’s nth
context.

tt_message_context_val Retrieves the character string of
message’s context.

tt_message_context_xval Retrieves and deserializes the data from
a message’s context.

Table 17-1 ToolTalk Functions and Descriptions

Function Description

ToolTalk Functions/Commands 177

17

tt_message_contexts_count Returns the number of contexts in a
message.

tt_message_create Creates a new message object.

tt_message_create_super Creates a copy of the specified message
and re-addresses the copy of the message
to the parent of the specified otype.

tt_message_destroy Destroys the message.

tt_message_disposition Retrieves the disposition attribute from
the specified message.

tt_message_disposition_set Sets the disposition attribute for the
specified message.

tt_message_fail Informs the ToolTalk service that the
process cannot handle the request just
received.

tt_message_file Retrieves the file attribute from the
specified message.

tt_message_file_set Sets the file attribute for the specified
message.

tt_message_gid Retrieves the group identifier attribute
from the specified message.

tt_message_handler Retrieves the handler identifier attribute
from the specified message.

tt_message_handler_ptype Retrieves the handler ptype attribute
from the specified message.

tt_message_handler_ptype_set Sets the handler ptype attribute for the
specified message.

tt_message_iarg_add Adds a new argument to a message
object and sets the value to a given
integer.

tt_message_icontext_set Sets the integer value of a message’s
context.

tt_message_id Retrieves the identifier of the specified
message.

Table 17-1 ToolTalk Functions and Descriptions

Function Description

178 CDE ToolTalk Programmer’s Guide

17

tt_message_object Retrieves the object attribute from the
specified message.

tt_message_object_set Sets the object attribute for the specified
message.

tt_message_op Retrieves the operation attribute from the
specified message.

tt_message_op_set Sets the operation attribute for the
specified message.

tt_message_opnum Retrieves the operation attribute from the
specified message.

tt_message_otype Retrieves the object type attribute from
the specified message.

tt_message_otype_set Sets the object type (otype) attribute from
the specified message.

tt_message_pattern Returns the pattern that the specified
message matched.

tt_message_receive Returns a handle for the next message
queued to be delivered to the process.

tt_message_reject Informs the ToolTalk service that the
process cannot handle this message.

tt_message_reply Informs the ToolTalk service that the
process has
handled the message and filled in all
return values.

tt_message_scope Retrieves the scope attribute from the
specified message.

tt_message_scope_set Sets the scope attribute for the specified
message.

tt_message_send Sends the specified message.

tt_message_send_on_exit Requests that the ToolTalk service send
this message if process exits
unexpectedly.

Table 17-1 ToolTalk Functions and Descriptions

Function Description

ToolTalk Functions/Commands 179

17

tt_message_sender Retrieves the sender attribute from the
specified message.

tt_message_sender_ptype Retrieves the sender ptype attribute from
the specified message.

tt_message_sender_ptype_set Sets the sender ptype attribute for the
specified message.

tt_message_session Retrieves the session attribute from the
specified message.

tt_message_session_set Sets the session attribute for the specified
message.

tt_message_state Retrieves the state attribute from the
specified message.

tt_message_status Retrieves the status attribute from the
specified message.

tt_message_status_set Sets the status attribute from the
specified message.

tt_message_status_string Retrieves the character string stored with
the status attribute for the specified
message.

tt_message_status_string_set Sets a character string with the status
attribute for the specified message.

tt_message_uid Retrieves the user identifier attribute
from the specified message.

tt_message_user Retrieves the user information stored in
data cells associated with the specified
message object.

tt_message_user_set Stores the user information in data cells
associated with the specified message
object.

tt_message_xarg_add Adds an argument with an XDR-
interpreted value to a message object.

tt_message_xcontext_set Sets the XDR-interpreted byte-array
value of a message’s context.

Table 17-1 ToolTalk Functions and Descriptions

Function Description

180 CDE ToolTalk Programmer’s Guide

17

tt_objid_equal Tests whether two objects are equal.

tt_objid_objkey Returns the unique key of an objid.

tt_onotice_create Creates a message.

tt_open Returns the process identifier for the
calling process.

tt_orequest_create Creates a message.

tt_otype_base Returns the base otype of the given
otype.

tt_otype_derived Returns the ith otype from the given
otype.

tt_otype_deriveds_count Returns the number of otypes derived
from the given otype.

tt_otype_hsig_arg_mode Returns the mode of the arg’th argument
of the sig’th request signature of the
given otype.

tt_otype_hsig_arg_type Returns the data type of the arg’th
argument of the sig’th request signature
of the given otype.

tt_otype_hsig_count Returns the number of request signatures
for the given otype.

tt_otype_hsig_op Returns the operation name of the sig’th
request signature of the given otype.

tt_otype_is_derived Specifies whether derived otype is
derived directly or indirectly from base
otype.

tt_otype_opnum_callback_add Automatically returns a callback if the
specified opnums are equal.

tt_otype_osig_arg_mode Returns the mode of the arg’th argument
of the sig’th
notice signature of the given otype.

tt_otype_osig_arg_type Returns the data type of the arg’th
argument of the sig’th notice signature of
the given otype.

Table 17-1 ToolTalk Functions and Descriptions

Function Description

ToolTalk Functions/Commands 181

17

tt_otype_osig_args_count Returns the number of arguments of the
sig’th notice signature of the given otype.

tt_otype_osig_count Returns the number of notice signatures
for the given otype.

tt_otype_osig_op Returns the op name of the sig’th notice
signature of the given otype.

tt_pattern_address_add Adds a value to the address field for the
specified pattern.

tt_pattern_arg_add Adds an argument to a pattern.

tt_pattern_barg_add Adds an argument with a value that
contains imbedded nulls to a pattern.

tt_pattern_bcontext_add Adds a byte-array value to the values in
this pattern’s named context.

tt_pattern_callback_add Registers a callback function that will be
automatically invoked by
tt_messsage_receive() wherever a
message matches the pattern.

tt_pattern_category Returns a category value of the specified
pattern.

tt_pattern_category_set Fills in the category field for the specified
pattern.

tt_pattern_class_add Adds a value to the class information for
the specified pattern.

tt_pattern_context_add Adds a string value to the values of this
pattern’s context.

tt_pattern_create Requests a new pattern object.

tt_pattern_destroy Destroys a pattern object.

tt_pattern_disposition_add Adds a value to the disposition field for
the specified pattern.

tt_pattern_field_add Adds a value to the file field of the
specified pattern.

tt_pattern_iarg_add Adds a new argument to a pattern and
sets the value to a given integer.

Table 17-1 ToolTalk Functions and Descriptions

Function Description

182 CDE ToolTalk Programmer’s Guide

17

tt_pattern_icontext_add Adds an integer value to the values of
this pattern’s context.

tt_pattern_object_add Adds a value to the object field of the
specified pattern.

tt_patern_op_add Adds a value to the operation field of the
specified pattern.

tt_pattern_opnum_add Adds an operation number to the
specified pattern.

tt_pattern_otype_add Adds a value to the object type field for
the specified pattern.

tt_pattern_register Registers your pattern with the ToolTalk
service.

tt_pattern_scope_add Adds a value to the scope field for the
specified pattern.

tt_pattern_sender_add Adds a value to the sender field for the
specified pattern.

tt_pattern_sender_ptype_add Adds a value to the sending process’s
ptype field for the specified pattern.

tt_pattern_session_add Adds a value to the session field for the
specified pattern.

tt_pattern_state_add Adds a value to the state field for the
specified pattern.

tt_pattern_unregister Unregisters the specified pattern from
the ToolTalk service.

tt_pattern_user Returns a value in the indicated user
data cell for the specified pattern object.

tt_pattern_user_set Stores information in the user data cells
associated with the specified pattern
object.

tt_pattern_xarg_add Adds a new argument with an
interpreted XDR value to a pattern
object.

Table 17-1 ToolTalk Functions and Descriptions

Function Description

ToolTalk Functions/Commands 183

17

tt_pattern_xcontext_add Adds an XDR-interpreted byte-array
value to the values in this pattern’s
named context.

tt_notice_create Creates a message.

tt_pointer_error Returns the status of specified pointer.

tt_prequest_create Creates a message.

tt_ptr_error Returns the status of specified pointer.

tt_ptype_declare Registers your process type with the
ToolTalk service.

tt_ptype_exists Returns whether indicated ptype is
already installed.

tt_ptype_opnum_callback_add Automatically returns a callback if the
specified opnums are equal.

tt_ptype_undeclare Undeclares the indicated ptype.

tt_release Frees storage allocated on the ToolTalk
API allocation stack.

tt_session_bprop Retrieves the ith value of the named
property of the specified session.

tt_session_bprop_add Adds a new byte-string value to the end
of the list of the values for the named
property of the specified session.

tt_session_bprop_set Replaces any current values stored under
the named property of the specified
session with the given byte-string value.

tt_session_bprop_add Adds a new byte-string value to the end
of the list of values for the named
property of the specified session.

tt_session_join Joins the session named and makes it the
default session.

tt_session_prop Returns the ith value of the specified
session property.

Table 17-1 ToolTalk Functions and Descriptions

Function Description

184 CDE ToolTalk Programmer’s Guide

17

tt_session_prop_add Adds a new character-string value to the
end of the list of the values for the
property of the specified session.

tt_session_prop_count Returns the number of values stored
under the named property of the
specified session.

tt_session_prop_set Replaces all current values stored under
the named property of the specified
session with the given character-string
value.

tt_session_propname Returns the nth element of the list of
currently defined property names for the
specified session.

tt_session_propnames_count Returns the number of currently defined
property names for the session.

tt_session_quit Informs the ToolTalk service that the
process is no longer interested in this
ToolTalk session.

tt_session_types_load Merges a compiled ToolTalk types file
into the running ttsession .

tt_spec_bprop Retrieves the ith value of the specified
property.

tt_spec_bprop_add Adds a new byte-string value to the end
of the list of values associated with the
specified spec property.

tt_spec_bprop_set Replaces any current values stored under
this spec property with a new byte-
string.

tt_spec_create Creates a spec (in memory) for an object.

tt_spec_destroy Destroys an object’s spec immediately.

tt_spec_file Retrieves the name of the file that
contains the object described by the spec.

tt_spec_move Notifies the ToolTalk service that this
object has moved to a different file.

Table 17-1 ToolTalk Functions and Descriptions

Function Description

ToolTalk Functions/Commands 185

17

tt_spec_prop Retrieves the ith value of the property
associated with this object spec.

tt_spec_prop_add Adds a new item to the end of the list of
values associated with this spec property.

tt_spec_prop_count Returns the number of values listed in
this spec property.

tt_spec_prop_set Replaces any values currently stored
under this property of the object spec
with a new value.

tt_spec_propname Returns the nth element of the property
name list for this object spec.

tt_spec_propnames_count Returns the number of property names
for this object.

tt_spec_type Returns the name of the object type.

tt_spec_type_set Assigns an object type value to the object
spec.

tt_spec_write Writes the spec and any associated
properties to the ToolTalk database.

tt_status_message Returns a pointer to a message that
describes that problem indicated by this
status code.

tt_X_session Returns the session associated with the
named X window system display.

tt_xcontext_quit Removes the given XDR-interpreted
byte-array value from the list of values
for the contexts of all patterns.

Table 17-1 ToolTalk Functions and Descriptions

Function Description

186 CDE ToolTalk Programmer’s Guide

17

Miscellaneous ToolTalk Functions

To use these miscellaneous ToolTalk functions, you need to include the
ToolTalk header file:

#include <Tt/tt_c.h>

Tooltalk Commands

This section provides a table listing the ToolTalk-enhanced operating system
commands. See the section 1 man pages for details on these commands.

Table 17-2 Miscellaneous ToolTalk Functions

Function Description

tt_file_netfile Converts the file specified in filename to a
netfilename that can be passed to other hosts on the
network.

tt_host_file_netf
ile

Converts the file specified in host to a netfilename that
can be passed to other hosts on the network.

tt_host_netfile_f
ile

Converts the file specified netfilename to a path name
that is valid on the remote host.

tt_message_print Allows you to print messages that are received but not
understood.

tt_netfile_file This function converts the file specified in netfilename
to a path name that is valid on the local host.

tt_pattern_print Allows you to print out patterns.

Table 17-3 ToolTalk Functions and Descriptions

Function Description

ttcp Copies files and directories in a ToolTalk-safe way.

ttdbck Displays, checks, or repairs ToolTalk data bases.

rpc.ttdbserverd Remove Procedure Call (RPC)-based ToolTalk data base
server.

ttmv Move or rename files in a ToolTalk-safe way.

ttrm, ttrmdir Remove files or directories in a Tooltalk-safe way.

ToolTalk Functions/Commands 187

17

ttsession ToolTalk message server.

tt_type_comp The ToolTalk otype and ptype compiler.

tttar Archives or de-archives files and ToolTalk objects.

Table 17-3 ToolTalk Functions and Descriptions

Function Description

188 CDE ToolTalk Programmer’s Guide

17

189

Using ToolTalk Messaging 18

Note – Some code fragments shown in this chapter are taken from a ToolTalk
demo program called tt_toolkit_demo . See the directory
/usr/dt/examples/tt/tt_toolkit_demo for the source code, Makefile
and README file.

Telling Your Application about ToolTalk Functionality

Before your application can use the inter-operability functionality provided by
the ToolTalk service and the Messaging Toolkit, it needs to know where the
ToolTalk libraries and toolkit reside.

Using the Messaging Toolkit and Including ToolTalk Commands

To use the ToolTalk service, an application calls ToolTalk functions from the
ToolTalk application programming interface (API). The Messaging Toolkit
provides higher-level functions than the ToolTalk API, such as functions to
register with the ToolTalk service, to create message patterns, to send
messages, to receive messages, and to examine message information. To
modify your application to use the ToolTalk service and toolkit, you must
include the following header files:

#include <Tt/tt_c.h> /* ToolTalk Header File */
#include <Tt/tttk.h> /* Messaging Toolkit Header File */

190 CDE ToolTalk Programmer’s Guide

18

Using the ToolTalk Libraries

The ToolTalk libraries are located in the following directory:

/usr/dt/lib

The library names are libttt.a for the archived libraries and libttSvc.sl
for the shared libraries.

Before You Start Coding

Before you can incorporate the Messaging Toolkit functionality into your
application, you need to determine the way that your tool will work with other
tools. There are several basic questions you need to ask:

1. How will these tools work together?

2. What kinds of operations can these tools perform?

3. What kinds of operations can these tools ask other tools to perform?

4. What events will these tools generate that may interest other tools? (What
types of messages will these tools want to send?)

5. What events generated by other tools will be of interest to these tools?
(What types of messages will these tools want to receive?)

To best answer these questions, you need to understand the difference between
events and operations, and how the ToolTalk service handles messages
regarding each of these.

What Is the Difference Between an Event and an Operation?

An event is an announcement that something has happened. An event is simply
a news bulletin. The sending process has no formal expectations as to whether
any other process will hear about the event, or whether an action is taken as a
consequence of the event. When a process uses the ToolTalk service to inform
interested processes that an event has occurred, it sends a notice. Since the
sending process does not expect a reply, an event cannot fail.

An operation is an inquiry or an action. The requesting process makes an
inquiry or requests that an operation be performed. The requesting process
expects a result to be returned and needs to be informed of the status of the

Using ToolTalk Messaging 191

18

inquiry or action. When a process uses the ToolTalk service to ask another tool
to perform an operation, it sends a request. The ToolTalk service delivers the
request to interested processes and informs the sending process of the status of
the request.

Sending Notices

When your application sends a ToolTalk notice, it will not receive a reply or be
informed about whether or not any tool pays attention to the notice. It is
important to make the notice an impartial report of the event as it happens. For
example, if your tool sends the Desktop Services message Modified , it may
expect any listening tools to react in a given way. Your tool, however, should
not care, and does not need to be informed about whether any or no other tool
reacts to the message; it only wants to report the event:

THE_USER_HAS_MADE_CHANGES_TO_THIS.

Sending Requests

When your application sends a ToolTalk request, it expects one tool to perform
the indicated operation, or to answer the inquiry, and return a reply message.
For example, if your tool sends the Desktop Services message Get_Modified ,
it should expect notification that the message was delivered and the action
performed. The ToolTalk service guarantees that either a reply will be returned
by the receiving process or the sender will be informed of the request’s failure.

You can identify requests in three ways:

1. By identifying the operations requested by your tool that can fail.

2. By identifying the operations your tool can perform for other tools.

3. By identifying the operations your tool will want other tools to perform.

A good method to use to identify these operations is to develop a scenario that
outlines the order of events and operations that you expect your tool to
perform and have performed.

192 CDE ToolTalk Programmer’s Guide

18

Developing a Scenario

A scenario outlines the order of the events and operations that a tool will
expect to perform and to have performed. For example, the following scenario
outlines the events a generic editor could expect to perform and to have
performed:

1. User double-clicks on a document icon in the File Manager.
The file opens in the editor, which is started by the system if one is not
already running. (If another tool has modifications to the text pending for
the document, the user is asked whether the other tool should save the text
changes or revert to the last saved version of the document.)

2. User inserts text.

3. User saves the document. (If another tool has modifications pending for the
document, the user is asked whether to modify the document.)

4. User exits the editor. (If text has unsaved changes, the user is asked whether
to save or discard the changes before quitting the file.)

Once the scenario is done, you can answer your basic questions.

How Will the Tools Work Together?

• The File Manager requests that an editor open a document for editing.
• Each instance of the editor notifies other interested instances of changes it

makes to the state of the document.

What Kinds of Operations Do the Tools Perform?

• Each instance of the editor can answer questions about itself and its state,
such as “What is your status?”

• Each instance of the editor has the capability of performing operations such
as:
• Iconifying and de-iconifying.
• Raising to front and lowering to back.
• Editing a document.
• Displaying a document (read-only).
• Quitting.

Using ToolTalk Messaging 193

18

What Kinds of Operations Can the Tools Ask Other Tools to Perform?

• The File Manager must request that the editor open a document for editing.
• An instance of the editor can ask another instance of the editor to save

changes to the open document.
• An instance of the editor can ask another instance of the editor to revert to

the last saved version of the open document.

What Events Will the Tools Generate that May Interest Other Tools?

• The document has been opened.
• The document has been modified.
• The document has been reverted to last saved version.
• The document has been saved.
• An instance of the editor has been exited.

What Events Generated by Other Tools Will Be of Interest to This Tool?

• The document has been opened.
• The document has been modified.
• The document has been reverted to last saved version.
• The document has been saved.
• An instance of the editor has been exited.

Preparing Your Application for Communication

The ToolTalk service provides you with a complete set of functions for
application integration. Using the functionality provided with the ToolTalk
Messaging Toolkit, your applications can be made to “speak” to other
applications that are ToolTalk-compliant. This section describes how to add the
kinds of ToolTalk functions you need to include in your application so that it
can communicate with other ToolTalk-aware applications that follow the same
protocols.

Note – Some of the code fragments used in this section are taken from the
tt_toolkit_demo source file. This file contains the general commands any
application needs to perform that are not specific to any particular application.
See the directory /usr/dt/examples/tt/tt_toolkit_demo for the source
code.

194 CDE ToolTalk Programmer’s Guide

18

Creating a Ptype File

The ToolTalk types mechanism is designed to help the ToolTalk service route
messages. When your tool declares a ptype, the message patterns listed in it
are automatically registered; the ToolTalk service then matches messages it
receives to these registered patterns. These static message patterns remain in
effect until the tool closes communication with the ToolTalk service.

The ToolTalk Types Database already has installed ptypes for tools bundled
with this release. You can extract a list of the installed ptypes from the ToolTalk
Types Database, as follows:

% tt_type_comp -d user|system|network -P

The names of the ptypes are printed out in source format.

To generate a list of the installed ptypes including their signatures:

% tt_type_comp -d user|system|network -p

For all other tools (that is, tools that are not included in this release), you need
to first create a ptype file to define the ptype for your application, and then
compile the ptype with the ToolTalk type compiler, tt_type_comp . To define
a ptype, you need to include the following information in a file:

• A process-type identifier (ptid).

• An optional start string – The ToolTalk service executes this command, if
necessary, to start a process running the program.

• Signatures – Describes the TT_PROCEDURE-addressed messages that the
program wants to receive. Messages to be observed are described separately
from messages to be handled.

To create a ptype file, you can use any text editor (such as vi , emacs, or
dtpad). See the subdirectories of /usr/dt/examples/tt for some example
ptypes files.

After you have created a ptype file, you need to install the ptype by running
the ToolTalk type compiler. On the command line, type the following:

% tt_type_comp file_name.ptype

where file_name.ptype is the name of the ptype file.

Using ToolTalk Messaging 195

18

Testing for Existing Ptypes in Current Session

The ToolTalk service provides the following function to test if a given ptype is
already registered in the current session:

tt_ptype_exists(const char *ptype_id)

where ptid is the identifier of the session to test for registration.

Merging a Compiled Ptype File into a Currently Running ttsession

The ToolTalk service provides the following function to merge a compiled
ToolTalk type file into the currently running ttsession :

tt_session_types_load (
const char *session,
const char *compile_types_file)

where session is the current default ToolTalk session and compiled_types_file is
the name of the compiled ToolTalk types file. This function adds new types and
replaces existing types of the same name; other existing types remain
unchanged.

Tasks Every ToolTalk-aware Application Needs to Perform

There are a number of tasks every ToolTalk-aware application needs to
perform, including:

• Initializing the toolkit.
• Joining a ToolTalk session and registering patterns.
• Adding the ToolTalk service to its event loop.

This section provides examples of the ToolTalk code you need to include in
your application so that it can perform these tasks.

Initializing the Toolkit

Your application needs to initialize and register with the initial ToolTalk
session. To do so, it first needs to obtain a process identifier (procid). The
following code fragment shows how to obtain a procid and how to initialize
the toolkit.

196 CDE ToolTalk Programmer’s Guide

18

char *procid = ttdt_open(int *tt_fd,
const char *ptype_name,
const char *vendor_name,
const char *version,
int send_started)

Caution – Your application must call ttdt_open before any other ToolTalk
calls are made; otherwise, errors may occur.

Joining the ToolTalk Session and Registering Message Patterns

Before your application can receive messages, it must join a ToolTalk session
and register the message patterns that are to be matched. The
ttdt_session_join function registers patterns and default callbacks for
many standard desktop message interfaces.

Tt_pattern *sess_patt = ttdt_session_join(
const char *session_id,
Ttdt_contract_cb cb,
Widget shell,
void *client_data,
int join)

Note that if an application has ptypes installed, it will normally call the function
ttmedia_ptype_declare before calling ttdt_session_join .

Adding the ToolTalk Service to Event Loop

Your application also needs to add the ToolTalk service to its event loop. If the
application is an Xt client, it would use XtAppAddInput as follows:

XtAppAddInput (app_context,
 tt_fd,
 (XtPointer) XtInputReadMask,
 tttk_Xt_input_handler,
 client_data)

!

Using ToolTalk Messaging 197

18

Tasks ToolTalk-aware Editor Applications Need to Perform

In addition to the duties described in the section “Tasks Every ToolTalk-aware
Application Needs to Perform” on page 195, ToolTalk-aware editor
applications may also need to perform other tasks, including:

• Declaring a ptype.
• Writing a media load callback.
• Accepting a contract to handle a message.
• Replying when a request has been completed.

This section provides examples of the ToolTalk code you need to include in
your editor application so that it can perform these additional tasks.

Declaring a Ptype

If an application has a ptype file that has been installed, the ptypes need to be
associated with the application. The convenience function for declaring this
association is ttmedia_ptype_declare :

Tt_status status = ttmedia_ptype_declare(
 char *ptype_name,
 int base_opnum,
 Ttmedia_load_pat_cb cb,
 void *client_data,
 int declare)

The callback cb will be invoked when the application is asked to service a
request supported by the ptype ptype_name .

Writing a Media Load Pattern Callback

Before coding an editor application to include any ToolTalk functions, you
need to write a media load callback routine. This callback is invoked when
another application responds to your application’s ttmedia_load call. (See
the tt_toolkit_demo source code for an example of a media load callback
routine.)

198 CDE ToolTalk Programmer’s Guide

18

Accepting a Contract to Handle a Message

When an application receives a message in its ttmedia_ptype_declare
handler, it should call the following function to accept a contract to handle the
request.

Tt_pattern *desktop_patts = ttdt_message_accept (
 Tt_message contract,
 Ttdt_contract_cb cb,
 Widget shell,
 void *client_data,
 int accept,
 int send_status)

Replying When Request Is Completed

After your application has completed the operation requested (for example to
edit a document), it must reply to the sending application. The following
function can be used to do the reply and to return the edited contents of the
text to the sender.

Tt_message msg = ttmedia_load_reply (
 Tt_message contract,
 const unsigned char *new_contents,
 int new_length,
 int reply_and_destroy)

Optional Tasks ToolTalk-aware Editor Applications Can Perform

In addition to the tasks described in the section “Tasks ToolTalk-aware Editor
Applications Need to Perform” on page 197, editor applications can also
perform other optional tasks such as tasks that use desktop file interfaces to
coordinate with other editors. This section mentions some of the ToolTalk
functions you need to include in your editor application so that it can perform
these optional tasks.

Requesting Modify, Revert, or Save Operations

The following functions can be used to request modify, revert, or save
operations:

• ttdt_Get_Modified

Using ToolTalk Messaging 199

18

• ttdt_Revert

• ttdt_Save

Notifying When a File Is Modified, Reverted, or Saved

The function ttdt_file_event can be used to notify other ToolTalk
applications that your application’s file has been modified, has reverted, or has
been saved.

Quitting a File

The function ttdt_file_quit unregisters interest in ToolTalk events about a
file and destroys the associated pattern.

200 CDE ToolTalk Programmer’s Guide

18

201

The Messaging Toolkit 19

The ToolTalk Messaging Toolkit is a higher-level interface of the ToolTalk
application programming interface (API). It provides common definitions and
conventions to easily integrate basic ToolTalk messages and functionality into
an application for optimum inter-operability with other applications that
follow the same message protocols.

Although most of the messages in the ToolTalk Messaging Toolkit are the
messages in the standard ToolTalk message sets, the functions of the Messaging
Toolkit transparently take care of several tasks that would otherwise need to be
coded separately. For example, the ttdt_file_join function will register a
pattern to observe Deleted, Reverted, Moved, and Saved notices for the
specified file in the specified scope; it also invokes a callback message.

General Description of the ToolTalk Messaging Toolkit

Inter-operability is an important theme if independently developed
applications are to work together. The messages in the toolkit have been agreed
on by developers of inter-operating applications; the protocols form a small,
well-defined interface that maximizes application autonomy.

The ToolTalk Messaging Toolkit plays a key role in application inter-operability
and offers complete support for messaging. The message protocol specification
includes the set of messages and how applications should behave when they
receive the messages. These messages can be retrofitted to any existing

202 CDE ToolTalk Programmer’s Guide

19

application to leverage the functionality of the application. You can easily add
these messages to existing applications to send, receive, and use shared
information.

Tools that follow the ToolTalk messaging conventions will not use the same
ToolTalk syntax for different semantics, nor will tools fail to talk to each other
because they use different ToolTalk syntax for identical semantics. If these
protocols are observed, cooperating applications can be modified, even
replaced, without affecting one another.

Most of the messages in the Messaging Toolkit are the messages in the
standard ToolTalk message sets. For detailed descriptions of the standard
ToolTalk message sets, see the ToolTalk Reference Manual. Table 20-1 lists the
functions described in this chapter that partly comprise the ToolTalk
Messaging Toolkit.

Table 19-1 ToolTalk Messaging Toolkit Functions

Toolkit Conventions

Most of the messaging conventions for the toolkit consist of descriptions of the
standard ToolTalk message sets. This section describes conventions not related
to any particular standard message set.

Function Description

ttdt_message_acc
ept

Accepts responsibility for handing a ToolTalk
request.

ttdt_session_joi
n

Joins a ToolTalk session and registers patterns and
default callbacks for many standard desktop
messages

The Messaging Toolkit 203

19

Table 19-2 ToolTalk Messaging Toolkit Function Fields

Using the Messaging Toolkit When Writing Applications

To use the toolkit, include the ToolTalk Messaging Toolkit header file:

#include <Tt/tttk.h>

Field Description

fileAttrib Indicates whether the file attribute of the message
can or needs to be set. The ToolTalk service allows
each message to refer to a file, and has a mechanism
(called “file-scoping”) for delivering messages to
clients that are “interested in” the named file.

opName The name of the operation or event (also called
“op”). It is important that different tools use the
same opName to mean the same thing. Unless a
message is a standard one, its opName must be
unique; for example, prefix the opName with
Company_Product (such as
Acme_HoarkTool_Hoark_My_Frammistat).

reqArgs Arguments that must be included in the message.

optionalArgs Extra arguments that may be included in a message.
Any optional arguments in a message must be in the
specified order and must follow the required
arguments.

vtypeargumentName A description of a particular argument. A vtype is a
programmer-defined string that describes what kind
of data a message argument contains. The ToolTalk
service uses vtypes only for matching sent message
instances with registered message patterns. Every
vtype should, by convention, map to a single, well-
known data type.

204 CDE ToolTalk Programmer’s Guide

19

Caution – The tttk functions cache some interned X atoms. This may cause
problems if an application closes its X server connection and then opens a new
X server connection.

Accepting Desktop Requests

The ttdt_message_accept() function registers in the default session for
the following TT_HANDLER-addressed requests:

• Get_Geometry, Set_Geometry, Get_Iconified,
Set_Iconified, Get_Mapped, Set_Mapped, Raise, Lower,
Get_XInfo

• Pause, Resume

• Quit, Get_Status

See the ttdt_message_accept man page and the man pages for each of
these requests.

Registering for Standard Desktop Messages

The ttdt_session_join() function joins a specified session and registers patterns
and default callbacks for many standard desktop message interfaces. In
particular, ttdt_session_join registers for the following TT_HANDLER-
addressed requests:

• Get_Environment, Set_Environment, Get_Locale,
Set_Locale, Get_Situation, Set_Situation, Signal,
Get_Sysinfo

• Get_Geometry, Set_Geometry, Get_Iconified,
Set_Iconified, Get_Mapped, Set_Mapped, Raise, Lower,
Get_XInfo

• Pause, Resume, Quit

• Set_Status, Do_Command

See the ttdt_session_join man page and the man pages for each of these
requests.

!

205

 ToolTalk Message Sets 20

Standard message sets help developers to develop applications that will
automatically integrate with applications developed by others that follow the
same message protocols. Extensive work has been done with leading software
suppliers and end-users to define standard message sets. The ToolTalk
Standard Message Sets (comprised of the ToolTalk Desktop Services Message
Set and the ToolTalk Document and Media Exchange Message Set) are higher-
level interfaces of the ToolTalk application programming interface (API) that
provide common definitions and conventions to easily achieve control and
data integration between applications.

206 CDE ToolTalk Programmer’s Guide

20

General ToolTalk Message Definitions and Conventions

In the ToolTalk messages there are terms used with specific ToolTalk
definitions. This section defines these terms and conventions used in the
ToolTalk message man pages.

Table 20-1 Document and Media Exchange Message Set Descriptions

Type of
Information Description

header A single line that describes the message in the following
format:

MsgName(Tt_class)
where MsgName is the name of the message and Tt_class is
either Request or Notice.

name The name of the message and a one-line description of the
message.

description An explanation of the operation (event) that the message
requests (announces).

ToolTalk Message Sets 207

20

synopsis A representation of the message in the ToolTalk types-file
syntax (similar to the syntax understood by the ToolTalk type
compiler tt_type_comp) in the following format:

<fileAttrib> <opName> (<requiredArgs> [<optionalArgs>]);
A synopsis entry is given for each interesting variant of the
message.
<fileAttrib> - An indication of whether the file attribute of

the message can/should be set.
<opName> - The name of the operation or event is called

the “op name” (or “op”). It is important that
different tools not use the same opName to
mean different things. Therefore, unless a
message is a standard one, its opName
should be made unique. A good way to do
this is to prefix it with:
<Company><Product> e.g.,
“Acme_Hoarktool_My_Frammistat”.

<requiredArgs>, <optionalArgs> -
The arguments that must always be included
in the message. A particular argument is
described in the following format:
 <mode> <vtype> <argument name>
where mode is one of “in”, ”out”, or “inout”,
vtype is a programmer-defined string that
describes what kind of data a message
argument contains; and argument name is the
name of the argument.

The ToolTalk service uses vtypes to match sent message
instances with registered message patterns. By convention, a
vtype maps to a single, well-known data type.

Table 20-1 Document and Media Exchange Message Set Descriptions (Continued)

Type of
Information Description

208 CDE ToolTalk Programmer’s Guide

20

Edict

An edict is a notice that looks like a request. If a request returns no data (or
if the sender does not care about the returned data), it can sometimes be
useful to broadcast that request to a set of tools. Since the message is a
notice, no data is returned, no replies are received, and the sender is not told
if any tool gets the message.

required arguments The arguments that must always be in the message.
 <vtype> <argumentName>
A description of a particular argument.

A ‘vtype’ is a programmer-defined string that describes what
kind of data a message argument contains. ToolTalk uses
vtypes for the sole purpose of matching sent message instances
with registered message patterns.
Every vtype should, by convention, map to a single, well-
known data type. The data type of a ToolTalk argument is
either integer, string, or bytes. The data type of a message or
pattern argument is determined by which ToolTalk API
function is used to set its value.
The argument name is merely a comment hinting to human
readers of the semantics of the argument, much like a
parameter name in a C typedef.

optional arguments The extra arguments that may be included in a message. Unless
otherwise noted, any combination of the optional arguments, in
any order, may be appended to the message after the required
arguments.

description An explanation of the operation that the request entreats, or the
event that the notice announces.

errors A list of the error codes that can be set by the handler of the
request (or the sender of the notice).

Table 20-1 Document and Media Exchange Message Set Descriptions (Continued)

Type of
Information Description

ToolTalk Message Sets 209

20

Handler

The handler is the distinguished recipient procid of a request. This procid is
responsible for completing the indicated operation.

Notice

A notice is a message that announces an event. Zero or more tools may
receive a given notice. The sender does not know whether any tools receive
its notice. A notice cannot be replied to.

Procid

A procid is a principal that can send and receive ToolTalk messages. A procid
is an identity (created and handed over by the ToolTalk service on demand
(via tt_open)), that a process must assume in order to send and receive
messages. A single process can use multiple procids; and a single procid can
be used by a group of cooperating processes.

Request

A request is a message that asks an operation to be performed. A request
has a distinguished recipient, called a handler, who is responsible for
completing the indicated operation. A handler may fail, reject, or reply to a
request. Any number of handlers may reject a request but ultimately only
one handler can fail it or reply to it. If no running handler can be found to
accept a request, the ToolTalk service can automatically start a handler. If no
willing handler can be found, or if a handler fails the request, then the
request is returned to the sender in the ‘failed’ state.

Errors

A Tt_status code can be read from a reply via tt_message_status . This
status defaults to TT_OK, or can be set by the handler via
tt_message_status_set . In extraordinary circumstances (such as no
matching handler) the ToolTalk service itself sets the message status.

In addition to the Tt_status values defined by the ToolTalk API, the
overview reference page for each set of messages lists the error conditions
defined for that set of messages. For each error condition, the overview
reference page provides

• Its name
• Its integer value

210 CDE ToolTalk Programmer’s Guide

20

• A string in the “C” locale that explains the error condition.

Since the ToolTalk Inter-Client Conventions (TICC) are a binary message
interface, the integer and string are part of that binary interface; the name is
not.

• The integer values of these status codes begin at 1537
(TT_ERR_APPFIRST + 1). The first 151 codes correspond to the system
error list defined in intro(2) .

A standard programming interface for these conventions, which binds the
name to the integer value, does not yet exist.

The ToolTalk service allows an arbitrary status string to be included in any
reply. Since a standard localized string can be derived for each status code, this
status string may be used as a free-form elucidation of the status. For example,
if a request is failed with TT_DESKTOP_EPROTO, the status string could be set
to “The vtype of argument 2 was ‘string’; expected
‘integer’ ”. Handling tools should try to compose the status string in the
locale of the requestor. See the Get_Locale request.

General ToolTalk Development Guidelines and Conventions

Open protocols are encouraged. A protocol is open largely to the extent that it
contains an anonymous message (that is, messages that are sent without
knowledge of who is to receive them). This section provides guidelines to help
you independently develop applications that will successfully interact with
any other application that supports the message protocol. These guidelines and
principles help ensure that two independently-developed applications will be
able to initiate and maintain conventions; and, thus, interact with each other.
By following these guidelines, you will enable users of your application to
better control and customize their environment.

When you write a ToolTalk application, you need to follow these principles:

1. Always make requests anonymous.

2. Let tools be started as needed.

3. Reply to a request only when the requested operation has been completed.

4. Avoid statefulness whenever possible.

5. Declare one ptype for each role a tool can play.

ToolTalk Message Sets 211

20

Always Make Anonymous Requests

To design your application to be completely open, you want the requests to be
completely anonymous, that is, the requesting process has no knowledge of
which tool instance — or even which tool type — will perform the requested
operation. If the requests are sent to a specific process, you unnecessarily
restrict how users or potential message recipients can use their resources. If the
requests are sent to a specific tool type, you unnecessarily restrict the other
kinds of tools that can interact with your tool.

You want your message to describe the operation being requested or the event
being reported. You do not want your message to describe the process that
should receive the message. The less specific knowledge each tool encodes
about the tools with which it will interact, the more flexible the overall system
is for the user.

Let Tools Be Started as Needed

To design your protocol to be completely open, you want the system to start
tools only as needed. When you let a new tool instance be started only as
needed, you provide the user with more flexibility and more efficient use of
resources such as CPU, screen real estate, and swap space. The ToolTalk service
has several features that assume the responsibility of determining when to start
a new tool instance:

• The ToolTalk service allows messages and type signatures to have “start”
reliability. Start reliability means that if no eligible recipient of a message is
running (or is willing to accept the request), the ToolTalk service will start
an instance of the type of tool that is statically registered to handle or
observe that message.

• The ToolTalk service allows each process type (ptype) to specify the
maximum number of its instances that may be started in a given session.

• The ToolTalk service offers each request to all eligible running handlers
before it starts a new tool instance. An eligible handler can accept or reject a
request based on its own criteria (such as its ability to take on a new task;
whether or not it has unsaved changes; idle time; iconic state; or whether or
not the user has indicated that the tool is free to accept new work).

212 CDE ToolTalk Programmer’s Guide

20

Reply When Operation has been Completed

To design your application to be completely open, you want to notify the
sending process that its requested operation has been performed; however, the
operation invoked by a request sometimes takes a relatively long time to
complete compared to the very brief time it takes to send the message. Since
the sending process is expecting a reply, your tool can respond in one of two
ways:

1. It can reply immediately that it has received the request and then convey the
actual results of the completed operation in a later message.

2. It can withhold the reply until the operation has been completed.

We recommend the second policy because ToolTalk messaging is entirely
asynchronous: neither a tool (nor the session it is in) is blocked because it has
one or more requests outstanding.

Avoid Statefulness Whenever Possible

To design your application to be open, you want each message to make sense
by itself whenever possible. When a protocol is stateless, the messages in it
avoid dependency on any previous messages or on some state in the assumed
recipient.

Declare One Process Type per Role

A ToolTalk protocol is expressed in terms of the roles that each tool plays (that
is, the kinds of tasks each tool is assigned to perform). A ToolTalk ptype
essentially instructs the ToolTalk service how to handle any messages in which
a tool is interested that are sent when that tool is not running. To design your
protocol to be open, you want to declare one ptype for each role in your
protocol. When you declare only one ptype per role in your protocol, you
provide users with the flexibility to interchange tools as their needs require.
For example, a user may want a sophisticated sound-authoring tool for
recording but also prefers a simple audio tool to perform the playback.

Thus, you will sometimes want to include only one message signature per
ptype. When you include more than one message signature in the same ptype,
you are requiring that any program that can handle one message can handle
the other messages. For example, a ptype “UWriteIt” can include the two

ToolTalk Message Sets 213

20

message signatures “Display“ and “Edit” because it is expected that any tool
that understands the UWriteIt document format can perform both of these
operations.

Developing ToolTalk Applications

Developing ToolTalk-aware applications is a design process. You can enable
your application to send and receive ToolTalk messages in a simple three-step
process:

1. Determine how your application is to interact with other applications, and
with users.

2. Select messages and define their use within the context of your application.

3. Integrate ToolTalk calls and messages into your code.

Note – A demonstration of how you can easily add ToolTalk capability to your
existing applications has been integrated with the ToolTalk software product.

♦ Define how the tools will work together and what operations must be
performed.

A clear understanding of what types of communications your application will
require is a critical factor in successful application integration. The best
approach to analyzing this issue is to define scenarios that represent how your
application will be used. From these scenarios you will be able to determine
what interaction needs to take place and what information needs to be
exchanged. Detailed scenarios that show exactly what information and status
is being passed will greatly help you integrate messaging into your
application.

♦ Select the appropriate messages that accomplish these tasks.

Once you have determined how your applications will interact with other
applications and users, you must determine the specific messages needed to
accomplish the required tasks.

First, look at the standard message sets available from industry groups such as
ANSI, X3H6, and CFI. Use of these messages is strongly recommended for two
reasons:

214 CDE ToolTalk Programmer’s Guide

20

1. The standard messages provide your application with a well-known and
documented interface. This interface allows other developers to
independently develop applications that can interface with your work. In
addition, it provides an interface around which your customers can build
integrated systems.

2. The standard message sets provide your application with the “universal
plug-and-play” capability. This capability allows you to provide your
customers with the flexibility to use multiple applications to provide a
service. By giving your customers a choice of applications to use, they can
pick the best tool for a particular job and you are not forced to offer features
that you feel your product does not need.

If the standard message sets do not support your design, you will need to
develop custom messages.

♦ Integrate ToolTalk calls and messages into your application.

Once you have completed the design aspect, you are ready to add the ToolTalk
capabilities into your application.

First, you need to include the ToolTalk header file in all files that will use
ToolTalk API calls. You will also need to register and initialize the patterns that
control the sending and receiving functions.

Next, add the ability to send ToolTalk messages to your code. Based on the
knowledge gained from designing the scenarios, it is very straightforward to
determine what routines need to send what messages, and what the arguments
for each message should be.

Once the ToolTalk service is initialized, your application uses the ToolTalk API
calls to create and fill in messages to be sent to other applications.

• If your applications uses a windowing system, you only need to add the
calls to activate the ToolTalk service in the event polling loop.

• If your application does not already use a polling loop, you need to create a
simple loop that periodically checks for messages.

The ToolTalk Desktop Services Message Set

In order to achieve basic desktop integration, applications need to support a
basic set of messages to enable inter-application control. The ToolTalk Desktop
Services Message Set is the common message set that provides this functionality

ToolTalk Message Sets 215

20

for all applications. A powerful messaging protocol that benefits both
developers and users of desktop applications, the ToolTalk Desktop Services
Message Set allows applications to easily interact with other desktop
applications. Using the ToolTalk Desktop Services Message Set applications can
communicate with each other in a transparent manner, both locally and over
networks.

Why the ToolTalk Desktop Services Message Set was Developed

In order to provide integrated control of applications, certain basic features are
needed to launch, halt, control display appearance, and pass information
regarding input and output data. All applications need to have these facilities
so that other applications in the toolset can inter-change basic control
information. This kind of functionality enables the development of smart
desktops and integrated smart toolsets. Groups of applications can now call on
each other to perform tasks and to interact as one solution environment for the
end-user.

Key Benefits of the ToolTalk Desktop Services Message Set

The ToolTalk Desktop Services Message Set offers developers two key benefits:

1. Allows basic control of applications without direct intervention from the
user. Routine or common procedures may be automated for the convenience
of the user.

2. Allows tool specialization through a common set of interactions. All
ToolTalk aware applications can perform these functions.

General Description of the ToolTalk Desktop Services Message Set

The ToolTalk Desktop Services Message Set conventions apply to any tools in a
POSIX or X11 environment. In addition to standard messages for these
environments, the Desktop conventions define data types and error codes that
apply to all of the ToolTalk inter-client conventions. The request and
notification messages that comprise the ToolTalk Desktop Services Message Set
are listed in Table 20-2.

216 CDE ToolTalk Programmer’s Guide

20

Desktop Definitions and Conventions

This section defines terms and error messages unique to the Desktop Services
message set. Specific to the desktop services messages are values associated
with fields as described in Table 20-3.

Table 20-2 The ToolTalk Desktop Services Message Set

Requests Notifications

Get_Modified Modified, Reverted

Get_Status Moved

Get_Sysinfo Saved

Pause, Resume Started, Stopped

Quit Status

Raise, Lower

Save, Revert

Set_Environment,
Get_Environment

Set_Geometry, Get_Geometry

Set_Iconified, Get_Iconified

Set_Locale, Get_Locale

Set_Mapped, Get_Mapped

Set_Situation, Get_Situation

Get_XInfo

Signal

ToolTalk Message Sets 217

20

Table 20-3 Values Associated with Fields

Field Associated Value

boolean A vtype for logical values. The underlying data type of boolean is
integer; manipulate arguments of this vtype with
tt_*_arg_ival[_set]() and tt_*_iarg_add() . A zero value
means false; a non-zero value means true.

buffer A volatile, non-shared (for example, in-memory) representation of
persistent data.

bufferID A vtype that uniquely identifies buffers. The underlying data type of
bufferID is string. To guarantee bufferID uniqueness, use the form

<internal_counter> <procID>

messageID A vtype that uniquely identifies messages. The underlying data type
of messageID is string; manipulate arguments of this vtype with
tt_*_arg_val[_set]() and tt_*_arg_add() . To guarantee
messageID uniqueness, use the form

<internal_counter> <procID>
tt_message_id() returns an opaque string of similar uniqueness.
Use tt_message_id() to generate a message’s messageID; however,
the inter-client conventions explicitly include the messageID as a
message argument to support inter-operation with other versions of
the ToolTalk service.

type Any vtype that is the name of the kind of objects in a particular
persistent-object system. For example, the vtype for the kind of objects
in filesystems is File; the vtype for ToolTalk objects is ToolTalk_Object.

vendor
toolName
toolVersion

Names of arguments. These strings appear in several of the Desktop
Service messages. These strings are not defined rigorously; they are
intended to present to the user descriptions of these three attributes of
the relevant procid.

view A screen display, such as a (portion of a) window, that presents to the
user part or all of a document.

viewID A vtype that uniquely identifies views. The underlying data type of
viewID is string. To guarantee viewID uniqueness, use the form

<internal_counter> <procID>

218 CDE ToolTalk Programmer’s Guide

20

Errors

Table 20-4 describes the Desktop Services error messages; the error messages
are listed in order of their message ID.

Table 20-4 Desktop Services Error Messages

Message
 ID Error Message

Error Message
String Description

1538 TT_DESKTOP_ENOENT No such file
or directory

1549 TT_DESKTOP_EACCES Permission
Denied

1558 TT_DESKTOP_EINVAL Invalid
argument

An argument’s value was
not valid; for example, a
locale in Set_Locale that is
not valid on the handler’s
host. Use this error status
only when a more-specific
error status does not apply.

1571 TT_DESKTOP_ENOMSG No message
of desired
type

A messageID does not refer
to any message currently
known by the handler.

1610 TT_DESKTOP_EPROTO Protocol
error

A message was not
understood because:
a. A required argument was omitted.
b. An argument has the wrong vtype,
or the vtype is not allowed in this
message; for example, the vtype
boolean in the Get_Geometry
message.
c. An argument’s value is not legal
for its vtype; for example, negative
values for width in the
Set_Geometry message.
d. An argument’s value is not legal
for this message; for example, the
PATH=/foo variable in
Get_Environment message.
In general, this error status
indicates that the message is
malformed.

ToolTalk Message Sets 219

20

1688 TT_DESKTOP_CANC
ELED

Operation was
canceled

The operation was canceled
because of direct or indirect
user intervention. An
example of indirect
intervention is the user
terminating the handling
process, or receipt of a Quit()
request. (All messages
should be taken as
authentically representing
the wishes of the user whose
uid is indicated by
tt_message_uid().)

1689 TT_DESKTOP_ENOTS
UP

Operation not
supported

The requested operation is
not supported by this
handler. This error indicates
that a handler assumes that,
if it rejects a request, no
other handler will be able to
perform the operation. For
example, a request such as
Set_Iconified() or a request
that refers to a state (such as
a bufferID) that is managed
by this handler alone. A
request failed with this error,
distinguishes the case of an
incompletely-implemented
handler from the case of the
absence of a handler.
Note: Do not use
TT_ERR_UNIMP in place of
TT_DESKTOP_ENOTSUP as
TT_ERR_UNIMP means that a
particular feature of ToolTalk itself
is not implemented.

1699 TT_DESKTOP_
UNMODIFIED

Operation does
not apply to
unmodified
entities

Table 20-4 Desktop Services Error Messages (Continued)

Message
 ID Error Message

Error Message
String Description

220 CDE ToolTalk Programmer’s Guide

20

Warning – The vtype namespace for persistent objects currently only contains
File and ToolTalk_Object . Vendors who want to define a type should give
it a vendor-specific name.

Table 20-5 lists each of the generic messages that constitute the ToolTalk
Desktop Services Message Set. For details, see the Section 4 man pages.

Table 20-5 ToolTalk Desktop Services Message Set

Message Description

Get_Modified (Request) Asks whether an entity (for example, a file) has
been modified.

Get_Status (Request) Requests that a tool’s current status be returned.

Get_Sysinfo (Request) Retrieves information about a tool’s host.

Modified , Reverted (Request) Notifies that an entity (for example, a file) has
been either modified or reverted to its prior state.

Pause , Resume (Request) Requests the specified tool, operation, or data
performance to pause or resume.

Quit (Request) Requests that an operation, or an entire tool,
terminate.

Raise , Lower (Request) Raises or lowers a tool’s window(s) to the front or
back, respectively.

Save , Revert (Request) Saves or discards any modifications to an entity
(for example, a file).

Saved (Notice) Notifies that an entity (such as a file) has been
saved to persistent shortage.

Set_Environment ,
Get_Environment (Request)

Requests that a tool’s environment either be set or
retrieved.

Set_Geometry ,
Get_Geometry (Request)

Requests that a tool’s on-screen geometry either
be set or retrieved.

Set_Iconified ,
Get_Iconified (Request)

Requests that a tool’s iconic state be set or
retrieved.

Set_Locale ,
Get_Locale (Request)

Sets or retrieves a tool’s locale.

ToolTalk Message Sets 221

20

The ToolTalk Document and Media Exchange Message Set

The ToolTalk Document and Media Exchange Message Set allows applications
to easily share each other’s multimedia functionality. Using the ToolTalk
Document and Media Exchange Message Set, multimedia applications can
communicate with each other in a transparent manner, both locally and over
networks, regardless of data formats, compression technology, and other
technical issues which has previously confined the use of this technology.

Why the ToolTalk Document and Media Exchange Message Set was
Developed

While a few vendors have established inter-operability alliances, the range of
possible end-user solutions as been restricted. The ToolTalk Document and
Media Exchange Message Set allows any application to transparently share a
set of multimedia functions with any other application.

Applications that use these simple protocols can quickly and easily create a
ToolTalk interface to an array of multimedia services without concern for a
particular service provider. Entire groups of applications can now plug-and-play
together, integrating sound, video, graphics, telephony, and other media
sources into new and exciting applications. The term plug-and-play means that
any tool can be replaced by any other tool that follows the same protocol. That
is, any tool that follows a given ToolTalk protocol can be placed (plugged) into

Set_Mapped ,
Get_Mapped (Request)

Requests that a tool’s mapping to the screen be set
or retrieved.

Set_Situation ,
Get_Situation (Request)

Requests that tool’s current working directory be
set or reported.

Get_XInfo (Request) Requests that a tool’s X11 attributes be set or
retrieved.

Signal (Request) Requests that a (POSIX-style) signal be sent to a
tool.

Started ,
Stopped (Notice)

Notifies that a tool has started or terminated.

Status (Notice) Notifies that a tool has status information to
announce.

Message Description

222 CDE ToolTalk Programmer’s Guide

20

your computing environment and will perform (play) those functions
indicated by the protocol. Tools can be mixed and matched, without
modification and without having any specific built-in knowledge of each other.
For example, you could create a word processing application that integrates a
piece of video into a composition and have the video played by another
application.

The ToolTalk Document and Media Exchange Message Set is an efficient set of
generic message definitions that provide media control and data exchange. The
protocol consists of editor messages for media players, editors, and users.

Key Benefits of the ToolTalk Document and Media Exchange Message Set

The ToolTalk Document and Media Exchange Message Set offers developers
two key benefits:

1. Ease of multimedia integration to new and existing software.

Adding multimedia functionality to any application is now vastly
simplified. The ToolTalk Document and Media Exchange Message Set allows
you to use other developers’ multimedia technologies, thus reducing your
development time and expenses while increasing your system functionality.

2. Creates a framework that extends the range of end-user solutions.

By providing application inter-operability, the ToolTalk Document and
Media Exchange Message Set allows end-users and other developers to
create new vertical solutions. These solutions, in turn, create new
opportunities for your products by opening markets that were previously
beyond their scope.

ToolTalk Message Sets 223

20

General Description of the ToolTalk Document and Media Exchange Message Set

The ToolTalk Document and Media Message Set allows a tool to be a container
for arbitrary media, or to be a media player/editor that can be driven from
such a container. The ToolTalk Document and Media Exchange Message Set is
composed of several request messages, listed in Table 20-6

These messages are oriented towards creating, editing, and using documents of
a certain media type. The conventions for this message set allow a container
application to compose, display, edit, print, or transform a document of an
arbitrary media type without understanding anything about the format of that
media type. The ToolTalk service routes container requests to the user’s
preferred tool for the given media type and operation, including routing the
request to an instance of the tool that is already running if that instance is best-
positioned to handle the request.

Media Exchange Definitions and Conventions

Media exchange messages are sent and received by tools that display or edit
some kind of media. Specific to the media exchange messages are values
associated with fields. The parts of a Media Exchange message are defined as
follows:

<document>

A vector of bytes with an associated mediaType.

Table 20-6 ToolTalk Document and Media Exchange Message Set

Requests Notices

Deposit There are no notices in the ToolTalk
Document and Media Exchange
Message Set.

Display

Display, Edit

Edit

Print

Translate

224 CDE ToolTalk Programmer’s Guide

20

<mediaType>

The name of a media format. The mediaType allows messages about that
document to be dispatched to the right editor. Standard mediaTypes include
those listed in Table 20-7.

Note – The mediaType list will be extended as required. You can extract a list
of the installed mediaTypes from the ToolTalk Types Database.

abstract mediaType

A family of similar mediaTypes, such as flat text or structured graphics.

Table 20-7 Standard Media Types

Name of Format Description Company

ISO_Latin_1 ISO 8859-1 (+TAB+NEWLINE) ISO

EUC Multi-National Lang. Supplement AT&T

PostScript PostScript Lang. Ref. Manual Adobe

TIFF "TIFF Rev. 5" Technical Memo Aldus/Microsoft

GIF Graphics Interchange Format CompuServe

XPM XPM -- The X PixMap Format Groupe Bull

JPEG ISO/CCITT

JPEG_Movie Parallax

RFC_822_Message RFC 822 NIC

MIME_Message RFC MIME NIC

UNIX_Mail_Folder

RTF MS Word Technical Reference Microsoft

EPS

DT_APPOINTMENT HP, Sun, IBM,
Novell

Sun_CM_Appointment Sun

ToolTalk Message Sets 225

20

vector

A string vtype describing a distance and a direction in a document. The
syntax of vectors varies by abstract mediaType.

locator

A string describing a location in a document. The syntax of locators varies
by abstract mediaType, but should usually be a superset of vector syntax.

flat text

A family of mediaTypes (such as ISO_Latin_1) that consist of a sequence
of characters from some character set.

Legal vectors for flat text are:

lineVec ::= Line:[-][0-9]+
charVec ::= Character:[-][0-9]+
vector ::= <lineVec>
vector ::= [<lineVec>,]<charVec>

Legal locators for flat text are vectors.

time-based media

A family of media types that consist of time-structured data.

Legal vectors for time-based media include:

vector ::= uSeconds:[-][0-9]+
vector ::= Samples:[-][0-9]+

Legal locators for time-based media are vectors.

Errors

These definitions are common to all Document and Media Exchange messages.
Any differences or additions will be noted in the man pages.

1700 TT_MEDIA_ERR_SIZE

The specified size was too big or too small.

1701 TT_MEDIA_ERR_FORMAT

The data does not conform to the specified format.

226 CDE ToolTalk Programmer’s Guide

20

Table 20-8 lists each of the messages that constitute the ToolTalk Document and
Media Exchange Message Set. For details see the Section 4 man pages.

Table 20-8 ToolTalk Document and Media Exchange Message Set

Message Description

Deposit (Request) Saves the document to its backing store.

Display (Request) Displays a document.

Display , Edit (Request) Loads an X11 selection for display or edit.

Edit (Request) Edits or composes a document.

Print (Request) Prints a document.

Translate (Request) Translates a document from one media type to
another media type.

227

Frequently Asked Questions A

This appendix contains answers to the following questions about the ToolTalk
service:

What is the ToolTalk service

What files are part of the ToolTalk service

Where is the initial X-based ttsession started

Where is rpc.ttdbserverd started

Where are the ToolTalk type databases stored

Do I need X Windows to use the ToolTalk service

Can I use the ToolTalk service with MIT X

Where is the session id of the X-session

How does tt_open connect to a ttsession

After calling tt_open, when does a session actually begin

If another session is attached, does the first session get killed

How can processes on different machines communicate using the ToolTalk service

What is the purpose of tt_default_session_set

228 CDE ToolTalk Programmer’s Guide

A

How can a process connect to more than one session

Can you start a ttsession with a known session id

What information does a session id contain

Is there a standard way to announce that a new program has joined a session

Where is my message going

What is the basic flow of a message

What happens when a message arrives to my application

How can I differentiate between messages

Can a process send a request to itself

Can I pass my own data to a function registered by tt_message_callback_add

How can I send arbitrary data in a message

Can I transfer files with the ToolTalk service

How are memory (byte) ordering issues handled by the ToolTalk service

Can I re-use messages

What happens when I destroy a message

Can I have more than one handler per message

Can I run more than one handler of a given ptype

What value is disposition in a message

What are the message status elements

When should I use tt_free

What does the ptype represent

Why are my new types not recognized

Can I declare a ptype that is not in the types database

Is ptype information used if a process of that ptype already exists

Frequently Asked Questions 229

A

Can the ptype definition be modified to always start an instance (whether or not one is
already running)

What does tt_ptype_declare do

What is TT_TOKEN

When are my patterns active

Must I register patterns to get replies

How can I observe requests

How do I match to attribute values in static patterns

Why am I unable to wildcard a pattern for TT_HANDLER

Can I set a pattern to watch for any file scoped message

Is file scope in static patterns the same as file_in_session scope

What is the difference between arg_add, barg_add, and iarg_add

What is the type or vtype in a message argument

How do I use contexts

How does ttsession check for matches

How many kinds of scope does the ToolTalk service have

What are the tt_db directories, and what is the difference between the types database and the
tt_db directories

What should the tt_db databases contain

What does rpc.ttdbserver do

Do ttsession and rpc.ttdbserver ever communicate

What message bandwidth can be supported

Is there a limit to the message size or the number of arguments

What is the most time efficient method to send a message

230 CDE ToolTalk Programmer’s Guide

A

What network overhead is involved

Does the ToolTalk service use load balancing to handle requests

What resources are required by a ToolTalk application

What happens if the ttsession exits unexpectedly

What happens if rpc.ttdbserver exits unexpectedly

What happens if a host or a link is down

What does tt_close do

Is message delivery guaranteed on a network

Is there a temporal sequence of message delivery

What is unix, xauth, and des

Can my applications hide messages from each other

Is there protection against interception or imitation

Where are queued messages stored and how secure is the storage

Is the ToolTalk service C2 qualified

How can I trace my message’s progress

How can I isolate my debugging tool from all the other tools using the ToolTalk service

Can I use the ToolTalk service with C++

Should I qualify my filenames

Can you tell me about ToolTalk objects

Is there a ToolTalk news group

Frequently Asked Questions 231

A

▼ What is the ToolTalk service?
The ToolTalk service enables independent applications to communicate with
each other without having direct knowledge of each other. Applications create
and send ToolTalk messages to communicate with each other. The ToolTalk
service receives these messages, determines the recipients, and then delivers
the messages to the appropriate applications.

▼ What files are part of the ToolTalk service?
The ToolTalk files are normally found in the /usr/dt/bin , /usr/dt/lib ,
/usr/dt/include/Tt , and man/man1 directories. Table A-1 describes the
files.

▼ Where is the initial X-based ttsession started?
The first call to tt_open automatically starts ttsession if no ttsession is
running; however, when using the Common Desktop Environment, ttsession
is normally started when a user logs in to the desktop.

Table A-1 ToolTalk Files

File Name Description

ttsession Communicates on the network to deliver messages.

rpc.ttdbserverd Stores and manages ToolTalk object specs and information on
files referenced in ToolTalk messages.

ttcp, ttmv,
ttrm, ttrmdir,
tttar

Standard operating system shell commands.
These commands inform the ToolTalk service when files that
contain ToolTalk objects or files that are the subject of
ToolTalk messages are copied, moved, or removed.

ttdbck Database check and recovery tool for the ToolTalk databases.

tt_type_comp Compiles the ptype and otype files, and automatically
installs them in the ToolTalk Types database.

libtt.a,
libtt.sl, and
tt_c.h, tttk.h

Application programming interface (API) libraries and
header file that contain the ToolTalk functions used by
applications to send and receive messages.

232 CDE ToolTalk Programmer’s Guide

A

▼ Where are the ToolTalk type databases stored?
The environment variable TTPATH tells the ToolTalk service where the ToolTalk
Types databases reside. The format of this variable is:

userDB[:systemDB[:networkDB]]

Note – The type files are read in reverse order of TTPATH.

This environment variable also tells the ToolTalk service where to search for
database server redirection files. The default locations are listed in Table A-2.

▼ Do I need X Windows to use the ToolTalk service?
The ToolTalk service does not use X messages or protocols to deliver messages.
The ToolTalk service is only associated with X Windows if you run an X
session.

When you run an X session, the session name is advertised as a property
(named TT_SESSION) on the root window of the X server. Every process that
names that X server as its display gets that X session as its default session.
Since the X session is defined to be the group of processes displaying on a
particular X display, you do need to run X Windows by definition but not
because the ToolTalk service requires you to use it.

If there is no X server running at all (for example, you are running a session
that consists entirely of character-mode applications running on a dumb
terminal), use a process tree session. When you run a process tree session, the
session name is advertised in the environment variable TT_SESSION. This
session is the default session for every process in the tree of processes
descending from the process that set the environment variable.

Table A-2 Default Locations of ToolTalk Types Database

Database Location

user ~/.tt

system /usr/dt/appconfig/tttypes

Frequently Asked Questions 233

A

▼ Can I use the ToolTalk service with MIT X?
Yes; however, the SHLIB_PATH must point to /usr/dt/lib for the libtt.sl
file.

▼ Where is the session id of the X-session?
To get this identifier, enter the following command:

xprop -root | grep TT_SESSION

Note – An X session is a session that advertises its session id on the
TT_SESSION property of root window.

▼ How does tt_open connect to a ttsession?
After some internal initialization, tt_open tries to find a ttsession.

1. tt_open checks whether the environment variable TT_SESSION is set.

If this environment variable is set, it uses the value as the id of the
ttsession .

If this environment variable is not set, it checks to see if the DISPLAY
environment variable is set.

• If this environment variable is set, it uses the value as the id of the
ttsession .

• If this environment variable is not set, it checks to see if the TT_SESSION
property on root X window (of the machine running the display) is set.

In the event that none of these environment variables are set, it will start a
ttsession itself.

2. tt_open 'pings' the ttsession to make sure it is active.

3. tt_open checks the environment variable TT_TOKEN to determine whether
the client was started from a start command for the ptype.

Once the start ptype is determined, tt-open creates a procid.

234 CDE ToolTalk Programmer’s Guide

A

4. tt_open creates a TCP/IP socket on the client side to which ttsession
connects.

Activity on the socket is noticed via the socket's associated file descriptor.
ttsession only uses this channel to notify the client of incoming
messages.

Note – Call tt_close on this file descriptor; do not call the close function. If
you call the close function on the file descriptors returned by tt_fd , your file
descriptor count will rise upon successive tt_open and close calls.

5. tt_open refreshes the database hostname redirection map.

▼ After calling tt_open, when does a session actually begin?
If the default session is an X session and there is no ttsession running,
libtt starts one; otherwise, the ttsession must be started first in order to
get the session name.

▼ If another session is attached, does the first session get killed?
No. The first session will still be running.

▼ How can processes on different machines communicate using
the ToolTalk service?

There are two ways in which processes on different machines can communicate
using the ToolTalk service.

1. They can connect to the same session.

2. They can scope to a file that is NFS mounted on the machines involved.

Connecting to the Same Session
To connect the processes to the same session, you first need to determine a
common interest for the processes (for example, a scheme that associates a
session name with the common interest of the processes) and then you need to
determine how to propagate the session name to all of the processes. The

Frequently Asked Questions 235

A

ToolTalk service does not provide a mechanism to distribute the session
address (other than the possible advertisement of a session id on the
TT_SESSION property of the root windows of X servers).

To get a session name, you can use the command

ttsession -p

which forks off a new session and prints its name to stdout ; or you can the
command:

ttsession -c

which sets the environment variable $TT_SESSION to the session id.

You then need to use some mechanism to put that session name in a place
where the other processes can find it. Some examples of where you can place
the session name are:

• a shared file
• a .plan file
• a mail message
• a separate RPC call of your own design
• NIS

For example, one approach using a well-known file in a NFS-exported file
system can be done as follows:

a. Start ttsession with the following command:

ttsession -p >/home/foo/sessionaddress

b.

c. Ensure that the clients use the session address from the file; for example,
wrap the clients in a shell script which reads the session address and sets
TT_SESSION as follows:

 #!/bin/csh
 setenv TT_SESSION ‘cat /home/foo/sessionaddress‘
 exec client-program

d.

Alternately, the processes can use the session name in the
tt_default_session_set call to connect to that session.

236 CDE ToolTalk Programmer’s Guide

A

You could also send messages in the ttsession associated with a particular X
server to advertise the newly-created ttsessions.

Scoping to a NFS-mounted File
File scoping is when a process registers a file scope pattern. The name of that
session is placed on a list in rpc.ttdbserverd that is associated with the
registered file. When a file-scoped message is sent, the ToolTalk service
retrieves the list of sessions for the file and forwards the message to each of the
sessions on the rpc.ttdbserverd list for that file.

Note – To scope to a file that is NFS-mounted on the machines involved
requires a file system to be NFS mounted on all the systems and
rpc.ttdbserverd to be run on the NFS server.

▼ What is the purpose of tt_default_session_set?
tt_default_session_set determines the ttsession to which a call to
tt_open will connect.

▼ How can a process connect to more than one session?
Table A-3 describes several default variables that are used when
communicating with the ToolTalk service.

Table A-3 Some Default Variables

Variable Description

procid Set by tt_open .
This variable identifies the client to ttsession .

ptype Set by tt_ptype_declare.

file Set when you join a file.
If no file is set in the message, the file attribute is set to the
default file.

Frequently Asked Questions 237

A

If you use the API functions for getting and setting the procid, your application
can switch between multiple sessions. For example:

connect to session 1
store the default procid in filename
connect to session 2,
store the default procid filename
restore associated default procid
interact with particular_session

Note – The default file and ptype are part of the current default procid.
Changing the default procid also changes the default file and ptype to the
default file and ptype associated with that procid.

▼ Can you start a ttsession with a known session id?
No. You have to get the session id from the ToolTalk service.

▼ What information does a session id contain?
The session id consists of a number of fields, including:

• Version of address format
• Unix pid of process
• RPC Transient Program Number
• Unused version (compatibility holdover)
• Authorization level
• User id
• Host IP address
• RPC version

Caution – The format of a session id is a private interface. Do not write
ToolTalk clients that depend on the format of a session id.!

238 CDE ToolTalk Programmer’s Guide

A

▼ Is there a standard way to announce that a new program has
joined a session?

Broadcast a notice message to notify interested processes when a new process
joins a session. To observe notice messages, a process that want to be notified if
a new process joins a session must register patterns to observe these notices.

Note – The Desktop Services "Started" message was developed for this
purpose.

▼ Where is my message going?
Use the -t (trace mode) at start-up to observe how ttsession processes each
message you send. You can also toggle the trace mode on and off by sending
ttsession a USR1 signal; for example:

kill -USR1 <ttsession_pid>

Alternatively, you can use the ttsnoop utility to monitor a message with very
general patterns.

▼ What is the basic flow of a message?

Session-Scoped Message Flow
The basic flow of a session-scoped message is as follows:

1. The client builds request message and calls tt_message_send .

2. ttsession finds a handler.

The environment variable TT_TOKEN is set by ttsession when it starts the
handler.

3. The handler starts up and calls tt_open and tt_fd to establish
communication to ttsession .

4. The handler declares its ptype to ttsession .

Frequently Asked Questions 239

A

5. ttsession changes all the static patterns for the ptype into dynamic
patterns.

At this point, the patterns are not active because the handler has not yet
joined the session.

6. The handler joins session, activating patterns.

7. ttsession notifies the handler that a message is queued.

8. The handler notices activity on the file descriptor and calls
tt_message_receive to retrieve the message.

If the message returned by tt_message_receive has the status
TT_WRN_START_MESSAGE, the ToolTalk service started the process to
deliver the message. In this case, messages for the ptype are blocked until
the process either replies, rejects, or fails the message (even if it is a notice),
or calls tt_message_accept .

9. The handler performs the requested operation.

10. The handler returns a reply to request.

11. ttsession notifies the client that a (reply) message for it is in the queue.

The client’s file descriptor is activated.

Note – The client actually receives a message every time its request message
changes state.

12. The client calls tt_message_receive to retrieve the result.

File-Scoped Message Flow
The basic flow of a file-scoped message is as follows:

1. A file-scoped pattern is registered.

libtt notifies the database server about the file and the session in which it
is registering the pattern.

2. libtt checks with the database server to find all the sessions that have
clients who have registered interest in the specified file.
• For notices, it communicates with all these sessions directly.

240 CDE ToolTalk Programmer’s Guide

A

• For requests, it notifies its session about the message and the list of other
sessions involved.

3. The sessions communicate amongst each other to find a handler.

▼ What happens when a message arrives to my application?
When a message arrives to your application, the following occurs:

1. The file descriptor becomes active.

2. The Xt main loop breaks out of its select and calls the function registered by
the XtAppAddInput call.

3. The registered function calls tt_message_receive .

The message is read in and any callbacks associated with the message are
run.

4. The message callback returns.
• If the message callback returns TT_CALLBACK_PROCESSED,

tt_message_receive returns a value of null to the input callback.
• If the message callback returns TT_CALLBACK_CONTINUE, a Tt_message

handle for the message is returned.

5. The input callback continues with any other processing.

For example, the following input callback

input_callback(...)
{
 Tt_message m;
 printf ("input callback entered\n");
 m = tt_message_receive();
 printf ("input callback exiting, message handle is %d\n",
 (int)m);
}

and the following message callback

message_callback(...)
{
 printf("message callback entered\n");
 return TT_CALLBACK_PROCESSED;
}

Frequently Asked Questions 241

A

results in the following output

input callback entered
message callback entered
input callback exiting, message handle is 0

▼ How can I differentiate between messages?
You can differentiate between messages as follows:

• Each message has an identifier that uniquely identifies the message across
all running ttsessions.

• You can use the tt_message_user call to include information on a user
cell to associate the message to the application's internal state.

• Message handles remain the same. For example, the following code tells you
whether the message you received is the same as the message you sent.

 Tt_message m, n;
 m = tt_message_create();
 ...
 tt_message_send(m);

 ... wait around for tt_fd to become active

 n = tt_message_receive();
 if (m == n) {

// this is a reply to the message we sent
 if (TT_HANDLED == tt_message_state(m)) {
 // the receiver has handled the message, so we can go on
 ...
 }
 } else {
 // this is some new message coming in
 }

242 CDE ToolTalk Programmer’s Guide

A

▼ Can a process send a request to itself?
Yes. A process can send a request that gets handled by itself. A typical pattern
for this type of request is:

{ ...
tt_message_arg_val_set(m, 1, "answer");
tt_message_reply(m);
tt_message_destroy(m);
return TT_CALLBACK_PROCESSED;

}

In the case, however, where the handler and the sender are the same process,
the message has already been destroyed when the reply comes back (to the
same process). Any messages (such as callbacks or user data) attached to the
message by the sender are also destroyed. To avoid this situation, do not
destroy the message; for example:

{ ...
if (0!=strcmp(tt_message_sender(m),tt_default_procid())) {

tt_message_destroy(m);
}

▼ Can I pass my own data to a function registered by
tt_message_callback_add?

To pass your data to a function registered by tt_message_callback_add ,
use the user data cells on the message; for example:

 x = tt_message_create();
 tt_message_callback_add(x,my_callback);
 tt_message_user_set(x, 1, (void *)my_data);

....

Tt_callback_action
Tt_message_callback(Tt_message m, Tt_pattern p)
{

struct my_data_t *my_data;
my data = (struct my_data_t *)tt_message_user(m, 1);

 ...

}

Frequently Asked Questions 243

A

Note – User data can only be seen in the client where the data is sent.

▼ How can I send arbitrary data in a message?
The ToolTalk service does not provide a built-in way to send structs; it only
provides a way to send strings, ints, and byte arrays. To send structs, use an
XDR routine to turn the struct into a byte array and put the bytes in the
message. To deserialize, use the same XDR routine.

▼ Can I transfer files with the ToolTalk service?
No, not directly. You can however:

• Place the file data in a message argument.

The ToolTalk service copies the message data from the application into the
library, from the library to ttsession , from ttsession to the receiver's
library, and then out of the library when the receiver gets the argument
value. If the data is large, this method can be very slow and use up a large
amount of memory.

• Place the file name in a message argument.

This method assumes that every receiver mounts the file, and mounts it at
the same mount point.

• Place the file name in the tt_message_file attribute.

This method also assumes that every receiver mounts the file; however, the
ToolTalk service will resolve any mount point differences.

▼ How are memory (byte) ordering issues handled by the ToolTalk
service?

The ToolTalk service allows you to place ints, strings, and byte vectors into
messages. An XDR routine ensures that these data types are correct for each
client. If you have data that is not one of these three data types, you must
serialize the data into a byte vector before you place it into a message.

244 CDE ToolTalk Programmer’s Guide

A

▼ Can I re-use messages?
No. Messages cannot be sent multiple times with different arguments. They
must be iteratively created, sent, and then destroyed.

▼ What happens when I destroy a message?
When you destroy a message, you destroy the handle but not the underlying
message. The underlying message is destroyed only when ToolTalk is done
with it and all the external handles are destroyed. For example, if you destroy
a handle to a message immediately after you send it, you will get a new handle
when the reply comes back.

Once you destroy a message, however, the ToolTalk service will not show it to
you again under any circumstances. For example, if you register a pattern to
observe a request you send and then destroy the message when your pattern
matches it, you will not see the message when it is in state "handled" (that is,
when it is a reply).

▼ Can I have more than one handler per message?
No, not currently. If you want multiple processes, you can use notices; or you
can use message rejection to force the ToolTalk service to deliver the request to
all the possible handlers — however, each of these handlers must actually
perform some kind of operation.

▼ Can I run more than one handler of a given ptype?
Yes, you can run more than one handler of a given ptype; however, the
ToolTalk service does not have a concept of load balancing (that is, the ToolTalk
service will choose one of the handlers and deliver additional matching
messages to the chosen handler only). There are several ways to force the
ToolTalk service to deliver messages to other handlers:

1. Use tt_message_reject .

If a message comes in and a process does not want to handle it because the
process is busy, the process can reject the message. The ToolTalk service will
then try the next possible handler (and apply the disposition options when
it runs out of registered handlers.)

Frequently Asked Questions 245

A

This method requires the process to be in an event loop; that is, it must call
tt_message_receive when the tt_fd is active; however, if the process is
in a heavy computational loop, this method fails.

2. Unregister the pattern when busy. For example:

 m = tt_message_receive();
 if (m is the message that causes us to go busy) {
 tt_pattern_unregister(p);
 }

The ToolTalk service will not route matching messages to the process when
the pattern is not registered. When you want the process to receive
messages again, re-register the pattern.

Note – This method causes a race condition. For example, a second message
could be sent and routed to the process in the time between the first
tt_message_receive call and the tt_pattern_unregister call.

3. A combination of Methods 1 and 2.

You can use a combination of the first two techniques in the following
manner:

 get the message
 unregister the pattern
 loop, calling tt_message_receive until it returns 0; reject
 all the returned messages
 handle the message
 re-register the pattern
 repeat

Note – This method assumes that the process only registers one pattern.

▼ What value is disposition in a message?
Message disposition can override the disposition specified in the static type
definition. If the message specifies the handler ptype and the message does not
match any of the static signatures, the disposition set in the message will be the
one followed. For example, if the disposition in the message is TT_START and
the ptype specifies a start-string, an instance will be started.

246 CDE ToolTalk Programmer’s Guide

A

▼ What are the message status elements?
The ToolTalk service does not use message_status_string. This message
component is for use by the applications. The ToolTalk service only sets the
message status if a problem occurs with message delivery; otherwise, this
message component is set and read in an application-dependent manner.

▼ When should I use tt_free?
libtt maintains an internal storage stack from which you receive data buffers.
When you call a ToolTalk API routine, any char * or void * returned points
to a copy that you are responsible for freeing.

Use the mark and release functions to free allocated buffers during a sequence
of operations; however, the release call frees everything allocated since the
corresponding mark call. If you want to store certain data that was returned by
the ToolTalk service, make a copy of the data before you do any operations that
may free it.

▼ What does the ptype represent?
Ptypes are programmer-defined strings that name tool kinds. (You can roughly
translate ptype as process type.) Each ptype can be associated with a set of
patterns that describe the messages in which that particular ptype is interested
and a string for the ToolTalk service to invoke when an instance of that ptype
needs to be started.

The main purpose of ptypes is to allow tools to express interest in messages even
when no instance of the tool is actually running in the scope in which the
message is sent. If a tool is able to perform a message's requested operation, or
wants to be notified when a particular message is sent, it indicates this
instruction in its ptype and ToolTalk will start the tool when necessary. Since the
ptypes database can also be modified by the system administrator or user, the
mechanism allows the site's or user's favorite tool be designated as the tool to
handle a particular message.

Frequently Asked Questions 247

A

▼ Why are my new types not recognized?
ttsession only reads the types database on start-up, or on receipt of a USR1
signal. To recognize new types, you can either restart ttsession , or
(preferably) force your running ttsession to reread the types database by
sending it the USR2 signal; for example:

kill -USR2 <ttsession pid>

▼ Can I declare a ptype that is not in the types database?
 Yes. To do this, use the tt_session_types_load call.

▼ Is ptype information used if a process of that ptype already
exists?

The ToolTalk service always looks for one handler and any number of observers
for every message. In this case, even though the ToolTalk service finds a handler
running, it will still look through the ptypes for any observe patterns that match
the message. If a ptype with an observe pattern that matches does exist and there
is no process of that ptype currently running, the ToolTalk service will start a new
process or queue the message (as specified in the ptype pattern or in the
message).

▼ Can the ptype definition be modified to always start an instance
(whether or not one is already running)?

No. Messages to a ptype are blocked during start-up until the ptype either replies
to the message, or issues a tt_message_accept call; however, the
implementation of the ptype can include tt_message_reject for any request
it gets that do not have a status of TT_WRN_START_MESSAGE. All requests will
then be delivered to (and rejected by) all running instances of the ptype before a
new one gets started. This method will be slow if many of these ptypes are
running at the same time, or if the message contains a large amount of data.
Alternatively, you could use tt_message_accept , which basically unblocks
messages to the ptype.

248 CDE ToolTalk Programmer’s Guide

A

▼ What does tt_ptype_declare do?
When you declare the ptype, your static patterns exist in ttsession memory.
When a ptype is registered by an application, the ToolTalk service also checks for
otypes that mention the ptype and registers the patterns found in these otypes.
To activate the static patterns, your application must call the appropriate join
functions.

Note – Multiple declarations by an application of the same ptype are ignored.

▼ What is TT_TOKEN?
When processing a message that requires an application to be started, the
ToolTalk service sets this environment variable in the child process. When the
application starts and performs tt_open , this information is passed back to the
ToolTalk service to inform it that the application coming up is the one started or
delegated to handle the message.

▼ When are my patterns active?
A pattern must be registered with the session in which it wants to be active.
Patterns can be active for more than one file (for a given procid); the file part of
the pattern will match any of the listed files.

Note – Contexts are not scopes. A pattern that is joined to contexts but not
joined to any file or session cannot match any message.

▼ Must I register patterns to get replies?
No. You do not need to register patterns to get replies. However, if you do
register a pattern that matches a reply, the reply will come through your event
loop twice: once because it matched a pattern, and again because it is a reply.

▼ How can I observe requests?
Observers can observe requests if the pattern matches and the message is not
point-to-point (that is, TT_HANDLER). If your observer pattern is not matching
any requests, you can run ttsession in trace mode to find out why.

Frequently Asked Questions 249

A

▼ How do I match to attribute values in static patterns?
The ToolTalk static pattern (that is, types database) mechanism does not allow
you to match patterns by attribute values. You can match by file scope or
argument vtype but you cannot by match by the particular filename or by
argument value.

Note – This restriction also applies for matching on contexts in static patterns.

▼ Why am I unable to wildcard a pattern for TT_HANDLER?
You cannot wildcard patterns for TT_HANDLER-addressed messages because
these messages are not pattern matched.

▼ Can I set a pattern to watch for any file scoped message?
No. Not specifying a file name when you use file scoping is virtually the same as
specifying that you want to match to file-scoped messages about every file in the
universe.

Note – A session attribute may be set on a file-scoped pattern to emulate
file-in-session scoping; however, a tt_session_join call will not update the
session attribute of a pattern that is scoped as TT_FILE .

▼ Is file scope in static patterns the same as file_in_session scope?
No, these scopes have different purposes.

For example, assume all sessions currently have the same static patterns and at
least one pattern P that will match a message M (which you will be sending). No
session has any clients that have registered interest in the file foo.bar .

You are connected to session A and issue a file-scoped message M for file
foo.bar . Since no client of any session has previously expressed any interest in
this file, session A is the only file that will get the message. (The message will
match against static pattern P in session A.) Once the ptype is started, the pattern
actually becomes scoped to file (within that session) and session A will honor all
the promises.

250 CDE ToolTalk Programmer’s Guide

A

If all sessions do not have the same static patterns, the results are different. For
example, session B could have an extra pattern P' that is file-scoped and that
should match message M. When message M is sent in session A, the database
server will not send the message to session B if no client of session B has
previously expressed interest in the file foo.bar ; however, if a client of session B
has previously expressed interest in the file foo.bar , then the database server
would know that at least one client in that session was interested in the file
foo.bar and would send also the message to session B.

▼ What is the difference between arg_add, barg_add, and
iarg_add?

The barg_add and iarg_add calls are basically an arg_add call followed by a
set of the value.

▼ What is the type or vtype in a message argument?
The type or vtype (which is short for value type) in a message argument indicates
the semantic domain in which the argument’s value has meaning and is
determined by your application.

Vtypes are analogous to typedefs in C. Every vtype, by convention, corresponds
to only one of the three possible data types for argument values.

The vtype mechanism allows you to declare two values as the same type; for
example, you could declare both the vtype messageID and the vtype bufferID as
C strings with different semantics for each: some operations are valid on
messageID only, some operations are valid on bufferID only, and some
operations are valid on both vtypes. The pattern-matching mechanism makes
sure that a request with a bufferID string does not get matched to a pattern for
an operation that is only valid on messageID strings.

▼ How do I use contexts?
You can use contexts to restrict matching. To restrict matching, a message must
have the same contexts, or a superset of the contexts, in order to possibly match.
Also, if the name of a context slot begins with a dollar sign ($) character (for
example, $ISV) and the message causes an application to be started, the
environment variable for the started application will be set to whatever value is
indicated in the context slot.

Frequently Asked Questions 251

A

▼ How does ttsession check for matches?
Table A-4 describes the various ways ttsession checks for matches.

Table A-4 How ttsession Checks for Matches

Mechanism Description Match?

TT_HANDLER This type of addressing is “point-to-point”
delivery — the message is passed directly to the
receiver. You cannot monitor point-to-point
messages because registered patterns are never
checked.

No matching
required.

TT_PROCEDUR
E

• Scans list of static signatures (sig) that have
same operation (op) and collects lists of
observers and potential handlers.

• If the sig has no arguments and no contexts
• If sig prototype (number, type and mode of

args) have different values
• If the sig contexts are a subset of the contexts

in the message
• Saves information for any static observers

that require queuing.
• Scans through dynamic patterns and adds to

lists of observers and potential handlers. To
form the lists, ttsession first uses the patterns
with operations, then the patterns without
operations.

• Checks reliability, states, class, address,
handler, handler ptype, scope, object, otype,
sender, sender_ptype, args, contexts.

• Delivers to observers first (because a handler
can change state).

• Delivers to handler with best match — if
more than one handler equally “best”
matches, the handler is arbitrarily chosen.

=> Match
=> No Match
=> Match

TT_OBJECT &
TT_OTYPE

Checks whether the otype argument is filled in
• If sig has a different otype
• If sig has no otype & scope is different
Otherwise, matches in the same manner as for
TT_PROCEDURE matching.

=> No Match
=> No Match

252 CDE ToolTalk Programmer’s Guide

A

▼ How many kinds of scope does the ToolTalk service have?
Currently, the ToolTalk service has only two kinds of scope: session scope and file
scope.

Note – X session is sometimes referred to as a scope; however, the X session is
really a session scope.

▼ What are the tt_db directories, and what is the difference
between the types database and the tt_db directories?

The ToolTalk types databases store the static ptype and otype definitions. These
definitions declare the messages to which applications and objects respond. The
ToolTalk types compiler modifies the types database when you add or change
static type definitions. Upon starting, ttsession reads in these type files.

The TT_DB database is created by rpc.ttdbserverd . The tt_db directories
contain the associations between files in this partition and the sessions with
patterns interested in these files. It also contains all the object spec information
for files in this partition.

▼ What should the tt_db databases contain?
The tt_db databases currently contain the following ten files:

access_table.ind
access_table.rec
file_object_map.ind
file_object_map.rec
file_table.ind
file_table.rec
file_table.var
property_table.ind
property_table.rec,
property_table.var

The permissions for these files are set to -rw-r--r-- .

Frequently Asked Questions 253

A

▼ What does rpc.ttdbserver do?
The ToolTalk database server daemon performs three major functional duties:

1. It stores the ToolTalk session ids of sessions with clients that have joined a
file using the tt_file_join call.

2. It stores file-scoped messages that are queued because the message
disposition is TT_QUEUED and a handler that can handle the message has
not yet been started.

3. It stores ToolTalk objects specs.

▼ Do ttsession and rpc.ttdbserverd ever communicate?
No.

▼ What message bandwidth can be supported?
About 100 small messages per second. Performance mainly depends on how
many recipients each message has; that is, notices that do not match any pattern
are the cheapest while messages that match many observers are the most
expensive.

▼ Is there a limit to the message size or the number of arguments?
No; however, while there is no designed limitation to the size of a ToolTalk
message or the number of arguments ToolTalk does copy the data several times
(both from one area in the client's address space to another area, and across the
RPC connection to and from the server). For example, a megabyte of data in a
ToolTalk message would be copied at least 4 times:

• From your storage to the ToolTalk library's storage.
• From the ToolTalk library to the ToolTalk server.
• From the ToolTalk server to the receiver's library.
• From the receiver's library to the final resting place.

If there are processes observing the message, even more copying will take place.
In addition, no other messages for this session can be delivered during the copy
time because the ttsession process is single-threaded. Therefore, if you plan to
send really big chunks of data very often, you probably want to consider using a
non-ToolTalk way to pass the data.

254 CDE ToolTalk Programmer’s Guide

A

▼ What is the most time efficient method to send a message?
Directly to process (that is, addressing the message using TT_HANDLER) is faster
than procedural messages that match only one receiver.

▼ What network overhead is involved?
The ToolTalk service does not use hardware broadcast or multicast. The message
is sent directly to the ttsession process for the session (whether across the
network or not). When a pattern is registered, it also is sent directly to the
ttsession process. The ttsession process matches the message against all the
patterns and sends the message directly to only the processes that registered
patterns that match the message — if no process on another machine is interested
in a message, that machine does not need to wake up and look at it.

▼ Does the ToolTalk service use load balancing to handle
requests?

No, the ToolTalk service is not a load-distribution mechanism. If two processes
with identical patterns are registered, the ToolTalk service arbitrarily chooses one
of the processes and delivers all matched messages to it. You can do load
distribution if you unregister the pattern while the process is busy and reject any
messages that may have been received before the pattern was unregistered.

▼ What resources are required by a ToolTalk application?

Coarse numbers indicate that several 100K of working set for a sending client,
ttsession, and a receiving client is required to process messages. ToolTalk
memory requirements do not grow over time.

▼ What happens if the ttsession exits unexpectedly?
When ttsession crashes, the tt_fd becomes active and most ToolTalk API
calls will return the TT_ERR_NOMP error message:

No Message Passer

Frequently Asked Questions 255

A

Most applications assume this message means that something has happened to
ttsession and will stop sending or receiving ToolTalk messages. Possible recovery
from this situation may include:

• Recognize the TT_ERR_NOMP situation.
• Call tt_close to clean up the connection from its end.
• Reinitialize the ToolTalk service.
• Call the sequence:

tt_open, tt_default_session_join, tt_fd

• Re-register all patterns and re-declare ptypes.

Note – You may need to manipulate the setting of the environment variable
TT_SESSION and the value of the TT_SESSION property of the root X
window (if it exists) when you restart a crashed ttsession to take over where
the last one left off. Also, you must inform other participants of the crashed
session of the restarted session and the new session id so that they can recover.

When ttsession crashes, you will not be able to recover the following:

• Patterns registered by procids in the crashed session.
• Outstanding requests from procids in the crashed session.
• Messages that were passed the tt_message_send_on_exit call by

procids in the crashed session.
• Session props.
• Session-queued messages.

▼ What happens if rpc.ttdbserver exits unexpectedly?
If rpc.ttdbserverd exits unexpectedly, inetd will start a new one to replace
it. Data may be temporarily unavailable but no data will be lost; however, one or
more API calls may return TT_ERR_DBAVAIL. If the call returns TT_OK, the
database server will update the ToolTalk databases appropriately either
immediately or when a new database server reads the crash recovery log.

▼ What happens if a host or a link is down?
When TCP notices that a host or a link is down, the TCP connection breaks. When
a process connection to ttsession breaks, ttsession behaves as if the
process exited. All the patterns are cleaned up, and the process will receive the
error message TT_ERR_NOMP if it attempts to send or receive messages.

256 CDE ToolTalk Programmer’s Guide

A

▼ What does tt_close do?
When you call tt_close , ttsession only closes the current procid. If the
current procid is the last procid to close, it cleans up all the ToolTalk structures
created since the tt_open call was made. You must call tt_close on the file
descriptor returned by tt_fd ; otherwise, your file descriptor count will rise
upon successive tt_open and close calls.

▼ Is message delivery guaranteed on a network?
Yes, delivery is reliable because messages are sent using RPC on TCP/IP.

▼ Is there a temporal sequence of message delivery?
Between a given sender and receiver, message sequence is preserved; that is, if
process A first sends message M1 and then later sends message M2 and both
messages are received by process B, process B will receive message M1 before it
receives message M2. There are, however, two special exceptions:

1. If process B receives message M1 and then rejects it, message M1 is
redispatched to process C. In the meantime (while process B is deciding
whether to reply or reject message M1), the ToolTalk service continues its
message delivery. These subsequent messages can appear to "pass" the first
request.

2. If process B’s messages are queued, it will receive its queued messages
when it declares a ptype that contains the pattern that caused the queuing;
however, process B may not actually receive its queued messages (in this
case, message M1) until it has already received subsequent messages from
process A.

▼ What is unix, xauth, and des?
These are the three kinds of authentication:
• unix tells you the uid of the entity that is making an rpc call on you. The

dbserver enforces security on each RPC call and uses this kind of
authentication by default.

• xauth uses a read-protected file in your home directory to control access to
your X display (and, thus, to your ttsession).

• des uses the Data Encryption Standard (DES) to ensure that processes that
talk to ttsession are really who they say they are.

Frequently Asked Questions 257

A

▼ Can my applications hide messages from each other?
No. The ToolTalk service intentionally does not provide a mechanism that allows
one application to lock out other applications from seeing its messages.

▼ Is there protection against interception or imitation?
No. The “plug-and-play” concept of the ToolTalk service allows applications to
install and deinstall tools of choice that best perform a particular task. If
application B responds better to protocol X than does application A, protocol X
should be allowed to deinstall application A and install application B.

▼ Where are queued messages stored and how secure is the
storage?

File-scoped queued messages are stored in a database on the same filesystem as
the file to which they are scoped. The database is readable to the super-user only,
and the ToolTalk database server (running as root) only gives the messages to
processes owned by a user with read access on the file.

Session-scoped queued messages are stored in the address space of the ttsession
that manages the session. ttsession only gives the messages to a process that has
satisfied the authentication mode in which the ttsession is running.

▼ Is the ToolTalk service C2 qualified?
No.

▼ How can I trace my message’s progress?
To trace your message’s progress, turn on the trace output of the ttsession
involved. Enter the following command:

kill -USR1 <unix_pid_of_the_ttsession_process>

▼ How can I isolate my debugging tool from all the other tools
using the ToolTalk service?

To isolate your debugging tool, use the "process tree session" mode. This mode
places the session name in an environment variable to find the ttsession
process. To use this mode, do the following:

258 CDE ToolTalk Programmer’s Guide

A

1. Start a new process tree session with trace mode turned on.

% ttsession -t -c $SHELL
*
* ttsession (version 1.0, library 1.0)
*
ttsession: starting
%

ttsession starts, sets the environment variable, and forks the given
command ($SHELL). You are now running in a subshell. All the commands
run from this subshell will use the ttsession started from the command
line. You can check the value of the TT_SESSION environment variable for
the session id of this new ttsession .

2. Inside the subshell, run the test programs:

% ./my_receiver &
[1] 4532
% ./my_sender &

.. and look at the output of the ttsession trace.

3. Exit the subshell after testing.

If you start any tool that uses the ToolTalk service in the subshell, it uses the
process tree ttsession , not the X-session ttsession , which will produce
undefined results.

▼ Can I use the ToolTalk service with C++?
Yes. The ToolTalk API header file is set up to deal with C++. When you use C++,
tt_c.h declares all the API calls as extern C .

▼ Should I qualify my filenames?
No. The ToolTalk service does not allow explicit hostname qualification of
pathnames. If you use a filename that contains a colon (:) symbol, the ToolTalk
service searches for a filename that contains the colon symbol. The
tt_message_file and tt_default_file calls return the realpath of the
specified file as it appears on the machine on which you invoked the call. The
ToolTalk service ensures that

Frequently Asked Questions 259

A

a. If two clients file-scope to the same file on different machines, they can
talk to each other without regard to how the two files are actually
mounted on each machine.

b. A locally-valid, canonical pathname is returned back to you.

▼ Can you tell me about ToolTalk objects?
ToolTalk objects are somewhat different from what you normally encounter in
typical object-oriented languages.

Otypes and inheritance are for implementation only. Two specs can be of the
same otype but have different properties — they only share the operations as
defined by the signatures in the otype declaration. For each signature in the
otype declaration, a ptype must be designated. The designated ptype
(process-type) is the 'execution engine' for this operation on an object of this
otype. The file part of a spec is similar to a required property: every spec must
have a file name; however, that file does not need to exist. The filename part of
the spec performs several functions, including:

1. Allows you to specify the host and partition on which the spec will be
stored.

2. Provides a grouping mechanism for objects.

3. Allows the ToolTalk-enhanced standard operating commands (such as the
ttmv command) to keep the database's view of the world consistent with
the real world.

▼ Is there a ToolTalk news group?
 Yes. The ToolTalk news group is alt.soft-sys.tooltalk.

260 CDE ToolTalk Programmer’s Guide

A

261

Glossary

Category
Attributes of a pattern that indicate whether the application wants to handle
requests that match the pattern or only observe the requests.

contexts
Associates arbitrary pairs (that is, <name. value> pairs) with ToolTalk
messages and patterns.

dynamic message patterns
Provides message pattern information while your application is running.

fail a request
Inform a sending application that the requested operation cannot be
performed.

fd
File descriptor.

file
A container for data that is of interest to applications.

libtt
The ToolTalk application programming interface (API) library.

handle a message
To perform the operation requested by the sending application; to send a
ToolTalk reply to a request.

262 CDE ToolTalk Programmer’s Guide

initial session
The ToolTalk session in which the application was started.

mark
An integer that represents a location on the API stack.

message
A structure that the ToolTalk service delivers to processes. A ToolTalk message
consists of an operation name, a vector of type arguments, a status value or
string pair, and ancillary addressing information.

message callback
A client function. The ToolTalk service invokes this function to report
information about the specified message back to the sending application; for
example, the message failed or the message caused a tool to start.

message pattern

Defines the information your application wants to receive.

message protocol
A message protocol is a set of ToolTalk messages that describe operations the
applications agree to perform.

notice
A notice is informational, a way for an application to announce an event.

object content
Object content is managed by the application that creates or manages the object
and is typically a piece, or pieces, of an ordinary file: a paragraph, a source
code function, or a range of spreadsheet cells.

object files

Files that contain object information. Applications can query for objects in a file
and perform operations on batches of objects.

object-oriented messages
Messages addressed to objects managed by applications.

object specification (spec)
An object specification (known as a spec) contains standard properties such as
the type of object, the name of the file in which the object contents are located,
and the object owner.

Glossary 263

object type (otype)
The object type (otype) for your application provides addressing information
that the ToolTalk service uses when delivering object-oriented messages.

object type identifier (otid)
Identifies the object type.

observe a message
To only view a message without performing any operation that may be
requested.

observe promise
Guarantees that the ToolTalk service will deliver a copy of each matching
message to ptypes with an observer signature of start or queue disposition.
The ToolTalk service will deliver the message either to a running instance of
the ptype, by starting an instance, or by queueing the message for the ptype.

opaque pointer
A value that has meaning only when passed through a particular interface.

package
A group of components that together create some software. A package contains
the executables that comprise the software, but also includes information files
and scripts. Software is installed in the form of packages.

pattern callback
A client function. The ToolTalk service invokes this function when a message is
received that matches the specified pattern.

process
One execution of an application, tool, or program that uses the ToolTalk
service.

process-oriented messages
Messages addressed to processes.

procid

The process identifier.

ptid
The process type identifier.

ptype
The process type.

264 CDE ToolTalk Programmer’s Guide

reject a request
Tells the ToolTalk service that the receiving application is unable to perform the
requested operation and that the message should be given to another tool.

request
A request is a call for an action. The results of the action are recorded in the
message, and the message is returned to the sender as a reply.

rpc.ttdbserverd
The ToolTalk database server process.

scope
The attribute of a message or pattern that determines how widely the ToolTalk
service looks for matching messages or patterns.

sessid
Identifies the session.

session
A group of processes that are related either by the same desktop or the same
process tree.

signatures
A pattern in a ptype or otype. A signature can contain values for disposition
and operation numbers.

• Ptype signatures (psignatures) describe the procedural messages that the
program wants to receive.

• Otype signatures (osignatures) define the messages that can be addressed to
objects of the type.

spec
See object specification.

static message patterns

Provides an easy way to specify the message pattern information if you want
to receive a defined set of messages.

tool manager
A program used to coordinate the development tools in the environment.

ToolTalk Types Database
The database that stores ToolTalk type information.

Glossary 265

ttdbck
Check and repair utility for the ToolTalk database.

ttsession
The ToolTalk communication process.

tt_type_comp
The ToolTalk type compiler.

wrapped shell commands
ToolTalk-enhanced shell commands. These commands safely perform common
file operations on ToolTalk files.

xdr format tables
The types database read when ttsession is invoked.

266 CDE ToolTalk Programmer’s Guide

267

Index

A
accessing ToolTalk data from machines

not running a ToolTalk database
server, 25

accessing ToolTalk databases, 35
adding a message pattern callback, 84
adding callbacks to static patterns, 68
adding files to scoped patterns, 79
adding values to spec properties, 116
address attribute, 62
address attributes, 48
addressing

otype, 58
addressing messages, methods of, 10
algorithm

object-oriented message delivery, 55
process-oriented message

delivery, 52
allocating storage space, 127
allocation stack, 125
alt.soft-sys.tooltalk, 259
API header file, including in program, 37
application integration, 193
application programming interface

(API), 12

application programming interface (API)
libraries, 20

application types, installing, 27
architecture, 13
arg_add call, 250
args attribute, 63
assigning otype, for specs, 115
attributes

address, 48, 62
arg, 63
class, 62
op, 63
scope, 49, 62
setting, 61

attributes, of message patterns, 72

B
background jobs, 16
barg_add call, 250
batch sessions, 16
broken references, 121

C
C2 qualification, 257
callback routines, 128

invoking, 108

268 CDE ToolTalk Programmer’s Guide

callback routines, adding to message
patterns, 84

callbacks, attached to static patterns, 110
callbacks, for handlers, 109
calls provided to manage information

storage, 126
Cannot open display, 137
changing ToolTalk-enhanced shell

commands, 34
checking ToolTalk databases, 17
checking ToolTalk error status, 132
class attribute, 62
close function, 234
communication process, 13
comparing objids, 119
components of the ToolTalk service, 13
computational loops, 245
connecting processes to the same

session, 234
context arguments, 128
context slots, used to create environment

variables, 23
contextdcl, 92, 96
contexts, defined, 80
contexts, to restrict matching, 250
cp command, 17
cpp command, 27
creating a ptype file, 91
creating dynamic message patterns, 84
creating general messages, 61
creating messages, 58
creating object-oriented messages, 65
creating otype files, 95
creating process-oriented messages, 64
creating specs, 115

D
database

check and recovery tool, 20
records, 13

database server

installing ToolTalk, 23
process, 13
redirecting, 24
redirecting file system partitions, 26
redirecting host machines, 25

database server redirection files, 232
database utility ttdbck, 35
databases

accessing ToolTalk, 35
check and repair utility, ttdbck, 17
displaying, checking, and repairing of

ToolTalk, 35
maintaining ToolTalk, 17

default session
joining, 86
quitting, 87

delete message, 68
deleting message patterns

message patterns
deleting, 85

deleting messages, 112
demonstration programs

edit_demo, 123
demostration programs

ttsnoop, 18
des, 256
deserializing structured data, 52
Desktop Services

Started, 238
Desktop Services Message Set, 4, 205
destroying message patterns

automatically, 85
destroying messages, 112
destroying specs, 121
determining spec properties, 116
determining who receive messages, 11
directories, list and location of, 19
DISPLAY, 22, 233
disposition attributes, 80
Document and Media Exchange Message

Set, 6, 205
dynamic message patterns, 81

Index 269

creating, 84
dynamic method, 71

E
edit_demo, 123
environment variable TT_SESSION, 87
environment variables, 21

created from message contexts, 23
DISPLAY, 22
TMPDIR, 23
TT_ARG_TRACE_WIDTH, 22
TT_HOSTNAME_MAP, 22, 25
TT_PARTITION_MAP, 22, 26
TT_SESSION, 22, 43
TT_TOKEN, 22
TTPATH, 22
TTSESSION_CMD, 22

error handling functions, 132
error identifiers, allocation, 138
error macros, 132
error messages

Cannot open display, 137
ld.sl: libtt.sl: not found, 136
TT_DESKTOP_CANCELLED, 219
TT_DESKTOP_EACCESS, 218
TT_DESKTOP_EINVAL, 218
TT_DESKTOP_ENOENT, 218
TT_DESKTOP_ENOMSG, 218
TT_DESKTOP_ENOTSUP, 219
TT_DESKTOP_EPROTO, 218
TT_DESKTOP_UNMODIFIED, 219
TT_ERR_ACCESS, 142
TT_ERR_ADDRESS, 143
TT_ERR_APPFIRST, 147
TT_ERR_CATEGORY, 146
TT_ERR_CLASS, 141
TT_ERR_DBAVAIL, 141
TT_ERR_DBCONSIST, 146
TT_ERR_DBEXIST, 142
TT_ERR_DBFULL, 146
TT_ERR_DBUPDATE, 146
TT_ERR_DISPOSITION, 144
TT_ERR_FILE, 142
TT_ERR_INTERNAL, 145

TT_ERR_LAST, 147
TT_ERR_MODE, 142
TT_ERR_NO_MATCH, 145
TT_ERR_NO_VALUE, 145
TT_ERR_NOMEM, 147
TT_ERR_NOMP, 142
TT_ERR_NOTHANDLER, 142
TT_ERR_NUM, 143
TT_ERR_OBJID, 143
TT_ERR_OP, 143
TT_ERR_OTYPE, 143
TT_ERR_OVERFLOW, 146
TT_ERR_PATH, 143
TT_ERR_POINTER, 144
TT_ERR_PROCID, 144
TT_ERR_PROPLEN, 144
TT_ERR_PROPNAME, 144
TT_ERR_PTYPE, 144
TT_ERR_PTYPE_START, 146
TT_ERR_READONLY, 145
TT_ERR_SCOPE, 144
TT_ERR_SESSION, 145
TT_ERR_SLOTNAME, 147
TT_ERR_STATE, 146
TT_ERR_UNIMP, 146
TT_ERR_VTYPE, 145
TT_ERR_XDR, 147
TT_MEDIA_ERR_FORMAT, 225
TT_MEDIA_ERR_SIZE, 225
TT_OK, 140
TT_STATUS_LAST, 147
TT_WRN_APPFIRST, 141
TT_WRN_LAST, 141
TT_WRN_NOTFOUND, 140
TT_WRN_SAME_OBJID, 141
TT_WRN_STALE_OBJID, 141
TT_WRN_START_MESSAGE, 141
TT_WRN_STOPPED, 141
ttsession: Illegal environment, 137

error messages, alphabetical listing
of, 138

error messages, Desktop Services, 218
error messages, Document and Media

Exchange, 225
error messages, initialization, 136

270 CDE ToolTalk Programmer’s Guide

error messages, listing by message id, 140
error propagation, 135
error status, 131

checking, 132
retrieving, 132

error value, 132
errors, process type, 30
event loop, 245
event, defined, 190
examining messages, 105
examining spec information, 118
examining type information, 28

F
failed connection, causes of, 24
failing requests, 112
features, of the ToolTalk service, 128
features, of ToolTalk, 9
file, 236

ToolTalk concept of, 11
file information

managing, 122
file query functions, 129
file scope, 49
file scoping, restrictions to, 75
file-in-session scope, 51
files

hostname_map, 25
list and location of, 19
maintaining ToolTalk, 17
managing with object data, 122
Messaging Toolkit header, 189
object type, 94
partition_map, 26
ToolTalk header, 189
XDR format, 14

files of interest
joining, 88
quitting, 88

file-scoped message flow, 239
file-scoped messages, queued, 257
filter routines, 129

free storage space, 68
freeing allocated storage space, 128
functions with natural return values, 132
functions without natural return

values, 132

H
handling replies easily, 105
handling requests, 110
header file, 20
hostname qualification of pathnames,

explicit, 258
hostname_map file, 25
how applications use ToolTalk

messages, 8

I
iarg_add call, 250
identifying data in existing files, 114
identifying messages easily, 104
information provided by the ToolTalk

service, 125
information provided to the ToolTalk

service, 125, 199
informing sender of failed request, 112
initial session, 38
initializing your process, 38
installing application types, 27
installing the ToolTalk database server, 23

from a remote machine, 24
installing type information, 98
invoking callback routines, 108

J
joining default sessions, 86
joining files of interest, 88
joining multiple sessions, 87

Index 271

K
kill command, 29

L
ld.sl: libtt.sl: not found, 136
lib, 231
libtt, 14, 234, 246
libtt.a, 231
libtt.so, 231, 233
load balancing, 244

M
maintaining specs, 117
maintaining ToolTalk files and

databases, 17
managing files that contain object

data, 122
managing object and file information, 122
manpages, location of ToolTalk, 20
manually starting a session, 15
marking information for storage, 126
marking the ToolTalk API stack, 105
merging compiled ToolTalk type files into

running ttsession, 98, 195
merging type information, 98, 195
message

delete, 68
message attributes, 47
message attributes, comparing to pattern

attributes, 74
message callback, 128
message callbacks, 109
message callbacks, adding, 65
message delivery

object-oriented algorithm, 55
process-oriented algorithm, 52

message pattern attributes, 72
message patterns, 9, 71

adding callbacks to, 84

automatically unregistering and
destroying, 85

minimum specifications, 73
static, 89
unregistering, 85
updating, 86

message protocol, 12
Message Sets, 205
message_status_string, 246
messages

completing, 58
creating, 58
creating general-purpose, 61
deleting, 112
determining recipients of, 9
examining, 105
handling, 9
identifying and processing

easily, 104
methods of addressing, 10
object-oriented, 10
observing, 9
process-oriented, 10
receiving, 9
sending, 8, 68

messages, retrieving, 103
Messaging Toolkit header file, 189
messaging toolkit, incorporating, 190
MIT X, 233
modifying applications to send

messages, 58
modifying your application to use the

ToolTalk service, 12
moving objects between file systems, 121
moving objects between files, 121
multiple processes, 244
multiple sessions

storing session ids of sessions, 87
multiple sessions, joining, 87
mv command, 17, 33

N
networked environments, 43

272 CDE ToolTalk Programmer’s Guide

news group, ToolTalk, 259
notice, 45, 190
notifying processes if tool exits

unexpectedly, 135

O
object content, 114
object data, 113
object information

managing, 122
object specification (spec), 114
object type (otype), 94
object-oriented message delivery, 55
object-oriented messages, 10, 113

creating, 65
objects

moving between file systems, 121
moving between files, 121
ToolTalk, 114

objects, ToolTalk, 259
objid

comparing, 119
obtaining, 115
obtaining new, 117
retrieving new, 117

obtaining new objid, 117
obtaining objid, 115
OMG-compliant systems, 10, 113
op attribute, 63
operation, defined, 190
otype

assigning for specs, 115
otype addressing, 58
otype file, 94
otype files

creating, 95
header information, 95
signature information, 96

otype files, installing, 27
otype signature, 95
otypes, examining information, 29

P
partition_map file, 26
pattern attributes, comparing to message

attributes, 74
pattern callback, 128
pattern callbacks, 109
pointers, to API objects, 128
point-to-point (PTP) message passing

feature, 62
point-to-point messages, 109
process

communication, 13
database server, 13

process identifier (procid), 38
process type (ptype), 89, 194
process type errors, 30
process type, declaring, 99
processing messages easily, 104
process-oriented message delivery, 52
process-oriented messages, 10

creating, 64
process-type identifier (ptid), 194
procid, 38, 195, 236

closing default, 44
setting default, 39

ps command, 29
ptype, 236
ptype files

creating, 91
property information, 91
registering, 90
registering with ToolTalk, 99
signature information, 92
unregistering with ToolTalk, 101

ptype files, installing, 27
ptype signature, 90
ptype, installing, 194
ptypes, check for existing, 98, 195
ptypes, examining information, 28
ptypes, for tools bundled with this

release, 194

Index 273

ptypes, for tools not included in this
release, 194

ptypes, merging, 195
ptypes, multiple, 101
ptypes, undeclaring, 101

Q
quitting default session, 87
quitting files of interest, 88

R
read in the types from database, 16
reading

hostname_map files, 25
partition_map files, 26

reading ToolTalk data from read-only file
system partitions, 25

read-only file systems, 114
read-only files, creating objects of pieces

of, 114
realpath, 258
receiving ToolTalk messages, 9
recipients, 8
recognizing replies easily, 105
records database, 13
redirecting file system partitions, 26
redirecting host machines, 25
redirecting the ToolTalk database

server, 24
register file scope patterns, 236
registering

in a specified session, 40
in the initial session, 38
with the ToolTalk service, 38

registering in multiple sessions, 41
registering ptypes, 90
rejecting requests, 112
removing type information, 29
repairing ToolTalk databases, 17
replies

recognizing and handling easily, 105

replying to requests, 110
request, 45, 191
requests

failing, 112
handling, 110
informing sender of failed, 112
rejecting, 112
replying to, 110

requests, identifying, 191
reread types file, 16
rereading type information, 29
retrieving new obji, 68
retrieving new objid, 117
retrieving ToolTalk error status, 132
return value

natural, 132
no natural, 132

returned integer, status, 134
returned pointer, status, 133
returned value, status, 132
reverting to previous versions of the

ToolTalk database, 24
rm command, 17, 34
routines

callback, 128
filter, 129

rpc.ttdbserver, 13, 114, 231
running the new ToolTalk database

server, 24
runtime stack, 125

S
same process, sending and receiving

messages in, 42
scenarios illustrating the ToolTalk service

in use, 4
scope attribute, 62
scope attributes, 49

file, 49
file-in-session, 51
session, 51

274 CDE ToolTalk Programmer’s Guide

scope, to union of TT_FILE_IN_SESSION
and TT_SESSION, 50

scopes, that use files, 49
scopes, types of, 74
scoping messages to every client with

registered interest, 51
scoping to file in session, 76
scoping to file only, 76
scoping to files and sessions, 78
scoping to session only, 75
senders, 8
sending messages, 68

modifying applications, 58
sending notices, 45
sending requests, 46
sending ToolTalk messages, 8
serializing structured data, 52
server authentication level, 15
session identifier (sessid), 11
session identifiers, multiple for one

session, 15
session scope, 51
session, ToolTalk concept of, 11
sessions bound to a character terminal, 16
session-scoped message flow, 238
session-scoped messages, queued, 257
setting attributes, 61
setting up to receive messages, 42
share/include/desktop, 231
shell commands

standard
cp, 17
mv, 17, 33
rm, 17, 34

ToolTalk-enhanced, 17, 19, 33, 122
changing, 34
ttmv, 33

shell commands, ToolTalk-enhanced
ttcp, 33, 122
ttmv, 33, 122
ttrm, 34, 123
ttrmdir, 34, 123

tttar, 34, 123
SHLIB_PATH, 233
signals, to which ttsession responds, 16
signatures, 194

otype, 95
ptype, 90

SIGUSR1 signal, 16
SIGUSR2 signal, 16
spec See object specification
spec, destroying an object, 121
specs

adding values to properties, 116
assigning otype, 115
creating, 115
destroying, 121
determining properties, 116
examining information, 118
maintaining, 117
moving objects, 120
querying for objects, 119
storing properties, 116
updating, 117
updating existing properties, 117
writing into ToolTalk database, 116

start string, 194
starting a session manually, 15
starting a ToolTalk session, 14
state change messages, 47
static message patterns, 89, 194
static method, 71
static patterns

adding callbacks, 68
attaching callbacks, 110

storing
hostname_map files, 25
partition_map files, 26

storing spec properties, 116
switching between multiple sessions, 237

T
-t option, 238
TMPDIR environment variable, 23

Index 275

ToolTalk database server
reverting to previous versions, 24
running new, 24

ToolTalk Desktop Services Message
Set, 205

ToolTalk Document and Media Exchange
Message Set, 205

ToolTalk header file, 189
ToolTalk message sets

Desktop, 4
Document and Media Exchange, 6

ToolTalk messages, 8
ToolTalk object, 114
ToolTalk service, 1
ToolTalk type compiler, 194
ToolTalk type compiler tt_type_comp, 94
ToolTalk Types Databas, 194
ToolTalk-enhanced shell commands, 122
trace mode, 16, 238, 248, 257
trace mode, toggling, 16
tt, 231
Tt_address, 149
TT_ARG__TRACE_WIDTH, 22
TT_BOTH, 78, 153
tt_c.h, 231
Tt_callback, 150
TT_CALLBACK_CONTINUE, 150, 240
TT_CALLBACK_PROCESSED, 150, 240
Tt_category, 151
Tt_class, 151
tt_close, 44, 85, 234
TT_CREATED, 154
tt_default_file, 258
tt_default_session_set, 41, 236
TT_DESKTOP_CANCELED, 219
TT_DESKTOP_EACCESS, 218
TT_DESKTOP_EINVAL, 218
TT_DESKTOP_ENOENT, 218
TT_DESKTOP_ENOMSG, 218
TT_DESKTOP_ENOTSUP, 219
TT_DESKTOP_EPROTO, 218

TT_DESKTOP_UNMODIFIED, 219
TT_DISCARD, 152
Tt_disposition, 152
TT_ERR_ACCESS, 142
TT_ERR_ADDRESS, 143
TT_ERR_APPFIRST, 147
TT_ERR_CATEGORY, 146
TT_ERR_CLASS, 141
TT_ERR_DBAVAIL, 141
TT_ERR_DBCONSIST, 146
TT_ERR_DBEXIST, 142
TT_ERR_DBFULL, 146
TT_ERR_DBUPDATE, 146
TT_ERR_DISPOSITION, 144
TT_ERR_FILE, 142
TT_ERR_INTERNAL, 145
TT_ERR_LAST, 147
TT_ERR_MODE, 142
TT_ERR_NO_MATCH, 145
TT_ERR_NO_VALUE, 145
TT_ERR_NOMEM, 147
TT_ERR_NOMP, 142
TT_ERR_NOTHANDLER, 142
TT_ERR_NUM, 143
TT_ERR_OBJID, 143
TT_ERR_OP, 143
TT_ERR_OTYPE, 143
TT_ERR_OVERFLOW, 146
TT_ERR_PATH, 143
TT_ERR_POINTER, 144
TT_ERR_PROCID, 144
TT_ERR_PROPLEN, 144
TT_ERR_PROPNAME, 144
TT_ERR_PTYPE, 144
TT_ERR_PTYPE_START, 146
TT_ERR_READONLY, 145
TT_ERR_SCOPE, 144
TT_ERR_SESSION, 145
TT_ERR_SLOTNAME, 147
TT_ERR_STATE, 146

276 CDE ToolTalk Programmer’s Guide

TT_ERR_UNIMP, 146
TT_ERR_VTYPE, 145
TT_ERR_XDR, 147
TT_FAILED, 154
tt_fd, 39, 41
TT_FILE, 76, 153
TT_FILE_IN_SESSION, 76, 153
tt_file_join, 88
tt_file_objects_query, 119, 129
tt_file_quit, 88
Tt_filter_action, 152
TT_FILTER_CONTINUE, 152
TT_FILTER_STOP, 152
TT_HANDLE, 151
TT_HANDLED, 104, 154
TT_HANDLER, 150
TT_HOSTNAME_MAP, 22, 25
TT_IN, 153
TT_INOUT, 153
tt_int_error, 134
tt_is_err, 133, 134
TT_MEDIA_ERR_FORMAT, 225
TT_MEDIA_ERR_SIZE, 225
tt_message__set, 61
tt_message_accept, 105, 247
tt_message_callback_add, 65, 105, 242
tt_message_create, 61
tt_message_destroy, 65, 68, 112
tt_message_fail, 112
tt_message_file, 50, 258
tt_message_file attribute, 243
tt_message_file_set, 51
tt_message_object, 68, 117
tt_message_receive, 103, 109, 240, 245
tt_message_reject, 112, 244, 247
tt_message_send, 121
tt_message_send_on_exit, 135
tt_message_status_set, 112
tt_message_status_string_set, 112
tt_message_user call, 241

tt_message_user_set, 105
Tt_mode, 153
TT_NOTICE, 151
TT_OBJECT, 150
tt_objid_equal, 119
TT_OBSERVE, 151
TT_OK, 140
tt_onotice_create, 65
tt_open, 39, 41, 231, 248
tt_orequest_create, 65
TT_OTYPE, 150
TT_OUT, 153
TT_PARTITION_MAP, 22, 26
tt_pattern_add, 84
tt_pattern_callback_add, 84, 104
tt_pattern_create, 84
tt_pattern_destroy, 85
tt_pattern_register, 85
tt_pattern_set, 84
tt_pattern_unregister, 85, 99, 245
tt_pnotice_create, 64
tt_pointer_error, 133
tt_prequest_create, 64
TT_PROCEDURE, 150
tt_ptype_declare, 99
tt_ptype_undeclare, 99, 101
TT_QUEUE, 152
TT_QUEUED, 154
TT_REJECTED, 154
TT_REQUEST, 151
Tt_scope, 153
TT_SENT, 154
TT_SESSION, 22, 43, 75, 153, 232, 233, 235
tt_session_join, 86
tt_session_quit, 87
tt_spec_bprop, 118
tt_spec_create, 115
tt_spec_destroy, 121
tt_spec_file, 118
tt_spec_move, 120

Index 277

tt_spec_prop, 118
tt_spec_prop_add, 116, 117
tt_spec_prop_set, 116, 117
tt_spec_type, 118
tt_spec_type_set, 115
tt_spec_write, 116
TT_START, 152
TT_STARTED, 154
Tt_state, 153
Tt_status, 44, 154
TT_STATUS_LAST, 147
tt_status_message, 133
TT_TOKEN, 22, 233
tt_token, 248
tt_type_comp, 27, 89, 94, 194, 231
TT_WRN_APPFIRST, 141
TT_WRN_LAST, 141
TT_WRN_NOTFOUND, 140
TT_WRN_SAME_OBJID, 141
TT_WRN_STALE_OBJID, 68, 141
TT_WRN_START_MESSAGE, 105, 141,

247
TT_WRN_STOPPED, 141
ttcp, 33, 122, 231
ttdbck, 35, 231
ttdbck utility, 17
ttm, 231
ttmv, 33, 122
ttmv command, 33, 259
TTPATH, 22, 232
ttrm, 34, 123
ttrmdir, 34, 123, 231
ttsession, 13, 19, 231
ttsession parameters, 15
ttsession: Illegal environment, 137
TTSESSION_CMD, 22
ttsnoop, 18
ttsnoop utility, 238
tttar, 34, 123, 231
type compiler, 20

type compiler tt_type_comp, 89
type information

examining, 28
examining all types, 28
installing, 98
merging, 98, 195
reading, 29
removing, 29

types file, rereading, 16
types mechanism, 194
types of scopes, 74

U
unix, 256
unregistering a message pattern, 85
unregistering message patterns

automatically, 85
update existing spec properties, 117
updating existing specs, 117
updating message patterns, 86
updating the ToolTalk service, 29
user data cells, 242
USR1 signal, 238

V
-v option, 21
version number, 16
version string, 21
vtype, for ToolTalk objects, 217
vtypes, namespace for persistent

objects, 220

W
warning identifiers, allocation, 138
wildcarding patterns, 249
writing specs, into ToolTalk database, 116
writing ToolTalk data to read-only file

system partitions, 25

278 CDE ToolTalk Programmer’s Guide

X
X Window System, establishing a session

under, 17
xauth, 256
XDR format file, 14
XtAppAddInput call, 240

