
Common Desktop Environment (CDE) 5.2

Programmer’s Overview

Document Number 860-0208-003



Copyright © 1999-2002 Silicon Graphics, Inc.
Copyright © 1994-1995 TriTeal Corporation
Copyright © 1993-1995 Hewlett-Packard Company
Copyright © 1993-1995 International Business MachinesCorp.
Copyright © 1993-1995 Novell, Inc.
Copyright © 1993-1995 Sun Microsystems, Inc.

All Rights Reserved
This product and related documentation are protected by copyright and distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of this product or related documentation may be reproduced in any form by any
means without prior written authorization. The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set forth in
subdivision (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/or in similar or successor
clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the United States.
Contractor/manufacturer is Silicon Graphics, Inc., 2011 N.  Shoreline Blvd., Mountain View, CA 94043-1389.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE
PUBLICATION. SILICON GRAPHICS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)AND/OR THE
PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

TRADEMARKS
The code and documentation for the DtComboBox and DtSpinBox widgets were contributed by Interleaf, Inc. Copyright 1993,
Interleaf, Inc. UNIX is a trademark exclusively licensed through X/Open Company, Ltd. OSF/Motif and Motif are trademarks
of Open Software Foundation, Ltd. X Window System is a trademark of X Consortium, Inc. PostScript is a trademark of Adobe
Systems, Inc., which may be registered in certain jurisdictions.TriTeal, TED, TEDFAX, TEDSECURE, TEDVISION, LOCALTED
and WIN TED are trademarks of TriTeal Corporation. ToolTalk is a registered trademark of Sun Microsystems, Inc. AIX is a
trademark of International Business Machines Corp. HP/UX is a trademark of Hewlett Packard Company. Solaris is a trademark
of Sun Microsystems, Inc. UnixWare is a trademark of Novell, Inc. Microsoft Windows is a trademark of Microsoft. OS/2 is a
trademark of International Business Machines Corp. OPEN LOOK is a registered trademark of Novell, Inc. OpenWindows is a
trademark of Sun Microsystems, Inc. NFS is a registered trademark of Sun Microsystems, Inc. Microsoft is a registered trademark
of Microsoft Corporation. IRIX, SGI and Silicon Graphics are registered trademarks of Silicon Graphics, Inc.

RECORD OF REVISION
Version      Description
001             June 2002. Common Desktop Environment 5.2.

Common Desktop Environment (CDE) 5.2 Programmer's Overview
Document Number 860-0208-003



iii

Contents

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Conceptual Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Data Interaction GUIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Multiuser Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Desktop Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Session Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Application Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Object Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Window Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Style Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Motif GUI Engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Common Desktop Environment Motif Toolkit  . . . . . . . . . . 13

CDE Motif Widgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

GUI Shell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



iv CDE Programmer’s Overview

GUI Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Integration Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Process Execution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Application Messaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Data Typing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Method Invocation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2. Development Environment Considerations. . . . . . . . . . . . . . . 23

Common Desktop Environment Characteristics . . . . . . . . . . . . 24

Underlying Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Running Existing Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Libraries and Header Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Demo Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Man Pages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Development Environment Directory Structure  . . . . . . . . . . . . 28

3. Developing an Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Levels of Desktop Integration  . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Desktop Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Public and Private Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Guidelines for Common Desktop Environment Databases . . . 34

Application Initialization and libDtSvc  . . . . . . . . . . . . . . . . . . . 34

Application Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Demo Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4. Portability and Maintenance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Portability Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



Contents v

Standards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Makefiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

File-Naming Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Display Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

CDE Motif Widget Binary Compatibility Guidelines  . . . . . . . . 40

5. Basic Application Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Basic Integration Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Organization of Basic Integration Information  . . . . . . . . . . . . . 42

Basic Integration Tasks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6. Recommended Integration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Help System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Library and Header Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Demo Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ToolTalk Messaging Service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Library and Header Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Demo Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Session Manager  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Library and Header Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Demo Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Drag and Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Library and Header Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Demo Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Internationalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Demo Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



vi CDE Programmer’s Overview

Standard Font Names  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Application Fonts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Interface Fonts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Demo Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Displaying Error Messages from Your Application. . . . . . . . . . 57

How to Present Error Messages . . . . . . . . . . . . . . . . . . . . . . . 58

What Information to Present in Error Dialogs . . . . . . . . . . . 58

Linking Message Dialogs to Online Help . . . . . . . . . . . . . . . 58

User Customization Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Color Use  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Font Use  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Mouse Double-Click Speed  . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Demo Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7. Optional Integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

CDE Motif Control Widgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Compatibility with Motif 2.0  . . . . . . . . . . . . . . . . . . . . . . . . . 66

Library and Header Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Demo Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Data Typing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Database Loading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Database Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Library and Header Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Demo Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



Contents vii

Action Invocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Library and Header Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Demo Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Workspace Manager  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Library and Header Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Demo Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Terminal Emulator Widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Library and Header Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Demo Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Text Editor Widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Library and Header Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Demo Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Calendar  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Library and Header Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Demo Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Desktop KornShell (dtksh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Demo Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A. CDE Motif  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B. Component and Guideline Reference. . . . . . . . . . . . . . . . . . . . 81

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



viii CDE Programmer’s Overview



ix

Preface

The Common Desktop Environment: Programmer’s Overview  provides a high-level
view of the Common Desktop Environment development environment and the
developer documentation set. Read this book first before starting application
design and development.

Note – Common Desktop Environment is an standardized desktop environment.
If you wish to build an application for the Common Desktop Environment,
it should be consistent with the CDE guidelines defined by the
Common Desktop Environment: Style Guide and Certification Checklist.

Note – In this manual, the terms Common Desktop Environment  and the desktop
are used interchangeably.

Outside of the Preface, this manual omits the Common Desktop Environment
prefix when referring to a Common Desktop Environment development or
run-time environment manual. For example, the Common Desktop Environment: 
Programmer’s Overview is referred to as the Programmer’s Overview.

Who Should Use This Book

Read the Programmer’s Overview if you are:



x CDE Programmer’s Overview

• An application developer who wants to develop a new Common Desktop
Environment application, or integrate an existing OSF/Motif®, OPEN
LOOK® or Indigo Magic® application into the desktop.

• A manager, architect, or project lead interested in designing a project
involving applications that will run on the Common Desktop Environment.

For the remainder of this manual, OSF/Motif is referred to as Motif®.

How This Book Is Organized

The Programmer’s Overview is divided into two parts. Part I contains an
architectural overview of the Common Desktop Environmnent, including
high-level information on both the run-time and development environments.
Part II contains information useful to know before developing an application,
and describes the development environment components.

This section provides brief descriptions of the chapters and appendixes
contained in this manual.

Chapter 1, “Architectural Overview,” presents an overview of the Common
Desktop Environment architecture.

Chapter 2, “Development Environment Considerations,” discusses
information you should know about the environment before you start to
develop an application.

Chapter 3, “Developing an Application,” presents information specific to
developing a Commmon Desktop Environment application, such as naming
conventions and guidelines to follow.

Chapter 4, “Portability and Maintenance,” discusses issues pertaining to
writing portable and maintainable applications.

Chapter 5, “Basic Application Integration,” summarizes how to make your
application launch-integrated (that is, started by double-clicking an icon on the
desktop).

Chapter 6, “Recommended Integration,” provides overviews of all
components and guidelines that you should use so your application has the
same look and feel as, and interoperates well with, other Common Desktop
Environment applications.



Preface xi

Chapter 7, “Optional Integration,” provides overviews of the components to
incorporate into your application as needed for added functionality.

Appendix , “CDE Motif,” describes the differences between Motif 1.2.3 and
CDE Motif.

Appendix B, “Component and Guideline Reference,” lists in alphabetical
order all development environment components and guidelines, with
associated library, header files, and documentation.

Related Books

For information on Motif, see:

• OSF/Motif Programmer’s Guide, Release 1.2, by Open Software Foundation, 11
Cambridge Center, Cambridge, MA 02142, published by PTR Prentice Hall,
Englewood Cliffs, NJ 07632.

• OSF/Motif Programmer’s Reference, Release 1.2, by Open Software
Foundation, 11 Cambridge Center, Cambridge, MA 02142, published by PTR
Prentice Hall, Englewood Cliffs, NJ 07632.

• OSF/Motif Reference Guide, by Douglas A. Young, published by PTR Prentice
Hall, Englewood Cliffs, NJ 07632.

• OSF/Motif 1.2 Style Guide, by Open Software Foundation, 11 Cambridge
Center, Cambridge, MA 02142, published by PTR Prentice Hall, Englewood
Cliffs, NJ 07632.

Note – The Common Desktop Environment: Style Guide and Certification Checklist
is an extension of the OSF/Motif 1.2 Style Guide to CDE.

• OSF Application Environment Specification (AES) User Environment Volume,
Revision C, by Open Software Foundation, 11 Cambridge Center,
Cambridge, MA 02142, published by PTR Prentice Hall, Englewood Cliffs,
NJ 07632.

Motif 1.2 IEEE Std 1295 standard, which you can order from:
IEEE Service Center
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855



xii CDE Programmer’s Overview

For information on POSIX, see the IEEE Std 1003.1-1990 standard, which you
can order from:

IEEE Service Center
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855

For information on Xlib, see:

• Xlib Programming Manual for Version 11 (Volume 1) by Adrian Nye,
published by O’Reilly & Associates, Sebastopol, CA, 95472.

• Xlib Reference Manual for Version 11 (Volume 2), published by O’Reilly &
Associates, Sebastopol, CA, 95472.

For information on Xt, see:

• X Toolkit Intrinsics Programming Manual, (Volume 4) by Adrian Nye and Tim
O'Reilly, published by O'Reilly and Associates, Sebastopol, CA 95472.

• X Toolkit Intrinsics Reference Manual, (Volume 5) edited by Tim O'Reilly,
published by O'Reilly and Associates, Sebastopol, CA 95472.

For more information on ToolTalk®, see:

• The ToolTalk Service: An Inter-Operability Solution, published by SunSoft Press
and PTR Prentice Hall, Englewood Cliffs, NJ 07632, ISBN 0-13-088717-X.

• ToolTalk and Open Protocols: Inter-Application Communication, by Astrid
Julienne and Brian Holtz, published by SunSoft Press and PTR Prentice Hall,
Englewood Cliffs, NJ 07632, ISBN 013-031055-7.

In addition to the Programmer’s Overview, the development environment
documentation set consists of:

• Common Desktop Environment: Style Guide and Certification Checklist
• Common Desktop Environment: Application Builder User’s Guide
• Common Desktop Environment: Programmer’s Guide
• Common Desktop Environment: Help System Author’s and Programmer’s Guide
• Common Desktop Environment: ToolTalk Messaging Overview
• Common Desktop Environment: ToolTalk Programmer’s Guide
• Common Desktop Environment: Internationalization Programmer’s Guide
• Common Desktop Environment: Desktop KornShell (dtksh) User’s Guide
• Online man pages



Preface xiii

For more information on these development environment books, see the
following section, “Development Environment Documentation.”

The run-time environment documentation set consists of:

• Common Desktop Environment: User’s Guide
• Common Desktop Environment: Advanced User’s and System Administrator’s Guide
• Common Desktop Environment: SGI Enhancements
• Online help volumes

Note – The Advanced User’s and System Administrator’s Guide contains
information to help you integrate an application into the desktop.

Development Environment Documentation

This section provides an overview of each manual—except for the
Programmer’s Overview—in the developer documentation set.

Common Desktop Environment: Style Guide and Certification Checklist

The Common Desktop Environment: Style Guide and Certification Checklist provides
application design style guidelines and the list of requirements for CDE
application-level certification. These requirements consist of the Motif Version
1.2 requirements with CDE-specific additions.

The checklist describes keys using a model keyboard mechanism. It assumes
that your application is being designed for a left-to-right language
environment in an English-language locale. Wherever keyboard input is
specified, the keys are indicated by the engravings on the Motif model
keyboard. Mouse buttons are described using a virtual button mechanism to
better describe behavior independent from the number of buttons on the
mouse.

This book provides information to assist the application designer in
developing consistent applications and behaviors within the applications.



xiv CDE Programmer’s Overview

Common Desktop Environment: Application Builder User’s Guide

The Common Desktop Environment Application Builder (also called App
Builder) is an interactive tool for developing CDE applications.  App Builder
provides features that facilitate both the construction of an application
graphical user interface (GUI) and the incorporation of the desktop’s many
useful desktop services (such as Help, ToolTalk, Drag and Drop). The Common
Desktop Environment: Application Builder User’s Guide  explains how to create an
interface by dragging and dropping “objects” from a palette. It also explains
how to make connections between objects in the interface, how to use the
application framework editor to easily integrate desktop services, how to
generate C code, and how to add application code to the Application Builder
output to produce a finished application.

Common Desktop Environment: Programmer’s Guide

The Common Desktop Environment: Programmer’s Guide  has two parts. Each
part provides a detailed description of elements of the Common Desktop
Environment, a conceptual diagram, and a task-oriented description of how
to use each element, complete with code examples.

Part I, “Recommended Integration,” provides an overview of basic integration,
and describes how to integrate new applications with the Session Manager,
fonts and drag and drop. It also discusses displaying error messages.

Part II, “Optional Integration,” describes how to integrate new applications
with the Workspace Manager, Common Desktop Environment Motif widgets,
actions, data types and Calendar.

The Programmer’s Guide provides an introduction to the application program
interfaces (APIs) for the components referred to in the descriptions of Parts I
and II above, with cross-references to the relevant man pages. Details are
covered in the man pages.

Common Desktop Environment: Help System Author’s and Programmer’s Guide

The Common Desktop Environment: Help System Author’s and Programmer’s Guide
describes how to develop online help for application software. It covers how to
create help topics and how to integrate online help into a Motif application.

The audience for this book includes:



Preface xv

• Authors who design, create, and view online help information.

• Developers who want to create software applications that provide a fully
integrated help facility.

This book has four parts. Part I describes the collaborative role that authors
and developers undertake to design application help. Part II provides
information for authors organizing and writing online help. Part III describes
the Help System application programmer’s toolkit. Part IV contains
information for both authors and programmers about preparing online help for
different language environments.

Common Desktop Environment: ToolTalk Messaging Overview

The Common Desktop Environment: ToolTalk Messaging Overview describes the
ToolTalk components, commands and error messages offered as convenience
routines to enable your application to conform to Media Exchange and
Desktop Services message set conventions. This manual is for developers who
create or maintain applications that use the ToolTalk service to interoperate
with other applications.

The ToolTalk Messaging Overview does not describe general ToolTalk
functionality. For detailed information about the ToolTalk service, refer to The
ToolTalk Service: An Inter-Operability Solution. For tips and techniques to help
make using ToolTalk easier, read ToolTalk and Open Protocols: Inter-Application
Communication. Both of these books are listed in “Related Books” on page xi.

Common Desktop Environment: ToolTalk Programmer’s Guide

The Common Desktop Environment: ToolTalk Programmer’s Guide describes the
application programming interface (API) components, commands and error
messages of the ToolTalk service and how you modify your application to send
and receive ToolTalk messages.

The ToolTalk service supports several messaging styles. A sender can address a
ToolTalk message to a particular process, to any interested process, to an object,
or to an object type. Message senders are not concerned with the locations of
processes and objects in any network; the ToolTalk service finds receiving
processes and objects.



xvi CDE Programmer’s Overview

Common Deskop Environment: Internationalization Programmer’s Guide

The Common Deskop Environment: Internationalization Programmer’s Guide
provides information for internationalizing an application so that it can be
easily localized to support various languages and cultural conventions in a
consistent user interface.

Specifically, this guide:

• Provides guidelines and hints for developers on how to write applications
for worldwide distribution.

• Provides an overall view of internationalization topics that span different
layers within the desktop.

• Provides pointers to reference and more detailed documentation. In some
cases, standard documentation is referenced.

This guide is not intended to duplicate the existing reference or conceptual
documentation, but rather to provide guidelines and conventions on specific
internationalization topics. It focuses on internationalization topics and not on
any specific component or layer in an open software environment.

Common Deskop Environment: Desktop KornShell (dtksh) User’s Guide

The Common Deskop Environment: Desktop KornShell (dtksh) User’s Guide
describes how to create Motif applications with Desktop KornShell (dtksh)
scripts. It contains several example scripts of increasing complexity, in
addition to the basic information a developer needs to get started.

This guide is intended for developers who find a shell-style scripting
environment suitable for a particular task. It assumes a knowledge of
KornShell programming, Motif, the Xt Intrinsics, and, to a lesser extent, Xlib.



Preface xvii

What Typographic Changes and Symbols Mean

The following table describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; onscreen
computer output

Edit your .login  file.
Use ls -a  to list all files.
system% You have mail.

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.



xviii CDE Programmer’s Overview



Part 1 — Common Desktop Environment
Architectural Overview





3

Architectural Overview 1

Note – Common Desktop Environment is a standardized desktop environment.
If you wish to build an application for the Common Desktop Environment,
it should be consistent with the CDE guidelines defined by the
Common Desktop Environment: Style Guide and Certification Checklist.

This chapter presents a high-level architectural view of the Common Desktop
Environment. For details regarding the deskop run-time environment, consult
the run-time documentation set and the online help volumes. For details
regarding the desktop development environment components, see Chapter 6,
“Recommended Integration,” Chapter 7, “Optional Integration,” Appendix A,
“CDE Motif,” the development environment documentation set and the online
man pages.

Conceptual Overview 4

Data Interaction GUIs 6

Multiuser Collaboration 7

Desktop Management 8

Motif GUI Engine 13

Integration Technologies 16



4 CDE Programmer’s Overview

1

Conceptual Overview

The Common Desktop Environment architecture has many cross-process
relationships. The three-process relationship of an X client, a window manager
and the X Window System™ server seems simple by comparison. The area
covered by the Common Desktop Environment is broad, but the layering in
the system is not as rigorous as that of Motif, Xt and Xlib. The relationships
between high-level system components are diverse and extensible. This
chapter groups the technologies to illustrate that each desktop component fits
into an overall whole. The Common Desktop Environment can be divided into:



Architectural Overview 5

1

• Data interaction graphical user interfaces (GUIs)—Application-level
components that are available for user interaction, invocable by other
applications. Think of these as programming components at a larger
granularity than widgets.

• Multiuser collaboration—Defines and uses application program interfaces
(APIs) that enable collaboration between users on the network, particularly
in the areas of calendar management, network resource naming, and
network file sharing.

Figure 1-1 Conceptual overview of Common Desktop Environment

Style
Management

Object
Management

Window
Management

Session
Management

Desktop Management

GUI
Construction

GUI
Shell

CDE
Widgets

Motif
Toolkit

Motif GUI Engine

Method
Invocation

Data
Typing

Application
Messaging

Process
Execution

Integration Technologies

Data Interaction GUIs Multiuser Collaboration

ToolTalk
Messages

Actions Calendar
Sharing

File
Sharing



6 CDE Programmer’s Overview

1

• Desktop management—Provides components that negotiate the visual
relationships between entities on the desktop. These include the following:
Window Manager, Workspace Manager, Session Manager, Application
Manager, File Manager, Style Manager, and the Front Panel.

• Motif GUI engine—Includes those components that implement the controls
available to the user and includes the CDE Motif toolkit, additional widgets,
a GUI shell (Desktop KornShell), and a GUI construction tool (Application
Builder).

• Integration technologies—Represent technologies that do not generate GUIs,
but are used as infrastructure by the rest of the desktop. These technologies
include process execution control, application messaging (mechanism and
protocols), data typing, and method invocation.

Data Interaction GUIs

The Common Desktop Environment supplies a registration service, the ToolTalk
Messaging Service, that enables an application to find an available service
provider. ToolTalk provides the low-level messaging infrastructure. A
companion mechanism, called the actions system, provides a consistent
abstraction layer on top of both the traditional UNIX™ command-line interface
to applications and the Common Desktop Environment-recommended ToolTalk
interface to applications. Actions, as semantic entities, are exposed to the end
user through higher levels of software. Both actions and ToolTalk are discussed
in more detail in “Integration Technologies” on page 16.

The desktop contains components that are available through action and
ToolTalk APIs. Examples include GUIs to show a view of a directory, submit a
print job, view the contents of the Trash Can, edit some text, show help
information, compose a calendar appointment, and compose a mail message.

You can also incorporate actions and ToolTalk message support into your
application so that the application-specific services they supply are available to
the desktop and other applications. Particularly, applications should provide
the composition, viewing, editing, and printing services for both proprietary
and standard format data. This way, applications that are coded to accept an
extensible set of data types automatically gain more capabilities as more media
handlers are added to the system. The Common Desktop Environment File
Manager, Front Panel, and Mailer attachment GUI are examples of such
applications.



Architectural Overview 7

1

Media is used as a generic term for anything that can be presented to the user
to convey information. The desktop provides media handlers for
appointments, mail messages, mail folders, text, icons, and help data. Vendors
have extended the desktop with additional media handlers, including
PostScript™, many kinds of image file formats, and audio data.

Multiuser Collaboration

While the ToolTalk and action mechanisms encourage cooperation between
applications, the desktop also defines cross-user collaboration technologies.
This means distributed access to shared user data. The desktop has defined
some basic sharing mechanisms and has also built on top of existing
mechanisms.

An example of building on an existing mechanism is the remote procedure call
(RPC) client/service implementation of calendar management. The desktop
provides a client-side library and API, RPC protocol, and daemon/service that
enables users to share appointment information. (The API is being
standardized through X.400 Application Programming Interface Association
(XAPIA) to enable a cross-UNIX, PC, and palmtop calendar standard.) The
RPC protocol enables a user to browse and directly edit another user's
calendar. Access is controlled by a user-specific access control mechanism.
Calendars are tied to hosts, and a calendar's data is maintained by a host-
specific daemon. The desktop names calendars through a user@host  format.

The Common Desktop Environment uses conventional distributed file systems
to name files that aresharable on the network. To provide an interface that is
independent of the distributed file system, the desktop provides an API to
translate host-relative file names into locally expressible file names. Although
the desktop is based on the NFS® system, it can be ported to run on top of
other distributed file systems. Using the desktop file-name mapping API, an
opaque file name object can be constructed and passed between desktop clients
across the network and resolved in a host-specific way. Also, to simplify the
programming task and end user metaphor, Common Desktop Environment
applications should present remote file references as local file paths.

One of the fundamentals of building multiuser collaboration applications is the
ability to share files. The conventions for naming network files, in conjunction
with a ToolTalk file-sharing mechanism called file scoping, enable multiuser
collaboration through file sharing. File scoping is more than a mechanism for
simple, exclusive access control. Cooperating clients can use file-scope access



8 CDE Programmer’s Overview

1

to negotiate for access to files. For example, an application that has exclusive
access to a file could ask whether the user was done with the file when another
application wanted to gain exclusive access to the file.

Desktop Management

The physical metaphor associated with the Common Desktop Environment
is loosely one of a user sitting in a chair surrounded by a bank of desks
(workspaces). As the user swivels the chair (by clicking a push button on the
Front Panel), another desk becomes accessible. On each desk, the following is
available:

• A collection of drawers (File Manager views) in which folders (directories)
and reports (files) are organized.

• A collection of papers in use on the desktop (windows). Some papers are
pushed out of the way (as icons), but are within easy reach.

• Continuous display (through Front Panel icons) of a clock, the date, an
indication of new mail, and an indication of something in the trash can.

• Direct access (through Front Panel buttons) to an appointment book
(Calendar), a pad of paper (Text Editor), a terminal (emulator), a mail box
(Mailer), a printer (Print Manager), office lighting controls (Style Manager),
a list of electronic agents (Application Manager and Front Panel personal
tool box), and a guide book (Help).

The user drags and drops objects to change their location and make copies of
them. By dropping objects on services, the user gains assistance with
appointment scheduling, editing, mail composition, faxing, posting in the
network, printing, and so on.

Session Management

The state of the desktop can be remembered. At a later time, and perhaps at a
different X display station, the state of the desktop can be re-created. A session
is a snapshot of the state of a user's desktop at a point in time. The Common
Desktop Environment supports two sessions from which the user can choose:

• Home session—A snapshot of the desktop state that reassembles in the
same way each time it is started.



Architectural Overview 9

1

• Current session—The state of a desktop saved at logout time.

The Common Desktop Environment Session Manager coordinates these
activities, but applications are responsible for saving their own state.

The desktop uses the X11R5 Interclient Communication Conventions style of
session management. This consists mostly of conventions for setting properties
on top-level windows. The desktop extends this by providing a facility that
allocates specific files into which applications can store their state. A
command-line flag then points to this file when the application is restarted.
Applications that maintain multiple top-level windows must save the state of
each of them.

A session is associated with a particular user. In the Common Desktop
Environment, the Login Manager is responsible for initial user login. The Login
Manager is an alternative GUI for the UNIX login program. Normally, it checks
the entered password with the user’s registered password. However, vendors
can provide authentication schemes tuned to their platform.

The Login Manager is network-aware. When faced with an X display that is
normally served by host A, the user can log into the user’s desktop by running
a session from host B that has full access to the user's normal set of files and
services on host B. This is possible by Login Manager acting as the desktop’s
X11 Display Manager (XDM). The XDM Control Protocol (XDMCP) is used
between X11 window servers and XDMs on the network. The Login Manager
displays its login window or host chooser window on any X11 server
requesting either XDM service. This makes the Common Desktop
Environment a good match for use with XDMCP-aware X terminals.

For connections to the X server, the desktop uses the X magic cookie scheme to
control access. If a user on some host machine can read a certain file within a
session owner's home directory, then access to the X server is granted. An
alternative to this per-user authorization is per-host authorization. This is
useful for installations supporting pre-X11R4 clients, which will be unable to
connect to X servers using the X magic cookie scheme.

X resource files are handled in the context of Common Desktop Environment
sessions as follows: a set of Common Desktop Environment default
resources is merged with a host version of this file, followed by the user's
$HOME/.Xdefaults  file, followed by a session-specific file of resources that



10 CDE Programmer’s Overview

1

have changed through user interaction with the Style Manager. The result is
stored in the RESOURCE_MANAGER property of the root window. To enable fine-
grain customization, the C preprocessor is run on resource files.

Application Management

One of the obstacles preventing end users from taking full advantage of the
network environment is the difficulty of accessing remote applications. The
Common Desktop Environment provides conventions for:

• Installation of applications so that they can be run remotely.
• User navigation of available applications.
• Execution of remote applications.

The user can browse the collection of available applications with a GUI tool
called Application Manager. Applications can be dragged onto the desktop for
easier access. Even remote applications are started by a simple double-click,
hiding the network location of a running application. The user is not aware of
any distinction between local and remote applications.

This network transparency is accomplished by installing applications on
network hosts designated as application servers. The parts of the installation
relevant to the desktop require placing certain files in conventional places in
the application's installation hierarchy. The application server maintains a list
of applications that it is serving. Each host on the network maintains a list of
the application servers on the network that it queries when a user logs into the
desktop. This process is referred to as application gathering. It results in a
dynamically-generated file hierarchy of actions arranged in folders. (Actions
represent operations that end users can invoke, including starting
applications.)

The Common Desktop Environment Application Manager provides a specialized
view of the file system for the end user. Applications are arranged into groups
and groups can be nested (such as in a directory hierarchy). Your application’s
installation script associates the application to a group. This association can be
overridden by the system administrator as part of application server
configuration. The set and arrangement of the actions shown through the
Application Manager is a system resource that is typically shared between
multiple users. Users cannot modify this view.



Architectural Overview 11

1

The user can drag an icon from the Application Manager onto the desktop, File
Manager, Front Panel, and so on. The associated action remains valid as long
as the gathered application that it refers to remains valid. Because actions
represent a form of abstraction and indirection, the actual location of the
application can change over time. This change remains transparent to the end
user (this is explained further in “Method Invocation” on page 18). The user
double-clicks on an action icon to invoke it.

Object Management

The Common Desktop Environment captures some object-oriented system
attributes without being dependent upon a completely object-oriented
infrastructure. The desktop provides graphic onscreen images that the user can
pick up and move about, dropping them anywhere it makes semantic sense.
These are viewed as objects by the user. The File Manager promotes the
object abstraction by providing a graphical way to browse and modify file
and directory objects within the file system. It also provides a GUI to invoke
actions. When the user selects a file, the actions that are defined for the
selected type of file are presented to the user.

Objects managed by desktop-based applications do not have to be file-based;
in-memory buffers can represent desktop objects, too. The Common Desktop
Environment Mailer handles Multipurpose Internet Mail Extensions (MIME)
messages by displaying attachments to a message as icons in a scrollable panel.
These are objects that behave just like file-based objects during activities such
as drag and drop. The user can drag between the File Manager and the Mailer.
Applications that use drag and drop should maintain this important user
model by supporting both file-based and buffer-based objects. The desktop
drag-and-drop API and protocol make this straightforward.

Window Management

The Window Manager is essentially the Motif 1.2 window manager with
extensions to provide the Front Panel GUI and workspace abstraction.

The Front Panel can be thought of as a graphic version of the root window
menu supported by many window managers. It can also be thought of as a
tuned object manager in which common objects are readily available to the
user. The Front Panel can show dynamic system information, and it enables the
user to invoke actions and system functions. The user dynamically customizes
the Front Panel by dragging and dropping action icons from the Application



12 CDE Programmer’s Overview

1

Manager and File Manager onto subpanels. Applications can come equipped
with special configuration files that extend the Front Panel, possibly defining
drop behavior, drop zone animation feedback, and so on. The user can
optionally install these configuration files depending on customization
preferences. Figure 1-2 displays a typical desktop Front Panel.

Figure 1-2 Typical Front Panel.

Workspaces are abstractions supported by the Window Manager that can be
thought of as virtual desktops. Application windows exist within one, some, or
all available workspaces. The user usually determines which workspaces an
application window exists in as part of the user's customization. You should
rarely use the workspace API other than to explicitly designate in which
workspace your application appears on session restart. In general, do not place
your application within multiple workspaces, because this overrides the user's
prerogative.

Style Management

The Style Manager enables users to customize their desktop using a GUI. Users
are shielded from advanced concepts, such as X resources, for most common
customization options. Style Manager provides controls for desktop-wide
properties that adjust backdrops, keyboard settings, mouse settings, screen
saver options, window management, workspace management, and session
management. These properties either do not affect applications directly or
indirectly affect them through the X server or window manager.

You, as an application developer, are more directly influenced by font choices,
color choices, and input device mappings. The Motif toolkit and the Common
Desktop Environment handle many of these settings transparently for widgets.
However, your application will appear more integrated with the rest of the
desktop if it responds to user font and color preferences. Applications that
directly interact with the mouse will feel more integrated with the rest of the



Architectural Overview 13

1

desktop if they are consistent with other applications; for example, by using
the same mouse button double-click minimum interval value
(multiClickTime  resource).

To accommodate differences between platform vendor's display technology
and available font sets, the Common Desktop Environment defines font aliases
that are indirect names to actual font names. Use these aliases in the same
way as the rest of the desktop uses them.

The Style Manager provides the user with color selection options to adjust the
desktop color scheme. This color information is private to the Common
Desktop Environment. Applications doing widget subclassing can indirectly
access some of the color scheme by looking at inherited background pixel
values. A call to XmGetColors()  generates 3-D shadow colors.

The Common Desktop Environment does not dictate color usage for static
colors, such as those used within icons. For these situations, however, your
application should attempt to use the colors offered by the Common Desktop
Environment Icon Editor, to enhance color sharing.

Motif GUI Engine

Think of the Motif toolkit as the GUI engine of the desktop. This section
discusses CDE Motif, CDE widgets, and alternative modes of Motif
programming.

Note – Common Desktop Environment is a standardized desktop environment.
If you wish to build an application for the Common Desktop Environment,
it should be consistent with the CDE guidelines defined by the
Common Desktop Environment: Style Guide and Certification Checklist.

Common Desktop Environment Motif Toolkit

The CDE Motif toolkit is Motif 1.2.3 with bug fixes, enhancements, and some
new features. You must explicitly set resources to enable the new features.
Functional additions include file selection box GUI modifications, different
default settings of existing resources (primarily to lighten up the default border
widths), color management enhancements, internationalization of error
messages, and minor usability fixes (some of which have the effect of easing
migration of OPEN LOOK users to the Common Desktop Environment).



14 CDE Programmer’s Overview

1

CDE Motif and Motif 2.0 are also highly compatible. Most functions put into
CDE Motif have been introduced into Motif 2.0. As a result, developers have
compiled their applications with CDE Motif, relinked to Motif 2.0, and ran the
applications successfully. Widget subclassing that has not followed Motif 1.2
subclassing guidelines designed to shield programs from widget size changes
are likely to fail.

A drag-and-drop convenience layer has been added on top of the Motif 1.2
drag-and-drop API. In addition, the Common Desktop Environment uses the
Motif 1.2 preregister drag feedback protocol. A drop site drag manager process
keeps track of visible drop zones on the desktop. This data is used by a drag
source client process to manage drag feedback interaction. Limited drag time
validation of drop zones is followed by full validation at drop time, with snap-
back-to-source animation if the drop fails.

CDE Motif includes a GUI style guide and certification checklist that has
substantially expanded on the Motif 1.2 style guide. Additions affect the input
models, window management, and GUI design principles.

CDE Motif Widgets

CDE Motif provides two types of widgets that are not available in Motif 1.2.3:

• Low-level control widgets:
• SpinBox—A text field and arrow button widget.
• ComboBox—A text field and list box widget.
• MenuButton—A menu that doesn't need to be in a row column widget.

These were added primarily to help you port applications from a
Microsoft® Windows or OPEN LOOK environment. The SpinBox and
ComboBox widgets have equivalents in Motif 2.0.

• Rich and full-featured widgets:
• Terminal Emulator widget—Useful for applications designed to mix the

best of a command-line user interface with a GUI.
• Editor widget—Available for embedding a more full-featured plain text

editor than that available from the Motif Text widget.
• Help widgets—Handle navigation and interaction with application help

volumes.



Architectural Overview 15

1

Help is delivered with an application in the form of Semantic Description
Language (SDL) files that have been compiled from HelpTag, a form of
Standard Generalized Markup Language (SGML) files. The Help system
features mixed text and graphics, hyper links, dynamic reformatting of
text, and structured navigation capabilities.

GUI Shell

The Common Desktop Environment includes Desktop KornShell (dtksh ), an
interpreted scripting language alternative to C programming of the Motif
toolkit. Desktop KornShell includes selected frequently-used CDE APIs, along
with Xt, and Xlib APIs. You must use a compiled language to access the full
power of the environment. However, you can write Desktop KornShell scripts
that participate in desktop integration activities such as drag and drop, session
management, and ToolTalk messaging.

If you are comfortable with shell programming, you may prefer to use Desktop
KornShell (dtksh ) for modest programming tasks because it is:

• Well suited to system-administration-type applications because the shell
commands intermix easily with GUI control.

• Good for putting a GUI control program on top of character-based
applications because the shell environment handles character-based
interaction in a natural way.

• A good way to deliver instruction-set-independent programs to a
heterogeneous collection of hosts. For example, use the Common Desktop
Environment Mailer to attach a script to a message that the recipient simply
double-clicks to invoke.

GUI Construction

The easiest way to produce a Common Desktop Environment application, and
perhaps the fastest, is to do almost no Motif toolkit programming at all. Use
the Common Desktop Environment Application Builder, also known as Ap
Builder, to construct the GUI control portion of your application. App Builder
focuses on making default widget behavior easy to access. It does this by
hiding many of the more esoteric resources that are available on most widgets.
App Builder also makes it as easy to incorporate desktop integration
infrastructure into your application, including drag and drop, session
management, and ToolTalk messaging.



16 CDE Programmer’s Overview

1

App Builder maintains the user interface state in Builder Interface Language
(BIL) files. A code generator takes the BIL files and produces Motif toolkit
code. App Builder can also generate User Interface Language (UIL) files.

As you make changes to your application’s user interface, App Builder merges
your custom code with the code it generates. Generated code is a good source
of example code, even if you do not using App Builder to maintain your
application’s GUI state.

In addition, nonprogrammers can use App Builder to produce an application
GUI prototype. The prototype can roll forward to programmers for the
production phase of development.

Integration Technologies

Common Desktop Environment technologies discussed thus far have been
directly involved with putting a GUI onto the screen. The integration technologies
described in this section are underlying infrastructure, not GUI providers.

Process Execution

To provide a network-leveraging environment, the Common Desktop
Environment provides the Sub Process Control (SPC) mechanism to start, manage,
and collect results from applications running on a remote host. A remote host
installs an SPC daemon that serves as the remote end of a socket-based control
mechanism. This control mechanism tries to maintain the illusion that the
remote process is a local child to the parent process. Authentication of the user
that owns the parent process is based upon the ability of the parent process to
write a setuid  file to the user’s home directory and the ability of the child
process to read the result.

The SPC API and associated control programs are private to the Common
Desktop Environment. Actions represent the public API for running applications
remotely.

Application Messaging

The ToolTalk Messaging Service is the application messaging mechanism for
the Common Desktop Environment. Application messaging addresses inter-
application control and cooperation for applications working on behalf of a
single user. The ToolTalk session daemon is a local message-routing process



Architectural Overview 17

1

whose control scope typically corresponds to that of the X server. This means
that clients within a session issue requests, the ToolTalk session manager finds
or starts some client within a session that is able to handle the request, and the
ToolTalk session daemon tracks the request until completion.

The desktop provides two standard ToolTalk protocols known as messages sets.
A message set contains a number of messages that can be exchanged between
a sender and a handler process. These messages are grouped together because
they describe related requests and notices. The sender and recipient may be
within the same process or on different hosts. Message sets have associated
utility functions that allow you to concentrate on the semantics of the protocol
without getting involved in the low-level messaging details. Some of the
message set functions enable you to defer to default behavior with almost no
work on your part.

Desktop Message Set

The Desktop Message Set encompasses three areas. The first is windowing
behavior. The second involves file access and short term file life cycle control.
The third is specific to applications that have extension languages and is not
generic enough to warrant library support.

Media Message Set

The Media Message Set allows an application to be a container for arbitrary
media, or to be a media player/editor that can be driven from such a container.
The Media message interface allows a container application (such as Mailer or
File Manager) to compose, display, edit, or print a file or buffer of an arbitrary
media type, without understanding anything about the format of that media
type. ToolTalk routes a container's requests to the user's preferred tool for the
given media type and operation. This includes routing the request to an
already-running instance of the tool if that instance can best handle the
request.

Data Typing

The Common Desktop Environment provides a uniform interface for
manipulating the objects contained on the desktop. To do this, the desktop
has a mechanism, called data typing, to determine an object’s type using a set
of criteria. The criteria includes properties potentially shared by file-based and



18 CDE Programmer’s Overview

1

buffer-based objects such as name pattern and content pattern. Other criteria
are exclusive to files, and include path-name pattern and file permissions.
Associated with every desktop type is an extensible set of attributes, including
icon name, name template pattern, list of actions suitable for presentation to a
user, equivalent type names for other type spaces (for example, MIME type),
and a textual description of this type. The actions and data-types database stores
data criteria and data attributes.

The Common Desktop Environment defines (and platform vendors, including
SGI supply), a set of desktop type definitions. Your application should
augment the database with both proprietary and public data types at
application installation time.

Information is extracted from the actions and data-types through a CDE library
API. The data typing API matches an object's properties with the database type
criteria to determine the object's desktop type. The matching algorithm uses a
set of precedence rules to resolve conflicts.

The CDE type space is defined by the X/Open CDE standard and exists
primarily to support desktop-oriented activities such as icon display and
action association. The MIME type space is defined by the Internet Engineering
Task Force and exists to deal with exchange of mail message parts. A ToolTalk
media type space exists in order to match data with handlers, and is a subset of
X selection target types defined by the X Consortium. Thus, to do a complete
job of type definition, you have to define a CDE type, X selection target, and
MIME type. For private CDE types, append the type name to an organization’s
name. This partitions the name space without need for centralized allocation of
types. The Common Desktop Environment claims the Dt prefix, for Desktop.

Method Invocation

A CDE type can be thought of as the class of a desktop object. Using this
analogy, actions can be thought of as the methods available on instances of a
class. Thus, the actions attribute in a type attribute list describes operations
that are available for the type. A single action in the actions and data-types
database has multiple parts, many of which are optional. These parts include:

• A description of how to invoke the operation: for example, through
ToolTalk, through an execution string passed to the SPC mechanism, from
within a terminal emulator, and so on.



Architectural Overview 19

1

• A description of the type of arguments associated with the action. The type
of the desktop objects (files and buffers) that it accepts is defined by the
actions and data-types database. Actions are polymorphic with respect to
data types. For example, the Open action invokes a text editor for
arguments that are text files and a graphics editor for arguments that are
graphics files.

• A description of the number of arguments, if any, associated with the action.

• An optional indication as to where to carry out the operation: the local
machine, a particular remote machine, the machine on which the executable
resides, and so on. In addition, these execution locations can be included in
a list so that if a host is not available then the next host on the list is tried.
This provides a measure of redundancy that can be used to increase the
likelihood of application launch, even in the face of remote host
unavailability. Thus, actions provide network distribution guidance,
implemented either through built-in ToolTalk facilities or through the SPC
mechanism directly.

• An optional label, help string, and icon that the user sees when interacting
with the action's GUI. These are hints to an application about how to
represent the action to the user. These hints may be ignored, as the Front
Panel does by ignoring the icon if the Front Panel configuration file supplies
an alternative icon.

The collection of actions available to the user is assembled at the same time as
the system is collecting type database information. In fact, related action and
type information usually reside together in the same file. Desktop-defined,
system-administrator-defined (host-specific), and user-defined files are
assembled in order into a single (actions and data-types) database, with later
definitions taking precedence. This ordering of search path precedence and
traversal is used elsewhere by the desktop for such things as help volume and
icon file searches.

The actions and data-types database and the File Manager use action files to
instantiate actions as file system objects that can be viewed, invoked, moved,
copied, and so on. The database contains references to an action’s
implementation (for example “run /usr/bin/app  on machine
net_app_svr ”). However, a representation is needed of an action as an object
that the user can directly manipulate. This is achieved by using an object's
name, which identifies it as an action to any object manager that is looking for
actions. Thus, if there is an executable file named Dtstyle  and an action
named Dtstyle, the File Manager will interpret that file, regardless of its



20 CDE Programmer’s Overview

1

content, as the Dtstyle action reference. In addition, the File Manager uses the
action’s label as the name that the user sees for this file. Action labels are
localizable, whereas action names are programmatic entities that should not be
localized.

The good feature about using files simply as pointers into the actions and data-
types database is that the underlying implementation can evolve without the
user having to do anything. However, one user's actions and data-types
database may not match another user’s actions and data-types database. Thus,
a user cannot exchange an action reference, for example as a mail message
attachment, and expect another person to have a comparable definition for that
action. Exchanging a Desktop KornShell script is the best solution to this
problem.

Actions are useful because they integrate both legacy command-line
applications and ToolTalk applications into the desktop as polymorphic,
distributed operations on desktop objects.



Part 2 — Development Environment
Overview





23

Development Environment
Considerations 2

Note –
Common Desktop Environment is a standardized desktop environment.
If you wish to build an application for the Common Desktop Environment,
it should be consistent with the CDE guidelines defined by the
Common Desktop Environment: Style Guide and Certification Checklist.

This chapter discusses general information you should know before starting to
use the Common Destkop Environment application program interfaces (APIs).

Before you integrate your application into the desktop, you should have a
basic understanding of how the desktop works. Install the Common Desktop
Environment on your platform and familiarize yourself with its features. For an
introduction to the desktop, see the User’s Guide or the Desktop Introduction
online help volume.

Common Desktop Environment Characteristics 24

Underlying Foundations 25

Running Existing Applications 26

Libraries and Header Files 27



24 CDE Programmer’s Overview

2

Common Desktop Environment Characterstics

The Common Desktop Environment provides a productive and comfortable
desktop environment for UNIX users. As you develop your application, keep in
mind the experience that the Common Desktop Environment delivers to its
users. Develop your application with the following characteristics in mind,
to help make it a powerful, consistent, and predictable part of the Common
Desktop Environment:

• Hide the complexities of UNIX.

Because the Common Desktop Environment targets end users as its primary
customers, providing an application that hides UNIX as much as possible is
a key ingredient to a successful product.

• Provide a common look and feel.

Successful applications in the Common Desktop Environment share look-and-
feel characteristics with other applications on the desktop. Follow the style
and other guidelines (such as the Common Desktop Environment standard
font names) so that your application encompasses the CDE Motif look and feel.

• Make applications easy to use.

Provide an easily readable default font size, and provide keyboard
accelerators for mouse-oriented actions. Use the desktop online help
component to integrate a complete Help system into your application. Basic
computer interaction styles should be consistent across platforms wherever
possible.

• Take advantage of desktop integration services.

The Common Desktop Environment provides a set of desktop integration
services that enable applications to be well-integrated into the desktop.
Users benefit because they do not have to know whether an application is
running on a local machine or somewhere on the network, or which toolkit
(if any) was used to write the application they are running. Provide

Demo Programs 27

Man Pages 27

Development Environment Directory Structure 28



Development Environment Considerations 25

2

mechanisms in your application that enable it to be launched from the
desktop and to communicate with other Common Desktop Environment
applications. Use the online Help system to provide users with quick
information. Use drag and drop to provide users with a more predictable
way to use their systems.

• Design for individual and cultural differences.

By following the Common Desktop Environment conventions and policies,
your application will naturally provide for smooth, consistent, and
appropriate customization of:
• Fonts.
• Color.
• Keyboard and mouse bindings.
• Locale-specific configuration files.

For more about locale-specific configuration files, see the localization section
of the Advanced User’s and System Administration Guide.

Underlying Foundations

To compile an application that uses the desktop APIs, you need:

• Common Desktop Environment header files and libraries.

• X11R5 or later header files and libraries.

• ANSI C compiler; or C++ compiler, version 2.0 or later, if you are
developing a C++ application.

The resulting binary file must be run in an environment in which matching
libraries are installed. The run-time libraries are in /usr/dt/lib , and they
include the directories listed in Table 2-2 on page 28.

To run properly, Common Desktop Environment-based applications require an
environment in which some files from the following run-time directories are
installed:

• /etc/dt/*
• /var/dt/*
• The following subdirectories of /usr/dt :

• app-defaults
• appconfig
• bin



26 CDE Programmer’s Overview

2

• dthelp
• lib

Your application should depend on only those run-time files explicitly
mentioned in the X/Open XCDE standard. It should not depend on files not
mentioned in the standard; for example, /usr/dt/appconfig/icons . If you
build such dependencies into your application, it should be robust enough to
run in an environment in which such files are missing or have changed.

For a listing of the minimum run-time environment required to run a Common
Desktop Environment application, see the dtfilsys(5)  man page.

The run-time environment includes CDE Motif, which is Motif 1.2.3 with bug
fixes and enhancements. (For a description of these enhancements, see
Appendix , “CDE Motif.”) For more information on the Common Desktop
Environment run-time environment, see the run-time documentation set.

Running Existing Applications

Existing X Window System-based applications that are not compiled with any
Common Desktop Environment libraries run under the desktop window manager
(dtwm) similarly to the way they run under the Motif window manager: they
still work. The level of interoperability with the Common Desktop Environment
follows these guidelines.

1. This is a Motif 1.2 drag-and-drop dynamic protocol interoperability problem, and it is not due to the Common
Desktop Environment.

2. This is implemented through a protocol translation mechanism in the drop site database manager (dsdm).

Table 2-1 Interoperability of Existing X-Based Applications with the
Common Desktop Environment

Characteristics of Existing X-based Applications Interoperability With Desktop

Motif 1.2 (and later) drag and drop
(using preregister protocol)

Yes

Motif 1.2 (and later) drag and drop
(using dynamic protocol)

No1

Cut and paste (all applications) Yes

OPEN LOOK drag and drop Yes (except multiple-item
drag and drop)2

ToolTalk Media Exchange and Desktop protocols Yes



Development Environment Considerations 27

2

If you want to recompile and relink an existing Motif application with the CDE
Motif shared libraries, the application must be compatible with Motif 1.2.

Libraries and Header Files

Compile Common Desktop Environment applications against X11R5 header files
and libraries, which reside in vendor-specific locations. Table 2-2 on page 28
lists the locations of all development environment libraries and header files, as
subdirectories of /usr/dt .

Demo Programs

The /usr/dt/examples  subdirectories contain source code for development
environment component demos, as well as a template application. See Table 2-2
on page 28 for a listing of all demo subdirectories.

Each demo subdirectory contains source files for one or more demo programs,
along with makefiles for the programs. It also contains a README file that
describes the demos.

The demo whose source is in the template  subdirectory is a simple drawing
program. This demo illustrates the basic structure of a Common Desktop
Environment application that is integrated with the desktop. It is internationalized
and contains all localized components in a separate subdirectory. You can use
the drawing program source as a template for your application.

Man Pages

The Common Desktop Environment man pages reside in /usr/dt/man . To view
them using either the man  command or the desktop man page viewer, you
must add /usr/dt/man  to the MANPATH environment variable. For example,
in your ~/.dtprofile  file, set:

MANPATH = $MANPATH:/usr/dt/man

For a listing of the /usr/dt/man  subdirectories and contents, see Table 2-2.
For more information on the man  command, see the man(1)  man page.



28 CDE Programmer’s Overview

2

Development Environment Directory Structure

Table 2-2 lists the top-level directories in the development environment
directory structure and lists their subdirectories. (All of the top-level directory
names are prefixed by /usr/dt .)

Table 2-2 Development Environment Directories in /usr/dt

Directory Subdirectory Contents

examples Subdirectories that contain source code
for development environment
component demo programs.

README file.

dtaction Action invocation API demos.

dtbuilder Application Builder examples.

dtcalendar Calendar API demos.

dtdnd Drag-and-drop API demos.

dtdts Data-typing API demos.

dthelp Help API demos.

dtksh dtksh  example scripts.

dtsession Session Manager API demos.

dtterm Terminal Emulator widget API demos.

dtwidget CDE Motif widgets demos.

dtwsm Workspace Manager API demos.

template Template Common Desktop Environment
application.

motif Motif 1.2 API demos.

motif/clipboard XmClipboard  API demo.

motif/dogs Widget binary compatibility mechanism
demo.

motif/draganddrop Motif 1.2 drag-and-drop API demo.

motif/periodic Motif widgets demo.

tt ToolTalk Messaging Service demos.



Development Environment Considerations 29

2

include Development environment library
header files.

csa Calendar header files.

Dt Header files for DtSvc , DtWidget ,
DtHelp , and
DtTerm.

Mrm Motif 1.2 resource manager header files.

Tt ToolTalk Messaging Service header files.

Xm Motif 1.2 toolkit header files.

uil Motif 1.2-callable UIL compiler header
files.

lib Library files for libcsa  (Calendar),
libDtHelp  (Help system),
libDtSvc  (actions, data typing, drag
and drop, Session Manager, Workspace
Manager),
libDtTerm  (Terminal Emulator),
libDtWidget  (CDE Motif control and
editor widgets),
libMrm  (Motif 1.2 resource manager),
libUil  (Motif 1.2-callable UIL
compiler),
libXm  (Motif 1.2 toolkit),
libtt  (ToolTalk)

man Development environment man pages.

man1 Client and utility man pages.

man3 API man pages.

man4 Data formats.

man5 Header file and action man pages.

Table 2-2 Development Environment Directories in /usr/dt (Continued)

Directory Subdirectory Contents



30 CDE Programmer’s Overview

2



31

Developing an Application 3

This chapter presents information specific to developing a Common Desktop
Environment application, such as naming conventions and other guidelines. It
introduces levels of integration, which are the guidelines for determining the
desktop functionality to incorporate into your application to make it
increasingly integrated with the desktop. It also provides an overview of the
Application Builder, a tool to simplify Common Desktop Environment
application development.

Levels of Desktop Integration 32

Desktop Naming Conventions 32

Public and Private Interfaces 33

Guidelines for Common Desktop Environment Databases 34

Application Initialization and libDtSvc 34

Application Builder 34



32 CDE Programmer’s Overview

3

Levels of Desktop Integration

Users can run any X11-based application from a shell command line in the
Common Desktop Environment. If you want to integrate your application into
the desktop, however, there are guidelines for you to follow. The Common Desktop
Environment defines three levels of integration to give you maximum flexibility
designing your application or porting an existing application:

• Basic Integration—Enables your application to be launched from the desktop.
You do not need to change your application code to perform basic
integration. See Chapter 5, “Basic Application Integration,” for more
information.

• Recommended Integration—Enables your application to enhance its level of
consistency with the desktop. See Chapter 6, “Recommended Integration,”
for more information.

• Optional Integration—Enables you to leverage services provided by the
desktop for achieving specialized tasks. See Chapter 7, “Optional
Integration,” for more information.

For more information on all three levels of integration, see the Programmer’s
Guide. Basic Integration is also discussed in the Advanced User’s and System
Administrator’s Guide.

Desktop Naming Conventions

The Common Desktop Environment uses naming conventions similar to those
used by X and Motif. Desktop clients, desktop libraries, and other desktop
components share a common prefix for externally visible names: dt , Dt , or DT.
Private desktop structures, functions, and defines (found in the Common
Desktop Environment code; not for developer use) have an _dt , _Dt , or _DT
prefix. Table 3-1 lists the desktop naming conventions.

Table 3-1 Desktop Naming Conventions

Name Prefix Example

Desktop clients and utilities dt dthelpview

Resource names and classes Dt DtNhelpType, DtCHelpType

Library names Dt libDtHelp

Include references Dt #include <Dt/Help.h>



Developing an Application 33

3

Table 3-2 lists the exceptions to the preceding naming conventions.

Caution – Do not use the prefixes dt , Dt , DT, _dt , _Dt , _DT, Xm, tt , Tt , TT, X,
or Xt  to define new symbols in your application code. If you do, you might
define one that has already been defined—or might be defined in the
future—in the Common Desktop Environment, ToolTalk, X11, or Motif code.

Public and Private Interfaces

If a Common Desktop Environment interface is documented in the man pages
or the Common Desktop Environment documentation set, you can assume that
the interface is public unless otherwise stated. An interface is not necessarily

Public function names Dt DtCreateHelpDialog

Public data structure names Dt DtHelpDialogCallbackStruct

Constant names Dt DtHELP_NEW_WINDOW

Environment variables DT DTHELPSEARCHPATH

Private desktop symbols
(structures, functions, defines)

_dt ,
_Dt ,
_DT

_DtHelpFunction,
_DtHELP_DEFINE

Table 3-2 Exceptions to Desktop Naming Conventions

Name Prefix Example

CDE Motif Xm XmCreateLabel

dtksh  Convenience Functions Dtksh DtkshAddButtons

ToolTalk Messaging Service tt (for functions)
Tt (for typedefs)
TT (for constants)

tt_open
Tt_message
TT_NOTICE

X11R5 X, Xt XOpenDisplay,
XtCreateWidget

Table 3-1 Desktop Naming Conventions (Continued)

Name Prefix Example



34 CDE Programmer’s Overview

3

public just because it has a header file associated with it. Interfaces that are not
documented are private to the Common Desktop Environment and are subject
to change without notice.

Guidelines for Common Desktop Environment Databases

You can find the syntax for the desktop databases, such as those used for
actions and data types, in man pages located in the /usr/dt/man/man4
directory.

For more information on databases, see the Programmer’s Guide.

Application Initialization and libDtSvc

If your application uses any of the libDtSvc  APIs (for actions, data typing,
drag and drop, Session Manager, or Workspace Manager), it must first
initialize the libDtSvc  library by calling either DtInitialize()  or
DtAppInitialize() . Refer to the DtInitialize(3)  or
DtAppInitialize(3)  man page for more information.

Application Builder

Application Builder (App Builder) is a tool that enables you to easily create the
graphical user interface (GUI) for Common Desktop Environment applications,
without having to write code to call the desktop application program interfaces
(APIs). It abstracts the Motif toolkit into simple object palettes and object
property sheets. You can use App Builder to construct a wide range of
applications, from simple GUI-based programs to complex, integrated systems.
It supports User Interface Language (UIL) file import and export to enable you
to migrate your application among other Motif-based tools and products.

App Builder is ideally suited for use if you:

• Are not an expert Motif programmer.

• Are not familiar with the CDE Motif widgets.

• Are not familiar with the desktop services (for example, drag and drop,
ToolTalk messaging, sessioning, help, and internationalization).

• Want to build your application user interface quickly and be able to change
it easily.



Developing an Application 35

3

• Are working collaboratively with other people to build a single application.

In fact, even if you do not fit into any of the preceding categories, you will
likely find App Builder to be appropriate and helpful for your application
development.

Using App Builder, you can:

• Lay out the user interface for an application, constructing it piece-by-piece
from a collection of objects from the CDE Motif toolkit.

• Define connections between objects to provide application GUI behavior,
then use the test mode that enables connections to be tested.

• Add some of the desktop services functionality to your application.

• Edit applications that were previously created using App Builder.

• Merge automatically generated code with hand-generated code.

• Generate C-language source code and associated project files (for example,
message catalogs) for the application.

You can compile and invoke your application from within App Builder. You
can execute the build, run, and debug cycles all from a common environment
without having to exit and restart App Builder.

Demo Programs

You can find the App Builder example programs in
/usr/dt/examples/dtbuilder . Read the README file for detailed
information on these programs.

Related Documentation
For more information on Application Builder, see the appropriate man pages,
the App Builder help volume, and the Application Builder User’s Guide.



36 CDE Programmer’s Overview

3



37

Portability and Maintenance 4

This chapter contains information you can use to write highly portable
applications and use to ensure that your application will be compatible with
future Common Desktop Environment releases.

Portability Issues

This section presents issues that might affect your application’s portability
between different platforms that support the Common Desktop Environment.

Standards

To be Common Desktop Environment-compliant, your application must follow
the Motif 1.2, ANSI-C, and X11R5 standards. If you are developing your
application in C++, use C++ version 2.0 or later. No further assumptions are
made that you adhere to any standards, such as POSIX, when you write a
Common Desktop Environment application.  Applications that use desktop
program interfaces (APIs) will be portable to other Common Desktop
Environment platforms. However, using POSIX can enhance your software’s
portability.

Portability Issues 37

CDE Motif Widget Binary Compatibility Guidelines 40



38 CDE Programmer’s Overview

4

The POSIX standard, IEEE Std 1003.1-1990, is entitled IEEE Standard for
Information Technology—Portable Operating System Interface (POSIX)—Part 1:
System Application Program Interface (API) [C Language], ISBN 1-55937-061-0.

The Motif 1.2 standard, IEEE Std 1295, is entitled Standard for Information
Technology—X Window System Graphical User Interface—Modular Toolkit
Environment.

For information on ordering IEEE Std 1003.1-1990 and IEEE Std 1295, see
“Related Books” on page xi.

Makefiles

Certain libraries that the Common Desktop Environment depends on, for
example X11R5, are likely to be installed in different locations on different
platforms. Include platform-specific references to accommodate this or
write a separate makefile for each platform.

Also, the make program functionality can differ across platforms. If you want
to write just one makefile for your application, use the common make
functionality used by the platforms to which you want to port your program.
Avoid platform-specific make features.

Common Desktop Environment requires no additional defined constants (-D
parameters) to integrate with the desktop. If you do follow a standard, such as
POSIX, you might need to compile with additional standard-specific flags.
Read about the standard to find out if it includes special compiler
considerations.

Each subdirectory of /usr/dt/examples  contains sample makefile source
files for different platforms. These makefiles take into account system
differences. In particular, see the /usr/dt/examples/dtdts directory  for
generic examples of makefiles.

Compile Options

To enable your application to find the desktop include  files, add:

-I/usr/dt/include

to each makefile’s compile line.



Portability and Maintenance 39

4

Link Options

To enable your application to reference desktop libraries, add:

-L/usr/dt/lib -l< libname1> -l< libname2>...

to each makefile’s link line, where libname1, libname2 are the names of libraries
your application needs to reference. You can include as many desktop library
names in this line as you want. For example:

-L/usr/dt/lib -lDtSvc -ltt -lXm

enables your application to reference the Desktop Services, ToolTalk Messaging
System, and Motif 1.2 libraries.

File-Naming Conventions

You should limit your application file names, and the file names your
application generates, to 14 characters. This will make your application
portable to platforms that have this limitation. Some platforms can be
configured to have this constraint.

Do not place length limitations on file names that an end user generates.

Display Support

Your application should support the following display options and
configurations:

• Monochrome (including black-and-white icons)
• Color (including color icons)
• Small screens, such as VGA (640x480—scale application window or font size

to fit completely on the screen)

If you use the Icon Editor to create color icons, your application will share
colors with other desktop applications more readily. This helps conserve color
cells when running on a Pseudo Color display.



40 CDE Programmer’s Overview

4

CDE Motif Widget Binary Compatibility Guidelines

Any widget subclass that you implement using the standard Xt APIs that relies
on the size of data structures of widgets from which you have subclassed
might not be compatible with any new version of Motif or the Common Desk-
top Environment. The reason for this is that new fields may be added to the
superclasses in the new version of Motif. An example is that new fields have
been added to the XmManager and XmPrimitive  classes in Motif 2.0.

The incompatibility occurs because a subclass must contain compiled-in
references to its instance fields that are specified relative to the start address of
the widget instance. When you install a new Motif library for a widget whose
superclass instance structure has been extended, the compiled-in references
will point to the wrong memory location.

To avoid this difficulty, Motif provides a mechanism for defining resources and
accessing widget fields that allows you to reference all fields in the instance
and constraint structures relative to the start of the widget part  structure,
instead of the overall widget structure. (The overall widget structure includes
the superclass part structure.) The mechanism resolves these relative references
at run time, when the widget class is first initialized. To resolve references, it
factors in the size of the widget’s superclass instance structure, which it reads
from the currently linked Motif library.

Note – If you implement subclassing, you must use the Motif reference-
resolving mechanism if you want your application to be binary compatible
with future releases of the Common Desktop Environment.

For details regarding this Motif mechanism, consult the Motif 1.2
XmResolvePartOffsets(3x)  and XmResolveAllPartOffsets(3x)  man
pages and the OSF/Motif Programmer’s Reference. You can find example source
code in /usr/dt/examples/motif/dogs .



41

Basic Application Integration 5

Basic application integration is a set of highly recommended tasks you should
perform. These tasks do not require modification of the source code for your
application.

Basic integration does not involve extensive use of the desktop application
program interface (API). Therefore, it does not provide other interaction with
the desktop, such as drag and drop, session management, ToolTalk messaging,
and programmatic access to the actions and data types database.

Basic Integration Features

Basic application integration provides these features for end users:

• A graphical way to locate and start your application on the desktop.

Your application will provide a desktop registration package, and your
installation script will automatically register your application.

Registration creates an application group at the top level of Application
Manager. The application group contains an icon the user double-clicks to
start the application.

Basic Integration Features 41

Organization of Basic Integration Information 42

Basic Integration Tasks 43



42 CDE Programmer’s Overview

5

• The ability to recognize and manipulate your application’s data files.

Your application will provide data types for its data files.

Data typing configures data files to use a unique icon in File Manager to
help users identify them. The data files also have meaningful desktop
behavior. Two examples are:
• The user can start your application by double-clicking a data file.
• Dropping a data file on a desktop printer drop zone prints the file using

the appropriate print command.

• Easy font and color selection using Style Manager.

Your application will change interface fonts and background, foreground,
and shadow colors dynamically.

The desktop defines general interface font and color resources that are used
if no corresponding application-specific resources exist.

Basic integration provides these advantages to system administrators:

• Easy installation and registration.

Upon installation, the application is automatically registered. The system
administrator has little or no additional work to do.

• Easy ongoing administration.

All the desktop’s configuration files are gathered in one location.
Furthermore, the application can easily be unregistered if, for example, the
system administrator wants to update it or to move it to a different
application server.

Organization of Basic Integration Information

Most of the tasks involved in basic integration are also performed by system
administrators who are integrating an existing application into the desktop.
Therefore, most basic integration documentation is located in the Advanced
User’s and System Administrator’s Guide.

The Programmer’s Guide contains a chapter on basic integration. Where
appropriate, the chapter refers you to the information contained in the
Advanced User’s and System Administrator’s Guide. It also contains additional
information specific to application programmers.



Basic Application Integration 43

5

Basic Integration Tasks

These are the general tasks involved in basic integration:

• Modify any application resources that set fonts and colors. This allows users
to change the application’s interface fonts and colors using Style Manager.

See the section on modifying font and color resources in the Advanced User’s
and System Administrator’s Guide.

• Provide printing for your application’s data files.

See the Programmer’s Guide basic integration chapter for details.

Some types of printing integration require that you modify your application
code. They are optional, and are discussed in the Programmer’s Guide basic
integration chapter because they are closely related to basic integration
tasks.

• Create the registration package for your application.

See this documentation:

• Programmer‘s Guide basic integration chapter.
• Advanced User’s and System Administrator’s Guide.

• Modify your application’s installation script to install the registration
package files and perform the registration procedure.

See this documentation:

• Programmer’s Guide basic integration chapter.
• The section on registering the application using dtappintegrate  in the

Advanced User’s and System Administrator’s Guide.



44 CDE Programmer’s Overview

5



45

Recommended Integration 6

The Common Desktop Environment contains components and guidelines to
use so that your application will integrate well with other applications on the
desktop. This chapter provides an overview of each recommended component
and guideline that you should use to enhance your application’s level of
consistency with the desktop.

Note – In addition to incorporating the components and following the
guidelines in this section, you should also follow the basic integration steps
outlined in Chapter 5, “Basic Application Integration.”

Help System 46

ToolTalk Messaging Service 47

Session Manager 50

Drag and Drop 52

Internationalization 53

Standard Font Names 54

Displaying Error Messages from Your Application 57

User Customization Issues 59



46 CDE Programmer’s Overview

6

For more information on recommended integration, see the Programmer’s
Guide.

Help System

The Common Desktop Environment Help system is a complete system for
developing and displaying online help for application software. It enables
authors to write online help that includes rich graphics and text formatting,
hyperlinks, and access to the Help system from within the application. The
Help system provides a programmer’s toolkit for integrating the help facilities
into an application.

Creating and integrating online help into an application can be done as a
collaborative project. Developers design and implement how an application
responds to a user’s request for help. Authors organize and write the actual
help information that is displayed.

The Help system includes:

For Authors
• Common Desktop Environment HelpTag markup language—a set of tags

used in text files to mark organization and content of online help.

• Common Desktop Environment HelpTag software—a set of software tools
for converting HelpTag files into run-time help files.

• Common Desktop Environment Helpview application—a viewer program
for displaying online help.

Authors create help topics using the Help tag set and follow Structured
Graphic Markup Language (SGML) tagging conventions. SGML markup is the
primary data format. When compiled, the run-time distribution format is
SGML-compliant.

The Help system also supports non-SGML formats such as UNIX man pages,
text files, and text strings.

For Programmers
• DtHelp  programming library—Application program interface (API) for

creating and integrating help windows into your application.



Recommended Integration 47

6

• DtHelp  widgets—DtHelpDialog  and DtHelpQuickDialog  widgets to
create help dialog boxes and quick help dialog boxes (these are also part of
the Help library).

Library and Header Files

The Help library, libDtHelp , provides support for creating and managing
help dialogs based on Motif. The libDtHelp  header files are:

• Dt/Help.h
• Dt/HelpDialog.h
• Dt/HelpQuickD.h

Demo Programs

You can find the Help system demos in /usr/dt/examples/dthelp . Read
the README file for detailed information on the demos.

Related Documentation
For more information on the Help system, see the relevant man pages and the
Help System Author’s and Programmer’s Guide.

ToolTalk Messaging Service

Common Desktop Environment defines two standard ToolTalk protocols known
as message sets. A message set contains a number of messages that can be
exchanged between a sender and a handler process. These message are
grouped together because they describe related requests and notices. The
sender and recipient can be within the same process or on different hosts.
Message sets have associated utility functions that enable you to concentrate
on the semantics of the protocol without getting too involved in low-level
details. Some message set functions enable you to easily defer to default
behavior.

The desktop message set encompasses three areas:

• Windowing behavior.
• File access and short-term file lifecycle control.
• Application extension languages.



48 CDE Programmer’s Overview

6

See “Handle Desktop” and “Send Desktop” for information on windowing
behavior. See “Desktop File” for information on file access and short-term file
lifecycle control. Implementing the Do_Command request is specific to the
application's extension language and is not assisted by the ToolTalk Messaging
Service.

The media message set enables an application to be a container for arbitrary
media or to be a media player and editor that can be driven from such a
container. The media message set enables a container application to compose,
display, edit, and print a document of an arbitrary media type, without
understanding anything about the format of that media type. The ToolTalk
Messaging Service routes a container's requests to the user's preferred tool for
the given media type and operation. This includes routing the request to an
already-running instance of the tool, if that instance can best handle the
request. See “Send Media” and “Handle Media” on page 49.

The ToolTalk Messaging Service provides support for these message sets:

• Handle Desktop

Handling desktop requests is the most basic level of messaging integration.
Any application that sends ToolTalk messages, either through calling
tt_message_send()  or DtActionInvoke() , should handle the desktop
requests. This enables other applications to set or query things such as your
application's current directory, iconic state, and $DISPLAY. For further
information, see the man pages on ttdt_open() , ttdt_session_join() ,
ttdt_session_quit() , and ttdt_close() .

• Send Desktop

When an application is started by ttsession  to handle some ToolTalk
request, it is a child of ttsession  rather than of the request sender. The
application will usually be started on the same X display session as the
sender, but not necessarily on the same X11 screen or in the same current
directory context . If the application is implemented as a server process, it
may already be displaying on a particular screen or in a particular directory
context.

Using desktop requests, a handling application can inherit from the sender
attributes that might otherwise be inherited through command-line
invocation. Use the desktop message set in this way to reset the handler’s
locale, current working directory, and even $DISPLAY. This enables a
carefully coded receiving application to come up on the same X11 screen as



Recommended Integration 49

6

the sender. A request handler can also find out the request sender’s current
directory and window geometry. Knowing the window geometry enables
the request handler’s window to avoid obscuring the request sender’s
window, if possible. For more information, see the
ttdt_sender_imprint_on()  man page.

• Handle Media

The ToolTalk Messaging Service enables an editor to easily handle the
standard media requests for the media types for which the editor is
responsible. For further information, see the man pages for
ttmedia_ptype_declare() , ttdt_message_accept() ,
ttmedia_load_reply() , and ttmedia_Deposit() .

• Send Media

The ToolTalk Messaging Service enables a container to easily send media
requests and manage the subsequent document updates sent back by the
handler. In those cases in which the container doesn't engage in any ongoing
ToolTalk dialog with a media handler, use the actions API instead of directly
using these ToolTalk APIs. Equivalent actions (Open and Print) represent a
higher level of abstraction that supports the equivalent of ToolTalk and non-
ToolTalk aware media handlers.For further information, see the man pages
for ttmedia_load()  and ttdt_subcontract_manage() . Note that, in
most cases, a container application should perform operations on objects
using DtActionInvoke()  instead of ttmedia_load() . See the ToolTalk
Messaging Overview for a description of how ToolTalk applications can be
driven using actions.

• Desktop File

The ToolTalk Messaging Service makes it easy to send and receive the
desktop messages about files. These messages enable applications to
coordinate access to files. For further information, see the man pages for
ttdt_file_join() , ttdt_file_quit() , ttdt_file_event() ,
ttdt_Get_Modified() , ttdt_Save() , and ttdt_Revert() .

Examples of applications that already use the ToolTalk Messaging Service
include the Common Desktop Environment Icon Editor, Mailer, Text Editor,
and Calendar. Other parts of the Common Desktop Environment use the
ToolTalk Messaging Service indirectly by defining actions that send messages.



50 CDE Programmer’s Overview

6

Library and Header Files

The ToolTalk messaging library is called libtt . The libtt  header files are:

• Tt/tt_c.h
• Tt/tttk.h

Demo Programs

You can find the ToolTalk Messaging Service demos in
/usr/dt/examples/tt . Read the README file for detailed information on the
demos.

Related Documentation
For more information on the ToolTalk Messaging Service, see the relevant man
pages and the ToolTalk Messaging Overview.

Session Manager

Session Manager supports the ICCCM 1.1 WM_COMMAND and
WM_SAVE_YOURSELF protocols, which permit:

• Your application to save state information at logout.
• Session Manager to restart your application at login.

Session Manager also provides an API to assist your application in saving and
restoring its state at logout and login.

Session Manager is responsible for restarting applications at login. To do this,
your application must tell Session Manager what command and command-line
options are required to restart it. Use Xlib’s XSetCommand()  to set the
WM_COMMAND property on your application's top-level window.

When Session Manager saves a session, such as at logout, your application
might need to save some state information so it can be restored to a similar
state. Session Manager can optionally notify your application that the session
is being saved. Your application must inform Session Manager that it wants
such notification. It does this by registering the WM_SAVE_YOURSELF protocol
with its top-level window WM_PROTOCOLS property and setting up a callback
procedure to handle the notification. To do this, use the
XmAddWMProtocols()  and XmAddWMProtocolsCallback()  functions. Your



Recommended Integration 51

6

application should not interact with the user in any way when processing the
WM_SAVE_YOURSELF callback. (For example, it should not display a Save As
dialog box.) It must set the WM_COMMAND property on its top-level window to
notify Session Manager that it is done saving its state.

To enable your application to save state information, use the
DtSessionSavePath()  function to obtain the full path name of a file in
which this information can be saved. At session restore time, use the
DtSessionRestorePath()  function to obtain the full path name of the state
file your application uses to restore its state.

The Common Desktop Environment Workspace Manager is responsible for
restoring an application’s main top-level window (containing the WM_COMMAND)
property to the proper workspace, geometry, and icon state. If an application
has multiple top-level windows, it is the application’s responsibility to restore
the states of the other top-level windows. Refer to “Workspace Manager” on
page 70 for additional information.

Library and Header Files

The Desktop Services library, libDtSvc , provides access to many desktop
APIs, including the one for session management. Include the Dt/Dt.h  and
Dt/Session.h  header files to access the Session Manager API.

Note – If your application uses any of the Session Manager APIs, it must first
initialize the libDtSvc  library by calling either DtInitialize()  or
DtAppInitialize() . Refer to the DtInitialize(3)  or
DtAppInitialize(3)  man page for more information.

Demo Programs

You can find the Session Manager demos in /usr/dt/examples/dtsession .
Read the README file for detailed information on the demos.

Related Documentation
For more information on Session Manager, see the relevant man pages and the
Programmer’s Guide.



52 CDE Programmer’s Overview

6

Drag and Drop

Common Desktop Environment provides a drag-and-drop API, that is layered
on top of the Motif 1.2 drag-and-drop API, to provide convenient, consistent,
and interoperable drag and drop across the desktop. The Common Desktop
Environment drag-and-drop API makes it easier for developers to implement
drag and drop. With drag and drop, users can manipulate objects on the screen
directly by grabbing them, dragging them around the display, and dropping
them on other objects to change the object’s location or perform a data transfer.

Motif 1.2 drag and drop provides low-level drag-and-drop mechanisms;
Common Desktop Environment drag and drop incorporates policies for those
mechanisms.

Common Desktop Environment drag and drop consists of an API and protocols
to simplify the interface to Motif drag and drop. It implements policies such as
the buffer transfer protocol and the drag cursors’ appearances. Use the Common
Desktop Environment drag-and-drop API, (which is a standardized API), with
its built-in policies, to ensure interoperability through consistency. Common
Desktop Environment drag-and-drop policies are compatible with standard
Motif 1.2 drag-and-drop protocols for text and file name transfers.

Common Desktop Environment drag and drop uses the X selection mechanism
to transfer data. Suitable targets exist and are registered with the X Consortium.
Two desktop applications can agree to transfer data through the text, file name,
or data transfer protocols.

The existing Motif 1.2 API for drag and drop is flexible and, therefore, is
somewhat difficult for nonexpert developers to use. The Common Desktop
Environment drag-and-drop API provides some convenience functions that
result in an API that is simpler and easier to use:

• Manages the configuration and appearance of drag icons.

CDE drag and drop provides graphics for the default source, state, and
operation icons that compose the drag icon in Motif 1.2.

• Defines a buffer transfer protocol.

Motif 1.2 drag and drop defines protocols for file name and text string only.

• Enables animation upon drop.

The drop zone can define an animation procedure that is called when the
drop completes.



Recommended Integration 53

6

• Provides enumeration of targets for TEXT and FILE_NAME transfers.

• Provides dual registration.

You can register a text widget as a drop zone for data other than text, while
preserving the ability to accept text drops.

• Provides prioritized drop formats.

The order in which you specify protocols for the drop zone indicates the
relative priority of the protocols desired.

Library and Header Files

The Desktop Services library, libDtSvc , provides access to many desktop
APIs, including that for drag and drop. Include the Dt/Dt.h  and Dt/Dnd.h
header files to access the drag-and-drop API.

Note – If your application uses any of the drag-and-drop APIs, it must first
initialize the libDtSvc  library by calling either DtInitialize()  or
DtAppInitialize() . Refer to the DtInitialize(3)  or
DtAppInitialize(3)  man page for more information.

Demo Programs

You can find the drag-and-drop demos in /usr/dt/examples/dtdnd . Read
the README file for detailed information on the demos.

Related Documentation
For more information on Common Desktop Environment drag and drop, see the
relevant man pages and the Programmer’s Guide.

Internationalization

Common Desktop Environment is internationalized to support single-byte and
multibyte locales. Developers can write internationalized applications that can
be easily localized to run on any Common Desktop Environment platform.



54 CDE Programmer’s Overview

6

Common Desktop Environment applications (both source and binary) can be
localized into regional languages and territories, and across multiple vendors
and hardware platforms:

• Latin American
• Western European
• Japanese
• Korean
• Chinese (Traditional and Simplified)

The Common Desktop Environment takes advantage of internationalization
features in these standards:

• IEEE 1003.2-1992 (POSIX.2 Annex B)

• X Window System, Version 11 Release 5 (Locales and Internationalization
Text Functions)

• Motif 1.2 (Internationalizing and Localizing Motif clients)

If you intend to internationalize your application, you must ensure that it
supports input and output of multibyte characters. Also, make sure that
message catalogs are used and code can be fully localized.

Demo Programs

The drawing program demo in /usr/dt/examples/template  is
internationalized. Read the README file for detailed information on this demo.

Related Documentation
For more information on Common Desktop Environment internationalization,
see the development environment component man pages and the
Internationalization Programmer’s Guide.

Standard Font Names

The standard font names defined by the Common Desktop Environment are
guaranteed to be available on all Common Desktop Environment-compliant
systems. These names do not specify actual fonts. Instead, they are aliases that
each system vendor maps to the vendor’s best available fonts. If you use only
these font names in your application, you can be sure of getting the closest



Recommended Integration 55

6

matching font on any Common Desktop Environment-compliant system. These
comprise a set of X Window System font names you can use for the most
common categories of type designs and styles.

The standard font names are mapped to different fonts on different Common
Desktop Environment platforms, typically using the X font alias mechanism.
This eliminates the problem of having to select from a varying set of fonts on
different platforms. It also enables you to make use of the default set of fonts
on a particular vendor’s Common Desktop Environment implementation.

Common Desktop Environment defines two types of standard fonts: application
fonts and interface fonts. Use the application fonts for output produced by
your application. Motif widgets and the desktop use interface fonts; do not
change their default fonts.

Application Fonts

At least six point sizes are available on all Common Desktop Environment
platforms for each font associated with a Standard Font Name: 8, 10, 12,
14, 18, and 24. XLFD font descriptions for CDE fonts look like:

-dt-application-*

when used where such patterns are valid.

Two of the most common design variations in fonts used to display text are the
presence or absence of serifs and the choice between proportional or regularly
spaced (monospaced) characters. Combining these two design variations yields
four generic font designs:

• Serif proportionally spaced
• Sans serif proportionally spaced
• Serif monospaced
• Sans serif monospaced

Common examples of each of these four designs (in corresponding order) are:

• Times Roman
• Helvetica
• Courier
• Lucida Typewriter

Each of these designs for text fonts typically come in four styles (combinations
of weight and slant):



56 CDE Programmer’s Overview

6

• Plain
• Bold
• Italic
• Bold-italic

The four styles of each of the four design variations yield 16 generic font
variations. These 16 generic fonts are among the most commonly used in
general desktop computing. For example, Times Roman, Helvetica, and
Courier, each in the four style variations, along with the Symbol font,
constitute the Adobe® 13—the minimum set of fonts built into all PostScript
printers.

Your application might not require an exact font family or name, but will need
to use, for example, a monospaced font, a sans serif font, or a serif font. You do
not have to know the exact font names present on a particular Common
Desktop Environment platform. The Common Desktop Environment standard
fonts default to the vendor’s selection of the best font of a particular design
on the vendor’s platform.

Specify the XLFD font names for the standard application fonts your
application needs as font resource values in the application’s app-defaults
file. If you do not use these font names, you might need to supply a different
app-defaults  file for each application on each Common Desktop
Environment platform.

Interface Fonts

Interface fonts are the small set of finely optimized fonts that define the look of
the desktop on a particular platform. These fonts cleanly and quickly convey
small amounts of information, such as that appearing in window titles,
buttons, menus, and text fields.

The desktop and the Motif toolkit widgets use interface fonts. Do not use these
fonts directly within your application windows.

The standard interface font names are different from the standard application
font names. They, like the application font names, are mapped to different
fonts on different Common Desktop Environment platfortms. Interface fonts
come in three styles:

• System—Read-only text (used for limited amounts of text, for example, on
menus, buttons, and labels).



Recommended Integration 57

6

• User—Text the end user enters, or text appearing in objects built from
XmText -type and DtTerm -type widgets.

• User bold—Like the User font, but in bold.

Each style comes in seven sizes. Using the Style Manager, users can choose the
size of interface fonts they want on their desktop.

Demo Programs

The drawing program demo in /usr/dt/examples/template  does not
specify any of its own interface fonts. It serves as an example of how the
Common Desktop Environment Motif interface fonts appear. However,
this demo does not take advantage of application fonts.

Related Documentation
For more information on standard fonts, see the relevant man
pages—particularly DtStdAppFontNames(5)  and
DtStdInterfaceFontNames(5)  for the list of XLFD font names—and the
Programmer’s Guide.

Displaying Error Messages from Your Application

Applications in the Common Desktop Environment follow a common model
for presenting error messages and warnings. Users running your application
expect messages to be displayed in message footers, error dialog boxes, or
warning dialog boxes, with further explanations available in online help, when
appropriate.

This section outlines conventions for displaying error messages in your
application. Because of the way message text is handled, it is important to
follow these error presentation guidelines precisely. For example, casual users
who start your application from the Front Panel never see messages that you
send to standard error or standard out. In the Common Desktop Environment,
such messages are directed to log files ($HOME/.dt/*log ) that many users do
not routinely examine or know about.



58 CDE Programmer’s Overview

6

How to Present Error Messages

Follow these rules when deciding where to tell users about warnings,
messages, and error conditions:

• If this message is informational, display the text in the message footer of the
application. (Example: “MyDoc file copied.”)

• If this message is about an error or serious warning—a problem where an
operation important to the user has failed—display an error dialog box or
warning dialog box.

What Information to Present in Error Dialogs

A good error dialog or warning dialog gives a user the following information:

• What happened (from the user’s point of view).
• Why it happened, in simple language.
• How to fix the problem.

Linking Message Dialogs to Online Help

In cases where additional background information is required, or where it
takes more than four or five lines of a dialog to completely explain an error,
add a button that links the user to the appropriate section of online help.

Related Documentation
For details on displaying error messages in your application and linking
message dialogs to online help, see the Programmer’s Guide.



Recommended Integration 59

6

User Customization Issues

This section presents guidelines to follow when designing your application’s
user interface.

Color Use

When you design your application’s user interface, do not specify color
settings that override the default color scheme that the Common Desktop
Environment provides for Motif and desktop widgets. For application-
defined colors, use the following colors to promote sharing with other
desktop applications:

• Black
• White
• Red
• Green
• Blue
• Yellow
• Cyan
• Magenta
• Gray (eight shades: #de, #bd, #ab, #94, #73, #63, #42, and #21)

In most cases, you should not specify colors, so that your application uses the
colors chosen by the end user in the desktop Style Manager.

Font Use

For your Motif widgets, use the fonts supplied by the Common Desktop
Environment so that your application’s windows look like other desktop client
windows and so that users can change the size of these fonts using the Style
Manager. If you override the supplied fonts by changing the Motif fontList
resource specifications, then you must provide additional functionality if you
want users to be able to customize the fonts in your application.

Use the fonts from the Common Desktop Environment standard application font
names to specify—in your app-defaults  file—resources you use within your
application (aside from the ones Motif uses for its widgets). This ensures that
your application finds the appropriate fonts on all Common Desktop Environ-
ment platforms, which makes your application more portable across such
platforms. For more information, see “Standard Font Names” on page 54.



60 CDE Programmer’s Overview

6

Note – The Style Manager only controls fonts for applications written using
Motif version 1.2 or later. It will not supply correct fonts for Motif 1.1 (or
earlier) applications. These applications must specify their own fonts in the
app-defaults  file.

Accessibility

This section provides guidelines for making software applications accessible to
people with disabilities.

Physical Disabilities

Provide keyboard access to all application features, such as those usually
accessible through menus or drag and drop, to enable people with physical
disabilities to more easily use your application.

Visual Disabilities

Follow these guidelines to make your application more accessible to people
with visual disabilities:

• Do not hardcode application colors.

• Do not hardcode graphic attributes such as line, border, and shadow
thickness. These attributes should scale with font size.

• Do not hardcode font sizes and styles.

• Provide descriptive names for all widgets. In particular, include descriptive
names in your application code for widgets that do not display labels on the
screen; for example, palette items or icons. This often enables screen-reading
software to provide descriptive information to blind users.



Recommended Integration 61

6

Hearing Disabilities

Follow these guidelines to make your application more accessible to people
with hearing disabilities:

• Never assume that an end user will hear an audible notification.

• Where appropriate, allow end users to choose between audible or visual
cues.

• Do not overuse or rely exclusively on audible cues.

• Enable end users to configure frequency and volume of audible cues.

Language, Cognitive, and Other Disabilities

The access guidelines outlined for visual, hearing, and physical disabilities
typically benefit end users with cognitive, language, and other disabilities. In
addition to those guidelines, include tear-off menus and user-configurable
menus for important application features whenever possible.

Mouse Double-Click Speed

For the end user to experience consistency across applications, you should not
hardcode double-click durations into your application or app-defaults  files.
This way, when the user changes the double-click time in the Style Manager,
your application responds along with the other desktop applications.

Demo Programs

The drawing program demo in /usr/dt/examples/template  uses the
Common Desktop Environment’s default colors and fonts. This enables the user
to customize the colors and fonts in this program by using the Style Manager.
Read the README file for detailed information on this demo.

Related Documentation
For more information on user customization issues, see the Style Guide and
Certification Checklist.



62 CDE Programmer’s Overview

6



63

Optional Integration 7

The Common Desktop Environment components discussed in this chapter
enable you to leverage services provided by the desktop for achieving
specialized tasks.

Note – In addition to incorporating any components described in this section
into your application, you should also follow the basic integration steps
outlined in Chapter 5, “Basic Application Integration.” The components
discussed in Chapter 6, “Recommended Integration,” are critical to making
your application highly integrated with the desktop.

CDE Motif Control Widgets 64

Data Typing 67

Action Invocation 69

Workspace Manager 70

Terminal Emulator Widget 72

Text Editor Widget 73

Calendar 74

Desktop KornShell (dtksh) 75



64 CDE Programmer’s Overview

7

For more information on optional integration, see the Programmer’s Guide.

CDE Motif Control Widgets

The CDE Motif control widgets are designed to ease porting OPEN LOOK and
Microsoft Windows applications to the Common Desktop Environment by
providing equivalent functionality in CDE Motif. The CDE Motif widgets
library libDtWidget  contains widgets and functions that are used to provide
common functionality across all Common Desktop Environment applications.
The widgets provided include:

• Text field and arrow button widget (DtSpinBox)

Figure 7-1 Example of text field and arrow button widget (DtSpinBox )



Optional Integration 65

7

• Text field and list box widget (DtComboBox)

Figure 7-2 Examples of text field and list box widget (DtComboBox)

• Menu button widget (DtMenuButton)

Figure 7-3 Example of menu button widget (DtMenuButton )

The CDE Motif Widget library libDtWidget  supports drivability between
Common Desktop Environment applications and legacy OPEN LOOK
applications. That is, it enables you to write applications that operate the
same way OPEN LOOK applications do, in areas such as cut, copy, paste,
and mouse-button functionality.

Note – Common Desktop Environment supports all Motif 1.2 widgets. See
Appendix , “CDE Motif,” for more information on CDE Motif.



66 CDE Programmer’s Overview

7

Compatibility with Motif 2.0

The APIs of the DtSpinBox  and DtComboBox widgets are similar to the Motif
2.0 release of XmSpinBox  and XmComboBox widgets. The APIs are designed so
an application can easily switch to the Motif 2.0 version of these widgets. To
switch, change the Dt  names for the class, types, and creation routines to Xm.
For example, change all occurrences of DtSpinBox  in your code to
XmSpinBox . This information is supplied in case you choose to port your
application to Motif 2.0, but it is not a recommendation that you do so.

Note – The Common Desktop Environment does not guarantee strict API or
binary compatibility between its widgets and the Motif 2.0 widgets.

Library and Header Files

The library libDtWidget  provides access to the DtSpinBox , DtComboBox,
and DtMenuButton  widgets. The libDtWidget  header files for these widgets
are:

• Dt/SpinBox.h
• Dt/ComboBox.h
• Dt/MenuButton.h

Table 7-1 CDE Control Widgets

Widget Name Description

DtSpinBox TextField  widget with additional controls for incrementing
and decrementing numeric values, or browsing through and
selecting from a list of text strings.

DtComboBox Combination of TextField  and pop-up List widgets that
provides a list of valid choices for the TextField.

DtMenuButton Command widget that provides menu cascading functionality
of an XmCascadeButton  widget outside of a Menu Bar, or a
Menu Pane (a pull-down menu, a pop-up menu, or an option
menu).



Optional Integration 67

7

Demo Programs

You can find the CDE Motif control widgets demos in
/usr/dt/examples/dtwidget . Read the README file for detailed
information on the demos.

Related Documentation
For more information on CDE Motif control widgets, see the relevant man
pages and the Programmer’s Guide.

Data Typing

You can define data types when you perform basic integration for your
application. This section focuses on a different aspect of data typing: extracting
information from the actions and data-types database.

Data typing provides an extension to the attributes of files and data beyond
what is provided by traditional UNIX file systems. These extensions include
typing and attribute management. Use the data-typing API if your application
receives data from external sources and must act on it. For example, your
application might want to display an icon or execute an action that has a
system-wide definition.

Data typing consist of two parts:

• A database that stores data criteria and data attributes.
• A collection of routines that query the database.

The data-typing system determines a type for a file or byte vector based on a
set of criteria. These criteria include its name, permissions, symbolic link value,
and contents. The attributes associated with a type describe its user-visible
interfaces, including a description, the icon to represent it graphically, and the
actions that apply to it. Attributes also exist that name the interchange formats
to which the data conforms.

Both the Common Desktop Environment File Manager and Mail
attachment window use data typing to determine the icon and actions
associated with a file. For example, for a C file filename.c , File Manager uses the
.c  extension to determine the file’s data type, C_SOURCE. It then uses
C_SOURCE to determine the icon file name for the icon that it can use for
filename.c .



68 CDE Programmer’s Overview

7

Database Loading

This section discusses the loading API for the actions and data-types database.
The syntax for this and any Common Desktop Environment databases a developer
defines is discussed in man pages in the /usr/dt/man/man4  directory.

The external database loading API consists of two functions:

• DtDbLoad()
• DtDbReloadNotify()

DtDbLoad()  reads in the actions and data-types database. It determines the
set of directories that are searched for database files, and it loads into the
database the .dt  files that are found. Your application must call DtDbLoad()
before calling any of the routines that query the actions and data-types
database.

Use DtDbReLoadNotify()  to request notification of actions and data-types
database reload events. It registers an application’s interest in database reload
messages.

Your application should reload the database whenever it changes, so that the
end user will notice updates without having to restart the application.

Database Queries

To look up an attribute for a data object, you must first determine the type of
the object and then ask for the appropriate attribute value for that type. The
database query functions enable you to perform operations such as retrieve
type data and attributes, free memory, and load and unload the database.
These functions are documented in the Programmer’s Guide and also in man
pages in the man3 directory.

Library and Header Files

The Desktop Services library, libDtSvc , provides access to many desktop
APIs, including that for data typing. Include the Dt/Dt.h and Dt/Dts.h
header files to access the data-typing API.



Optional Integration 69

7

Note – If your application uses any of the data-typing APIs, or loads the
actions and data-types database, it must first initialize the libDtSvc  library by
calling either DtInitialize()  or DtAppInitialize() . Refer to the
DtInitialize(3)  or DtAppInitialize(3)  man page for more
information.

Demo Programs

You can find the data typing demos in /usr/dt/examples/dtdts . Read the
README file for detailed information on the demos.

Related Documentation
For more information on data typing, see the relevant man pages and the
Programmer’s Guide.

Action Invocation

The action invocation API enables applications to invoke desktop actions on
file or buffer arguments. It chooses a suitable action for the file or buffer based
on the Class , Type , Mode, and Number of the action arguments. For example,
an Open action might invoke an image viewer for GIF files, a word processor
for complex documents, and a simple text editor for ordinary ASCII files. Your
application need not concern itself with the details of action selection or
invocation.

Use the action invocation API so that your application uses the same
mechanisms as the rest of the desktop. The user can then experience uniform
desktop behavior.

The action functions in the libDtSvc  library provide a way to invoke desktop
actions (such as Open and Print) for files or buffers. They contain parameters
that enable you to modify an action’s behavior. The action invocation API
consists of the following functions:

DtActionInvoke() Invokes the specified action on its arguments,
which can be files or buffers.

DtActionLabel() Provides access to the localizable label string
associated with an action.



70 CDE Programmer’s Overview

7

DtActionDescription()

Returns a string containing the description information
associated with the action your application called.

DtActionExists() a Boolean function that checks whether a given
name corresponds to an existing action.

DtActionIcon() Returns the name of the icon associated with the
specified action.

Library and Header Files

The desktop services library, libDtSvc , provides access to many desktop
APIs, including that for actions. Include the Dt/Dt.h  and Dt/Action.h
header files to access the actions API.

Note – If your application uses any of the action invocation APIs, it must first
initialize the libDtSvc  library by calling either DtInitialize()  or
DtAppInitialize() . Refer to the DtInitialize(3)  or
DtAppInitialize(3)  man page for more information.

Demo Programs

You can find the action invocation demos in /usr/dt/examples/dtaction .
Read the README file for detailed information on the demos.

Related Documentation
For more information on actions, see the relevant man pages and the
Programmer’s Guide.

Workspace Manager

The Common Desktop Environment Workspace Manager provides support for
multiple workspaces. Each workspace is a virtual screen. Windows can be
placed in a single workspace, all workspaces, or any combination of individual
workspaces. Workspaces can be added, deleted, or renamed dynamically by
the user.



Optional Integration 71

7

The Workspace Manager API provides functions for applications that need to
know in which workspaces their windows reside, or that need to have some
control over how the windows are placed in the workspaces. Additionally, the
API enables applications to monitor changes to the overall workspace state,
such as which workspace is the current one.

The Common Desktop Environment does not require applications to use the
Workspace Manager API to run on the desktop. Most desktop applications can
run as expected without knowledge of the Workspace Manager. In particular, if
your application has a single, main, top-level window and complies with
ICCCM 1.1 and Motif 1.2, you do not have to integrate with the Common
Desktop Environment Workspace Manager for the application to run on the
desktop.

However, more complex applications with multiple top-level windows need to
use the Workspace Manager API in conjunction with the Session Manager API
to properly save and restore the application’s state. The Workspace Manager
API enables an application to find out which workspaces each of its windows
is in. The API also enables an application to display its windows in the correct
workspace when the session resumes.

The Workspace Manager API addresses the following tasks:

• Get information on workspaces.
• Get and set the current workspace.
• Notify a client of changes to workspace state.
• Add and remove workspace functions for a client.
• Get and set the workspaces occupied by a client.
• Identify backdrop windows.

All Workspace Manager API functions share the prefix DtWsm.

Library and Header Files

The desktop services library, libDtSvc , provides access to many desktop
APIs, including that for Workspace Manager. Include the Dt/Dt.h  and
Dt/Wsm.h  header files to access the Workspace Manager API.



72 CDE Programmer’s Overview

7

Note – If your application uses any of the Workspace Manager APIs, it must
first initialize the libDtSvc  library by calling either DtInitialize()  or
DtAppInitialize() . Refer to the DtInitialize(3)  or
DtAppInitialize(3)  man page for more information.

Demo Programs

You can find the Workspace Manager demos in /usr/dt/examples/dtwsm .
Read the README file for detailed information on the demos.

Related Documentation
For more information on Workspace Manager, see the relevant man pages and
the Programmer’s Guide.

Terminal Emulator Widget

The DtTerm  widget provides the functionality required to emulate an ANSI
X3.64-1979-style terminal emulator (specifically a DEC VT220-like terminal
with extensions). The Terminal Emulator widget library, libDtTerm,  provides
the DtTerm  widget for use in adding a terminal emulator window to a GUI. If
you include a terminal emulator in your application, use CDE Motif widgets to
add display enhancements to it such as pop-up menus and scroll bars.

The Common Desktop Environment Terminal Emulator, which is a part of the
runtime environment, is a window that behaves as a terminal, enabling access
to traditional terminal-based applications from within the desktop. The DtTerm
widget is the foundation for the desktop run-time terminal emulator, dtterm .

The libDtTerm  library includes a set of convenience functions to create,
access, and support the DtTerm  widget.

Library and Header Files

The libDtTerm  library provides a set of widgets based on Motif for designing
a terminal emulator or for adding a terminal emulator window to a GUI.

Include the Dt/Term.h  header file to access libDtTerm  APIs in your
application.



Optional Integration 73

7

Demo Programs

You can find the Terminal Emulator demos in /usr/dt/examples/dtterm .
Read the README file for detailed information on the demos.

Related Documentation
For more information on the DtTerm  widget, see the relevant man pages.

For more information on the desktop terminal emulator, see the terminal
emulator help volume, the relevant man pages, or the User’s Guide.

Text Editor Widget

The Common Desktop Environment text editing system consists of:

• The text editor application, dtpad , which provides editing services through
graphical, action, and ToolTalk interfaces

• The editor widget, DtEditor , which provides a programmatic interface for
the following editing services:
• Cut and paste.
• Search and replace.
• Simple formatting.
• Spell checking (for 8-bit locales).
• Undo previous edit.
• Enhanced I/O handling capabilities that support input and output of

ASCII text, multibyte text, and buffers of data.
• Support for reading and writing files directly.

Although the Motif text widget also provides a programmatic interface,
applications that want to assure a system-wide uniform editor should use the
DtEditor  widget. The Common Desktop Environment Text Edit and Mailer
use the editor widget. Use this widget in the following circumstances:

• You need the functionality, such as spell checking, undo, and find/change,
that is provided by the DtEditor  widget.

• You want users to be able to read and write data to and from a file.

• When your program does not need to edit the text while the widget has
control of the text.



74 CDE Programmer’s Overview

7

Library and Header Files

The DtEditor  widget is in the libDtWidget  library. The header file is
Dt/Editor.h .

Demo Programs

A demo containing an example of the DtEditor  widget (editor.c ) is in
/usr/dt/examples/dtwidget  directory. Read the README file for detailed
information on the demo.

Related Documentation
For more information on the Text Editor widget, see the relevant man pages
and the Programmer’s Guide.

Calendar

The Common Desktop Environment Calendar comprises the infrastructure and
API that enables users to schedule their time and resources in a networked
environment. The Calendar GUI is part of the Common Desktop Environment
run-time environment.

Calendar consists of:

• A daemon that manages the calendar database.

• A calendar and scheduling API that defines a set of high-level functions so
that calendar-enabled applications can access the functionality supported by
the daemon.

• A library implementation of the calendar and scheduling API.

Additionally, it provides a user interface for both GUI and TTY interaction. The
system supports entering, deleting, and modifying calendar entries, as well as
browsing and search features. You can access all this functionality through the
network.

The development environment provides a library for client access to the
Calendar data. It is extensible in that it allows users to define their own
calendar entry attributes. The library provides a client callback mechanism for
notification of database updates.



Optional Integration 75

7

The calendar daemon implements the services behind the library of calendar
and scheduling API calls. It supports deleting, inserting, and modifying
calendar entries. It also manages calendar reminders and supports the creation
and removal of the Calendar database. It also provides mechanisms for
retrieving Calendar data.

Calendar entry data integrates with the desktop through drag and drop and
the ToolTalk messaging interfaces.

The calendar and scheduling API is an implementation of the X.400
Application Programming Interface Association (XAPIA) Calendaring and
Scheduling API 1.0. Use the calendar and scheduling API to integrate your
application with Calendar, or to develop your own calendar application.

Library and Header Files

The Calendar library, libcsa , provides a programmatic way to access and
manage Calendar data in a networked environment.

Include the csa/csa.h  header file to access libcsa  APIs in your application.

Demo Programs

You can find the Calendar demos in /usr/dt/examples/dtcalendar . Read
the README file for detailed information on the demos.

Related Documentation
For more information on the calendar, see the relevant man pages, the
Calendar help volume, and the Programmer’s Guide.

Desktop KornShell (dtksh)

Desktop KornShell (which is dtksh ) provides a way to engage in graphic user
interaction through shell scripts. The user interface capabilities are based on
the CDE Motif widget set, the Xt Intrinsics, and the X11 library.

dtksh  is a version of ksh-93  extended to access many X, Xt, Motif, and
Common Desktop Environment facilities. ksh-93  is a version of KornShell, the
command shell and programming language ksh . dtksh  extends ksh  to
provide support for:



76 CDE Programmer’s Overview

7

• Access to the CDE Motif widget set from within a shell script.

• Fully localized shell scripts—dtksh  scripts can use catopen  and catgets
commands.

• Access to the Common Desktop Environment application Help system.

• Response to session-management Save state directives.

• Access to most of the CDE Services Message Set.

• Access to many of the CDE data-typing API functions.

• Access to most of the CDE action API functions.

Note –
This implementation of CDE is based on the CDE Services Message Set, the
CDE data-typing API functions, and the CDE action API functions.

Demo Programs

You can find the dtksh  demos in /usr/dt/examples/dtksh . Read the
README file for detailed information on the demos.

Related Documentation
For more information on dtksh , see the relevant man pages and Desktop
KornShell User’s Guide.



77

CDE Motif A

Note – Common Desktop Environment is a standardized desktop environment.
If you wish to build an application for CDE, it should be consistent
with the CDE guidelines defined by the Common Desktop Environment: Style Guide
and Certification Checklist. Any SGI additions to CDE Motif are mentioned in
the Common Desktop Environment: SGI Enhancements.

The CDE Motif Toolkit consists of the Motif 1.2.3 widget library with
enhancements to existing functionality and bug fixes, as well as some new
features. Motif 1.2.3 is a patch of Motif 1.2. The look and feel and APIs for
Motif 1.2 and Motif 1.2.3 are the same.

In addition, it provides control widgets for graphical user interface objects not
found in Motif 1.2.3. For more information on these widgets, see “CDE Motif
Control Widgets” on page 64 and the Programmer’s Guide.

CDE Motif adds functionality to the Motif 1.2.3 release while maintaining
backward binary compatibility. It is source and binary compatible with Motif
1.2 applications. Existing Motif 1.2 applications will compile using CDE Motif.
Existing Motif 1.2 binaries will run without modification using CDE Motif.

Features Added to Motif 78



78 CDE Programmer’s Overview

A

Features Added to Motif

The Common Desktop Environment added the following features to
Motif 1.2.3 to support desktop applications:

• Complete localization of toolkit error messages.

• XmGetPixmap()  and XmGetPixmapByDepth()  use the environment
variable XMICONSEARCHPATH or XMICONBMSEARCHPATH as the icon search
path. If neither of these variables is set, then they use XBLANGPATH, which is
the Motif 1.2 behavior. See the CDE Motif man page for more information.

Enhancements to Existing Motif Functionality

The CDE Xm library contains minor enhancements to Motif usability to enable
better interoperability with OPEN LOOK and Microsoft Windows. The
usability enhancements include:

• Optionally allowing mouse button 2 on a three-button mouse to be used to
extend the current selection. This is equivalent to the OPEN LOOK Adjust
function.

• Allowing Tab to be used to move through a group of PushButton  widgets
and gadgets, ArrowButton  widget and gadgets, and DrawnButton
widgets.

• Allowing mouse button 3 to activate a CascadeButton menu.

• Providing three new resources (pathMode , fileFilterStyle , and
dirTextLabelString ) for the XmFileSelectionBox  widget, which give
it an improved look and feel.

• Enabling interoperability with Microsoft Windows and OPEN LOOK
through multiple virtual key bindings.

• Providing visual enhancements to the standard Motif look (see the next
section, “Visual Enhancements”).

Enhancements to Existing Motif Functionality 78

Motif Libraries 79

Demo Programs 80



CDE Motif 79

A

Each of the preceding enhancements can be controlled by a resource: either a
widget resource (for XmFileSelectionBox ) or an application-wide resource
(all other cases). The default values for this resource provide behavior and
APIs that are identical to that of Motif 1.2. For information on these
enhancements and resources, see the XmDisplay(3x)  and
XmFileSelectionBox(3x)  man pages.

Visual Enhancements

The Common Desktop Environment changed the Motif 1.2.3 look in the
following ways:

• RadioBox fill color was changed to show state more clearly.

• RadioBox shape was changed from diamond to circular.

• A check glyph was added to the CheckBox to show state more clearly.

• CascadeButtons and menu items were changed to have an etched-in border
when active.

• Thumb was removed from the read-only Scale to distinguish it from the
Scale.

• Default shadow thickness was changed to 1 pixel.

• Default highlight thickness was changed to 1 pixel.

• Default PushButton visual that highlights the button inside its default
shadow..

For information on these enhancements, see the XmDisplay(3) ,
XmPushButton(3) , XmPushButtonGadget(3) , XmToggleButton(3) ,
XmToggleButtonGadget(3) , and XmScale(3)  man pages.

Motif Libraries

Use the CDE Motif and X11R5 libraries to develop a CDE Motif-compliant
application for the X Window System. The CDE Motif libraries are the
Motif 1.2.3 libraries with bug fixes and enhancements.

Motif Library (libXm)

The Common Desktop Environment provides all the Motif 1.2.3 header files.



80 CDE Programmer’s Overview

A

Motif UIL library (libUil)

The Motif User Interface Language (UIL) is a specification language for
describing the initial state of a Motif application’s user interface. The CDE
version is essentially unchanged from the Motif version.

Include the UilDef.h  header file (found in the uil  directory) to access UIL.

Motif Resource Manager Library (libMrm)

The Motif resource manager (MRM) is responsible for creating widgets based
on definitions contained in User Interface Definition (UID) files created by the
UIL compiler. MRM interprets the output of the UIL compiler and generates
the appropriate argument lists for widget creation functions. Use libMrm  to
access the Motif resource manager. The CDE version is essentially unchanged
from the Motif version.

Include the Mrm/MrmPublic.h  header files to access libMrm  in your
application.

Demo Programs

You can find Motif 1.2 demos in /usr/dt/examples/motif . These demos do
not include any of the CDE Motif enhancements or widgets.

Related Documentation
For more information on Motif, consult the Motif books listed in “Related
Books” on page xi. For more information on the enhancements to Motif 1.2.3,
see the relevant man pages.



81

Component and Guideline
Reference B

This appendix alphabetically lists all the CDE development environment
components and guidelines, along with any associated library and header files,
and provides references to associated documentation. In addition to the
documentation listed, all components provide man pages, which are located in
the /usr/dt/man  directory. All header files are located in the Dt  subdirectory
of /usr/dt/include  unless otherwise noted.

Table B-1 Components and Associated Documentation

Component Library Header Files Documentation

Actions and Action
Invocation

libDtSvc Action.h Programmer’s Guide;
User’s Guide; man pages

Application
Builder

Application Builder
User’s Guide;
Application Builder Help

Calendar libcsa csa/csa.h Programmer’s Guide;
Calendar Help

Control Widgets libDtWidge
t

ComboBox.h,Spi
nBox.h,
MenuButton.h

Programmer’s Guide;
man pages

Data Typing libDtSvc Dts.h Programmer’s Guide;
User’s Guide;man pages

Drag and Drop libDtSvc Dnd.h Programmer’s Guide;
man pages



82 CDE Programmer’s Overview

B

Desktop KornShell Desktop KornShell User’s
Guide; man pages

Help System libDtHelp Help.h,
HelpDialog.h,
HelpQuickD.h

Help System Author’s and
Programmer’s Guide;
man pages

Common Desktop
Environment Motif

libMrm Mrm/MrmPublic.
h

OSF/Motif 1.2
Programmer’s Guide;
OSF/Motif 1.2 Reference
Guide;
man pages

libUil uil/UilDef.h OSF/Motif 1.2
Programmer’s Guide;
OSF/Motif 1.2 Reference
Guide;
man pages

libXm Xm/*.h OSF/Motif 1.2
Programmer’s Guide;
OSF/Motif 1.2 Reference
Guide;
man pages

Session Manager libDtSvc Session.h Programmer’s Guide;
man pages

Terminal Emulator
Widget

libDtTerm Term.h man pages

Text Editor Widget libDtWidge
t

Editor.h Programmer’s Guide;
man pages

ToolTalk
Messaging
Service

libtt Tt/tt_c.h,
Tt/tttk.h

ToolTalk Messaging
Overview;
man pages

Workspace
Manager

libDtSvc Wsm.h Programmer’s Guide
man pages

Table B-1 Components and Associated Documentation (Continued)

Component Library Header Files Documentation



Component and Guideline Reference 83

B

Table B-2 Guidelines and Associated Documentation

Guideline Documentation

Internationalization Internationalization Programmer’s Guide

Standard Font Names Programmer’s Guide

Displaying Error Messages Programmer’s Guide

User Customization
(color use, accessibility, mouse
double-click speed)

Style Guide and Certification Checklist



84 CDE Programmer’s Overview

B



85

Index

A
accessibility

hearing disabilities, 61
language, cognitive, and other

disabilities, 61
physical disabilities, 60
visual disabilities, 60

action invocation
API, 69
demo programs, 70
library and header files, 70

actions, 6, 10, 18 to ??
ANSI C, 25, 37
App Builder (Application Builder), 34
app-defaults file, 56, 59, 61
Application Builder, 15 to 16

App Builder, 34
demo programs, 35
when to use, 34

application development
Application Builder, 34 to 35
databases, guidelines for, 34
desktop naming conventions, 32 to

33
guidelines, 24 to 25
initialization and libDtSvc, 34
levels of integration, 32
public and private interfaces, 33

required software, 25
application fonts, 55 to 56
Application Manager, 8, 10, 11
application servers, 10
applications, running existing, 26
architecture, Common Desktop

Environment, 4

B
basic integration, 32
Builder Interface Language (BIL), 16

C
C++, 25
Calendar, 8

demo programs, 75
library and header files, 75
XAPIA, 75

color use and user customization, 59
Common Desktop Environment Motif, 13

to 14
enhancements to Motif, 78 to 79
features added to Motif, 78
libraries, 79 to 80
visual enhancements, 79



86 CDE Programmer’s Overview

Common Desktop Environment
widgets, 14

demo programs, 67
DtComboBox, 65
DtMenuButton, 65
DtSpinBox, 64
library and header files, 66

compatibility
between Common Desktop

Environment widgets and
Motif 2.0 widgets, 66

guidelines, for Common Desktop
Environment widgets, 40

compilers, used for application
development, 25

compiling
an application, 25, 35
Motif 1.2 applications using Common

Desktop Environment
Motif, 77

conventions, desktop naming, 32, 33
customization

of desktop, 25
user issues, 59 to 61

D
data interaction graphical user

interfaces, 5, 6 to 7
data typing, 17 to 18

database loading, 68
database query functions, 68
demo programs, 69
library and header files, 68
two parts of, 67

database, 19
DtDbLoad(), 68
DtDbReLoadNotify(), 68
loading, 68
query functions, 68
syntax, 34

DEC VT220, 72
demo programs, 27, 35, 47, 50, 51, 54, 67,

69, 70, 72, 73, 75, 76

desktop
Common Desktop Environment, ix
customization, 25
integration services, 24
integration, levels of, 32
libDtSvc and application

initialization, 34
naming conventions, 32, 33

Desktop KornShell (dtksh), 15, 75
demo programs, 76
extension of ksh, 75

desktop management, 6
application management, 10 to 11
object management, 11
session management, 8 to 10
style management, 12, 13
window management, 11, 12

desktop message set, 47
directory structure, 28 to 29
disabilities and user customization

hearing, 61
language, cognitive, and other, 61
physical, 60
visual, 60

display support, 39
documentation set

development environment, xii
run-time, xiii

drag and drop, 34
and Motif 1.2 drag and drop, 52
demo programs, 53
library and header files, 53

DtAppInitialize(), 34, 51, 53, 69, 70, 72
DtComboBox, 65
DtDbLoad(), 68
DtDbReLoadNotify(), 68
DtInitialize(), 34, 51, 53, 69, 70, 72
dtksh, 75
DtMenuButton, 65
dtpad, 73
DtSessionRestorePath(), 51
DtSessionSavePath(), 51
DtSpinBox, 64



Index 87

E
ease of use, 24
error messages

displaying, 57, 58
how to display, 58
information to present in error

dialogs, 58
linking message dialogs to online

help, 58
example programs, 27
existing applications, and Common

Desktop Environment, 26

F
File Manager, 6, 8, 11, 12, 17
file naming conventions, 39
file scoping, 7
fonts

application, 55 to 56
interface, 55, 56

and the Style Manager, 57
standard font names, 54, 57
user customization issues, 59
XLFD, 56, 57

Front Panel, 6, 8, 11

G
goals for desktop look and feel, 24, 25
graphical user interface engine, 6

Application Builder, 15, 16
Common Desktop Environment Motif

Toolkit, 13, 14
Common Desktop Environment Motif

widgets, 14
Desktop KornShell, 15

guidelines
accessibility, 60 to 61
application development, 24
color use, 59
Common Desktop Environment Motif

widget binary
compatibility, 40

database syntax, 34
error message display, 57 to 58
font use, 54 to 57, 59
for application development, 25
internationalization, 53 to 54
mouse double-click speed, 61

H
header files, 29
header files, development

environment, 27
hearing disabilities and user

customization, 61
Help system, 8, 34

authors, for, 46
demo programs, 47
Help Tag, 46
library and header files, 47
programmers, for, 46
SGML, 46
UNIX man pages, 46

HelpTag, 15, 46

I
Icon Editor, 39
integration

levels of, 32
optional, 63 to 76
recommended, 45 to 61
services, desktop, 24

integration technologies, 6
application messaging, 16, 17
process execution, 16

interface fonts, 55, 56
interfaces

private, 33
public, 33

internationalization, 34
demo programs, 54
locales, 54
multibyte locales, 53
single-byte locales, 53
standards, 54



88 CDE Programmer’s Overview

K
KornShell, 75
ksh-93, 75

L
language disabilities and user

customization, 61
levels of integration

basic, 32
optional, 32, 63 to 76
recommended, 32, 45 to 61

libraries, development environment, 27,
29

locales
applications can be localized into, 54
multibyte, 53
single-byte, 53

Login Manager, 9
look and feel, 24

M
Mailer, 6, 8, 11, 15, 17
makefiles, 38 to 39
man pages, 29
media message set, 48
menu button widget (DtMenuButton), 65
message sets, 47
methods, and actions, 18
Microsoft Windows, 64, 78
Motif, x, 4, 33, 35

Common Desktop Environment, 77
to ??, 77 to ??, 77 to ??, 77 to ??,
78 to ??, 78 to ??, 79 to ??, 79 to
??, 79 to ??, 80

demo programs, 80
enhancements to existing

functionality, 78, 79
features added to, 78
related documentation, xi
visual enhancements, 79

Motif 1.2, 27, 37, 54, 65, 71

and Common Desktop Environment
Motif, 77

Motif 2.0, 14, 66
mouse double-click speed, 61
multibyte locales, 53
Multipurpose Internet Mail Extensions

(MIME), 11
multiuser collaboration, 5, 7 to 8

N
naming conventions

caution notice, 33
desktop, 32, 33
file, 39

O
object management, 11
OPEN LOOK, x, 13, 64
optional integration, 32, 63 to 76

P
physical disabilities and user

customization, 60
portability issues, 37 to 39
POSIX, xii, 38, 54
Print Manager, 8
private interfaces, 33
process execution, 16
programs, demo, 27
protocols

WM_COMMAND, 50
WM_SAVE_YOURSELF, 50

Pseudo Color display, 39
public interfaces, 33

R
recommended integration, 32, 45 to 61
remote procedure call (RPC), 7
requirements (software), for application

development, 25



Index 89

run-time
Calendar GUI, 74
directories, and running

applications, 25
documentation set, xiii
environment, 26
terminal emulator, 72

S
sample programs, 27
Semantic Description Language (SDL), 15
services, desktop integration, 24
Session Manager, 8 to 10, 34, 71

demo programs, 51
DtSessionRestorePath(), 51
DtSessionSavePath(), 51
library and header files, 51
WM_COMMAND, 50
WM_SAVE_YOURSELF, 50
XmAddWMProtocols(), 50
XmAddWMProtocolsCallback(), 50

single-byte locales, 53
software requirements, for application

development, 25
standard font names

app-defaults file, 56
demo programs, 57
interface fonts, 56
XLFD font names, 56

Standard Generalized Markup Language
(SGML), 15, 46

standards, 37 to 38
internationalization, 54

Style Manager, 8, 12 to 13, 57, 60, 61
Sub Process Control (SPC), 16
syntax, for databases, 34

T
Terminal Emulator

DEC VT220-like, 72
DtTerm widget, 72

Terminal Emulator Widget

demo programs, 73
library and header files, 72

Text Editor, 8
demo programs, 74
DtEditor widget, 73
dtpad, 73
library and header files, 74
when to use widget, 73

text field and arrow button widget
(DtSpinBox), 64

text field and list box widget
(DtComboBox), 65

ToolTalk documentation, xii
ToolTalk Messaging Service, 6, 16 to 17,

33, 34
demo programs, 50
desktop message set, 47
library and header files, 50
media message set, 48
message sets, 47

U
UNIX, 6, 9, 24, 46, 67
user customization issues, 59

accessibility, 60 to 61
color use, 59
demo program, 61
font use, 59
mouse double-click speed, 61

User Interface Language (UIL), 16

V
VGA, 39
visual disabilities and user

customization, 60

W
widget

Common Desktop Environment, 64
to 67

compatibility guidelines, 40
DtTerm, 72



90 CDE Programmer’s Overview

Help system, 47
Motif 1.2, 65
Motif 2.0, 66

Window Manager, 11 to 12
WM_COMMAND, 50
WM_SAVE_YOURSELF, 50
Workspace Manager, 51

demo programs, 72
library and header files, 71

X
X magic cookie scheme, 9
X.400 API Association (XAPIA), 7, 75
X11 Display Manager (XDM), 9
X11R5, 25, 33, 37, 54
X-based applications, 26, 32
XLFD font names, 56, 57
Xlib documentation, xii
XmAddWMProtocols(), 50
XmAddWMProtocolsCallback(), 50
XmGetPixmap, 78
XmGetPixmapByDepth, 78
Xt documentation, xii


