
NEXTSTEP In Focus, Spring 1993 (Volume 3, Issue 2). 
Copyright ã1993 by NeXT Computer, Inc.    All Rights Reserved.

How We Tested NEXTSTEP for 
Intel Processors
Jim Walsh

Testing NEXTSTEP for Intel Processors presented a unique situation for NeXT. While the 
software is in its third generation on NeXT's proprietary hardware, NEXTSTEP Release 3.1 
is the initial release on Intel's line of microprocessors. Our goal was to have the same level 
of product maturity on Intel-based platforms as we have on hardware we designed and 
controlled. Fortunately, we were aided in this effort by the nature and design of NEXTSTEP 
itself.

FEW CHANGES TO USER-VISIBLE PARTS

The encapsulated, object-oriented design of the application layer of NEXTSTEPÐthe things 
you interact with every day, like Workspace Manager and MailÐmade porting the user-
visible portions of the environment simple and largely error-free. The user and developer 
applications that form a major portion of the NEXTSTEP code are almost entirely insulated 
from the underlying hardware by the NEXTSTEP Application Kitä and other NeXT 
software libraries. 

In all, only 17% of the machine-dependent bugs discovered were problems in the application 
layer. Many of the reports we did receive in this area were about cosmetic thingsÐsuch as 
key labelsÐthat differ between NeXT hardware and some PCs. 

Making the Application Kit general

In addition, because of their clean design, the Application Kit and NeXT libraries themselves 
were also relatively easy to port, though in places we had to make them more general to 
account for differences in hardware. For example, the objects in the Application Kit that 
interact with binary data such as fonts had to change to account for byte order dependencies, 
as did methods that manipulate bit fields. The generalizations we made make hardware 



differences transparent to applicationsÐincluding oursÐthat run on top of the NeXT 
libraries. 

As a further plus, we made these changes in such a way that we can build NEXTSTEP itself 
for all architectures simultaneously from a single program source tree. This consistency from 
platform to platform improves quality by cutting the potential for introducing errors when 
we integrate and build our code. It also simplifies testing because it guarantees identical 
softwareÐand therefore identical (non-hardware) bugsÐon all platforms. 

Concentrating on the lowest level

In addition, the fact that we made few changes to most of the user-visible software 
minimized the errors that might have been introduced in modifying this code. We still tested 
all of our code on both platforms, using our normal testing methodology. However, because 
porting introduced relatively few bugs into the high-level functionality, we were free to 
concentrate extra effort on testing the low-level areas directly affected by the Intel port itself.

TESTING CHALLENGES

Some important challenges in testing NEXTSTEP for Intel-based processors arose from four 
factors: 

· The radical increase in the number of types of hardware systemsÐand cardsÐto be 
supported

· The need to co-exist with other popular operating systems capable of running on the same 
hardware

· The need to ensure compatibility between NEXTSTEP systems running on both types of 
hardware, ªblackº and ªwhiteº 

· Our goal of making NEXTSTEP installation onto Intel-based hardware as easy as it is on 
our proprietary hardware 

In addition to shipping on two platform architectures, NEXTSTEP Release 3.1 is also 
shipping in six spoken languages, with on-line and printed documentation available in three 
languages. This further multiplied the test permutations required. 

Selective support

To assure product quality on the new hardware architecture, we chose to provide support for 



a selected set of high-performance Intel-based PC hardware in the initial release. This 
strategy is preferable to trying to be compatible with every 486-based platform and card, 
which would have meant using only the features supported by the lowest common 
denominator equipment. Nonetheless, even though the strategy we chose permits us to test 
more thoroughly and provide better driver support for the hardware we select, we still had to 
test a daunting number of configurations. 

To cope with this complexity, we adopted a three-pronged approach that involved creating 
test suites, grouping tests into ªequivalence classes,º and using additional spot testing.

Test suites

We developed test suites to exercise the major classes of devices supported by NEXTSTEP 
Release 3.1: systems, mass storage, serial and parallel I/O, printing, networking, graphics, 
sound, and keyboard and mouse inputs. These suites accessed the devices through their 
device drivers and at higher levels under NEXTSTEP, rather than addressing them at the 
hardware level. 

This made the tests themselves portable from device to device, while still thoroughly 
exercising the devices' operation under NEXTSTEP. By using device drivers and 
NEXTSTEP to provide a portability layer for tests, we avoided crafting a specific test suite 
for each piece of hardware, and directly addressed the area of interestÐthe behavior of the 
devices under NEXTSTEP.

Test classes

We simplified our testing by partitioning our test set so that each device was tested 
thoroughly in distinct supported configurations, and lightly in equivalent configurations. For 
example, if the major variable affecting a particular ISA card's operation was the system bus 
architecture, we tested that card thoroughly on one ISA and one EISA system, and lightly on 
other ISA and EISA systems. This kept the number of test configurations under control, 
while still achieving substantial test coverage. 

ªRandomº testing

To fill any remaining gaps in our hardware test coverage, we had a vigorous program of 
ªrandomº testing consisting of extensive in-house use of early versions on a wide variety of 
hardware configurations, ªbug huntsº on these configurations, and a pre-release program 
involving several hundred sites, selected in part for their diversity of hardware 
configurations. In all, 30% of the bugs reported against Release 3.1 were spotted by the pre-
release sites, and roughly 4% were found through bug hunts. 

Relatively low percentages like these for bugs reported by pre-release sites are good news, 



because they mean our internal test program has been effective at finding bugs before users 
do.

Making installation easy

We used a similar partitioning strategy to test installation of NEXTSTEP onto various 
hardware configurations. NEXTSTEP is easy to install on NeXT hardware, distinguishing it 
from most other operating systems on any platform. In part, this ease of installation is 
achieved through a combination of hardware, software, and manufacturing support. 

On PC hardware, though, installation is a different story. Simply getting a fully-configured 
PC to boot under any operating systemÐwhether it be NEXTSTEP or something elseÐcan 
be a major undertaking, involving wrestling with IRQ lines, DIP-switch settings, and so on. 
Various industry initiatives are trying to address this endemic problem of the PC industry, 
but in the meantime NeXT would like to come as close as possible to the sort of turn-key 
product installation offered for NeXT hardware. 

We have used our expertise in user interface design to make installing NEXTSTEP itself 
quite painless once your hardware is bootable. However, until your hardware can boot, it's of 
course impossible to run our softwareÐor any otherÐon it. To get you to the point where 
your system can boot, we therefore have used non-software methods. 

For extremely simple installation, we negotiated with several hardware vendors to have them 
ship systems that are pre-configured and pre-loaded with NEXTSTEP, removing the need for 
you to do any software installation. For systems that aren't preconfigured, we set up on-line 
documents that you can access by e-mail or phone, to give you the information you need to 
configure your hardware properly.

INTEROPERABILITY STRATEGIES

It required a significant amount of attention to test NEXTSTEP for Intel Processors for 
compatibility and interoperability with networking and file exchange standards, other 
popular PC-operating systems, and NEXTSTEP running on NeXT's proprietary hardware. 
Our testing addressed such areas as multi-OS booting, mounting 12- and 16-bit FAT DOS 
file systems, using various network transport layers, TCP/IP, NFS, SMTP compatibility, and 
Novellâ support, among others. 

Fortunately, much of the code to support these features was inherited from earlier versions of 
NEXTSTEP and so was already stable and well-characterized. The major areas of change 
were in the mechanics of making up for missing hardware supportÐsuch as a NeXTstation's 



ability to eject floppy disks under program control, or its Power key, which was similarly 
under program control. We also had to accommodate features that PCs have but NeXT 
computers don't, such as the ability to boot a different operating system from a different disk 
partition.

MEETING THE CHALLENGE

In all, from a quality standpoint, the port of NEXTSTEP to Intel Processors went very 
smoothly, especially for software of its size and sophistication. The major challenge from a 
testing standpoint was the volume of work needed to test support for a wide variety of new 
hardware and hardware configurations. We are meeting this challenge and moving forward 
in a variety of innovative ways, such as with our hardware certification programÐwhich will 
be discussed in a future article!

Jim Walsh is NeXT's Software Quality Manager. You can reach him by e-mail at 
Jim_Walsh@next.com.

WHAT IS ªAT LEAST AS GOOD AS 3.0º?
A good way to measure software quality is the software's defect discovery rateÐhow long someone can use 
it before finding a previously unknown bug. In addition to translating directly to reliability, this means of 
measuring has been shown to predict the number of unknown bugs still in the software. 

The basic idea is that the more bugs you find in a given period of testing time, the ªworseº the software is. 
(There are some subtleties, though; for example, very buggy software has a low defect discovery rate 
because it crashes so often you can't test it effectively.)

Ideally, one would like to know how many defects were discovered per unit of CPU time consumedÐCPU 
time indicates how much the software has been used quite accurately. For an entire OS such as NEXTSTEP, 
however, this is a difficult quantity to measure. Instead, we use the number of bugs reported per user, per 
day.

The standard defect discovery rate curve looks like the graph below. There's a gradually increasing defect 
discovery rate, corresponding to the period when new code is integrated. The defect rate hits its peak during 
alpha testing, just before beta testing begins, and then falls to a plateau during beta as bugs get harder to 
find. Finally, it drops off to a fairly small value as most of the bugs that are going to be found are reported.



For NEXTSTEP Release 3.0, the defect discovery rate graph was nearly identical to the standard one. For 
Release 3.1, we're aiming for a defect discovery rate at or below the one we had for Release 3.0.

For more information on defect discovery rates, see ªDetermining Software Qualityº in the April 1993 issue 
of Computer Language, pp. 57-65. Also see Software Reliability: Measurement, Prediction, Application by 
John D. Musa et al. (New York: McGraw-Hill Book Company, 1987.)ÐJW 

graph2rev.eps ¬

Most defect discovery rate graphs have this characteristic shape.


