
OpenStep Journal, Summer 1995 (Volume 1, Issue 2).
Copyright ã1995 by NeXT Computer, Inc. All Rights Reserved.

Realities of Portable Distributed Objects

Written by Brian Raymor and Randy Tidd

Although the design of the Distributed Objects and Portable Distributed Objectsä
architectures is elegant and simple, creating working applications with them can be complex.
A thorough understanding of Mach interprocess communication and the details of distributed
environments can dramatically improve a developer's ability to use these powerful tools.
This is the second installment of a series of articles on developing real-world distributed
applications in the NEXTSTEPä operating environment.

(Note that sidebars and marginal notes in the printed journal are denoted here by smaller type with   
bars above and below the item.)

The ®rst article in our series focused on registering and connecting to servers. We also reviewed how
to ªrunº Distributed Object connections, but we didn't discuss the DOEventLoop class that is speci®c
to Portable Distributed Objects (PDO). This article describes the DOEventLoop, both to quickly
review running connections and to demonstrate how it works in a non-NEXTSTEP environment.

The next step is to explore how clients and servers send and receive messages. Again, we'll
refer to the Mach IPC implementation to better comprehend the underlying implications of
communication between distributed applications. Also, the code fragments are minimal, excluding
ancillary details such as error or exception handling for the purposes of clarity.

RUN, RUN, RUN, AS FAST AS YOU CAN
In our ®rst article, we wrote:

When a server registers its SERVER_NAME using a class method such as registerRoot:withName:, a
NXConnection instance is created and returned. To allow the connection to receive and dispatch
incoming messages (requests), the server must ªrunº

the connection. This is accomplished using one of the variations on the run method: run,
runWithTimeout:, runFromAppKit, an runInNewThread.

For obvious reasons, runFromAppKit is not applicable in PDO applications. Instead, the
DOEventLoop class is included with PDO to emulate the main event loop in the Application Kitä

Application class. In this case, a connection is registered with an instance of DOEventLoop.
When the DOEventLoop instance is ªrun,º it will receive and dispatch incoming messages on
the connection.

Because it's common for applications to receive input from multiple sources, DOEventLoop also
de®nes methods to register object handlers for common events, similar to the functions DPSAddPort()
and DPSAddFD() in the Display PostScriptâ (DPS) client library for NEXTSTEP.

The following fragment demonstrates how to register a connection with an event loop:

DOEventLoop *eventLoop;
ServerClass *serverObject;
NXConnection *serverConnection;

serverObject = [[ServerClass alloc] init];
serverConnection = [NXConnection registerRoot:serverObject

withName:SERVER_NAME];

/*
 * register the connection with the event loop
 */
eventLoop = [DOEventLoop new];
[eventLoop addConnection:serverConnection];
[eventLoop run];

The DOEventLoop also permits applications to register objects that are noti®ed when certain events
occur, including incoming messages on a Mach port, incoming data on a ®le descriptor, and timeout
events.

When you use DOEventLoop, there's no need to use the NXPort class method
worryAboutPortInvalidation to create a new thread to listen for port deaths. This function is implicitly
performed by DOEventLoop. If the PDO platform supports threads, then a separate thread is created
for this purpose. In this case, the senderIsInvalid: implementation must be thread-safe. If thread
support is unavailable, the port death noti®cations are dispatched from the same thread running the
DOEventLoop.
__

In the first article, we demonstrated how to increase the message queue length for the Mach ports associated with the
connection. This is not required in the PDO implementation. It offers a pleasant (if inconsistent)
change in behavior by setting the port backlog for the Mach inPort managed by the connection to
PORT_BACKLOG_MAX.
__

DOEventLoop and File Descriptors

An object that conforms to the DOFileDescriptorHandling protocol is registered with
addFileDescriptor:handler:handlerData:. The method is similar to the DPSAddFD() function in the DPS
client library for NEXTSTEP. When data is available to be read on the ®le descriptor, the registered
object is sent the dataOnFileDescriptor:handlerData: noti®cation. The object handler is unregistered
using the removeFileDescriptor: method.

In most cases, a ®le descriptor for a socket or pipe is registered with the event loop. The following
example creates a socket. The ®le descriptor for the socket is registered with the event loop. The
socket is connected to the daytime server that implements the DARPA Daytime Protocol (RFC 867).
This server returns the current date and time and then closes the connection. When noti®ed, the object
handler unregisters from the event loop and prints the value returned from the server.

#import <foundation/NSObject.h>
#import <remote/DOEventLoop.h>

@interface SocketHandler:NSObject<DOFileDescriptorHandling>
@end

@implementation SocketHandler
- (void)dataOnFileDescriptor:(int)fd handlerData:(void *)data
{

char c;
DOEventLoop *eventLoop = (DOEventLoop *)data;

[eventLoop removeFileDescriptor:fd];

/*
 * The daytime server returns a value similar to:
 * Wed Jun 21 14:15:20 1995\r\n
 */
 while ((read(fd, &c, 1))
 printf ("%c", c);

}
@end

void
main()
{

int fd;
struct sockaddr serverAddress;
SocketHandler *socketHandler;
DOEventLoop *eventLoop;

/*
 * The setup code for serverAddress has been removed to clarify the example.
 */

 fd = socket(AF_INET, SOCK_STREAM, 0);
 connect(fd, (struct sockaddr *) &serverAddress, sizeof(serverAddress));

/*
 * instantiate a file descriptor handler
 */
socketHandler = [[SocketHandler alloc] init];

/*
 * register the file descriptor and its object handler with the event loop
 */
eventLoop = [DOEventLoop new];
eventLoop addFileDescriptor:fd handler:socketHandler

handlerData:(void *)eventLoop];

[eventLoop run];
}

DOEventLoop and Mach Messages
An object that conforms to the DOMachMessageHandling protocol is registered with the
addPort:handler:handlerData: method. This method is similar to the DPSAddPort() function in the DPS
client library for NEXTSTEP. When a Mach message arrives on the port, the registered object
receives the machMessageReceived:handlerData: noti®cation.The object handler is unregistered using
the removePort: method.

The following example allocates a Mach port. The port is registered with the event loop. A Mach
message is then de®ned and forwarded to the port. When noti®ed, the object handler stops the event
loop.

@interface MachMessageHandler:Object<DOMachMessageHandling>
@end

@implementation MachMessageHandler
- (void)machMessageReceived:(msg_header_t *)msg handlerData:(void *)data
{

DOEventLoop *eventLoop = (DOEventLoop *)data;
[eventLoop stop];

}
@end

void
main()
{

DOEventLoop *eventLoop;
MachMessageHandler *messageHandler;

port_t machPort;
msg_header_t msg;

/*
 * allocate a Mach port
 */

port_allocate(task_self(), &machPort);

/*
 * setup and send a Mach message
 */

bzero(&msg, sizeof(msg_header_t));
msg.msg_simple = TRUE;
msg.msg_size = sizeof(msg_header_t);
msg.msg_remote_port = machPort;
msg_send(&msg, MSG_OPTION_NONE, 0);

/*
 * instantiate a Mach Message Handler
 */
messageHandler = [[MachMessageHandler alloc] init];

/*
 * register the Mach port and its object handler with the event loop

 */
eventLoop = [DOEventLoop new];
[eventLoop addPort:machPort handler:messageHandler

handlerData:(void *)eventLoop];

[eventLoop run];
}

DOEventLoop and Timeout Handlers
An object that conforms to the DOTimeoutHandling protocol is registered with the DOEventLoop

using the addTimeoutEntry:handler:handlerData: method. Do not confuse this method with the
DPSAddTimedEntry() function in the DPS client library for NEXTSTEP. A timed entry handler
is called repeatedly at the speci®ed time interval. A timeout handler is called once when the
timer expires.

A timeout is similar to the UNIXâ alarm(3) function or setitimer(2) system call. The difference
is that the UNIX operations result in a signal being delivered to the application. In PDO, the
registered object receives the timeoutOccurred:handlerData: noti®cation.The handler is unregistered
using the removeTimeoutEntry: method.

It's possible to implement timed entries with timeout entries. When noti®ed, the object handler
unregisters the previous timeout using the receipt. It then registers a new timeout using the same
DOTimeInterval value.

/*
 * Timeout in milliseconds
 */
const DOTimeInterval timeout = 5000;

@interface TimeoutHandler:Object<DOTimeoutHandling>
@end

@implementation TimeoutHandler
- (void)timeoutOccurred:(DOTimeoutReceipt)receipt handlerData:(void *)data;
{

DOEventLoop *eventLoop = (DOEventLoop *)data;
[eventLoop removeTimeoutEntry:receipt];
[eventLoop addTimeoutEntry:timeout handler:self handlerData:data];

}
@end

void

main()
{
 DOEventLoop *eventLoop;
 TimeoutHandler *timeoutHandler;

/*
 * Instantiate a timeout handler to be notified in 5000 milliseconds
 */

 timeoutHandler = [[TimeoutHandler alloc] init];

/*
 * register the timeout entry and its object handler with the event loop
 */
eventLoop = [DOEventLoop new];
[eventLoop addTimeoutEntry:timeout handler:timeoutHandler

handlerData:(void *)eventLoop];

 [eventLoop run];
}

In our first article, we reviewed some restrictions for senderIsInvalid: implementations. There is an additional
restriction for Application Kit-based applications. Their implementation must not cause Display PostScript
client library functions to be executed, because the PostScript stream to the window server could be
corrupted. The safest solutions are to use either the delayedFree: method in the Application class or the
perform:with:afterDelay:cancelPrevious: method in the Object class to schedule the operations for a
later time.

PROXIES

An NXProxy instance is a local stand-in object for a remote object, where the remote object exists in
another process on the same machine or across the network. An application never explicitly
instantiates NXProxy objects. Proxies (instances of NXProxy class) are created implicitly when an
application receives a reference to an object that does not exist in its address space.

To be completely accurate, one proxy is created implicitly on each side of the connection. In the
server application, where the object actually resides, the proxy is known as the local proxy. In the
remote application, the proxy is referred to as the remote proxy. The (P)DO implementation uses the
local proxy, which is usually concealed from the developer. It is referenced here for completeness.
We'll use the term proxy to refer to the remote proxy in all further discussions.

For more information on local and remote proxies, see the ªSharing Objectsº section of the Distributed Objects
Introduction documentation found in GeneralRef/06_DistributedObjects/IntroDistObjects.rtf.

Proxies are created whenever a remote connection is made. For example, NXConnection's
connectToName: and other similar methods return a proxy to the root object for a server. Proxies are
also created implicitly in (P)DO. If an object is passed as an argument to a remote message, (P)DO
will create a proxy once in the remote application, unless the object is passed by copy. The same is
true for objects returned from remote messages. For example, if an application sends the objectAt:
message to a List proxy, then another proxy will be created for the returned list element.

It is essential to minimize the number of proxies created and to minimize the messaging traf®c sent
over the proxies. This will be discussed in detail later.

NXProxy is a root class, so it inherits from neither Object nor NSObject. A proxy implements a few
methods for reference counting and other (P)DO-related functions. If any other messages are sent to
the proxy, the messages are forwarded to the remote object that it represents.

Let's take a closer look at the forwarding of the message. The Objective-Câ run time includes a

mechanism by which an object can be noti®ed when it is sent a message that it doesn't respond to. It
sends the object a forward:: message with the selector and its arguments. The default implementation
of forward:: (implemented by Object and thus inherited by most NEXTSTEP classes) calls
doesNotRecognize:, which in turn calls error:, which prints the familiar ªdoes not recognize selectorº
message and raises an exception.

In the new Foundation classes, the method is forwardInvocation: instead of forward:: and the arguments are
expressed as an instance of the NSInvocation class. However, NSInvocation is not public in the EOF 1.1 release and
will not be public until NEXTSTEP 4.0, so until then the forwardInvocation: mechanism for NSObject cannot be
used.

The NXProxy class implements forward:: so unknown messages can be forwarded to the remote
object that it represents. First the proxy checks to see if the message has been declared explicitly as
part of its protocol (via setProtocolForProxy:). If so, a local method signature is used and the proxy can
go ahead and send the message. If not, the ®rst time a message is encountered for a given proxy,
(P)DO will have to ask the object on the other side of the connection for the method signature. This
causes additional message traf®c, but only the ®rst time the method is seen for each proxy (when the
signature is received, (P)DO caches it in the proxy, so it can be reused). If the remote object does not
respond to the selector, NX_unknownMethodException is raised at this point. See the section below
on ªUsing Protocols for Ef®ciencyº for further details.

If the proxy determines that the remote object responds to the message, the proxy packages the
message selector and its arguments into a Mach message and sends it to the remote process. The
Mach implementation will be discussed laterÐfor now, let's look closer at this encoding process.

Passing Objects across the Connection
(P)DO encodes each scalar argument (int, ¯oat, etc). The Network Message Server resolves byte

swapping and other architecture issues. Object arguments are encoded by proxy or by copy. For
objects sent by proxy, a proxy for the object will be created in the remote application. For objects sent
by copy, the methods from the NXTransport protocol are sent to the object, which allows
the object to decide how it should be encoded across the connection.

The default is to send the object by proxy. To send an object by copy, the object needs to implement
the encodeRemotelyFor:freeAfterEncoding:isBycopy: method appropriately. If this method
unconditionally returns self, the object will always be sent by copy. This method typically returns self
(causing the object to be sent by copy) only if the isBycopy ¯ag is YES; otherwise, a proxy (or other
object) is returned.

Which method you choose depends on the goals for your applications. These issues are discussed in the Distributed
Objects Introduction documentation in GeneralRef/06_DistributedObjects/IntroDistObjects.rtf.

The application can specify the bycopy quali®er in a protocol that the proxy conforms to. This will
cause the isBycopy ¯ag to be YES; otherwise, it will be NO (the default). In this manner the system
designer can hint at how the object is encoded, but the decision is ®nally made according to the
implementation of the object's encodeRemotelyFor:freeAfterEncoding:isBycopy: method.
For further details, review the ªbycopy Quali®erº section.

Several factors should be considered and balanced when deciding how to send objects over the
connection. Passing objects by proxy is convenient because it allows two or more processes to access
the same object. However, a message to a remote object takes much longer than a message to a local
object, it is much less likely to arrive intact, and there are many more error conditions to account for.
Furthermore, proxies to objects can be created implicitly by the (P)DO system, as discussed above.

For more information, see the ªDetermining the Object to Encodeº section of the Distributed Objects Introduction
documentation in GeneralRef/ 06_DistributedObjects/ IntroDistObjects.rtf.

Consider the case of a List object being passed by proxy from one application to another. The
receiving application can send this List proxy the objectAt: message to obtain the objects that the List
contains. However, the receiving application will actually receive proxies to those objects that will be
created implicitly by (P)DO. In a single traversal of the List object, one proxy will be created for each
object that the List contains. Because each of these proxies carries a signi®cant performance and
complexity penalty, the application can quickly degenerate to the point of
being unusable.

If the number of proxies is tightly controlled and the number of messages sent to the proxy kept to a
minimum, these drawbacks can be avoided and proxies can be used to your advantage.

The other option is to pass objects by copy. With this approach, an instance of the object will actually
reside in both applications, so changes made to one object will not be reflected in the other. If the
object is large, the actual passing of the object may take a considerable amount of time. For relatively
small objects that are unlikely to change (such as an NSString identi®er), passing it by copy is usually
preferable.

When a copy of an object is passed to another application, it cannot be anonymous. The application
that receives the object must have the class of the object loaded in its address space. The
implementations for the classes need to be identical or strange errors can result. It's recommended that
the class(es) be placed in a library that's linked into both applications.

The NXTransport Protocol
The implementation and use of the NXTransport, NXEncoding, and NXDecoding protocols are
covered in detail in the Distributed Objects documentation. The NXTransport protocol works in much
the way the read: and write: methods work. The most common mistake is the same as when using read:
and write:, which is encoding and decoding the parameters in a different order. For example, this:

- encodeUsing:(id <NXEncoding>)portal
{

[portal encodeData:&foo ofType:"i"];
[portal encodeData:&bar ofType:"i"];
return self;

}

- decodeUsing:(id <NXDecoding>)portal
{

self = [self init];
[portal decodeData:&bar ofType:"i"];
[portal decodeData:&foo ofType:"i"];
return self;

}

would not work, because the instance variables foo and bar are not encoded and decoded in the same
order. Worse, in this case the application would continue to run, but the values of foo and bar would
be switched after the encoding. It's important to implement these routines carefully.

Note also the lack of a call to [super encodeUsing:] and [super decodeUsing:]. The assumption is that this
object's superclass is Object (or NSObject). In this case it isn't necessary to call super's
implementation of these methods.

Initialization After Decoding
When decoding an object, (P)DO allocates an instance of the class but does not initialize it. It
then sends the object a decodeUsing: message so it can decode the parameters that it encoded. Because
the object is not initialized, the decodeUsing: implementation should call the designated initializer for
the object. Because the designated initializer often assigns values to instance variables, you should
call the initializer at the top of the decodeUsing: implementation, and then decode the values for the

instance variables.

For example, the class Foo has instance variables name and value, with the designated initializer init.
Here is its interface declaration:

@interface Foo:Object
{

const char *name;
int value;

}
- init;
@end

The implementations of encodeUsing: and decodeUsing: could look like this:

- encodeUsing:(id <NXEncoding>)portal
{

[portal encodeData:name ofType:"*"];
[portal encodeData:&aValue ofType:"i"];
return self;

}

- decodeUsing:(id <NXDecoding>)portal
{
 char *aStr;

int aValue;

self = [self init]; // -init is our designated initializer
[portal decodeData:&aStr ofType:"*"];
[portal decodeData:&aValue ofType:"i"];

/* Assign the decoded values to the ivars */
[self setName:aStr];

[self setValue:aValue];

/* free the decoded string */
NX_FREE(aStr);
return self;

}

In the above example, a variable of type (const char *) was decoded in decodeUsing:. The address of the
variable &aStr was passed to decodeData:ofType: to store the value. One may ask where the memory for
that string was allocated. The answer is that (P)DO allocated the memory with a call to
NX_MALLOC(), and the caller is responsible for freeing it with NX_FREE().

FOUNDATION CLASSES AND (P)DO
The NSObject class doesn't implement the NXTransport protocol, because NSObject subclasses
usually are not encoded over the connection with (P)DO. The NSString, NSData, and NSNumber
classes are exceptionsÐthese are always encoded by copy over the wire. If you want to change this
behavior, you need to add a category to all mutable classes.

The few limitations are covered in the ªUsing Distributed Objects with the Enterprise Objects Frameworkº
documentation shipped with EOF 1.1, which can be found in EnterpriseObjects/UsingDistributedObjects.rtf.

One approach to encoding other NSObject subclasses over the connection is to implement an Object
placeholder that will be encoded in the NSObject's place. When the placeholder is decoded, it is freed
and replaced with an object from the appropriate NSObject subclass. This approach is fail-safe and
will always work, but it requires additional work beyond merely implementing the NXTransport
protocol. Either a separate class must be created for every NSObject subclass to be encoded or a
single class must be created that can encode different NSObject subclasses.

This approach is detailed in NeXTanswer 1721, ªEncoding Foundation Classes with Distributed Objects,º
which includes sample code for encoding NSArray and NSDictionary classes.

Another approach to encoding NSObject subclasses over the connection is to simply implement the
NXTransport protocol for the class as you would for an Object subclass. This approach did not work
in the EOF 1.0 releaseÐit caused an exception during the encoding processÐbut it does work in the
EOF 1.1 release. This approach is discouraged because it can cause unusual problems and has not
been thoroughly tested. Nonetheless, we'll review it here.

To have the object encoded by copy, encodeRemotelyFor:freeAfterEncoding:isBycopy: needs to be
implemented such that it returns self if the isBycopy ¯ag is YES; otherwise, it should return a proxy.
The creation of the proxy is normally handled by the superclass. Although NSObject responds to this
method, it is not declared in the public header ®le, so a category on NSObject must be added for the
interface declaration.

@interface NSObject (NXTransportExtensions)
- encodeRemotelyFor:(NXConnection *)connection

freeAfterEncoding:(BOOL *)flagp isBycopy:(BOOL)isBycopy;
@end

Then the object's implementation looks like this:

- encodeRemotelyFor:(NXConnection *)connection
freeAfterEncoding:(BOOL *)flagp isBycopy:(BOOL)isBycopy

{
if (isBycopy)

return self;

return [super encodeRemotelyFor:connection

freeAfterEncoding:flagp
isBycopy:isBycopy];

}

The encoded object is created by (P)DO but is not released, so it must be released after it is decoded.
A convenient solution is to send autorelease to the object in its decodeUsing: implementation. The
following code fragment illustrates these points:

- encodeUsing:(id <NXEncoding>)portal
{

[portal encodeData:&foo ofType:"i"];
[portal encodeData:&bar ofType:"i"];
return self;

}

- decodeUsing:(id <NXDecoding>)portal
{

self = [[self init] autorelease]; // -init is our designated initializer
[portal decodeData:&foo ofType:"i"];
[portal decodeData:&bar ofType:"i"];
return self;

}

The problems encoding NSObject subclasses will be an issue only until NEXTSTEP 4.0 ships, when
the new DO design will replace and supersede the existing release. Some details can be obtained by
reviewing the published OpenStepä speci®cation. For now, implement these changes in such a way
that they can be easily backed out when the OpenStep interface becomes available.

Reference Counting
The NXConnection class implements a reference-counting strategy through the NXReference

protocol, which is implemented by the NXProxy, NXConnection, and NXInvalidationNoti®er
classes. When passing objects over the connection by proxy, the object can be shared among many
applications. When one application is done with the object, it typically frees the object, but this is a
bad idea if the object is being used in other applications. This problem is handled by (P)DO's
reference-counting strategy, enabling each application to increase the reference count when it needs
the object and decrease the count when it's done with it, so the object won't be freed until all
outstanding references are removed.

However, the reference-counting scheme has bugs that still exist in NEXTSTEP 3.3. The reference
count of the objects is incorrectly increased and decreased, resulting in objects being leaked or
prematurely freed. These problems are prevalent and unfortunately there is no
known workaround.

Note that in the Foundation Kit implementation of the OpenStep speci®cation, the autorelease
strategy ®xes these problems and makes the process of memory management over (P)DO much
cleaner. This is not available with the current NEXTSTEP 3.3 and PDO implementations, but it is
something to look forward to in NEXTSTEP 4.0.

The NXAutoreleaseConnection Class
This reference-counting strategy used by NXConnection differs from that of the Foundation Kit
classes, which use the NSAutoreleasePool class and NSObject's retain, release, and autorelease methods
(which are also part of the NSObject protocol). These two strategies do not share any code, and the
bugs present in (P)DO's reference-counting strategy do not exist in Foundation KitÐthere are no
known reference-counting bugs in Foundation Kit.

Because the NXConnection class was written before Foundation Kit, it doesn't know about
Foundation's newer reference-counting strategy. This can lead to memory leaks because
NXConnection does not have an autorelease pool in its run loop, so objects autoreleased during the

implementation of (P)DO methods won't actually be released in the absence of an
autorelease pool.

In the EOF 1.1 release, NXAutoreleaseConnection, a subclass of NXConnection, provides autorelease
pool support. NXAutoreleaseConnection provides no new methods and should always be used in
place of NXConnection.

The use of this class is covered in the ªEstablishing a Connectionº section of the ªUsing Distributed Objects with the
Enterprise Objects Frameworkº documentation in EnterpriseObjects/UsingDistributedObjects.rtf.

NXAutoreleaseConnection can be used in both Application Kit and non-Application Kit applications.
For Application Kit processes, autorelease pool support is normally handled by the EOApplication
class (part of the EOF interface layer), a subclass of Application that adds autorelease pool support.
Calling NXAutoreleaseConnection's runFromAppKit will just call its superclass's (NXConnection)
runFromAppKit implementation, and EOApplication's autorelease pool support will be used. For non-
Application Kit processes, NXAutoreleaseConnection's run methods provide their own autorelease
pool support, so merely using that class in place of NXConnection will be suf®cient.

Generally, the bugs in (P)DO's reference-counting strategy result in part from the lack of a
systemwide reference-counting strategy that is used consistently by all classes. The reference-
counting scheme in Foundation Kit addresses this problem by providing this capability to all objects
in the system. The new DO design that will be available in NEXTSTEP 4.0 will consistently use
reference counting, so all of these bugs should be eliminated.

For more information on how to add autorelease pool support to your application, see NeXTanswer 1722,
ªUsing Autorelease Pools without EOF.º

REMOTE MESSAGES IN THE MACH ENVIRONMENT
In NXConnection, there are methods to set and return the timeout interval for sending and receiving
remote messages. The setOutTimeout: method speci®es how long an application
will wait when sending remote messages. The setInTimeout: method speci®es how long an application
will wait when receiving messages. The setDefaultTimeout: class method is de®ned for convenience. It
sets both inTimeout and outTimeout to the same value. These timeout intervals are used with the
timeout option for the Mach functions msg_send(), msg_receive(),
and msg_rpc().

After information from the remote message is incorporated into a Mach message, it must be sent
across the network connection using Mach IPC calls. The function msg_send() is used to send oneway
requests across the connection. It will block the sender until either the message is enqueued on the
destination Mach port or the speci®ed timeout interval expires. If a timeout occurs, DO will note the
error and raise the NX_sendTimedOut exception.

After a message has been sent, the receiver can use the function msg_receive() to dequeue the message
from its Mach inPort. If no messages are pending, the receiver will block until either a message is
enqueued or the speci®ed timeout interval expires. If a timeout occurs, DO will note the error and
raise the NX_receiveTimedOut exception.

The function msg_rpc() is used to send a synchronous message. Conceptually, msg_rpc() performs a
msg_send() followed by a msg_receive(). The sender will block waiting for a response. This case is more
complex. Assume that a client is sending a synchronous message to a server. If the msg_send()
succeeds, the server will receive and process the request. If the processing exceeds
the timeout for the msg_receive(), then an NX_receiveTimedOut exception will be raised in
the client. At some point, the server will return a response, which will then be discarded because the
client is no longer waiting because of the timeout condition. A diagnostic message is printed to the

console: ª[NXConnection run] - tossing received reply msg.º

This behavior is acceptable if the client request does not change state in the server. For example, a
client can request a bank balance from an ATM multiple times without ill effects. Other requests such
as deposits or withdrawals change the server state (account balance). It would be unfortunate if a
withdrawal was deducted multiple times from your account because the client timed out, did not
receive an acknowledgment, and then sent another request to the server. Of course, we're also
assuming that the server is a bit feeble-minded. Patience.

This has profound implications for distributed application designs. To avoid differences between
client and server state, the naive programmer often speci®es in®nite timeouts (brute force) to simply
prevent this scenario. The application users then enter a trance state from watching a spinning cursor
for extended periods of time. This approach is reasonable for the prototype stage but too coarse a
solution for a production application. The real solution requires transactions. Consider this carefully.

When using infinite timeouts for prototypes, there is an implementation detail to note. When a
connection is ªrunº in an event loop (runFromAppkit or run in DOEventLoop), an invalidation
noti®cation cannot be delivered under some conditions.

Using in®nite timeouts, a client sends a synchronous message to the server. The server receives the
request but crashes while processing the message. The client remains blocked on the msg_rpc(),
because there is an in®nite timeout. The port death noti®cation cannot be delivered until the next
iteration through the event loop; therefore, deadlock occurs.

Network Message Servers and Remote Messages
Mach messages can be transparently exchanged between processes on the same machine (local) or
between processes on different machines in a network (remote). Remote messages are possible
because of the Network Message Server.

When a (P)DO client performs a name lookup for a server on a remote machine, the local Network
Message Server returns a network port that represents the Mach port on the remote machine. If the
client sends an Objective-C message to the remote object, then (P)DO encodes the information into a
Mach message that is queued on the network port. The local Network Message Server receives the
Mach message and prepares it for network transmission to the Network Message Server on the remote
machine.

All (P)DO messages exchanged between Network Message Servers are treated equally. A Network
Message Server has no knowledge of the higher-level semantics of request and reply. A Network
Message Server actively creates a connection on which to ªsendº (P)DO messages between a host pair
when there is a message to be sent and a connection does not already exist. An actively created
connection is never used to ªreceiveº a message, and a passively created connection is never used to
ªsendº a message. Either type of connection is subject to deletion by the Network Message Servers as
it sees ®t.

There are obvious performance implications when only one connection is sending requests between
two machines on the network. If a request is being sent, additional requests must be queued or
blocked until the current request is complete. In (P)DO, this scenario will occur when large amounts
of data are sent as either arguments or return values. The Network Message Server will block other
requests until it completely writes the large data set across the connection. This has the potential to
disrupt private maintenance messages that are exchanged between Network Message Servers. It might
also cause other connections to timeout.

Once the connection(s) are established, the request is written. The remote Network Message Server
reads and decodes the message. In addition, it performs all required data conversion to ensure that the
data is translated into an appropriate representation for the hardware platform. It then queues the
message on the local Mach port. Finally, (P)DO dequeues the Mach message and decodes it into the
Objective-C message that is then forwarded to the appropriate object.

Connection Management in the Network Message Server

Each Network Message Server follows some guidelines in connection management, ensuring that
open connections are maintained at a reasonable level:

Steady state 32 connections
Maximum for outgoing messages 100 connections
Maximum for incoming messages 128 connections

The steady-state value is the number of connections that the Network Message Server strives
to maintain. Every incoming and outgoing message includes a check on the number of open
connections. If this number exceeds the steady-state value, the Network Message Server
attempts to close another connection. This attempt does not succeed if activity is queued for the
connection, but the feedback mechanism does rein in the number of open connections over time.

When the Network Message Server needs to open a connection for an outgoing message, it will do so
unless the number of connections is already above the outgoing limit. Likewise, when a remote host
tries to open a connection to the Network Message Server, it will accept the request and connect if the
current number of connections is not above the incoming limit.

NS-DO-NetMsgServ-1.eps ¬

In both cases, the Network Message Server will also attempt to close an old connection when it opens
the new one if the number of connections exceeds the steady-state value. Thus, the two upper limits
are safety valves that allow the Network Message Server to open more connections than the steady-
state value in times of excess traf®c, but the number of connections will always shrink back to the
steady-state value when traf®c is reduced. In NEXTSTEP 3.3, connections that are idle for 2.5
minutes are also closed.

Again, the performance implications are clear. Let's assume that each client application runs on a
separate machine in the network. In addition, each client will be active on a constant basis. If the

number of clients exceeds the maximum number of available connections, then the Network Message
Server on the machine where the server is running will be frantically opening and closing connections
(thrashing) to meet the demand. Delays will result.

This scenario can be avoided through careful designs that de®ne an appropriate client and server ratio
based on prototypes.

DESIGNING DISTRIBUTED APPLICATION INTERFACES
Up to this point, we've offered templates for common client and server operations such as registration
and connection. The next phase is to de®ne the characteristics of the requests (messages) that are sent
to the server. Although these are application-dependent, some guidelines can be recommended.

It's possible to write naive or devil-may-care distributed applications that do not discern between local
and remote messages. In theory, it should not matter whether the object is local or remote:

char *hugeReport;
NX_MALLOC(hugeReport, char, HUGE_NUMBER);
// hugeReport is then initialized with a huge string (not shown)
[anObject sendReport:hugeReport];

Yet this fragment is neither robust nor ef®cient because distributed applications offer an education in
failure.

Taking Exception(s)
The fragment is not robust because exceptions will be raised if there are communication problems or
network delays. Messages to remote objects need to be enclosed in an exception handler.

char *hugeReport;

NX_MALLOC(hugeReport, char, HUGE_NUMBER);
// hugeReport is then initialized with a huge string (not shown)
NX_DURING

[anObject sendReport:hugeReport];
NX_HANDLER

// Handle exception
NX_ENDHANDLER

Another option is to install a custom exception handler using NXSetExceptionRaiser():

volatile void
exceptionRaiser(int code, const void *data1, const void *data2)
{

switch (code) {
// handle interesting exceptions
default:

// pass other exceptions to the next exception handler
NXDefaultExceptionRaiser(code,data1,data2);
break;

}
}

NXSetExceptionRaiser(exceptionRaiser);

But What Does It All Mean?

Exceptions are raised when (P)DO either cannot or should not determine the appropriate policy
for handling an error condition. This design allows programs to implement application-dependent
behavior for exception handling.

Here's a brief explanation for the exceptions raised in (P)DO:

· NX_couldntSendException = 11001

If msg_send() or msg_rpc() fails and the returned error is not SEND_INVALID_PORT,
SEND_TIMED_OUT, RCV_INVALID_PORT, or RCV_TIMED_OUT, then this default
exception is raised with the message ªCannot send.º When diagnostic messages are enabled (see

ªDebugging and Diagnostic Messagesº), the message ª®nishEncoding: send/receive error <mach error
number>:<mach error string>º is printed to the console.

· NX_couldntReceiveException = 11002
If msg_receive() fails and the returned error is neither RCV_INVALID_PORT nor
RCV_TIMED_OUT, then this default exception is raised with the message ªCould not receive.º

When diagnostic messages are enabled (see the debugging section), the message ªstartDecoding:
receive error <mach error number>:<mach error string>º is printed to

the console.

· NX_couldntDecodeArgumentsException = 11003
When a Mach message is received in the remote application, it decodes the method parameters

(arguments) that were encoded in the Mach message by the sender. If errors occur during this
process, an exception is returned as a response. The exception is not raised in the remote
application. When diagnostics are enabled, the message ªdecodeMethodParamsFrom:

incompatible method params <argument types>, nargs <actual argument count>, want <argument
count>º is printed to the console. The local application detects this case and then raises the
exception with the message ªexception during remote execution.º

This exception could be raised if you tried to send a bycopy object across a connection to a
server that didn't have its class implementation.

· NX_unknownMethodException = 11004
This exception is raised in two cases. In the local application, the forward:: method in NXProxy

encodes and forwards Objective-C messages across the connection as Mach messages to the related
remote object. Before forwarding, the implementation checks to see whether the remote object
includes a method signature (description) for the Objective-C message. If not, this exception is
raised with the message ªtarget does not implement method.º

In the remote application, the Mach message is received. The name for the method to be
dispatched is decoded. Then, the sel_getUid() function is executed to return the unique
identi®er (selector) for the method name. If errors occur during this process, an exception is
returned as a response. The exception is not raised in the remote application. When diagnostic
messages are enabled (see the debugging section), the warning ªhandleRequestOnPortal:
received message for <target> with unknown sel :<selector Name>º is printed to the console.
The local application detects this case and then raises the exception with the message ªexception

during remote execution.º

· NX_objectInaccessibleException = 11005
In the local application, the forward:: method in NXProxy encodes and forwards Objective-C
messages across the connection as Mach messages to the related remote object. Before
forwarding, the implementation checks to see whether the connection is valid. If not, this
exception is raised.

· No exception is de®ned for code 11006
It was mysteriously skipped in the NXRemoteException enumeration. Imagine our surprise.

· NX_objectNotAvailableException = 11007
This exception is raised in two cases. In the remote application, the Mach message is received. If

the local proxy (target) for the message is invalid (nil) or cannot be located in internal tables,
then an exception is returned as a response. The exception is not raised

in the remote application. When diagnostic messages are enabled, the warning
ªhandleRequestOnPortal: id <target> not availableº is printed to the console. The local application

detects this case and then raises the exception with the message ªexception
during remote execution.º

The exception is also raised with the message ªremote object not availableº when a reference is
being added to a proxy and its connection is invalid.

· NX_remoteInternalException = 11008

This exception is raised in three unusual cases. If a memory allocation fails while encoding a
message, the exception is raised with the message ªout of memory.º The exception is also raised

with the message ªbad wire typeº when a reference is being added to a proxy and its connection
is neither remote nor invalid. Finally, if decoding a private version number fails,

the exception is raised with ªbad protocol version.º

· NX_multithreadedRecursionDeadlockException = 11009
This exception is never raised in the current implementation.

· NX_destinationInvalid = 11010
This exception is raised in two cases. If there are errors in accessing an internal buffer for the
connection for either encoding or decoding, the exception is raised with the message ªtarget not

reachable.º

When a msg_send() fails with the error SEND_INVALID_PORT, the exception is also raised with
the message ªdestination invalid.º

· NX_originatorInvalid = 11011
If either msg_receive() or msg_rpc() fails and the returned error is RCV_INVALID_PORT, this
exception is raised with the message ªbad origination.º When diagnostic messages are enabled,

either the message ª®nishEncoding: send/receive error <mach error number>:<mach error
string>º or ªstartDecoding: receive error <mach error number>:<mach error string>º is printed to
the console.

· NX_sendTimedOut = 11012
If either msg_send() or msg_rpc() fails and the returned error is SEND_TIMED_OUT, this
exception is raised with the message ªsend timed out.º When diagnostic messages are enabled, the

message ª®nishEncoding: send/receive error <mach error number>:<mach error string>º is printed
to the console. This can be related to network delays or a receiver that is not running its connection.

n

· NX_receiveTimedOut = 11013

If either msg_receive() or msg_rpc() fails and the returned error is RCV_TIMED_OUT, this
exception is raised with the message ªreceive timed out.º When diagnostic messages are
enabled, either the message ª®nishEncoding: send/receive error <mach error number>:<mach
error string>º or ªstartDecoding: receive error <mach error number>:<mach error string>º is
printed to the console. This can be related to network delays. Another possibility is a client that
is not prepared to receive unsolicited messages from its server. Please refer to the ªReceiving
Unsolicited Messages from the Server (Running Clients)º section in our previous article.

The application must prepare for inevitable failures by determining the appropriate action for timeouts
and other exceptions.

Minimal Declarations
The code fragment is also not ef®cient because it is passing a large data set as an argument. Network
bandwidth is a ®nite resource to be used with care. The return value and arguments for
a remote message need to be examined to minimize the amount of data moving back and forth across
the network connection. As we learned earlier, there is also a related limitation in the current
implementation of the Network Message Server that is responsible for forwarding Mach messages
between machines on the network.

Some design decisions cannot be reached without a prototype. For example, how many clients
can be managed by one server? In part, this depends on how long it takes the server to process a
request. Another consideration is the frequency of requests. Will the requests occur at constant
intervals or in sporadic bursts? Happy thoughts, such as ªIt would be jolly if the server supported 100
clients,º are not a replacement for a prototype.

Objective-C Protocol Specification
The messages between the client and server should be speci®ed as an Objective-C protocol.

The protocol will de®ne the return value and the data types for the arguments in the message.
Quali®ers are also de®ned for remote messages, allowing applications to be precise regarding data
movement across the connection. Arguments can be quali®ed as in, out, or inout. The bycopy quali®er
hints at whether an object argument or return value is copied across the connection, rather than passed
by proxy. The oneway quali®er indicates that there is no valid return value for
the message.

Using Protocols for Efficiency

Besides good design practice, there is another excellent reason to de®ne protocols. They will reduce
message traf®c between your client and server. In many cases that we reviewed, we discovered that
customers have disregarded or are unfamiliar with the sage advice found in
/GeneralRef/06_DistributedObjects/IntroDistObjects.rtf:

A message sent to a remote object through a proxy may require two round-trip messages. The
®rst round trip is a request to the real object for its method signature, which speci®es the types
the method requires as arguments. This enables the proxy to encode the data that it has been
passed and forward it to the real object. Note that a method signature is not cached; without the

use of protocols, it will need to be fetched for every message.

Actually, the documentation is imprecise. As we indicated earlier, the method signature is fetched
once and then cached in the proxy. Nonetheless, ensure that a protocol is de®ned for communication
between the client and server by using the setProtocolForProxy: method in NXProxy. The following
example illustrates how a client sets the protocol for its proxy to the root (server) object:

@protocol ServerMethods
- setValue:(in struct value *)aValue;
- getValue:(out struct value *)aValue;
- setAndGetValue:(inout struct value *)aValue;
@end

@interface ServerClass:Object <ServerMethods>
@end

id proxyToServer;
proxyToServer = [NXConnection connectToName:SERVER_NAME onHost:HOST_NAME];

if (proxyToServer){
 [server setProtocolForProxy:@protocol(ServerMethods)];
}

There is no interface to query an NXProxy instance for its protocol. Furthermore, the
setProtocolForProxy: method should be executed once for a proxy. Multiple invocations will replace
the current protocol with the new protocol.

in, out, inout Qualifiers

When a remote message includes pointer arguments, it is unclear whether the argument is sending
data to the server, returning data from the server, or both. The in quali®er means that the pointer is
sending data to the server. The run time must dereference the pointer to access its value. The value is
sent across the connection. On the server, the run time then allocates space and stores the value,
passing the local address to the server.

- setValue:(in struct value *)aValue;

The out quali®er indicates that the pointer is returning data from the server. The value that the pointer
references does not need to be sent across the connection. Instead, a value from the server is returned
across the connection and stored in the address referenced by the pointer on the client.

- getValue:(out struct value *)aValue;

The inout quali®er indicates that the pointer both sends and returns data. If unspeci®ed, the default
quali®er for pointer arguments is inout, except when const is also declared. A const pointer uses in as

the default.

- getAndSetValue: (inout struct value *)aValue;

To review additional constraints, please see ªObjective-C Extensionsº in
/Concepts/ObjectiveC/3_MoreObjC/MoreObjC.rtfd.

oneway Qualifier

Another important consideration is whether a remote message needs to return values. If the request is
asynchronous, the client sends the request, pauses until the request is queued on the Mach inPort for
the server connection, and then continues its operation. It does not wait for the server to process the
request. This style of request operation can be indicated using the oneway quali®er in the protocol
declaration:

-(oneway void) noResponseNeeded;

Often, developers are surprised if a client blocks while sending a oneway request to a server. Requests
are encapsulated into Mach messages. As we noted in our previous article:

When a process sends a message to a remote port, the message is queued until it is received
by another process. If the queue is full, the send operation blocks until space is available to
enqueue the new message. The sending process can choose to wait in®nitely or allow the
operation to time out after a speci®ed period.

It's possible for the client to receive a timeout exception while waiting for the oneway request to be
queued.

A message that returns values is referred to as a synchronous request. The client sends the request and
waits for the server to process the request and return a response.

bycopy Qualifier

As we discussed earlier, the bycopy quali®er is speci®ed in the protocol declaration to indicate
whether a copy of an object, not a proxy, is intended to be passed as an argument or returned.

-(bycopy id) remoteMessage:(bycopy in id)anObject;

DEBUGGING DISTRIBUTED APPLICATIONS
Debugging distributed applications can be dif®cult because the timing of many messages is critical.
Interrupting the ¯ow of messages in the debugger might cause timeout exceptions to occur, concealing
or masking other problems. One solution is to set in®nite timeouts on the connection using methods
such as SetDefaultTimeout:, setInTimeout:, or setOutTimeout:.

The timeout can be set to -1 for an in®nite timeout, allowing unlimited time in the debugger
analyzing the application. This approach is inappropriate for production applications, because the
in®nite timeout might cause the process to block inde®nitely if there's a problem sending or receiving
messages. We recommend the following convention:

#ifdef DEBUG
#warning infinite timeouts enabled for debugging

[serverConnection setDefaultTimeout:-1];
#else DEBUG

// set timeouts to acceptable values for production application
#endif DEBUG

Debugging and Diagnostic Messages
The debug: class method in NXConnection is another valuable debugging aid. This method is
undocumented and private, but we share it with our friends. It can reveal valuable information during

the debugging process when used judiciously. A prototype for the method needs to be declared:

@interface NXConnection (Debug)
+ (void)debug:(const char *)header;
@end

The header argument is a string that will precede each line printed by (P)DO. This makes it easier to
identify the source of the diagnostic messages. For example, if both a client and a server are being
debugged, both applications would execute debug: but would provide different values for header, such
as ªclientº or ªserver.º

Here's some example output. When the server is ®rst run, it produces:

server[t:377136]adding conn 5cb00 with inPortals 5c9e8 (2560) outPortal 0 (0) root 0
server[t:377136]setting root 5c078 on connection 5cb00

We see the connection is created and registered. The client then connects to the server:

client[t:360752]adding conn 5a4b8 with inPortals 58360 (3072) outPortal 5a3e0
(2816) root 0

client[t:360752]new isRemote proxy 5a640 for 0 on conn 5a4b8

The last line indicates the proxy to the server's root object is being created in the client. The client
then sends a message containing an object being encoded bycopy:

client[t:360752]entered forward:: [0x0 send:...]
client[t:360752]methodSignature for send:
client[t:360752]encodeMethodParams:onto: type=Vv12@0:4O@8 nargs 3
client[t:360752]encodeMethodParams:onto: type=O@8 value=0x58cd0
client[t:360752]encodeObjectBycopy: 58cd0 (Foo1)

The message is sent to the proxy, which invokes its forward:: implementation. The method is encoded

into its method signature, and then (P)DO prepares to encode the object parameter bycopy.

client[t:360752]encodeObject: 83fc (NXConstantString)
client[t:360752]encodeObject: 588d0 (NSintNumber)
client[t:360752]in forward:: - made packet [5a600 (name 0) send:...] conn:5a478
client[t:360752]®nishEncoding: 87 chars 9 ints 0 ports 0 oolds
client[t:360752]msg_sending on 2816

We're sending an object with two instance variables, including one NSString and one NSNumber. We
see their concrete classes being encoded, and then the encoding is ®nished.

Over on the server, the message is received and decoded:

server[t:377136]new isLocal proxy 5f678 for 5c078 on conn 5f520
server[t:377136]adding conn 5f520 with inPortals 5c9e8 (2560) outPortal 5cb50

(4097) root 5c078
server[t:377136]startDecoding: 88 chars 9 ints 0 ports 0 oolds from 4097
server[t:377136]handleRequestOnPortal: [0x5c078 'send:']
server[t:377136]decodeMethodParamsFrom: type=@8 value=0x5f718

At this point in our example, the client exits. When it quits, the server is noti®ed of the port death:

server[t:380216]NXConnection: 5f520 death noti®cation for port 5cb50 (4097)
server[t:377136]msg_receiving on 2560, timeout -1

If the server has any objects properly registered for invalidation noti®cation, these objects would be
noti®ed of this event.

Diagnostic Messages and Foundation Classes

Using the private debug: method has implications when encoding NSObjects by copy over the
connection. In this case, the NSObject subclass that is being encoded needs to implement the +name
method since NXConnection references it when printing debugging messages.

NSObject doesn't normally implement +name but it can be done in a category, like this:

@interface NSObject (NXConnectionDebugFix)
+ (const char *)name;
@end

@implementation NSObject (NXConnectionDebugFix)
+ (const char *)name
{

NSString *str = NSStringFromClass(self);
return [str cString];

}
@end

Memory Leaks
A few common mistakes cause memory leaks in DO applications. The most common mistake is
to not free (char *) or (const char *) arguments to remote messages. Consider the following fragment:

- (oneway void)processDone:(in const char *)processName
{

printf ("Process %s is done.\n", processName);

#ifndef LEAK
NX_FREE(processName);

#endif LEAK
}

The processName argument is a string being sent to the server. As described in the ªin, out, and inout
Quali®erº section, (P)DO must allocate space, store the string value, and then pass the local address
to the server. Space is allocated with NX_MALLOC(). The application is responsible for freeing this

memory with NX_FREE(). If this method was invoked locally, the memory would not need to be freed.
This needs to be considered when a method is invoked both locally and remotely.

This is also covered in the Distributed Objects Introduction documentation in
GeneralRef/06_DistributedObjects/IntroDistObjects.rtf.

A similar mistake is neglecting to free memory for strings allocated by (P)DO for the decodeUsing:
method. This is detailed above in the ªInitialization After Decodingº section.

These memory leaks have a recognizable ªsignatureº within MallocDebug, which looks like this:

Zone Address Size Function
default 0x0907de28 8 _NXDecodeChars, idecodeData,

-[NXMethodSignature decodeMethodParamsFrom:],
+[NXConnection handleRequestOnPortal:],
-[NXConnection runWithTimeout:], -[NXConnection run], main

default 0x0907d210 7 _NXDecodeChars, idecodeData,
-[NXPortPortal decodeData:ofType:],
-[NXMethodSignature decodeMethodParamsFrom:],
+[NXConnection handleRequestOnPortal:],
-[NXConnection runWithTimeout:], -[NXConnection run], main

WHO WERE THOSE MASKED MEN?
Your server is registered. Its client is connected. Messages are passing back and forth. Your
distributed applications are designed to minimize the number of connections and remote message
sends, while structured in such a way that exceptions and errors are caught and dealt with gracefully.
Cool. For the moment, our work here is done. We're taking a sabbatical from the next issue of the
journal and waiting for those cards and letters to pour in.

Brian Raymor is a member of the Application Kit group. You can reach him by e-mail at Brian_Raymor@next.com.
Please feel free to send him comments and suggestions regarding this article.

Randy Tidd specializes in DO, PDO, Foundation Kit, and EOF development. You can reach him at
randy@blacksmith.com.

The authors would like to thank Gordie Freedman, Alan Freier, Blaine Garst, and Eric Noyau for reviewing
this article.

Next Article NeXTanswer #2041 A NEXTSTEP/OpenStep Interface to the SAP R/3 System
Table of contents http://www.next.com/HotNews/Journal/OSJ/SummerContents95.html

