
NEXTSTEP In Focus, Summer 1993 (Volume 3, Issue 3). 
Copyright ã1993 by NeXT Computer, Inc.    All Rights Reserved.

Propagating Updates
Alan M. Marcum and Garth Snyder

The only database that a NetInfo client can modify is the master database. Clones in a 
domain can only be read, not written, by clients. If a writing client happens to be connected 
to a clone server, it reconnects to the master before it writes new information.

So, how do modifications to the master's database reach the clones? Through an operation 
called update propagation. This article explains how update propagation works, including its 
performance optimizations and how it handles tricky updates.

WHEN THE DATABASE CHANGES

When the master executes a write request, it makes the change in its database. Then it sends 
the update along to all the clones of the domain. This update propagation is automatic. 
System and network administrators don't need to manually intervene or tune the system.

Yet, although the update process sounds simple, it has subtleties that are interesting to 
explore.

What is sent to the clones



In general there are a few different ways to inform copies of any database, including clones 
in NetInfo, about changes to the database. One possibility is to send the entire database to 
the copies. Another way is to send only the data that changed. A third is to send a portion of 
the database, smaller than the entire database but greater than only the changed information. 
And a final option is to send some sort of transaction log that allows the copies to 
reconstruct the changes.

NetInfo usually uses a modified version of the final option of propagating updatesÐthe 
NetInfo master server sends the transactions to the clones. For example, if the client that 
made the change used an NI_WRITE operation, which writes all of a directory's properties, 
the master also uses an NI_WRITE operation. If the client used an NI_WRITEPROP 
operation, which writes only one property, so does the master. 

(Under special circumstances, the master sends the entire database to individual clones. See 
ªWhen a Clone Misses an Update,º later in this article)

Updating immediately

When the master receives and executes a write request, it notifies the clones of the change to 
the domain immediately. This quick response helps ensure that all copies of the database are 
in sync with the master with minimal effort from an administrator, and with minimal chance 
for errors. The master sends the update to each clone in turn. 

KEEPING UPDATE PERFORMANCE HIGH

When there are many clones or many changes, the master server uses multi-threaded 
propagation and update coalescing to keep update propagation performance high.



Multi-threaded update propagation

If there are lots of updates, as is typically the case with a large network, the master server 
takes steps to decrease the delay between when the master gets the write request from the 
client and when it begins to propagate the update. When a client makes an update, the master 
begins propagating the update in a separate thread. If another update request arrives while 
the first is being propagated, the master starts a new thread to propagate the second update.

Multi-threaded update propagation is new in Release 3. In both Release 3.0 and Release 3.1, 
a single master can handle up to five update threads at one time.

Update coalescing

Another performance optimization NetInfo uses is update coalescing. When a master starts 
an update thread, it combines all pending updatesÐthose that no threads are currently 
propagatingÐand sends them to each clone using a single connection. Multiple messages are 
sent through the connectionÐone message per update transaction. However, establishing the 
connection only once requires less overhead than sending each update through a separate 
connection.

When an update arrives while another update is being propagated, it isn't coalesced with the 
other update. Once an update thread begins running, the updates it propagates don't change. 
But, if all five update threads are running and a new update arrives, the new update waits in 
the work queue until a thread becomes available. Once a thread is available, the master 
coalesces all the updates waiting in the work queue, so they are all handled by the freed 
thread.

Update coalescing improves update performance in networks whose domains change 
frequently. There's a small price to pay, though: there's a two second delay between when the 
master receives a write request and when it begins propagating the change. This delay allows 



the master to coalesce changes whenever possible.

Update coalescing was also first implemented in Release 3.

WHEN A CLONE MISSES AN UPDATE

What if a clone is down when an update is sent, or if the master cannot reach the clone 
because of a network failure? Sure, the master tries hard: it waits for a 60-second timeout 
period before giving up on sending an update to a clone. Still, failures can occur.

As an example, assume a network problem causes a clone to be inaccessible to the master 
for a while, although the clone server's computer continues running. While the clone is 
inaccessible, a client process makes a change to the domain. When the master propagates the 
update, the inaccessible clone doesn't receive it. 

So, when the network problems are fixed, how will the clone's database be updated? Once 
the clone comes up, it'll begin getting updates, but what about updates sent while the clone 
isn't reachable?

Updates at startup time

When either a clone or the master starts up or is restarted, the clone's database is updated. 
When the master starts up, it tells all the clones that it has started, and sends its database 
checksum with the notice. If a clone is out of date, the clone requests a new copy of the 
current database. 

Similarly, when a clone starts up it checks in with the master, sending the clone's checksum. 
Again, if the two checksums differ, the master sends the clone the entire database.



Updates after startup

It's possible, though, that both the master and clone could run for a long time without being 
restarted. This would seem to allow the clone's database to remain obsolete for quite a while. 

However, every 30 minutes the master and the clones verify that all copies of the database 
are current, by verifying that the clones' checksums agree with the master's. So, a clone can't 
stay out of date for long.

Updates on the way

There's one instance, though, when the master won't send an out of date clone a copy of the 
database. If an update is being propagated that hasn't yet been sent to the clone, the master 
tells the clone that an update propagation is in progress. The clone netinfod then sends a 
message to its syslog:

transfer failed at Master server is busy: id=-1

The clone will be current once it receives the update. 


