
(Preliminary Documentation) Copyright ã1994 by NeXT Computer, Inc.    All Rights Reserved.

NSCoder 

Inherits From: NSObject 

Conforms To: NSCoding
NSObject 

Declared In: foundation/NSCoder.h
foundation/NSGeometry.h 

Encoding Data

- (void)encodeArrayOfObjCType:(const char *)types
count:(unsigned)count Serializes data of Objective C types listed in types having 
at:(const void *)array count elements residing at address array.

- (void)encodeBycopyObject:(id)anObject Overridden by subclasses to serialize the supplied Objective C object so 
that a copy rather than a proxy of anObject is created upon 
deserialization.    NSCoder's implementation simply invokes 
encodeObject:.

- (void)encodeConditionalObject:(id)anObject Overridden by subclasses to conditionally serialize the supplied Objective C 
object.    The object should be serialized only if it is an inherent member 
of the larger data structure.    NSCoder's implementation simply invokes 
encodeObject:.

- (void)encodeDataObject:(NSData *)data Serializes the NSData object data.
- (void)encodeObject:(id)anObject Serializes the supplied Objective C object.
- (void)encodePropertyList:(id)plist Serializes the supplied property list (NSData, NSArray, NSDictionary, or 



NSString objects).
- (void)encodePoint:(NSPoint)point Serializes the supplied point structure.
- (void)encodeRect:(NSRect)rect Serializes the supplied rectangle structure.
- (void)encodeRootObject:(id)rootObject Overridden by subclasses to start the serialization of an interconnected 

group of    Objective C objects, starting with rootObject.    NSCoder's 
implementation simply invokes encodeObject:.

- (void)encodeSize:(NSSize)size Serializes the supplied size structure.
- (void)encodeValueOfObjCType:(const char *)type Serializes data of Objective C type type

at:(const void *)address residing at address address.
- (void)encodeValuesOfObjCTypes:(const char *)types,...

Serializes values corresponding to the Objective C types listed in types 
argument list.

Decoding Data

- (void)decodeArrayOfObjCType:(const char *)types
count:(unsigned)count Deserializes data of Objective C types listed in type having
at:(void *)address count elements residing at address address.

- (NSData *)decodeDataObject Deserializes and returns an NSData object.
- (id)decodeObject Deserializes an Objective C object.
- (id)decodePropertyList Deserializes a property list (NSData, NSArray, NSDictionary, or NSString 

objects).
- (NSPoint)decodePoint Deserializes a point structure.
- (NSRect)decodeRect Deserializes a rectangle structure.
- (NSSize)decodeSize Deserializes a size structure.
- (void)decodeValueOfObjCType:(const char *)type

at:(void *)address Deserializes data of Objective C type type residing at address address.    
You are responsible for releasing the resulting objects.

- (void)decodeValuesOfObjCTypes:(const char *)types,...
Deserializes values corresponding to the Objective C types listed in types 

argument list.    You are responsible for releasing the resulting objects.



Managing Zones

- (NSZone *)objectZone Returns the memory zone used by deserialized objects.    For instances of 
NSCoder, this is the default memory zone, the one returned by 
NSDefaultMallocZone().

- (void)setObjectZone:(NSZone *)zone Sets the memory zone used by deserialized objects.    Instances of 
NSCoder always use the default memory zone, the one returned by 
NSDefaultMallocZone(), and so ignore this method.

Getting a Version

- (unsigned int)systemVersion Returns the system version number as of the time the archive was created.
- (unsigned int)versionForClassName:(NSString *)className

Returns the version number of    the class className as of the time it was 
archived.


