
(Preliminary Documentation) Copyright ã1994 by NeXT Computer, Inc.    All Rights Reserved.

NSString

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying
NSObject

Declared In: foundation/NSString.h
foundation/NSPathUtilities.h
foundation/NSUtilities.h

Creating Temporary Strings

+ (NSString *)localizedStringWithFormat:(NSString *)format,...
Returns a string created by using format as a printf() style format string,

and the following arguments as values to be substituted into the format
string.    The user's default locale is used for format information.

+ (NSString *)stringWithCString:(const char *)byteString
Returns a string containing the characters in byteString, which must be null-

terminated.    byteString should contain characters in the default C string
encoding.

+ (NSString *)stringWithCString:(const char *)byteString
length:(unsigned int)length Returns a string containing characters from byteString.    byteString should

contain characters in the default C string encoding.    length bytes are
copied into the string, regardless of whether a null byte exists in
byteString.

+ (NSString *)stringWithCharacters:(const unichar *)chars

length:(unsigned int)length Returns a string containing chars.    length characters are copied into the
string, regardless of whether a null character exists in chars.

+ (NSString *)stringWithFormat:(NSString *)format,...
Returns a string created by using format as a printf() style format string,

and the following arguments as values to be substituted into the format
string.

Initializing Newly Allocated Strings

- (id)init Initializes the receiver, a newly allocated NSString, to contain no characters.
This is the only initialization method that a subclass of NSString should
invoke.

- (id)initWithCString:(const char *)byteString Initializes the receiver, a newly allocated NSString, by converting the one-
byte characters in byteString into Unicode characters.    byteString must
be a null-terminated C string in the default C string encoding.

- (id)initWithCString:(const char *)byteString Initializes the receiver, a newly allocated NSString, by
length:(unsigned int)length converting length one-byte characters in byteString into Unicode

characters.    This method doesn't stop at a null byte.
- (id)initWithCStringNoCopy:(char *)byteString Initializes the receiver, a newly allocated NSString, by

length:(unsigned int)length converting length one-byte characters in byteString into
freeWhenDone:(BOOL)flag Unicode characters.    This method doesn't stop at a null byte. The

receiver becomes the owner of byteString; if flag is YES it will free the
memory when it no longer needs it, but if flag is NO it won't.

- (id)initWithCharacters:(const unichar *)chars Initializes the receiver, a newly allocated NSString, by
length:(unsigned int)length copying length characters from chars.    This method doesn't stop at a

null character.
- (id)initWithCharactersNoCopy:(unichar *)chars Initializes the receiver, a newly allocated NSString, to

length:(unsigned int)length contain length characters from chars.    This method
freeWhenDone:(BOOL)flag     doesn't stop at a null character.    The receiver becomes the owner of

chars; if flag is YES the receiver will free the memory when it no longer
needs them, but if flag is NO it won't.

- (id)initWithContentsOfFile:(NSString *)path Initializes the receiver, a newly allocated NSString, by reading NEXTSTEP-
encoded characters from the file whose name is given by path.

- (id)initWithData:(NSData *)data Initializes the receiver, a newly allocated NSString, by
encoding:(NSStringEncoding)encoding converting the bytes in data into Unicode characters.    data must be an

NSData object containing bytes in encoding and in the default ªplain textº
format for that encoding.

- (id)initWithFormat:(NSString *)format,... Initializes the receiver, a newly allocated NSString, by constructing a string
from format and following string objects in the manner of printf().

- (id)initWithFormat:(NSString *)format Initializes the receiver, a newly allocated NSString, by
arguments:(va_list)argList constructing a string from format and argList in the manner of vprintf().

- (id)initWithFormat:(NSString *)format Initializes the receiver, a newly allocated NSString, by
locale:(NSDictionary *)dictionary constructing a string from format and the formatting information in the

dictionary    in the manner of printf().
- (id)initWithFormat:(NSString *)format Initializes the receiver, a newly allocated NSString, by

locale:(NSDictionary *)dictionary constructing a string from format and format
arguments:(va_list)argList information in dictionary and argList in the manner of vprintf().

- (id)initWithString:(NSString *)string Initializes the receiver, a newly allocated NSString, by copying the
characters from string.

Getting a String's Length

- (unsigned int)length Returns the number of characters in the receiver.    This number includes the
individual characters of composed character sequences.

Accessing Characters

- (unichar)characterAtIndex:(unsigned int)index Returns the character at the array position given by index.    This method
raises an NSStringBoundsError exception if index lies beyond the end of
the string.

- (void)getCharacters:(unichar *)buffer Invokes getCharacters:range: with the provided buffer and the entire
extent of the receiver as the range.

- (void)getCharacters:(unichar *)buffer Copies characters from aRange in the receiver into buffer,
range:(NSRange)aRange which must be large enough to contain them.    This method does not add

a null character.    This method raises an NSStringBoundsError exception
if any part of aRange lies beyond the end of the string.

Combining Strings

- (NSString *)stringByAppendingFormat:(NSString *)format,...

Returns a string made by using format as a printf() style format string, and
the following arguments as values to be substituted into the format string.

- (NSString *)stringByAppendingString:(NSString *)aString
Returns a string made by appending aString and the receiver.

Dividing Strings into Substrings

- (NSArray *)componentsSeparatedByString:(NSString *)separator
Finds the substrings in the receiver that are delimited by separator and

returns them as the elements of an NSArray.    The strings in the array
appear in the order they did in the receiver.

- (NSString *)substringFromIndex:(unsigned int)index
Returns a string object containing the characters of the receiver starting

from the one at index to the end.    This method raises an
NSStringBoundsError exception if index lies beyond the end of the string.

- (NSString *)substringFromRange:(NSRange)aRange
Returns a string object containing the characters of the receiver which lie

within aRange.    This method raises an NSStringBoundsError exception
if any part of aRange lies beyond the end of the string.

- (NSString *)substringToIndex:(unsigned int)index
Returns a string object containing the characters of the receiver up to, but

not including, the one at index.    This method raises an
NSStringBoundsError exception if index lies beyond the end of the string.

Finding Ranges of Characters and Substrings

- (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet
Invokes rangeOfCharacterFromSet:options: with no options.

- (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet
options:(unsigned int)mask Invokes rangeOfCharacterFromSet:options:range: with mask and the

entire extent of the receiver as the range.
- (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet

options:(unsigned int)mask Returns the range of the first character found from aSet.
range:(NSRange)aRange The search is restricted to aRange with mask options.    mask can be any

combination (using the C bitwise OR operator |) of   

NSCaseInsensitiveSearch, NSLiteralSearch, and NSBackwardsSearch.
- (NSRange)rangeOfString:(NSString *)string Invokes rangeOfString:options: with no options.
- (NSRange)rangeOfString:(NSString *)string Invokes rangeOfString:options:range: with mask

options:(unsigned int)mask options and the entire extent of the receiver as the range.
- (NSRange)rangeOfString:(NSString *)aString Returns the range giving the location and length in the

options:(unsigned int)mask receiver of aString.    The search is restricted to aRange
range:(NSRange)aRange     with mask options.    mask can be any combination (using the C bitwise

OR operator |) of    NSCaseInsensitiveSearch, NSLiteralSearch,
NSBackwardsSearch, and NSAnchoredSearch.

Determining Composed Character Sequences

- (NSRange)rangeOfComposedCharacterSequenceAtIndex:(unsigned int)anIndex
Returns an NSRange giving the location and length in the receiver of the

composed character sequence located at anIndex.    This method raises
an NSStringBoundsError exception if anIndex lies beyond the end of the
string.

Identifying and Comparing Strings

- (NSComparisonResult)caseInsensitiveCompare:(NSString *)aString
Invokes compare:options: with the option NSCaseInsensitiveSearch.

- (NSComparisonResult)compare:(NSString *)aString
Invokes compare:options: with no options.

- (NSComparisonResult)compare:(NSString *)aString
options:(unsigned int)mask Invokes compare:options:range: with mask as the options and the

receiver's full extent as the range.
- (NSComparisonResult)compare:(NSString *)aString

options:(unsigned int)mask Compares aString to the receiver and returns their lexical
range:(NSRange)aRange ordering.    The comparison is restricted to aRange and uses mask

options, which may be NSCaseInsensitiveSearch and NSLiteralSearch.
- (BOOL)hasPrefix:(NSString *)aString Returns YES if aString matches the beginning characters of the receiver,

NO otherwise.
- (BOOL)hasSuffix:(NSString *)aString Returns YES if aString matches the ending characters of the receiver, NO

otherwise.

- (unsigned int)hash Returns an unsigned integer that can be used as a table address in a hash
table structure.    If two string objects are equal (as determined by the
isEqual: method), they must have the same hash value.

- (BOOL)isEqual:(id)anObject Returns YES if both the receiver and anObject have the same id or if they're
both NSStrings that compare as NSOrderedSame, NO otherwise.

- (BOOL)isEqualToString:(NSString *)aString Returns YES if aString is equivalent to the receiver (if they have the same id
or if they compare as NSOrderedSame), NO otherwise.

Storing the String

- (NSString *)description Returns the string itself.
- (BOOL)writeToFile:(NSString *)filename Writes a textual description of the receiver to filename.

atomically:(BOOL)useAuxiliaryFile If useAuxiliaryFile is YES, the data is written to a backup file and then,
assuming no errors occur, the backup file is renamed to the intended file
name.

Getting a Shared Prefix

- (NSString *)commonPrefixWithString:(NSString *)aString
options:(unsigned int)mask Returns the substring of the receiver containing characters that the receiver

and aString have in common.    mask can be any combination (using the
C bitwise OR operator |) of    NSCaseInsensitiveSearch and
NSLiteralSearch.

Changing Case

- (NSString *)capitalizedString Returns a string with the first character of each word changed to its
corresponding uppercase value.

- (NSString *)lowercaseString Returns a string with each character changed to its corresponding
lowercase value.

- (NSString *)uppercaseString Returns a string with each character changed to its corresponding
uppercase value.

Getting C Strings

- (const char *)cString Returns a representation of the receiver as a C string in the default C string
encoding.

- (unsigned int)cStringLength Returns the length in bytes of the C string representation of the receiver.
- (void)getCString:(char *)buffer Invokes getCString:maxLength:range:remainingRange: with

NSMaximumStringLength as the maximum length, the receiver's entire
extent as the range, and NULL for the remaining range.    buffer must be
large enough to contain the resulting C string plus a terminating null
character (which this method adds).

- (void)getCString:(char *)buffer Invokes getCString:maxLength:range:remainingRange: with
maxLength:(unsigned int)maxLength maxLength as the maximum length, the receiver's entire extent as the

range, and NULL for the remaining range.    buffer must be large enough
to contain the resulting C string plus a terminating null character (which
this method adds).

- (void)getCString:(char *)buffer Copies the receiver's characters (in the default C string
maxLength:(unsigned int)maxLength encoding) as bytes    into    buffer.    buffer must be
range:(NSRange)aRange large enough to contain maxLength bytes plus a
remainingRange:(NSRange *)leftoverRange       terminating null character (which this method adds).    Characters

are copied from aRange; if not all characters can be copied, the range of
those not copied is put into leftoverRange.    This method raises an
NSStringBoundsError exception if any part of aRange lies beyond the
end of the string.

Getting Numeric Values

- (double)doubleValue Returns the double precision floating point value of the receiver's text.   
Whitespace at the beginning of the string is skipped.    If the receiver
begins with a valid text representation of a floating-point number, that
number's value is returned, otherwise 0.0 is returned.    HUGE_VAL or
-HUGE_VAL is returned on overflow.    0.0 is returned on underflow.   
Characters following the number are ignored.

- (float)floatValue Returns the floating-point value of the receiver's text.    Whitespace at the
beginning of the string is skipped.    If the receiver begins with a valid text
representation of a floating-point number, that number's value is
returned, otherwise 0.0 is returned.    HUGE_VAL or -HUGE_VAL is
returned on overflow.    0.0 is returned on underflow.    Characters

following the number are ignored.
- (int)intValue Returns the integer value of the receiver's text.    Whitespace at the

beginning of the string is skipped.    If the receiver begins with a valid
representation of an integer, that number's value is returned, otherwise 0
is returned.    INT_MAX or INT_MIN is returned on overflow.    Characters
following the number are ignored.

Working With Encodings

+ (NSStringEncoding)defaultCStringEncoding Returns the C string encoding assumed for any method accepting a C string
as an argument.

- (BOOL)canBeConvertedToEncoding:(NSStringEncoding)encoding
Returns YES if the receiver can be converted to encoding without loss of

information, and NO otherwise.
- (NSData *)dataUsingEncoding:(NSStringEncoding)encoding

Invokes dataUsingEncoding:allowLossyConversion: with NO as the
argument to allow lossy conversion.

- (NSData *)dataUsingEncoding:(NSStringEncoding)encoding
allowLossyConversion:(BOOL)flag Returns an NSData object containing a representation of the receiver in

encoding.    If flag is NO and the receiver can't be converted without
losing some information (such as accents or case) this method returns
nil.    If flag is YES and the receiver can't be converted without losing
some information, some characters may be removed or altered in
conversion.

- (NSStringEncoding)fastestEncoding Encoding in which this string can be expressed (with lossless conversion)
most quickly.

- (NSStringEncoding)smallestEncoding Encoding in which this string can be expressed (with lossless conversion) in
the most    space efficient manner

Converting String Contents into a Property List

- (id)propertyList Depending on the format of the receiver's contents, returns a string, data,
array, or dictionary object represention of those contents.

- (NSDictionary *)propertyListFromStringsFileFormat
Returns a dictionary object initialized with the keys and values found in the

receiver.    The receiver's format must be that used for ª.stringº files.

Manipulating File System Paths

- (unsigned int)completePathIntoString:(NSString **)outputName
caseSensitive:(BOOL)flag Regards the receiver as containing a partial filename and
matchesIntoArray:(NSArray **)outputArray returns in outputName the longest matching path name.
filterTypes:(NSArray *)filterTypes Case is considered if flag is YES.    If outputArray is given, all matching

filenames are return in outputArray.    If filterTypes is provided, this
method considers only those paths that match one of the types.   
Returns 0 if no matches are found; otherwise, the return value is positive.

- (NSString *)lastPathComponent Returns the last component of the receiver's path representation.    Given
the path ª/Foo/Bar.tiffº, this method    returns a string containing ªBar.tiffº.

- (NSString *)pathExtension Returns the extension of the receiver's path representation.    Given the path
ª/Foo/Bar.tiffº, this method    returns a string containing ªtiffº.

- (NSString *)stringByAbbreviatingWithTildeInPath
Returns a string in which the user's home directory path is replace by ª~º.

- (NSString *)stringByAppendingPathComponent:(NSString *)aString
Returns a string representing the receiver's path with the addition of the

path component aString.
- (NSString *)stringByAppendingPathExtension:(NSString *)aString

Returns a string representing the receiver's path with the addition of the
extension aString.

- (NSString *)stringByDeletingLastPathComponent
Returns the receiver's path representation minus the last component.   

Given the path ª/Foo/Bar.tiffº, this method    returns a string containing
ª/Fooº.

- (NSString *)stringByDeletingPathExtension Returns the receiver's path representation minus the extension on the last
component.    Given the path ª/Foo/Bar.tiffº, this method    returns a string
containing ª/Foo/Barº.

- (NSString *)stringByExpandingTildeInPath Returns a string in which a tilde is expanded to its full path equivalent.
- (NSString *)stringByResolvingSymlinksInPath Returns a string identical to the receiver's path except that any symbolic

links have been resolved.
- (NSString *)stringByStandardizingPath Returns a string containing a ªstandardizedº path, one in which tildes are

expanded and redundant elements (for example ª//º) eliminated.

