
(Preliminary Documentation) Copyright ã1994 by NeXT Computer, Inc.    All Rights Reserved.

NSApplication 

Inherits From: NSResponder : NSObject 

Declared In: appkit/NSApplication.h
appkit/NSColorPanel.h
appkit/NSDataLinkPanel.h
appkit/NSHelpPanel.h
appkit/NSPageLayout.h 

Creating the Instance of NSApplication

+ (NSApplication *)sharedApplication Returns the NSApplication instance, creating it if it doesn't yet exist.

Changing the Active Application 

- (void)activateIgnoringOtherApps:(BOOL)flag Makes this the active application.    If flag is NO, the application is activated 
only if no other application is currently active. 

- (void)deactivate Deactivates the application. 
- (BOOL)isActive Returns whether this is the active application. 

Running the Event Loop 

- (void)abortModal Aborts the event loop started by runModalForWindow:. 
- (NSModalSession)beginModalSessionForWindow:(NSWindow *)theWindow

Sets up a modal session with theWindow. 
- (void)endModalSession:(NSModalSession)session



Finishes a modal session. 
- (BOOL)isRunning Returns whether the main event loop is running. 
- (void)run Starts the main event loop. 
- (int)runModalForWindow:(NSWindow *)theWindow

Starts a modal event loop for theWindow. 
- (int)runModalSession:(NSModalSession)session

Runs a modal session. 
- (void)sendEvent:(NSEvent *)theEvent Dispatches events to other objects. 
- (void)stop:(id)sender Stops the main event loop. 
- (void)stopModal Stops the modal event loop. 
- (void)stopModalWithCode:(int)returnCode Stops the event loop started by runModalForWindow: and sets the code 

that runModalForWindow: will return.

Getting, Removing, and Posting Events 

- (NSEvent *)currentEvent Returns the current event. 
- (void)discardEventsForApplicationMatchingMask:(unsigned int)mask 

beforeEvent:(NSEvent *)lastEvent Removes from the event queue all events matching mask that were 
generated before lastEvent.

- (NSEvent *)nextEventForApplicationMatchingMask:(unsigned int)mask
untilDate:(NSDate *)expiration Returns the next event matching mask, or nil if
inMode:(NSString *)mode no such event is found before the expiration date. If flag
dequeue:(BOOL)flag; is YES, the event is removed from the queue. The mode argument 

names an NSRunLoop mode that determines what other ports are 
listened to and what timers may fire while the NSApplication is waiting for 
the event.

- (void)postEventForApplication:(NSEvent *)event atStart:(BOOL)flag
Adds event to the beginning of the application's event queue if flag is YES, 

and to the end otherwise.

Sending Action Messages 

- (BOOL)sendAction:(SEL)aSelector Sends an action message to aTarget or up the responder



to:(id)aTarget chain. 
from:(id)sender

- (id)targetForAction:(SEL)aSelector Returns the object that receives the action message aSelector.
- (BOOL)tryToPerform:(SEL)aSelector Attempts to send a message to the application or the

with:(id)anObject delegate. 

Hiding All Windows 

- (void)hide:(id)sender Hides all the application's windows. 
- (BOOL)isHidden Returns YES if windows are hidden. 
- (void)unhide:(id)sender Restores hidden windows to the screen. 
- (void)unhideWithoutActivation Restores hidden windows without activating their owner. 

Managing Windows 

- (NSWindow *)keyWindow Returns the the key window.
- (NSWindow *)mainWindow Returns the main window.
- (NSWindow *)makeWindowsPerform:(SEL)aSelector 

inOrder:(BOOL)flag Sends the aSelector message to the application's NSWindowsÐin front-to-
back order if flag is YES, otherwise in the order of the array that the 
windows method returns.

- (void)miniaturizeAll:(id)sender Miniaturizes all the receiver's application windows.
- (void)preventWindowOrdering Suppresses the usual window ordering    in handling the most recent mouse-

down event.
- (void)updateWindows Sends update message to all on-screen NSWindows.
- (NSArray *)windows Returns an array of the application's NSWindows.
- (NSWindow *)windowWithWindowNumber:(int)windowNum

Returns the NSWindow object corresponding to windowNum.

Showing Standard Panels 

- (void)orderFrontColorPanel:(id)sender Brings up the color panel. 
- (void)orderFrontDataLinkPanel:(id)sender Shows the shared instance of the data link panel, creating it    first if 



necessary.
- (void)orderFrontHelpPanel:(id)sender Shows the application's help panel or the default one.
- (void)runPageLayout:(id)sender Runs the application's page layout panel. 

Getting the Main Menu 

- (NSMenu *)mainMenu Returns the id of the application's main menu. 
- (void)setMainMenu:(NSMenu *)aMenu Makes aMenu the application's main menu. 

Managing the Windows Menu 

- (void)addWindowsItem:(id)aWindow Adds a Windows menu item for aWindow.
title:(NSString *)aString
filename:(BOOL)isFilename

- (void)arrangeInFront:(id)sender Orders all registered NSWindows to the front. 
- (void)changeWindowsItem:(id)aWindow Changes the Windows menu item for aWindow.

title:(NSString *)aString
filename:(BOOL)isFilename

-(void)removeWindowsItem:(id)aWindow Removes the Windows menu item for aWindow.
- (void)setWindowsMenu:(id)aMenu Sets the Windows menu. 
- (void)updateWindowsItem:(id)aWindow Updates the Windows menu item for aWindow.
- (NSMenu *)windowsMenu Returns the Windows menu. 

Managing the Services menu 

- (void)registerServicesMenuSendTypes:(NSArray *)sendTypes 
returnTypes:(NSArray *)returnTypes Registers pasteboard types the application can send and receive. 

- (NSMenu *)servicesMenu Returns the Services menu. 
- (void)setServicesMenu:(NSMenu *)aMenu Sets the Services menu. 
- (id)validRequestorForSendType:(NSString *)sendType 

returnType:(NSString *)returnType Indicates whether the NSApplication can send and receive the specified 
types. 



Getting the Display PostScript Context 

- (NSDPSServerContext *)context Returns the NSApplication's DPS context. 

Reporting an Exception 

- (void)reportException:(NSException *)anException
Logs the given exception by calling NSLog().

Terminating the Application 

- (void)terminate:(id)sender Frees the NSApplication object and exits the application. 

Assigning a Delegate 

- (id)delegate Returns the NSApplication's delegate. 
- (void)setDelegate:(id)anObject Makes anObject the NSApplication's delegate. 

Implemented by the Delegate 

- (NSDataLinkManager *)application:(id)sender Opens the specified file to run without a user interface.
openFileWithoutUI:(NSString *)filename Work with the file will be under programmatic control 
withType:(NSString *)aType of sender, rather than under keyboard control of the user. Although a 

file's type may by convention be reflected in its name, aType must be 
specified, and filename should not exclude the extension.

- (int)application:(NSApplication *)sender Like application:openFileWithoutUI:withType:, but
openFile:(NSString *)filename brings up the user interface of the file's application, and
withType:(NSString *)aType returns YES or NO to indicate whether the file was successfully opened. 

- (int)application:(NSApplication *)sender Like application:openFile:withType:, but a file opened 
openTempFile:(NSString *)filename through this method is assumed to be temporary; it's the 
withType:(NSString *)aType application's responsibility to remove the file at the appropriate time.

- (BOOL)applicationShouldTerminate:(id)sender Returns YES if the application should terminate. 



Implemented by Observers 

- (void)applicationDidBecomeActive:(NSNotification *)notification
Invoked when the application has been activated. 

- (void)applicationDidHide:(NSNotification *)notification
Invoked when the application has been hidden.

- (void)applicationDidInitialize:(NSNotification *)notification
Invoked before the application gets its first event.

- (void)applicationDidResignActive:(NSNotification *)notification
Invoked when the application has been deactivated.

- (void)applicationDidUnhide:(NSNotification *)notification
Invoked when the application has been unhidden.

- (void)applicationDidUpdate:(NSNotification *)notification
Invoked when the application has updated its windows.

- (void)applicationWillBecomeActive:(NSNotification *)notification
Invoked when the application is about to be activated. 

- (void)applicationWillHide:(NSNotification *)notification
Invoked when the application is about to be hidden.

- (void)applicationWillInitialize:(NSNotification *)notification
Invoked before initializing the application.

- (void)applicationWillResignActive:(NSNotification *)notification
Invoked when the application is about to be deactivated. 

- (void)applicationWillUpdate:(NSNotification *)notification
Invoked before the application updates its windows.


