
Release 3.3 Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

3.3 Release Notes:
Objective€C Run-Time System and
Common Classes and Functions

This file contains release notes for the 3.2, 3.1, and 3.0 releases of the Objective
C run-time system, and also of the common classes and functions. There were
no changes for Release 3.3, 3.2, or 3.1.

Notes Specific to Release 3.0

This section contains information about the following topics:

· New features
· Implementation changes
· Incompatible changes
· Organizational changes

New Features

New Protocol and NXBundle Classes

Protocol objects are used by the run-time system to keep track of formal
protocols employed by the program.    Documentation for this new class can
be found in:

/NextLibrary/Documentation/NextDev/GeneralRef/15_RunTime/Classes/Proto
col.rtf

NXBundle objects manage bundles of resources required by an application.   
The NXBundle class is documented in:

/NextLibrary/Documentation/NextDev/GeneralRef/03_Common/Classes/NXBu
ndle.rtf

New Run-Time Functions

The function objc_lookUpClass() has been added to the Objective C run-
time functions.    Just like objc_getClass(), this function returns the class for a

given name.    However, if the class is not present, objc_lookUpClass()
returns nil rather than considering this to be an error condition.

The function sel_registerName() has also been added to allow new selectors
to be registered with the Objective C run-time system.    Like sel_getUid(), this
function gets the selector associated with a given name.    However, if there is
no selector for that name already present in the system, sel_registerName()
allocates a new selector rather than returning nil.

Making Objective C Thread Safe

The Objective C run-time system has been made safe for use in multi-
threaded programs.    Since complete thread-safety requires that a lock be
acquired every time a message is sent (which increases the time required to
send a message by a factor of approximately three), the thread safety features
must be explicitly enabled using the new function objc_setMultithreaded().

Note:    The Application Kit and other NEXTSTEP kits don't make use of this
Objective-C feature; thus kit classes (and their subclasses) can't be used
outside the main thread of execution.

Thread-Safe Exception Handling

The exception handling system provided in objc/error.h has been made
unconditionally thread safe.

Debugging Interface

The Object class now implements a method to assist in debugging when using
gdb (see Debugger.rtf for information on how to use this feature from gdb).   
The printForDebugger: method in the Object class prints the name of the
receiver's class and the address of the receiver.    Classes should override this
method to print a more useful description of themselves for debugging
purposes.

Improved Detection of Messaging Freed Objects

The Objective C run-time system can now detect messages which are sent to
objects which have been freed.    An error will be reported when this problem is
detected.    Note that this detection is possible only in the interval between
when the object is freed and when the freed space is reused for some new
purpose.

Implementation Changes

Copy Methods

In release 2.0, Object's copy and copyFromZone: methods were
implemented independently.    In order to support copying, an object had to
implement both methods.    In release 3.0, Object's copy method has been
changed to call copyFromZone: from the object's zone:

- copy
{
 return [self copyFromZone: [self zone]];
}

With this change, an object need only implement the copyFromZone: method
to support copying using either method.

The copy methods of the List, Storage and HashTable classes have been
removed since they were identical to the copy method which they now inherit
from Object.

New Objective C Keyword

The release 3.0 Objective C compiler implements the type id as a keyword of
the language.    For this reason, objc/objc.h no longer provides a typedef for
id when compiling Objective C programs.    However, in order to allow
objc/objc.h to be included by C programs without parse errors,

objc/objc.h does still provide a typedef for id when the macro __OBJC__ is
not predefined by the compiler.

Incompatible Changes

Renamed Methods

The following methods in the Object class were renamed:

+ superClass
- superClass
- isKindOfGivenName:
- isMemberOfGivenName:
- methodDescFor:
- instanceMethodDescFor:

The new names are:

+ superclass
- superclass
- isKindOfClassNamed:
- isMemberOfClassNamed:
- descriptionForMethod:
- descriptionForInstanceMethod:

These new names conform to standard NEXTSTEP spelling conventions and

are more descriptive of the method's function.

The following methods in the Storage class were renamed:

- insert:(void *)anElement at:(unsigned)index
- replace:(void *)anElement at:(unsigned)index
- removeAt:(unsigned)index

The new names are:

- insertElement:(void *)anElement at:(unsigned)index
- replaceElementAt:(unsigned)index with:(void *)anElement
- removeElementAt:(unsigned)index

These new names are more compatible with the corresponding methods in
the List class:

- insertObject:anObject at:(unsigned)index
- replaceObjectAt:(unsigned)index with:newObject
- removeObjectAt:(unsigned)index

Existing programs which use the old methods will continue to work correctly,
and source code will still compile (although with warnings).

Renamed Functions

The functions class_addInstanceMethods() and class_addClassMethods()
have been replaced by the single function class_addMethods(), which better
matches the single function class_removeMethods().

Objective C Type Encoding Strings

The Objective C type encodings have been expanded to contain additional
information for Distributed Objects.    One effect of these changes is that the
type strings produced by @encode are no longer compatible with typed
streams when the encoded type is a struct.    The new encoding for struct
foo {int x, y;}; is "{foo=ii}", which is not recognized by a typed stream.
It expects simply "{ii}".

Known Problems

The data allocated by NXAllocErrorData() may be invalidated by
subsequent calls to NXAllocErrorData().    Do not rely on this data remaining
valid across multiple calls.    It is safe to use NXAllocErrorData() so long as
the data will only be used prior to the next call to NXAllocErrorData().    If you
need more complex allocation patterns, you should use malloc() to allocate
the data and implement your own mechanism to free this data.    One
possibility is to register the data to be freed in your main event loop.

Organizational Changes

The header file zone.h has been moved to objc/zone.h.

