
Release 3.3 Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

3.3 Release Notes:
C Compiler

This file contains release notes for for the 3.3, 3.2, 3.1, and 3.0 releases of the GNU
C Compiler.    Items specific to the 3.3 release are listed first, and the Release 3.2,
3.1 and 3.0 notes follow.

Notes Specific to Release 3.3
In this release, the compiler is based on the GNU C compiler version 2.5.8.

Recompilation Requirements

You need to recompile existing code under certain circumstances:

· C++ name mangling change. The method of ªmanglingº C++ function
names has been changed. You must recompile all C++ programs when you

start using NEXTSTEP's 3.3. libg++ is updated to use the new mangling
scheme.

New Features

The following featuresÐcategorized by languageÐhave been added to the
compiler for NEXTSTEP Release 3.3:

C Language Features

· Better type checking. The compiler's ability to do static type checking has
been considerably improved. However, some programs that previously
compiled may now fail to compile correctly because the compiler catches
type errors it previously ignored.

· Volatile and const declarations must match definitions. The C compiler
used to allow a declaration and its definition to mismatch with respect to
volatile and const storage class specifiers. The compiler now issues an
error for a declaration/definition mismatchÐfor both variables and functions.
This example shows the problem for a variable:

// First file
extern int time_counter; // declaration
...

// End of file

// Second file
volatile int time_counter;// definition: adds volatile

specifierÐError
...
// End of file

· Implicit cast from int to enums. The compiler used to allow implicit casts
from int to any enum type. According to both the ANSI C and C++
standards, this isn't correct behavior, so a warning is issued for such casts.
Casting is a problem in this case because the integer value may not lie in the
range of the enum type. The following example illustrates the difficulty:

int counter = 12;
enum colors{
red, orange, yellow, green = 20, blue, indigo, violet} aColor;
aColor = counter; // Warning: casts int to enum

Since red == 0, orange == 1, yellow == 2, green == 20, and so on, an enum
of type colors can't take on the value 12. No valid conversion is possible.

· Enum arithmetic. The compiler used to allow increment and decrement
operations on enums. This is forbidden in the ANSI C++ standard, so a
warning is issued. The problem is that the resulting integer value may not lie
in the range of the enum type. For instance, consider the aColor enum of
the previous example:

aColor = yellow; // aColor = 2

aColor++; // Warning: aColor = 3?

If aColor == 3, then it's out of range of the enum colors type since yellow ==
2 and green == 20.

· Assignment used as a conditional. When the -Wall option is turned on,
the compiler issues a warning for assignments used as conditionals in if, for,
and while statements. For example, the code

if (i = generate()) { ... }

generates a warning, suggesting an extra set of parenthesis around the
assignment
such as

if ((i = generate())) { ... }

This warning is intended to catch situations where you really meant to test
for equivalence ==, not perform an assignment =. The -Wno-parentheses
flag turns off
this warning.

· Array and structure initializers. An initializer's C syntax for assigning a
value to a structure field is now ª.field_name=º. The corresponding syntax for
array initializers is now ª[index]=º. Some examples of this usage follow:

NXRect point = {.origin={0,0}, .size={2,3}};
char whitespace[256] = { [' ']=1, ['\t']=1, ['\n']=1 };

This was changed to agree with the syntax proposed by the Numerical C
Extensions Group (NCEG). Although NeXT's C++ doesn't support these
kinds of initializers, the C compiler handles them properly.

· -fkeep-inline-functions option. Previous versions of the compiler
eliminated unused static inline functions. This flag forces them to be
compiled into the image.

· -Wno-format. This warning option used to be called -Wnoformat (without
the dash), but has been renamed to be consistent with the rest of the
compiler flags. Both forms are accepted, but the newer syntax is
recommended.

· Nested functions. Pascal-style nested functions are now supported in C. If
you use this feature, the resulting code will be incompatible with pre-3.3
systems. See the gcc manual for more information.

Objective C Language Features

· Accessing instance variables in class methods. It used to be common
programming style in Objective C to assign to self in a class method and
then access instance variables. This is bad style because self in the context
of a class method stands for the class objectÐand shouldn't be redefined to
stand for a particular instance of the object.

Here is an example of this bad style:

@implementation Oval : Object
{
 int x;
}
+new {
 self = [super new]; // Now self refers to a class instance
 ...
 x = 4; // Assigns an instance variable
} ...
@end
...
x = [Oval new]; // Create an Oval object

To discourage this anachronistic use, the compiler issues a warning if an
instance variable is referenced in a class method.

Here is a better way to instantiate an object:

x = [[Oval alloc] init];

See Object-Oriented Programming and the Objective C Language for more
details.

· Stricter Objective C syntax checking. The compiler's syntax checking is
now stricter, so you aren't allowed to nest @interface and
@implementation blocks.

C++ Language Features

· C++ support. The compiler now supports ANSI C++.

· libg++ support. The GNU C++ library, libg++, provides a variety of C++
programming tools and other support to C++ programmers. libg++ is similar
to some extent to AT&T's libC.a. The library and full documentation is in
/NextLibrary/Documentation/GNU-libg++. Also see the Release Note
libg++.rtf.

· Objective C messages to converted C++ objects (ªsmart pointersº). You
can now send an Objective C message to a C++ object that has been
converted by a conversion operator. In the following example, the C++
ptrSquare object aSquare is implicitly converted to the Objective C type
Square* using the conversion operator Square*(). The converted object
receives the message calculateArea:

@interface Square { id a; } ...
@end

class ptrSquare {
 Square* value;
public:
 operator Square*();
};

square (ptrSquare aSquare) {
 float z = [aSquare calculateArea]; // invokes operator

Square*()
 }

Due to the conversion, the compiler acts as if aSquare is statically typed to
Square* in the message expression.

The above example uses only one conversion operator: operator Square*.
You should avoid having multiple conversion operators in the same class
that produce different pointer typesÐthe compiler may choose the wrong
conversion operator and not produce the desired type. If you need more
than one conversion type, you must use an operator id conversion
operatorÐthe compiler chooses this over an operator converting to any other
Objective C class pointer type. If the class ptrSquare implemented other
operator X*() conversions besides operator Square*(), it would also have
to implement an operator id conversion so the compiler would know which
conversion to look for.

Conversion operators allow you to implement so called ªsmart pointersº to
Objective C objects. Smart pointers are objects that act like pointers and
perform some other action in addition whenever an object is accessed
through them. For more information on smart pointers, see Bjarne
Stroustrup's The C++ Programming Language, Second Edition (Addison-
Wesley, 1991).

· C++ multiple virtual inheritance. The C++ compiler now invokes virtual

functions correctlyÐexcept when a non-virtual function is redeclared as
virtual in a subclass. The compiler issues a warning in this case, however.

In this example, the function f() in class Animal is redeclared virtual in the
subclass Mammal:

class Animal { void f(); }
class Mammal : public virtual Animal { virtual void f(); }
class Quadruped : public virtual Animal { virtual void f(); }
class Dog : public Mammal, public Quadruped { virtual void

f(); }
class Terrier : public Dog { virtual void f(); }

Invoking the method f() gives the wrong result in the following case:

void zoo(void) {
 Terrier* terrier = new Terrier;
 Mammal* mammal = terrier;
 Quadruped* quadruped = terrier;
 Dog* dog = terrier;

 quadruped->f(); // Wrong - invokes Dog::f()
 mammal->f(); // Right - invokes Terrier::f()
 dog->f(); // Right - invokes Terrier::f()
}

The compiler now warns that wrong code may be generated:

warning: method `Animal::f()' redeclared as `virtual
Mammal::f()'

If you modify the above hierarchy by making the function f() in Animal virtual,
the invocation works correctly. The workaround is therefore to make f()
virtual throughout the hierarchy:

class Animal { virtual void f(); }
class Mammal : public virtual Animal { virtual void f(); }
class Quadruped : public virtual Animal { virtual void f(); }
class Dog : public Mammal, public Quadruped { virtual void

f(); }
class Terrier : public Dog { virtual void f(); }

· Pointers to member functions. The C++ compiler used to allow using
member function pointers with objects that might not recognize the pointer or
its contents. The compiler now flags these as errors. Here's an example of
such errors:

class Mammal { public: void f(int); };
class Cat : public Mammal { public: void f(int); };

void g (Cat* aCat, Mammal* aMammal) {
 void (Mammal::*mammal_f_ptr)(int) = &Mammal::f;
 void (Cat::*cat_f_ptr)(int) = &Cat::f;

 (aCat->*mammal_f_ptr)(4); // OK
 (aMammal->*cat_f_ptr)(5); // Error (1)
 cat_f_ptr = &Cat::f; // OK
 mammal_f_ptr = &Cat::f; // Error (2)
}

The local variables mammal_f_ptr and cat_f_ptr are pointers to member
functions, and the function g initializes them to point to the class Cat
member function, f. It then attempts to invoke this function through these
pointers. Statement (1) is an error because you can't be sure than a
Mammal object, aMammal, ªresponds toº a Cat member pointer,
cat_f_ptrÐespecially since cat_f_ptr points to a Cat member function that
Mammal would know nothing about. Even if cat_f_ptr were initialized to a
Mammal member function, cat_f_ptr cannot safely be applied to a Mammal
object. The assignment in (2) is an error because you cannot be sure that
some member function
of a derived class (in this case Cat::f) is available in any of its base classes
(in this
case Mammal).

· Implicit cast from void* to C++ object pointer. The C++ compiler used to
implicitly allow casts from void* to any C++ object pointer type. This isn't
allowed in the ANSI C++ standard, so a warning is issued when such a cast
is detected. If aClass is some arbitrary class, the following cast produces a
warning:

void *vp1;
aClass *obj1, *obj2;
vp1 = &obj1;
obj2 = vp1; // Warning: casts void pointer

· #pragma cplusplus. This new pragma is used to resolve the problem of
having C++ system header files.      All system header files are by default

included in implicit extern "C".      When #pragma cplusplus appears in a
header file, the rest of that file is embedded in an implicit extern "C++"
block. Alternatively, if either g++ or c++ appears in the full path name to a
header file (ignoring case), it is also considered to be C++.
An error is reported if this pragma appears inside an explicit extern "C" {...}.

Known Problems

These problems exist in version 2.5.8 of the compiler:

Reference: 39034, 45027

Problem: A static pointer to an Objective C subclass can't be passed to a C+
+ member function.

Description: C++ has no knowledge of the Objective C class hierarchy. C++
code containing static references to sub-classed Objective C
objects will not compile.

Workaround: Remove the static qualifier.

Reference: 40546

Problem: Complex number support is unreliable.

Description: The complex number handling part of the compiler is untested and
has been found to be erroneous in some cases. It is not
recommended that this feature be used.

Workaround: Define your own complex number class with the methods you need.

Reference: 41950

Problem: Immediate long doubles don't work sometimes.

Description: Using a form such as 23450.0L to write an immediate long double
value may cause the compiler to report an internal error.

Workaround: None.

Reference: 42975

Problem: Bitfields may not work properly with -O2 optimization.

Description: If you use -O2 optimization, the compiler may return a wrong value
in a bitfield.

Workaround: Don't use -O2 optimization.

Reference: 44109

Problem: Programs with detectable NaN to int conversion won't compile with
optimization on PA-RISC systems.

Description: If you attempt to compile a program with a conversion on a non-
number to an int with -O optimization, the compile fails. In other
compiler versions, the compiler emits a warning about the Nan to
int conversion.

Workaround: Don't use -O optimization.

Notes Specific to Release 3.2

New Features

The following new features have been added to the GNU C Compiler for Release
3.2.

· Support for RTF    source code. Rich Text Format files can now be compiled.   
The preprocessor strips out all RTF directives, leaving only ASCII text for the
compiler itself.    See the Preprocessor.rtf release note for more information.

· Automatic searching for C++ headers. When compiling a C++ file (extension

.C, .M, or .cc), the compiler adds /NextDeveloper/Headers/g++ to its header
search path.    This allows libg++ classes to be used without having to specify
additional command-line options.

Notes Specific to Release 3.1

GNU C Compiler

The Release 3.1 Objective C compiler (as well as the Objective C++ compiler) is
based on version 2.2.2 of the GNU Compiler (the Release 3.0 compiler was based
on version 1.93).    NeXT's implementation of Objective C has been integrated into
the version 2.2.2 GNU sources.

New Features

The following new features have been added to the GNU C Compiler since Release
3.0.

· You can specify the target architecture you are compiling for with -arch arch_type.
The full list of values for arch_type can be found in arch(3), but for now, you
should only use the values m68k and i386 (i386 is the processor family of the
i486 processor).    The option -arch arch_type specifies the target architecture,
arch_type, of the operations to be performed.    The operations affected by -arch

are: preprocessing, precompiling, compiling, assembling, and linking.    The
specification of multiple architectures results in the production of ``fat'' output files
and the creation of multiple ``thin'' intermediate files from each stage.    It is an
error to use -E, -S, -M, and -MM with multiple architectures as the output form is
textual in these cases.

· The implied meaning of file name suffixes has been extended.    The following
suffixes are now recognized:

 file.c contains C source code.
 file.m contains Objective C source code.
 file.C and file.cc contains C++ source code.
 file.M contains mixed Objective C and C++ source code.

· Optimizations performed by the compiler are more robust.    The -fstrength-
reduce optimization is now beneficial and is enabled by -O.    The -fcombine-regs
optimization is selected as part of -O, and has been dropped as an option.

· Several new optimizations have been added, primarily to support the i386
architecture.    Most of these new optimizations are enabled by the -O3 and -O4
switches and are only implemented in the i386 compiler.    Each optimization may
be individually turned on or off by using the flag -fopt or -fno-opt.

Optimization Enabled by Description

-fcse-skip-blocks -O2 Similar to -fcse-follow-jumps, but causes CSE

to follow jumps which conditionally skip over
blocks.    When CSE encounters a simple if
statement with no else clause, this option
causes CSE to follow the jump around the body
of the if.    This switch isn't specific to the i386
architecture.

-fcompare-elim -O3 Attempt to remove the compare at the end of a
loop by having the loop counter count up to zero.
This results in a more efficient conditional jump
at the end of the loop.

-fcomplex-givs -O3 Enable strength reduction of generalized
induction variables that require more than one
instruction for initialization.

-fcopy-prop -O3 Strength reduction and loop unrolling may copy
one register to another before the loop and use
the copy within the loop.    Here, an attempt is
made to use the original in the loop and
eliminate the copy.

-fexpose-invars -O3 Enable rewriting of expressions in a loop with
invariant subexpressions so as to combine and
create more invariant subexpressions.

-fjump-back -O3 Attempt to perform strength reduction in outer
loops as well as inner loops.

-fspl -O3 Attempt to rotate a loop that terminates with a

floating point store so the store is at the top of
the rotated loop.

-fschedule-insns -O4 As described in NEXTSTEP Development Tools
and Techniques.    This switch isn't specific to the
i386 architecture.

-fschedule-insns2 -O4 As described in NEXTSTEP Development Tools
and Techniques.    This switch isn't specific to the
i386 architecture.

The -fcaller-saves optimization generally makes code worse on the i486, so it is
not enabled by default at any optimization level when you use -arch i386.    The
new optimizations are subject to change.    It is likely that these will be combined
into a smaller set of options.    These will also be made machine-independent and
will eventually be implemented for all target architectures.

There are some inconsistencies in the current mapping of optimization levels
between -arch i386 and -arch m68k.    We expect to correct these in a future
release.    These are as follows:

· When you choose -arch i386, -O is taken to mean -O2 instead of -O1.
· The option -O3 includes -fomit-frame-pointer, which makes debugging

impossible.    In the future, you will need to explicitly choose -fomit-frame-
pointer, but for now, you should use -fno-omit-frame-pointer when you use
-O3.

· The options -O3 -fno-omit-frame-pointer -fschedule-insns2 generally produce
the best code.    To simplify the interface, -O4 will be eliminated as a distinct
option and -fschedule-insns2 will be added to -O3.

·        The compiler now has additional predefined macros that can be used to
determine the release version of the compiler.    Every effort should be made to
minimize the use of these macros.    For each release of the compiler there will be
a macro defined such as NX_COMPILER_RELEASE_3_0 and
NX_COMPILER_RELEASE_3_1.    There will also be a macro
NX_CURRENT_COMPILER_RELEASE.    One can conditionally compile code by
numerically comparing these macros.    For example:

#if NX_CURRENT_COMPILER_RELEASE > NX_COMPILER_RELEASE_3_0

#endif

Note that if one wants to use these macros in code to be compiled with any
compiler before release 3.1 they must additionally check whether the macro is
defined, as in:

#if defined(NX_CURRENT_COMPILER_RELEASE) && \
 NX_CURRENT_COMPILER_RELEASE > NX_COMPILER_RELEASE_3_0

#endif

· The compiler detects and generates a warning for duplicate interface declarations.

· The compiler has been changed in the way it determines whether a class
implements a protocol.    In order for a class to implement a protocol, P, it must (1)
implement all of the methods in P and (2) either (a) implement all the methods in
any protocols adopted by P or (b) have a superclass which adopts the protocols
adopted by P.

Notes Specific to Release 3.0

These notes were included with the Release 3.0 version of the GNU C Compiler.     
Sections that are no longer relevant have been marked with an italicized comment.

For more about these and related topics, see the following chapters in NEXTSTEP
Development Tools and Techniques:

· Chapter 1:    ªPutting Together a NeXT Applicationº
· Chapter 6:    ªThe GNU C Compilerº
· Chapter 7:    ªThe GNU C Preprocessorº

GNU C Compiler

The Release 3.0 Objective C compiler is based on version 1.93 of the GNU Compiler

(the Release 2.0 compiler was based on version 1.36).    NeXT's implementation of
Objective C has been integrated into the version 2.0 GNU sources.    Significant
improvements have been made to certain compiler optimizations, including the
addition of a loop unrolling facility.

Incompatible Changes

Incompatible Storage Class Specifier Bug Fix

A compiler bug relating to incompatible storage class specifiers has been fixed which
may cause source incompatibilities.    ANSI C specifies that a function which is
forward-declared to be static should not be globally visible, even if the definition of
the function does not contain the static keyword.    The Release-2.0 compiler
incorrectly gave precedence to the definition of the function over the its forward-
declaration and made the symbol global.    For example, the program:

static int foo (int x);

int foo (int x)
{
 return x;
}

will no longer cause the symbol foo to be global.    If the function should be global,

then change the forward-declaration to use extern rather than static.

Objective C in C Source Files Produces Error

In the Release 3.0 compiler, detecting Objective C syntax in a C language source file
is an error rather than a warning.    Use the -ObjC flag to specify that the file should
be compiled as an Objective C program.

Reversal of long long Word Ordering

In the Release 2.0 compiler, the 64-bit integer type long long was implemented with
little-endian word ordering.    This was inconsistent with the 68k family's byte
ordering, which is big-endian.    For Release 3.0 the word ordering of the long long
type has been reversed and is now big-endian.    A new syntax for specifying long
long constants has also been introduced.    To specify a long long constant, use the
suffix LL or ULL.    For example:

long long big_integer = -1LL;
unsigned long long big_unsigned = 0xffffffffffffffffULL;

New Features

New Optimization Levels

The Release 3.0 compiler supports several new optimizations.    Most of these new
optimizations are not enabled by the -O switch, but only by the new -O2 switch.   
Each optimization may be individually turned on or off by using the flag -fopt or -fno-
opt.

· -fthread-jumps (enabled by -O)
· -fcse-follow-jumps (enabled by -O2)
· -fexpensive-optimizations (enabled by -O2)
· -frerun-cse-after-loop (enabled by -O2)
· -fstrength-reduce
· -funroll-loops

The -fstrength-reduce optimization generally makes code worse on the 68k, so it is
not enabled by default at any optimization level.    The -funroll-loops switch is new,
and may not be doing a great job yet.    In any case, it makes huge space vs. speed
tradeoffs, so you probably don't want to use it except under special circumstances.   
Compiling with -O2 may be significantly slower than compiling with -O, and may use
much more memory.    However, it consistently produces slightly better (often slightly
smaller) code.

More optimizations have been added in 3.1.    See new features above.

Objective C Protocols

Protocols allow you to organize related method into groups that form high-level
behaviors. This gives library builders a tool to identify sets of standard protocols,
independent of the class hierarchy. Protocols provide language support for the reuse
of design (interface), whereas classes support the reuse of code (implementation).
Well designed protocols can help users of an application framework when learning or
designing new classes.    Here is a simple protocol definition for archiving objects:

@protocol Archiving
- read:(NXTypedStream *)stream;
- write:(NXTypedStream *)stream;
@end

Once defined, protocols can be referenced in a class interface as follows.

/*
 * MyClass inherits from Object and conforms to the
 * Archiving protocol.
 */
@interface MyClass : Object <Archiving>
@end

Unlike copying methods to/from other class interfaces, any incompatible change
made to the protocol will immediately be recognized by the compiler (the next time
the class is compiled). Protocols also provide better type-checking without
compromising the flexibility of untyped, dynamically bound objects.

MyClass *obj1 = [MyClass new];

// legal, obj2 conforms to the Archiving protocol.
id <Archiving> obj2 = obj1;

// illegal, obj1 does not conform to the TargetAction protocol.
id <TargetAction> obj3 = obj1;

Protocols can also be used to specify the interface to a remote object. Defining a
protocol for a remote object is very similar to defining a protocol for a local object.
There are, however, several method qualifiers that allow you to communicate
additional information specific to providing a remote interface. For example, the
oneway qualifier tells the compiler/runtime system not to block (that is, not to wait for
the remote method to finish). In the local case, this qualifier is ignored; the method
must finish before continuing execution). The complete list of qualifiers that were
added for remote objects are:    in, out, inout, bycopy, and oneway. Here are some
example declarations:

- in:(in int *)a out:(out int *)b inout:(inout int *)c;

- byCopy:(bycopy)a byProxy:theDefault;

- (oneway)asyncronousMessage;

These new keywords may only be used in protocol declarations.    They may not be
used in other method declarations, or in method definitions.    They may not be used

at all for functions.

Forward Declaration of Classes

In order to better support the use of protocols and static typing, Objective C now
supports declarations of classes using the @class directive.    For example, suppose
you wish to create a class Foo which contains a statically typed instance variable of
the class Bar.    The header file Foo.h might look like this:

#import <objc/Object.h>
@class Bar;

@interface Foo : Object
{
 Bar *myBar;
}
- (Bar *) myBar;
@end

Note how Foo.h declares the class Bar using the @class directive, rather than
importing the header file Bar.h.    This is because the the interface of Foo does not
depend on any details of the interface of Bar (such as its instance variables or
methods).    It only depend on the fact that there is a class named Bar, which is what
the @class directive specifies.    Of course, the implementation of Foo may well
depend on the interface of Bar, so Foo.m may well import Bar.h.

The @class directive allows statically typed instance variables and method
parameters of that class to be declared.    It will not allow any operations which
require the class's interface, such as sending messages to instances of the class, or
referencing public instance variables.    In these cases the compiler will issue an error
indicating that the interface declaration for the class cannot be found.

By using the @class directive in class interfaces rather than importing other classes'
interfaces, many problems with circular definitions can be avoided.    For example, if
the class Bar contains a statically typed instance variable of the class Foo, and both
header files import the other, then neither will compile successfully.    However, if both
header files are written using @class as shown above, no problems will occur.

Several classes can be declared using a single @class directive by separating the
class names with commas:

@class Foo, Bar;

New Instance Variable Access Control

The Objective C compiler now supports the access control specifiers @private and
@protected in addition to @public.    Instance variables which are declared
@public are accessible by all;    those which are declared @protected are
accessible only by the defining class and its subclasses;    and those which are
declared @private are accessible only by the class in which they are contained.    If

no access control specifier is used the default is @protected, for backward
compatibility.

Support for New Header File Organization

As part of the reorganization of system header files, the default search path for
included files has been changed.    The new search path is:

    /NextDeveloper/Headers
    /NextDeveloper/Headers/ansi
    /NextDeveloper/Headers/bsd
    /LocalDeveloper/Headers
    /NextDeveloper/2.0CompatImports
    /usr/include
    /usr/local/include

A symbolic link from /usr/include to /NextDeveloper/Headers should minimize
compatibility problems.

New Preprocessor Directive

To complement the ANSI #error preprocessor directive, the GNU compiler now

supports a #warning directive.    This directive prints a warning message containing
the rest of the line, and continues compilation.    This directive is useful for warning
about use of obsolete header files, for example.

Attributes

The keyword __attribute__ allows you to specify special attributes of variables or
structure fields.    The attributes currently defined are the aligned and format
attributes.

The aligned attribute specifies the alignment of the variable or structure field.    For
example, the declaration:

int x __attribute__ ((aligned (16))) = 0;

causes the compiler to allocate the global variable x on a 16-byte boundary.    On a
68000, this could be used in conjunction with an asm expression to access the
move16 instruction which requires 16-byte aligned operands.

 You can also specify the alignment of structure fields.    For example, to create a
double-word aligned int pair, you could write:

struct foo { int x[2] __attribute__ ((aligned (8))); };

This is an alternative to creating a union with a aligned member that forces the union

to be double-word aligned.

It is not possible to specify the alignment of functions; the alignment of functions is
determined by the machine's requirements and cannot be changed.

The format attribute specifies that a function takes printf or scanf style arguments
which should be type-checked against a format string.    For example, the declaration:

extern int
my_printf (void *my_object, const char *my_format, ...)
 __attribute__ ((format (printf, 2, 3)));

causes the compiler to check the arguments in calls to my_printf for consistency
with the printf style format string argument my_format.

The first parameter of the format attribute determines how the format string is
interpreted, and should be either printf or scanf.    The second parameter specifies
the number of the format string argument (starting from 1).    The third parameter
specifies the number of the first argument which should be checked against the
format string.    For functions where the arguments are not available to be checked
(such as vprintf), specify the third parameter as zero.    In this case the compiler only
checks the format string for consistency.

In the example above, the format string (my_format) is the second argument to
my_print and the arguments to check start with the third argument, so the correct
parameters for the format attribute are 2 and 3.

The format attribute allows you to identify your own functions    which take format
strings as arguments, so that GNU CC can check the calls to these functions for
errors.    The compiler always checks formats for the ANSI library functions printf,
fprintf, sprintf, scanf, fscanf, sscanf, vprintf, vfprintf and vsprintf whenever such
warnings are requested (using -Wformat), so there is no need to modify the header
file stdio.h.

New Compiler Warnings

Version 2 of the GNU compiler has quite a few new warnings which you will no doubt
encounter soon.    Here is a summary of them with examples taken from libsys and
libNeXT.    Most of these warnings are enabled by the -Wall compiler switch.

·    Warnings about argument mismatch now print the argument number:

getpass.c:43: warning: incompatible pointer type for argument 2 of
`signal'

·    Warnings are generated for incorrect parameters to printf-style functions when the
control argument is a string constant.    These warnings are enabled by the -Wformat
compiler switch, which is automatically enabled by the -Wall switch.    These
warnings can be turned off by using the -Wnoformat switch after the -Wall switch.

·    Warnings are generated for empty bodies in if and else statements:

View.m:2000: warning: empty body in an if-statement

if ([view getVisibleRect:&visRect]);
 [view _display:&visRect :1];

·    There are new warnings about potential operator precedence errors:

Application.m:2015: warning: suggest parentheses around + or -
inside shift

int curBPS = (NXNumberOfColorComponents (
 NXColorSpaceFromDepth(screens[cnt].depth)) > 1) << 8 +
 NXBPSFromDepth(screens[cnt].depth);

editsound.c:252: warning: suggest parentheses around + or - in
operand of &

s1->dataLocation = (strlen(s1->info)+3 & ~3) - 4 +
 sizeof(SNDSoundStruct);

· These warnings may seem fascist, but of the three occurrences of this warning in
the Application Kit, for example, it turned up these two bugs:

ButtonCell.m:1414: warning: suggest parentheses around && within ||

if (NXDrawingStatus == NX_DRAWING &&
 (LIGHTBYGRAY && !CHANGEGRAY) || (CHANGEGRAY && !LIGHTBYGRAY))
{

 NXHighlightRect(userRect);
}

appServicesMenu.m:245: warning: suggest parentheses around && within
||

while (*s2)
{
 if (*s2 != '\t' && *s2 != ' ' || *s2 != '\n')
 *s++ = *s2;
 s2++;
}

·    This can catch subtle bugs, but forces you to be careful with unsigned:

Listener.m:1306: warning: ordered comparison between signed and
unsigned

int hsize = msg->header.msg_size;

if (msg->header.msg_type != MSG_TYPE_NORMAL || hsize >
 sizeof(NXMessage))
 return NO;

·    This is a potentially useful warning, but it has the following problem:

Application.m:2048: warning: cast from pointer to integer of
different size

if ((BOOL)[theWindow perform:aSelector])
 return theWindow;

You can work around this problem by casting to int and then to BOOL.

·    I have only seen this warning for code generated by Mig:

lookupUser.c:135: warning: value computed is not used

·    I haven't seen either of these, but they seem good:

warning: unreachable code at beginning of switch statement

warning: shift count is negative

·    This is legal, but rather confusing:

symbols.c:62: warning: `sect_object_symbols' initialized and
declared `extern'

extern struct sect_object_symbols sect_object_symbols = { 0 };

·    Forward declare static functions using ªstaticº rather than ªexternº:

typedstream.m:148: warning: static function declaration for
`_NXOpenEncodingStream' follows non-static

extern _CodingStream *_NXOpenEncodingStream (NXStream *physical);

static _CodingStream *_NXOpenEncodingStream (NXStream *physical) {

· Don't do this, it probably won't do what you want:

cabs.c:35: warning: structure defined inside parms

double cabs(struct {double x,y;} z)
{
 return(hypot(z.x,z.y));
}

New Predefined Macros

The Release 3.0 compiler predefines new macros to aid in writing architecture-
independent code.

·      Architecture:    In addition to the existing predefines which identify specific target
architectures (for example, m68k, i386), the compiler also predefines the macro
__ARCHITECTURE__ to be a string constant identifying the target architecture
(ªm68kº, ªi386º).    This macro is used by system header files to include the
architecture-specific files without having to enumerate all supported architectures.

·      Byte ordering:    The compiler predefines either __BIG_ENDIAN__ or
__LITTLE_ENDIAN__, as appropriate for the target architecture.

Implementation Changes

Name Change of Compiler Proper

The names of the actual Objective C and C++ compilers (as opposed to the compiler
driver cc) have been changed to conform to the GNU standards.    The Objective C
compiler is now named cc1obj, and the C++ compiler is named cc1plus.    The
compiler uses cc1obj when compiling C or Objective C programs, and uses
cc1plus when compiling C++ or Objective C++ programs.    The compiler never uses
the old name cc1.

Improved Code Generation for Floating-point Conversions

The compiler no longer emits library calls for any standard C operations.   
Conversions from floating-point values to integral values no longer call the library
functions _fixdfsi(), _fixsfsi(), _fixunsdfsi() or _fixunssfsi().    Instead, the compiler
emits a sequence of inline instructions to perform the operation.    Certain programs
which make extensive use of floating-point conversions may notice a significant
speed up.

Method Descriptors for Protocols

Type descriptors for methods defined within a protocol definition have the following
additions.

method qualifier encoding
in 'n'
inout 'N'
out 'o'
bycopy 'O'
oneway 'V'
const 'r'

Method descriptors for protocols have basic support for C structures. The format for
structures and pointers to structures are encoded in the method descriptor. The
following appkit method:

- beginPageSetupRect:(const NXRect *)aRect
 placement:(const NXPoint *)location;

is encoded as the following (changes underlined):

@16@8:12r^{_NXRect={_NXPoint=ff}{_NXSize=ff}}16r^{_NXPoint=ff}20

Only ªone levelº of the structure is encoded. For example, if the structure contains
pointers to other structures, only the struct name is encoded, not the format. This

style of composite object is fully supported by Objective C. For example,

- streamType:(NXStream *)stream;

is encoded as the following:

@16@8:12^{_NXStream=I**iilii^{stream_functions}^v}16

Notice how the format of ªstream_functionsº is not expanded.

Improved Objective C Type Checking

Assignments between variables of type id and Class no longer generate spurious
warnings, so the Class type can now be used more effectively.

