
Release 3.3 Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

3.3 Release Notes: 
Indexing Kit

This file contains release notes for the 3.2, 3.1, and 3.0 releases of the Indexing Kit. 
There are no changes for Release 3.3. Items specific to the 3.2 release are listed 
first, and the Release 3.1 and 3.0 notes follow.

Notes Specific to Release 3.2

New Features

New UNIX program

This functionality of the ixdomain program has been replaced by ixparse, which 
offers more options.    See the UNIX manual page for more information.

New method for thread-safe filtering



A new class method had been added to IXAttributeParser to handle problems in 
multi-threaded access to the Application Kit's Filter Services:

getFilterHandler:
+ (DPSPortProc) getFilterHandler:(port_t)filterPort

Returns a DPSPortProc for filterPort, which can be used with the Application 
Kit's Filter Services to prevent thread conflicts.    Your code should create 
filterPort using port_allocate() (a standard Mach operating system function) 
and then invoke this method within its main thread of execution.    filterPort and 
the returned DPSPortProc should then be passed to DPSAddPort() (a Display 
PostScript function).    This allows background threads executing through the 
IXAttributeParser class to dispatch file filtering requests to the main thread of 
the application.

Bugs Fixed

These (and a number of other minor bugs) have been fixed in Release 3.2:

Reference 37361

Problem RTF parsing/generation was broken in 3.1

Description A change made in Release 3.1 skewed the RTF token numbering. 



Consequently, RTF parsing and generation doesn't work correctly.

Reference 37360

Problem IXWeightingDomain wrote bogus cookie in attribute value

Description When building a weighting domain from an attribute table, the 
weighting domain constructs a hash table, chaining the attribute 
values through their cookie fields.    The chaining pointers are never 
cleared, so when the cookies are freed, the heap gets corrupted, 
and the application crashes.

Reference 36369, 37013

Problem IXStoreFile would grow too large

Description Certains patterns of usage of an IXStoreFile would cause it to grow 
without limit (a file equivalent of a memory leak).    This has been 
fixed.

Reference 36683

Problem Searching in Help Panel could cause application to crash

Description A shared library conflict between the Indexing Kit and other 



software caused the same memory location to be used to different 
purposes.    In the conflict, data could be corrupted and the 
application could crash.

Reference 35955

Problem IXLanguageReader didn't search ~/Library and /LocalLibrary

Description Prior to Release 3.2, IXLanguageReader looked only in 
/NextLibrary/Readers for installed reader bundles, making it 
difficult for third parties to install their own readers.    It now follows 
the standard resource search path.

Reference 35954

Problem IXPostingCursor usage of alloca smashes when out of stack space

Description This problem caused seemingly random crashes in applications 
using the Indexing Kit.

Reference 35909

Problem The language specific weighting domain wasn't used by default

Description When IXAttributeParser allocated a default reader, it allocated a 



reader for the system default language.    This was appropriate, but 
insufficient.    It now also allocates a weighting domain for the 
system default language.

Reference 35764

Problem IXFileFinder reported attributes incorrectly when there was no store

Description This had the effect of rendering file name queries empty, since 
information in the store is used to determine whether or not recursive descent is 
needed.

Reference 35762

Problem Use of Pasteboard in IXFileConverter is not thread safe

Description This would cause applications to intermittently hang or crash.    A 
new method has been added to IXAttributeParser to correct this.    See ªNew 
Featuresº above for a description.

Reference 35760

Problem Failure to lock around calls to NXUniqueString() hangs application

Description The indexing kit called NXUniqueString() without locking against 



concurrent access by other threads.    Since this function is not thread safe, bad 
things would happen.

Reference 35759

Problem Raising an exception while parsing locked the application

Description The yacc-generated parser used a mutex to protect access to the 
yacc-generated statics.    The lock is not protected by an NX_DURING.    Raising an 
exception within the parser left the parser locked, so the next call to the parser would 
hang.

Reference 35758

Problem Improper error reporting by IXStore made debugging difficult

Description An internal component of the indexing kit was raising the wrong 
type of exception during normal usage, making it look like an error.

Reference 35756

Problem Compaction didn't work properly on Intel machines

Description On the i486, compaction didn't converge.    If there was a time limit, 
it would work until the time limit, but make no progress.    If there was no time limit, it 



would hang indefinitely.

Reference 35329

Problem A logic error prevents floppy ejection when store file is freed

Description Freeing a store file didn't close the file itself, causing Workspace 
Manager to think that the application was still using it, and preventing it from ejecting 
a floppy disk.

Reference 34978

Problem IXPostingSet.h didn't import remote/transport.h

Description As stated.

Reference 34885

Problem ixbuild didn't invoke man page title filter when indexing user added 
man pages

Description This bug caused descriptions not to be properly generated for man 
pages.



Reference 33215

Problem IXStore typed stream unarchiving can cause error

Description If an object couldn't initialize itself during unarchiving and returned 
nil, the unarchiving code still    sent a message to the freed object (for example, 
awake) which caused the application to crash.

Reference 31437

Problem IXAbsolutePath() returns incorrect results for nonexisting files

Description An internal variable wasn't initialized if a stat() call failed, making 
subsequent uses of the variable incorrect.

Notes Specific to Release 3.1

Known Problems

Reference: 34403

Problem: Store files created on Release 3.1 cannot be read on Release 3.0.



Description: Because of file format changes needed to fix bugs, store files 
created by applications running under NEXTSTEP Release 3.1 
can't be read by applications running under 3.0. Applications 
running under 3.1 can still read 3.0 store files, though.

Workaround: None.

Bugs Fixed

These (and a number of other minor bugs) have been fixed in Release 3.1:

Reference 31594

Problem IXStoreFile's commitTransaction would hang for several minutes 
on large files.

Description Committing a transaction on a large store file causes pages to be 
synchronized in VM. When modified pages aren't in sorted clusters, 
this takes a very long time. Sorting modified pages and then 
synchronizing them improved commit time dramatically.

Reference 31573, 31232, 29636

Problem Several crashes related to the use of attributes in 



IXRecordManager have been repaired, including one that appeared 
to occur when freeing the record manager. 

Description Various errors in managing freed or uniqued objects would cause 
the application to crash. One bug occurred when freeing an 
IXRecordManager which had applied an attribute to two or more 
classes which didn't respond to the attribute's selector.

Reference 31563

Problem IXStoreFile didn't set the close-on-exec for the store file to prevent 
the lock from being held by a child process.

Description A child process shouldn't have an open reference to a store file, 
since they have to be locked and in use by only one process at a 
time. Setting the close-on-exec flag for the store file solved this 
problem.

Reference 31554

Problem IXPostingList's copyFromZone: would produce a populated but 
unusable copy of the original.

Description Some instance variables weren't copied, resulting in a corrupt copy. 
This has been fixed.



Reference 31112, 30179, 30137

Problem Several crashes related to modifying blocks in IXStore have been 
repaired.

Description Certain internal errors would corrupt the IXStore and cause the 
application to crash.    These have been fixed.

Reference 31110

Problem IXPostingCursor with large contents didn't work.

Description Under 3.0, IXPostingCursor could crash the application when more 
than four pages worth of postings were created for any key.    This 
limit has been corrected.

Reference 30902

Problem IXRecordManager couldn't store objects with Nil instance variables 
of type Class.

Description Attempting to add an object that has an instance variable of type 
Class, where the value of that instance variable is Nil, would cause 
an exception.



Reference 30569

Problem IXFileFinder could crash the application when generating 
descriptions for indexed files.

Description An uninitialized variable would cause the application to crash.    
This has been repaired.

Reference 30525

Problem IXStoreFile didn't flush modified pages all the way to the disk.

Description The VM got flushed, but the store file itself didn't. Adding a call to 
fsync() for the file solved the problem.

Reference 30306

Problem ixbuild would crash when the final component target directory 
name begins with `.'.

Description One part of ixbuild was assuming that `hidden' directories 
shouldn't be indexed, while a later part did.    Since certain state for 
the hidden directory hadn't been established, the application would 
crash.



Reference 30304

Problem Searching by file name with IXFileFinder would invoke file filtering.

Description IXFileFinder would actually look at the contents of files when 
searching by file name.    It doesn't bother doing this now.

Reference 30209

Problem Attributes on selectors implemented by private attribute classes 
would include instances of those classes created by 
IXRecordManager.

Description IXAttribute objects would be implicitly added to attributes within the 
IXRecordManager. This is no longer the case.

Reference 30195, 28338, 26985

Problem Various crashes would occur when committing or aborting 
transactions.

Description Several crashes related to committing and aborting transactions 
have been repaired.    Some of these appeared at run time to 
originate in IXStore's free method.



Reference 30135

Problem A crash related to repeated modifications of small blocks in IXStore 
has been repaired.

Description After a certain number of operations, an IXStore or IXStoreFile 
would cause an internal variable to wrap from its maximum 
possible value, causing an invalid value to be returned or the 
application to crash. This also affected storage files, since the 
variable is kept there for IXStoreFiles.

Reference 30068

Problem IXRecordManager's addRecord: would crash when storing objects 
with a very large number of instance variables.

Description IXRecordManager assumed that run-time data for an object would 
never occupy more the vm_page_size, an incorrect assumption.

Reference 29958, 29957, 29244

Problem Various IXBTreeCursor bugs.

Description Several crashes related to the synchronization IXBTreeCursors 
have been repaired.    These may have appeared to the user of 



IXBTreeCursor to be related to using two or more IXBTreeCursors 
simultaneously, or to emptying the IXBTree.

Reference 29915

Problem IXPostingCursor's count and empty methods would choke on 
empty attributes.

Description When used with an empty IXBTree, IXPostingCursor's count and 
empty methods raised exceptions.    This has been fixed.

Reference 29913

Problem IXRecordManager's count returns the wrong value.

Description In order to maintain backward compatibility with existing 
applications, this method still returns the number of user objects 
plus the number of attributes.    A new method, attributeCount, has 
been added to permit computation of the user object count.

Reference 29912

Problem IXRecordManager's removeRecord: always returned self, 
although the documentation states that it returns nil if the record 
does not exist.



Description As stated above.    This has been fixed, and the method behaves as 
documented.

Reference 29911

Problem IXPostingList would crash the application when passed as an 
argument or return value with Distributed Objects.

Description IXPostingList was incorrectly encoding/decoding data passed 
across the network.

Reference 29712, 24101, 23248

Problem Several crashes related to thread safety have been repaired.    All of 
these affected Digital Librarian.

Description Note that care must still be exercised when using background 
threads with IXFileFinder, since any use of the Pasteboard by the 
main thread while the background threads are running can still 
cause thread safety problems.

Reference 29644, 29637

Problem Several crashes relating to the use of blobs in IXRecordManager 



have been repaired.

Description IXRecordManager's removeRecord: method would not remove 
blobs associated with the target record unless blobs have been 
used since the IXRecordManager was initialized. Also, sometimes 
an exception would occur when the IXRecordManager did try to 
remove a blob.

Reference 29383

Problem Several crashes relating to initializing an IXStoreFile or a store 
client like IXFileFinder have been repaired.

Description A zone malloc() library bug occasionally caused 
IXStore/IXStoreFile initialization methods to crash the application.

Reference 26984

Problem Having IXStore allocate a block of length 0 would crash the 
application.

Description IXStore incorrectly recorded block information if a block of size 0 is 
requested. This could cause the application to crash.

Reference 28321



Problem Invoking clean on an IXFileFinder or IXRecordManager would 
crash the application.

Description An uninitialized variable would cause the application to crash.

Reference 27119

Problem IXPostingList's objectAt: occasionally returns an invalid object 
identifier, usually a small integer value.

Description A memory-allocation error caused a buffer not to be properly 
zeroed, causing data to be corrupted.

Reference 25542

Problem IXRecordManager's selectorForAttributeNamed: method can 
crash the application.

Description An internal object was being sent a message it didn't respond to. 
This condition is now checked for.

Reference 25512

Problem If an IXRecordManager was created in a file and then freed, it 



couldn't be reopened.

Description IXRecordManager's initWithName:inFile: method didn't record the 
fact that it had created and opened an IXStoreFile, so that when a 
method that needed to open the storage file was invoked again, it 
noticed that the file was already opened by someone else, and 
failed to open the storage file.

Reference 25335

Problem The fileFinder instance variable of IXFileRecord was not set on 
retrieval from an IXFileFinder.

Description Not setting fileFinder caused files not to be retrievable, since their 
full paths couldn't be reconstructed without the IXFileFinder's root 
path.

Reference 24483

Problem IXRecordManager's classNames returned a single class name, 
usually ªObjectº, instead of the names of the stored classes.

Description The length of a string was being improperly calculated, causing an 
error in the returned string array.



Reference 29061, 24490

Problem Using regular expressions would produce incorrect results or crash 
the application.

Description Regular expressions in the IXAttributeQuery object resulted in a 
memory overrun. This has been corrected.

Other Changes

Most, but not all, of changes made to the Indexing Kit for 3.1 are documented here.    
Comments in the header files may provide additional information on some subjects.  
Some additional changes made to the Indexing Kit for Release 3.1 include:

· The IXBlobWriting and IXRecordDiscarding protocols are no longer supported, 
although they are still declared in indexing/protocols.h.    The methods they 
declared have been moved to the interface declaration for IXRecordManager.

· The IXAttributeReading protocol is no longer supported, although it is still declared 
in indexing/IXAttributeReader.h.    The method it declared has been moved to 
the interface declaration for IXAttributeReader.

· Store file locking with flock(2) is not longer implemented, due to a lock 
reclamation problem in the kernel affecting any process that calls both flock(2) 
and fork(2).



Known Problems

Due to schedule limitations, not all of the known Indexing Kit problems have been 
addressed for Release 3.1.      Remaining problems, not identified in the 3.0 Release 
Notes, include:

· IXAttributeQuery implements a subset of the Indexing Kit query language.    In 
particular, only the search operators can bind attribute values.

· IXAttributeQuery handles a prefix or within search on two or more terms 
incorrectly, resulting in very slow turn around.

· Your application will crash if you abort (a) the first transaction that adds a record to 
a newly created record manager, (b) a transaction that adds an instance of a class 
that has not been seen before by the record manager, or (c) the first transaction 
that creates a blob.    In general, you should schematize the file before aborting 
any transactions.

· The Indexing Kit does not support concurrent updates to a store file by multiple 
processes, either on a single machine or over a network.    If a store file must be 
shared by multiple processes, and at least one of them may modify the file, then a 
server must be introduced that provides a single point of access to the file through 
the Indexing Kit.



Notes Specific to Release 3.0

These notes were included with the Release 3.0 version of the Indexing Kit.      
Sections that are no longer relevant have been marked with an italicized comment.

The following paragraphs describe the goals and purpose of the IndexingKit, its 
feature set, and its programming interface.

The IndexingKit is a library of Objective C classes designed to simplify the 
management of structured persistent data.    With the IndexingKit, it is easy to build 
fast, lightweight databases that store structured data and invert its attributes.

Salient features of the IndexingKit include fast storage and retrieval primitives, 
transaction management that guarantees data integrity, fast associative access 
methods, Objective C based record management, tight integration with the 
NEXTSTEP ã programming environment, and fast file system searching.    Storage 
managed by the IndexingKit may reside in files or in virtual memory; the IndexingKit 
uses low level virtual memory primitives to attain excellent paging performance.    
Most of the classes in the IndexingKit are fully thread safe.

There are three foundation classes in the IndexingKit: IXStore, IXBTree and 
IXRecordManager; these classes address storage management, associative access, 



and data modelling, respectively.    In addition, there are two BTree cursor classes 
and a class that manages set operations; IXPostingList, for the lazy instantiation of 
retrieved record objects; IXFileFinder, for searching files; IXAttributeQuery, a query 
language interface to IXFileFinder and IXRecordManager, and several lexical 
analysis classes for harnessing textual data.

IXStore is a storage manager that provides a stable heap abstraction, with 
transaction management to guarantee data integrity.    Callers allocate relocatable 
blocks of storage from IXStore using block handles as addresses.    Blocks can be 
resized and modified in whole or in part.    IXStore shadows the modified portions of 
each block to ensure a consistent view in the event of unexpected interruption.    
IXStore compacts free space on demand, and automatically garbage collects the 
storage discarded by shadowing.

IXBTree implements indexed sequential access on top of IXStore.    It is very fast, 
and is an excellent tool for building custom data structures.    Two cursor classes, 
IXBTreeCursor and IXPostingCursor, provide cursoring for primary and secondary 
keys, respectively.    A utility class, IXPostingSet, implements set combinatorial 
operations on lists of postings returned by IXPostingCursor, and another utility class 
called IXStoreDirectory uses IXBTree to implement a simple recursive naming facility 
for organizing the contents of an IXStore.

IXRecordManager is a a simple record manager based on IXBTree; it lets callers 
store and retrieve records in the form of Objective C objects, and obtain cursors on 
indexes that invert method return values.    Callers use a sub- class of 



IXPostingCursor to enumerate the indexes, and to locate record objects by key.    
IXPostingList is a lazy list that manages large numbers of retrieved record objects 
efficiently; instances of IXPostingList may be initialized directly from instances of 
IXPostingCursor.    The IXPostingSet and IXPostingList classes work efficiently with 
Distributed ObjectsÒ.

IXFileFinder is a client of IXRecordManager that answers queries against UNIXÒ 
directories.    As a replacement for the libtext library distributed in prior releases, this 
class builds instances of the IXFileRecord class to describe files, and stores them in 
an instance of IXRecordManager.    The lexical analysis classes, IXAttributeReader, 
IXLanguageReader, IXAttributeParser and IXWeightingDomain, make it easy for 
developers to reduce unstructured text into attribute value lists that are directly 
queryable by IXAttributeQuery.    IXAttributeQuery implements a query language for 
selecting objects from several evaluation contexts including IXRecordManager.

Known Problems

The following are known problems in the Indexing Kit.    They will be corrected in a 
future release.

· When an attribute is added to IXRecordManager, pre-existing records eligible for 
inversion by the attribute are not included.
This was not changed for 3.1, since it is now straightforward for the caller to 
update all records by passing over the entire set of records and replacing each 



one with itself.    This gives the caller the opportunity to perform one pass over the 
records to update several new attributes at once.

· IXAttributeQuery implements a subset of the IndexingKit query language.    In 
particular, only the search operators can bind attribute values.
This is still true for 3.1.


