
Release 3.3 Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

3.3 Release Notes:
Sound Library

There are no new sound library features or bug fixes in Release 3.3 or 3.2.
This file contains release notes for both the 3.1 and 3.0 releases of the sound
library. Items specific to the 3.1 release are listed first, and the Release 3.0
notes follow.

Notes Specific to Release 3.1

New Features

· Two new ªsound-portingº functions have been added to the sound library
and declared in <sound/utilsound.h>:

SNDSwapSoundToHost(void *dest, void *src, int sampleCount,

              int channelCount, int dataFormat)

SNDSwapHostToSound(void *dest, void *src, int sampleCount,
              int channelCount, int dataFormat)

These functions read the data pointed to by src, swap the order of the bytes
that comprise each sample (if necessary) and write the swapped data to
dest (src and dest can be the same pointer).    The other arguments
describe the sound data buffer; cumulatively, they tell a function how many
samples are in the buffer, and the size of each sample.    The functions
return error codes that report their success or failure.

The ªSoundº and ªHostº terms in these names have these meanings:

· To play a sound, the sound data must be in ªSoundº format.
· To examine sound data, it must be in ªHostº format.

When you read a soundfile or record a sound, the sound data is guaranteed
to be in ªSoundº format; if all you want to do is play the soundfile or write the
recorded sound to a fileÐin other words, if you don't want to examine the
dataÐthen you don't need to call these functions.

However, if, for example, you read a soundfile in order to look at the value at
each sample, you must first call SNDSwapSoundToHost() to convert the
sound data to ªHostº format.    If you modify samples in a converted sound,
you must re-convert to ªSoundº format, through SNDSwapHostToSound(),

before the sound can be played or written to a file.

Note that you don't have to convert entire soundfiles (or SNDSoundStruct
data buffers) at a time.

These functions are built upon the general NXSwap... functions that are
described in
/NextLibrary/Documentation/NextDev/Concepts/PortabilityGuide.    The
primary difference between the sound swapping functions and the general
swapping functions is that the sound functions let you convert buffers of
data, whereas a single call to a general function can convert only one
datum.      If you wish, you can call the general functions (iteratively) rather
than the sound functions.    The correspondences between the    functions
are:

Sound function Analogous general function
SNDSwapSoundToHost() NXSwapBigShortToHost()
SNDSwapHostToSound() NXSwapHostShortToBig()

Known Problems

See the SoundKit.rtf release note for information on known problems with
sound.

Notes Specific to Release 3.0

These notes were included with the Release 3.0 version of the sound library.
Sections that are no longer relevant have been marked with an italicized
comment.

New Features

The following are new features that have been added to the Sound Library
since Release 2.0.

· A new compression format, Audio Transform Compression (ATC),    has
been added for 3.0.    The ATC format gives compression ratios greater than
3 and sometimes as high as 10 without affecting sound quality in most
listening situations.    It works by stripping out inaudible spectral features in
the short-time Fourier transform.    It is not ªbit faithful,º in that the
decompressed sound is not bit-for-bit identical with the original sound.    Any
sampling rate may be used, but 44.1 kHz is considered standard, and the
algorithm for deciding what is audible in the spectrum assumes this
sampling rate.

ATC compression and decompression each run in real time for 44.1 kHz
stereo.    This is made possible by the imbedded DSP chip.      ATC is now

the default compression format used by the command-line utility
sndcompress, the sound library function SNDCompressSound(), and the
Sound object's method convertToFormat:
SND_FORMAT_COMPRESSED.    Several new functions of the form
SND*ATC*() have been added to support ATC.

The Audio Transform Compression algorithm was developed by Julius O.
Smith at NeXT.

· Support for high-quality sampling-rate conversion by arbitrary factors has
been added to SNDConvertSound().      The    SoundEditor programming
example illustrates its usage in the SaveTo panel.    The sampling-rate
conversion algorithm is documented in the paper ªA Flexible Sampling-Rate
Conversion Methodº by Julius O. Smith and Phil Gossett, ICASSP-84, San
Diego, pp. 19.4.1-4.    The algorithm does not yet use the DSP, so it runs out
of real time.

· Sounds which formerly required the DSP to be played are now playable
when the DSP is not available.    In particular, CODEC sounds (8KHz,
mulaw, mono) will be converted and played in real time using the 68040
when the DSP is busy.    The same applies to mono-to-stereo conversion,
mulaw-to-linear conversion and other simple conversions.    Of course, the
DSP is still used as an accelerator if it is available and if the DSP version
has been written.    In general, demanding signal processing tasks tend to
run about five times faster on the DSP than on the 68040, including the

overhead of shipping data to the DSP and back via DMA.    Therefore, some
algorithms, such as ATC, simply cannot run in real time when the DSP is
busy.

· A new function,    SNDVerifyPlayable(), is provided for determining if a

sound struct is ªplayableº using SNDStartPlaying().    The function assumes
the DSP will be available if needed.

· The function    SNDConvertSound() has been generalized to cover many
more cases.    In particular, compression to ATC format, decompression of
any NeXT compression format, arbitrary sampling-rate conversion, mu-law
to or from linear, mono to or from stereo, float to or from linear, double to or
from linear,    meaningful combinations of the above, and so on, are now
handled.    Unlike the case of playing sounds in real time, multiple-step
conversions are supported.    This function is normally accessed via the
Sound object's convertToFormat: method.      The    SoundEditor
programming example illustrates the more generally useful conversions by
means of its new SaveTo panel.

Known Problems

· Compressed soundfiles must have either 22 kHz or 44 kHz sampling rates
in order to be playable without first decompressing.    In particular, an 8 kHz
CODEC file (such as from the built-in microphone) must be first resampled
to 22 kHz (e.g., by SNDConvertSound()) before compressing.      Since ATC

format discards empty portions of the sound spectrum, up-sampling does
not increase the file size as you might expect.

· Compression    to ATC format ªramps onº the first 256 and ªramps onº the
last 256 samples of the input soundfile.    This means sounds which
originally started or ended abruptly sound like they quickly ªfade inº and/or
ªfade outº after being compressed.    The work-around is to make sure the
sound has at least 256 leading and trailing zeros.

· Some ATC-compressed sounds receive a small burst of noise at the end on
playback.      The noise can be made to disappear by adding 100 or so zeros
to the end of the original sound and recompressing.    You should never
encounter this problem if you are already prepending and appending 256
zeros to avoid ramping distortion.

· The present ATC implementation on the DSP can only handle soundfile
headers up to    2048 bytes long.        The C version (used automatically
when the DSP is unavailable) does not have this restriction.      An oversized
header will generally produce a DSP hang or a heavily distorted soundfile.   
To measure the size of a soundfile header, subtract the sound size reported
by sndinfo from the soundfile size obtained via "ls -l" (both are in bytes).

· Many previously unplayable formats, such as stereo floating-point, may not
keep up with    real time on all configurations.

· The built-in sampling-rate conversion utility attenuates the upper 20% of the
spectrum to prevent ªaliasingº using a high-speed anti-aliasing filter.    This
attenuation is most noticeable when up-sampling 8 kHz CODEC files to 22
kHz or higher.      What you hear is a loss of    ªbrightnessº or ªcrispnessº in
the sound.      The benefits of being on this point in the trade-off space are
conversion speed and aliasing suppression.        However, 8 kHz CODEC
speech typically sounds better if brightness is preserved and some aliasing
is allowed (primarily within noise-like consonants where it is hard to hear).   
As a result, in the special case where the requested format conversion is
from monaural 8 kHz (linear or m-law) to stereo 22 kHz linear format, a
different anti-aliasing filter is used which preserves brightness but admits
aliasing; this sounds better for typical CODEC speech.

To obtain the high quality sampling-rate conversion (at the expense of
execution speed), you may use the resample program Ða command-line
utility available via anonymous ftp from ccrma-ftp.stanford.edu.      Look for
resample.tar.Z the pub directory there.    It uses the same sampling-rate
conversion algorithm but provides complete trade-off flexibility.      The
resample program was submitted for inclusion in the NeXT Public Domain
CD ROM for Education, and it is contained in the CCRMA Music and DSP
tools distribution.      See the DSP release notes    DSP.rtf for more
information.

· Real-time compression using SNDStartRecording() does not support the
bit-faithful or ATC modes, and the mode that is supported (ªdropped bitsº

format) gives a maximum compression factor of about 2 to 1.    Use
SNDCompressSound() to get full ATC or bit-faithful compression.    The
sndcompress command-line utility supports all three as well.

· The function SNDStartRecordingFile() does not support recording sounds
in the compressed format.

