
Release 3.3 Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

3.3 Release Notes: 
Precompiled Headers

This file contains release notes for the 3.1, and 3.0 releases of Precompiled 
Headers.    Items specific to the 3.1 release are listed first, and the Release 3.0 
notes follow.    There are no items specific to the 3.3 or 3.2 releases.

A precompiled header is a C or Objective C header file that has been preprocessed 
and parsed, thereby improving compile time and reducing symbol table size.    The 
macros and external declarations from the original header are sorted to enable fast 
lookup. Precompiled headers reduce the amount of information processed and 
output by the compiler.    They can also serve to reduce link times and executable 
size when symbol table information is kept. A new implementation of the C 
preprocessor (cpp) can use precompiled headers in place of standard headers.

In most cases, the use of precompiled headers is transparent.    Precompiled 
headers are simple enough to use that most projects require no conversion at all, or 
can be converted in a day or less.



Notes Specific to Release 3.1

Fat Precompiled Headers

Due to the additional capability of a precompiled header to support multiple 
architectures in Release 3.1, precompiled headers built using Release 3.0 will not 
be usable under 3.1.    To re-generate your precompiled headers, usually a `make 
clean all' will suffice (for more details, see Creating Your Own Precompiled 
Headers below).

When precompiling with multiple -arch flags in a multiple architecture environment, 
precompiled headers will be generated ªfatº.    This makes them usable by builds 
running on more than one architecture.    The precompiled system headers on the 
3.1 CD-ROM will be shipped ªfat.º

For more details on multiple- and cross-architecture compilation, see the Compiler 
and CompilerTools release notes.

Known Problems

Reference: 31148

Problem: The index() macro in string.h can cause precompiled headers not 
to be used.



Description: Include file dependencies occasionally cause 
conflicts with the current precompiled header format, causing 
the precompiled header not to be used. This will slow down 
compilation, but won't cause any errors.

Workaround: Make sure the #include or #import lines for precompiled headers 
precede all others wherever possible.

Notes Specific to Release 3.0

Using Precompiled System Headers

The precompiled version of a header file has a ª.pº extension, rather than the 
standard ª.hº extension.    You should not refer to appkit.p in your source files; just 
use appkit.h and the cpp-precomp preprocessor will use the precompiled form if it's 
available and appropriate.

When the preprocessor encounters an include directive, it automatically looks for a 
precompiled version of the header.    If one is found, it checks whether the context is 
equivalent to the context in which the precompiled header was built;if it is, the 
precompiled header is used.    However, if any of the following problems occur, the 
non-precompiled form is included instead:

· A header which was included by the precompiled header could not be found in 
the filesystem to verify its modification time, or the modification time did not 



match.    In practice, this never occurs for precompiled headers that are part of 
the release, and occurs only rarely when programmers build their own 
precompiled headers.

· A macro was defined when the precompiled header was built, but is not defined 
in the current context.    This is only a problem if the macro was actually 
referenced somewhere in the precompiled header.

· A macro was undefined when the precompiled header was built, but is defined in 
the current context.    This is only a problem if there might have been an 
invocation of the macro in the precompiled header.

Compile-time warnings (described at the end of this file) indicate the nature of any 
problems that occur.    These default warnings can be turned off with the -Wno-
precomp in cases where a precompiled header and a compilation context can't be 
made compatible.

If you're developing a small project, you don't need to bother building your own 
precompiled headers; just use the standard precompiled forms of system headers 
like appkit.h and mach.h.    It's easy to create your own precompiled headers if you 
wish to do so, however, as described in the next section.

Creating Your Own Precompiled Headers

You create a precompiled header by passing the new -precomp switch to cc. 
Depending on the context(s) in which the header is used, -D switches should also 
be passed to cc, as explained below.



% cc -precomp foo.h -o foo.p

We say a header is ªcontext dependentº if the definitions in the header may change 
depending on the context in which it is included.    Most uses of conditional 
compilation and macro expansions cause context dependence.    For instance, the 
following header is context dependent:

#ifdef DEBUG
int a;
#else
int b;
#endif

The context at any point is determined by the macros that are defined there.    A 
precompiled header must be created in a context equivalent to that where it is used. 
By passing switches to the preprocessor, any set of macros can be predefined, 
creating a context in which the precompiled header is built.    This is done by passing 
a -D switch for each macro in the context.

A precompiled header built from ªsystem headersº typically requires no -D switches, 
because programmers usually include system headers in a context-independent 
way.    For example, the public appkit headers contain almost no preprocessor 
conditionals; clients cannot change declarations in headers by defining macros. So 
the command to build a precompiled header from appkit.h is:

% cc -precomp appkit.h -o appkit.p

But if you must use a header bar.h in a context where FOO is defined, you should 



build the precompiled header as follows:

% cc -precomp -DFOO bar.h -o bar.p

You should also pass any preprocessor switches, such as -I, that you use in your 
project.    This can be most easily accomplished by simply precompiling a project's 
headers with the same $(CFLAGS) used to compile modules in that project.

By making precompiled headers bigger (that is, containing more headers), a given 
C file may include fewer precompiled headers, and will generally compile faster. 
However, the bigger a precompiled header is, the more likely that name conflicts will 
occur.

For example, if you were to combine all the headers for a project, including system 
headers, into a single precompiled header, it is conceivable that there would be a 
name conflict.    There may be a macro defined that happens to match one of your 
local identifiers, or there may be a public struct declared that happens to match one 
of your private struct names.    Such conflicts manifest themselves as preprocessing 
errors, syntax errors, or semantic errors. The conflicts may be resolved by renaming 
identifiers, or removing a conflicting header from the precompiled header.

Another disadvantage to big precompiled headers is file dependencies.    If all of the 
C files in a project depend on a single precompiled header which in turn depends on 
all headers in the project, then changing a header requires recompilation of the 
entire project.    A better approach is to build a precompiled header containing all the 
system headers used by a project, and perhaps also a separate precompiled 
header for the local headers in the project. We recommend that during 
development, while local headers are changing, precompiled headers be used only 



for system files.    When local headers have stabilized, they may be combined into a 
precompiled header.

A precompiled header records absolute path names for all the headers that went 
into it. These paths are then checked when the precompiled header is used. 
Therefore a precompiled header should be built in the same directory in which it is 
to be used, and all the headers that went into the precompiled header must not be 
moved or modified.

Additional Information

The cpp-precomp preprocessor is required in order to use precompiled headers, 
and there are several incompatibilities with the Release 2.0 preprocessor and 
parser.    For example, preprocessing errors and syntax errors are in a slightly 
different format.

Only rarely will you have trouble building a precompiled header. The most common 
problem you might encounter is that the header doesn't parse; this is often because 
the header does not include other headers it depends on, so that there are 
undefined types. Another typical problem is conflicting definitions, which can be 
solved by renaming identifiers or removing a header from the precompiled header.

The following list describes the compile-time warnings that may occur when using a 
precompiled header:

· could not use precompiled header `header.p'

The precompiled header could not be used for one of the reasons below.



· `header.h' has different date than in precomp

The modification time of the header on the disk does not match the modification 
time of the header when the precompiled header was built.

· macro `macro' defined by `header.h' conflicts with precomp

A previously included precompiled header defines a macro differently than does 
the current precompiled header being processed.

· macro `macro' defined on command line conflicts with precomp

Similar to the previous warning, except that the earlier definition of the macro 
occurred on the command line.

· macro `macro' previously defined on command line for precomp not 
defined

A macro included in a precompiled header by way of the precompilation 
command line is not defined in the current context, but used by the precomp.

· macro `macro' previously defined on command line for precomp does not 
match current command line definition

A macro included in a precompiled header by way of the precompilation 
command line is not defined in the current context, but used by the precomp.

· macro `macro' redefined, locations of the conflict are:
header1.h:23
header2.h:47 (within the precompiled header)



The macro has been defined in two different ways in two different precompiled 
headers

· #ifdef `SYM' not defined when precompiled, but now defined at header.h:23

A symbol was defined, at the specified location, prior to the inclusion of this 
precompiled header, but was not when the header was precompiled.    Since this 
symbol is used in an #ifdef, the precompiled header does not contain all the 
source code desired by the including context.

· could not find `header.h'

The header which was included by the precompiled header could not be found 
on the disk to verify its modification time.

· could not use precomp `header.p' (incorrect version)

It was discovered that the version of the referenced precompiled header is 
incompatible with the compiler, possibly signifying a corrupt or obsolete header.p.

· explicit reference to precompiled `header.p' failed

Although the inclusion of headers with a ª.pº suffix is discouraged due to 
portability considerations, it is legal to explicitly reference precompiled headers.    
The above error is generated if the precompiled header is not appropriate in the 
enclosing context.


