
Release 3.3 Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

3.3 Release Notes:
Window Server

This file contains release notes for the 3.3, 3.2, 3.1, and 3.0 releases of the Window
Server. Items specific to the 3.2 release are listed first,
and the Release 3.1 and 3.0 notes follow. There are no
items specific to the 3.3 release.

Notes Specific to Release 3.2

New Features in 3.2

The performance of various imaging and window-moving operatations have been
improved for both Motorola and Intel implementations of NEXTSTEP. Among
these improvements are the following:

· In 16-bit color windows, a compositerect operation of type Sover is 4 times
faster when the color isn't dithered (that is, when the premultiplied RGBA

components are each exactly expressible in 4 bits).

· 8-bit grayscale Sover'ing now avoids multiplications when the source alpha is
0 or 1. Performance of both 8-bit grayscale and 16-bit Sover'ing have been
improved.

· Window-dragging of buffered windows is now done by copying from the
backing store to the screen (DRAM€->€VRAM) rather than from screen to
screen (VRAM€->€VRAM). This improves window dragging performance on
systems with slow VRAM access times.

· 8-bit and 16-bit identity case imaging operations are now faster.

· Overall performance of 32-bit color drawing has been improved.

Bugs Fixed in Release 3.2

These bugs have been fixed in Release 3.2:

Reference 37336

Problem Meshed 8-bit grayscale images with transparency were
improperly displayed.

Description On 8-bit grayscale or 24-bit color NEXTSTEP systems, images

defined as meshed 8-bit grayscale displayed incorrectly if they
had any transparency.

Reference 36064

Problem readimage didn't work properly on 32-bit color windows on the
i386 architecture.

Description The value returned by readimage on an i386 NEXTSTEP
system would return non-byteswapped data if used on a 32-bit
color window.

Notes Specific to Release 3.1

New Features in 3.1

The rendering algorithm for DeviceCMYK colors on RGB devices has been
improved.

setcmykadjust boolean setcmykadjust -

When set to true, setcmykadjust invokes an enhanced
algorithm for rendering /DeviceCMYK colors on an RGB
device.    This algorithm is computationally more

expensive that the simple algorithm in the Red Book, but
results in greater accuracy for publishing applications.     
Similar to setstrokeadjust, the current value of
setcmykadjust is stored in the graphics state.

When setcmykadjust is active, the behavior of
currentcmykcolor, currentgray, currentrgbcolor, and
currenthsbcolor changes so that any conversions in or
out of the DeviceCMYK colorspace on behalf of these
operators produces a result which if passed to the
appropriate ...setcolor operator yields a visually identical
color.    In other words, current...color followed by
set...color should not change the visual appearance of
the current color .    In certain cases, however, an identical
match is not possible.    For example, currentcmykcolor
may not be able to return a visually identical cmyk color if
the current color has been specified in the DeviceRGB
colorspace.    This is because some DeviceRGB colors
will fall outside of the gamut of the DeviceCMYK
approximation used by setcmykadjust.      In these cases,
currentcmykcolor returns a reasonably similar color.

cmykadjust normally defaults to true for windowdevices.
However, this can be overiden on a per-context basis by
using the setdefaultcmykadjust operator.

currentcmykadjust - currentcmykadjust boolean

currentcmykadjust returns a boolean indicating whether
or not    cmyk adjustment is active for the current graphics
state.

setcmykadjustparams [Cr Cg Cb Mr Mg Mb Yr Yg Yb Rr Rg Rb Gr Gg Gb Br Bg
Bb]
gamma setcmykadjustparams -

The cmyk to rgb algorithm invoked by setcmykadjust is
based on a simple six color Neugebauer approximation.   
This approximation uses as parameters the rgb color
specifications for cyan ink, magenta ink, yellow ink,
magenta+yellow ink together (red), cyan+yellow ink
together (green),    and cyan+magenta ink together (blue).
These colors are specified in the array argument such
that the rgb equivalent of Cyan ink is given by (Cr, Cg,
Cb), etc.    gamma allows for compensation for
nonlinearities in ink coverage; i.e. a    cyan tint of value c
is assumed to cover a fraction c^gamma of the paper.

The default values for these parameters are equivalent to:

[
0.00784314 0.309804 1.0
1.0 0.0 0.160784
1.0 0.811765 0.0
1.0 0.0 0.0
0.0 0.294118 0.0156863
0.0901961 0.0 0.164706

] 0.5 setcmykadjustparams

which provides a reasonable approximation for the inks
used in the NeXT Color Printer as well as the C.E.I.
standard inks.

These parameters are global to the PostScript interpreter,
shared by all contexts.

currentcmykadjustparams array currentcmykadjustparams array gamma

Returns the current parameters for the Neugebauer
approximation used by setcmykadjust.    array must be of
length 18, and is filled with the rgb components of the six
ink colors (see setcmykadjustparams).

setdefaultcmykadjust boolean setdefaultcmykadjust -

Sets the default value of cmykadjust for the context in
which it is issued.    When set to true, all windows will
default to having cmyk adjustment active.    The default
value of this default is true for new contexts.

currentdefaultcmykadjust - currentdefaultcmykadjust boolean

Returns the current default setting of cmykadjust for the
context.

Bugs Fixed in Release 3.1

These bugs have been fixed in Release 3.1:

Reference 30925

Problem Disk space leak when aborting print jobs.

Description When print jobs prematurely aborted (due to an error, for
example), PostScript was not cleaning up all references to the
spooled data.

Reference 30866

Problem Readimage on a small color window returns garbage alpha.

Description Pixel values from screen are now correctly stuffed with opaque
alpha.

Reference 30784

Problem Certain Level 2 patterns can crash the WindowServer.

Description Level 2 patterns that render    2bit image data in their
/PaintProc procedure would    sometimes cause DPS to crash .

Reference 30695

Problem Type 2 imaging problems.

Description In certain cases, type 2 (i.e. window-to-window) imaging    from
a 2bit source to a 2bit partially-obscured destination would cause rendering
errors.

Reference 30661

Problem Too many patterns.

Description Heavy pattern usage could cause the pattern caching
machinery to get confused.    The net result would be that
drawing with `older' patterns    (i.e. patterns least recently
created) would have no effect.

Reference 30564

Problem Grayscale image rendering on NeXT Laser Printer.

Description Rendering certain 8bit images for printing on the 400dpi NeXT
Laser Printer would crash the WindowServer.

Reference 30447

Problem WindowServer doesn't timeshare User and Printer well.

Description PostScript contexts involved in printing    are now completely
starved from execution as long as another context is runnable.
This results in improved responsiveness of the UI during
printing.

Reference 30146

Problem 2bit imaging problems.

Description When imaging a 2 bit image into a 2 bit window with alpha,
where the current alpha is not one, the resulting image would
be corrupted.

Reference 29472

Problem NXImageBitmap not clipped properly.

Description If an NXImageBitmap was to be completely clipped, then no
clipping was being done.

Reference 28901

Problem Crash when printing a dvips output file.

Description Certain Tek generated dvips files would cause the
WindowServer to crash.

Reference 22307

Problem Image don't respect the Decode array.

Description Many cases of Level 2 imaging did not respect the `Decode'
array entry in the image dictionary.

Reference 22021

Problem Documents print as black rectangles.

Description Occasionally documents would print as black rectangles on the
NeXT Laser Printer.

Notes Specific to Release 3.0

These notes were included with the Release 3.0 version of the Window Server.

Sections that are no longer relevant have been marked with an italicized
comment.

Major New Features in 3.0

The following new features have been added to the Window Server since
Release 2.1.

· PostScript Level 2

The NEXTSTEP 3.0 Window Server encorporates PostScript Level 2 from
Adobe.    This includes many extensions to the PostScript Language that have
always been in Display PostScript, but also includes a number of new features
such as

· device independent color
· patterns and forms
· filters
· setpagedevice

For further information, consult the latest version of the PostScript Language
Reference Manual (aka the new red book), published by Addison Wesley.

· Device Independent Color in NEXTSTEP 3.0

NEXTSTEP 3.0 contains enhancements to support device independent color.
We have standardized on a calibrated RGB colorspace.    All modes of the
Application Kit's ColorPanel (except CMYK) now emit device independent
colors.    This means that applications using the Color Panel in conjuction with
NXSetColor() will take full advantage Level 2 color when printing on
PostScript Level 2 devices, including NeXT's new Color BubbleJet printer.

Device Independent Color Details

NXCalibratedRGB Color Space

The calibrated color space we have chosen matches the specifications of the
standard NeXT MegaPixel Color Display.    This color space is based on the
CCIR Rec 709 phosphor set, balance to a white point of D65.    This
corresponds to CIE chromaticities of :

 x y
Red .640 .330
Green .300 .600
Blue .150 .060
White .3127 .3290

Because NXCalibratedRGB is closely related to colorimetry of NeXT
monitors, chosing this color space gains the advantage of calibrated color,

while sacrificing little if any performance for interactive rendering on the
display.

The kit function NXSetColor() now uses a new operator nxsetrgbcolor to set
its color when in any modes other than CMYK.    nxsetrgbcolor and
nxsetgray are defined as:

/nxsetrgbcolor { NXCalibratedRGBColorSpace setcolorspace setcolor } bind
def
/nxsetgray                { NXCalibratedRGBColorSpace setcolorspace dup dup
setcolor } bind def

Note because the color space in Level 2 is implicitly changed by any of the
Level I color operators (i.e. setrgbcolor, setgray) setcolorspace must be
called explicitly each time the color is set.

· Spot Color

Spot color in PostScript refers to the color of fills, strokes, and characters
(everything except sampled images).    In NEXTSTEP documents, these
attributes are typically controlled via NXColors and the Color Panel.   
Because of the changes detailed above, these documents will now
automatically inherit calibrated color.

Spot Color can also be calibrated through the use of the Pantone Color
support in 3.0.    Pantone colors have the advantage working on Level 1
devices as well.

· Sampled Images

Sampled images in NEXTSTEP are typically stored in TIFF files and drawn by
the NXBitmapImageRep object.    RGB TIFF files will be assumed to be in the
NXCalibratedRGBColorSpace color space.    To insure interactive
performance to the screen images are rendered to the screen in DeviceRGB
colorspace and to the printer in CalibratedRGB by default.    To render images
to the screen using a calibrated color space, the application writer is
responsible for setting up the current colorspace using NXDrawBitmap()
with the NX_CustomColorSpace option.    Currently NXBitmapImageRep
does not asupport the TIFF WhitePoint, PrimaryChromaticies, Gamma, and
ColorResponseCurves, although this will occur in future releases of
NEXTSTEP.

· Color Rendering Dictionaries:

The Color Rendering dictionary NXCalibratedRGB is pre-defined in
globaldict.    This rendering dictionary defines the corresponding color
rendering for the NXCalibratedRGB color space.    The concatination of the
NXCalibratedRGB color space and the NXCalibratedRGB color rendering
dictionary results in the identity transformation.    This allows the PostScript to

optimize its calculation so that rendering with NXCalibratedRGB    to the
screen is as fast as rendering DeviceRGB.

· Resources

PostScript Level 2 supports a generalized resource scheme by which
PostScript programs can refer to resources by name, as opposed to
containing an entire definition of the resource.    This is a generalization of the
definefont/findfont mechanism.      For full details, see the RedBook2.   
Resources exist on the %resource% device.    On the NeXT, we search in
three places for resources:    ~/Library/PS2Resources/category,
/LocalLibrary/PS2Resources/category,    and
~/NextLibrary/PS2Resources/category.    category is one of the regular or
implicit resource categories defined in the RedBook2 on page 88.    The
following resources are installed in /NextLibrary/PS2Resources:

ColorRendering/NXCalibratedRGB
ColorSpace/NXCalibratedRGB
Patterns/NX_MediumGray
Patterns/NX_DarkGray
Patterns/NX_LightGray

Many of the predefined names which use these resources do so in a lazy

manner.    For example, the definition of NX_MediumGrayPattern is
 globaldict /NX_MediumGrayPattern {

/NX_MediumGray /Pattern findresource
matrix makepattern dup /NX_MediumGrayPattern exch store

} put

This loads the resource into VM upon first reference, and then rebinds the
name to the actual instantiation of the pattern resource.

You can search for available resources with the %resource% device.    For
example,

(%resource%Pattern/*) {==} 1024 string filenameforall
prints a list of all the files which define patterns.    Of course, you can also do

(*) {==} 1024 string /Pattern resourceforall

Level 2 Caveats:

This section attempts to clarify some of the interaction between NeXT's DPS
extensions and the new features in Level 2.

· Alpha (transparency) is possible in Level 2 patterns, however these patterns
are not portable to other PostScript implementations and the performance
may not be as fast as if the pattern were opaque.

· It is not currently possible to use alpha in a Level 2 indexed color space.

· the window promotion logic has been extended in the following way to
incorporate new level 2 features:    Colored patterns promote windows as
though the PaintProc were merely executed. Images in the CIEBasedA or
CIEBasedABC colorspace (regardless of bit-depth) will promote the window
as though an eight-bit per channel DeviceGray    or DeviceRGB (respectively)
image were drawn.    Any image drawn in an Indexed colorspace will promote
the window as though an eight-bit per channel DeviceGray or DeviceRGB
image were drawn depending on the number of components in the underlying
colorspace.

· since windowdevices can either be color or monochrome depending on their
bit-depth, the semantics of color-rendering dictionaries on monochrome
windows is changed slightly to include an implicit NTSC luminance sum   
(gray = .3*red + .59*green + .11*blue) as the last step.    This means that the
same three-channel color rendering rendering dictionary    (by default
NXCalibratedRGBRendering) can be used for a window regardless of its
promotion state.    Monochrome color rendering dictionaries for printer devices
behave as documented in the Red Book.

Changes

The following changes have been made to the Window Server since Release
2.1.

· Windows mistakenly promoted to 24 bits per pixel when rendering a 12 bit
RGB image.    This has been fixed to correctly promote only to 12 bits per
pixel.

· Performing a PlusD compositerect in an 8 bit window didn't work properly.   
This has been fixed.

· On NeXTdimension, any color image being rendered into a 2 bit window didn't
work.    This has been fixed. (This was rarely seen unless the window was
explicitly limited to 2-bits).

· The image operator has been optimized in the case of    rectilinear scaling,
with the addition of special case scaling code when the source and destination
are the same pixel depth and no transfer function is in effect.

· readimage is no longer the most efficient way to read the bits from a window
into an application.    A new optimized pathway is available using the AppKit
function NXReadBitmap(), (or, preferably, the NXBitmapImageRep object)
which uses efficient Mach out-of-band messaging.    readimage will continue
to be support for backwards compatibility.

· out-of-band images which are passed into the window server (rendered via
NXDrawBitmap(), or the NXImageBitmapRep object) can now have arbitrary
`rowBytes'.    This means that the pixels to be imaged need not be tightly

packed into scanlines.    This allows sub-regions of a bitmap stored on the
client side to be passed to the window server without reformatting.

· out-of-band images passed into the window server are now allowed to pack
non-alpha image data on natural machine-word boundaries.    In particular 12
bit RGB data can be passed in 16 bit pixels (the alpha nibble MUST BE SET
to 0xF).    Similarly,    24bit non-alpha data can be passed in 32 bit RGB pixels
(the alpha byte MUST BE SET to 0xFF).    This allows applications to store
rasters in a more natural way for their own processing, and minimizes the
need for reformatting the data to pass to the window server for display.    This
capability is available through the AppKit's NXDrawBitmap() function

· On the 68040 processor, we have improved the performance of the image
operator in the case of unpacked 12 bit RGB data imaged (with the identity
transform) into a 16 bit window.    In order to take advantage of this
performance improvement, your source data must be short-aligned
(guaranteed if you malloc your source buffer) and its rowbytes must be a
multiple of 4 (you can easily insure this if you are generating the source data
and rowbytes yourself).    In this case, a 400x400 image should take 55-60ms
on a 25Mhz NeXTstation Color.

· There is an additional performance gain above and beyond that mentioned
above for an even more strict set of alignment restrictions:    Your source data
pointer is cacheline-aligned (16 byte aligned) with the destination data pointer
that it will be written into and your source rowbytes modulo 16 equals the

destination buffer rowbytes modulo16.    Since your application cannot know
the data pointer alignment of a buffered window, this is very difficult when
imaging into a buffered window.    But, if you are imaging into a retained
window, the destination data pointer modulo 16 equals the x coordinate on
screen multiplied by 2, and the rowbytes of the destination == 0 modulo 16.   
So, if you image into a retained window and align the address of the beginning
of your source buffer to match the twice x coordinate (modulo 16) that it will be
imaged to on the screen, and you make its rowbytes a multiple of 16 (to match
the 0 modulo 16), then your image data will be copied to the screen in the
fastest way possible (using the move16 instruction newly available on the
040).    For large images this is 45% faster than case (4).    In this case, a
400x400 image should take 37-40ms on a 25Mhz NeXTstation Color.

· setpagedevice raises a configurationerror if the current device is not a page
device or a window device.    If the current device is a page device, then
setpagedevice behaves as documented in the PostScript Language
Reference Manual, 2nd Edition.    If the current device is a window device,
then the dictionary given to setpagedevice is discarded and erasepage
followed by initgraphics is executed.

New (NeXT) PostScript Operators

The following PostScript operators have been added or modified since Release 2.0.   

The operators marked internal shouldn't be used in applications based on the
Application Kit since your use of them may conflict with the Kit's.    For descriptions of
these operators, see the NEXTSTEP General Reference. (Use the Digital Librarian to
view the on-line version of the reference manual.)

image % New DPS extension
setshowpageprocedure % public
currentshowpageprocedure % public
setframebuffertransfer % public
settrackingrect % new features
currentframebuffertransfer% public

currentshowpageprocedure win    currentshowpageprocedure    proc

Returns the current showpage procedure for the window
specified by win.    The showpage procedure is a
PostScript procedure which will be executed each time
the showpage operator is executed when the
currentdevice is the given window.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO

setshowpageprocedure

currentframebuffertransfer fbnum currentframebuffertransfer    redproc greenproc
blueproc grayproc

Returns the current transfer functions in effect for the
framebuffer indexed by fbnum.    fbnum ranges from 0 to
countframebuffers - 1.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
setframebuffertransfer, countframebuffers,
framebuffer

setframebuffertransfer redproc greenproc blueproc grayproc    fbnum
setframebuffertransfer

Sets the framebuffer transfer functions in effect for the
framebuffer indexed by fbnum.    fbnum ranges from 0 to
countframebuffers - 1.    The framebuffer transfer
describes the relationship between the framebuffer values
of the display, and the voltage produced to drive the
monitor.    Important:    these transfer functions are

outside of the domain of PostScript Level 2's imaging
model.    NeXT's WindowServer    assumes that the
framebuffer values are directly proportional to    screen
brightness.    This is important for the accuracy of
dithering, compositing, and similar calculations.    This API
is provided only for the purpose of developers developing
screen-calibration products.    The default transfer for
NeXT Color Displays is    "{ 1 2.2 div exp } bind dup dup
{}".    The procedures must be allocated in shared VM.

It is possible to make framebuffer transfer functions
persist beyond the lifetime of the WindowServer by
storing a property in the NetInfo `screens' database.    In
the local NetInfo domain, /localconfig/screens holds the
configuration information for the screens known to the
WindowServer (i.e. MegaPixel, NeXTdimension).    These
specify the layout and activation state of the screen.    A
new property for 3.0 has been added called
`defaultTransfer'.    This property can contain a string of
PostScript code suitable for execution by the
setframebuffertransfer operator (without the fbnum
parameter).    For example the following represents the
NetInfo configuration for a NeXTdimension screen with a
default gamma of 2.0.

localhost:1# niutil -read .

/localconfig/screens/NeXTdimension
name: NeXTdimension
slot: 2
unit: 0
defaultTransfer: {1 2.0 div exp } dup dup dup
bounds: 0 1120 0 832
active: 1
_writers: *

The NetInfo `defaultTransfer' property is used to configure
the screen each time the WindowServer starts up.    This
allows monitor calibration products to save their settings
so the next time the WindowServer starts up, the new
values will be used.    Note that in some cases, the
NetInfo configuration state for a monitor will not have
active == 1, although the monitor is being used by the
WindowServer.    This is because if no screens are
marked `active' in NetInfo, the WindowServer uses a
suitable default.    If a screen is not marked `active' in
NetInfo, the other properties (such as `defaultTransfer')
are ignored.    So be sure that the screen for which you
are adding a `defaultTransfer'entry is marked `active'.

Monochrome devices will ignore redproc, greenproc, and
blueproc, RGB devices will ignore grayproc.

setframebuffertransfer is unsupported on the current

generation of NeXT monochrome displays.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
setframebuffertransfer, countframebuffers,
framebuffer

setshowpageprocedure proc win    setshowpageprocedure    -

Sets the showpage procedure for the window specified by
win.    The showpage procedure is a PostScript procedure
which will be executed each time the showpage operator
is executed when the device in the current graphics state
is the given window.    proc must be allocated in shared
VM.

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO
currentshowpageprocedure

settrackingrect x y width height optionarray trectnum gstate
settrackingrect ±

In this alternate form, settrackingrect, can be used to set
special event-gathering attributes of a rectangle.    In this
case events are not generated when the boundary is
crossed, but certain low-level event system options can
be controlled in the rectangle. optionarray contains key-
value pairs that can, for example, affect pressure
sensitivity in a rectangle.

This is an extensible API allowing the addition of new
options as they are needed.    Eventually the old tracking
rect paramters will be subsumed by this new form of the
operator.    An empty option array is meaningless and will
raise a rangecheck error.    This form of the operator does
not currently post mouse-entered and mouse-exited
events. The following key-value pairs for optionarray are
initially defined:

 Key Type Semantics

Pressure bool treat any non-zero pressure
values as a mouse-down.   
(false is default)

Coalesce bool coalesce mouse motion events
(true is default)

 Use the existing cleartrackingrect operator to remove
special tracking rects.    An example which turns pressure
on and coalescing off would be:

x y width height [/Pressure true /Coalesce false]
trectnum gstate settrackingrect

ERRORS
invalidid, stackunderflow, typecheck

SEE ALSO

image dict    image    ±

The Level 2 image operator has been extended for
Display PostScript Systems only.    The changes allow the
image operator to use a window as source sample data.
There are several reasons why an application may want
to do this.    For example, an application for viewing large
photographic images such as satellite images can use the
image operator for panning and zooming. If the image
data is placed in an off-screen window, panning can be
accomplished by copying the data to the on-screen
window, and zooming can be accomplished by copying
the data with a scale.    In this example, pixel expansion is
desirable, so that all of the image data is seen. Another

example in which a scale in the transformation is useful,
is with bitmap editors. The pixels can be magnified for
editing, then changed in the source sample data. Finally
there is the advantage of    using image data that is
already accessible to the server. This improves
performance since the image data does not need to be
transferred from the client to the server. It is especially
important if the server executes on a different system or
processor than the client.

Image Dictionary Changes

Below is a description of the image dictionary for when
windows are used as sources. In this case ImageType
has a value of 2, and only the keys described in the table
below have significance.

The DataSource entry can now be a graphics state
object. The graphics state object contains a reference to
the destination device. It is used as a device independent
representation of a window. The pixel representation of
the source and the color space for the image is
determined by the device in the source graphics state
object.    The only information used in the source graphics
state is the device structure and the CTM. No

assumptions about how the source was created will be
made by the interpreter. Therefore it is up to the user to
make sure that the desired effects will happen with the
current transfer function and halftone screen. If the source
gstate is the current gstate, and the source rectangle
overlaps the destination, then the image will be rendered
as if all of the source pixels had been read before imaging
to the destination.

The UnpaintedPath entry is used when the pixels in a
window were not available because the source rectangle
includes areas outside of the clipping area for the window.
This region is defined by the intersection of the source
gstate's clip, the source gstate's viewclip, and the
underlying window system's clip for the window. The
UnpaintedPath will contain a userpath that encloses the
entire area that was not available in the source. The
userpath may be larger than the actual area that needs to
be repainted, therefore a clip based on the source
rectangle should be used. This clip, in addition to the
UnpaintedPath can be used a clip for redrawing the
PostScript code that created the source window, into the
destination. Applications need to consider if a scale was
used because pixel expansion or image interpolation can
occur. In those cases, the missing area needs to be

rendered off-screen and then reimaged into the missing
area. In most cases, an application will not have to worry
about handling missing pixels, because this can be taken
care of in a tool kit. The UnpaintedPath entry will be filled
in by the image operator only if the key exists in the
image dictionary that is passed to image. Otherwise, the
unpainted area will not be calculated and returned.

PixelCopy is used when the application does not want
the color conversion, transfer function or halftone screen
to have an effect on the image operation. This is useful
when the source window was generated by another
imaging model besides PostScript. It's color space may
not be part of the PostScript imaging model, but the data
can still be copied and transformed.

 Key Type Semantics

ImageType integer (Required)    Must be 2 for
gstate object sources.

XOrigin real (Required)    X origin of source
rectangle in user space
coordinates as specified by the
transformation in the

DataSource graphics state
object.

YOrigin real (Required) Y origin of source
rectangle in user space
coordinates as specified by the
transformation in the
DataSource graphics state
object.

Width real    (Required) Width of the
rectangle to be copied in user
space coordinates as specified
by the transformation in the
DataSource graphics state
object.

Height real    (Required) Height of the
rectangle to be copied in user
space coordinates as specified
by the transformation in the
DataSource graphics state
object.

ImageMatrix array no change

DataSource gstate (Required) A gstate object that

contains the device that will be
used for the source sample
data. This device will also be
used to determine the pixel
representation for the source,
and the color space to be used
by image.

Interpolate boolean no change

UnpaintedPath various (Returned
Value) If some of the pixels in
the source were not available
(because of clipping),    then
the UnpaintedPath entry
contains a userpath in the
current (destination) user
space coordinates, that
encloses the area that could
not be filled. If all of the source
pixels could be accessed, then
the UnpaintedPath entry will   
contain a null object.

PixelCopy boolean (Optional) If true, indicates that
the source pixels should be
copied directly, without going
through the normal color
conversion, transfer function,
or halftoning. The number of
bits per pixel of the source
must match the number of bits
per pixel of the destination,
otherwise a typecheck error
will occur. If false or not
present, the pixels will be
imaged in the usual way.

Using image with gstate sources is similar to using image
with any other sample data. One difference that should be
considered is the source gstate's transformation matrix.
Since the source rectangle is specified in the source's
user space coordinates, the source gstate's CTM is
included in the transformation. Therefore the mapping
from the current user space to the image space is defined
by the concatenation of the image matrix    and the source
gstate's CTM.

ERRORS
invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO
alphaimage, colorimage, image (red book)

