
Release 3.3    Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

3.3 Release Notes:
C Preprocessor

A new implementation of the C Preprocessor, /lib/cpp-precomp, was introduced in
the 3.0 release to support precompiled headers. It is invoked by cc(1) whenever the
output will be fed to the C or Objective-C compiler. There were no changes for
Release 3.3.

Notes Specific to Release 3.2

New Features

The following new features have been added to the preprocessor since Release 3.1.

· Support for RTF    source code. Both cpp and cpp-precomp now strip RTF, if
present, from files passed to cpp (and thus cc).    The RTF information (for
example, fonts, colors, help links and markers, underlining, etc.) is stripped and

only the ASCII information is left for normal preprocessing.      This means that any
part of source code can be made rich.

 
            Additional information about using Edit to create and edit rich source code can

be found in the Edit.rtf release note.    However, tools like grep and sed may
produce spurious results on RTF code (although the ProjectBuilder ªFinderº mode
can be used to search for text strings in both rich and non-rich source code).

· Automatic byte-swapping of precompiled headers.    In 3.1, by use of the -arch
flags, precompiled headers could be generated for use during native compilation,
cross compilation, and compilation for multiple architectures.    However,
precompiled headers generated on one architecture were often not usable during
compilation on a host of a different architecture.    This was a byte-swapping issue,
which is handled in 3.2 by on-demand byte-swapping of precomps before
checking and using them.    Note that there is an approximate 20% slow-down in
the usage of a precomp due to the time necessary to do this byte-swapping.   
Therefore, you should always attempt to build your precomps on the host
architecture on which you will be doing the majority of your compilations.

Notes Specific to Release 3.1

Three distinct changes have been made regarding cpp-precomp for release 3.1:

· The standard GNU C preprocessor,    /lib/cpp, is no longer used when cc is invoked
with the -E option; cc -E always produces exactly what the compiler would see.   

Note that this may be problematic when invoking cc -E (as opposed to /lib/cpp) on
something other than source code (for example, a Makefile).    In this case, the
-traditional-cpp option, described below, should also be passed.

· The -Wprecomp option has now become the default, but only causes warnings in
the rare cases when a precompiled header (or precomp) can not be used.    The
-Wno-precomp option can be used to suppress these warning messages if
desired.

· The default search path for cpp-precomp has been brought into line with the default
search path for cpp.    Most notably, this removes /usr/local/include/ from the
standard search path.    Developers are encouraged to place local, shared headers
in /LocalDeveloper/Headers/ instead.    As of release 3.1, the default search path
for cpp-precomp is now:

    /NextDeveloper/Headers
/NextDeveloper/Headers/ansi
/NextDeveloper/Headers/bsd
/LocalDeveloper/Headers
/LocalDeveloper/Headers/ansi
/LocalDeveloper/Headers/bsd
/NextDeveloper/2.0CompatibleHeaders

    By adding -I/usr/local/include to the cc(1) command line, headers that were
previously included from that directory can again be used in this release.

Notes Specific to Release 3.0

Precompiled Headers

Precompiled headers improve compile time and reduce symbol table size.    A
separate file, PrecompiledHeaders.rtf, describes how to install and use them.

Switches

The new preprocessor supports the following new switches.

-precomp Produce a precompiled header.
-no-precomp Do not use precompiled headers.
-traditional-cpp Use the standard GNU preprocessor instead of cpp-precomp,

causing precompiled headers to be ignored.
-Wno-precomp Do not give warnings when precompiled headers are found

unusable (by default, such warnings are given).

Known Problems

The new preprocessor does not yet support the following switches.

-fno-asm Do not recognize asm, inline, or typeof keywords (note that -ansi
also implies -fno-asm).

-pedantic Issue warnings required by the ANSI C standard.
-T Process ANSI standard trigraph sequences.
-d Produce a list of #define commands.
-P Inhibit generation of # lines.
-H Print the name of each header file used.
-dM Output only a list of macro definitions that are in effect at the end of

processing.
-dD Pass all macro definitions into the output.
-dN Like -dD, except macro arguments and contents are omitted.

Use of the above switches must be accompanied by the -traditional-cpp switch.

Other Changes

The output of the new preprocessor sometimes has token spacing (within a line) that
is different than the GNU preprocessor. This conforms to the ANSI standard and
should be transparent to users of cc.

