
Release 3.3    Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

3.3 Release Notes: 
Malloc Debug

This file contains release notes for the 3.2, 3.1, and 3.0 releases of Malloc 
Debug.    Items specific to the 3.1 release are listed first, and the Release 3.0 
notes follow.    There are no items specific to the 3.3 or 3.2 releases.

Notes Specific to Release 3.1

New Features

The following new features have been added to MallocDebug since Release 
3.0.

· Touched nodes information.
MallocDebug can show you which nodes are accessed (read or written) by 
your application.    Knowing which nodes are touched by your application is 



most useful for tuning the use of different allocation zones, thus improving 
your program's data locality and minimizing its working set.    To learn more 
about using zones, look in 
/NextLibrary/Documentation/NextDev/Concepts/Performance.

To record which nodes are touched, MallocDebug must place each allocated 
node from the relevant zones on its own virtual memory page.    Because of 
this additional memory requirement, you have control over which zones have 
this per-node monitoring enabled.    After you link your application with 
libMallocDebug.a, you must run the mdbsetup program on your application 
to enable per-node monitoring for various zones.    The command

mdbsetup MyApp.app/Myapp -protectable <zone list>

enables the viewing of touched nodes within the zones listed in <zone list>.    
The strings ªALLº or ªNONEº may also be specified instead of a specific list of 
zones.

The command

mdbsetup MyApp.app/Myapp -unprotectable <zone list>

enables the viewing of touched nodes within all zones except those listed in 
<zone list>.    For examples, specifying ª-unprotectable default ObjCº will 
allow you to see nodes touched in all zones besides the default and Objective-
C zones.



The command

mdbsetup MyApp.app/Myapp -print

shows what zones within the application are enabled for touched node 
viewing.

After applying mdbsetup to your application, run the application and select it 
in    MallocDebug as described above.    To learn what nodes are touched for a 
given operation of your application, first press the Protect button.    Then 
perform the operation in your application.    While you are using the 
application, MallocDebug records which nodes are touched.    To see this list, 
press the Touched button.    To see what nodes have not been touched, press 
the Untouched button.    To stop the recording of touched nodes, press the 
Unprotect button.    Pressing Protect again cleans the slate of recorded nodes.

When touched nodes are being displayed, some new types of nodes are 
listed.    Nodes marked with a `+' were allocated since the Protect button was 
pressed.    Nodes marked with a `-' were allocated and freed since the Protect 
button was pressed.

3.0 Release Notes:



Malloc Debug

MallocDebug, a new tool included in Release 2.0, is designed to help you    
understand and improve the dynamic memory usage of the applications you 
write.    MallocDebug consists of two components:

· a library containing a version of malloc that gathers statistics on memory 
use

· an application for examining those statistics

The MallocDebug application is located in /NextDeveloper/Apps.    Start the 
application and read the on-line help, which includes information on how to 
prepare your application for use with MallocDebug.

Differences from standard malloc

The debugging version of malloc used by MallocDebug is implemented 
differently from the standard system malloc so that its internal data structures 
are much less susceptible to being damaged by aberrant programs.    This 
causes several incompatibilities with the standard malloc:

· The debugging malloc implements zones by tagging each node with a zone 



tag rather than actually allocating the node in a different region of memory.    
Consequently, locality of reference of a program which uses zones cannot be 
determined by examining the addresses of nodes in MallocDebug.

· The debugging malloc does not store information about nodes in the nodes 
themselves, but rather in an auxiliary data structure which is kept in a remote 
area of memory.    This data is accessed by hashing the address of the node, 
but this information cannot be accessed from an address which is within the 
node.    For this reason, the NXZoneFromPtr function will work correctly only 
when passed a pointer to the start of a node.    Otherwise it will return 
NX_NOZONE.    For the same reason the leak detector may report a node as 
a leak even if there is a pointer to some internal part of that node.


