
Release 3.3 Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

3.3 Release Notes:
Event Status Driver

This file contains release notes for the 3.2, 3.1, and 3.0 releases of the Event Status
Driver. Items specific to the 3.1 release are listed first, and the Release 3.0 notes
follow.      There are no items specific to the 3.3 or 3.2 releases.

Notes Specific to Release 3.1

New Features

The following new features have been added to the Event Status Driver since
Release 3.0.

· The NXEventSystemInfo() call can return some new interface types:
NX_EVS_DEVICE_INTERFACE_ACE // For x86 PC keyboards
NX_EVS_DEVICE_INTERFACE_SERIAL_ACE // For PC serial mice

NX_EVS_DEVICE_INTERFACE_BUS_ACE // For PC bus mice

Bugs Fixed in Release 3.1

These bugs have been fixed in Release 3.1:

Reference 29522

Problem NXMouseButtonEnabled() returns the opposite of what it should.

Description When asked for the current enabled status of the buttons, the
Event Status Driver returned NX_LeftButton when the right button
was enabled for menus.    Left was similarly reversed..

Known Problems

These new bugs have appeared only in NEXTSTEP for Intel Processors.

· Bringing up the NMI panel and then moving the mouse before entering `c' can
result in the mouse responding incorrectly for a few seconds.

· The NMI key sequence doesn't work when the system is at a high interrupt level.

· Mouse speed varies widely between different makes of mice.

Notes Specific to Release 3.0

These notes were included with the Release 3.0 version of the Event Status Driver.

NAME

Event Status Driver - Keyboard and mouse event driver status and configuration

SYNOPSIS

Keyboard and Mouse Event Status and Configuration
#include <drivers/event_status_driver.h>

DESCRIPTION

The Event Status driver is an interface allowing a program to set the user preference values for the
mouse,    keyboard, and screen devices.

The Event Status driver can be opened by many programs in order to make calls which will affect
the way the mouse, keyboard, and display work.

The following event status calls are available:

Open and Close

NXEventHandle NXOpenEventStatus(void)

This call opens the event status driver, and returns a handle to be used in future references to the
driver.    A value of NULL is returned on error.

 
void NXCloseEventStatus(NXEventHandle handle)

This call closes the event status driver, and invalidates the handle access token.

General Information/Status Requests

NXEventSystemInfoType NXEventSystemInfo(NXEventHandle handle,
int flavor, int *evs_info, unsigned int *evs_info_cnt)

This call provides an extensible mechanism for querying the event system.    The data types and
supported queries are defined in <bsd/dev/ev_types.h>, which is included by
<drivers/event_status_driver.h>.      The flavor or type of query is passed in flavor.    A pointer to an
array or struct of ints is passed in evs_info.    The length of the data structure pointed to by
evs_info, in terms of ints, is passed in evs_info_count.      The number of ints actually copied into
evs_info is returned in evs_info_count.    The call returns a NULL pointer on failure, and evs_info
cast to a generic information structure on success.

 
The call is currently implemented as a wrapper around an ioctl(), but can be converted to a MiG
generated call for future implementations.    The slightly odd design of the parameters is due to
restrictions imposed by MiG.

The current implementation supports one flavor of query, NX_EVS_DEVICE_INFO.    For this call,
evs_info should be set to the address of a variable of type NXEventSystemDevice.    The
evs_info_cnt variable should be set to NX_EVS_DEVICE_INFO_COUNT.    On return, the
NXEventSystemDevice variable will contain a list of devices, including types and vendor IDs, which
are connected to the event system.

Keyboard Functions

void NXSetKeyRepeatInterval(NXEventHandle handle, double seconds)

This call sets the key repeat interval for a key on the keyboard which is held down.    The double
arg to the call    gives the number of seconds between successive repeats of the key.    If the current
key repeat is set to 0.5, for instance, then a key that is held down will repeat twice per second.

double NXKeyRepeatInterval(NXEventHandle handle)

This call returns the current key repeat interval in seconds.

void NXSetKeyRepeatThreshold(NXEventHandle handle, double threshold)

This call sets the initial key repeat interval to the value threshold, in seconds. From when a key is
first depressed, the initial key repeat interval elapses.    If the key goes up during that interval, no
additional events are generated.    After the initial key repeat interval has elapsed, the first repeated
key event is generated (a key-down event with the repeated flag set). Another such event is
generated each key repeat interval from then on.    The intent of making the initial key repeat
interval separate from the key repeat interval is to allow an extra long time before the first repeat,
and thus avoid having every key repeat, while still allowing keys to repeat very quickly after they
begin repeating.

double NXKeyRepeatThreshold(NXEventHandle handle)

This call returns the current initial key repeat interval in seconds.

NX_KeyMapping * NXSetKeyMapping(NXEventHandle handle, NXKeyMapping *keymap)

This call sets the key mapping used by the event system to the one given in the structure pointed to

by (NXKeyMapping *)keymap.    Key mappings are created by the Keyboard.app demonstration
program.    The call returns the keymapping, or NULL on failure.    Possible causes of failure include
invalid, inappropriate, or obsolete key mappings.

int NXKeyMappingLength(NXEventHandle handle)

This call returns the length of the current key mapping being used by the event system. This can be
used to find out how large an area to allocate for use with the NXGetKeyMapping call.

NX_KeyMapping * NXGetKeyMapping(NXEventHandle handle, NXKeyMapping *keymap)

This call takes (NXKeymapping *)keymap where the size and pointer given in keymap define an
area into which the key mapping currently used by the event system are copied.    The portion of
the key mapping which will fit in the size given in the NXKeyMapping structure pointed to by
keymap is copied; the remainder of the mapping is thrown away.    The number of bytes actually
placed in the area is returned in the size component of the NXKeyMapping structure.      The call
returns the keymapping, or NULL on failure.

void NXResetKeyboard(NXEventHandle handle)

This call resets all the user preference items for the keyboard to their initial states.    The initial key
repeat interval, key repeat interval, and key mapping are all reset to their startup values.

Mouse Functions

void NXSetClickTime(NXEventHandle handle, double time)

This call sets the click time threshold to the value time. The click time threshold is the maximum
number of seconds that may elapse between two mouse-down events and still have them be
considered a double-click.

double NXClickTime(NXEventHandle handle)

This call returns the current click time threshold in seconds.

void NXSetClickSpace(NXEventHandle handle, NXSize *area)

This call sets the current click space threshold in x and y to the values provided in area. The click
space threshold is the maximum number of pixels apart that two mouse-down events may be and
still be considered a double-click.    Thus, for a subsequent mouse-down event to be considered a
double-click, it must occur within the number of seconds given by the click time threshold since the
first mouse-down, and the location where it occurs must be within the distance given by the click
space threshold from the original mouse-down.    The click space threshold must be met in both x
and y.

void NXGetClickSpace(NXEventHandle handle, NXSize *area)

This call returns the current click space threshold in the structure pointed to by its area argument.

void NXSetMouseScaling(NXEventHandle handle, NXMouseScaling *scaling)

This call sets the current mouse scaling to the values contained in the NXMouseScaling structure
pointed to by its scaling arg. When the event system receives a mouse motion event, it looks at the
amount of mouse motion that has occurred in its last timing interval (roughly 0.014 seconds).    That
amount of motion, in pixels, is then compared to the first entry in the scaleThresholds component of
the current mouse scaling.    If the amount of mouse motion is greater than that threshold, it keeps
going to the next entry in the thresholds array.    Once the correct entry of the thresholds array is
found, the event driver looks in the corresponding element of the scale factors array, found in the
scaleFactors component of the structure.    It then multiplies the mouse motion by that scale factor.
The scaling data structure may have up to NX_MAXMOUSESCALINGS entries in its
scaleThresholds and scaleFactors arrays.

Mouse Scaling Example

For example, let the numScaleLevels component be 2, and the scaleThresholds array contain 3
and 6, and the scaleFactors array contain 2 and 4.    Then, if the mouse moved by a cartesian
distance of 4 pixels, it would get to the first element of the thresholds array (3), since it was less
than second element (6).    This would cause the driver to multiply the mouse motion by the
corresponding scale factor, which in this case is 2. Thus the cursor would move twice as far as the
mouse. Thus, the affect of mouse scaling is to cause the cursor to move nonlinearally faster than
the mouse as both are speeded up.    This is very useful on the large screen of a NeXT machine.

void NXGetMouseScaling(NXEventHandle handle, NXMouseScaling *scaling)

This call returns the current mouse scaling thresholds and factors in the NXMouseScaling structure
pointed to by scaling. The number of entries in these arrays is given by the numScaleLevels
component of the structure.

extern void NXEnableMouseButton(NXEventHandle handle, NXMouseButton button)

This call configures the mouse buttons to be tied (NX_OneButton), to use the left button for menus
(NX_LeftButton) and the right button for click events, or to use the right button (NX_RightButton) for
menus and the left button for click events.    NXMouseButton is a C enum    with the values
NX_OneButton, NX_LeftButton, and NX_RightButton.

extern NXMouseButton NXMouseButtonEnabled(NXEventHandle handle)

This call returns the current mouse button configuration.

void NXResetMouse(NXEventHandle handle)

This call resets all of the user preference items for the mouse to their default states.    The click time
threshold, click space threshold, mouse scaling thresholds and factors, the mouse handedness,
and the autodim time are all reset.    The reset operation undims the display, resets the AutoDim
threshold to 1800 seconds, the mouse button mode to NX_OneButton, and restores the startup

mouse scaling,    click spacing and timing.

Screen Functions

void NXSetAutoDimThreshold(NXEventHandle handle, double threshold)

This call sets the autodim period to threshold seconds. The autodim period is the number of
seconds from the last generated user event until the screen automatically dims to one-fourth of its
original value.    This is done to prolong the life of the screen phosphor.

double NXAutoDimThreshold(NXEventHandle handle)

This call returns the current autodim period in seconds. This is equivalent to the value set by
NXSetAutoDimThreshold().

double NXAutoDimTime(NXEventHandle handle)

This call returns the current autodim time in seconds. This is the number of seconds until screen
dimming will take place.    It is determined by the autodim period.    The value will be less than or
equal to zero if the screen is currently dimmed.

void NXSetAutoDimState(NXEventHandle handle, BOOL state)

This call sets the current state of auto-dimming.    A state of YES forces the display to be dimmed.   
A state of NO undims the display and sets the time until autodim to the current autodim threshold.

BOOL NXAutoDimState(NXEventHandle handle)

This call returns the current state of auto-dimming.    A return value of YES indicates that the display
is dimmed. A return value of NO indicates that the display is not dimmed.

void NXSetScreenBrightness(NXEventHandle handle, double brightness)

This call sets the brightness level of the MegaPixel display to brightness, a value between 0.0 and
1.0. This level is immediately reflected on the screen, and is saved in the parameter RAM.   
Brightness values can range from 0.0 to 1.0 inclusive; if a value outside of this range is passed, it
will be clipped to the legal values.

double NXScreenBrightness(NXEventHandle handle)

This call returns the current screen brightness level as a double in the range 0.0 to 1.0.

void NXSetAutoDimBrightness(NXEventHandle handle, double brightness)

This call sets the brightness level to be used when the screen is dimmed.    brightness should be a
value in the range 0.0 to 1.0.

double NXAutoDimBrightness(NXEventHandle handle)

This call returns the brightness level to be used when the screen is dimmed, as a double in the
range 0.0 to 1.0.

Volume Functions

void NXSetCurrentVolume(NXEventHandle handle, double volume)

This call sets the attenuation level of the sound output to level. This level is immediately reflected in
any ongoing sound output, and is saved in the parameter RAM.        A volume value of 1.0 results in
the maximum volume.    Volume levels can range from 0.0 to 1.0 inclusive; if a value outside of this
range is passed, it will be clipped to the legal values.    The same volume is applied to both left and
right sound channels.

double NXCurrentVolume(NXEventHandle handle)

This call returns the current volume level in the range 0.0 to 1.0.

Wait Cursor Functions

void NXSetWaitCursorThreshold(NXEventHandle handle, double threshold)

This call sets the wait cursor threshold (in seconds) to threshold. When it has been determined that
an application is busy, this is the time that will elapse before putting up the wait cursor.

double NXWaitCursorThreshold(NXEventHandle handle)

This call returns the current wait cursor threshold    in seconds.

void NXSetWaitCursorSustain(NXEventHandle handle, double sustain)

This call sets the wait cursor sustain time in seconds. This is the minimum amount of time the wait
cursor will remain up.

double NXWaitCursorSustain(NXEventHandle handle)

This call returns the current wait cursor sustain time in seconds.

void void NXSetWaitCursorFrameInterval(NXEventHandle handle, double rate)

This call sets the wait cursor animation frame interval in seconds. This is the amount of time
between successive wait cursor frames.    A value of zero prevents the wait cursor animation from
running.

double NXWaitCursorFrameInterval(NXEventHandle handle)

This call returns the current wait cursor frame interval in seconds.

Known Problems

· Mouse button actions and keystrokes can be lost on NeXT computers.    This
happens less frequently for the NeXT ADB keyboard than for older NeXT
keyboards.

