
Release 3.3 Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

3.3 Release Notes:
Project Builder

This file contains release notes for both the 3.2, 3.1, and 3.0 releases of Project
Builder. Items specific to the 3.2 release are listed first, and the Release 3.1 and 3.0
notes follow.

Notes Specific to Release 3.3

Bugs Fixed in Release 3.3

Reference: 40637

Problem: Bundle extensions set in Project Builder don't get written to the Makefile
on a PA-RISC system.

Description: Bundle Extensions are not written to the Makefile from the

attributes section of Project Builder. The BUNDLE_EXTENSION entry in
Makefile for Project Builder never exists on PA-RISC systems.

Notes Specific to Release 3.2

New Features

The following new features have been added to Project Builder since Release 3.1.

· Finder mode.
A new mode, Finder, has been added to the project window.    It supports
searching a project for a string.    When the string found, the results appear in the
area at the bottom of the window.    Clicking a result causes Edit to open the file
and highlight the string.    The ªOptionsº button brings up a panel that allows you to
limit or expand the search.

· Tool project type.
A new project type has been added.    Tools are executables, but they are not
applications.    Resources are not supported, and no main file is generated.    They
are intended to be used in two ways.    A stand-alone executable, that the user will
execute, can be created using the ªNew projectº command.    A tool can also be
embedded in an application or bundle by creating a tool subproject using the
ªNew subprojectº command.

Bugs Fixed in Release 3.2

These bugs have been fixed in Release 3.2:

Reference 29714

Problem Interface Builder and Project Builder don't pay attention to umask.

Description Project Builder, Interface Builder, and Edit all ignore the user's default
permissions when creating files.    All files are readable by all, and writable
by only the user.

Reference: 34465

Problem: The <Default> target isn't provided as a build target.

Description: The <Default> target isn't in the build panel target pop-up list.    <None> is
there instead, but its use causes the target ª<None>º to be built instead of
the default target.

Notes Specific to Release 3.1

New Features

The following new features have been added to Project Builder since Release 3.0.

· Support for multiple architecture builds (fat files).
Project Builder has been enhanced to allow the developer to build applications
that will run on both the Intel and Motorola versions of NEXTSTEP.    In Builder
mode there is now a button labeled ªOptions...º.    This brings up a panel which
can be used to add arguments, set the remote host, and the architecture(s) that
the resulting application will be able to run on.    By default, applications are built to
run on the type of machine that Project Builder is running on, but this default can
be changed using the Preferences panel.

· Sounds.
Project Builder will now (optionally) play different sounds when a build succeeds
and when one fails.    These can be specified in the preferences panel.

· User settable tools.
Project Builder can now be configured to use different tools.    The editor,
debugger, and builder can all be set from the preferences panel.    Note:    The
editor selected here will only be used when clicking on error messages.    Opening
files from the Files mode will still use the system default editor for the file type
being opened.

· Makefile preamble and postamble templates.
Project Builder now installs Makefile preambles and postambles by default.   
These files can be modified to supplement the building of the project.    They can
also be found in /NextDeveloper/Makefiles/app to be copied and used in an

existing project.

· Target PopUpList.
The build panel now contains a popuplist which allows the user to choose the
target to be built.    Additional targets can be added by selecting ªAdd...º from the
list.    These targets are not saved across invocations.    To add permanent targets
to the popup use the Preferences panel.

Bugs Fixed in Release 3.1

These bugs have been fixed in Release 3.1:

Reference 29595

Problem Project Builder can create a faulty makefile if several libraries are specified.

Description If many libraries are specified in Project Builder, the LIBS line in the
resulting makefile can contain an extra space. Here is an example of the
LIBS line generated in such a case:

LIBS = -lcommon_g -lipc -lMedia_s -lNeXT_s -l\
 MallocDebug

The space between the ª-lº and ªMallocDebugº will cause an error at link
time.

Workaround Manually edit the makefile to eliminate the extra space.

Reference: 29346
 

Problem: If there are no libraries, then the Project Builder generated Makefile dies
 

Description: To reproduce:
 

1. Create a project
2. Go to Libraries
3.    Remove NeXT_s and Media_s with Command-r
4. Save
5. Build

 

make gives you the following:
 

Make: Infinitely recursive macro? Check for substitutions like
                LIBS = -lNeXT_s -lsys_s $(LIBS)
Stop.

 

This is because of following generated Makefile source
 

LIBS = DEBUG_LIBS = $(LIBS)
PROF_LIBS = $(LIBS)

Reference: 28391
 

Problem: Once set, the application icon can't be changed to default icon.
 

Description: In Project Manager, if you set the application icon, there is no way (short of

editing the makefile and PB.project) to change the icon back to the default
one.

Known Problems

These new bugs have appeared since Release 3.0.

· The <Default> target is not in the build panel target popup.    <None> is there
instead, but its use causes the target ª<None>º to be built instead of the default
target.    A workaround is to add the <Default> target using the target add panel.   
(Fixed in 3.2)

Notes Specific to Release 3.0

These notes were included with the Release 3.0 version of Project Builder.

Release 3.0 Release Notes:
Project Builder

Project Builder is a new tool for release 3.0.    It takes over the project maintenance
role from InterfaceBuilder, and adds quite a bit of new functionality.    Some of its

features are described below.

· Converting Old Projects.
To convert an existing IB.proj, simply open it, either by double clicking on it in
Workspace or by using Project Builder(PB)'s open panel.    When you save the
resulting project, it will be saved as a ªPB.projectº file in the same directory.   
Open this file from now to work with the project.

· Creating New Projects
To create a new project, use the new command in the Project Menu.    You will be
given the choice of creating an application, bundle, or InterfaceBuilder palette.   
First select a directory.    If you want the project to be created in that directory, just
hit return.    A project named ªPB.projectº will be created there.    If you type
anything other than ªPB.projectº a new directory will be created with that name,
with a PB.project in it.    All necessary files for the project type you selected will
also be created.

· The Project Window
The project window has three modes.    They are: Attributes, Files, and Builder.   
The Attributes mode lets you set attributes on your project.    The Files mode
allows you to add, remove, or open the project's files.    The Builder mode allows
you to build the project.

· Adding Files to the Project
There are several ways to add a file to a project.    The file must exist first.    PB

does not create files for you, except when you are creating a brand new project.   
The file can either be in the project directory itself, or somewhere else.    To add it
do one of the following.

1) Drag it from workspace into the project window (in Files mode).    If you drag it to
the suitcase it belongs in, that suitcase will open up.    If you let it go, it will be
added to that suitcase.    If instead you drag it to the project suitcase, the suitcase
will open up as the suitcase that the file will be added to (if PB can figure it out).   
The Classes suitcase takes .m files, the Headers takes .h files, and so on.    Other
Sources refers to files that are not headers or classes, but need to be compiled
and linked into the target of the project (application, bundle or palette).    Other
Resources refers to files that need to be copied into the target.    Supporting Files
refers to files that are necessary to maintain the project, but don't end up in the
target.

2) You can select a suitcase and use the ªAdd...º command from the ªFilesº menu.   
You will get a panel allowing you to add a file.

3) You can use the Service that PB supplies to other applications.    Some apps will
have an entry called ªProjectº in their Services menu.    Off of this there will be two
commands, ªAdd toº and ªBuildº.    The ªAdd toº command will add the currently
selected file to the project that is in the same directory.

· Building the Project
Building the project actually runs a ªmakeº in the directory that the project is in.   

Status is indicated, and errors are reported.

There are several ways to build a project.    You can click on the ªRunº button to
build and run an application.    You can click on the ªDebugº button to build and
debug an application.    In ªBuilderº mode, you can click on the ªBuildº button to
build the target.    Builder mode gives you two other fields.    The ªArgsº field will be
passed through as an argument to the make that PB starts.    The ªHostº field
allows you to perform the make on a different host.

Once the build is running, any syntax errors will appear.    You can click on them to
bring up Edit at the line the error occurred at.

· Shortcuts/Tips
Below is a list of features that may not be obvious at first glance.

1) Alt-clicking on the ªRunº button will run the application without building it first.   
This also works with the ªDebugº button.

2) Control-dragging in a files list allows you to reorder the the files.    This can be
especially important in dealing with libraries, as it specifies the link order.

3) Alt-double-clicking on the icon of a selected file selects that file in Workspace,
instead of opening it.

4) Double-clicking on a suitcase, or its entry in the browser is equivalent to using the

ªFiles->Addº menu command with that suitcase selected.

5) Command-double-clicking on a source file opens both the file and its associated
header file, if it exists.

