
Release 3.3    Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

3.3 Release Notes:
Application Kit

This file contains developer release notes for the 3.3, 3.2, 3.1, and 3.0 releases of the
Application Kit.    Items specific to or introduced in Release 3.2 are listed first, followed
by the 3.1 and 3.0 notes.    Some user-visible changes to the application architecture
have been moved to
/NextLibrary/Documentation/NextAdmin/ReleaseNotes/AppBehavior.rtf.

 
 
 Notes Specific to Release 3.2

Known Bugs

NXRunAlertPanel

In all 3.X releases NXRunAlertPanel incorrectly tries to localize the arguments it
receives.    If one of these arguments is not found as a key in the localization string
table, the system retains a reference to that pointer and uses it as the localized
value.    This results in the correct display, but if that argument is later freed or
modified, the application gets hashtable error messages or crashes.    The
workaround is to be sure that you call this function with strings that you know will
not change.    Use either literal strings or make copies of dynamically created
strings that may change later.

Text Delegate Methods

Before the Text object sends the delegate method textWillStartReadingRichText:,
it checks to see if its delegate responds to it. Unfortunately, the text object checks
to see if the delegate responds to a method named
textWillStartReadingRichText:text:runs:; thus, the delegate method, even
though it might be implemented, is never invoked. The same bug exists with
textWillFinishReadingRichText:.

If you would like to respond to these delegate methods, implement the following
stub methods in your delegate:

± textWillFinishReadingRichText:obj text:(void *)text runs:(void *)runs

± textWillStartReadingRichText:obj text:(void *)text runs:(void *)runs

These methods will never be invoked; so all they need to do is return self.

This bug exists in the 3.0 and 3.1 releases as well.

NXHelpPanel

If additional help is located in a directory other than YourProject/English.lproj/Help,
and that help is to be loaded with the NXHelpPanel method,
"addSupplement:inPath:", the help directory must not be compressed (i.e. do not
invoke the "compresshelp" utility on it).

NXJournaler

Earlier versions of the documentation implied that journal recording could be made
non-abortable by or'ing in the NX_NONABORTABLEMASK flag when calling the
setEventStatus:soundStatus:eventStream:soundfile method.    This was
incorrect.    In earlier versions, if this flag was included journal recording would not
work.    In the 3.2 version, this flag will simply be ignored if the request is for journal
recording.    If the request is for journal playback, the flag will be accepted and will
work as it has in the past.

 Notes Specific to Release 3.1

New Methods

± ignoreModifierKeysWhileDragging

This method has been added to the NXDraggingSource informal protocol.    (This
protocol is implemented by the object that supplies an image that can be dragged
from one window to another, the source object passed as an argument in the
dragImage:... message that initiates a dragging session.)    If
ignoreModifierKeysWhileDragging is implemented to return YES, the modifier
keys held down by the user will not cause the cursor to change (to the link or copy
cursor, for example), nor will they be used when deciding whether to allow the
operation.

An application can use this method when implementing the dragging of private data
types (e.g., patterns).    The benefit is that the cursor will not switch to the copy or
link cursor when the user applies the modifier keys, but the operation can still
succeed and the application can apply its own semantics to the use of the
modifiers.    This method existed undocumented in 3.0, and is invoked under that

release as well.

This method should never return YES when the user drags a file (when the data is
NXFilenamePboardType), since files can be dragged between applications.    The
modifier keys have well-defined meanings in the user interface for dragging files.

± (BOOL)getMountedRemovableMedia:(char **)mountedMediaPathnames
± (BOOL)mountNewRemovableMedia:(char **)newlyMountedPathnames
± (void)checkForRemovableMedia

These methods have been added to the NXWorkspaceRequestProtocol formal
protocol, which is implemented by the object returned by the NXApp's workspace
method.    When an application is ready to let the user access files that might be on
a removable disk (for example, when it puts up a custom Open panel), it can use
these methods to get a list of currently mounted removable devices, and mount
new devices if necessary.

getMountedRemovableMedia: fills in mountedMediaPathnames with a zero-
terminated tab-separated list of full pathnames to all currently mounted removable
media.    It returns YES if it was successful in filling in mountedMediaPathnames
and NO otherwise.

On systems that don't send an interrupt or other notification that a disk has been
inserted, an application must invoke either mountNewRemovableMedia: or
checkForRemovableMedia before invoking getMountedRemovableMedia:.   
Both of these methods cause the Workspace Manager to poll the drives to see if a
disk is present.    If a disk has been inserted but not yet been mounted, these
methods will cause the Workspace Manager to mount it.   
mountNewRemovableMedia: waits until the new disk has been mounted and then
fills in    newlyMountedPathnames with a zero-terminated tab-separated list of full
pathnames to all newly mounted disks.    It returns YES if it was successful in filling
in newlyMountedPathnames, and NO otherwise.    checkForRemovableMedia
does not wait until the new disk is mounted; instead, it asks the Workspace
Manager to mount the disk asynchronously and returns immediately.

These methods are new in 3.1, and your application will crash if you try to use them
on a 3.0 system.    Therefore, before you send them you should test whether the
object returned by [NXApp workspace] responds to these methods with
respondsTo:.

Semantic Changes

 
Secure Ports

In 3.0, a change was made so that, unless the user enabled the Public Window
Server preference, the ports of Listener objects were registered securely (i.e.,
under modified names).    This allowed applications launched by the user on the
same machine to communicate with each other, but prevented other machines on
the network from looking up their ports    Because this caused problems for some
existing applications that need to rendezvous over the network, the Listener class
has been changed in 3.1 to register ports securely only for applications built under
Release 3.0 or later.    Applications built under Releases 1 or 2 will have their ports
registered under the plain port name given the Listener.

Users who wish to force pre-3.0 applications to register their ports securely may set
the NXSecureAppListenerPorts default to YES.    This default may be set for
particular applications or for all applications by specifying "GLOBAL" as the
application name.

If a 3.0 application wishes to publish a port under a nonsecure name for
intermachine use, it should override the Listener's checkInAs: method and publish
the port under an unprotected name using netname_check_in().

NXColors

Release 3.1 continues the change in direction for NXColors begun in Release 3.0.

Under 2.0, all colors were device dependent, and there were no named colors
(such as PANTONE).    Under 3.0 and 3.1, NXColors can basically be in one of
three flavors:

· Device dependent, such as CMYK,
· Device independent, such as RGB, HSB, or grayscale, and
· Named, such as PANTONE.

Colors in the last category come with lookup tables to provide the ability to
generate the correct color (CMYK, RGB, or whatever) on a given device.

This change means that colors that look the same on a device (such as the screen)
might look different on another device (such as the printer).    Thus, freely
converting an NXColor from one type to another without regard to how the user
chose it (from the color panel) might produce undesirable results on certain
devices, or cause the application to discard certain aspects of the color (its device
dependence or independence, its name, etc).

In line with this change in direction, Release 3.1 makes these specific modification:

· In 3.1, NXEqualColor() will return YES if and only if the two colors will produce
the same results on any printer. This means that a color created from CMYK
components is not equal to a color created from RGB components, as the

former is device dependent and the latter is device independent. Similarly, a
PANTONE color is never equal to a color created from CMYK or RGB
components.

· Under 3.0, functions such as NXConvertColorToCMYK() and
NXYellowComponent() reported the CMYK components of PANTONE colors by
simply converting the screen color (specified in RGB) to CMYK. The results
were not satisfying to users, as they lacked the K component and the CMY
components were meaningless.

Under 3.1, when an NXColor is asked for its CMYK color components (if it
doesn't record them directly), it will first attempt to get or compute them before
resorting to the simple-minded conversion between its own color components
and the desired ones.    This means that if a PANTONE (or other named) color is
asked for its CMYK components, the values will be obtained from the
DefaultCMYK device table. This feature can be disabled by setting the value of
the NXSmartNamedColorConversion default to NO.

Under 3.1, developers may wish to test their applications with the NXCMYKAdjust
default enabled (as described above), and assure that the application behaves
reasonably both on the screen and on the printer.    This will help verify that the
application uses NXColors and the Color panel correctly.    Note that when CMYK
adjustment is enabled, the algorithms that convert between RGB and CMYK

components of a color also change; they return values that match the way the
colors appear on the screen.    This could be an area of trouble in some
applications.

Other Changes

New Utility

A new utility called compresshelp has been released in the /usr/bin directory.    If
you are using the NeXT Help System, and have one or more help directories in
your project, this utility can be used to compress the files in those directories into
one file called DirectoryName.store.    In the case of the default Help directory
(named "Help"), a file called Help.store will be created.    When Help is invoked for
your application, the Help system will first look for a Help directory and then for a   
Help.store file.    By default a Help.store file, and not a Help directory will be
placed in your *.app.

The .store file created by compresshelp will contain only files found in the Help
directory which have a .rtf, .rtfd, .tiff, or .eps extension.    compresshelp will warn
you about files it has skipped.

By default compresshelp will create a compressed output file named

DirectoryName.store.    However if the "-o OutputFileName" option is specified, the
compressed help will be placed in a file named OutputFileName.store.

Typically you will not need to invoke this utility directly, as it is invoked automatically
by the Makefiles supplied by Project Builder for default help directory, named Help.
If you have other help directories, and you want them to be compressed, you will
have to explicitly invoke this utility in your Makefile.postamble.

Trapping Illegal Floating Point Operations

A new default named NXTrapIllegalFloatingPointOps has been added to allow
catching illegal IEEE floating point operations. These operations include dividing 0
by 0, invalid comparisons to NaN, and converting out-of-range floating point
numbers to integral values. Running with this default set to YES enables the trap:

appname.app/appname -NXTrapIllegalFloatingPointOps YES

If your application performs an illegal operation, a floating exception will be raised
and the application will crash, allowing you to debug the problem. Given that the
results of most invalid floating point operations are machine-dependent, using this
default may help you chase down floating-point related problems encountered while
porting between architectures. Don't leave this default enabled except when
debugging.

Bug Fixes
 

The following bugs are among those that have been fixed in the 3.1 version of the
Application Kit:

Developer Bugs

Reference 20657

Problem When the user changed the update mode of a data link to
"continuous," an out-of-date link would not immediately update.

Description Users expect "continuous" data links to be "in sync" with the source
data.    In 3.1,    when the update mode is changed to "continuous,"
the system immediately checks whether the data is current, and if   
not, updates it.

Reference 29821

Problem Filter services weren't executed with the full path.

Description The Application Kit invoked filter services using only the application
name, not the full pathname.    Some filter services expected the full

path name.    In 3.1, the Kit executes all filter services with the full
pathname.

Reference 29866

Problem Data links with a "continuous" update mode would not update when
changes made to the source document were reverted.

Description A "continuous" data link should ask the source document for new
data when changes made to the document are undone.    In Release
3.1, it does.

Reference 30009

Problem The frames that outline linked data in response to the Show Links
command were not drawn correctly in scaled coordinates.

Description Corrected in 3.1.

Reference 30234

Problem fileOperationCompleted: methods were not being invoked.

Description When requested to perform a file operation, the Workspace Manager
might choose to do it asynchronously.    If so, the Application object's
delegate is supposed to receive a fileOperationCompleted:
message notifying it that the operation was accomplished.    In 3.0,
the message wasn't getting through.

Reference 30393

Problem Some NXCachedImageRep objects would generate an error when
archived.

Description The NXSizeBitmap() function was incorrectly calculating the size of
some images.

Reference 30694

Problem The data links mechanism strips the /private prefix on pathnames,
sometimes resulting in invalid paths.

Description Removing /private from a pathname sometimes produces a bogus
path, typically where the directory is /private/tmp.    In 3.1, /private
is stripped only where the result is a valid and equivalent path.

Reference 30807

Problem It wasn't possible to read images from more than one Display
PostScript context.

Description After reading (getting bitmap data for) a rendered imageÐfor
example, by invoking NXBitmapImageRep's initData:fromRect:
methodÐin one context, an application could not then read an image
in a different context.    The problem has been corrected.

Reference 31024

Problem draggedImage:beganAt: notifications were received before the
dragged image was on-screen.

Description In 3.0, there was a race condition between   
draggedImage:beganAt: messages and the dragged image
appearing on-screen.    This race made it difficult for
draggedImage:beganAt: methods to erase underneath the dragged
image without an annoying flash.    In 3.1, you are guaranteed that
the dragged image is on-screen before the message is sent, and
thus you can erase under the image without flashing.

Reference 31049

Problem NXDataLink's initLinkedToSource:... method would, on rare
occasions, cause a crash.

Description The cause of the crash has been removed.

Reference 32870

Problem windowWillMove: sender is not the Window.

Description In 3.0, the window delegate message windowWillMove: would
pass a view from the Window as the sender parameter instead of the
Window itself.    It has been corrected in 3.1 to pass the window.   
Apps compiled under 3.0 that worked around this bug will not be
affected..

    Notes Specific to Release 3.0

These notes were included with the Release 3.0 version of the Application Kit.     
Sections that are no longer relevant have been marked with an italicized comment.

Known Problems

Known problems in the Application Kit:

· The command line program genstrings will crash if the specified output file
cannot be created.

Incompatible Changes Since 2.1

Incompatible changes made to the Application Kit since Release 2.1:

· The global variable NXSelectionPboard has been renamed to

NXGeneralPboard.

· The following Speaker/Listener messages have been obsoleted and replaced with
improved API described below under "Interapplication Image Dragging" and
"Workspace Protocol".

- (int)registerWindow:(int)windowNum toPort:(port_t)aPort;
- (int)unregisterWindow:(int)windowNum;

- (int)icon¼; (the set of messages received during dragging)
- (int)launchProgram:(const char *)name ok:(int *)flag;
- (int)getFileInfoFor:(char *)fullPath app:(char **)appname
 type:(char **)type ilk:(int *)ilk ok:(int *)flag;
- (int)getFileIconFor:(char *)fullPath TIFF:(char **)tiff
 TIFFLength:(int *)length ok:(int *)flag;
- (int)unmounting:(const char *)fullPath ok:(int *)flag;
- (int)powerOffIn:(int)ms andSave:(int)aFlag;
- (int)extendPowerOffBy:(int)requestedMs actual:(int *)actualMs;

· The function PSsetpattern() no longer takes an argument.    This change is only
visible to programs recompiled under 3.0, and will not affect existing applications
built for a 2.x release.

· The constants NX_RESIZEBUTTONMASK and NX_ALLBUTTONS have been
removed for 3.0.    In place of using NX_RESIZEBUTTONMASK, you should create a
window with style NX_RESIZEBARSTYLE. In place of NX_ALLBUTTONS you should
use (NX_CLOSEBUTTONMASK|NX_MINIATURIZEBUTTONMASK).

· PrintInfo has been changed to use the NXPrinter object for specific
information about the printer that is being used.      See the description of
NXPrinter above.    Thus, the following methods have been removed from the
public API:

- setManualFeed:(BOOL)flag;
- (BOOL)isManualFeed;
- setPrinterName:(const char *)aString;
- (const char *)printerName;
- setPrinterType:(const char *)aString;
- (const char *)printerType;
- setPrinterHost:(const char *)aString;
- (const char *)printerHost;
- setResolution:(int)anInt;
- (int)resolution;

· Because of the addition of updateFromPrintInfo and finalWritePrintInfo
(see below), the following methods have been removed from PrintPanel API:

- readPrintInfo;
- writePrintInfo;

· The following methods have been removed from the NXColorPanel API :

+ new
+ newColorMask:
+ newContent:style:backing:buttonMask:defer:
+ newContent:style:backing:buttonMask:defer:colorMask:
- updateCustomColorList
- (int)colorMask;
- setColorMask:(int)colorMask

The only initializer for this class is now

+ sharedInstance:(BOOL)create

The setColorMask: method was always a no-op.    The initial color mask can
now only be set before the ColorPanel is instantiated, using the setPickerMask:
method (see below).

· The following constants have been renamed in the NXColorPanel API :

NX_CUSTOMCOLORMODE -> NX_COLORLISTMODE
NX_BEGINMODE -> NX_WHEELMODE

NX_CUSTOMCOLORMODEMASK -> NX_COLORLISTMODEMASK
NX_BEGINMODEMASK -> NX_WHEELMODEMASK

· NXReadBitmap(), NXSizeBitmap(), and NXDrawBitmap() have been moved
from tiff.h to graphics.h. Because tiff.h imports graphics.h, this
shouldn't cause any source changes.    NXImageBitmap(), now obsolete, has
been removed from tiff.h.

· In 2.1, in windows that become key only if needed a view that did not accept first

mouse would be passed the mouse clicks even if the window was not key.    In 3.0
this has been fixed.      Custom controls in these windows should return YES to
acceptsFirstMouse:.    Applications compiled under 2.1 are not affected by this
change.

· The global variables NXSystemFont and NXBoldSystemFont have been
removed from the API.    Use the new font methods below in their place.

· The location field in flags changed events is no longer valid in 3.0.    Also note that
the location field in key down and key up events has never been valid.

· The defaults.h header file has moved from the appkit headers directory to the
defaults directory. Thus imports of <appkit/defaults.h> should be changed to
<defaults/defaults.h>

New Features

· Color dragging

Color-dragging is now accomplished using the new dragging API (see below).   
Thus, though supported, the acceptColor:atPoint: method should be
avoided.    For those who continue to use acceptColor:atPoint: in any case,
two points should be kept in mind: 1) This method will now be properly called on

flipped views (this did not used to be the case in earlier versions) and 2) If your
view implements both the dragging protocol and the acceptColor:atPoint:
method, your acceptColor:atPoint: method will never get called!!

To support the new color-dragging methodology, a new Pasteboard type has been
added called NXColorPboardType.    You can read and write colors from the
Pasteboard using the following functions:

NXColor NXReadColorFromPasteboard(id pasteboard);
void NXWriteColorToPasteboard(id pasteboard, NXColor color);

Here is a look at what your code might look like to replace your current
acceptColor:atPoint:

- initFrame:(NXRect const *)theFrame
{

[super initFrame:theFrame];
[self registerForDraggedTypes:&NXColorPboardType count:1];
return self;

}

- (NXDragOperation)draggingEntered:(id <NXDraggingInfo>)sender
{

if ([sender draggingSourceOperationMask] &
NX_DragOperationGeneric) {

return NX_DragOperationGeneric;
} else {

return NX_DragOperationNone;
}

}

- (BOOL)performDragOperation:(id <NXDraggingInfo>)sender
{

NXPoint p = [sender draggingLocation];
NXColor c = NXReadColorFromPasteboard(

 [sender draggingPasteboard]);
[self acceptColor:c atPoint:&p];
return YES;

}

· Application Tile

A new named image, NXAppTile,    has been added to allow apps to draw in their
application icon without destroying the standard look. Developers who want to draw
in their application icons should find this image with findImageNamed: and
composite it at the lower left corner of the content view of the window. Then any
custom drawing should be done above, centered on this image.

· RTFD support in the Text object

There is now support in the text object for reading, writing, and editing .rtfd file
format.

- setGraphicsImportEnabled:(BOOL)flag;

Enables dragging of graphics into the text object.

- (BOOL)isGraphicsImportEnabled;

Returns whether graphics importing is enabled.

- (NXRTFDError)saveRTFDTo:(const char *)path
 removeBackup:(BOOL)removeBackup
 errorHandler:errorHandler;

Saves the contents of the text object to an .rtfd format file. The file name passed
in should end with .rtfd. If removeBackup is YES, the backup document that is
created to safely save the document is    removed.

- (NXRTFDError)openRTFDFrom:(const char *)path;

Loads an .rtfd document into the text object.

- writeRTFDTo:(NXStream *)stream;

Writes a flattened form of the .rtfd document into a stream. See
readRTFDFrom: to read the contents of such a stream.

- readRTFDFrom:(NXStream *)stream;

Reads from a stream an .rtfd document, written out by the writeRTFDTo:
method.

- writeRTFDSelectionTo:(NXStream *)stream;

Writes a flattened form of the .rtfd selection into a stream. See
replaceSelWithRTFD: to read the contents of such a stream.

- replaceSelWithRTFD:(NXStream *)stream;

Reads from a stream an .rtfd document, replacing the current selection.    This
reads the output of    the writeRTFDSelectionTo: method.

· New Filter Services Support

There are three new types of services: Filter services, Print Filter services and

Spell-Checking services.

Filters are services which have no Services menu entry and which have the
semantic of converting a piece of data from one type to another.    Filter services
are accessed via the following Pasteboard methods:

+ (NXAtom *)typesFilterableTo:(const char *)type;
+ newByFilteringFile:(const char *)filename;
+ newByFilteringData:(id <NXData>)data
 ofType:(const char *)type;
+ newByFilteringTypesInPasteboard:(Pasteboard *)pboard;

The last three create a Pasteboard which has declared in it all the types which the
argument to the method can be filtered to.    When you actually ask for the data of a
type in the returned Pasteboard, the filter service will be invoked.    Thus, calling
these methods is reasonably cheap until you actually ask for the data.

The first method is sort of the opposite of the last three.    Given a type, it will return
a null terminated list of types which can be converted TO that type.

For convenience (since many filter services operate on files), the following
functions are provided to go between filename/contents pasteboard types and file
extensions:

NXAtom NXCreateFilenamePboardType(const char *fileType);
NXAtom NXCreateFileContentsPboardType(const char *fileType);
const char *NXGetFileType(const char *pboardType);
const char **NXGetFileTypes(const char *const *pboardTypes);

Creating a filter service is very similar to creating a regular service except that
instead of using the "Message:" keyword in your Services description, you use the
"Filter:" keyword.

In addition, there are a few special kinds of "Port:" you can use for filter services...

For those which operate on NXFilenamePboardType, there are special ports
called NXUNIXSTDIO and NXMAPFILE.    The first will cause your filter to get
launched with the name of the file to be converted on the command line and which
expects the data to be put in the Pasteboard to come out of the filter's stdout.    This
is mostly for compatibility with existing filters which work this way, it is strongly
encouraged that you NOT use this mechanism because it causes the filter to be
repeatedly launched rather than staying around and waiting on a Listener port
(which is much more efficient).    The second one is for file types which map directly
to primitive pasteboard types.    An example of this is .rtf files which map directly
to the NXRTFPboardType.

The other special "Port:" is for associating types which can be converted from one
to the other with no actual modification to the data.    It is called NXIDENTITY.    An

example of this is the .eps file format which can be "filtered" to the .ps format with
no change.    Remember to be clear about which way the filter is filtering when you
use this port (because, for example, a .ps file can NOT be filtered to .eps using
this special port, only the other way around).

Print Filter services are a specialized form of services which are largely unrelated to
Filter services.    Essentially, these filters take PostScript on their stdin and munge it
and write the result out to a file specified on their command line via "-o
outputfile.ps".    Print Filters can also generate non-.ps files (but still from PostScript
input).    A services description for a Print Filter looks like this:

Print Filter: superps
Executable: ps2superps
Menu Item: Super PostScript Output
Device Dependent: YES

The superps is the file extension to use and is optional and, if not present,
defaults to "ps".    The Executable is the name of the filter (just like in any other
Service not provided by an application).    The Menu Item will appear in a PopUpList
in the SavePanel brought up by the PrintPanel when you choose Save in the
PrintPanel.    Device Dependent is optional (and defaults to NO)--it tells the printing
machinery whether to generate PostScript (which will be stdin to the Print Filter)
which is specific to the type of printer the user has chosen in the PrintPanel before
clicking the Save button.    The Menu Item is fully localizable through the Services

localization mechanisms.

Spell-checking services are accessible via the new NXSpellServer and
NXSpellChecker classes (see under New Classes).

· New Pasteboard Type

In order to better support Filter services and other processes which want to
rendezvous on communicating files as a data type, a new Pasteboard type has
been added to the AppKit:

NXFileContentsPboardType

The first type can only be written or read from the Pasteboard using the methods:

- (BOOL)writeFileContents:(const char *)filename;
- (char *)readFileContentsType:(const char *)type
 toFile:(const char *)filename;

The format of the data written/read to/from the Pasteboard by these methods is
unspecified in 3.0.    These methods are analogous to the methods
writeType:..., so you must be sure to declare NXFileContentsPboardType
before calling the writeFileContents: method.

· TIFF 6.0 Support

The TIFF library has been updated to support revision 6.0 of TIFF.    It should still be
the case that all TIFFs that could be read with the earlier versions of NEXTSTEP
can still be read, and, as an added bonus, some new images can also be
understood.

Under NEXTSTEP 2.0 JPEG images were written using a very early draft of the
new TIFF standard. Because of numerous revisions to this spec, JPEG images
written under 2.0 are pretty much not compatible with anything, except that they
can be loaded under NEXTSTEP 3.0.    JPEG images written under 3.0 are
compatible with the TIFF 6.0 draft but cannot be read back on earlier versions of
NEXTSTEP.

Note that because JPEG compression can be applied to 8-bit images only, non-8-
bit images will be written out as 8-bit when compressed using JPEG.

The TIFF library now also allows writing one-bit images with CCITT Group 3 and
Group 4 compression. It is an error to try to write deeper images with these
compression types.

One of the other changes in NEXTSTEP 3.0 is the way the presence of alpha is
indicated in the TIFF file. Under 2.0, the private Matte tag (32995) was used to

indicate that the extra channel of data was to be interpreted as alpha and the image
data was premultiplied. 3.0 uses the TIFF 6.0-blessed ExtraSamples tag (338) to
accomplish the same thing. Because of the safety checks built into the TIFF reader,
2.0 is actually able to read 3.0 files and deduce that the extra samples are alpha,
despite the fact that the Matte tag is no longer written out.    Thus files with alpha
are interchangable between 2.0 and 3.0 systems. However, tiffutil under 2.0 is not
smart enough to indicate that the file has alpha when the -info option is used;
thus some of the output from tiffutil on a 2.0 system will be misleading on alpha
images written under 3.0.    The -dump option will indicate the presence of
unrecognized tag 338 with a value of 1.

· Dynamic Services

You can now dynamically add Services menu entries to the system by creating a
file or directory with the extension .service and placing it in your normal
application path or one of /NextLibrary/Services,
/LocalLibrary/Services or ~/Library/Services.    The contents of this file
(or, if a directory, a file called "services" inside it) is exactly equivalent to the
contents of a services control file.    After adding the file, call the function
NXUpdateDynamicServices(void) to get the system to recognize your newly-
added services.

· Interapplication Image Dragging (declared in <appkit/drag.h>,

<appkit/View.h> and <appkit/Window.h>)

New support has been added to View and Window for dragging images within and
between applications.    Since the actual data transfer is pasteboard based, any
type of data may be transfered (not just filenames).    A View that wishes to be the
destination for dragged images sends itself the following message, which registers
the Pasteboard data types that it is willing to accept.    (Note that to receive files,
use the NXFilenamePboardType type, not extensions like ".tiff" or ".eps").

- registerForDraggedTypes:(const char *const *)newTypes
 count:(int)numTypes

When an image is dragged into and out of the View, the View is sent messages so
it can respond to the dragging interaction.    These methods are all passed a
sender, which can be queried for information about the object being dragged in.

- (NXDragOperation)draggingEntered:sender

... is sent to the view when the dragged image first enters the view.    The receiver
returns a NXDragOperation to indicate which operation on the data it will perform
(move, copy, link),    which is used to set the cursor as the user drags the image.   
The view should first ask sender for drag source's operation mask (see below) to
know what operations it can choose from.    The default behavior is to return

NX_DragOperationNone, which indicates the dragged image will not be
accepted.

- (NXDragOperation)draggingUpdated:sender

... is sent periodically while the image being dragged remains within the View.    As
with draggingEntered:, an NXDragOpMask is returned.    The default behavior
is to simply return the value last returned by draggingEntered:.

- draggingExited:sender

... is sent when the image is dragged out of the view.

- (BOOL)prepareForDragOperation:sender

... is sent when the image is dropped on the view.    It returns whether the View will
accept the data represented by the dragged image.    The default behavior is to
return YES.

- (BOOL)performDragOperation:sender

... is sent after the dragged image is removed from the screen.    The View should
implement this method to do the real work of importing the data represented by the
image.    It returns whether the View accepted the data.    The default behavior is to

return NO.

- concludeDragOperation:sender

... is sent after the complete dragging interaction is finished, if the destination
accepted the data.

From within the above methods, the receiver can send sender a number of
messages to find out about the drag session:

- draggingDestinationWindow; The Window receiving the image
- (NXDragOperation)draggingSourceOperationMask;

The operation mask supplied by the
source, anded with the operation
indicated by the user by holding down
any modifier keys.

- (NXPoint)draggingLocation; The current location of the mouse in the
Window's coordinate system

- (NXPoint)draggedImageLocation; The current location of the dragged
image in the Window's coordinate
system

- (NXImage *)draggedImage; An NXImage of the dragged image
- (NXImage *)draggedImageCopy; A copy of an NXImage of the dragged

image
- (Pasteboard *)draggingPasteboard; A Pasteboard with the data

represented by the dragged image
- (BOOL)isDraggingSourceLocal; Whether the source is in the same

application
- draggingSource; The source object (if dragging source is

local)
- (int)draggingSequenceNumber; An int identifying this image dragging

session

The object returned by draggedImage remains valid for the duration of the drag
interaction.    The object returned by draggedImageCopy can be retained
indefinitely by the caller, and will not be freed automatically.    Use draggedImage
when you just need to give feedback during the drag interaction.    Use
draggedImageCopy when you need to retain the image for use after the drag is
completed.    Usually you won't call draggedImageCopy until you know the image
has been deposited on your View or Window.

The following method can be sent (only from prepareForDragOperation:) to
the sender to cause the icon to slide to a certain location after the dragged image
has been released and accepted:

- slideDraggedImageTo:(NXPoint *)screenPoint;

All of the above methods can also be used at the Window level instead with a
particular View.    registerForDraggedTypes:count: is sent to the Window
(instead of to a View), and the Window's delegate receives the messages when an
images enters, exits, etc.

To be the source of a drag, an application initiates the dragging session by sending
the following message to a View or Window:

- dragImage:anImage
 at:(NXPoint *)location
 offset:(NXPoint *)initialOffset
 event:(NXEvent *)mouseDownEvent
 pasteboard:(Pasteboard *)dragPasteboard
 source:sourceObj
 slideBack:(BOOL)slideFlag;

anImage is the image to be dragged.    location is initial location of the image.   
initialOffset is the amount the mouse has moved since the initial mouse down
event.    This should be (0,0) unless you track the mouse before calling this method
(possibly to implement some hysteresis before initiating the drag session).    A NULL
pointer is interpretted as (0,0).    mouseDownEvent is the original mouse down
event that was received to start the drag session.      dragPasteboard is a

pasteboard containing the data to be transfered to the destination.    The source
should aquire this pasteboard by using [Pasteboard
newName:NXDragPboard], and declare the data types it can supply to that
pasteboard before calling dragImage:... .    sourceObj is an object that will
receive messages described below during the drag sesssion.    slideFlag
controls whether the image will slide back to the source if it is not successfully
accepted by some destination.

During the drag session, the sourceObj is sent the following messages:

- (NXDragOperation)draggingSourceOperationMaskForLocal:(BOOL)flag

... is sent to request the mask of dragging operations available.    flag indicates
whether the potential destination object is in the same application.

- draggedImage:(NXImage *)image beganAt:(NXPoint *)screenPoint

... is sent after the dragged image has been displayed on the screen,    but before it
has begun following the mouse.

- draggedImage:(NXImage *)image endedAt:(NXPoint *)screenPoint
 deposited:(BOOL)flag

... is sent after the dragged image has been released.    flag indicates whether the
image was successfully deposited on a destination.

Using the NXDragOperation's:    The drag operation provided by the source and
destination are used to help the apps negotiate the type of operation that will be
performed, and to give the user feedback via the cursor shape.    The possible
values are:

NX_DragOperationNone
NX_DragOperationCopy
NX_DragOperationLink
NX_DragOperationGeneric
NX_DragOperationPrivate

"None" means no operation will be taken.    "Copy" means that the data being
dragged will be copied when it is deposited.    "Link" means a link of some sort will
be made to the source of the data.    "Generic" means the data being dragged will
be accepted and the "standard" operation for the given scenario will be performed.
For example, in the "Generic" case the Workspace Manager will move files.    In
color dragging "Generic" simply means a successful association of the dragged
color with the destination.    If data is not being clearly copied or linked in the user's
model "Generic" is the right operation to use.    "Private" means special messages
will be exchanged between the source and destination.    In this case, the system
does not alter the cursor appearance.

A source should respond to draggingSourceOperationMaskForLocal:with a
mask of as many operations as it supports.    This should almost always include
NX_DragOperationGeneric,and NX_DragOperationCopy if this is applicable
(it usually is for files).    NX_DragOperationLink should be included only if there
is an expected linking mechanism for the data, i.e., a destination may make an
ObjectLink to a file.    You may not want to include NX_DragOperationLink if the
source is a file inside a file package, since it may be dangerous for the user to
directly edit this data without the container's knowledge.

A destination responds to its messages with a single operation, not a mask.    A
destination should always ask for the draggingSourceOperationMask and
choose an operation supplied by the source, or else return
NX_DragOperationNone if no operation is workable.    You are also free to
examine the available data types, if this affects your decision.    If the user is using
no modifier keys, the entire mask provided by the source will be visible, and you
should choose the best default operation (usually "Copy" for moving files, "Generic"
for other types, rarely "Links").    If the user holds down a modifer key, his
preference will mask the operations supplied by the source. (The Control key is
"Link", Alternate is "Copy", Command is "Generic").    In this case, the destination
will see only one available operation.    If it is supported, the destination should
return that operation, else NX_DragOperationNone.

· New Defaults

The default NXUseTrueGrays has been added.    If set to YES, then areas of the UI
that use patterns to implement various gray dithers will instead be drawn with the
real gray value.    The most noticeable example of this is in Scrollers.    This default
can be useful when grabbing bits for screen shots.

The defaults NXSystemFonts and NXBoldSystemFonts have been added for
settting the system font and bold system fonts of an application or the system.   
Their values are a list of semi-colon separated font names.    The first available font
is used.

The GLOBAL default NXLanguages has been added.    It can be used to set the
prefered languages to use on an application by application basis.    Its value is a list
of languages separated by semi-colons.    Apps should use Application's
systemLanguages method intead of reading this default directly.

The application defaults NXUseCalibratedColor and
NXColorCalibrateLevelOneOps have been added to disable color calibration
features of the kit for applications that break or exhibit strange behaviour. These
two defaults are described elsewhere in these notes.

The application default NXMaxSharedImageWidth has been added to control how
non-unique NXImages share caches within an application. This default should be
used for debugging purposes only and is described elsewhere in these notes.

New Classes

· NXDataLinkManager, NXDataLink, NXSelection, NXDataLinkPanel

These four classes have been added to the AppKit to support the dynamic linking of
data between documents of different applications.    Information on this feature can
be found in the ObjectLinks release notes.

· NXColorList

Instances of NXColorList manage lists of named colors.    Example of color lists
include PANTONE and the various lists that appear in the "Custom Color" mode of
the Color Panel. In addition, an application can use NXColorLists in managing
document-specific color lists.

Color lists come in two varieties: Ones that generate named colors and ones that
don't.    By default, color lists generate unnamed colors; thus, once the color is
handed out, it has no idea what its name was or what list it came from.

Named colors not only remember their color value but also the name of the list and
the color. When they are asked to print the color (through NXSetColor()), these
colors generate a reference to the color list and name to allow the printing system
to search for the correct value for the device.    Only lists such as PANTONE are set
up to generate named colors.    Such lists are also considered immutable and
attempts to change them at runtime will raise errors.

Color lists, except for those created at runtime and saved out programmatically, are
stored in file-wrappers. This allows for localized and/or device-dependent versions
of the lists.

· NXColorPicker

This class is added only for subclassing, and can be used by application
developers who want to "inject" their own color pickers into the ColorPanel.    This
class conforms to the NXColorPicking protocol.

· NXSpellChecker

It is now possible to access the NeXT spell checking mechanism from your
application.    In other words, the NeXT spell checker can spell check other objects
besides our Text object.

For an object to be "spell-checkable", it need only implement the following two
protocols:

NXReadOnlyTextStream

- openTextStream;
- (BOOL)seekToCharacterAt:(int)offset relativeTo:(int)seekMode;
- (int)readCharacters:(char *)buffer count:(int)count;
- (int)currentCharacterOffset;
- (BOOL)isAtEOTS;
- closeTextStream;

NXSelectRange

- (void)selectCharactersFrom:(int)start to:(int)end;
- (int)selectionCharacterCount;
- (int)readCharactersFromSelection:(char *)buffer
 count:(int)count;
- (void)makeSelectionVisible;

The first is used by spell-checking services to suck the text out of the object you
want spell-checked.    The characters should be NEXTSTEP encoding characters
(so, if you run across some Kanji text or other text whose characters do not exist
anywhere in the NEXTSTEP encoding, please turn those characters into a "space"
character).

Note that the object may choose to break itself up into lots of little
NXReadOnlyTextStream's.    An example of this is if you can mark ranges of text
with a language in your application, you would probably want to return YES to
isAtEOTS (and stop returning characters via readCharacters:count:)
whenever you get to the end of a string of text in a single language.    Then, you can
tell the NXSpellChecker object to switch languages and start up another spell
check.

Note that the currentCharacterOffset should always reflect either the position
of the insertion point of the text, or the start of the selection in the text, or, if neither
of those exist, the start of the text.    Note that this means that the
NXReadOnlyTextStream is only expected to be valid during the duration of a call
to checkSpelling:of:.

A spell-check is initiated by sending ...

- (BOOL)checkSpelling:(NXSpellCheckType)type
 of:(id <NXReadOnlyTextStream, NXSelectRange>)textStream;

... to the NXSpellChecker's sharedInstance.    The spell-check ends either when
a misspelled word is found or when the NXReadOnlyStream runs out of characters.
It returns whether a misspelled word was found.

type almost always wants to be NX_CheckSpelling, in which case, if the spell-
check was initiated at a currentCharacterOffset not equal to 0 and a
misspelled word is not found by the time the EOTS is reached, the NXSpellChecker
will attempt to wrap around to the beginning of the text and continue spell-checking
(until it reaches the original start point).

Calling checkSpelling:of: with a type of NX_CheckSpellingToEnd will not
wrap around to the start of the text.    NX_CheckSpellingFromStart starts the spell
checking at the beginning of the NXReadOnlyTextStream.    There are other modes
as well, see the header file.

The spell-checker also allows you to insert an accessory view into the spell-
checking panel.

You can control the language of spell-checking programatically by calling
setLanguage:.    The arguments to this function are the same as those returned
by systemLanguages (they are strings registered by NeXT for each language,
please check with NeXT to determine what they are or register new ones).    Be
careful to give the user some control over this, because calling this method will
blast whatever choice the user may have made in the spelling panel.    You should
probably only do this if the user has explicitly set the language he wants in the
document somehow, and, even then, let him turn that auto-language-setting off.

If you want your object to support correction of misspellings, it should implement
the NXChangeSpelling protocol which only has one method, changeSpelling:,
whose argument is a Control which the receiver should ask the stringValue of to
and replace its selection with whatever that stringValue returns.

If you want your document to have its own "ignored word" list, your textStream
must implement the NXIgnoreMisspelledWords protocol which has only one
method:

- (int)spellClientTag;

This should return a unique integer.

If you implement this method, then the Ignore button in the spelling panel will be
enabled and you are eligible to use the following methods:

- (char **)ignoredWordsForSpellClient:(int)tag;
- setIgnoredWords:(const char *const *)words
 forSpellClient:(int)tag;
- closeSpellClient:(int)tag;

The first two are for getting and setting the ignored word list.    You can use these to
store the ignored word list with your document and reset it up when the document

is opened again.    You should call the last one when your document is closed so
that the storage of the ignored words is freed up.

Finally, you may want to make it easy on your user by putting whatever word he
selects in your document into the NXSpellChecker's word field.    You should
probably only do this on double-click (i.e. only do it when the user actually selects a
word).    This is accomplished via ...

- setWordFieldValue:(const char *)aWord;

· NXSpellServer

It is now possible to write your own spelling checker for the NeXT machine.    You
do this simply by implementing an object which knows how to do two things: find a
misspelled word in a stream of text and suggest guess for a misspelled word.

A spell server is never an application, it is a simple program whose main() looks
something like this ...

void main()
{

NXSpellServer *server = [[NXSpellServer alloc] init];
if ([server registerLanguage:"English" byVendor:"ACME"]) {

[server setDelegate:[ACMEEnglishSpellChecker new]];

[server run];
fprintf(stderr, "Unexpected death!\n");

} else {
fprintf(stderr, "Unable to check spell-checker in.\n");

}
}

... where the ACMEEnglishSpellChecker is a simple subclass of Object which
implements the following two delegate methods:

- (BOOL)spellServer:(NXSpellServer *)sender
 findMisspelledWord:(int *)start
 length:(int *)length
 inLanguage:(const char *)language
 inTextStream:(id <NXReadOnlyTextStream>)textStream
 startingAt:(int)startPosition;

 - (void)spellServer:(NXSpellServer *)sender
suggestGuessesForWord:(const char *)word
 inLanguage:(const char *)language;

A single server can spell-check in many languages (i.e. repeated calls to
registerLanguage:byVendor: is perfectly acceptable).

See the description of the NXReadOnlyTextStream above (under
NXSpellChecker) to see how your spell-checker can suck text out of the object

being spell-checked.    The return value for findMisspelledWord: is whether or
not a misspelled word was found.    If one was found, then start (and length)
should be set to the start (and length) of the misspellled word in the textStream.

The implementation of suggestGuessesForWord: should call the NXSpellServer
method:

- addGuess:(const char *)aWord;

whenever it figures out another guess for the passed-in word.

The system also maintains a simple user dictionary which you can check the
contents of via:

- (BOOL)isInUserDictionary:(const char *)word
 caseSensitive:(BOOL)flag

This method is very efficient and appropriate for calling inside inner loops, in fact,
you may want to use the Objective-C methodFor: mechanism to get a pointer to a
C function which implements this method.

· NXHelpPanel

There is now a class NXHelpPanel for applications to use when presenting help to
the user.    It is simple to use and there is very little API for the programmer to be
aware of .    To enable the help panel to be shown you will need to put a "Help..."
menu item in your Info submenu.    It    should have the First Responder (NULL) as
its target and    showHelpPanel: as its action.      This item will display the help
panel.    Initially the help text is set to the first item in the table of contents of your
Help directory.    Subsequent times the help panel is displayed it shows whatever
was last shown when the panel was hidden (however, if you are displaying context-
sensitive help, see below).    If you get your Info menu from InterfaceBuilder it will
already have a "Help..." item correctly set for you.

The main task for    the developer is to create and customize a Help directory in the
various .lproj directories in your application wrapper.    The preferred way create a
Help directory is to have ProjectBuilder copy a template into the .lproj for you to
modify.    The Help directory contains two special files with names
TableOfContents.rtf and Index.rtfd.    Other files in the directory are RTF
(or RTFD) files containing help text specific to your application.   
The TableOfContents.rtf (TOC) file should contain one entry for each help
text file in the Help directory.    It is important that this one to one mapping of TOC
entries to files be maintained.    The first thing on each active line should be a link to
whatever file corresponds to the entry (more on links below).    Following that is the
text of the TOC entry which may wrap and span several lines.    The TOC looks like
it is displayed using a Matrix, but actually it is a modified Text object.    You can

therefore use the full generality of RTF to format your table of contents.

The Index.rtfd file is structured similarly although there is no one to one
mapping enforced.    Generally the link that starts an index entry will specify a file
and a marker within that file to go to.

The Text object for 3.0 has been modified to use hypertext-like links.    Edit has
been modified to allow the insertion of links and markers.        A link consists of a
filename and optional markername and is displayed as a little diamond embedded
in the text.    When the user clicks the diamond the help panel (or Edit for that
matter) will display the specified file.    If    a destination marker is specified    as part
of the link it is scrolled into view and the text from the marker to the end of the line
will be selected.    Unless explicitly shown in Edit the actual markers are not
displayed in the text.    You can inspect both links and markers in Edit by holding
down the Command key while clicking them.

In the template that ProjectBuilder copies into you English.lproj you will initially only
have a TableOfContents.rtf and and an Index.rtfd file.    If you use Edit you
inspect the links in the TOC you will see that they link to files that are not found in
the template.    If    you try to follow those links by clicking them, Edit will say that the
files cannot be found.    This is because the HelpPanel makes use of a search path
to locate files to display.    It will first look in your Help directory.    If the file is found
there it will be displayed.    If the file is not found the HelpPanel looks in a special

compressed store file /usr/lib/NextStep/Resources/{language}.lproj/Help.store to
see if the file can be located there.    This pathing allows NeXT to supply standard
help about getting started    and for some user inferface objects.    If you do not want
to have this standard help in you application you may delete the unappropriate TOC
entries.    You may also customize copies of the standard files if you so desire.    To
do this use the HelpBuilder panel in InterfaceBuilder to display the file (Edit will not
be able to find it since it doesn't perform the pathing).    Then select all the text and
copy and paste it into a new document.    Save the document in your Help directory
under the same name as is shown in the HelpBuilder panel.    Be sure to size the
window to the same width as the original so that the text will wrap the same.

The click for help feature allows a user to click on some object on the screen to get
help on it.    If the Help modifier key is pressed the cursor changes to a special help
cursor, indicating you can then get help by clicking on some UI object (on
keyboards without a Help key, you can hold Control and Alternate simultaneously to
click and get help.    You will generally used the HelpBuilder panel and Help
inspector    in InterfaceBuilder to specify which help gets displayed when a given
object is help clicked.

You can also attach a help file to a user interface object programatically.    You need
to send the message:

- attachHelpFile:(const char *)filename
 markerName:(const char *)markername

 to:object

to the NXHelpPanel factory.    The arguments filename and markername are
the same as when creating a link.    The object argument is the object that the
help is attached to.    There is also a corresponding detachHelpFrom:object
message to remove help from that object.

There is an exception to the above stated rule that there must be a one-to-one
correspondence between TOC entries and help files in the Help directory.    It is
possible to have a set of files within a "hidden files" directory that do not have TOC
entries.    Since these files cannot be accessed from the TOC, the only way for the
user to view them is by finding them with the Find command or linking to them from
the Index or some other file.    An example of this in the NeXT supplied help are the
files in the Objects directory.    These files are designed to be accessed by help-
clicking the appropriate user interface object.    It is necessary to have a TOC entry
for highlighting whenever a file in a given hidden files directory is displayed.    In the
NeXT supplied help that TOC entry is entitled Commands, Panels and Buttons.   
The TOC entry for a hidden files directory must link to a special file Prolog.rtfd
within that directory.    This file will be displayed if the user clicks the TOC entry.   
The prolog file in the NeXT help says that you can get help on any command panel
or button by help-clicking that object.

It is possible for your application to    provide context sensitive help.      The help

displayed when the Help... menu item is choosen will be dependent on the state of
the application.    To do this your application will need to initialize the panel to
display the appropriate help information.    This may be done by having the
Application delegate respond to the    app:willShowHelpPanel: method.    The
method should do something like the following:

- app:sender willShowHelpPanel:panel
{

char path[MAXPATHLEN + 1];

sprintf (path, "%s/%s", [panel helpDirectory],
"Tasks/AddressingMail/CreatingAddressBook.rtfd");
[panel showFile:path atMarker:NULL];
return self;

}

In this case you must specify a fully qualified path in this case.    This is because
with partial paths the HelpPanel assumes the path is relative to the currently
displayed help file.    Since you want the code to work independently of what file is
currently being displayed you should always give a full path.

The Find command makes use of the Indexing kit to quickly locate files containing
the word in question.    For the Find command to work quickly you should create
indexes for your help files using the Indexing kit (Note: this index is different from
the Index.rtfd that the user will see).      If you have a hidden files directory you

should first make an index of it before creating an index of the entire Help directory.
That way the hidden files will not be indexed in the main index.    To create the
index, in a shell, change the working directory to the directory you want indexed.   
Then type ixbuild -v    with no other arguments.    A .index.store file will be
created in that directory for you.

· NXPrinter

NXPrinter provides access to static information on printers.    It is a substitute for
some of the prdb library functions.    It also provides access to printer-specific
information, like page imageable regions, whether a printer does manual feed,
possible resolutions, etc, using PPD files.    This object returns information in
NetInfo and PPD files, it does not provide dynamic information about the printer
state like whether the printer is running, whether it is out of paper, etc.

PPD files are now supported through the NXPrinter object.    These are newer
versions of the .pdf files found in /usr/lib/NextPrinter/pdf in older releases.    The
new extension is .ppd.    They are now searched for in :
/NextLibrary/PrinterTypes, ~/Library/PrinterTypes,
/HostLibrary/PrinterTypes, and /LocalLibrary/PrinterTypes.   
The spec for these files, and most of the files we ship, are provided by Adobe.   
These files adhere to a newer PPD format specification than the older pdf files.   
They describe printer-specific information (like whether the printer is color, paper

imageable regions, etc), and printer-specific pieces of PostScript (like setting
particular resolutions).    For compatibility purposes, /usr/lib/NextPrinter/pdf is also
searched for .pdf files.

New Methods

New methods (providing incremental functionality) added to existing classes:

· NXColorPanel

The following methods have been added to NXColorPanel:

+ (void)setPickerMode:(int)mode
+ (void)setPickerMask:(int)mask
- (BOOL)doesShowAlpha
- (float)alpha
- (BOOL)isContinuous
- (int)mode

setPickerMode: allows apps to set the ColorPanel's initial picker mode (what
picker will initially be visible), without actually instantiating the ColorPanel. The
setPickerMask: method is similar to the old setColorMask: method.    It takes
as a parameter one or more (ord together) of the the picker masks defined in
NXColorPanel.h.    This determines which pickers will be available in the

ColorPanel.    This method only has an effect before the ColorPanel is instantiated.
doesShowAlpha returns YES if the ColorPanel has an opacity slider.    The alpha
method allows one to find out the current alpha level of the Color Panel based on
its opacity slider.    The isContinuous method returns whether or not colors are
currently being set continuously.    The mode method return what picker mode the
Color Panel is currently in.

· NXColorWell

The following methods have been added to NXColorWell:

- setBordered:(BOOL)flag
- (BOOL)isBordered

These enable the creation of color wells without a border (like the one in the
NXColorPanel).

· TextField

The following methods return the nextText and previousText instance variables of
the receiver:

- nextText
- previousText

TextField now overrides the cell method, drawCellInside:.    Additionally,
TextFields now ensure that their opaque state matches that of their cells.

- drawCellInside:aCell

· Application

You can miniaturize all document windows in an application (i.e. all windows which
appear in the Windows menu) via the following new method:

- miniaturizeAll:sender

Two methods have been added to suppress the normal window ordering and
activation behavior that happens when the user clicks on a window, so that the
source window doesn't jump to the front when the user tries to drag an item from it
to another window.    If a view has items that the user can drag to another window,
the view should implement shouldDelayWindowOrderingForEvent: to return
YES if the given event might initiate a drag.    This method is called for every mouse
down event that the view receives.    Returning YES causes the normal window
ordering and activation behavior that is performed in response to a mouse down to
be delayed until the mouse is released.    If the user does in fact drag the clicked on
item, preventWindowOrdering should be sent to prevent the pending ordering

behavior from happening on the mouse up.    Most applications will not need to
send this message because the dragImage: method sends it when it initiates a
dragging session.

- (BOOL)shouldDelayWindowOrderingForEvent:(NXEvent *)theEvent
- preventWindowOrdering

The following method should be used to indicate whether or not your application
can deal with alpha components in the colors it receives from the user, or other
applications (it has no effect on internal programmatic manipulations of colors).    If
this value is set to YES, then all colors your application receives (through color
wells, ColorPanel, etc.) will be guaranteed to contain an alpha component, between
0 and 1.0.    If you set this value to NO, then every color your application receives
will have an alpha component of NX_NOALPHA.    Additionally, if this flag is set to NO,
if a ColorPanel is shown it will not have an opacity slider.    The ColorPanel method
setShowAlpha: can reverse the effects of    the setImportAlpha: method, and
the setImportAlpha: method can reverse the effects of setShowAlpha:.

The default state is NO, do not use alpha.

- setImportAlpha:(BOOL)flag

The following method returns the current, application-wide, "importAlpha" state, as

set by either setImportAlpha: or NXColorPanel's setShowAlpha: method.

- (BOOL)doesImportAlpha

· Workspace Protocol

Instead of using Speaker to communicate to the Workspace Manager (to do things
like open files, etc.), in 3.0 you send the messages to an object which responds to
the NXWorkspaceRequest protocol found in workspaceRequest.h.    These
methods have the same semantics as they did before 3.0, they are just in a nicer
(not restricted by Speaker/Listener argument types) form.    You get this object by
sending the message workspace to the Application factory.

Example of asking the Workspace for the icon for the file "/x.draw":

NXImage *i = [[Application workspace] getIconForFile:"/x.draw"];

As part of this protocol, there are two new application delegate methods for finding
out when various media (usually floppies or opticals) are mounted and unmounted.
These complement the already existing unmounting:ok: method which is sent
just before a device is unmounted so that applications can end all their accesses to
that device.    These are sent after a device has been mounted or unmounted.

- (int)app:sender unmounted:(const char *)fullPath
- (int)app:sender mounted:(const char *)fullPath

To receive these messages, you must send
beginListeningForDeviceStatusChanges to [Application workspace].

Further, if you wish to hear about changes in the status of other applications, send
the message beginListeningForApplicationStatusChanges to
[Application workspace] and your application delegate will receive:

- app:sender applicationWillLaunch:(const char *)appName
- app:sender applicationDidLaunch:(const char *)appName
- app:sender applicationDidTerminate:(const char *)appName

Finally, you can ask the Workspace to perform a file operation for you via the
[Application workspace] method ...

- (int)performFileOperation:(const char *)operation
 source:(const char *)source
destination:(const char *)destination
 files:(const char *)files
 options:(const char *)options

This method returns 0 if the operation is synchronous and completed successfully.
It returns a negative number if it fails.    And if it returns a positive integer, that is a

tag which will be sent back to you when the operation completes via the delegate
method:

- app:sender fileOperationCompleted:(int)operation

· Font

These methods return a particular size of the user's default font , the user's default
fixed pitch font, the System Font, and the Bold System Font.

If fontSize is 0, the defaults database is used to determine the size.    Otherwise the
passed value is used.    fontMatrix is used as in the other Font new methods.

Developers should use userFontOfSize:matrix: to init their new documents to
the font the user has chosen in Preferences.

+ userFontOfSize:(float)fontSize
 matrix:(const float *)fontMatrix;
+ userFixedPitchFontOfSize:(float)fontSize
 matrix:(const float *)fontMatrix;
+ systemFontOfSize:(float)fontSize
 matrix:(const float *)fontMatrix;
+ boldSystemFontOfSize:(float)fontSize
 matrix:(const float *)fontMatrix;

The font objects returned by these methods, when archived out will be replaced
upon unarchiving by the system (or user or bold system or user fixed pitch) font in
effect at the time of unarchiving.

The following methods have been added to Font to allow an app to set the user's
default font & the user's default fixed pitch font for that application:

+ setUserFont:(Font *)aFont;
+ setUserFixedPitchFont:(Font *)aFont;

· FontManager

It is now possible to filter the fonts which appear in the FontPanel via the
FontManager delegate method:

- (BOOL)fontManager:sender
 willIncludeFont:(const char *)fontName;

The FontManager is also now subclassable.    To do this, you must call the method:

+ setFontManagerFactory:factoryId;

before loading your initial InterfaceBuilder file (which will, more than likely, try to
instantiate the shared FontManager).

Two methods have been added to FontManager to round out all the possible
conversions that can be made to a font via all the existing user-interface elements
which can be used for that purpose (the FontPanel and the Font menu).    By
subclassing and overriding these (and the other convert: methods), you can track
what modifications the user is making to fonts (for scripting or other purposes).

- convert:fontObj toSize:(float)size;
- convert:fontObj toFace:(const char *)typeface;

· NXBrowser (and Matrix)

You can get the selected cells in a Matrix or NXBrowser by calling:

- (List *)getSelectedCells:(List *)aList;

If aList is nil, the Matrix or NXBrowser will create a list for you.

Horizontal movement in the NXBrowser can now be done via a horizontal scroller
rather than the left/right buttons on the left of the NXBrowser.    There are six new
methods to support his functionality:

- scrollViaScroller:sender;
- updateScroller;

- setHorizontalScrollerEnabled:(BOOL)flag;
- (BOOL)isHorizontalScrollerEnabled;
- setHorizontalScrollButtonsEnabled:(BOOL)flag;
- (BOOL)areHorizontalScrollButtonsEnabled;

The first is the target/action method sent by the scroller to the NXBrowser.    The
second can be used to redraw the scroller so that it accurately reflects the number
of columns and firstVisibleColumn of the NXBrowser.    The next two turn the
horizontal scroller on and off.    The last two are a replacement for
hideLeftAndRightButtons: which is now obsolete.

The Matrix/NXBrowser methods allowEmptySel:, allowMultiSel: and
allowBranchSel: have been renamed and have been complemented by
methods to get the value of these various attributes.    setEmptySelectionEnabled:
has been added to NXBrowser.

- setMultipleSelectionEnabled:(BOOL)flag;
- (BOOL)isMultipleSelectionEnabled;
- setBranchSelectionEnabled:(BOOL)flag;
- (BOOL)isBranchSelectionEnabled;
- setEmptySelectionEnabled:(BOOL)flag;
- (BOOL)isEmptySelectionEnabled;

The method:

- acceptArrowKeys:(BOOL)flag;

Has been renamed to support sending an action when navigating through the
NXBrowser using the arrow keys:

- acceptArrowKeys:(BOOL)flag andSendActionMessages:(BOOL)sFlag;

A Control standard method was missing from NXBrowser.    It has been added:

- selectedCell;

· NXColorPicking

NXColorPicking is the protocol which all custom picker objects which are
inserted into the ColorPanel must conform to.    Some, but not all of these methods
have default implementations in the NXColorPicker class.    Custom color pickers
occupy the area in the ColorPanel which is below the "picker mode" buttons, and
above the opacity slider.    The definition of this protocol may be found in the file
"colorPicking.h".

Custom color pickers are installed by 1) having a directory within the application's
"app wrapper" named "ColorPickers".    Within this directory, there should be a
separate directory for each custom picker to be installed.    These directories should
have the extension ".bundle", and should contain, whatever resources are

necessary for that particular picker (e.g. nib files, .tiff images, etc.).    The prefix
name of the directory should be the name of a class defined by the application,
which conforms to the NXColorPicking protocol, and which has the same name as
the prefix of the .bundle directory.    This class should also be a subclass of
"NXColorPicker".    For instance, if an application wants to install a custom picker
named "DiagramPicker", then in the .app directory of the application (Diagram.app)
there would be a directory named "ColorPickers", and within the ColorPickers
directory there would be a directory named "DiagramPicker.bundle".    When the
ColorPanel is instantiated, it will search for all the .bundle files found in the app's
ColorPickers directory.    For each .bundle found, it will instantiate (allocate) an
object with the class name of the .bundle directory, and then send that newly
allocated object an initFromPickerMask:withColorPanel: message.    So,
in this example, the ColorPanel will essentially do:

customPicker = [[MyPicker alloc]
 initFromPickerMask:someMask
 withColorPanel:self]

If no such class is found in the application, loading of the custom picker will be
aborted. Once the controlling object has been instantiated, it will be sent a number
of messages from the ColorPanel.    These messages will continue to flow
throughout the ColorPanel's lifetime.    The custom picker can communicate to the
ColorPanel using the ColorPanel's public API.    If the custom picker needs to
load .nib files, etc. (from its .bundle directory), or perform other initialization code,

the initFromPickerMask:withColorPanel: message is one time to do that.
The other time do do initialization (preferred, because it's lazy), is the first time the
provideNewView: message is received.    See below for more detail.

The following methods are implemented, and derive default behavior from the
NXColorPicker class:

This message is sent to installed objects when the ColorPanel is initializing.      This
method is the designated initializer of NXColorPicker, and of all custom color
pickers.    This notifies the picker of the mode mask specified by the caller of the
ColorPanel method, setPickerMask: (or the default mask, NX_ALLMODESMASK,
if it has never been explicitly set).    The return value of this init methods is an
indication of whether or not your picker supports any of the modes listed in the
mode mask.    If your picker supports any of the bits in the mask, return "self",
otherwise, return nil (default NXColorPicker return value is "self", since if the
setPickerMask: method is never called, the ColorPanel will just start off with the
normal picker modes, of which your custom mode will not be a part, but by
returning "self", the ColorPanel thinks you are part of the mask, and will continue to
load this custom picker). This method can be used to turn off some (or all) of your
subpickers, if you have any (like sliders), by seeing whether or not they are
included in    the mask.    owningColorPanel is the id of the ColorPanel, which
can be saved away for future use (this is normally done by the super's
initFromPickerMask method).

This method also allows for object initialization, though most initialization
(loading .nib files, etc.) should be done lazily, the first time provideNewView: is
called.

This method rarely needs to be overriden, however, if it is, it should first call   
initFromPickerMask:withColorPanel: in super, as this is when the instance
variable "colorPanel" will get set, from the passed in owningColorPanel.

- initFromPickerMask:(int)mask withColorPanel:owningColorPanel

The following message is sent to installed objects to request the name of the image
they want loaded, for subsequent installation in their mode button in the
ColorPanel.    An NXImage should be returned by this method.    The default action
of NXColorPicker is to return an image    found by loading a .tiff file from the picker's
.bundle which has the name "PickerClassName.tiff" (in our above example it would
be called "DiagramPicker.tiff").    This method rarely needs to be overriden.

- provideNewButtonImage

The following message is sent to installed objects to have the image,
newButtonImage, inserted into the mode button for this picker.    This provides a
mechanism for special treatment, e.g. scaling the image first, etc.    The default

action of NXColorPicker is to insert this image in the button without any
modification, using setImage:.    This method rarely needs to be overriden.

- insertNewButtonImage:newButtonImage in:newButton

The next message is sent to installed objects when the ColorPanel view size
changes.    NXColorPicker does nothing when it receives this message, other than
returning "self".    This method should be overriden by custom pickers if they have
special preparation to do when they are resized.    This method should be
overridden, rather than superViewSizeChanged: type methods. sender is the
ColorPanel.

- viewSizeChanged:sender

The next message is sent to installed objects when the ColorPanel has been told to
add or remove the alpha (opacity) slider.    Upon receiving this message, custom
pickers can determine the current state of the opacity slider by asking the
ColorPanel (i.e. [sender doesShowAlpha]).    The default action of
NXColorPicker is to simply return "self".    This method rarely needs to be overriden.

- alphaControlAddedOrRemoved:sender

The insertionOrder method is sent to installed objects immediately after

loading.    The number returned by this method indicates the position in the
ColorPanel's list of "picker mode" buttons where this picker's button should be
installed.    The standard pickers which come with the system have the following
numbers:

WheelPicker                                      0.50
SliderPicker  0.51
CustomPalettePicker      0.52
List Picker  0.53

These values are #defined in NXColorPanel.h.    The default action of
NXColorPicker is to return 0.4, meaning that the custom picker will be inserted
before the other pickers.    If The picker is to be inserted, say, between the wheel
and the slider picker, it could return 0.501.

- (float)insertionOrder

The next message is sent to installed objects when the ColorPanel has been told,
through its API (i.e. the ColorPanel method attachColorList:) to add a
ColorList.    This notifies the picker of this.    This message is used, for example, by
the provided list mode picker, so that if a ColorList is added to the ColorPanel, that
new ColorList will appear in the ColorList picker.    The default action of
NXColorPicker is to simply return "self".    This method rarely needs to be overriden.

- attachColorList:colorList

The next message is sent to installed objects when the ColorPanel has been told,
through its API (i.e. the ColorPanel method detachColorList:) to remove a
ColorList.    This notifies the picker of this.    This message is used, for example, by
the provided list mode picker, so that if a ColorList is removed from the ColorPanel,
the removed ColorList will be removed from the ColorList picker.    The default
action of NXColorPicker is to simply return "self".    This method rarely needs to be
overriden.

- detachColorList:colorList

This message is sent to installed objects when the ColorPanel has been told,
through its API (i.e. the ColorPanel method setMode:) to change the picker mode
it is in.    This notifies the picker of this.    This message is used, for example, by the
provided slider mode picker, which has submodes, so that it knows what submode
to switch to.    The default action of NXColorPicker is to simply return "self".    This
method rarely needs to be overriden, as most ColorPickers only have one mode.

- setMode:(int)mode

The following methods MUST be implemented by the custom picker:

If your custom picker supports the mode specified by mode, return YES, otherwise
return NO.    This method is called as a result of the ColorPanel being told, through
its setMode: API, to switch modes.    It is also called when the ColorPanel first
starts up, and tries to restore the user's last used mode.

- (BOOL)supportsMode:(int)mode

Your custom picker should return an integer value that uniquely identifies what
mode it is.    This may be any integer value of your choice, though it normally should
not conflict with one of the predefined and supplied modes, listed in
NXColorPanel.h.    This is the same integer which may get passed to you on a
supportsMode: or setMode: message.

- (int)currentMode

The following message is sent by the ColorPanel when it is ready to display this
picker.    This might happen when the user switches pickers, when the ColorPanel
first comes up, or when the mode is switched through the API.    The ColorPanel
also passes in a flag indicating whether or not this is the first time this object has
been sent this message.    This allows objects to load their UI elements in a lazy
fashion (e.g. don't load .nib files, etc., until the first time this method is called).   
This method should return an id of a View or View subclass which will be inserted

as a subview in the picker area of the ColorPanel.    This view should typically be
set to autoresize both its width and height.

- provideNewView:(BOOL)initialRequest

Finally this last message is sent by the ColorPanel when the color in its ColorWell
changes (perhaps a color was dragged into the Well).    Some pickers update their
appearance to reflect the current color in the ColorPanel (for instance the position
of slider knobs in the Slider mode of the ColorPanel), so this method provides them
with a notification that it is time to update their current color.    This method will be
called whenever the ColorPanel's setColor: method is called, even if
ColorPanel's setColor method is called from this ColorPicker, so in a typical
implementation of this method, a check is should is done to see if the passed in
color is actually different than the color that the picker is currently displaying.

- setColor:(NXColor)newColor

· Open/SavePanel

A new method has been added to the OpenPanel which causes file packages to be
treated like directories (i.e. users can go into file packages, to, for example, look for
.eps or .tiff files).

- setTreatsFilePackagesAsDirectories:(BOOL)flag;

- (BOOL)doesTreatFilePackagesAsDirectories;

You can use the OpenPanel to get the name of a directory from the user by calling
the following method before running the panel.    If the user is choosing directories,
the filterTypes of the OpenPanel are ignored and only directories will appear in
the OpenPanel.

- chooseDirectories:(BOOL)flag;

You can control the ordering of files in the Open/SavePanel via the delegate
method:

- (int)panel:sender
 compareFilenames:(const char *)file1
 :(const char *)file2
 checkCase:(BOOL)caseSensitive;

Do not do this lightly since it may confuse the user to have the files in one
Open/SavePanel in a different order than those in other Open/SavePanels or in the
WSM (the Open/SavePanels sort files in the same order as the WSM by default).   
Note that this will also slow down the operation of the panel somewhat.

You can now set the specific subclass of OpenPanel or SavePanel used when
people call [OpenPanel new] or [SavePanel new] in your application.

+ setOpenPanelFactory:factoryId
+ setSavePanelFactory:factoryId;

· Slider and SliderCell

The following method sets the background of a slider to the NXImage specified by
the argument. If the provided image is scalable, then the cell will resize it to fit its
bounds. Otherwise the image might either get clipped or not fill the whole slider.

- setImage:(NXImage *)backgroundImage;

The following methods allow changing the width (for horizontal sliders) or height
(for vertical sliders) of the slider knob to the thickness specified by the argument.   
These methods are available to both Slider and SliderCell classes.

- setKnobThickness:(NXCoord)newKnobThickness;
- (NXCoord)knobThickness;

The following methods have been added to allow developers to set Slider title text,
text color, and text font.    These methods are available to both Slider and SliderCell
classes.

- setTitleGray:(float)grayVal;
- (float)titleGray;

- setTitleColor:(NXColor)newColor;
- (NXColor)titleColor;
- setTitleFont:fontObj;
- titleFont;
- setTitle:(const char *)aString;
- setTitleNoCopy:(const char *)aString;
- (const char *)title;

The following methods have been added to allow developers to retrieve and/or
modify the text cell used by a SliderCell (and hence by a Slider) to actually draw the
text, and modify the text attributes.    By default, this cell is a TextFieldCell.   
Additional text attributes may be set by getting the text cell, and modifying it
directly, then redisplaying the slider.    The first method, setTitleCell, will not free any
existing titleCell, it will simply return the old one.    These methods are available to
both Slider and SliderCell classes.

- setTitleCell:aCell;
- titleCell;

The following methods have been added to SliderCell to set/get the amount the
slider moves by when ALT is held down, these methods are only p[rovided in the
SliderCell class, and not the Slider class:

- setAltIncrementValue:(double)incValue
- (double)altIncrementValue

· Window

A new delegate method has been added that is called when the user begins to drag
a window.

- windowWillMove:sender;

New methods for setting the title and image in a miniwindow have been added:

- setMiniwindowImage:image;
- setMiniwindowTitle:(const char *)title;
- (NXImage *)miniwindowImage;
- (const char *)miniwindowTitle;

The following method has been added to return whether flushing of the window's
backing store is currently disabled.

 - (BOOL)isFlushWindowDisabled

A method has been added that will order a window to the front of all windows in its
tier, regardless of what app is active.    Normally the system avoids putting windows
on top of the key window, unless the window being ordered is in the same app as
the key window.    These checks are very important in multi-tasking system.    This

method bypasses these checks, and should be used only in rare cases where the
app knows it should put its window above all others.    One case might be when two
apps are working together via a private protocol, and the active app is using the
other app to display some data, yet wants to remain active.

- orderFrontRegardless;

A method has been added to return the counterpart of a window.    For most
windows, this is the mini-window.    If the mini-window has not been created, it
returns nil.    The counterpart of a mini-window is the corresponding normal window.

- counterpart;

Methods have been added to set and return the backing store type of a window.   
These should be used instead of PSsetwindowtype().

- setBackingType:(int)bufferingType;
- (int)backingType;

Methods have been added to control whether a window's app is activated when the
user clicks on a window.    This can be useful for windows that are primarily
controlled via the mouse, that interact with other applications.    For example, a
Panel owned by a Service provider may contain only mouse controls.    It may be

more convenient for the user to have the Service provider not activate when he
uses that window, since he is repeatedly invoking the service from the already
active Services client.    Since this feature makes the window an exception to some
of the normal rules windows follow, it should only be used in cases where it is well
justified.

- setAvoidsActivation:(BOOL)flag;
- (BOOL)avoidsActivation;

The following methods allow setting minimum and maximum sizes:

- setMinSize:(const NXSize *)frameSize;
- setMaxSize:(const NXSize *)frameSize;
- getMinSize:(NXSize *)frameSize;
- getMaxSize:(NXSize *)frameSize;

These methods set/get the minimum and maximum window frame rect sizes. These
size limits will be used only in those cases where the delegate would have been
consulted with the windowWillResize:to: method; first these size limits will be
applied, then the delegate will be informed and given a chance to fix the size up
further. These limits are not consulted if the window size is changed
programmatically (for instance, through the sizeWindow:: or placeWindow:
methods).

Interface Builder provides support for setting the minimum size of a window from
the Window inspector.    Due to limitations in autosizing, contents of windows and
panels which contain kit objects with autosizing parameters may get screwed up
when they are sized very small. Giving such windows reasonable minimum sizes
will solve this problem.

The following new methods provide easy ways to save/restore window positions:

- (void)saveFrameUsingName:(const char *)name
- (BOOL)setFrameUsingName:(const char *)name

These methods let you save/restore the window's location and size. Typically you
might use saveFrameUsingName: when a window is going away, and call
setFrameUsingName: right after it's recreated to put it back in the same location.
The name argument provides the key with which the stored information is
accessed; this name is specific to an application.

setFrameUsingName: will redisplay the window if it is on screen and the size is
changed.    The restored size is validated by comparing it against the window's min
and max sizes and calling the delegate's windowWillResize:to: method. The
return value for setFrameUsingName: indicates if a frame was found using the
provided name.

If the screen on which the window's size was saved is different than the screen on
which it's restored, the window will auto-position itself to look good.

The following method makes the window automatically save its position everytime
its frame changes. When called with a non-NULL name, this method first retrieves
its frame using the name,    and then saves it on every change. When called with a
NULL name, this method stops the automatic save. This works fine for panels and
other non-document windows and it is recommended that apps use this
functionality to remember panel positions:

- (BOOL)setFrameAutosaveName:(const char *)name
- (const char *)frameAutosaveName;

Finally a method is provided to remove any frame information associated with a
name:

+ (void)removeFrameUsingName:(const char *)name

The following two methods allow saving frame information in a string which can
then be saved by the app in any suitable place (and not the defaults database, like
the above methods do). The above methods work fine for panels and such but not
for document windows (as it might be difficult to come up with unique names for
documents). The following two allow saving position information with documents (if
possible):

- (void)saveFrameToString:(char *)string;
- (void)setFrameFromString:(const char *)string;

These methods parallel the saveFrameUsingName:/setFrameUsingName: pair.
The string passed into saveFrameToString: should contain at least
NX_MAXFRAMESTRINGLENGTH characters; it will be terminated by a zero byte upon
return. The app should save away the section upto the zero byte, not all
NX_MAXFRAMESTRINGLENGTH bytes.

A method has been added to find out what bucky-bits were down when a window
resize was initiated by the user.    This can be used to provide advanced, somewhat
hidden functionality to power users.    This method should be used with care
because there is no way for the user to know in advance what the bucky bits might
do when resizing.

+ (int)resizeFlags;

· Text

The following changes were made to enhance ruler in the Text object for
international functionality ± i.e., so it can be set to display centimeters and other
units in addition to inches.    the ruler looks at the NXMeasurementUnits default

for its initial state.

- (NXMeasurementUnit)setRulerUnits:(NXMeasurementUnit)unit;
- (NXMeasurementUnit)rulerUnits;
- toggleRulerUnits:sender;

The PageLayout panel has been enhanced to read the value of
NXMeasurementUnit from the defaults database, and to use it for initialization.   
The PageLayout    panel does not set the value, however.    (Preferences will be
enhanced to change NXMeasurementUnit to appropriate international defaults.)

The following methods have been added to the Text object to query the color or
gray of the selection or of a run.    The color or gray of a selection is defined to be
the color or gray of the first character in the selection or the color the next character
typed will be if the selection is a blinking cursor.    Note that selGray was
unimplemented in release 2.1--it is now functional.

- (NXColor)selColor;
- (float)selGray;

- (float)runGray:(NXRun *)run;
- (NXColor)runColor:(NXRun *)run;

The ability to find text has been added to the Text object:

- (BOOL)findText:(const char *)textPattern
 ignoreCase:(BOOL)ignoreCase
 backwards:(BOOL)backwards
 wrap:(BOOL)wrap;

You can also locate a help marker (see NXHelpPanel description).    The method
returns whether or not the marker was found and, if it was found, it selects the text
associated with it.

- (BOOL)findMarker:(const char *)markername;

· NXImage/NXImageRep

NXImage now provides a more generalized image file handling framework. Classes
which follow the NXImageRep protocol and which can load images from files or
streams can register themselves with NXImage, allowing NXImage to automatically
create and use instances of these classes much in the same way it did with
NXBitmapImageRep and NXEPSImageRep in 2.0.

The following two methods allow registering/unregistering image reps. Requests to
register a class twice or unregister a class which isn't registered will be ignored
without an error:

+ (void)registerImageRep:(Class)imageRepClass;
+ (void)unregisterImageRep:(Class)imageRepClass;

A good place for classes to register themselves is the +load method.

The following methods will return the appropriate registered class. Note that for
imageRepForStream: to work, the stream should be seekable; otherwise an
error will be raised.

+ (Class)imageRepForFileType:(const char *)type;
+ (Class)imageRepForPasteboardType:(NXAtom)type;
+ (Class)imageRepForStream:(NXStream *)stream;

The following method returns a NULL-terminated list of file types which all the
image reps registered with NXImage can load from. This list belongs to the
NXImage and should not be freed or changed:

+ (const char *const *)imageUnfilteredFileTypes;

There is also a parallel for returning the supported pasteboard types:

+ (const NXAtom *)imageUnfilteredPasteboardTypes;

These lists contain all types directly supported by the registered image reps.

NXImage builds these lists by calling methods of the same name in all of its
registered image rep classes. Thus, in order to provide NXImage with the
information on what types are supported, every subclass of NXImageRep that gets
registered with NXImage needs to implement the two methods
imageUnfilteredFileTypes and imageUnfilteredPasteboardTypes. As
is the case with NXImage, these return NULL-terminated lists of strings.

For instance, NXBitmapImageRep might define imageUnfilteredFileTypes
as:

+ (const char *const *)imageUnfilteredFileTypes
{

static const char *const types[] = {"tiff", "tif", NULL};
return types;

}

The list {NULL} should be returned in case a class does not recognize any file or
pasteboard types.    If a subclass of a subclass of NXImageRep is willing to support
the types supported by the superclass, then it should declare them in addition to its
own types. This can be done by getting the types supported from the superclass
and actually building and caching a local list at runtime, augmenting it with it the
additional types.

There are also parallel sets of methods in NXImage and NXImageRep which return

all types that can be opened, including those accessible through the use of filter
services. (See elsewhere for discussion of filter services.)    These methods are:

+ (const char *const *)imageFileTypes;

+ (const NXAtom *)imagePasteboardTypes;

These methods are implemented in both NXImage and NXImageRep and there is
no need for NXImageRep subclasses to implement them. Because these methods
return NULL-terminated lists of strings, the return values can be passed directly into
the OpenPanel runModalForTypes: method. In fact, most applications which
accept images (either through the OpenPanel or through dragging) and use
NXImage to open them should switch over from using a hardwired list such as
{"tiff, "eps", NULL} to using one of these two methods.

The following NXImageRep method allows NXImage to determine if a registered
image rep can load an image from a given stream. This method should look at the
stream to see if it contains a valid image. The stream pointer should be left at
where it was on entry:

+ (BOOL)canLoadFromStream:(NXStream *)stream

Two other new methods in NXImage and NXImageRep are:

+ (BOOL)canInitFromPasteboard:(Pasteboard *)pasteboard;
- initFromPasteboard:(Pasteboard *)pasteboard;

These methods can be used to initialize NXImages and NXImageReps from a
pasteboard.    Data can come from a supported pasteboard type (such as TIFF or
EPS) or a file name type containing a file name which can be filtered to a supported
pasteboard type.

This next method allows NXImage to load representations from a file:

- (BOOL)loadFromFile:(const char *)fileName;

This method is essentially a short cut to opening a stream on the specified file and
calling loadFromStream:. Thus the data is loaded immediately (rather than lazily,
which is what useFromFile:and initFromFile: do) and the file name is not
remembered.

Note that NXImage can use filters only when typed data is availableÐfor instance
when an image is loaded from a file (using methods such as initFromFile:,
loadFromFile:, etc.) or from a pasteboard (with initFromPasteboard:). Images
loaded from streams cannot be filtered as no type information is available to aid in
choosing the right filter. If you load images into NXImages from streams which you
create yourself, you can just switch over to using loadFromFile:, which will map the

file in (filtering if necessary) into a stream and use loadFromStream: to read the
data in.

On a somewhat unrelated note, NXImage and NXCachedImageRep now have
copyFromZone: methods. This allows NXImages to be copied.

And, finally, another new method in NXImage is the following, which allows you to
specify the compression type & factor when writing an NXImage to a TIFF file.   
writeTIFF:allRepresentations: now calls this method.

- writeTIFF:(NXStream *)stream
 allRepresentations:(BOOL)flag
 usingCompression:(int)compression
 andFactor:(float)aFloat;

· NXBitmapImageRep

NXBitmapImageRep factory now has methods to indicate whether the app can deal
with unpacked image data:

+ (void)setUnpackedImageDataAcceptable:(BOOL)flag;
+ (BOOL)isUnpackedImageDataAcceptable;

Unpacked images have non-default bytesPerRow and/or bitsPerPixel values. The

3.0 WindowServer can generate such images and NXBitmapImageRep can store
them; however, such an image will never be given back to a client which is not
expecting it.

An app linked against a pre-3.0 shlib is never given unpacked data; an app linked
with a 3.0 shlib is assumed to be capable of dealing with it. The
setUnpackedImageDataAcceptable: method or the
NXUnpackedImageDataAcceptable default can be used to override this
behaviour.

It's often more efficient to leave unpacked images unpacked; thus applications
should pay attention to bytesPerRow and bitsPerPixel when traversing image
data. When an unpacked image is written out to a TIFF file or printed a packed
copy will be used (as TIFF and PostScript print jobs are not capable of dealing with
unpacked data); this packing takes place automatically.

There are some constraints on the format of unpacked data; please refer to the
discussion on NXDrawBitmap() elsewhere in this document and the window
server notes for more information if you wish to create and manipulate your own
unpacked images.

In 3.0 NXBitmapImageReps loaded from TIFF files remember their compression
type.    Methods are provided to change the compression:

- (void)getCompression:(int *)compression
 andFactor:(float *)factor;

- (void)setCompression:(int)compression
 andFactor:(float)factor;

writeTIFF: (without the explicit compression:andFactor: arguments) will
use the stored compression when saving. This behaviour is changed from 2.0
where writeTIFF: would use no compression. The benefit is that if a compressed
image is read in and later saved, its compression will be preserved. If the image
cannot be written out with the compression that is provided (this could happen with
compressions no longer supported, such as the NEXTSTEP 1.0 2-bit encoding),
then writeTIFF: will use no compression.

The following methods were added to give developers information about what TIFF
compression types are available and which ones are applicable to a given image.   
Because not all compression types can be used with all images and because future
releases of NEXTSTEP may bring along other compression types, these methods
should be used whenever an application wants to put up some UI to let the user
choose a compression type for an image.

+ (void)getTIFFCompressionTypes:(const int **)compList
 count:(int *)numTypes;

+ (const char *)localizedNameForTIFFCompressionType:(int)comp;

- (BOOL)canBeCompressedUsing:(int)comp;

The first method above returns a pointer to an array of ints containing all available
compression types that can be used when writing a TIFF image. These
compression types are currently defined in tiff.h. The list argument belongs to
NXBitmapImageRep and should not be freed or altered. It points to an array of
numTypes ints.

The localizedNameForTIFFCompressionType: method returns the localized
name for the specified compression type. NULL will be returned if the compression
type is not recognized. The returned string should not be freed or altered in any
way.

The last method,    canBeCompressedUsing:, allows asking an instance of
NXBitmapImageRep if it can be compressed with specified compression type.

· Pasteboard

The owner of a pasteboard can implement the following method to find out when he
loses ownership of the pasteboard.    The owner is not able to read the contents of
the pasteboard he owned when responding to this method.    The owner should be

prepared to receive this method at any time, even in from within the
declareTypes:num:owner: he uses to declare his ownership.

- pasteboardChangedOwner:sender

The following method has been added to deallocate data returned by
readType:data:length:.    This method should always be used to free
Pasteboard data returned by that method (i.e. do not use vm_deallocate()):

- deallocatePasteboardData:(char *)data
 length:(int)numBytes;

A convenience method has been added to scan the available types for one you
want.    It returns the first type in the types that you supply that is available in the
Pasteboard:

- (const char *)findAvailableTypeFrom:(const char *const *)types
 num:(int)numTypes;

The following method allows you to add types to the list previously declared by
using the existing Pasteboard method declareTypes:num:owner:.    It can be
useful when subclassing copy methods, or when multiple modules need to
contribute data to a single copy.    It should only be sent when you know that a

declareTypes:num:owner: has already been sent for the particular copy
operation.

- (int)addTypes:(const char *const *)newTypes
 num:(int)numTypes
 owner:newOwner;

Another convenience method for getting data from a stream into the Pasteboard
has been added.    It takes the data from the stream and inserts it into the receiver
under the given dataType.    The stream must be readable.    If it is seekable, the
stream is seeked back to the start before the data is read; otherwise, data is read
from the current position until the end of the stream.

- writeType:(const char *)dataType
 fromStream:(NXStream *)stream;

      A similar method get data out of the Pasteboard into a stream.    Be sure to

deallocate the stream returned with NXCloseMemory(stream,
NX_FREEBUFFER).    You do not need to send the
deallocatePasteboardData: message with the stream data.

- (NXStream *)readTypeToStream:(const char *)dataType;

A new method has been added to the Pasteboard which returns an instance of a

Pasteboard with a name that is guaranteed to be unique with respect to other
Pasteboards on the system.    This would only be used by applications doing their
own IPC using pasteboards to pass data.

+ newUnique;

· View

A new method in View has been added as a convenience for copying EPS to the
pasteboard.    It writes the EPS representing an image of the receiver to the
pasteboard under the EPS pasteboard type.    If passed NULL for the rectangle,
EPS for the entire view is generated.    The caller should first use the
declareTypes:num:owner: Pasteboard method in the standard way.

- writePSCodeInside:(const NXRect *)copyArea
 to:pasteboard;

A method to return the autosizing parameters of a View has been added:

 - (unsigned int)autosizing;

A method has been added which allows the developer to send a fax without putting
up the fax panel UI:

- faxPSCode:sender
 toList:(const char *const *)names
 numberList:(const char *const *)numbers
 sendAt:(time_t)when
 wantsCover:(BOOL)cFlag
wantsNotify:(BOOL)nFlag
 wantsHires:(BOOL)hFlag
 faxName:(const char *)aString;

· PrintInfo/PrintPanel

The NXPrinter object associated with the PrintInfo should be used to get/set
information which used to be accessed via methods like setManualFeed:.   
These new methods have been added to access the NXPrinter:

- setPrinter:(NXPrinter *)pr;
- (NXPrinter *)printer;
- initializeJobDefaults;

PrintInfo has a number of other new features.    It provides and sets the default
NXPrinter object.    New methods:

+ (NXPrinter *)getDefaultPrinter;
+ setDefaultPrinter:(NXPrinter *)pr;

Methods have been added to PrintInfo to specify whether the generated page
order should be "normal" or "reversed".    Normal page order depends on the device
that is being output to.    "Save" is done first-to-last, as are some printers.    The
NeXT Laser Printer is done last-to-first.

- setReversePageOrder:(BOOL)flag;
- (BOOL)reversePageOrder;

PrintInfo also supports printer-specific PostScript operations using PPD info.   
These are called "job features", and include manual feed, setting resolution, page
size, and others.

- setJobFeature:(const char *)feature
 toValue:(const char *)string;
- (const char *)valueForJobFeature:(const char *)feature;
- setJobFeature:(const char *)feature
 toValueList:(const char *const *)list;
- (const char **)valueListForJobFeature:(const char *)feature;
- removeJobFeature:(const char *)feature;
- (const char *const *)jobFeatures;
- setPaperFeed:(const char *)str;
- (const char *)paperFeed;

The following two methods have been added to the PrintPanel.    They can be
called to update the PrintPanel from its PrintInfo (or write out the changes in the

PrintPanel to its PrintInfo).

- updateFromPrintInfo;
- finalWritePrintInfo;

· Matrix

    It is now possible to do "drag selection" in Matrix programatically via the method:

 - setSelectionFrom:(int)startPos
 to:(int)endPos
 anchor:(int)anchorPos
 lit:(BOOL)lit;

Drag selection in Matrix now works in a visual fashion (i.e. the user will drag out
rectangular regions) rather than on a row-oriented basis.    The old behaviour is still
available, but applications must call setSelectionByRect:NO to turn off this
behaviour:

- setSelectionByRect:(BOOL)flag;
- (BOOL)isSelectionByRect;

New Functions

· Alert

A new, localizable version of NXRunAlertPanel() has been added to the kit:

int NXRunLocalizedAlertPanel(
const char *table,
const char *title,
const char *s,
const char *first,
const char *second,
const char *third, ...,
const char *comment

);

The genstrings program will generate an appropriate entry in the strings file
table with the comment comment and translation entries for each of the items.   
This only works, of course, for literal string arguments and will obviously not
translate the "..." arguments.

· Imaging functions

The following function is a cover for the new window-to-window imaging feature in
the WindowServer:

extern void NXCopyBitmapFromGState(int srcGState,
const NXRect *srcRect,
const NXRect *destRect);

Bits from the rectangle specified by srcRect in the source graphics state
srcGState will be imaged into the destination rectangle specified by destRect in
the current graphics state.

NXCachedImageRep's draw and NXImage's setSize: methods now also take
advantage of this functionality whenever possible and thus are considerably faster
under the right circumstances.

The following function, NXDrawBitmap(), replaces NXImageBitmap(). Two
additional arguments (bytesPerRow and bitsPerPixel) are provided and the
existing arguments have been cleaned up to take new-style image parameters
(colorSpace, isPlanar, and hasAlpha instead of photoInt and
planarConfig).

extern void NXDrawBitmap(
const NXRect *rect,
int pixelsWide,
int pixelsHigh,
int bitsPerSample,

int samplesPerPixel,
int bitsPerPixel,
int bytesPerRow,
BOOL isPlanar,
BOOL hasAlpha,
NXColorSpace colorSpace,
const unsigned char *const data[5]

);

When converting any existing calls to NXImageBitmap() to NXDrawBitmap(),
you can use the following mapping from the old style arguments to the new style
arguments:

isPlanar = (planarConfig == NX_PLANAR) ? YES : NO;

hasAlpha = ((photoInt & NX_ALPHAMASK) != 0) ? YES : NO;

colorSpace = ((photoInt & 3) == 3) ? NX_CMYKColorSpace :
 (photoInt & 3);

data = {data1, data2, data3, data4, data5};

bitsPerPixel = bitsPerSample *
((planarConfig == NX_PLANAR) ? 1 : samplesPerPixel);

bytesPerRow = (7 + pixelsWidth * bitsPerSample *
((planarConfig == NX_PLANAR) ? 1 : samplesPerPixel)) / 8;

The colorSpace argument to NXDrawBitmap() can be
NX_CustomColorSpace, indicating that the image data is to be interpreted
according to the current color space in the PostScript graphics state. This allows for
imaging using custom color spaces. The image parameters supplied as the other
arguments should match what the color space is expecting.

If the image data is planar, data[0] through data[spp-1] point to the planes; if
the data is meshed, only data[0] needs to be set.

Under 3.0, there are some restrictions on bytesPerRow and bitsPerPixel
arguments; please refer to the window server notes for details. Also, any unused
space within a pixel (which happens if bitsPerPixel is greater than
samplesPerPixel * bitsPerSample) should be filled with ones; this will be the
case by default for images read back from the window server, but not images you
create yourself. This requirement doesn't apply to unused space at the end of
scanlines (which happens when bytesPerRow is different than the default value).

· NXColor

The following functions have been added to get the list and color names of named
colors. (Please refer to the discussion on NXColorList for more information on
named colors.) These functions return NULL if the color is not named. Under 3.0,

only lists such as PANTONE (and similar lists which maybe be created manually),
generate named colors; other colors will not remember their names.

const char *NXColorListName (NXColor color);
const char *NXColorName (NXColor color);

The following function allows getting a color given a list and color name. NO will be
returned if listName and colorName do not refer to any color.

BOOL NXFindColorNamed (
const char *listName,
const char *colorName,
NXColor *color

);

· Reading a pixel

NXReadPixel() will read the color from the specified pixel of the currently
lockfocus'ed view, for example:

if ([myNXImage lockFocus]) {
NXSize imageSize;
NXPoint centerPoint;
NXColor centerColor;

[myNXImage getSize:&imageSize];
centerPoint.x = floor(imageSize.width / 2);
centerPoint.y = floor(imageSize.height / 2);
centerColor = NXReadPixel(¢erPoint);

[myNXImage unlockFocus];
}

 
This function will always convert the point into screen coordinates, round down to
the nearest pixel (if necessary), and then take the pixel encompassed by a 1 X 1
rectangle with the specified point being the lower-left origin.

· Services

To invoke a Services Menu services programatically, use the function:

BOOL NXPerformService(const char *itemName, Pasteboard *pboard);

It returns whether the service was successfully performed.    itemName is a
Services menu item (in any language).    Note that Services menu entries which are
in subdirectories must include a slash wherever there is a subdirectory, e.g.,
"Mail/Selection".    The pboard must include the requisite data which feeds the
services and, upon return of the function, will contain the resultant data provided by
the service provider.

· DPSClient/pswrap

Single operator wraps have been added for all level 2 operators.

DPSAsynchronousWaitContext() has been added to allow a client to learn
asynchronously when all PostScript code it has generated has been executed.

Wraps that take numstring arguments will now produce PostScript that will work
on all PostScript printers, so it is no longer necessary to have separate versions of
these wraps for printing.    DPSWriteNumString() has been added to to support
pswrap's sending of encoded number strings.

DPSSendPort() has been added to send a tagged port to the Window Server
using DPSSendTaggedMsg().    It is used to communicate a port to PostScript
operators that receive a port via that tagged message mechanism.

DPSAddNotifyPortProc() and DPSRemoveNotifyPortProc() have been
added to allow an application to filter messages received on the task's notify port.   
Procedures registered in this way should check all notify messages they are
passed to be sure they pertain to the ports they are interested in.    Clients that
previously passed the notify port to DPSAddPort should switch to this API.

The function DPSCreateNonsecureContext() has been added to allow the
creation of DPS contexts that are able to to write files.

A new function DPSSynchronizeContext().    If called with YES, a
DPSWaitContext() will be performed after every pswrap that is executed.    The
default NXSyncPS is automatically passed to this function.    This is useful in
conjunction with NXShowPS when debugging PS errors, since it allows you to
isolate the piece of PS causing the error.

The function DPSSendTaggedMsg() has been added.    It is used to send a Mach
message to the Window Server on behalf of a DPSContext.    It is used in
conjunction with certain PostScript operators that operate on Mach ports or out-of-
line data.    Usually a higher level interface will handle calling this function.

Semantic Changes
 
The following changes affect the semantics of existing functionality in the Application

Kit:

· NXColorPanel

The ColorPanel's opacity default has changed from its 2.1 default.    In 2.1 the
ColorPanel had an opacity slider by default.    Now it does not have an opacity

slider by default, and the Application is set to "not import alpha" by default (see
Application's setImportAlpha: method).    This change has no effect on
applications which have not been recompiled for 3.0.

The ColorPanel's "continuous" default has changed from its 2.1 default.    In 2.1 the
ColorPanel was not continuous by default.    Now it is.    This change has no effect
on applications which have not been recompiled for 3.0.

If color panel's initial mode mask is "0" (no pickers), the panel will not be shown.   
This is an effective way of preventing the panel from ever being shown (even when
wells in your app are clicked on, etc.).

· NXColorWell

NXColorWell's drawWellInside: used to lockFocus and unlockFocus. In
apps linked against 3.0, it will no longer do this.

· Panel

The autosizing bits contained in the view passed to Panel's setAccessoryView:
method used to be ignored, and replaced.    This has changed so that if there are
autosizing bits with this view, they will not be modified.    If there are no autosizing
bits, the (NX_MINXMARGINSIZABLE | NX_MAXXMARGINSIZABLE) bits will be

added. This change has no effect on applications which have not been recompiled
for 3.0.

· NXImage

Under 2.0, if an NXImage had a delegate implementing the
imageDidNotDraw:inRect: error handling method, this delegate would be
consulted whenever the image was told to composite:... (or dissolve:...)
and the operation failed (most probably because the cache could not be created,
the image did not exist, or there were errors during rendering).    Under 3.0, for apps
linked against 3.0, this delegate method will also be consulted when lockFocus or
lockFocusOn: encounters an error. If the delegate method does return an
alternate image, then that image will be sent a lockFocus and the result of that
operation will be returned to the client. If either lockFocus (on the original image
or on the error handler) succeeds, the client should call unlockFocus (on the
original image).

Under 2.x, all NXImages caches created as a result of useCacheWithDepth: (or
lockFocus without any other image source)    were unique, even    through the
unique bit is off by default. What's worse, even if you called setUnique:NO, they'd
still remain unique. Under 3.0, by default, these caches will still be unique; however,
if you do set the uniqueness one way or the other, the unique bit will be honored.
Thus it's possible for simple cached images to share caches between each

otherÐJust make sure you don't accidentally promote caches (thus all other images
in the caches) to have more colors or alpha while drawing into an image.    Alpha
promotion is the greater problem; because windows depths are normally limited,
undesired color promotion won't happen too often. For instance, caches which are
meant to serve as temporary backing stores for underbits of covered areas in
windows should probably still be kept uniqueÐOtherwise if they are accidently
promoted, they will end up promoting the original source window when composited!

This is not an issue for images created from files or streams as their depths are
determined by the NXImage and appropriate caches chosen. For custom images
(added to NXImage with useDrawMethod:inObject:) you should set the image
characteristics of the image rep to let NXImage choose the appropriate depth
cache.

Under 2.x, images upto 128 pixels wide could be put into shared image caches;
under 3.0, this limit is 256 and can be set with NXMaxSharedImageWidth default.
The purpose of this default is to allow developers to easily catch bugs resulting
from images inadvertently sharing caches; if you think an application is having
problems due to shared image caching, try:

dwrite appname NXMaxSharedImageWidth -1

Value of -1 disables all image cache sharing. During normal use an app should not

have to set this default; if an image cannot be put in a shared cache for some
reason, use setUnique:YES.

The setSize: method of NXImage no longer forces a cache redraw if the new
size is the same as the old size.    This change will only take effect for applications
that are linked under 3.0.

· Designated initializer for Window and its subclasses

This is not a semantic change, just a reiteration that the designated initializer (the
one you should override to put subclass-specific behaviour in) for Window is
initContent:style:backing:buttonMask:defer:, not the same method
with screen: at the end!

· Speaker/Listener

Speaker/Listener messages are now secure (meaning you cannot get the port of a
Listener on another machine unless that machine is running with
PublicWindowServer turned on).

The performRemoteMethod:paramList: method of Listener no longer
requires that the method contained in the NXRemoteMethod structure come from
the remoteMethodFor: method.    These structures can now be composed, and

the method will be searched based on a comparison of the selector in the structure.

· Matrix

Radiomode matrices now properly allow "Empty Selection" (i.e. the absence of any
selected cell), when set to allow it.    In the past, if a Radiomode matrix was set to
allow empty selection, it would still never allow all cells to be deselected at once.    It
will now allow this.    This change will only effect applications which are recompiled
for 3.0.

In list mode, the selectedCell, selectedRow, and selectedCol methods
used to return the row, column and cell of the cell which received the mouse up
during a tracking session.    To return a more useful result, if the cell moused-up on
was deslected as a result (i.e. the shift key was down), Matrix will now return the
previously selected cell, if it is still selected, otherwise it will find the first highlighted
cell it can, if there are no highlighted cells, it will return the cell moused-up on.   
This fix only effects apps which recompile post-2.1.

When the Matrix's selectAll: method is called, each cell in the Matrix will have
their highlight:inView:lit: method called.    Before 3.0, only their state was
set to 1.    This change will only take effect in applications relinked under 3.0.

According to the documentation, selectCell:aCell was supposed to return nil

if aCell is not in the receiving Matrix. In actuality, it would return whatever value
was contained in aCell.    For applications relinked under 3.0, this has been
changed to behave as described in the documentation (e.g. return nil if aCell is
not in the receiving Matrix).

According to the documentation, findIndexWithTag:aTag was supposed to
return -1 if there is no field with aTag in the receiving Form. In actuality, it would
return 0.    For applications relinked under 3.0, this has been changed to behave as
described in the documentation (e.g. return -1 if a field with aTag is not in the
receiving Matrix).

The insertRowAt: and insertColAt: methods have been changed so that    if
the column or row where the insertion is to take place is larger that the last row or
column, then all necessary rows or columns will be created in order to accomodate
the request.    This sort of request used to cause a segmentation fault.    This is now
a useful method for increasing the size of matrices by more than one row or column
at a time.

The semantic for sending a doubleAction in Matrix has been changed.    In 2.1, if
a Matrix received a double-click, it would first try to send it to the cell's action
method.    If the cell had no action method, it would use the Matrix's
doubleAction method.    If the Matrix had no doubleAction method, it would

use the Matrix's action method.    Applications linked under 3.0 will have the
following semantic: the Matrix will first try and call the doubleAction method
associated with itself.    If and only if there is none, then it will try calling the cell's
action method.    If that is not set, it will call its own (Matrix's) action method.

· Text object delegate method textWillEnd:

In 2.x, the Text delegate would receive the textWillEnd: method immediately
before the Text object resigns first responder, but only if the Text object had been
changed since last becoming first responder.    Apps linked against the 3.0 library
will receive this action, regardless of whether the Text object has changed.    To
detect if the text has in fact changed, the delegate must respond to
textDidChange: and remember this fact when textWillEnd: is sent to the
delegate.

 · NXPortFromName()

When passed NULL or "" as a hostname, this function will now try to look up the
port on the host specified by the NXHost default, if the default has been set.   
Otherwise it will look on the local host.

· NXImageRep

Under 2.0 and 2.1 the drawAt: and drawIn: methods could change the graphics
state under certain circumstances. (Mostly by design and in one case,
NXEPSImageRep's draw, due to a bug). In apps linked against 3.0, this is no
longer the case; these methods always leave the graphics state as they found it.

In 2.x, the write: methods of NXBitmapImageRep and NXEPSImageRep saved
either the filename or the data depending on whether the image rep was created
from a file or stream. This made them behave more like NXImage. Under 3.0, for
apps linked against 3.0, the write: method of these classes always write out the
data, whether or not the original data came from a file or a stream.

Note that NXImage still behaves as it did under 2.x; the write: method will write
enough data out to recreate the image the same way it was originally created (from
a name, from a file, from a section, or from actual data). This behaviour follows the
overall design of NXImageÐto be lazy and to hold on to as little redundant
information as possible.    If you wish to create an NXImage from a file but actually
have the data archived when you write:, use the loadFromFile: method
instead of    useFromFile: or initFromFile:. NXImages which are handed
filenames through useFromFile: or initFromFile: firmly (and perhaps
naively) believe that those files will always be around.

· Control/Cell

If you send setFloatValue: or setDoubleValue: to a Cell (or Control), the
AppKit will use the appropriate thousands separator depending on the language of
the user (usually either "," or ".").    When the user types into a Cell (whether it be a
TextField or Form or whatever), it will accept EITHER the local separator or, for
backwards compatibility, ".". This only occurs in applications which recompile
post-2.1.    Note that floatValue and doubleValue will still return valid values.

The ButtonCell method setIconPosition: used to inconsistently update itself.   
It now always updates itself (for applications relinked under 3.0).

The Button and ButtonCell method setAltImage: used to only remove the
altImage when the "image" parameter was nil IFF there was a "regular" image.   
Now, if "image" is nil, the altImage will be removed (for applications relinked under
3.0).

setEditable:in Cell no longer forces a setSelectable: (for applications
relinked under 3.0).    The original selectability is unaffected by calls to
setEditable:NO.

· NXBrowser's setCellPrototype: and Matrix's setPrototype:

The semantics of setPrototype: in Matrix is that the Matrix "owns" that
prototype and will free the prototype when the Matrix itself is freed.    In 2.1

NXBrowser abused this semantic by giving the same prototype object out to many
matrices and then protecting them when the Matrix's were freed so that there would
not be multiply freed objects.    This was incorrect.

In 3.0, the NXBrowser now copies (by sending copy to the cell) the prototype cell
passed to it via setCellPrototype: before giving it to its Matrix's via
setPrototype:.    This also means that the NXBrowser no longer protects against
the case where its Matrix's share a single prototype cell.    This protection is left in
for applications linked under 2.1, but will go away when you rebuild your application
under 3.0 (otherwise the Matrix's would leak their prototype cells).

Thus, if you set the prototypes of the Matrix's in an NXBrowser DIRECTLY (i.e. not
via setCellPrototype: in NXBrowser), such that more than one of the Matrix's
have exactly the same prototype cell (and not copies thereof), your application will
crash when you rebuild it under 3.0.    The fix is simple, either use
setCellPrototype: in NXBrowser, or, if you find you must set the prototypes
directly in the Matrix's, use
[matrix setPrototype:[myProto copy]] so that they each get their own
copy and don't share a single object.

· NXBrowser

It is legal now (if the NXBrowser's delegate implements

loadCell:atRow:inColumn:) to pass nil for the NXBrowser's prototype or
cellClass.    This will cause the NXBrowser to never allocate any cells in the
columns.    This means that every time any information is needed about a cell, the
delegate will be consulted.    This is obviously somewhat more time consuming that
caching the information in cells in the matrix, but for extremely long lists (100,000s,
1,000,00s or more), the space/time trade-off may be worth it.    Notice that an
NXBrowser like this must be treated with care because there are no cells in the
matrices, thus normal activity (like selecting ranges of cells, for example) is
sometimes not possible.

· NXColor

The NXSetColor() function now uses the new window server operator
nxsetrgbcolor to set its color when in any modes other than CMYK.   
nxsetrgbcolor uses the NXCalibratedRGB color space which is closely
related to colorimetry of NeXT monitors; thus it is fast and suitable for interactive
rendering.    (Please refer to the window server notes for details.)

Because nxsetrgbcolor changes the color in a color space other than
DeviceRGB, apps setting the color through NXSetColor() and then reading it
back from the server with operators such as currentrgbcolor or its friends will
fail to get correct results. A default, NXUseCalibratedColor, has been provided
to disable the use of the NXCalibratedRGB color space in NXColors for such

apps:

dwrite appname NXUseCalibratedColor NO

Note that one side-effect of all these changes is that when printing the output that
the kit produces relies more on the standard print package than it did in 2.0. (The
"standard print package" is the printPackage.ps file which gets included with every
print job or EPS file generated by the kit.) For instance, NXSetColor() now
generates nxsetrgbcolor operator and assumes it has been defined
appropriately in the print package. The standard print package does indeed contain
a definition for this operator; the definition is conditional on whether the printing
device is Level I or Level II. However, if the print package has not been included for
some reason, this operator will generate PostScript errors on non-NeXT printers.

The bottom line is that any app which relies on the kit objects in any way to
generate PostScript should go through the View machinery when generating EPS
files and printing.    A 2.1 application which doesn't do this might not be able to print
on non-NeXT printers under 3.0; in that case, the NXUseCalibratedColor
default can be used as shown above to get the app to print.

As mentioned earlier, by default, the kit will color calibrate the print output from old
applications (applications linked with a version of NEXTSTEP older than 3.0) by
interpreting setrgbcolor, setgray, sethsbcolor, and colorimage as

calibrated.    When a 3.0 application prints, it is assumed that the application is
aware of color calibration issues; thus the output (except where EPS files are
imported) will not be calibrated. Thus even if an app cannot use NXColors, it should
still try to generate calibrated colors. This can be accomplished by using the
NXCalibratedRGB colorspace or the nxsetrgbcolor and nxsetgray
operators, which are defined both when drawing to the display and when printing
(the latter is true only when the printPackage is imported).

· PostScript Level II

The kit does not provide Level I emulations of various PostScript Level II
operations; thus code which uses patterns, custom colorspaces, etc might not print
on Level I printers.    However the Kit assures that its own use of Level II operators
(such as the NXCalibratedRGB color space or patterns for scroller backgrounds)
will work on Level I printers. Thus NXColor is safe in all cases and
NXDrawBitmap() is fine as long as long as a custom color space isn't utilized
(through NX_CustomColorSpace).

The following snippet shows how an application can make sure that any Level II
PostScript code it generates is conditional on the languagelevel operator so that
the PostScript file can be interpreted without errors on both Level I and Level II
devices:

/DeviceIsLevel2
systemdict /languagelevel known
{languagelevel 2 ge}{false}ifelse

def

· OpenPanel/SavePanel

When you runModalForTypes:... in the OpenPanel, and one of the "types"
you were running modal for was not owned by an application in your application
paths (e.g., ~/Apps, /LocalApps, etc.), and documents of that type were file
packages, they would incorrectly show up as directories in the OpenPanel.    This
has been fixed.

The validation method of SavePanel used to be called twice sometimes.    It is only
called once now (the double call has been left in for compatibility with 2.0
applications--once you recompile your application under 3.0, that behaviour will go
away).

When running Save or Open panels with "runModalForDirectory", if the passed in
directory string is more than a directory, e.g. it has a filename at the end of it, that
filename will be honored, and selected (this was true for 2.1 as well).    If a "file:"
parameter is specified as well, it will take precedence (if valid) over any trailing
filename found in the passed in directory.    This will only effect 3.0 apps.    As an
example, assume there is a directory "/tmp", and off it are two files, "console.log"

and "dummy", here's what happens under various circumstances:
[myPanel runModalForDirectory:"/tmp" file:"dummy"] <- /tmp/dummy are highlighted
[myPanel runModalForDirectory:"/tmp" file:"duGmmy"] <- /tmp is highlighted
[myPanel runModalForDirectory:"/tmp" file:""] <- /tmp is highlighted
[myPanel runModalForDirectory:"/tmp/dummy" file:""] <- /tmp/dummy are highlighted
[myPanel runModalForDirectory:"/tmp/console.log" file:""] <- /tmp/console.log are highlighted
[myPanel runModalForDirectory:"/tmp/console.log" file:"dummy"] <- /tmp/dummy are

highlighted (dummy takes precedence over console.log)
[myPanel runModalForDirectory:"/tmp/console.log" file:"duGmmy"] <- /tmp/console.log are

highlighted (duGmmy doesn't exist).

If users of "chooseDirectories:YES" want file packages to show up as well, then
they should also call "setTreatsFilePackagesAsDirectories:YES".

· Delayed Perform change

The perform:afterDelay:cancelPrevious: method used to (under some
circumstances) perform the method twice if you passed 0 for the delay.    That is no
longer true.    Passing a negative number for the delay now means "don't perform it
(just cancelPrevious: if specified)."    Passing zero means perform it as soon as
possible, but not now (i.e. after the application returns to getting events from the
user). This behaviour will only start to happen after you relink your application
under 3.0.

· NXHomeDirectory() and NXUserName()

The NXHomeDirectory() and NXUserName() functions operated on the real uid
of the process in 2.0.    After relinking in 3.0, the semantics will change to operate
on the effective uid (euid) of the process unless the euid of the process is zero, in
which case, the real uid will be used.

· Window

If a window has to be moved or resized when being ordered front to fit a given
screen, the window delegate will be sent windowDidMove: or
windowDidResize:.    (In 2.1 this was not the case; the delegate would not be
informed.) Along the same lines, if a window has to be resized to fit on the screen,
the delegate's windowWillResize:to: method will be called one or more times
to determine if the window can be resized and what an acceptable size is.

· Application sections

All methods in the AppKit which use look in the macho section to find something
(e.g. a .nib file, an EPS or TIFF file, or a .snd file), now look in [NXBundle
mainBundle] if the thing being searched for is not found in the macho section.   
The effect of this is to get "for-free" localization of these files simply by making your
application an app-wrapper and putting all of your .nib, .snd, .eps, and .tiff

files in English.lproj.    No code changes are required to make these files
localizable.

· Pasteboard

The Pasteboard method declareTypes:num:owner: has been changed to
return an int instead of always returning self.    The int returned is the new
changeCount resulting from the declaration.    This fixes the race condition
inherent in declaring types and then asking for the changeCount.

· Font

The Font class no longer gives errors when sent alloc or allocFromZone.    It
imposes its own zone on all objects it allocates.

· View

Under 2.1, the shouldDrawColor method of View always returns YES when
printing. Under 3.0, this method queries NXPrinter object when printing and might
return YES or NO depending on the current printer's ability to print color.

The View printing machinery now uses the new PrintInfo to generate print jobs.    It
puts comments into the Print stream based on the job features in PrintInfo.    It uses

reversePageOrder to set up the generated page order of the job.    In the
absence of any information about the output device, it now generates pages first-to-
last, rather than last-to-first.

· Timed entries

In 2.x, timed entries were accurate to only 15 ms.    In 3.0, they are accurate to ~1
ms.    In addition, the time spent in the client supplied procedure used to get
accumulated into the period, e.g., a timed entry with period 2 seconds that took 1
second to execute had an effective period of 3 seconds.    In 3.0, the system tries to
call the proc with the requested periodicity, regardless of how long the proc takes to
execute. However, if the proc takes longer than the period the execute, the timed
entries will not try to "catch up" to make up for the missed call(s).

Other Changes

Additional changes made to the AppKit since Release 2.1.

· If the printer is capable of accepting binary images the kit will generate images in
binary format when printing. This speeds printing time by spooling smaller files.

· NXColorSpace enum has been extended to include NX_CustomColorSpace.
This value indicates that the image data is to be interpreted according to the color

space in the PostScript graphics state at the time the imaging takes place and
allows for imaging using custom color spaces. Note that although
NXBitmapImageRep class can accept this value as the colorSpace argument, it
can't write or read such images to TIFF files.

· NXMeasurementUnit enum has been added to provide a standard set of
measurement units to be used in kit API. The NXMeasurementUnit default can be
used to determine default setting of units in objects that show units (such as
PageLayout).

· It's now possible to run an application with the global window depth limit set to a
value greater than than of the default for the system. This feature should allow
testing applications as if they were running on machines with deeper screens and
should catch some performance problems not apparent when working just on
monochorme systems. To enable this feature, use the NXWindowDepthLimit
default as before, however, prefix the depth limit with "Test" to indicate that the
depth limit should be set to the provided value. (Without this prefix, the depth limit is
set to the minimum of the provided    value and the system default.) An example:

dwrite appname NXWindowDepthLimit TestTwentyFourBitRGB

This default is for debugging and performance analysis only and should not be
used under normal circumstances.

· As mentioned before, the kit will assure that application windows are resized and/or
moved to properly fit screens of different sizes. Windows created in Interface
Builder will also be placed on screens according to the window placement springs
specified in the size inspector panel for the window. These features become
especially important when running on a small screen; otherwise the title or resize
bars of large windows might end up inaccessible to the user.

To assure that an application runs properly on small screen, without actually having
a small screen, you can trick the machine into believing it has one. To do this you
need to edit the screen configuration stored in NetInfo. First run NetInfoManager (in
/NextAdmin); you should get a window for your local host. Open the directory
/localconfig/screens/MegaPixel and change the value of the active
property to "1" and the width and height in the bounds property to anything you
wish. Leave the origin at 0, 0.    ("0 832 0 624" is one possibility; it describes a 832 x
624 screen).    Then save the directory, logout, and restart the window server by
specifying "exit" as the user name at the loginwindow. The system should come
back up and use a smaller portion of the display as the screen.

To restore your original screen, change active to "0" and the bounds to "0 1120 0
832" (or whatever it was initially).

· The Application class's version number has been incremented from one to two.   
This will serve as the version of the kit as a whole.

