
Release 3.3    Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

3.3 Release Notes: 
The GNU Source-Level Debugger

This file contains release notes for the 3.3, 3.2, 3.1, and 3.0 releases of GDB, the 
GNU Debugger.    Items specific to the 3.2 release are listed first, and the Release 
3.1 and 3.0 notes follow.

Notes Specific to Release 3.2

New Features

The following new features have been added to gdb since Release 3.1.

· Data breakpoints.
The data breakpoint facility has been restored after its removal in Release 3.1.    
This allows the programmer to break whenever a range of memory is about to be 
changed.    The program will run significantly slower when this feature is used.



data-break address size
data-break expression

Causes the program to break when the specified data is about to be modified.    
The first form causes the data considered to start at address for size bytes.    The 
second form causes the data considered to start at &expression and continue for 
the size of expression.    An Objective C object will be considered to be the size 
that its class dictates at the time of the data-break command.    data-break with 
no arguments removes any outstanding data-break condition.

Examples:
data-break 0x1000 12

Program will stop if the range 0x1000 - 0x100b inclusive changes.

char *foo;
data-break foo

an assignment to foo will cause the program to stop.

char *foo;
foo = malloc(20);
data-break *foo

an assignment to foo[0] will cause the program to stop.

char *foo;



data-break foo 20
an assignment to any of the characters from foo[0] - foo[19] inclusive will cause 
the program to stop.

int foo;
data-break foo

an assignment to foo will cause the program to stop.

struct _foo {
int a;
int b;

};
struct _foo *foo;
data-break foo

an assignment to foo will cause the program to stop.

struct _foo {
int a;
int b;

};
struct _foo *foo;
foo = malloc(sizeof(*foo));
data-break foo->a

an assignment to foo->a will cause the program to stop.



struct _foo {
int a;
int b;

};
struct _foo *foo;
foo = malloc(sizeof(*foo));
data-break *foo

an assignment to foo->a or foo->b will cause the program to stop.

id foo;
data-break foo

an assignment to foo will cause the program to stop.

id foo = [Application new];
data-break foo->appSpeaker

an assignment to foo->appSpeaker will cause the program to stop.

id foo;
data-break *foo

an assignment to any of the instance variables of foo will cause the program to 
stop.

Note that the program stops before the memory is actually changed.    This allows 
the programmer to examine the state of the program both before and after the 
change.    Continuing the program (by any means, including single stepping) will 



permit the modification, but the program will stop upon the next modification.    
Commands and conditions can be assigned to these breakpoints, which can also 
be enabled/disabled/deleted just like normal breakpoints.

Notes Specific to Release 3.1

New Features

The following new features have been added to gdb since Release 3.0.

· Upgrade to GNU version 4.7.
The debugger has been upgraded to include the latest source code from GNU.    
This brings many bug fixes and several feature enhancements, some of which are 
mentioned below.

· Better C++ support.
When used with the 3.1 compiler and the -gg switch (this may not be the default), 
gdb is able to show C++ methods with more readable (demangled) names.    The 
user can now insert breakpoints using these names.    Object instances are 
displayed as their derived classes instead of their base classes.    When inside an 
instance method instance variables are directly accessible.

· Fat file support.
Gdb now supports multi-architecture files.    It uses the version that will run on the 
host system.



Removed Features

The following new features have been removed from gdb since Release 3.0.

· Data breakpoints.
The data breakpoint facility has been removed.

Notes Specific to Release 3.0

These notes were included with the Release 3.0 version of the Mess Kit.      Sections 
that are no longer relevant have been marked with an italicized comment.

3.0 Release Notes: 
The GNU Source-Level Debugger

This file contains information about GDB, the GNU Debugger.    For more information, 
see the following chapter in the NeXT Development Tools manual:

· Chapter 8:    ªThe GNU C Source-Level Debuggerº



Also see the following UNIX manual page:

· gdb(1)

New Features

Enhanced view command

The existing ªviewº command has been enhanced to provide a much tighter 
connection with Edit.    When this command is invoked a menu is added to Edit.    This 
menu item brings up this panel 

692300_paste.tiff ¬

which allows the user to control some of gdb's basic functions.    The ªSelectionº 
group of buttons uses Edit's current selection as a argument, and the ªLineº group 
uses the current file and line.    Additionally this panel:

388335_paste.tiff ¬

can be invoked by the ªBrowseº button.    This allows the user to browse the local 
data in the debugged program.



Variable / Function / Method name expansion

GDB now supports command line expansion of variable, function and method names. 
This allows the user to type ªESC-ESCº or ªTABº to expand the current word on the 
command line to a matching name.    If there is more than one match, the unique part 
will be expanded, and a beep will sound.    ªESC-lº will display all possible 
completions.

History expansion of commands.

GDB now fully supports the csh syntax for retrieving previous commands.    ª!fooº will 
now retrieve the last command typed that began with ªfooº.    Additionally this is 
supported between gdb sessions in the same directory.    This is accomplished by 
writing out a file called ª.gdb_historyº.    This can be disabled with the command:

set history save off

Other history parameters can also be modified.      Use the help command:

help set history

for more information

Emacs command line editing



Gdb now fully supports the emacs command key set.    All the basic emacs keys 
work, and we have added    the arrow keys.    Left and right arrow move the cursor.    
Up and down arrow go back and forth in the history.    This renders the editmode 
command obsolete.

Consistency with dynamically loaded code

GDB is now always consistent with code that has been dynamically loaded by the 
debugged program.    This includes all uses of rld_* functions, objc_[un]load* 
functions and NXBundles.    Attaching and detaching to running programs is 
supported, as is debugging core files.    This is transparent to the user.

Formerly the add-file command was used to achieve this.    This command is still 
supported, but is now obsolete.

Attach/Detach works

Formerly this failed often enough to not qualify as a feature.    In addition to correctly 
attaching and detaching, control-C interrupting of programs started by the Workspace 
now works.

Watchpoints

These are slow but accurate.    The command:



watch exp

will single step the program until exp is true.

Data breakpoints (Data breakpoints weren't supported in Release 3.1.)

These are fast but less specific.    The following commands have been added to 
support data breakpoints:

data-break address size
data-break expression
data-break

Causes the program to break at the end of the function which changes the 
specified data.    The first form causes the data considered to start at address for 
size bytes.    The second form causes the data considered to start at &expression 
and continue for the size of expression.    An Objective C object will be 
considered to be the size that its class dictates at the time of the data-break 
command.    data-break with no arguments removes any outstanding data-break 
condition.

load-file    file-name



Loads file-name into the debugged program.    Any symbols are also added to 
gdb, so the user can communicate with the new object file through the use of 
functions and variables.

set-exit-handler function-name
set-exit-handler

Causes function-name to be called every time a function is exited.The prototype 
of the function is int (handlerFunction)(void).    If a non zero value is returned, the 
program will break at the end of the last function that was called.    With no 
arguments, this removes the exit handler.

Data breakpoints are implemented using a scheme which involves calling a handler 
function at the end of every function.    This allows the program to break at the end of 
the function that changed the data.    This narrows the search for the offending line to 
a space between the last function called within a function and the last line of that 
function.    A possible scenario is:

Memory is being smashed at 0x1000.

data-break 0x1000
continue

The program stops at the end of the function which caused the memory to change.



The offending line is somewhere above where we are now.    In fact it is somewhere 
between the end of last function that was called and the end of this function.

Examples:
data-break 0x1000 12

Program will stop if the range 0x1000 - 0x100b inclusive changes.

char *foo;
data-break foo

an assignment to foo will cause the program to stop.

char *foo;
foo = malloc(20);
data-break *foo

an assignment to foo[0] will cause the program to stop.

char *foo;
data-break foo 20

an assignment to any of the characters from foo[0] - foo[19] inclusive will cause 
the program to stop.

int foo;
data-break foo

an assignment to foo will cause the program to stop.



struct _foo {
int a;
int b;

};
struct _foo *foo;
data-break foo

an assignment to foo will cause the program to stop.

struct _foo {
int a;
int b;

};
struct _foo *foo;
foo = malloc(sizeof(*foo));
data-break foo->a

an assignment to foo->a will cause the program to stop.

struct _foo {
int a;
int b;

};
struct _foo *foo;
foo = malloc(sizeof(*foo));
data-break *foo



an assignment to foo->a or foo->b will cause the program to stop.

id foo;
data-break foo

an assignment to foo will cause the program to stop.

id foo = [Application new];
data-break foo->appSpeaker

an assignment to foo->appSpeaker will cause the program to stop.

id foo;
data-break *foo

an assignment to any of the instance variables of foo will cause the program to 
stop.

There are a few caveats to this scheme.    First of all, functions without frame pointers 
are exempt from the checking.    Second, the address that we are checking must be 
readable at all times that the data breakpoint handler will be called.    Otherwise an 
exception will be generated inside the inferior program.    gdb will catch this, and the 
user will have to turn off checking by using the data-break command with no 
arguments. 

View now supports displaying files on other hosts



The view command can use Edit on either the same machine, or another machine, to 
display files.

view

with no arguments uses Edit on the same machine. 

view hostname

will use Edit on hostname.

unview

will stop the viewing.

End Command

The end command has been added.    For functions with 1 return point (all C functions 
that were compiled with frame pointers) it will stop at the end of the current frame, but 
before the return.    This way you can examine the final state of a function.



Removed features

Idir command

The dir command now adds directories onto the beginning of the search path.    To 
get the current search path do: info dir.

Editmode command

The new library uses emacs keys by default.    If this is a problem, and you need vi 
keys or something else, let us know.

Really-run command

There is now a general facility to control confirmations in gdb. 

set confirm [off / on]

If confirm is set off, the user will not be prompted on commands like ªrunº.


