
Release 3.3    Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

3.3 Release Notes:
Compiler Tools

This document contains release notes for the 3.3, 3.2, 3.1, and 3.0 releases of the
Compiler Tools.    Items specific to the 3.3 release are listed first, and the Release
3.2, 3.1, and 3.0 notes follow.

This file contains information about the following topics:

· The NeXT GNU based assemblers
· The NeXT Mach-O link editor
· Mach-O object tools (nm, otool, and so on)

Numbers in parentheses following command names, as in rld(3), refer to Unix
manual page sections.

Notes Specific to Release 3.3

New Feature

The major feature for Release 3.3 is a true Mach-O assembler, available for all
platforms. See ªThe NeXT Mach-O GNU-based Assemblerº for more information.

Problems Fixed in Release 3.1

These problems have been fixed in Release 3.3:

Reference: 37610

Problem: Objective C messages are counted twice when profiling.

Description: If a method is compiled for profiling, it gets counted by two separate
mechanisms, resulting in a double count.

Reference: 41317

Problem: The assembler for HP 9000 systems does not support cache
control hints.

Description: You can't get cache control hints from an instruction like LDCWS.

Notes Specific to Release 3.2

Known Problems

These new bugs have appeared since Release 3.1.

Reference 37610

Problem Objective C messages are counted twice when profiling.

Description If a method is compiled for profiling, it gets counted by two separate
mechanisms, resulting in a double count.

Notes Specific to Release 3.1

New Features

The major feature for the 3.1 release is the support for multiple architectures and
cross development.    The supported processor architectures are m68k and i386. The
functionality of the 3.1 release is the same for all supported architectures as it was
previously for the m68k architecture.    The 3.1 release also adds the new
functionality of    multiple architecture files (ªfatº files).

· By default all tools target for the host they are executed on.    Target architectures

are specified by -arch flag to the tools.    More than one target architecture can be
specified.    Tools that operate on object files (that don't create them) can also
have -arch all specified to select all architectures.    See the man pages for the
specific tools for more details on how it operates on fat files.

The -o option to otool(1) is now fully working along with printing of the sections
__protocol, __string_object and __runtime_setup in the __OBJC segment.

Bugs Fixed in Release 3.1

These bugs have been fixed in Release 3.1:

Reference 27954

Problem Some names in m68k assembly code appeared to behave as
reserved words.

Description Two-character symbol names beginning with `b', `d', or `i' were
assumed by the assembler to indicate the m68k pseudo-registers
`bc', `dc', or `ic', masking the desired use of the symbol name.

Reference 23178

Problem Compiling with optimization produced some incorrect result with
floats.

Description An assembler bug caused comparison of small floating point
numbers not to work in every case.

Reference 19664

Problem gprof crashes when used on a program with bundles (NXBundle
objects).

Description The profiling tools would not work with code loaded from bundles.

Notes Specific to Release 3.0

These notes were included with the Release 3.0 version of the Compiler Tools.

This file contains information about the following topics:

· The NeXT GNU based assembler
· The NeXT Mach-O link editor
· Mach-O object tools (nm, otool, and so on)

The major change is that the assembler is much better. The other major feature is a
new assembler manual. The assembler manual documents all features of the

assembler (previously no assembler manual existed).

The NeXT GNU-based Assemblers

The NeXT assembler is now a fully supported program and no longer viewed just as
a back end to the compiler code generator.    Also all outstanding bugs from the 2.x
releases have been fixed.    Exhaustive testing of all the instructions and operands of
the assembler has been done resulting in a much more robust assembler.    A UNIX
manual page now exists for the assembler.

Major New Features
· Simple user defined macros (see .macro, and so on)
· Conditional assembly (see .if, and so on)
· C language style assembler expressions with C precedence
· All m68k mmu instructions are now supported
· All previous warnings are now treated as errors and cause the assembler to exit

and not create an object file when an error is encountered (errors such as
unknown pseudo ops, mismatching operands to machine instructions, and so on)

New Documentation

· Assembler manual (available on-line in
/NextLibrary/Documentation/NextDev/Assembler)

· as(1) Unix manual page

The on-line assembler manual is indexed for use in Digital Librarian.    A target for the
manual is on the NextDeveloper bookshelf
(/NextLibrary/Bookshelves/NextDeveloper.bshlf).

Notable Bug Fixes

· For the m68k, floating-point instructions that allow immediate operands were
handled incorrectly.    Previously an instruction like ªfmuls #2,fp0º would not place
a 2.0 in fp0    the binary bit pattern of 2 (for double formats, like fmuld, the
immediate value would be trashed).    The new assembler now treats this
immediate like all others, as an integer and then converts it to a floating-point
value.    A new feature has also been added so that bit patterns can be used for
floating-point immediate values by prefixing with 0b, which then causes the rest of
the value to be assumed as hexadecimal number.

Known Bugs

· 68k assembler does not handle packed floating-point immediates. This is treated
as an error.

· The logical operators && and || are not implemented in expressions and can't be
used.

The NeXT Mach-O link editor

New Features

· The new -ObjC flag provides objective-C linking semantics with respect to
libraries.    When this flag is present all library members for the specified libraries
that define an objective-C class or category are loaded from the library.    This
solves problems with classes not being linked into the application and getting
errors from the objective-C runtime when the class is used.    This should be used
whenever building a NeXT application and is the default in Project Builder.    With
this feature a library that contains objective-C can no longer be specified more
than once (this includes libsys_s.a which is automatically included by cc(1) so it
should not be specified in addition to that or multiply defined symbols will result).

· The new -all_load flag provides a way to link in all the members of the specified
libraries.    When this flag is present all library members for the specified libraries
are always loaded from the library.    This solves problems with respect to the use
of rld(3), objc_loadModules(3) and NXBundles where the application wants to
make available all of the library routines to the code it dynamically loads.    This

provides a more general solution that which is provided with the ª-u libsys_sº like
flags with respect to the NeXT supplied shared libraries.    This solution    works for
all types of libraries including those not supplied by NeXT.

· The new -m flag allows multiply defined symbols with a warning instead of treating
them as a hard error.    In this case the first symbol is used for linking and is the
value of the symbol. This should only be used as a stopgap measure when the
source code is unavailable to be fixed.

· The new function    void rld_forget_symbol(NXStream *stream, const
char€*symbol_name) was added for use by Franz Lisp to better support its
implementation of foreign functions (see the rld(3) Unix manual page for details).

· The rld(3) package now works more automatically with the debugger gdb(1) for
debugging code that is loaded in to a program by the program itself.    If the
program loads into itself with rld(3) then the output_filename parameter of
rld_load(3) and the use of gdb's add-file command is no longer needed.    These
are still needed if the program has a program other than itself loading objects into
it.

Mach-O Object Tools

New Features

· The tool strip(1) now allows all combinations of its flags to better support stripping
executables for later use with rld(3).    This allows much easier control of the api
that the executable wants to provide to the objects that it will load with rld and it
will not have to publish symbols that are not part of its API.    For example an
executable that wishes to allow only a subset of its global symbols but all of the
shared libraries globals to be used would be stripped with:

strip -s api_symbols -A executable

Here the file api_symbols would contain only those symbols from the executable
that it wishes the objects loaded with rld to have access to.    The other major
change to strip(1) was to properly handle relocation entries and never strip them.
Thus, with the addition of the -u flag to save all undefined symbols, strip(1) allows
an object (made up of other objects) to strip its global name space so not to
collide with other symbols.    For example an object that is made up of a number of
other objects that will be loaded into an executable would built and then stripped
with:

ld -o relocatable.o -r a.o b.o c.o
strip -s api_symbols -u relocatable.o

which would leave only the undefined symbols and symbols listed in the file
api_symbols in the object file.    In this case strip(1) has updated the relocation
entries to reflect the new symbol table.

Notable Bug Fixes

· The m68k disassembler in otool(1) now correctly disassembles all m68k
instruction from all of the m68k chips including the mmu instructions in the 030
and 040.    Also the disassembly format exactly matches the assembler format for
all instructions and operand formats.

