
Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

NXWorkspaceRequestProtocol

Adopted By: No NEXTSTEP classes

Declared In: appkit/workspaceRequest.h

Protocol Description
The NXWorkspaceRequestProtocol protocol is implemented by an object in the Workspace Manager
that responds to application requests to do such things as open files, launch applications, and return
file icons.    This object is made available through the Application object's workspace method.    For
example, the following code uses the Workspace Manager object to request that a file be opened in
the Edit application:

[[Application workspace] openFile:"/tmp/README"
 withApplication:"Edit"];

Before NEXTSTEP Release 3, some of the functionality of this protocol was found in the Speaker
and Listener classes.    New applications should be changed to send messages to the Workspace
Manager object rather than to Workspace Manager's Listener.

Many of the methods in the NXWorkspaceRequestProtocol protocol depend on the existence of an
Application object and its Speaker and/or Listener objects.    This presents no problem for
NEXTSTEP applications, but other applications may have to create an Application object and send it
a run message in order to use these methods.

Method Types
Opening files ± openFile:

± openFile:withApplication:
± openFile:fromImage:at:inView:
± openFile:withApplication:andDeactivate:
± openTempFile:
± findString:inFile:

Manipulating applications ± launchApplication:
± launchApplication:showTile:autolaunch:
± hideOtherApplications

Manipulating files ± performFileOperation:source:destination:files:options:
± selectFile:inFileViewerRootedAt:

Requesting information about files
± getIconForFile:
± getInfoForFile:application:type:
± getFullPathForApplication:
± getInfoForFileSystemAt:isRemovable:isWritable:
isUnmountable:description:type:

Requesting additional time before logout
± extendPowerOffBy:

Tracking changes to the file system
± fileSystemChanged
± didFileSystemChange

Updating registered services and file types
± findApplications

Tracking changes to the defaults database
± defaultsChanged
± didDefaultsChange

Tracking status changes for applications and devices
± beginListeningForApplicationStatusChanges
± endListeningForApplicationStatusChanges
± beginListeningForDeviceStatusChanges
± endListeningForDeviceStatusChanges
± getMountedRemovableMedia:
± mountNewRemovableMedia:
± checkForRemovableMedia

Animating an image ± slideImage:from:to:

Unmounting a device ± unmountAndEjectDeviceAt:

Instance Methods
beginListeningForApplicationStatusChanges

± (void)beginListeningForApplicationStatusChanges

Notifies Workspace Manager that the application wants to be notified of changes in the status of all
applications.    After sending this message, the Application object's delegate will receive the
following messages when an application is launched or after one terminates:

app:applicationWillLaunch:
app:applicationDidLaunch:
app:applicationDidTerminate:

See also:    ± endListeningForApplicationStatusChanges

beginListeningForDeviceStatusChanges
± (void)beginListeningForDeviceStatusChanges

Notifies Workspace Manager that the application wants to be notified when various media (usually
optical or floppy disks) are mounted or unmounted.    After sending this message, the Application
object's delegate will receive the following messages after a device is mounted or unmounted:

app:mounted:
app:unmounted:

These methods complement the unmounting:ok: method, which is sent just before a device is
unmounted so that applications can end all their accesses to that device.

See also:    ± endListeningForDeviceStatusChanges

checkForRemovableMedia
± (void)checkForRemovableMedia

Causes the Workspace Manager to poll the system's drives for any disks that have been inserted but
not yet mounted.    checkForRemovableMedia doesn't wait until such disks are mounted; instead, it
asks the Workspace Manager to mount the disk asynchronously and returns immediately.

See also:    ± getMountedRemovableMedia:, ± mountNewRemovableMedia:

defaultsChanged
± (void)defaultsChanged

Informs Workspace Manager that the defaults database has changed.    Workspace Manager then
reads all the defaults it is interested in and reconfigures itself appropriately.    For example, this
method is used by the Preferences application to notify Workspace Manager whether the user prefers
to see hidden files.

See also:    ± didDefaultsChange

didDefaultsChange
± (BOOL)didDefaultsChange

Returns whether a change to the defaults database has been registered with a defaultsChanged
message, and clears the internal flag (for the sending application) that indicates such a change.

didFileSystemChange
± (BOOL)didFileSystemChange

Returns whether a change to the file system has been registered with a fileSystemChanged
message, and clears the internal flag (for the sending application) that indicates such a change.

endListeningForApplicationStatusChanges
± (void)endListeningForApplicationStatusChanges

Notifies Workspace Manager that the application is no longer interested in notifications of
application launches and terminations.

See also:    ± beginListeningForApplicationStatusChanges

endListeningForDeviceStatusChanges
± (void)endListeningForDeviceStatusChanges

Notifies Workspace Manager that the application is no longer interested in notifications of the
mounting and unmounting of devices (such as optical and floppy disks).

See also:    ± beginListeningForDeviceStatusChanges

extendPowerOffBy:
± (int)extendPowerOffBy:(int)requestedMs

Requests more time before the power goes off or the user logs out.    An application can send this
message in response to a powerOffIn:andSave: message that doesn't give the application enough
time to prepare for the impending shutdown.

requestedMs is how many additional milliseconds are needed, beyond the number given in the
powerOffIn:andSave: message.    The actual granted number of additional milliseconds is returned.

See also:    - powerOffIn:andSave: (Application), - app:powerOffIn:andSave: (Application
delegate)

fileSystemChanged
± (void)fileSystemChanged

Informs Workspace Manager that the file system has changed.    Workspace Manager then gets the
status of all the files and directories it is interested in and updates itself appropriately.    This method
is used by many objects that write or delete files.    Even if this method isn't invoked, Workspace
Manager will note changes to the file system relatively quickly if it is the active application.

See also:    ± didFileSystemChange

findApplications
± (void)findApplications

Instructs Workspace Manager to examine all applications in the normal places and update its records
of registered services and file types.    This can be useful in an project building application, for
example.

findString:inFile:
± (BOOL)findString:(const char *)aString inFile:(const char *)filename

Instructs Workspace Manager to open the file filename (specified with a complete path), with the
string aString selected.    The file is opened using the default application for its type.    The
application that opens the file must implement the msgSetPosition:posType:andSelect:ok:
message in its Listener's delegate to find the selection.

getFullPathForApplication:
± (const char *)getFullPathForApplication:(const char *)appName

Returns the full path for the application appName, or NULL if appName isn't in one of Workspace
Manager's application directories.    The returned string is valid until the next message to a Speaker
object; the application must copy it if it must be retained.

getIconForFile:
± (NXImage *)getIconForFile:(const char *)fullPath

Returns a newly allocated NXImage with the icon for the single file specified by fullPath, or nil if
there is an error.

See also:    ± getInfoForFile:application:type:

getInfoForFile:application:type:
± (BOOL)getInfoForFile:(const char *)fullPath
application:(char **)appName
type:(NXAtom *)type

Retrieves information about the file specified by fullPath.    After invoking this method, the string
pointed to by appName is set to the application Workspace Manager would use to open fullPath.   
This string should be freed by the caller.    The NXAtom pointed to by type will contain one of the
following values or a file name extension such as ªrtfº indicating the file's type:

Value fullPath is a:
NXPlainFileType plain (untyped) file
NXDirectoryFileType directory
NXApplicationFileType NEXTSTEP application

NXFilesystemFileType file system mount point
NXShellCommandFileType executable shell command

Returns YES upon success, NO otherwise.

See also:    ± getIconForFile:

getInfoForFileSystemAt:isRemovable:isWritable:isUnmountable:
description:type:

± (BOOL)getInfoForFileSystemAt:(const char *)fullPath
isRemovable:(BOOL *)removableFlag
isWritable:(BOOL *)writableFlag
isUnmountable:(BOOL *)unmountableFlag
description:(char **)description
type:(char **)fileSystemType

Describes the file system at fullPath.    Returns YES if fullPath is a file system mount point, or NO if
it isn't.    Upon success, description will describe the file system; this value can be used in strings,
but it shouldn't be depended upon by program logic.    Example values for description are ªhardº,
ªnfsº, and ªforeignº.    fileSystemType will indicate the file system type; values could be ªNeXTº,
ªDOSº, or other values.

getMountedRemovableMedia:
± (BOOL)getMountedRemovableMedia:(char **)pathnames

Asks the Workspace Manager for the pathnames of all currently mounted removable disks, and
returns whether the query was successful.    Returns YES if it was successful in filling in pathnames
and NO otherwise.    pathnames is a pointer to a null-terminated, tab-separated list of full pathnames.

If the computer provides an interrupt or other notification when the user inserts a disk into a drive,
the Workspace Manager will mount the disk immediately.    However, if no notification is given, the
Workspace Manager won't be aware that a disk needs to be mounted.    On such systems, an
application should invoke either mountNewRemovableMedia: or checkForRemovableMedia
before invoking getMountedRemovableMedia:.    Either of these methods cause the Workspace
Manager to poll the drives to see if a disk is present.    If a disk has been inserted but not yet
mounted, these methods will cause the Workspace Manager to mount it.

The Disk button in an Open or Save panel invokes getMountedRemovableMedia: and
mountNewRemovableMedia: as part of its operation, so most application won't need to invoke
these methods directly.

See also:    ± mountNewRemovableMedia:, ± checkForRemovableMedia

hideOtherApplications
± (void)hideOtherApplications

Hides all applications other than the sender.    (Since the user can cause the same effect by
Command-double-clicking on an application's tile, a programmatic invocation of this method is
usually unnecessary.)

launchApplication:
± (BOOL)launchApplication:(const char *)appName

Instructs Workspace Manager to launch the application appName.    appName need not be specified
with a full path and, in the case of an application wrapper, can be specified with or without the ª.appº

extension.    Returns YES if the application is successfully launched or already running, and NO if it
can't be launched.

See also:    ± launchApplication:showTile:autolaunch:

launchApplication:showTile:autolaunch:
± (BOOL)launchApplication:(const char *)appName
showTile:(BOOL)showTile
autolaunch:(BOOL)autolaunch

Instructs Workspace Manager to launch the application appName.    If showTile is NO, Workspace
Manager won't display a tile for the application.    (The tile will exist, but it won't be placed on the
screen.)    If autolaunch is YES, the NXAutoLaunch command line default will be set as though the
application were autolaunched from the dock.    This method is provided to enable daemon-like apps
that lack a normal user interface and for use by alternative dock programs.    Its use is not generally
encouraged.

Returns YES if the application is successfully launched or already running, and NO if it can't be
launched.

See also:    ± launchApplication:

mountNewRemovableMedia:
± (BOOL)mountNewRemovableMedia:(char **)newPaths

Causes the Workspace Manager to poll the system's drives for any disks that have been inserted but
not yet mounted.    mountNewRemovableMedia: waits until the new disks have been mounted and
then fills in newPaths with a zero-terminated, tab-separated list of full pathnames to all newly
mounted disks.    This method returns YES if it was successful in filling in newPaths and NO
otherwise.

See also:    ± getMountedRemovableMedia:, ± checkForRemovableMedia

openFile:
± (BOOL)openFile:(const char *)fullPath

Instructs Workspace Manager to open the file specified by fullPath using the default application for
its type.    The sending application is deactivated before the request is sent.    Returns YES if the file
is successfully opened, and NO otherwise.

See also:    ± openFile:withApplication:andDeactivate:, ± openTempFile:

openFile:fromImage:at:inView:
± (BOOL)openFile:(const char *)fullPath
fromImage:(NXImage *)anImage
at:(const NXPoint *)point
inView:(View *)aView

Instructs Workspace Manager to open the file specified by fullPath using the default application for
its type.    Before opening the file, Workspace Manager will provide animation to give the user
feedback that the file is to be opened.    To provide this animation, anImage should contain an icon
for the file, and its image should be displayed at point, specified in aView's coordinates.

The sending application is deactivated before the request is sent.    Returns YES if the file is
successfully opened, and NO otherwise.

See also:    ± openFile:withApplication:andDeactivate:

openFile:withApplication:
± (BOOL)openFile:(const char *)fullPath withApplication:(const char *)appName

Instructs Workspace Manager to open the file specified by fullPath using the appName application.
appName need not be specified with a full path and, in the case of an application wrapper, can be
specified with or without the ª.appº extension.    The sending application is deactivated before the
request is sent.    Returns YES if the file is successfully opened, and NO otherwise.

See also:    ± openFile:withApplication:andDeactivate:

openFile:withApplication:andDeactivate:
± (BOOL)openFile:(const char *)fullPath
withApplication:(const char *)appName
andDeactivate:(BOOL)flag

Instructs Workspace Manager to open the file specified by fullPath using the appName application.
appName need not be specified with a full path and, in the case of an application wrapper, can be
specified with or without the ª.appº extension.    If appName is NULL, the default application for the
file's type is used.    If flag is YES, the sending application is deactivated before the request is sent,
allowing the opening application to become the active application.    Returns YES if the file is
successfully opened, and NO otherwise.

See also:    ± app:openFile:type: (Application delegate)

openTempFile:
± (BOOL)openTempFile:(const char *)fullPath

Instructs Workspace Manager to open the temporary file specified by fullPath using the default
application for its type.    The sending application is deactivated before the request is sent.    Using
this method instead of one of the openFile:... methods lets the receiving application know that it
should delete the file when it no longer needs it.    Returns YES if the file is successfully opened, and
NO otherwise.

See also:    ± openFile:withApplication:andDeactivate:

performFileOperation:source:destination:files:options:
± (int)performFileOperation:(const char *)operation
source:(const char *)source
destination:(const char *)destination
files:(const char *)files
options:(const char *)options

Requests the Workspace Manager to perform some file operation, such as compressing or moving
files.    The files to be manipulated are located in the source directory; their names are specified
relative to this directory and are listed in files.    If more than one file is listed, their names must be
tab-separated.    The list can contain both files and directories; all of them must be located directly
within source (not in one of its subdirectories).

Some operationsÐsuch as moving, copying, and linking filesÐrequire a destination directory to be
specified.    If not, destination should be the empty string (ªº).

The options argument is currently ignored.    It's reserved for future enhancements.

The permissible values for operation are as follows:

Operation Meaning
WSM_MOVE_OPERATION Move file to destination

WSM_COPY_OPERATION Copy file to destination
WSM_LINK_OPERATION Create link to file in destination
WSM_COMPRESS_OPERATION Compress file
WSM_DECOMPRESS_OPERATION Decompress file
WSM_ENCRYPT_OPERATION Encrypt file
WSM_DECRYPT_OPERATION Decrypt file
WSM_DESTROY_OPERATION Destroy file
WSM_RECYCLE_OPERATION Move file to recycler
WSM_DUPLICATE_OPERATION Duplicate file in source directory

Note:    WSM_ENCRYPT_OPERATION and WSM_DECRYPT_OPERATION might not be
available on all systems.

This method returns a negative integer if the operation fails, 0 if the operation is performed
synchronously and succeeds, and a positive integer if the operation is performed asynchronously.   
The positive integer is a tag that identifies the requested file operation.    When the operation is
completed, the delegate of the Application object is informed in an app:fileOperationCompleted:
message.    The tag is passed as the second argument in the message.

selectFile:inFileViewerRootedAt:
± (BOOL)selectFile:(const char *)fullPath
inFileViewerRootedAt:(const char *)rootFullpath

Instructs Workspace Manager to select the file specified by fullPath.    If a path is specified by
rootFullpath, a new file viewer is opened.    If rootFullpath is an empty string (ªº), the file is selected
in the main viewer.    Returns YES if the file is successfully selected, and NO otherwise.

slideImage:from:to:
± (void)slideImage:(NXImage *)image
from:(const NXPoint *)fromPoint
to:(const NXPoint *)toPoint

Instructs Workspace Manager to animate a sliding image of image from fromPoint to toPoint,
specified in screen coordinates.

unmountAndEjectDeviceAt:
± (BOOL)unmountAndEjectDeviceAt:(const char *)path

Unmounts and ejects the device at path.    Returns YES if the device is successfully unmounted or
path is badly formed; returns NO otherwise.

