
Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

DPSAddFD(), DPSRemoveFD()

SUMMARY Monitor a file descriptor

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSAddFD(int fd, DPSFDProc handler, void *userData, int priority)
void DPSRemoveFD(int fd)

DESCRIPTION DPSAddFD() registers the function handler to be called each time there is activity
with the file specified by file descriptor fd.    The function is called provided the following are true:

· The file descriptor fd must be valid and open; typically fd is generated through a call to open().   
There needn't be any data waiting to be read on fd.

· priority, an integer from 0 to 30, must be equal to or greater than the application's current priority
threshold.    See DPSAddTimedEntry() for a further explanation.

DPSFDProc, handler's defined type, takes the form

void *handler(int fd, void *userData)

where fd is the file descriptor that prompted the function call and userData is the same pointer that
was passed as the third argument to DPSAddFD().    The userData pointer is provided as a
convenience, allowing you to pass arbitrary data to handler.

DPSRemoveFD() removes the specified file descriptor from the list of those that the application
will check.

Typically, DPSAddFD() is used to listen to a socket or pipe; it's rarely used to monitor a common
file.

SEE ALSO DPSAddPort(), DPSAddTimedEntry()

DPSAddNotifyPortProc(), DPSRemoveNotifyPortProc()

SUMMARY Set the handler function for the notify port

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSAddNotifyPortProc(DPSPortProc handler, void *userData)
void DPSRemoveNotifyPortProc(DPSPortProc handler)

DESCRIPTION DPSAddNotifyPortProc() registers handler as the function that's called when a
message arrives on the notify port, the unique port, created through the task_notify() Mach
function, on which notifications (such as port death) are sent.    You don't need to create the notify
port yourself; DPSAddNotifyPortProc() creates it for you if it doesn't already exist.

DPSPortProc, handler's defined type, takes the form

void *handler(msg_header_t *msg, void *userData)

where msg is a pointer to the message that was received at the port and userData is the same pointer
that was passed as the second argument to DPSAddNotifyPortProc().    The userData pointer is

provided as a convenience, allowing you to pass arbitrary data to handler.

The notify port can have only one handler at a time; adding a handler removes the current one.    You
can remove the port's handler without specifying a new one with the DPSRemoveNotifyPortProc()
function.    The function's argument must match the notify port's current handler.

SEE ALSO DPSAddPort(), DPSAddTimedEntry()

DPSAddPort(), DPSRemovePort()

SUMMARY Monitor a Mach port

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSAddPort(port_t port, DPSPortProc handler, int maxMsgSize, void *userData, int
priority)

void DPSRemovePort(port_t port)

DESCRIPTION DPSAddPort() registers the function handler to be called each time your application
asks for an event or peeks at the event queue.    The function is called provided the following are
true:

· The Mach port port    must be valid and it must hold a message waiting to be read.

· priority, an integer from 0 to 30, must be equal to or greater than the application's current priority
threshold.    See DPSAddTimedEntry() for a further explanation.

DPSPortProc, handler's defined type, takes the form

void *handler(msg_header_t *msg, void *userData)

where msg is a pointer to the message that was received at the port and userData is the same pointer
that was passed as the fourth argument to DPSAddPort().    The userData pointer is provided as a
convenience, allowing you to pass arbitrary data to handler.

If, within handler, you want to call msg_receive() to receive further messages at the port, you must
first call DPSRemovePort() to remove the port from the system's port set.    (This is because your
application can't receive messages from a port that's in a port set.)    After your application is finished
receiving messages directly from the port, it can call DPSAddPort() to have the system continue to
monitor the port.

The contents of the message buffer msg, as received by handler, are invalid after the function
returns.    If you need to save any of the information that you find.

The maxMsgSize argument is an integer that gives the size, in bytes, of the largest message you
expect to receive.

DPSRemovePort() removes the specified Mach port from the list of those that the application will
check.

SEE ALSO DPSAddFD(), DPSAddTimedEntry()

DPSAddTimedEntry(), DPSRemoveTimedEntry()

SUMMARY Create a timed entry

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS DPSTimedEntry DPSAddTimedEntry(double period, DPSTimedEntryProc handler, void
*userData, int priority)

void DPSRemoveTimedEntry(DPSTimedEntry tag)

DESCRIPTION DPSAddTimedEntry() registers handler as a ªtimed entry,º a function that's called
repeatedly at a given time interval.    period determines the number of seconds between calls to the
timed entry.    Whenever an application based on the Application Kit attempts to retrieve events from
the event queue, it also checks (depending on priority) to determine whether any timed entries are
due to be called.    userData is a pointer that you can use to pass some data to the timed entry.

The function registered as handler has the form:

void *handler(DPSTimedEntry tag, double now, void *userData)

where tag is the timed entry identifier returned by DPSAddTimedEntry(), now is the number of
seconds since some arbitrary point in the past, and userData is the pointer DPSAddTimedEntry()
received when this timed entry was installed.

An application's priority threshold can be set explicitly as an integer from 0 to 31 through a call to
DPSGetEvent() or DPSPeekEvent().    It's against this threshold that priority is measured (note that
priority can be no greater than 30Ðthe additional threshold level, 31, is provided to disallow all
inter-event function calls).    However, if you're using the Application Kit, you should access the
event queue through Application class methods such as getNextEvent:.    Although some of these
methods let you set the priority threshold explicity, you typically invoke the methods that set it
automatically.    Such methods use only three priority levels:

Constant Meaning
NX_BASETHRESHOLD Normal execution
NX_RUNMODALTHRESHOLD An attention panel is being run
NX_MODALRESPTHRESHOLD A modal event loop is being run

When applicable, you should use these constants as the value for priority.    For example, if you
want handler to be called during normal execution, but not if an attention panel or a modal loop is
running, then you would set priority to NX_BASETHRESHOLD.

DPSRemoveTimedEntry() removes a previously registered timed entry.

RETURN DPSAddTimedEntry() returns a number identifying the timed entry or -1 to indicate an
error.

DPSAsynchronousWaitContext()

SUMMARY Procede asynchronously while PostScript code is executed

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSAsynchronousWaitContext(DPSContext context, DPSPingProc handler,
void *userData)

DESCRIPTION This function is similar to the more familiar DPSWaitContext() functions, except that
rather than wait for all PostScript code to execute, it returns immediately, allowing your application
to procede while the PostScript code is executed in the background.    The DPSPingProc function
handler is called (with context and userData as its two arguments) when all the PostScript code has
been executed.    The DPSPingProc function takes the form

void *handler(DPSContext context, void *userData);

Warning:    Be careful when you use this function; you mustn't send more PostScript code while
waiting for the handler to be called.    In general, it's best to not make any demands on the
Application Kit or the Client Library if you're waiting for an asynchronous handler to return.

DPSCreateContext(), DPSCreateContextWithTimeoutFromZone(),
DPSCreateNonsecureContext(), DPSCreateStreamContext()

SUMMARY Create a PostScript execution context

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS DPSContext DPSCreateContext(const char *hostName, const char *serverName,
DPSTextProc textProc, DPSErrorProc errorProc)

DPSContext DPSCreateContextWithTimeoutFromZone(const char *hostName, const char
*serverName, DPSTextProc textProc, DPSErrorProc errorProc, int timeout, NXZone *zone)

DPSContext DPSCreateNonsecureContext(const char *hostName, const char *serverName,
DPSTextProc textProc, DPSErrorProc errorProc, int timeout, NXZone *zone)

DPSContext DPSCreateStreamContext(NXStream *stream, int debugging, DPSProgramEncoding
progEnc, DPSNameEncoding nameEnc, DPSErrorProc errorProc)

DESCRIPTION DPSCreateContext() establishes a connection with the Window Server and creates a
PostScript execution context in it.    The new context becomes the current context.    The first
argument, hostName, identifies the machine that's running the Window Server; the second argument,
serverName, identifies the Window Server that's running on that machine.    With these two
arguments and the help of the Mach network server nmserver, the Mach port for the Window
Server can be identified.    If hostName is NULL, the network server on the local machine is queried
for the Window Server's port.    If serverName is NULL, a default name for the Window Server is
used.

The last two arguments, textProc and errorProc, refer to call-back functions (defined in the Client
Library specification) that handle text returned from the Window Server and errors generated on
either side of the connection.

For an application that's based on the Application Kit, you could create an additional context by
making this call:

DPSContext c;

c = DPSCreateContext(NXGetDefaultValue([NXApp appName], "NXHost"),
 NXGetDefaultValue([NXApp appName], "NXPSName"),
 NULL,
 NULL);

This example queries the application's default values for the indentity of the host machine and the
Window Server.    By doing this, the new context is created in the correct Window Server even if that
Server is not on the same machine as the application process.

The context that DPSCreateContext() creates allocates memory from the default allocation zone.   
Also, when there's difficulty creating the context, DPSCreateContext() waits up to 60 seconds
before raising an exception.    If you want to change either of these parameters, use
DPSCreateContextWithTimeoutFromZone().    Its two additional arguments let you specify the
zone for the context to use when allocating context-specific data and a timeout value in
milliseconds.

DPSCreateNonsecureContext() creates a ªnonsecureº context in which you can use PostScript
operators that are normally disallowed.    The most significant of these are operators that let you
write files.

DPSCreateStreamContext() is similar to DPSCreateContext(), except that the new context is
actually a connection from the client application to a stream.    This connection becomes the current
context.    PostScript code that the application generates is sent to the stream rather than to the
Window Server.    The first argument, stream, is a pointer to an NXStream structure, as created by
NXOpenFile() or NXMapFile().    The debugging argument is intended for debugging purposes but
is not currently implemented.    progEnc and nameEnc specify the type of program and user-name
encodings to be used for output to the stream.    The last argument, errorProc, identifies the
procedure that's called when errors are generated.

Few programmers will need to call either of these functions directly:    The Application Kit manages
contexts for programs based on the Kit.    For example, when an application is launched, its
Application object calls DPSCreateContext() to create a context in the Window Server.    Similarly,
to print a View the Kit calls DPSCreateStreamContext() to temporarily redirect PostScript code
from the View to a stream.

RETURN Each of these functions returns the newly created DPSContext structure.

EXCEPTIONS DPSCreateContext() and DPSCreateContextWithTimeoutFromZone() raise a
dps_err_outOfMemory exception if they encounter difficulty allocating ports or other resources for
the new context.    They raise a dps_err_cantConnect exception if they can't return a context within
the timeout period.

DPSCreateContextWithTimeoutFromZone() ® See DPSCreateContext()

DPSCreateNonsecureContext() ® See DPSCreateContext()

DPSCreateStreamContext() ® See DPSCreateContext()

DPSDefineUserObject(), DPSUndefineUserObject()

SUMMARY Create a user object

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS int DPSDefineUserObject(int index)
void DPSUndefineUserObject(int index)

DESCRIPTION DPSDefineUserObject() associates index with the PostScript object that's on the top
of the operand stack, thereby creating a user object (as defined by the PostScript language).    If
index is 0, the object is assigned the next available index number.    The function returns the new
index, which can then be passed to a pswrap-generated function that takes a user object.

Warning:    To avoid coming into conflict with user objects defined by the Client Library or
Application Kit, use DPSDefineUserObject() rather than the PostScript operator defineuserobject
or the single-operator functions DPSdefineuserobject() and PSdefineuserobject().

DPSUndefineUserObject() removes the association between index and the PostScript object it
refers to, thus destroying the user object.    By destroying a user object that's no longer needed, you
can let the garbage collector reclaim the previously associated PostScript object.

RETURN DPSDefineUserObject(), if successful in assigning an index, returns the index that the object
was assigned.    If unsuccessful, it returns 0.

DPSDiscardEvents() ® See DPSGetEvent()

DPSDoUserPath(), DPSDoUserPathWithMatrix()

SUMMARY Send an encoded PostScript path to the Window Server

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSDoUserPath(void *coords, int numCoords, DPSNumberFormat numType, unsigned
char *ops, int numOps, void *bbox, int action)

void DPSDoUserPathWithMatrix(void *coords, int numCoords, DPSNumberFormat numType,
unsigned char *ops, int numOps, void *bbox, int action, float matrix[6])

DESCRIPTION DPSDoUserPath() and DPSDoUserPathWithMatrix() send an encoded user path to
the Window Server and then execute, upon that path, the operator specified by action.    The use of
these functions, rather than the analogous step-by-step path construction, is encouraged; rendering
an encoded path is much more efficient than executing the individual PostScript operators that
would otherwise be needed.

An encoded user path consists of an array of coordinate values, a sequence of PostScript operators,
and a bounding box specification.    The values in the coordinate array are used as operands to the
operators; the operands are distributed to the operators in the order that they're given.    The resulting
path must fit within the bounding box.

The coordinates, operators, and bounding box are given by the functions' first five arguments:

· The array of coordinate values is given by coords.

· numCoords is the number of elements in coords.

· numType specifies the data type of the coordinates, as described below.    All the values in coords
must be of the same type.

· ops is the sequence of PostScript operators, represented by constants as listed below.

· The    bounding box is defined by the four coordinate values that you pass as an array in the bbox
argument.    These are passed as operands to the setbbox operator.    (If you don't supply a
setbbox as part of the ops sequence, one is inserted for you.)

The following integer constants represent the data types that you can pass as the numType argument:

Constant Meaning
dps_float single-precision floating-point number
dps_long 32-bit integer
dps_short 8-bit integer

You can also specify 16- and 32-bit fixed-point real numbers.    For 16-bit fixed-point numbers, use
dps_short plus the number of bits in the fractional portion.    For 32-bit fixed-point numbers, use
dps_long plus the number of bits in the fractional portion.

These constants are provided for ops:

dps_setbbox
dps_moveto
dps_rmoveto
dps_lineto
dps_rlineto
dps_curveto
dps_rcurveto

dps_arc
dps_arcn
dps_arct
dps_closepath
dps_ucache

Once the user path has been constructed, the operator specified by action is executed.    The value of
action is an index into Display PostScript's encoded system names; the following constants,
provided as a convenience, represent the most commonly used actions:

dps_uappend
dps_ufill
dps_ueofill
dps_ustroke
dps_ustrokepath
dps_inufill
dps_inueofill
dps_inustroke
dps_def
dps_put

DPSDoUserPathWithMatrix()'s matrix argument represents the transformation matrix operand
used by the ustroke, inustroke, and ustrokepath operators.    If matrix is NULL, the argument is
ignored.

The following program fragment demonstrates the use of DPSDoUserPath() as it creates and
strokes a user path (an isosceles triangle) within a bounding rectangle whose lower left corner is
located at (0, 0) and whose width and height are 200.

short coords[6] = {0, 0, 200, 0, 100, 200};
char ops[4] = {dps_moveto, dps_lineto,dps_lineto,
 dps_closepath};
short bbox[4] = {0, 0, 200, 200};

DPSDoUserPath(coords, 6, dps_short, ops, 4, bbox, dps_ustroke);

Note:    If an application calls DPSDoUserPath() with large values (~10,000-20,000) of
numCoords and/or numOps, it may generate a Display PostScript error.

DPSDoUserPathWithMatrix() ® See DPSDoUserPath()

DPSFlush(), DPSSendEOF()

SUMMARY Send PostScript data to the Window Server

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSFlush()
void DPSSendEOF(DPSContext context)

DESCRIPTION DPSFlush() flushes the application's output buffer, forcing any buffered PostScript
code or data to the Window Server.

DPSSendEOF() sends a PostScript end-of-file marker to the given context.    The connection to the
context isn't closed or disturbed in any way by this function.

DPSGetEvent(), DPSPeekEvent(), DPSDiscardEvents()

SUMMARY Access events from the Window Server

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS int DPSGetEvent(DPSContext context, NXEvent *anEvent, int mask, double timeout, int
threshold)

int DPSPeekEvent(DPSContext context, NXEvent *anEvent, int mask, double timeout, int
threshold)

void DPSDiscardEvents(DPSContext context, int mask)

DESCRIPTION DPSGetEvent() and DPSPeekEvent() are macros that access event records in an
application's event queue.    These routines are provided primarily for programs that don't use the
Application Kit.    An application based on the Kit should use the corresponding Application class
methods (such as getNextEvent: and peekNextEvent:into:) or the function NXGetOrPeekEvent()
so that it can be journaled.    DPSDiscardEvents() removes all event records of a specified type
from the queue.

DPSGetEvent() and DPSPeekEvent() differ only in how they treat the accessed event record.   
DPSGetEvent() removes the record from the queue after making its data available to the
application; DPSPeekEvent() leaves the record in the queue.

DPSGetEvent() and DPSPeekEvent() take the same parameters.    The first, context, represents a
PostScript execution context within the Window Server.    Virtually all applications have only one
execution context, which can be returned using DPSGetCurrentContext().    Applications having
more than one execution context can use the constant DPS_ALLCONTEXTS to access events from
all contexts belonging to them.

The second argument, anEvent, is a pointer to an event record.    If DPSGetEvent() or
DPSPeekEvent() is successful in accessing an event record, the record's data is copied into the
storage referred to by anEvent.

mask determines the types of events sought.    See the section ªTypes and Constantsº for a list of the
constants that represent the event type masks.    To check for more than one type of event, you
combine individual constants using the bitwise OR operator.

If an event matching the event mask isn't available in the queue, DPSGetEvent() or
DPSPeekEvent() waits until one arrives or until timeout seconds have elapsed, whichever occurs
first.    The value of timeout can be in the range of 0.0 to NX_FOREVER.    If timeout is 0.0, the
routine returns an event only if one is waiting in the queue when the routine asks for it.    If timeout
is NX_ FOREVER, the routine waits until an appropriate event arrives before returning.

The last argument, threshold, is an integer in the range 0 through 31 that determines which other
services may be provided during a call to DPSGetEvent() or DPSPeekEvent().

Requests for services are registered by the functions DPSAddTimedEntry(), DPSAddPort(), and
DPSAddFD().    Each of these functions takes an argument specifying a priority level.    If this level
is equal to or greater than threshold, the service is provided before DPSGetEvent() or
DPSPeekEvent() returns.

DPSDiscardEvents()'s two parameters, context and mask, are the same as those for DPSGetEvent()
and DPSPeekEvent().    DPSDiscardEvents() removes from the application's event queue those
records whose event types match mask and whose context matches context.

RETURN DPSGetEvent() and DPSPeekEvent() return 1 if they are successful in accessing an event
record and 0 if they aren't.

SEE ALSO DPSAddFD(), DPSAddPort(), DPSAddTimedEntry(), DPSPostEvent(),
NXGetOrPeekEvent()

DPSInterruptContext()

Warning:    This function is unimplemented in the NEXTSTEP version of the Client Library.

DPSNameFromTypeAndIndex()

SUMMARY Access the system and user name tables

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS const char *DPSNameFromTypeAndIndex(short type, int index)

DESCRIPTION DPSNameFromTypeAndIndex() returns the text associated with index from the
system or user name table.    If type is -1, the text is returned from the system name table; if type is 0,
it's returned from the user name table.

The name tables are used primarily by the Client Library and pswrap; few programmers will access
them directly.

RETURN This function returns a read-only character string.

DPSPeekEvent() ® See DPSGetEvent()

DPSPostEvent()

SUMMARY Create an event

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS int DPSPostEvent(NXEvent *anEvent, int atStart)

DESCRIPTION DPSPostEvent() lets you add an event record to your application's event queue
without involving the Window Server.    anEvent is a pointer to the event record to be added.   
atStart specifies where the new record will be placed in relation to any other records in the queue.   
If atStart is TRUE, the event is posted in front of all others and so will be the next one your
application receives.    If atStart is FALSE, the event is posted behind all others and so won't be
returned until events that precede it are processed.

You can free, reuse, or otherwise mangle anEvent after you've posted it without fear of corrupting
the posted record.    DPSEvent() copies the record it receives and posts the copy.

Note that event records you post using DPSPostEvent() aren't filtered by an event filter function set
with DPSSetEventFunc().

RETURN DPSPostEvent() returns 0 if successful in posting the event record; it returns -1 if
unsuccessful in posting the record because the event queue is full.

SEE ALSO DPSSetEventFunc()

DPSPrintError(), DPSPrintErrorToStream()

SUMMARY Print error messages

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSPrintError(FILE *fp, const DPSBinObjSeq error)
void DPSPrintErrorToStream(NXStream *stream, const DPSBinObjSeq error)

DESCRIPTION DPSPrintError() and DPSPrintErrorToStream() format and print error messages
received from a PostScript execution context in the Window Server.    The error message is extracted
from the binary object sequence error.    DPSPrintError() prints the error message to the file
identified by fp; DPSPrintErrorToStream() prints the error message to stream.

You rarely need to call these functions directly.    However, if you reset the error handler for a
PostScript execution context, the new handler you install could use one of these functions to process
errors that it receives.

DPSPrintErrorToStream() ® See DPSPrintError()

DPSRemoveFD() ® See DPSAddFD()

DPSRemovePort() ® See DPSAddPort()

DPSRemoveTimedEntry() ® See DPSAddTimedEntry()

DPSResetContext()

Warning:    This function is unimplemented in the NEXTSTEP version of the Client Library.

DPSSetDeadKeysEnabled()

SUMMARY Allow dead key processing for a context's events

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSSetDeadKeysEnabled(DPSContext context, int flag)

DESCRIPTION DPSSetDeadKeysEnabled() turns dead key processing on or off for context.    If flag
is 0, dead key processing is turned off; otherwise, it's turned on (the default).

Dead key processing is a technique for extending the range of characters that can be entered from
the keyboard.    In NEXTSTEP, it provides one way for users to enter accented characters.    For
example, a user can type Alternate-e followed by the letter ªeºº to produce the letter ªÝºº.    The first
keyboard input, Alternate-e, seems to have no effectÐit's the ªdead keyºº.    However, it signals Client
Library routines that it and the following character should be analyzed as a pair.    If, within
NEXTSTEP, the pair of characters has been associated with a third character, a keyboard event
record representing the third character is placed in the application's event queue, and the first two
event records are discarded.    If there is no such association between the two characters, the two

event records are added to the event queue.

See the NeXT User's Reference manual for a listing of the keys that produce accent characters.

DPSSetEventFunc()

SUMMARY Set the function that filters events

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS DPSEventFilterFunc DPSSetEventFunc(DPSContext context, DPSEventFilterFunc func)

DESCRIPTION DPSSetEventFunc() establishes the function func as the function to be called when an
event record is returned from the PostScript context context in the Window Server.    The registered
function is called before the event record is put in the event queue.    If the registered function
returns 0, the record is discarded.    If the registered function returns 1, the record is passed on for
further processing.

Only event records coming from the Window Server are filtered by the registered function.   
Records that you post to the event queue using DPSPostEvent() aren't affected.

A DPSEventFilterFunc function takes the following form:

int *func(NXEvent *anEvent)

RETURN DPSSetEventFunc() returns a pointer to the previously registered event function.    This lets
you chain together the current and previous event functions.

SEE ALSO DPSPostEvent()

DPSSetTracking()

SUMMARY Coalesce mouse events

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS int DPSSetTracking(int flag)

DESCRIPTION DPSSetTracking() turns mouse event-coalescing on or off for the current context.    If
flag is 0, coalescing is turned off; otherwise, it's turned on (the default).

Event coalescing is an optimization that's useful when tracking the mouse.    When the mouse is
moved, numerous events flow into the event queue.    To reduce the number of events awaiting
removal by the application, adjacent mouse-moved events are replaced by the most recent event of
the contiguous group.    The same is done for left and right mouse-dragged events, with the addition
that a mouse-up event replaces mouse-dragged events that come before it in the queue.

RETURN DPSSetTracking() returns the previous state of the event-coalescing switch.

DPSStartWaitCursorTimer()

SUMMARY Initiate a count down for the wait cursor

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSStartWaitCursorTimer()

DESCRIPTION DPSStartWaitCursorTimer() triggers the mechanism that displays a wait cursor
when an application is busy and can't respond to user input.    In most cases, wait cursor support is
automatic:    You'll only need to call this function if your application starts a time-consuming
operation that's not initiated by a user-generated event.

Client Library routines and the Window Server cooperate to display the wait cursor whenever more
than a preset amount of time elapses between the time an application takes an event record from the
event queue and the time the application is again ready to consume events.    However, when an
application starts an operation that isn't initiated by an eventÐsuch as one caused by receiving a
Mach message or by processing data from a file (see DPSAddPort() and DPSAddFD())Ðthe wait
cursor mechanism is bypassed.    To ensure proper wait cursor behavior in these cases, call
DPSStartWaitCursorTimer() before beginning the time-consuming operation.

SEE ALSO DPSAddFD(), DPSAddPort(), setwaitcursorenabled

DPSSynchronizeContext()

SUMMARY Synchronize a context with your application

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS int DPSSynchronizeContext(DPSContext context, int flag)

DESCRIPTION DPSSynchronizeContext() causes DPSWaitContext() to be called after each pswrap
function is called, thus synchronizing the PostScript context with your application.

DPSTraceContext(), DPSTraceEvents()

SUMMARY Trace data and events

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS int DPSTraceContext(DPSContext context, int flag)
void DPSTraceEvents(DPSContext context, int flag)

DESCRIPTION DPSTraceContext() and DPSTraceEvents() control the tracing of data and events
between a PostScript execution context (or contexts) in the Window Server and an application
process.

The first argument for both functions, context, specifies the context to be traced.    An application's
single context can be returned with DPSGetCurrentContext().    Applications having more than one
execution context can use the constant DPS_ALLCONTEXTS to trace all contexts belonging to
them.

The second argument, flag, determines whether tracing is enabled.

When data tracing is enabled (DPSTraceContext()), a copy of the PostScript code generated by an
application and the values returned to it by the Window Server is sent to UNIX standard error.   
Values returned to the application are marked by the prepended string:

% value returned ==>

When event tracing is enabled (DPSTraceEvents()), information about each event that the
application receives is sent to UNIX standard error.    For example, for a left mouse-down event the
listing might look like this:

Receiving: LMouseDown at: 343.0,69.0 time: 1271899
 flags: 0x0 win: 6 ctxt: 76128 data: 1111,1

The listing displays the fields of the event record:    type, location, time, flags, local window number,
PostScript execution context, and data.    The contents of the data field listing depends on the event
type; for instance, in the preceding example the event number and the click count were displayed.

For applications based on the Application Kit, there are two preferable methods for turning on data
tracing:    You can use the NXShowPS command-line switch when you launch an application from
Terminal.    Alternatively, when you run the application under GDB, you can use the showps and
shownops commands to control tracing output.    Similarly, there are more convenient ways to turn
on event tracing:    You can use the NXTraceEvents command-line switch when you launch an
application from Terminal.    Alternatively, when you run the application under GDB, you can use
the traceevents and tracenoevents commands to control event-tracing output.

Only one tracing context can be created for the supplied context.    If you attempt to create additional
tracing contexts for a context that's already being traced, no new context is created and
DPSTraceContext() returns -1.

RETURN DPSTraceContext() returns 0 if successful in creating a tracing context, or -1 if not.

NX_EVENTCODEMASK()

SUMMARY Generate an event mask for an event type

DECLARED IN dpsclient/event.h

SYNOPSIS int NX_EVENTCODEMASK(int type)

DESCRIPTION This handy utility macro returns an event mask that corresponds to the given (single)
event type.

