
Enterprise Objects Framework Release 1.0 Copyright ã1994 by NeXT Computer, Inc.    All Rights Reserved.

NSDictionary Class Cluster

Class Cluster Description
The NSDictionary and NSMutableDictionary classes declare the programmatic interface for objects that store
associations of keys and values.    You use these classes when you need a convenient and efficient way to
retrieve data associated with an arbitrary key.

Because of the nature of class clusters, the objects you create with this interface are not actual instances of the
NSDictionary or NSMutableDictionary classes. Rather, the instances belong to one of their private subclasses.
(For convenience, we use the term dictionary object to refer to any one of these instances without specifying its
exact class membership.) Although a dictionary object's class is private, its interface is public, as declared by
these abstract superclasses, NSDictionary and NSMutableDictionary. (See ªClass Clustersº in the introduction to
the Foundation Kit for more information on class clusters and creating subclasses within a cluster.)

A key-value pair within a dictionary object is called an entry. Each entry consists of an NSString object that
represents the key and another object (of any class) which is that key's value. You establish an immutable
dictionary's entries when it's created, and thereafter the entries can't be modified. A mutable dictionary allows the
addition and deletion of entries at any time, automatically allocating memory as needed.

Internally, a dictionary object uses a hash table to organize its storage and to provide rapid access to a value

given the corresponding key.    However, the methods defined in this cluster insulate you from the complexities of
working with hash tables, hashing functions, or the hashed value of keys.    The methods described below take
key values directly, not their hashed form.

Generally, you instantiate a dictionary object by sending one of the dictionary... messages to either the
NSDictionary or NSMutableDictionary class object.    These methods return a dictionary object containing the
associations specified as arguments to the method.    Methods that add entries to dictionariesÐwhether as part of
initialization (for all dictionary objects) or during modification (for mutable dictionary objects)Ðcopy each key
argument and add the copies to the dictionary.    Each corresponding value object receives a retain message to
ensure that it won't be deallocated before the dictionary is through with it.

The dictionary classes adopt the NSCopying and NSMutableCopying protocols, making it convenient to convert
a dictionary of one type to the other.

NSDictionary

Inherits From: NSObject

Conforms To: NSCopying
NSMutableCopying
NSObject (NSObject)

Declared In: foundation/NSDictionary.h

Class Description
The NSDictionary class declares the programmatic interface to objects that manage immutable associations of
keys and values. NSDictionary's three primitive methodsÐcount, objectForKey:, and keyEnumeratorÐprovide
the basis for all the other methods in its interface. The count method returns the number of entries in the
dictionary object, objectForKey: returns the value associated with the given key, and keyEnumerator returns
an object that lets you step through the keys in the dictionary.

The other methods declared here operate by invoking one or more of these primitives. The non-primitive
methods provide convenient ways of accessing multiple entries at once. The description... and
writeToFile:atomically: methods cause a dictionary object to write a representation of itself to a memory stream
or a file, respectively.

Instance Variables
None declared in this class.

Adopted Protocols
NSCopying - copy

- copyWithZone:

NSMutableCopying - mutableCopy
- mutableCopyWithZone:

Method Types
Allocating and initializing + allocWithZone:

+ dictionary
+ dictionaryWithObjects:forKeys:
+ dictionaryWithObjects:forKeys:count:
- initWithContentsOfFile:
- initWithDictionary:
- initWithObjects:forKeys:count:

Counting entries - count

Accessing keys and values - allKeys
- allKeysForObject:
- allValues
- description
- descriptionInStringsFileFormat
- descriptionWithIndent:
- keyEnumerator
- objectEnumerator
- objectForKey:

Comparing dictionaries - isEqualToDictionary:

Storing dictionaries - writeToFile:atomically:

Class Methods
allocWithZone:

+ allocWithZone:(NSZone *)zone

Creates and returns an uninitialized dictionary object in the specified zone.    If the receiver is the NSDictionary
class object, an instance of an immutable private subclass is returned; otherwise, an object of the receiver's
class is returned.

Typically, you create dictionary objects using the dictionary...    class methods, not the alloc... and init...
methods.    Note that it's your responsibility to free objects created with the alloc... methods.

See also:    + dictionary, + dictionaryWithObjects:forKeys:count:

dictionary

+ dictionary

Creates and returns an empty dictionary object.    This    method is declared primarily for the use of mutable
subclasses of NSDictionary.

See also:    + dictionaryWithObjects:forKeys:count:

dictionaryWithObjects:forKeys:

+ dictionaryWithObjects:(NSArray *)objects forKeys:(NSArray *)keys

Creates and returns a dictionary object containing the keys and objects from the keys and objects arrays.    The
objects are associated with keys taken from the keys array.

See also:    + dictionary, + dictionaryWithObjects:forKeys:count:

dictionaryWithObjects:forKeys:count:

+ dictionaryWithObjects:(id *)objects
          forKeys:(NSString **)keys
          count:(unsigned)count

Creates and returns a dictionary object containing count objects from the objects array.    The objects are
associated with keys taken from the keys array.    For example, this code excerpt creates a dictionary that
associates the alphabetic characters with their ASCII values:

static const int N_ENTRIES = 26;
NSDictionary *asciiDict;
NSString *keyArray[N_ENTRIES];
NSNumber *valueArray[N_ENTRIES];
int i;

for (i = 0; i < N_ENTRIES; i++) {
char charValue = 'a' + i;
keyArray[i] = [NSString stringWithFormat:@"%c", charValue];
valueArray[i] = [NSNumber numberWithChar:charValue];

}
asciiDict = [NSDictionary dictionaryWithObjects:(id *)valueArray

forKeys:keyArray count:N_ENTRIES];

See also:    + dictionary, + dictionaryWithObjects:forKeys:

Instance Methods
allKeys

- (NSArray *)allKeys

Returns an array containing the dictionary's keys or an empty array if the dictionary has no entries.    The
elements of the array are NSString objects, and their order isn't defined.    This method invokes keyEnumerator
as part of its implementation.

See also:    - allValues, - allKeysForObject:, - keyEnumerator

allKeysForObject:

- (NSArray *)allKeysForObject:anObject

Finds all occurrences of the value anObject in the dictionary and returns an array with the corresponding keys.   
The array contains NSString objects representing these keys.    Each object in the dictionary is sent an isEqual:
message to determine if it's equal to anObject.    If no object matching anObject is found, this method returns nil.

Since this method must traverse the entire dictionary, it is slow, with an execution time that's dependent on the
number of records in the dictionary.

See also:    - allKeys, - keyEnumerator

allValues

- (NSArray *)allValues

Returns an array containing the dictionary's values, or an empty array if the dictionary has no entries.    The order
of the values in the array isn't defined.    This method invokes objectEnumerator as part of its implementation.

See also:    - allKeys, - objectEnumerator

count

- (unsigned)count

Returns the number of entries in the dictionary.

description

- (NSString *)description

Returns a string that represents the contents of the receiver.

descriptionInStringsFileFormat

- (NSString *)descriptionInStringsFileFormat

Returns a string that represents the contents of the receiver. Key-value pairs are represented as appropriate for
use in ª.stringsº files.

descriptionWithIndent:

- (NSString *)descriptionWithIndent:(unsigned)level

Returns a string that represents the contents of the receiver. Key-value pairs are represented as appropriate for
use in ª.stringsº files. Elements are indented from the left margin by level + 1 multiples of four spaces, to make
the output more readable.

hash

@protocol NSObject
- (unsigned int)hash

Returns an unsigned integer that can be used as a table address in a hash table structure. For an dictionary
object, hash returns the number of entries in the dictionary. If two dictionary objects are equal (as determined by
the isEqual: method), they will have the same hash value.

See also:    - isEqual:

initWithContentsOfFile:

- initWithContentsOfFile:(NSString *)path

Initializes a newly allocated dictionary object using the keys and values found in path. path can be a full or
relative pathname; the file that it names must contain a string representation of a dictionary object, such as that
produced by the writeToFile:atomically: method.

After initializing the receiver, this method returns self.    However, if the new instance can't be initialized (either
because of a file error or because the contents of the file is an invalid representation of a dictionary object), it's
deallocated and nil is returned.

See also:    - descriptionInStringsFileFormat, - writeToFile:atomically:

initWithDictionary:

- initWithDictionary:(NSDictionary *)otherDictionary

Initializes a newly allocated dictionary object by placing in it the keys and values contained in otherDictionary.   
Returns self.

See also:    - initWithContentsOfFile:, - initWithObjects:forKeys:count:

initWithObjects:forKeys:count:

- initWithObjects:(id *)objects
forKeys:(NSString **)keys
count:(unsigned)count

Initializes a newly allocated dictionary object with count entries.    This method steps through the objects and

keys arrays, creating entries in the new dictionary as it goes.    Each value object receives a retain message
before being added to the dictionary.    In contrast, each key object is copied, and the copy is added to the
dictionary.    An NSInvalidArgumentException error is raised if a key or value object is nil.

See also:    - initWithDictionary:

isEqual:

@protocol NSObject
- (BOOL)isEqual:anObject

Returns YES if the receiver and anObject are equal; otherwise returns NO. A YES return value indicates that the
receiver and anObject both inherit from NSDictionary and contain the same data (as determined by the
isEqualToDictionary: method).

See also:    - isEqualToDictionary:

isEqualToDictionary:

- (BOOL)isEqualToDictionary:(NSDictionary *)otherDictionary

Compares the receiving dictionary object to otherDictionary.    If the contents of otherDictionary are equal to
the contents of the receiver, this method returns YES.    If not, it returns NO.

Two dictionaries have equal contents if they each hold the same number of entries and, for a given key, the
corresponding value objects in each dictionary satisfy the isEqual: test.

See also:    - isEqual: (NSObject protocol)

keyEnumerator

- (NSEnumerator *)keyEnumerator

Returns an enumerator object that lets you access each key in the dictionary:

id <NSEnumerator> enumerator = [myDictionary keyEnumerator];
id key;
while (key = [enumerator nextObject]) {
 /* code that uses the returned key */
}

When this method is used with mutable subclasses of NSDictionary, your code shouldn't modify the entries
during enumeration.    If you intend to modify the entries, use the allKeys method to create a ªsnapshotº of the
dictionary's keys.    Then use this snapshot to traverse the entries, modifying them along the way.

Note that the objectEnumerator method provides a convenient way to access each value in the dictionary.

See also:    - objectEnumerator, - nextObject (NSEnumerator protocol)

objectEnumerator

- (NSEnumerator *)objectEnumerator

Returns an enumerator object that lets you access each value in the dictionary:

id <NSEnumerator> enumerator = [myDictionary objectEnumerator];
id value;
while (value = [enumerator nextObject]) {
 /* code that acts on the dictionary's values */
}

When this method is used with mutable subclasses of NSDictionary, your code shouldn't modify the entries
during enumeration.    If you intend to modify the entries, use the allValues method to create a ªsnapshotº of the
dictionary's values.    Work from this snapshot to modify the values.

See also:    - keyEnumerator, - nextObject (NSEnumerator protocol)

objectForKey:

- objectForKey:(NSString *)aKey

Returns an entry's value given its key, or nil if no value is associated with aKey. This method is fast, with an
execution time that's independent of the number of entries in the dictionary.

See also:    - allKeys, - allValues

writeToFile:atomically:

- (BOOL)writeToFile:(NSString *)path
atomically:(BOOL)flag

Writes a textual description of the contents of the dictionary to path. filename can be a full or relative path name.

If flag is YES, the dictionary is written to an auxiliary file having the name path~, and then the auxiliary file is
renamed to path. If flag is NO, the dictionary is written directly to path. The YES option guarantees that path, if it
exists at all, won't be corrupted even if the system should crash during writing.

This method returns YES if the file is written successfully, and NO otherwise.

See also:    - descriptionInStringsFileFormat, - initWithContentsOfFile:

NSMutableDictionary

Inherits From: NSDictionary : NSObject

Conforms To: NSCopying
NSMutableCopying
NSObject (NSObject)

Declared In: foundation/NSDictionary.h

Class Description
The NSMutableDictionary class declares the programmatic interface to objects that manage mutable
associations of keys and values. With its two efficient primitive methodsÐsetObject:forKey: and
removeObject:forKey:Ðthis class adds modification operations to the basic operations it inherits from
NSDictionary.

The other methods declared here operate by invoking one or both of these primitives.    The non-primitive
methods provide convenient ways of adding or removing multiple entries at a time.

When an entry is removed from a mutable dictionary, the key and value objects that make up the entry receive
release messages.    If there are no further references to the objects, they're deallocated.    Note that if your
program keeps a reference to such an object, the reference will become invalid unless you remember to send
the object a retain message before it's removed from the dictionary.    For example, the third statement below
would have result in a run-time error, if the retain message in the first statement had not been included:

id anObject = [[aDictionary objectForKey:theKey] retain];
[aDictionary removeObjectForKey:theKey];

[anObject someMessage];

Instance Variables
None declared in this class.

Method Types
Allocating and initializing + allocWithZone:

+ dictionaryWithCapacity:
- initWithCapacity:

Adding and removing entries - addEntriesFromDictionary:
- removeAllObjects
- removeObjectForKey:
- removeObjectsForKeys:
- setObject:forKey:

Class Methods
allocWithZone:

+ allocWithZone:(NSZone *)zone

Creates and returns an uninitialized mutable dictionary object in the specified zone.    If the receiver is the
NSMutableDictionary class object, an instance of a mutable private subclass is returned; otherwise, an object of
the receiver's class is returned.

Typically, you create dictionaries using the dictionary...    class methods, not the alloc... and init... methods.   
Note that it's your responsibility to free objects created with the alloc... methods.

See also:    + dictionary (NSDictionary), + dictionaryWithCapacity:, +
dictionaryWithObjects:forKeys:count: (NSDictionary)

dictionaryWithCapacity:

+ dictionaryWithCapacity:(unsigned)numItems

Creates and returns an mutable dictionary object, giving it enough allocated memory to hold numEntries entries.
Mutable dictionary objects allocate additional memory as needed, so numEntries simply establishes the object's
initial capacity.

See also:    + dictionary (NSDictionary), + dictionaryWithObjects:forKeys:count: (NSDictionary), -
initWithCapacity:

Instance Methods
addEntriesFromDictionary:

- (void)addEntriesFromDictionary:(NSDictionary *)otherDictionary

Adds the entries from otherDictionary to the receiver.    Each value object from otherDictionary is sent a retain
message before being added to the receiver.    In contrast, each key object is copied, and the copy is added to
the receiver.

If both dictionaries contain the same key, the receiver's previous value object for that key is sent a release
message and the new value object takes its place.

This method invokes setObject:forKey: as part of its implementation.

See also:    - setObject:forKey:

copyWithZone:

@protocol NSObject
- copyWithZone:(NSZone *)aZone

Creates and returns an immutable copy of the receiver.    The new dictionary object contains copies of the
receiver's keys and values.

Note that it's your responsibility to release a dictionary object created in this way.

See also:    - mutableCopyWithZone: (NSObject protocol)

initWithCapacity:

- initWithCapacity:(unsigned)numItems

Initializes a newly allocated mutable dictionary object, giving it enough allocated memory to hold numItems
entries.    Mutable dictionary objects allocate additional memory as needed, so numItems simply establishes the
object's initial capacity.    Returns self.

See also:    + dictionaryWithCapacity:

removeAllObjects

- (void)removeAllObjects

Empties the dictionary of its entries.    Each key and corresponding value object is sent a release message.

See also:    - removeObjectForKey:, - removeObjectsForKeys:

removeObjectForKey:

- (void)removeObjectForKey:(NSString *)aKey

Removes aKey and its associated value object from the dictionary.

For example, assume you have a archived dictionary that records the call letters and associated frequencies of
radio stations.    To remove an entry of a defunct station, you could execute this code:

NSMutableDictionary *stations = nil;

stations = [[NSMutableDictionary alloc]
initWithContentsOfFile:theArchiveFile];

if (stations) {
[stations removeObjectForKey:@ºKIKTº];

}

This method is fast, with an execution time that's independent of the number of entries in the dictionary.

See also:    - removeAllObjects, - removeObjectsForKeys:

removeObjectsForKeys:

- (void)removeObjectsForKeys:(NSArray *)keyArray

Removes one or more entries from the receiving dictionary.    The entries are identified by the keys in keyArray.   
This method is slow, with an execution time that's dependent on the number of entries in the dictionary.

See also:    - removeAllObjects, - removeObjectForKey:

setObject:forKey:

- (void)setObject:anObject forKey:(NSString *)aKey

Adds an entry to the receiver, consisting of aKey and its corresponding value object anObject. The value object
receives a retain message before being added to the dictionary. In contrast, the key is copied, and the copy is
added to the dictionary. An NSInvalidArgumentException error is raised if the key or value object is nil.

If aKey already exists in the receiving dictionary, the receiver's previous value object for that key is sent a
release message and anObject takes its place.

This method is fast, with an execution time that's independent of the number of entries in the dictionary.

See also:    - removeObjectForKey:

