
Enterprise Objects Framework Release 1.0 Copyright ã1994 by NeXT Computer, Inc.    All Rights Reserved.

NSScanner

Inherits From: NSObject

Conforms To: NSCopying

Declared In: foundation/NSScanner.h

Class Description
An NSScanner interprets and converts text in an NSString into number and string values.    You assign a string
object to a scanner on creation, and the scanner progresses through the characters of that string from beginning
to end as you request items.    An NSScanner can be configured to note or ignore case distinctions and to skip
certain characters while scanning.    Its scan location can also be set, so that you can re-scan a portion of the
string, or skip forward a certain amount of characters.

NSScanner is implemented as a class cluster, although it has only one public class.    See ªClass Clustersº in the
introduction to the Foundation Kit for a description of how to subclass a member of a class cluster.

As an example of using an NSScanner, suppose you have a string object containing lines of the form:

Product: product name; Cost: cost in dollars

You could scan each line like this:

- (BOOL)scanProductString:(NSString *)aString
{
 NSCharacterSet *semicolonSet;
 NSScanner *theScanner;

 semicolonSet = [NSCharacterSet
 characterSetWithCharactersInString:@";"];

 theScanner = [NSScanner scannerWithString:aString];

 while ([theScanner isAtEnd] == NO) {
 NSString *PRODUCT = @"Product: ";
 NSString *COST = @"Cost: ";
 NSString *prodName;
 int prodCost;
 BOOL scanResult;

 /* Skip the "Product: " part. */
 scanResult = [theScanner scanString:PRODUCT intoString:NULL];
 if (scanResult == NO) return NO;

 /* Read in the product name, up to a semicolon. */
 scanResult = [theScanner
 scanUpToCharactersFromSet:semicolonSet
 intoString:&prodName];
 if (scanResult == NO) return NO;

 /* Now go past the semicolon we scanned up to. */
 scanResult = [theScanner scanString:@";" intoString:NULL];
 if (scanResult == NO) return NO;

 /* Skip the "Cost: " part. Because a scanner by default
 * ignores whitespace we don't have to worry about the
 * space between the previous entry and "Cost: ".
 */
 scanResult = [theScanner scanString:COST intoString:NULL];
 if (scanResult == NO) return NO;

 /* Read in the product cost. */
 scanResult = [theScanner scanInt:&prodCost];

 if (scanResult == NO) return NO;

 /* Do something with prodName and prodCost. */

 /* Because a scanner by default ignores whitespace we
 * don't have to worry about the newline.
 */
 }

 return YES;
}

Adopted Protocols
NSCopying - copyWithZone:

- copy

Method Types
Creating an NSScanner - initWithString:

+ scannerWithString:

Getting an NSScanner's String - string

Configuring an NSScanner - setScanLocation:
- scanLocation
- setCaseSensitive:
- caseSensitive
- setCharactersToBeSkipped:
- charactersToBeSkipped

Scanning a String - scanInt:
- scanLongLong:
- scanFloat:
- scanDouble:

- scanString:intoString:
- scanCharactersFromSet:intoString:
- scanUpToString:intoString:
- scanUpToCharactersFromSet:intoString:
- isAtEnd

Class Methods
scannerWithString:

+ scannerWithString:(NSString *)aString

Creates and returns an NSScanner that scans aString.

See also:    - initWithString:

Instance Methods
caseSensitive

- (BOOL)caseSensitive

Returns YES if the scanner distinguishes case, NO otherwise. NSScanners are by default not case sensitive.

See also:    - setCaseSensitive:

charactersToBeSkipped

- (NSCharacterSet *)charactersToBeSkipped

Returns a character set containing those characters that the scanner ignores when looking for a scannable
element.    For example, if a scanner ignores spaces and you ask it to scanInt:, it will skip spaces until it finds a
decimal digit or other character.    While an element is being scanned, however, no characters are skipped.    If
you scan for something made of characters in the set to be skipped (for example, using scanInt: when the set of
characters to be skipped is the decimal digits), the result is undefined.

The default set is the whitespace and newline character set.

See also:    - setCharactersToBeSkipped:, + whitespaceAndNewlineCharacterSet (NSCharacterSet)

initWithString:

- initWithString:(NSString *)aString

Initializes the receiver, a newly allocated NSScanner, to scan aString. Returns self.

See also:    + scannerWithString:

isAtEnd

- (BOOL)isAtEnd

Returns YES if the scanner has exhausted all characters in its string, NO if there are characters left to scan.   
Characters the scanner would skip are ignored; if only skipped characters remain, this method returns YES.

See also:    - charactersToBeSkipped

scanCharactersFromSet:intoString:

- (BOOL)scanCharactersFromSet:(NSCharacterSet *)aSet intoString:(NSString **)value

Scans the string as long as characters from aSet are encountered, accumulating characters into a string that's
returned by reference in value. If any characters are scanned, returns YES; otherwise returns NO.

This method may be invoked with nil as value to simply scan past a given set of characters.

See also:    - scanUpToCharactersFromSet:intoString:

scanDouble:

- (BOOL)scanDouble:(double *)value

Scans a double into value if possible.    Returns YES if a valid floating-point expression was scanned, NO
otherwise.    HUGE_VAL or -HUGE_VAL is put in value on overflow, 0.0 on underflow.

scanFloat:

- (BOOL)scanFloat:(float *)value

Scans a float into value if possible.    Returns YES if a valid floating-point expression was scanned, NO
otherwise.    HUGE_VAL or -HUGE_VAL is put in value on overflow, 0.0 on underflow.

scanInt:

- (BOOL)scanInt:(int *)value

Scans an int into value if possible.    Returns YES if a valid integer expression was scanned, NO otherwise.   
INT_MAX or INT_MIN is put in value on overflow.

scanLocation

- (unsigned)scanLocation

Returns the character index at which the scanner will begin its next scanning operation.

See also:    - setScanLocation:

scanLongLong:

- (BOOL)scanLongLong:(long long *)value

Scans a long long int into value if possible. Returns YES if a valid integer expression was scanned, NO
otherwise. LONG_LONG_MAX or LONG_LONG_MIN is put in value on overflow.

scanString:intoString:

- (BOOL)scanString:(NSString *)aString intoString:(NSString **)value

Scans for aString, and if a match is found returns (by reference) in value a string object equal to it. If aString
matches the characters at the scan location, returns YES; otherwise returns NO.

This method may be invoked with nil as value to simply scan past a given string.

See also:    - scanUpToString:intoString:

scanUpToCharactersFromSet:intoString:

- (BOOL)scanUpToCharactersFromSet:(NSCharacterSet *)aSet intoString:(NSString **)value

Scans the string until a character from aSet is encountered, accumulating characters encountered into a string
that's returned by reference in value.    If any characters are scanned, returns YES; otherwise returns NO.

This method may be invoked with NULL as value to simply scan up to a given set of characters.

See also:    - scanCharactersFromSet:intoString:

scanUpToString:intoString:

- (BOOL)scanUpToString:(NSString *)aString intoString:(NSString **)value

Scans the string until aString is encountered, accumulating characters encountered into a string that's returned
by reference in value.    The receiver's scan location will then be at the beginning of aString (or at the end of the
string being scanned if aString isn't found).    If any characters are scanned, returns YES; otherwise returns NO.

This method may be invoked with NULL as value to simply scan up to a given string.

See also:    - scanString:intoString:

setCaseSensitive:

- (void)setCaseSensitive:(BOOL)flag

If flag is YES, the scanner will distinguish case when scanning characters.    If flag is NO, it will ignore case

distinctions.    NSScanners are by default not case sensitive.

See also:    - caseSensitive

setCharactersToBeSkipped:

- (void)setCharactersToBeSkipped:(NSCharacterSet *)aSet

Sets the scanner to ignore characters from aSet when scanning its string. Such characters are simply passed by
during scanning. For example, if a scanner ignores spaces and you ask it to scanInt:, it will skip spaces until it
finds a decimal digit or other character. While an element is being scanned, however, no characters are skipped.
If you scan for something made of characters in the set to be skipped (for example, using scanInt: when the set
of characters to be skipped is the decimal digits), the result is undefined.

The default set is the whitespace and newline character set.

See also:    - charactersToBeSkipped, + whitespaceAndNewlineCharacterSet (NSCharacterSet)

setScanLocation:

- (void)setScanLocation:(unsigned)index

Sets the location at which the next scan will begin to index. This method is useful for backing up to re-scan after
an error. You should use scanString:intoString: or scanCharactersFromSet:intoString: to skip ahead past
known sequences of characters, as this allows you to check for errors in a way that setting the scan location
ahead doesn't.

See also:    - scanLocation

string

- (NSString *)string

Returns the string object that the scanner was created with.

