
Enterprise Objects Framework Release 1.0 Copyright ã1994 by NeXT Computer, Inc.    All Rights Reserved.

NSNotificationCenter

Inherits From: NSObject

Declared In: foundation/NSNotification.h

Class Description
The NSNotificationCenter class defines the behavior of notification-center objects (or simply, notification centers). 
A notification center is essentially a notification dispatch table. It notifies all observers of notifications meeting the 
specific criteria of notification name and object. Client objects register themselves as observers of a specific 
notification originating in another object. When the condition occurs to signal a notification, that other object 
notifies all of its observers by posting an appropriate notification object to the notification center. (See the class 
specification of NSNotification for more on notification objects.)      The notification center dispatches a message 
to each observer (using the selector provided by the observer), with the notification as the sole argument.

As an example, suppose you have an array of text-converter objects (for instance, MIF to RTF or RTF to ASCII), 
whose services a word-processing application can access. The word-processing application has a client object 



that wants to be notified when converter objects are added to or removed from the array, allowing the application 
to reflect the available options in its menus. The application would register itself as an observer by sending the 
following message to the notification center:

[[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(updateConvMenu:)

 notificationName:@"NSConvertersChanged" object:converterArray];

When a user installs or removes a converter, the object managing the array sends the following message to the 
notification center:

[[NSNotificationCenter defaultCenter] postNotificationName:@"NSConvertersChanged" 
object:self];

The notification center identifies all observers of converterArray who are interested in the NSConvertersChanged 
notification and invokes the method they specified in the selector argument of 
addObserver:selector:notificationName:object. In the case of our example observer, that is 
updateConvMenu:

- updateConvMenu:(NSNotification *)notification
{

NSEnumerator *enumerator = [[notification object]
objectEnumerator];

id object;

while (object = [enumerator nextObject]) {
// update menu ...

}
// ...

}

There is one notification center per task. Subclassing NSNotificationCenter is not recommended.



Instance Variables
None declared in this class. 

Method Types
Accessing the default center + defaultCenter

Adding and removing observers - addObserver:selector:notificationName:object:
- removeObserver:
- removeObserver:notificationName:object:

Posting notifications - postNotification:
- postNotificationName:object:

Class Methods
defaultCenter

+ (NSNotificationCenter *)defaultCenter

Returns the notification-center object for the current task.

Instance Methods
addObserver:selector:notificationName:object:

- (void)addObserver:anObserver
selector:(SEL)aSelector



notificationName:(NSString *)notificationName
object:anObject

By invoking this method, an object that wants to be notified of a notification registers itself as an observer of the 
object originating the notification. The method selector specified in aSelector must have one and only one 
argument (which, by default, is the notification object). If notificationName is nil, the notification center notifies 
the observer of all notifications with an object matching anObject. If anObject is nil, the notification center notifies 
the object of all notifications with the notification name, regardless of object. This method does not return 
anything.

The notification center does not retain the observer object or the object specified in anObject. Therefore, you 
should always send removeObserver: to the notification center before invalidating these objects.

See also:    - removeObserver:

postNotification:

- (void)postNotification:(NSNotification *)aNotification

Posts the notification object aNotification to the notification center. You can create this object with the 
NSNotification class method notificationWithName:object:.

See also:    - postNotificationName:object:

postNotificationName:object:

- (void)postNotificationName:(NSString *)notificationName object:anObject

Creates a notification name notificationName from originating object anObject and posts it to the notification 
center. This method is the preferred one for posting notifications. To post anonymously, make anObject nil.

See also:    - postNotification:



removeObserver:

- (void)removeObserver:anObserver

Removes the anObserver object from all notification associations in the notification center. Be sure to invoke this 
method (or removeObserver:notificationName:object:) before deallocating the observer object or any object 
specified in addObserver:selector:notificationName:object:.

See also:    - addObserver:selector:notificationName:object:, - removeObserver:notificationName:object:

removeObserver:notificationName:object:

- (void)removeObserver:anObserver 
notificationName:(NSString *)notificationName
object:anObject

Removes all anObserver objects with the same notificationName and anObject (even when anObject is nil) from 
the notification center. Be sure to invoke this method (or removeObserver:) before deallocating the observer 
object or any object specified in addObserver:selector:notificationName:object:.

See also:    - addObserver:selector:notificationName:object:, - removeObserver:


