
Enterprise Objects Framework Release 1.0 Copyright ã1994 by NeXT Computer, Inc.    All Rights Reserved.

NSDate Class Cluster

Class Cluster Description
Through the NSDate class cluster you can obtain immutable objects that represent a single point in time.   
NSDate, an abstract class, is the programmatic interface to private concrete classes.    Through NSDate you can
obtain date objects for specific and relative time values.

The objects you create using NSDate are referred to as date objects.    Because of the nature of class clusters,
date objects returned by the NSDate class are not instances of that abstract class but of one of its private
subclasses.      Although a date object's class is private, its interface is public, as declared by the abstract
superclass, NSDate.    (See ªClass Clustersº in the introduction to the Foundation Kit for more information on
class clusters and creating subclasses within a cluster.)

Generally, you instantiate a suitable date object by invoking one of the date... class methods.

The date classes adopt the NSCopying and NSCoding protocols.

NSDate

Inherits From: NSObject

Conforms To: NSObject
NSCopying

Declared In: foundation/NSDate.h

Class Description
NSDate is an abstract class that provides behavior for creating dates, comparing dates, representing dates,
computing intervals, and similar functionality.    It presents a programmatic interface through which suitable date
objects are requested and returned. Date objects returned from NSDate are lightweight and immutable since
they represent a invariant point in time.

ªDateº as used above implies clock time as well.    The standard unit of time for date objects is a value typed as
NSTimeInterval (currently a double) and expressed as seconds. The NSTimeInterval type makes possible a
wide and fine-grained range of date and time values, giving accuracy within milliseconds for dates 10,000 years
apart.

NSDate and its subclasses compute time as seconds relative to an absolute reference date. This reference date
is the first instant of 1 January, 2001, GMT.    NSDate converts all date and time representations to and from
NSTimeInterval values that are relative to this absolute reference date.    A positive interval relative to a date
represents a point in the future, a negative interval represents a time in the past.

Note:    Conventional UNIX systems implement time according to the Network Time Protocol (NTP) standard,

which is based on Coordinated Universal Time.    The current private implementations of NSDate follow the NTP
standard.    However, they do not account for leap seconds and therefore are not synchronized with International
Atomic Time (the most accurate).

Like other Foundation classes, NSDate enables you to obtain operating-system functionality (dates and times)
without depending on operating-system internals. It also lays a foundation for the NSRunLoop and NSTimer
classes, which use concrete date objects to implement local event loops and timers. Run loop objects manage
input from ports (NSPort) and timers; timers send action messages to targets at a specific interval or recurrent
intervals.

The central methods of NSDate are initWithTimeIntervalSinceReferenceDate, init, and
timeIntervalSinceReferenceDate and the NSCopying protocol method copyWithZone:. These methods
provide the basis for all the other methods in the NSDate interface. The single primitive method,
timeIntervalSinceReferenceDate, returns a constant time value relative to an absolute reference date.

Using NSDate

The date objects you obtain through NSDate give you a diverse range of date and time functionality.      To obtain
dates, send one of the date... class methods to NSDate. One of the most useful is date itself, which returns a
date object representing the current date and time. You can get new date objects with date-and-time values
adjusted from existing date objects by sending addTimeInterval:.

You can obtain relative date information by sending the timeInterval... methods to a date object. For instance,
timeIntervalSinceNow gives you the time, in seconds, between the current time and the receiving date object.
Compare dates with the isEqual:, compare: laterDate: and earlierDate: methods and use the description
method to obtain a string object that represents the date in a standard international format.

NSCalendarDate

The NSDate class cluster provides, for your convenience, a public concrete subclass of NSDate that will satisfy
many requirements for dates and times.    This subclass, NSCalendarDate,    enables you to represent dates as
arbitrary strings, to create new date objects from string representations, to extract date and time elements from
date objects, and to do other calendar-related functions.

Subclassing NSDate

If you want to subclass NSDate to obtain behavior different than that provided by the private subclasses, you
must do three things specific to the NSDate class:

· Declare a suitable instance variable to hold the date and time value (relative to an absolute reference date).

· Override the timeIntervalSinceReferenceDate class and primitive methods to return this value.

· Initialize the date-and-time instance variable to an appropriate value by overriding the initialization methods
you want for your class.    For init, this should be the current date and time.    Note that init and
initWithTimeIntervalSinceReferenceDate: are designated initializers.

Instance Variables
None declared in this class.

Adopted Protocols
NSCopying - copyWithZone:

- copy

NSCoding - encodeUsingCoder:
- decodeUsingCoder:

Method Types
Allocating and initializing an NSDate object

+ allocWithZone:
+ date
+ dateWithTimeIntervalSinceNow:
+ dateWithTimeIntervalSinceReferenceDate:
+ distantFuture
+ distantPast
-ð init
- initWithString:
- initWithTimeInterval:sinceDate:
- initWithTimeIntervalSinceNow:
- initWithTimeIntervalSinceReferenceDate:

Converting to an NSCalendar object
- dateWithCalendarFormat:timeZone:

Representing dates - description
- descriptionWithCalendarFormat:timeZone:

Adding and getting intervals - addTimeInterval:
- timeIntervalSinceDate:
- timeIntervalSinceNow
+ timeIntervalSinceReferenceDate
- timeIntervalSinceReferenceDate

Comparing dates - compare:
- earlierDate:
- isEqual:
- laterDate:

Class Methods
allocWithZone:

+ allocWithZone:(NXZone *)zone

Allocates an unitialized instance of a concrete date from the specified zone.    If allocation fails, nil is returned.

See also:    + date, + dateWithTimeIntervalSinceNow:, + dateWithTimeIntervalSinceReferenceDate

date

+ (NSDate *)date

Creates and returns an instance of NSDate set to the current date and time. This method uses the default
initializer for the class, init.

A typical example of using date to get the current date is:

NSDate *today = [NSDate date];

See also:    + dateWithTimeIntervalSinceNow:, + dateWithTimeIntervalSinceReferenceDate

dateWithTimeIntervalSinceNow:

+ (NSDate *)dateWithTimeIntervalSinceNow:(NSTimeInterval)seconds

Creates and returns an instance of NSDate set to a specified number of seconds before or after the current date
and time.

NSDate *overTime = [NSDate dateWithTimeIntervalSinceNow:8*360];

See also:    + date, + dateWithTimeIntervalSinceReferenceDate

dateWithTimeIntervalSinceReferenceDate:

+ (NSDate *)dateWithTimeIntervalSinceReferenceDate:(NSTimeInterval)seconds

Creates and returns an instance of NSDate set to a specified number of seconds before or after the absolute

reference date (the first instant of 1 January, 2001, GMT). Use a negative argument value to specify a date and
time before the reference date.

See also:    + date, + dateWithTimeIntervalSinceNow

distantFuture

+ (NSDate *)distantFuture

Creates and returns a date object that represents a date in the distant future (in terms of centuries).    You can
use this object in your code as a control date, a guaranteed outer temporal limit.

See also:    + distantPast

distantPast

+ (NSDate *)distantPast

Creates and returns a date object that represents a date in the distant past (in terms of centuries).    You can use
this object in your code as a control date, a guaranteed temporal boundary.

See also:    + distantFuture

timeIntervalSinceReferenceDate

+ (NSTimeInterval)timeIntervalSinceReferenceDate

Returns the interval between the system's absolute reference date and the current date and time.    This value is
less than zero until the first instant of 1 January 2001, GMT.

See also:    - timeIntervalSinceDate:;- timeIntervalSinceReferenceDate;    - timeIntervalSinceNow

Instance Methods
addTimeInterval:

-    (NSDate *)addTimeInterval:(NSTimeInterval)seconds

Returns an NSDate object that is set to a specified number of seconds relative to the receiver.    The
NSTimeInterval argument value can be positive or negative (positive meaning later).    The date returned might
have a representation different from the receiver's.

See also:    - timeIntervalSinceDate:

compare:

- (NSComparisonResult)compare:(NSDate *)otherDate

Compares the receiving date to otherDate and returns a value of type NSComparisonResult. If the receiving
object in the comparison is more recent than otherDate, the method returns NSOrderedDescending. If it is older,
it returns NSOrderedAscending. If they are equal, it returns NSOrderedSame.

See also:    - earlierDate:, - isEqual:, - laterDate:

dateWithCalendarFormat:timeZone

- (NSCalendarDate *)dateWithCalendarFormat:(NSString *)formatString timeZone:(NSTimeZone
*)timeZone

Converts the date object to an NSCalendarDate object bound to the format string formatString and the time zone
timeZone. If you specify nil after either or both of these arguments, the default format string and time zone are
assumed. (The default time zone is the one specific to the current locale; the default format string, which is ª%Y-
%m-%H:%M:%S %zº, conforms to the international format YYYY-MM-DD HH:MM:SS -HHMM.) The date-

conversion specifiers cover a range of date conventions. See the description of the class method
dateWithString:calendarFormat: in the NSCalendarDate class specification for a listing of these specifiers.

See also:    - description

description

- (NSString *)description

Returns a string representation of the NSDate object that conforms to the international format YYYY-MM-DD
HH:MM:SS -HHMM, where -HHMM represents the time-zone offset in hours and minutes from Greenwich Mean
Time (GMT).    An example might be ª1994-05-23 10:45:32 +0600º.

See also:    - descriptionWithCalendarFormat:timeZone:

descriptionWithCalendarFormat:timeZone

- (NSString *)descriptionWithCalendarFormat:(NSString *)format timeZone:(NSTimezone *)aTimeZone

Returns a string representation of the date object that is formatted as specified by the conversion specifiers in
the format string format. Specify the time zone for the date in aTimeZone. The conversion specifiers cover a
range of date conventions:

%% a '%' character
%a abbreviated weekday name
%A full weekday name
%b abbreviated month name
%B full month name
%c shorthand for %X %x, the locale format for date and time
%d day of the month as a decimal number (01-31)
%H hour based on a 24-hour clock as a decimal number

(00-23)

%I hour based on a 12-hour clock as a decimal number
(01-12)

%j day of the year as a decimal number (001-366)
%m month as a decimal number (01-12)
%M minute as a decimal number (00-59)
%p AM/PM designation associated with a 12-hour clock
%S second as a decimal number (00-61)
%w weekday as a decimal number (0-6), where Sunday is 0
%x date using the date representation for the locale
%X time using the time representation for the locale
%y year without century (00-99)
%Y year with century (e.g. 1990)
%Z time zone name
%z timezone offset in hours and minutes from GMT

(HHMM)

See also:    - description, - descriptionWithCalendarFormat:timeZone: (NSCalendarDate)

init

- init

When sent to the object returned by alloc or allocWithZone:, this method returns an initialized date object. This
method is the designated initializer for the NSDate class and is declared primarily for the use of subclasses of
NSDate. The designated initializer of the subclass should, through a message to super, invoke this method.
Returns self.

When you subclass NSDate to create a concrete date class, you must override this method. When you override
this method, allocate an instance of your class and set its date-and-time instance variable to an appropriate
value, such as the current date and time.

initWithString:

- initWithString:(NSString *)description

Returns an calendar date object with a date and time value specified by the international string-representation
format: YYYY-MM-DD HH:MM:SS -HHMM, where -HHMM is a time zone offset in hours and minutes from
Greenwich Mean Time. (Adding the offset to the specified time yields the equivalent GMT.) An example string
might be ª1994-03-30 13:12:43 +0900º. You must specify all fields of the format, including the time-zone offset,
which must have a plus- or minus-sign prefix.

See also:    - description

initWithTimeInterval:sinceDate:

- (NSDate *)initWithTimeInterval:(NSTimeInterval)secsToBeAdded sinceDate:(NSDate *)anotherDate

Returns an NSDate object initialized relative to another date object by a specified number of seconds (plus or
minus). If you have not overridden NSDate's initWithTimeIntervalSinceReferenceDate: in your subclass, this
method generates an exception message and returns nil. Your conversions between two dates using the same
representation should be exact.

NSDate *nextquarter = [[NSDate alloc]
 initWithTimeInterval:(86400.0*365.25)/4.0

sinceDate:[NSDate date]]

initWithTimeIntervalSinceNow:

- (NSDate *)initWithTimeIntervalSinceNow:
(NSTimeInterval)secsToBeAddedToNow

Returns an NSDate object initialized relative to the current date and time by a specified number of seconds (plus
or minus). If you have not overridden NSDate's initWithTimeIntervalSinceReferenceDate: in your subclass,
this method raises an exception.

initWithTimeIntervalSinceReferenceDate:

- initWithTimeIntervalSinceReferenceDate:(NSTimeInterval)secsToBeAdded

When sent to the object returned by alloc or allocWithZone:, this method returns an initialized date object. This
method is the designated initializer for the NSDate class and is declared primarily for the use of subclasses of
NSDate. The designated initializer of the subclass should, through a message to super, invoke this method.

 When you subclass NSDate to create a concrete date class, you must override this message.      In doing so,
allocate an instance of your class and set its NSTimeInterval instance variable to an appropriate value, such as
the current date and time adjusted by secsToBeAdded.

isEqual:

- (BOOL)isEqual:other

Returns YES if the two objects compared are NSDate objects and are within one second of each other, NO if the
objects are both not of the NSDate class or if they differ by more than one second. If you want to detect sub-
second differences, send timeIntervalSinceReferenceDate to both objects and subtract the values returned.

See also:    - compare:, - earlierDate:, - laterDate:

earlierDate:

- (NSDate *)earlierDate:(NSDate *)otherDate

Compares the receiver date to otherDate and returns the older of the two.

See also:    - compare:, - isEqual:, - laterDate:

laterDate:

- (NSDate *)laterDate:(NSDate *)otherDate

Compares the receiver date to otherDate and returns the later of the two.

See also:    - compare:, - earlierDate:, -    isEqual:

timeIntervalSinceDate:

- (NSTimeInterval)timeIntervalSinceDate:(NSDate *)otherDate

Returns the interval between the receiver and otherDate.    This method uses   
timeIntervalSinceReferenceDate.

See also:    - timeIntervalSinceNow, - timeIntervalSinceReferenceDate

timeIntervalSinceNow

- (NSTimeInterval)timeIntervalSinceNow

Returns the interval between the receiver and the current date and time (which is positive for future dates).    This
method uses timeIntervalSinceReferenceDate.

See also:    - timeIntervalSinceDate:, - timeIntervalSinceReferenceDate

timeIntervalSinceReferenceDate

- (NSTimeInterval)timeIntervalSinceDate

Returns the interval between the receiver and the system's absolute reference date.    This value is less than zero
until the first instant of 1 January 2001, GMT.

See also:    - timeIntervalSinceDate:, - timeIntervalSinceNow, + timeIntervalSinceReferenceDate

