
Enterprise Objects Framework Release 1.0 Copyright ã1994 by NeXT Computer, Inc.    All Rights Reserved.

NSString Class Cluster

Class Cluster Description
NSString objects represent character strings in the Foundation Kit, which uses them in place of the C language's
char * data type. Representing strings as objects allows you to use strings wherever you use other objects. It
also provides the benefits of encapsulation, so that string objects can use whatever encoding and storage is
needed for efficiency while simply appearing as arrays of characters. The cluster's two public classes, NSString
and NSMutableString, declare the programmatic interface for static and dynamic strings, respectively.

The objects you create using these classes are referred to as string objects (and when no confusion will result,
merely as strings).    Because of the nature of class clusters, string objects are not actual instances of the
NSString or NSMutableString classes but of one of their private subclasses.    Although a string object's class is
private, its interface is public, as declared by these abstract superclasses, NSString and NSMutableString.    (See
ªClass Clustersº in the introduction to the Foundation Kit for more information on class clusters and creating
subclasses within a cluster.)    The string classes adopt the NSCopying and NSMutableCopying protocols,
making it convenient to convert a string of one type to the other.

A string object presents itself as an array of Unicode characters.    You can determine how many characters it
contains with the length method and can retrieve a specific Unicode character with the characterAtIndex:
method.    These two methods provide basic access to a string object.    Most use of strings, however, is at a
higher level, with the strings being treated as single entities:    strings are compared against one another, search
for substrings, combined into new strings, and so on.    If you need to access string objects character-by-
character, you must understand the Unicode encoding; see The Unicode Standard:    Worldwide Character

Encoding for details:

The Unicode Standard:    Worldwide Character Encoding, Version 1.0, Volume 1.    The Unicode Consortium.   
Addison-Wesley, 1990, 1991.    ISBN 0-201-56788-1

Using String Objects with C String API

Although string objects fit nicely in the Objective C realm, there remains a lot of API that expects C strings: ANSI
C and other library functions, your own code, and even some object-oriented API. You can both create string
objects from ANSI C strings and extract C string representations from string objects. The simplest way to create
a string object in source code is to use either the stringWithCString: or the initWithCString: method. Each
takes a standard null-terminated C string in the system's default encoding (a superset of ASCII for most, EUC for
Japanese systems) and produces a Unicode string object. The Objective C compiler also supports the @"..."
construction to create a string object constant:

NSString *temp = @"/tmp/scratch";

Such an object is created at compile time and exists throughout your program's execution.    The compiler makes
such object constants unique on a per-module basis, and they're never deallocated (though you can retain and
release them like you would any other object).

To get a C string from a string object, you use the cString message.    This returns a char * in the system's
default string encoding.    The C string you receive is owned by a temporary object, though, so it will become
invalid when automatic deallocation takes place (see ªObject Ownership and Automatic Disposalº in the
introduction to the Foundation Kit for further information).    If you want to get a permanent C string, you must
create a buffer and use one of the getCString:... methods to fill it. You can find out how large the buffer needs to
be with the cStringLength method, and if you need to know the encoding that will be used, use the
defaultCStringEncoding method.

To convert a string object to or from a C string in a specific encoding, use the initWithData:encoding: and
dataUsingEncoding:... methods. The string classes support the encodings listed under the NSStringEncoding
data type in the Types and Constants section of this chapter.

Working with Composed Character Sequences

A composed character sequence is any sequence of Unicode characters that is to be considered a single logical

unitÐa ªletterº in many writing systems. Composed character sequences are made of base characters and non-
spacing (or diacritical) characters. For example, you could encode the letter ªöº with the base character
ªlowercase uº and the non-spacing character ªumlaut.º It's possible to have any number of non-spacing
characters associated with a base character: You can have a lowercase ªuº with an umlaut and a tilde above,
and with an underscore below. Non-spacing characters that don't affect each other can appear in any order after
the base character, and all such permutations must be considered equivalent for comparison. For example, the
pre-composed character ªlowercase u umlautº is equivalent to the composed character sequence ªlowercase uº
+ ªumlautº; likewise, the following three combinations are equivalent to each other:

ªlowercase u umlautº + ªunderscoreº
ªlowercase uº + ªumlautº + ªunderscoreº
ªlowercase uº + ªunderscoreº + ªumlautº

Beyond considerations of equivalence for comparison of composed character sequences, note that it's an error
to unintentionally break a composed character sequence, whether by only examining part of it (unless you mean
specifically to examine its parts), by inserting characters anywhere inside it, or by removing one of the characters
that compose it. Whenever you perform some arbitrary computation of an index into a Unicode string, you must
adjust that index to fall between composed character sequences for many operations, such as searching and
comparing, to be meaningful. The rangeOfComposedCharacterSequenceAtIndex: method gives you the
beginning index and length of the composed character sequence that lies across a given character index. For
example, suppose you need to divide a string in half. You could use the following sequence to move the break
back so that it contains a full composed character sequence:

unsigned int halfway;
NSRange midCharSequence;

halfway = [stringObj length] / 2;
midCharSequence = [stringObj
 rangeOfComposedCharacterSequenceAtIndex:halfway];
halfway = midCharSequence.location;

Working with String Objects

The string classes provide methods for finding characters and strings within strings and for comparing one string
against another.    These methods conform to the Unicode standard for determining what character sequences

are equivalent.    The string classes provide comparison methods that handle composed character sequences
properly, though you do have the option of specifying a literal search when efficiency is important and you can
guarantee some canonical form for composed character sequences.

The search and comparison methods each come in three variants.    The simplest version of each searches or
compares entire strings.    Other variants allow you to alter the way comparison of composed character
sequences is performed and to specify a specific range of characters within a string to be searched or compared.
The options you can specify are given in the table below (not all options are available for every method):

Search Option Effect

NSCaseInsensitiveSearch Case distinctions among characters, when they would normally be made, are
ignored.

NSLiteralSearch A byte-for-byte comparison is made.    Differing sequences of Unicode
characters that would otherwise be considered equivalent are considered not to
match.

NSBackwardsSearch Searching is performed from the end of the range toward the beginning.

NSAnchoredSearch Searching is performed only on the range of characters at the beginning or end
of the range.    No match at the beginning or end means nothing is found, even if
a matching sequence of characters occurs elsewhere in the string.

Note that the default search behavior is case-sensitive from the beginning of the string, with composed character
sequences compared according to the Unicode standard.    Substrings are only found if completely contained
within the specified range.    If you specify a range for a search or comparison method and don't request
NSLiteralSearch, the range must not break composed character sequences on either end; if it does you could
get an incorrect result.    (See the method description for rangeOfComposedCharacterSequenceAtIndex: for a
code sample that adjusts a range to lie on character sequence boundaries.)

The basic search and comparison methods are these:

rangeOfString: compare:
rangeOfString:options: compare:options:
rangeOfStrings:options:range: compare:options:range:

rangeOfCharacterFromSet:

rangeOfCharacterFromSet:options:
rangeOfCharacterFromSet:options:range:

The rangeOfString: methods search for a substring within the receiver. The rangeOfCharacterFromSet:
methods search for individual Unicode characters from a supplied set of characters. The compare: methods
return the lexical ordering of the receiver and the supplied string. Several other methods allow you to determine
equality of strings or whether one is the prefix or suffix of another, but these don't have variants that allow you to
specify search options or ranges.

In addition to searching and comparing strings, you can combine and divide them in various ways.    The simplest
way to put two strings together is to append one to the other.    The stringByAppendingString: method returns
a string object formed from the receiver and the argument supplied.    You can also combine several strings in the
manner of printf() with the initWithFormat:, stringWithFormat: and stringByAppendingFormat: methods.

The string classes allow you to extract substrings from the beginning or end to a particular index, or from a
specific range, with the substringToIndex:, substringFromIndex:, and substringFromRange: methods.    You
can also ask for an array object containing all substrings divided by a separator string with the
componentsSeparatedByString: method.

Most of the NSString classes' remaining methods are for conveniences like changing case, quickly extracting
numeric values, and working with encodings.    An additional class cluster, NSScanner, allows you to scan a
string object for numeric and string values.    Both the NSString and the NSScanner class clusters use the
auxiliary NSCharacterSet class cluster.    See the appropriate class specifications for more information.

Notes on Unicode Support

The NSString classes internally support Unicode, but the associated NSCharacterSet classes don't fully support
Unicode. See the NSCharacterSet class cluster specification for details.

NSString

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying

Declared In: foundation/NSString.h
foundation/NSPathUtilities.h

Class Description
The NSString class declares the programmatic interface for an object that manages an immutable array of
Unicode characters (in other words, a text string). NSString's two primitive methodsÐlength and
characterAtIndex:Ðprovide the basis for all other methods in its interface. The length method returns the total
number of Unicode characters in the string. characterAtIndex: gives access to each character in the string by
index, with index values starting at 0.

NSString declares methods for finding and comparing strings.    It also declares methods for reading numeric
values from strings, for combining strings in various ways, and for converting a string to different forms (such as
encoding- and case-changes).    General use of these methods is presented in the class cluster description under
ªWorking with String Objects.º

Instance Variables
None declared in this class.

Adopted Protocols
NSCoding - encodeUsingCoder:

- decodeUsingCoder:

NSCopying - copyWithZone:
- copy

NSMutableCopying - mutableCopyWithZone:
- mutableCopy

Method Types
Creating temporary strings + stringWithCharacters:length:

+ stringWithCString:length:
+ stringWithCString:
+ stringWithFormat:

Initializing newly allocated strings
- initWithCharactersNoCopy:length:freeWhenDone:
- initWithCharacters:length:
- initWithCStringNoCopy:length:freeWhenDone:
- initWithCString:length:
- initWithCString:
- initWithString:
- initWithFormat:
- initWithFormat:arguments:
- initWithData:encoding:
- initWithContentsOfFile:
- init

Getting a string's length - length

Accessing characters - characterAtIndex:
- getCharacters:
- getCharacters:range:

Combining strings - stringByAppendingFormat:
- stringByAppendingString:

Dividing strings into pieces - componentsSeparatedByString:
- substringFromIndex:
- substringFromRange:
- substringToIndex:

Finding characters and substrings
- rangeOfCharacterFromSet:
- rangeOfCharacterFromSet:options:
- rangeOfCharacterFromSet:options:range:
- rangeOfString:
- rangeOfString:options:
- rangeOfString:options:range:

Determining composed character sequences
- rangeOfComposedCharacterSequenceAtIndex:

Converting String Contents into a Property List
- propertyList
- propertyListFromStringsFileFormat

Identifying and Comparing strings
- compare:
- compare:options:
- compare:options:range:
- hasPrefix:
- hasSuffix:
- isEqual:

- isEqualToString:
- hash

Getting a shared prefix - commonPrefixWithString:options:

Changing case - capitalizedString
- lowercaseString
- uppercaseString

Getting ANSI C strings - cString
- cStringLength
- getCString:
- getCString:maxLength:
- getCString:maxLength:range:remainingRange:

Getting numeric values - floatValue
- intValue

Working with encodings - canBeConvertedToEncoding:
- dataUsingEncoding:
- dataUsingEncoding:allowLossyConversion:
+ defaultCStringEncoding
- description
- fastestEncoding
- smallestEncoding

Working with paths - completePathIntoString:caseSensitive:
matchesIntoArray:filterTypes:

- lastPathComponent
- pathExtension
- stringByAbbreviatingWithTildeInPath
- stringByAppendingPathComponent
- stringByAppendingPathExtension:
- stringByDeletingLastPathComponent
- stringByDeletingPathExtension
- stringByExpandingTildeInPath

- stringByResolvingSymlinksInPath
- stringByStandardizingPath

Class Methods
defaultCStringEncoding

+ (NSStringEncoding)defaultCStringEncoding

Returns the C string encoding assumed for any method accepting a C string as an argument (such methods use
CString in the keywords for such arguments; for example, stringWithCString:).    See the description of
NSStringEncoding in the Types and Constants section for a full list of supported encodings.

stringWithCharacters:length:

+ (NSString *)stringWithCharacters:(const unichar *)chars length:(unsigned)length

Returns a string containing chars.    length characters are copied into the string, regardless of whether a null
character exists in chars.

See also:    - initWithCharacters:length:

stringWithCString:length:

+ (NSString *)stringWithCString:(const char *)byteString length:(unsigned)length

Returns a string containing characters from byteString, which need not be null-terminated.    byteString should
contain characters in the default C string encoding.    length bytes are copied into the string, regardless of
whether a null byte exists in byteString.

See also:    - initWithCString:length:

stringWithCString:

+ (NSString *)stringWithCString:(const char *)byteString

Returns a string containing the characters in byteString, which must be null-terminated.    byteString should
contain characters in the default C string encoding.

See also:    - initWithCString:

stringWithFormat:

+ (NSString *)stringWithFormat:(NSString *)format, ...

Returns a string created by using format as a printf() style format string, and the following arguments as values
to be substituted into the format string. For example, this code excerpt creates a string from another string and
an int:

NSString *myString = [NSString stringWithFormat:@"%@: %d\n",
 @"Cost", 32];

The result string has the value ªCost: 32\nº.

See also:    - initWithFormat:

Instance Methods
canBeConvertedToEncoding:

- (BOOL)canBeConvertedToEncoding:(NSStringEncoding)encoding

Returns YES if the receiver can be converted to encoding without loss of information.    Returns NO if characters
would have to be changed or deleted in the process of changing encodings.

Note that if you plan to actually convert a string, the dataUsingEncoding: methods simply return nil on failure,
so you can avoid the overhead of invoking this method yourself by simply trying to convert the string.

See also:    - dataUsingEncoding:allowLossyConversion:

capitalizedString

- (NSString *)capitalizedString

Returns a string with the first character of each word changed to its corresponding uppercase value. A word is
any sequence of characters delimited by spaces, tabs, or newline characters.

Case transformations aren't guaranteed to be symmetrical or to produce strings of the same lengths as the
originals. The result of this statement:

lcString = [myString lowercaseString];

might not be equal to this:

lcString = [[myString capitalizedString] lowercaseString];

See lowercaseString for an example.

See also:    - lowercaseString, - uppercaseString

characterAtIndex:

- (unichar)characterAtIndex:(unsigned)anIndex

Returns the character at the array position given by anIndex.    This method raises an NSRangeException
exception if anIndex lies beyond the end of the string.

commonPrefixWithString:options:

- (NSString *)commonPrefixWithString:(NSString *)aString
options:(unsigned)mask

Returns a string containing characters that the receiver and aString have in common, starting from the beginning
of each up to the first characters that aren't equivalent.    The returned string is based on the characters of the
receiver.    For example, if the receiver is ªStruÈdelhausº and aString is ªStrödelº, the returned string will be

ªStruÈdelº, not ªStrödelº.    The following search options may be specified in mask by combining them with the C |
(bitwise OR) operator:

NSCaseInsensitiveSearch
NSLiteralSearch

See ªWorking with String Objectsº in the class cluster description for details on these options.

See also:    - hasPrefix

compare:

- (NSComparisonResult)compare:(NSString *)aString

Invokes compare:options: with no options.

See also:    - compare:options:range:

compare:options:

- (NSComparisonResult)compare:(NSString *)aString options:(unsigned)mask

Invokes compare:options:range: with mask as the options and the receiver's full extent as the range.

compare:options:range:

- (NSComparisonResult)compare:(NSString *)aString
options:(unsigned)mask
range:(NSRange)aRange

Returns NSOrderedAscending if the substring given by aRange in the receiver precedes the corresponding
substring of aString in lexical ordering, NSOrderedSame if the two substrings are equivalent in lexical value, and
NSOrderedDescending if the receiver's substring follows aString's.    The following options may be specified in
mask by combining them with the C | (bitwise OR) operator:

NSCaseInsensitiveSearch
NSLiteralSearch

See ªWorking with String Objectsº in the class cluster description for details on these options.

This method raises an NSRangeException exception if any part of aRange lies beyond the end of the string.

completePathIntoString:caseSensitive:matchesIntoArray:filterTypes:

- (unsigned)completePathIntoString:(NSString * *)outputName caseSensitive:(BOOL)flag
matchesIntoArray:(NSArray * *)outputArray filterTypes:(NSArray *)filterTypes

Regards the receiver as containing a partial filename and returns in outputName the longest matching path
name. Case is considered if flag is YES. If outputArray is given, all matching file names are returned in
outputArray. If filterTypes is provided, this method considers only those paths that match one of the types.
Returns 0 if no matches are found; otherwise, the return value is positive.

componentsSeparatedByString:

- (NSArray *)componentsSeparatedByString:(NSString *)separator

Constructs and returns an NSArray containing substrings from the receiver that have been divided by separator.
The strings in the array appear in the order they did in the receiver.    For example, this code excerpt:

NSString *path = @"tmp/gigo";
NSArray *pathComponents = [path componentsSeparatedByString:@"/"];

produces an array containing these strings:

ªtmpº at index 0
ªgigoº at index 1

If path begins with a slashÐfor example, ª/tmp/gigoºÐthe array contains these strings:

ªº at index 0 (because there are no characters before the first slash)
ªtmpº at index 1

ªgigoº at index 2

If path has no separatorsÐfor example, ªgigoºÐthe array contains the string itself, in this case ªgigoº.

See also:    - componentsJoinedByString: (NSArray class cluster)

cString

- (const char *)cString

Returns a representation of the receiver as a C string in the default C string encoding. The returned string will be
automatically freed just as a returned object would be; your code should copy the string or use getCString: if it
needs to store it outside of the method in which the string is created.

See also:    - getCString:, - getCharacters:, + defaultCStringEncoding

cStringLength

- (unsigned)cStringLength

Returns the length in bytes of the C string representation of the receiver.

See also:    + defaultCStringEncoding, - length

dataUsingEncoding:

- (NSData *)dataUsingEncoding:(NSStringEncoding)encoding

Invokes dataUsingEncoding:allowLossyConversion: with NO as the argument to allow lossy conversion.

dataUsingEncoding:allowLossyConversion:

- (NSData *)dataUsingEncoding:(NSStringEncoding)encoding
allowLossyConversion:(BOOL)flag

Returns an NSData object containing a representation of the receiver in encoding. If flag is NO and the receiver
can't be converted without losing some information (such as accents or case) this method returns nil. If flag is
YES and the receiver can't be converted without losing some information, some characters may be removed or
altered in conversion. For example, in converting a character from NSUnicodeStringEncoding to
NSASCIIStringEncoding, the character ª‚º would become ªAº, losing the accent.

The result of this method is the default ªplain textº format for encoding and is the recommended way to save or
transmit a string object.

See also:    - canBeConvertedToEncoding:

description

- (NSString *)description

Returns a quoted version of the string. The string may always be quoted; it will certainly be quoted if it contains
backslashes or quotes. If quoted, then internal quotes and backslashes are also backslashed.

fastestEncoding

- (NSStringEncoding)fastestEncoding

Returns the fastest encoding to which the receiver may be converted without loss of information.    ªFastestº
applies to retrieval of characters from the string.    This encoding may not be space efficient.

See also:    - smallestEncoding, - getCharacters:range:

floatValue

- (float)floatValue

Returns the floating-point value of the receiver's text.    Whitespace at the beginning of the string is skipped.    If

the receiver begins with a valid text representation of a floating-point number, that number's value is returned,
otherwise 0.0 is returned.    HUGE_VAL or -HUGE_VAL is returned on overflow.    0.0 is returned on underflow.

See also:    - intValue

getCharacters:

- (void)getCharacters:(unichar *)buffer

Invokes getCharacters:range: with the provided buffer and the entire extent of the receiver as the range.   
buffer must be large enough to contain all the characters in the string.

getCharacters:range:

- (void)getCharacters:(unichar *)buffer range:(NSRange)aRange

Copies characters from aRange in the receiver into buffer, which must be large enough to contain them.    This
method does not add a null character.    This method raises an NSRangeException exception if any part of
aRange lies beyond the end of the string.

If you subclass NSString, this method works properly using characterAtIndex:.    Your subclass should override
this method to provide a fast implementation.

getCString:

- (void)getCString:(char *)buffer

Invokes getCString:maxLength:range:remainingRange: with NSMaximumStringLength as the maximum
length, the receiver's entire extent as the range, and NULL for the remaining range. buffer must be large enough
to contain the resulting C string plus a terminating null character (which this method adds).

See also:    - getCharacters:, + defaultCStringEncoding

getCString:maxLength:

- (void)getCString:(char *)buffer maxLength:(unsigned)maxLength

Invokes getCString:maxLength:range:remainingRange: with maxLength as the maximum length, the
receiver's entire extent as the range, and NULL for the remaining range.    buffer must be large enough to contain
maxLength bytes plus a terminating null character (which this method adds).

See also:    - getCharacters:, + defaultCStringEncoding

getCString:maxLength:range:remainingRange:

- (void)getCString:(char *)buffer
maxLength:(unsigned)maxLength
range:(NSRange)aRange
remainingRange:(NSRange *)leftoverRange

Copies up to maxLength of the receiver's characters as bytes in the default C string encoding into buffer. buffer
must be large enough to contain maxLength bytes plus a terminating null character (which this method adds).
Characters are copied from aRange; if not all characters can be copied, the range of those not copied is put into
leftoverRange. This method raises an NSRangeException exception if any part of aRange lies beyond the end
of the string.

See also:    - getCharacters:, + defaultCStringEncoding

hash

- (unsigned)hash

Returns an unsigned integer that can be used as a table address in a hash table structure.    If two string objects
are equal (as determined by the isEqual: method), they must have the same hash value.    Because of this, your
subclass of NSString shouldn't override hash.

hasPrefix:

- (BOOL)hasPrefix:(NSString *)aString

Returns YES if aString matches the beginning characters of the receiver, NO otherwise.    The default search
options are used (see ªWorking with String Objectsº in the class cluster description for further information).

See also:    - hasSuffix:

hasSuffix:

- (BOOL)hasSuffix:(NSString *)aString

Returns YES if aString matches the ending characters of the receiver, NO otherwise.    The default search
options are used (see ªWorking with String Objectsº in the class cluster description for further information).

See also:    - hasPrefix:

init

- init

Initializes the receiver, a newly allocated NSString, to contain no characters. This is the only initialization method
that a subclass of NSString should override.

initWithCharacters:length:

- initWithCharacters:(const unichar *)characters length:(unsigned)length

Initializes the receiver, a newly allocated NSString, by copying length characters from characters. This method
doesn't stop at a null character.

See also:    - stringWithCharacters:length:

initWithCharactersNoCopy:length:freeWhenDone:

- initWithCharactersNoCopy:(unichar *)characters
length:(unsigned)length
freeWhenDone:(BOOL)flag

Initializes the receiver, a newly allocated NSString, to contain length characters from characters. This method
doesn't stop at a null character. The receiver becomes the owner of characters; if flag is YES the receiver will
free the memory when it no longer needs them, but if flag is NO it won't.

initWithContentsOfFile:

- initWithContentsOfFile:(NSString *)path

Initializes the receiver, a newly allocated NSString, by reading NEXTSTEP-encoded characters from the file
whose name is given by path.

initWithCString:

- initWithCString:(const char *)aString

Initializes the receiver, a newly allocated NSString, by converting the one-byte characters in aString into Unicode
characters. aString must be a null-terminated C string in the default C string encoding.

See also:    - stringWithCString:, + defaultCStringEncoding

initWithCString:length:

- initWithCString:(const char *)aString length:(unsigned)length

Initializes the receiver, a newly allocated NSString, by converting length one-byte characters in aString into
Unicode characters. This method doesn't stop at a null byte. aString must be contain bytes in the default C string

encoding.

See also:    - stringWithCString:length:, + defaultCStringEncoding

initWithCStringNoCopy:length:freeWhenDone:

- initWithCStringNoCopy:(char *)aString
length:(unsigned)length
freeWhenDone:(BOOL)flag

Initializes the receiver, a newly allocated NSString, by converting length one-byte characters in aString into
Unicode characters. This method doesn't stop at a null byte. aString must be contain bytes in the default C string
encoding. The receiver becomes the owner of aString; if flag is YES it will free the memory when it no longer
needs it, but if flag is NO it won't.

See also:    + defaultCStringEncoding

initWithData:encoding:

- initWithData:(NSData *)data encoding:(NSStringEncoding)encoding

Initializes the receiver, a newly allocated NSString, by converting the bytes in data into Unicode characters. data
must be an NSData object containing bytes in encoding and in the default ªplain textº format for that encoding.

initWithFormat:

- initWithFormat:(NSString *)format, ...

Initializes the receiver, a newly allocated NSString, by constructing a string from format and following string
objects in the manner of printf().

See also:    - stringWithFormat:

initWithFormat:arguments:

- initWithFormat:(NSString *)format arguments:(va_list)argList

Initializes the receiver, a newly allocated NSString, by constructing a string from format and argList in the manner
of vprintf().

initWithString:

- initWithString:(NSString *)aString

Initializes the receiver, a newly allocated NSString, by copying the characters from aString.

intValue

- (int)intValue

Returns the integer value of the receiver's text.    Whitespace at the beginning of the string is skipped.    If the
receiver begins with a valid representation of an integer, that number's value is returned, otherwise 0 is returned.
INT_MAX or INT_MIN is returned on overflow.

See also:    - intValue

isEqual:

- (BOOL)isEqual:anObject

Returns YES if both the receiver and anObject have the same id or if they're both NSStrings that compare as
NSOrderedSame, NO otherwise.

See also:    - compare:

isEqualToString:

- (BOOL)isEqualToString:(NSString *)aString

Returns YES if aString is equivalent to the receiver (if they have the same id or if they compare as
NSOrderedSame), NO otherwise.    When you know both objects are strings, this method is a faster way to
check equality than isEqual:.

See also:    - compare:

lastPathComponent

- (NSString *)lastPathComponent

Returns the last component in the receiving path. If the receiving path consists solely of a slash,
lastPathComponent returns the empty string. The following table illustrates the effect of lastPathComponent
on a variety of different paths:

Receiving Path Resulting String

/Foo/Bar.tiff Bar.tiff
/Foo/Bar Bar
/Foo/Bar/ Bar
Foo Foo
/ ªº

length

- (unsigned int)length

Returns the number of characters in the receiver. This includes the individual characters of composed character
sequences, so you can't use this method to determine if a string will be visible when printed, or how long it will
appear.

See also:    - cStringLength

lowercaseString

- (NSString *)lowercaseString

Returns a string with each character changed to its corresponding lowercase value.    Case transformations aren't
guaranteed to be symmetrical or to produce strings of the same lengths as the originals.    The result of this
statement:

lcString = [myString lowercaseString];

might not be equal to this:

lcString = [[myString uppercaseString] lowercaseString];

For example, the uppercase form of ªûº is ªSSº, so converting ªeûenº to uppercase then lowercase would
produce this sequence of strings:

eûen
ESSEN
essen

See also:    - capitalizedString, - uppercaseString

pathExtension

- (NSString *)pathExtension

Returns a string consisting only of the receiving path's extension. If the receiving path does not have an
extension (ª/Foo/Barº or ª/Foo/Barº, for example), pathExtension returns the empty string. The following table
illustrates the effect of pathExtension on a variety of different paths:

Receiving Path Resulting String

/Foo/Bar.tiff tiff
/Foo/Bar ªº
/Foo/Bar/ ªº

propertyList

- (id)propertyList

Depending on the format of the receiver's contents, returns a string, data, array, or dictionary object represention
of those contents.

propertyListFromStringsFileFormat

- (NSDictionary *)propertyListFromStringsFileFormat

Returns a dictionary object initialized with the keys and values found in the receiver. The receiver's format must
be that used for ª.stringº files.

rangeOfCharacterFromSet:

- (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet

Invokes rangeOfCharacterFromSet:options: with no options.

Finds the first occurrence of a character from the specified set and returns its range. Note that the range covers
only the first found character, not a sequence of characters. If not found, returned length is 0.

rangeOfCharacterFromSet:options:

- (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet
options:(unsigned int)mask

Finds the first occurrence of a character from the specified set and returns its range. Note that the range covers
only the first found character, not a sequence of characters. If not found, returned length is 0. Possible options
are: NSLiteralSearch, NSBackwardsSearch, NSAnchoredSearch.

rangeOfCharacterFromSet:options:range:

- (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet
options:(unsigned int)mask
range:(NSRange)aRange

Returns the range in the receiver of the first character found from aSet.    The search is restricted to those
characters in the receiver within aRange.    The following options may be specified in mask by combining them
with the C | (bitwise OR) operator:

NSCaseInsensitiveSearch
NSLiteralSearch
NSBackwardsSearch

See ªWorking with String Objectsº in the class cluster description for details on these options.    This method
raises an NSRangeException exception if any part of aRange lies beyond the end of the string.

Since precomposed characters in aSet can match composed characters sequences in the receiver, it's possible
that the length of the returned range be greater than one.    For example, if you search for ªöº in the string
ªstruÈdelº, the returned range will be {3,2}.

rangeOfComposedCharacterSequenceAtIndex:

- (NSRange)rangeOfComposedCharacterSequenceAtIndex:(unsigned)anIndex

Returns an NSRange giving the location and length in the receiver of the composed character sequence located
at anIndex.    The composed character sequence includes the first base character found at or past anIndex, and
its length includes the base character and all zero-width or non-base characters following the base character.

This method raises an NSRangeException exception if anIndex lies beyond the end of the string.

If you want to write a method to adjust an arbitrary range so that it includes the composed character sequences
on its boundaries, you can create a method such as this:

- (NSRange)adjustRange:(NSRange)aRange
{
 unsigned index, endIndex;
 NSRange newRange, endRange;

 /*
 * Calculate the beginning location for the range.
 */
 index = aRange.location;
 newRange = [self rangeOfComposedCharacterSequenceAtIndex:index];

 /*
 * Calculate the ending index for the range.
 */
 index = aRange.location + aRange.length;
 endRange = [self rangeOfComposedCharacterSequenceAtIndex:index];
 endIndex = endRange.location + endRange.length;

 /*
 * Set the length of the adjusted range.
 */
 newRange.length = endIndex - newRange.location;

 return newRange;
}

rangeOfString:

- (NSRange)rangeOfString:(NSString *)aString

Invokes rangeOfString:options: with no options.

rangeOfString:options:

- (NSRange)rangeOfString:(NSString *)aString options:(unsigned)mask

Invokes rangeOfString:options:range: with no options and the entire extent of the receiver as the range.

rangeOfString:options:range:

- (NSRange)rangeOfString:(NSString *)aString
options:(unsigned)mask
range:(NSRange)aRange

Returns an NSRange giving the location and length in the receiver of aString.    If aString isn't found, the length of
the returned NSRange is zero.    The length of the returned range and that of aString may differ if equivalent
composed character sequences are matched.    The search is restricted to the substring of the receiver given by
aRange.    The following options may be specified in mask by combining them with the C | (bitwise OR) operator:

NSCaseInsensitiveSearch
NSLiteralSearch
NSBackwardsSearch
NSAnchoredSearch

See ªWorking with String Objectsº in the class cluster description for details on these options.    This method
raises an NSRangeException exception if any part of aRange lies beyond the end of the string.

smallestEncoding

- (NSStringEncoding)smallestEncoding

Returns the smallest encoding to which the receiver can be converted without loss of information.    This
encoding may not be the fastest for accessing characters, but is very space-efficient.

See also:    - fastestEncoding, - getCharacters:range:

stringByAbbreviatingWithTildeInPath

- (NSString *)stringByAbbreviatingWithTildeInPath

Returns the receiving path with a ª~º character substituted for the first occurrence of the user's home directory. If
the receiving path does not start with the user's home directory, the receiving path is returned unaltered.

See also:    - stringByExpandingTildeInPath

stringByAppendingFormat:

- (NSString *)stringByAppendingFormat:(NSString *)format, ...

Returns a string made by using format as a printf() style format string, and the following arguments as values to
be substituted into the format string. This code excerpt, for example:

NSString *errorTag = @"Error: ";
NSString *errorLocation = @"Filename.m";
NSString *errorText = [errorTag
 stringByAppendingFormat:@"Undefined value in %@\n",
 errorLocation];

produces the string ªError: Undefined value in Filename.m\nº.

This method is equivalent to invoking stringWithFormat: with the arguments listed, and passing the resulting
string to stringByAppendingString:.

stringByAppendingString:

- (NSString *)stringByAppendingString:(NSString *)aString

Returns a string object made by appending the receiver and aString.    This code excerpt, for example:

NSString *errorTag = @"This is where ";
NSString *insertTabA = @"you insert tab A.";
NSString *errorText = [errorTag stringByAppendingString:insertTabA];

produces the string ªThis is where you insert tab A.º.

See also:    - stringByAppendingFormat:

stringByAppendingPathComponent:

- (NSString *)stringByAppendingPathComponent:(NSString *)aString

Returns the receiving path with the path component specified by aString appended. The following table illustrates
the effect of stringByAppendingPathComponent: on a variety of different paths, assuming that aString is
supplied as @ªBar.tiffº:

Receiving Path Resulting String

/Foo /Foo/Bar.tiff
/Foo/ /Foo/Bar.tiff
/ /Bar.tiff
ªº Bar.tiff

See also:    - stringByAppendingPathExtension:

stringByAppendingPathExtension:

- (NSString *)stringByAppendingPathExtension:(NSString *)aString

Returns the receiving path with a period and the path extension specified by aString appended. The following
table illustrates the effect of stringByAppendingPathExtension: on a variety of different paths, assuming that
aString is supplied as @ªtiffº:

Receiving Path Resulting String

/Foo/Bar.x /Foo/Bar.x.tiff
/Foo/ /Foo/.tiff
Foo Foo.tiff

See also:    - stringByAppendingPathComponent:

stringByDeletingLastPathComponent

- (NSString *)stringByDeletingLastPathComponent

Returns the receiving path with the last path component removed. The following table illustrates the effect of
stringByDeletingLastPathComponent on a variety of different paths:

Receiving Path Resulting String

/Foo/Bar.tiff /Foo
/Foo/ /
/ /
Foo ªº

See also:    - stringByDeletingPathExtension

stringByDeletingPathExtension

- (NSString *)stringByDeletingPathExtension

Returns the receiving path with the path extension removed. The following table illustrates the effect of
stringByDeletingPathExtension on a variety of different paths:

Receiving Path Resulting String

/Foo/Bar.tiff /Foo/Bar
/Foo/ /Foo
/ /

See also:    - pathExtension, - stringByDeletingLastPathComponent

stringByExpandingTildeInPath

- (NSString *)stringByExpandingTildeInPath

Returns the receiving path with the first ª~º character (or ª~userº expression) expanded. If the user does not
exist, or the receiving path does not begin with a tilde, the receiving path is returned unaltered.

See also:    - stringByAbbreviatingWithTildeInPath

stringByResolvingSymlinksInPath

- (NSString *)stringByResolvingSymlinksInPath

Resolves all symbolic links in the receiving path, returning a path with no symbolic links and cleaned up as
described in stringByStandardizingPath. The empty string is returned if an error occurs.

See also:    - stringByExpandingTildeInPath, - stringByStandardizingPath

stringByStandardizingPath

- (NSString *)stringByStandardizingPath

Expands ª~º in the receiving path, removes ª/privateº (if possible), and condenses ª//º and ª/./º.
stringByStandardizingPath replaces any use of ª..º in absolute paths by taking the real parent directory (if
possible; otherwise, it just trims the previous component). Raises an exception on failureÐnever returns nil.
stringByStandardizingPath does not stat the path; it just cleans up the syntax.

See also:    - stringByExpandingTildeInPath, - stringByResolvingSymlinksInPath

substringFromIndex:

- (NSString *)substringFromIndex:(unsigned)anIndex

Returns a string object containing the characters of the receiver from the one at anIndex to the end.    This
method raises an NSRangeException exception if anIndex lies beyond the end of the string.

See also:    - substringFromRange:, - substringToIndex:

substringFromRange:

- (NSString *)substringFromRange:(NSRange)aRange

Returns a string object containing the characters of the receiver which lie within aRange.    This method raises an
NSRangeException exception if any part of aRange lies beyond the end of the string.

See also:    - substringFromIndex:, - substringToIndex:

substringToIndex:

- (NSString *)substringToIndex:(unsigned)anIndex

Returns a string object containing the characters of the receiver up to, but not including, the one at anIndex.   
This method raises an NSRangeException exception if anIndex lies beyond the end of the string.

See also:    - substringFromIndex:, - substringFromRange:

uppercaseString

- (NSString *)uppercaseString

Returns a string with each character changed to its corresponding uppercase value.    Case transformations
aren't guaranteed to be symmetrical or to produce strings of the same lengths as the originals.    The result of this
statement:

lcString = [myString lowercaseString];

might not be equal to this:

lcString = [[myString uppercaseString] lowercaseString];

See lowercaseString for an example.

See also:    - capitalizedString, - lowercaseString

NSMutableString

Inherits From: NSString : NSObject

Conforms To: NSCoding (NSString)
NSCopying (NSString)
NSMutableCopying (NSString)

Declared In: foundation/NSString.h

Class Description
The NSMutableString class declares the programmatic interface to objects that manage a modifiable array of
Unicode characters (text strings).    This class adds a method for replacing
charactersÐreplaceCharactersInRange:withString:Ðto the basic string-handling behavior inherited from
NSString.    All other methods that modify a string work through this method.    For example,
insertString:atIndex: simply replaces the characters in a range of zero length, while
deleteCharactersInRange: replaces the characters in a given range with no characters.

Instance Variables
None declared in this class.

Method Types
Creating temporary strings + stringWithCapacity:

+ stringWithCharacters:length:
+ stringWithCString:

+ stringWithCString:length:
+ stringWithFormat:

Initializing a Mutable String - initWithCapacity:

Modifying a string - appendFormat:
- appendString:
- deleteCharactersInRange:
- insertString:atIndex:
- replaceCharactersInRange:withString:
- setString:

Class Methods
stringWithCapacity:

+ (NSMutableString *)stringWithCapacity:(unsigned)capacity

Returns an empty mutable string, using capacity as a hint for how much initial storage to reserve.

stringWithCharacters:length:

+ (NSMutableString *)stringWithCharacters:(const unichar *)chars length:(unsigned)length

Returns a mutable string containing chars.    The first length characters are copied into the string.    This method
doesn't stop at a null character.

stringWithCString:length:

+ (NSMutableString *)stringWithCString:(const char *)byteString length:(unsigned)length

Returns a mutable string containing length characters made from byteString.    This method doesn't stop at a null
byte.    byteString should contain bytes in the default C string encoding.

See also:    + defaultCStringEncoding (NSString)

stringWithCString:

+ (NSMutableString *)stringWithCString:(const char *)byteString

Returns a mutable string containing the characters in byteString, which must be null-terminated.    bytes should
contain bytes in the default C string encoding.

See also:    + defaultCStringEncoding (NSString)

stringWithFormat:

+ (NSMutableString *)stringWithFormat:(NSString *)format, ...

Returns a mutable string created by using format as a printf() style format string, and the subsequent arguments
as values to be substituted into the format string.

Instance Methods
appendFormat:

- (void)appendFormat:(NSString *)format, ...

Adds a constructed string to the receiver. The new characters are created by using format as a printf() style
format string, and the following arguments as values to be substituted into the format string.

This method is equivalent to invoking stringWithFormat: with the arguments listed, and passing the resulting
string to appendString:.

appendString:

- (void)appendString:(NSString *)aString

Adds the characters of aString to end of the receiver.

deleteCharactersInRange:

- (void)deleteCharactersInRange:(NSRange)aRange

Removes from the receiver the characters in aRange. This method raises an NSRangeException exception if
any part of aRange lies beyond the end of the string.

initWithCapacity:

- initWithCapacity:(unsigned)capacity

Initializes a newly allocated mutable string object, giving it enough allocated memory to hold capacity characters.

insertString:atIndex:

- (void)insertString:(NSString *)aString atIndex:(unsigned)anIndex

Inserts the characters of aString into the receiver, such that the new characters begin at anIndex and the existing
character from anIndex to the end are shifted by the length of aString.    This method raises an
NSRangeException exception if anIndex lies beyond the end of the string.

replaceCharactersInRange:withString:

- (void)replaceCharactersInRange:(NSRange)aRange
withString:(NSString *)otherString

Inserts the characters of otherString into the receiver, such that they replace the characters in aRange.    This
method raises an NSRangeException exception if any part of aRange lies beyond the end of the string.

setString:

- (void)setString:(NSString *)aString

Replaces the characters of the receiver with those in aString.

