
Enterprise Objects Framework Release 1.0 Copyright ã1994 by NeXT Computer, Inc.    All Rights Reserved.

NSCoder

Inherits From: NSObject

Conforms To: NSCoding
NSObject

Declared In: foundation/NSCoder.h

Class Description
NSCoder is an abstract class that declares the interface used by subclasses to take Objective C objects from 
dynamic memory and code them into and out of some other format. This capability provides the basis for 
archiving (where objects and other structures are stored on disk) and distribution (where objects are copied to 
different address spaces). See the NSArchiver and NSUnarchiver class specifications for more information on 
archiving.

NSCoder operates on the basic C and Objective C typesÐint, float, id, and so on (but excluding void * and 
union)Ðas well as on user-defined structures and pointers to these types. 

NSCoder declares methods that a subclass can override if it wants:

· To encode or decode an object only under certain conditions, such as it being an intrinsic part of a larger 
structure (encodeRootObject: and encodeConditionalObject:). 

· To allow decoded objects to be allocated from a specific memory zone (setObjectZone:).

· To allow system versioning (systemVersion)



Encoding and Decoding Objects

In NEXTSTEP, coding is facilitated by methods declared in several places, most notably the NSCoder class, the 
NSObject class, and the NSCoding protocol.

The NSCoding protocol declares the two methods (encodeWithCoder: and initWithCoder:) that a class must 
implement so that objects of that class can be encoded and decoded. When an object receives an 
encodeWithCoder: message, it should send a message to super to encode inherited instance variables before 
it encodes the instance variables that it's class declares. For example, the fictitious MapView class, that displays 
a legend and a map at various magnifications, might implement encodeWithCoder: like this:

- (void)encodeWithCoder:(NSCoder *)coder
{
    [super encodeWithCoder:coder];
    [coder encodeValuesOfObjCTypes:"si@", &mapName, &magnification,
        &legendView];
}

Objects are decoded in two steps. First, an object of the appropriate class is allocated and then it's sent an 
initWithCoder: message to allow it to initialize its instance variables. Again, the object should first send a 
message to super to initialized inherited instance variables, and then it should initialize its own. MapView's 
implementation of this method looks like this:

- (id)initWithCoder:(NSCoder *)coder
{
    self = [super initWithCoder:coder];
    [coder decodeValuesOfObjCTypes:"si@", &mapName, &magnification,
        &legendView];
    return self;
}

Note the assignment of the return value of initWithCoder: to self in the example above. This is done in the 
subclass because the superclass, in its implementation of initWithCoder:, may decide to return a object other 
than itself.

There are other methods that allow an object to customize its response to encoding or decoding. NSObject 
declares these methods:

Method Typical Use

classForCoder: Allows an object, when being encoded, to substitute a class other than its own. 
For example, the private subclasses of a class cluster substitute the name of 
their public superclass when being archived.

replacementObjectForCoder: Allows an object, when being encoded, to substitute another object for itself. For 
example, an object might encode itself into an archive, but encode a proxy for 



itself if it's being encoded for distribution.

awakeAfterUsingCoder: Allows an object, when being decoded, to substitute another object for itself. For 
example, an object that represents a font might, upon being decoded, release 
itself and return an existing object having the same font description as itself. In 
this way, redundant objects can be eliminated.

See the NSObject class specification for more information.

Instance Variables
None declared in this class.

Method Types
Encoding Data - encodeArrayOfObjCType:count:at:

- encodeBycopyObject:
- encodeConditionalObject:
- encodeDataObject:
- encodeNXObject:
- encodeObject:
- encodePropertyList:
- encodeRootObject:
- encodeValueOfObjCType:at:
- encodeValuesOfObjCTypes:

Decoding Data - decodeArrayOfObjCType:count:at:
- decodeDataObject
- decodeNXObject
- decodeObject
- decodePropertyList
- decodeValueOfObjCType:at:
- decodeValuesOfObjCTypes:

Managing Zones - objectZone
- setObjectZone:

Getting a Version - systemVersion
- versionForClassName:



Instance Methods

decodeArrayOfObjCType:count:at:

- (void)decodeArrayOfObjCType:(const char *)type count:(unsigned)count at:(void *)address

Decodes data of Objective C types listed in type having count elements residing at address.

decodeDataObject

- (NSData *)decodeDataObject

Decodes and returns an NSData object.

decodeNXObject

- (Object *)decodeNXObject

Decodes and returns an object that descends from Object.

decodeObject

- (id)decodeObject

Decodes an Objective C object.

decodePropertyList

- (id)decodePropertyList

Decodes a property list (NSData, NSArray, NSDictionary, or NSString objects).

decodeValueOfObjCType:at:

- (void)decodeValueOfObjCType:(const char *)type at:(void *)address



Decodes data of the specified Objective C type residing at address. You are responsible for releasing the 
resulting objects.

decodeValuesOfObjCTypes:

- (void)decodeValuesOfObjCTypes:(const char *)types,...

Decodes values corresponding to the Objective C types listed in types argument list. You are responsible for 
releasing the resulting objects.

encodeArrayOfObjCType:count:at:

- (void)encodeArrayOfObjCType:(const char *)type count:(unsigned)count at:(const void *)array

Encodes data of Objective C types listed in type having count elements residing at address array.

encodeBycopyObject:

- (void)encodeBycopyObject:(id)anObject

Overridden by subclasses to encode the supplied Objective C object so that a copy rather than a proxy of 
anObject is created upon decoding. NSCoder's implementation simply invokes encodeObject:.

encodeConditionalObject:

- (void)encodeConditionalObject:(id)anObject

Overridden by subclasses to conditionally encode the supplied Objective C object. The object should be encoded 
only if it is an intrinsic member of the larger data structure. NSCoder's implementation simply invokes 
encodeObject:.

encodeDataObject:

- (void)encodeDataObject:(NSData *)data

Encodes the NSData object data.



encodeNXObject:

- (void)encodeNXObject:(Object *)object

Encodes an object that descends from Object.

encodeObject:

- (void)encodeObject:(id)anObject

Encodes the supplied Objective C object.

encodePropertyList:

- (void)encodePropertyList:(id)plist

Encodes the supplied property list (NSData, NSArray, NSDictionary, or NSString objects).

encodeRootObject:

- (void)encodeRootObject:(id)rootObject

Overridden by subclasses to start encoding an interconnected group of Objective C objects, starting with 
rootObject. NSCoder's implementation simply invokes encodeObject:.

encodeValueOfObjCType:

- (void)encodeValueOfObjCType:(const char *)type at:(const void *)address

Encodes data of the specified Objective C type residing at address.

encodeValuesOfObjCTypes:

- (void)encodeValuesOfObjCTypes:(const char *)types,...

Encodes values corresponding to the Objective C types listed in types argument list.



objectZone

- (NSZone *)objectZone

Returns the memory zone used by decoded objects. For instances of NSCoder, this is the default memory zone, 
the one returned by NSDefaultMallocZone().

setObjectZone:

- (void)setObjectZone:(NSZone *)zone

Sets the memory zone used by decoded objects. Instances of NSCoder always use the default memory zone, 
the one returned by NSDefaultMallocZone(), and so ignore this method.

systemVersion

- (unsigned int)systemVersion

Returns the system version number as of the time the archive was created.

versionForClassName:

- (unsigned int)versionForClassName:(NSString *)className

Returns the version number of the class className as of the time it was archived.


