
Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

18

Building a Custom Palette

As you've seen, Interface Builder gives you convenient access to objects defined in the Application
Kit:    You can drag objects directly from the Palettes window into your application.    Through
custom palettes, Interface Builder lets you extend this pattern of access to classes of your own
design.

A custom palette is a display that can be added to Interface Builder's Palettes window.    Each custom
palette is represented by its own button at the top of the Palettes window.    When the button is
clicked, the palette's object or objects appear in the lower portion of the window.    Custom palettes
can contain subclasses of:

Class Comment
View Must be dragged into a window
Object Must be dragged to the File window
Window Can be dragged and dropped anywhere
MenuCell Must be dragged into a menu

You can manipulate these objects just as you would the objects on the standard palettes.    They can
be dragged into the application under construction, resized and relocated through direct mouse
actions (if they are View or Window objects), and inspected using the Inspector panel.    When
Interface Builder is put in test mode, objects from custom palettes are fully functional.    For
example, View objects draw themselves and react to mouse events just as they would in a real
application.    (This is in contrast to CustomViews, as described in more detail later in this project.)

Custom palettes let you tailor your development environment to suit your needs.    They also provide
a convenient way to distribute classes to other developers.    It's important to note, however, that only
classes that meet the following criteria are good candidates for custom palettes.

· The class should be designed for reusability.    That is, it should be easily adapted for use in a
wide range of applications.    An object that must be the delegate of the Application object, for
example, will be difficult to accommodate in many applications.

· The class should define objects that are useful in a variety of applications.    There's little
advantage in creating a custom palette for an object that will be used infrequently.

· The class should be thoroughly debugged.    The best approach to creating a custom palette for a
new class is to first debug the class by building test applications and then, when it's debugged,
build the custom palette.

This project first describes how to create a simple custom palette and then shows you how to add an
inspector for the custom object that the palette contains.    Before starting, let's look at how custom
palettes fit into the overall structure of Interface Builder.

Custom Palettes and Interface Builder
The previous projects have demonstrated that you build a NEXTSTEP application by designing its
interface, defining your own classes as needed, connecting the components, and then compiling the
application.    This creates an application that consists of executable code and archived data.    At run
time, some objects are instantiated directly (such as the Application object) and others are
unarchived from nib files.

Interface Builder is no different in the way it is constructed.    For example, the first time you click
the Scrolling Views button in the Palettes window, Interface Builder loads a bundle containing
executable code and archived data for the appropriate objects and displays these objects in the
Palettes window.    (For information on bundles, see the class specification for NXBundle, a
common class.)

Adding a new palette to the Palettes window, then, involves creating a type of bundle that Interface
Builder can load into itself at run time.    This bundle is called a palette file and has a ª.paletteº
extension.    Palette files contain archived versions of the objects to be displayed in the Palette
window and compiled code to support these objects.    A palette file can also contain archived data
and object modules for the Inspector associated with a custom palette object.

Custom palettes are loaded into Interface Builder dynamically.    That is, when a user chooses the
Load Palette command from the Tools menu and specifies a palette file, Interface Builder opens the
palette file, loads the object modules it contains and then unarchives the objects that will appear in
the Palette window.    Thereafter, the classes of these custom objects are known to Interface Builder:
Their names appear in the proper places in the Classes window, their outlets and actions appear in
the Connections Inspector, and Interface Builder can create new objects of these classes as needed.   
Using Interface Builder's Preferences panel you can have one or more custom palettes loaded
automatically whenever Interface Builder is launched.

The Custom Object's Design
The palette we'll create in this project contains a single custom object, a ProgressView.    A
ProgressView reflects the progress of a long-running operation by filling with dark gray an ever
increasing proportion of its horizontal extent:

Figure 18-1.    ProgressView, Box, and TextField Objects

You could use such an object to inform the user of the status of a long-running calculation, file
operation, or other process.    A ProgressView responds to an increment: message by increasing the
length of the gray bar a predetermined amount.    We'll take a closer look at the implementation of
the ProgressView class after creating the interface for the custom palette.

Creating the Interface
The primary component of a custom palette project is a nib file.    This file contains the archived
object (or objects) that will appear in the palette and a TIFF image that will be used for the button at
the top of the Palettes window.

To begin the palette project, start Project Builder and, from the Project menu, choose New.    In the
panel that appears, drag to Palette in the Project Type pop-up list.    Give the project the name
ªProgressPaletteº and save it in your home directory.    The Project window for this project appears.

If you browse the Files display of the Project window, you'll find that Project Builder has added
these files:

File Description
ProgressPalette.[hm] Subclass of IBPalette (which is declared in

/NextDeveloper/Headers/Apps).    For palettes that contain only
View objects, nothing must be done to these files.    For other types
of palettes, one or more methods must be implemented.

ProgressPalette.nib Interface archive for the palette project.    You'll use Interface Builder
to modify this template file by adding the objects that will be part of
your palette.

palette.table Loading instructions for Interface Builder.    This file becomes part of
the palette file package.    It tells Interface Builder which icon to
display for the palette and which classes to add to the Classes display
of the File window, among other things.

Makefile Standard makefile for palette projects.    Project Builder maintains
this file; you shouldn't change its contents directly.

Double-click the ProgressPalette.nib entry.    Interface Builder starts and displays the contents of
this template file:    a File's Owner object, the first responder, and a window titled ªPalette Viewº.   
Using Interface Builder's Inspector window, you can verify that the File's Owner object in the File
window is an object of the ProgressPalette class.    If you switch to the Connections display, you'll
see that the originalWindow outlet, which the File's Owner inherits from its parent class, is already
attached to the panel.    When Interface Builder loads a palette file, it uses this connection to find the
View objects that it must extract from the nib file and position within the Palette window.

The next step is to put a ProgressView object in this panel; however, at this point the ProgressView
class is unknown to Interface Builder.    Interface Builder provides a generic View, the CustomView
object, for these situations.    A CustomView object records the location, width, height, and class of a
View of your own design.    At run time, when objects are unarchived from the nib file, an object of
the class you specified is created in place of the CustomView.    The View that's created is positioned
and resized to match the position and dimensions of the CustomView in the nib file, and its
drawSelf:: method is invoked to cause it to display itself.

Drag a CustomView (from the Basic Views palette) into the panel and resize it to look like this:

Figure 18-2.    Building the Custom Palette

Now add a label to this CustomView by dragging a TextField titled ªTitleº from the Palette window
into the panel.    Change the TextField to read ª0%º and use the Font panel to decrease the font size.
Make a second label by copying and pasting the one you've just created and then change the title to
read ª100%º.    Position these titles at opposite ends of the CustomView.    Finally, create a box
around the CustomView and the titles by selecting the three objects and choosing the Group
command from the Layout menu.    Change the title of the box to read ªProgressViewº.

Defining the ProgressView Class
The next step is to reassign the class of the CustomView to the as-yet-unwritten ProgressView class.
To do this, you must first use the Classes display of the File window to define the ProgressView
class.

Switch to the Classes display and select View in the class hierarchy.    Create a subclass of View by
dragging to Subclass in the Operations pull-down list.    A new class titled ªMyViewº appears in the
hierarchy.    Using the Class inspector, change the name of this class to ªProgressViewº and press
Return.

A ProgressView responds to a single action method:    increment:.    Using the Class inspector, add
this method to those listed under the Actions button.

Now, let's create template source files for the ProgressView class.    Drag to Unparse in the
Operations pull-down list in the File window.    In the first panel that appears, confirm that you want
to create ProgressView.h and ProgressView.m.    In the second panel, confirm that you want these
files added to the project.    We'll fill in these template files later.

Finally, reassign the class of the CustomView in the panel.    Select the CustomView.    Note that the
CustomView is grouped within a Box object (that is, it's within the Box's view hierarchy).    Clicking
the box selects the Box object.    To move the focus of selection to the objects inside the box, double-
click within the box.    Now select the CustomView by clicking it.    Using the Attributes display of
the CustomView Inspector, locate ProgressView in the list of classes it contains.    Click this entry,
and the label in the CustomView changes to ªProgressViewº.

Providing An Image for the Palette's Button
The ProgressView custom palette needs an image for its button in the Palettes window.    You can
either use the IconBuilder application (in /NextDeveloper/Apps) to create a new one, or you can
use ProgressPalette.tiff, which you'll find in
/NextLibrary/Documentation/NextDev/Examples/IBTutorial/Images.    (If you create your own
image, make sure it's no larger than 48 by 48 pixels and that its background is transparent.)

Drag the image's file icon from the Workspace Manager File Viewer into Project Builder's Project
window.    As you drag the icon into the window, a suitcase opens to accept it.    When you release
the icon, the image is added under Images in the Files display. Now save the project.    When the
project is saved, Interface Builder is alerted to any changes it contains.    Now if you look in the
Images display of Interface Builder's File window, you'll see the new image.

The custom palette's interface is complete.    The next step is to write the class definition files for the
ProgressView class.    Before continuing to the next step, save the nib file you've created.

Writing the ProgressView Class Files
The files that Interface Builder has created for the ProgressView class contain only template code
for the increment: action method.    You'll have to finish this method's implementation and add the
other methods described in this section.    (If you're reading an electronic version of this tutorial, you
can simply copy the code listed below and paste it into the appropriate ProgressView source file in
your project.)

ProgressView.h
This file declares the interface to the ProgressView class.

#import <appkit/appkit.h>
#define DEFAULTSTEPSIZE 5

#define MAXSIZE 100

@interface ProgressView:View
{
 int total, count, stepSize;
 float ratio;
}
- initFrame:(const NXRect *)frameRect;
- drawSelf:(const NXRect *)rects :(int)rectCount;
- setStepSize:(int)value;
- (int)stepSize;
- setRatio:(float)newRatio;
- increment:sender;
- read:(NXTypedStream*)stream;
- write:(NXTypedStream*)stream;

@end

The file starts by importing the standard header file for the Application Kit.    Then, two constants
are defined.    DEFAULTSTEPSIZE is the value that's added to a running total each time an
increment: message is received.    MAXSIZE is the maximum length of the bar.

Next, the ProgressView class declares four instance variables:

Variable Description
total Total length of bar; MAXSIZE in this example
count Running total; incremented by each increment: message
stepSize Amount to add to count upon receiving an increment: message
ratio Proportional length of dark gray portion of bar (count/total)

Finally, ProgressView's methods are declared.    These methods are discussed in the next section.

ProgressView.m
This file contains the implementation of the methods declared in ProgressView.h.

#import "ProgressView.h"

@implementation ProgressView

- initFrame:(const NXRect *)frameRect
{
 [super initFrame:frameRect];
 total = MAXSIZE;
 stepSize = DEFAULTSTEPSIZE;
 return self;
}

- drawSelf:(const NXRect *)rects :(int)rectCount
{
 PSsetgray(NX_LTGRAY);
 NXRectFill(&bounds);
 if (ratio > 0) {
 NXRect r = bounds;
 r.size.width = bounds.size.width * ratio;
 PSsetgray(NX_DKGRAY);
 NXRectFill(&r);
 }
 PSsetgray(NX_BLACK);
 NXFrameRect(&bounds);
 return self;
}

- setStepSize:(int)value

{
 stepSize = value;
 return self;
}

- (int)stepSize
{
 return stepSize;
}

- setRatio:(float)newRatio
{
 if (newRatio > 1.0) newRatio = 1.0;
 if (ratio != newRatio) {
 ratio = newRatio;
 [self display];
 }
 return self;
}

- increment:sender
{
 count += stepSize;
 [self setRatio:(float)count/(float)total];
 return self;
}

- read:(NXTypedStream*)stream
{
 [super read:stream];
 NXReadTypes(stream, "ii", &total, &stepSize);
 return self;
}

- write:(NXTypedStream*)stream
{
 [super write:stream];
 NXWriteTypes(stream, "ii", &total, &stepSize);
 return self;
}

@end

ProgressView.m starts by importing ProgressView.h for the interface to its own class.    The rest of
the file contains the implementation of ProgressView's methods:

Method Description
initFrame: Initializes a newly allocated ProgressView by setting the values of its total

and stepSize variables.    Its count and ratio instance variables are
automatically initialized to 0.

drawSelf:: Draws the ProgressView by first filling its entire bounds rectangle with light
gray, determining which portion of the bounds should be filled with dark gray
and painting that portion, and finally drawing a black border around the entire
ProgressView.

setStepSize: Sets the amount to be added to count when the ProgressView receives an
increment: message.    (This method will be used in the next project.)

stepSize: Returns the amount to be added to count when the ProgressView receives an
increment: message.    (This method will be used in the next project.)

setRatio: Sets the ratio variable and then redisplays the ProgressView (thus causing the
drawSelf:: method to be invoked).

increment: Increases the value of the count variable by adding stepSize to it.    This

method then invokes the setRatio: method, using the ratio of count to total
as the argument.

read: Reads the archived values of the total and stepSize variables from a typed
stream.

write: Writes the values of the total and stepSize variables to a typed stream.

At a minimum, a custom palette object must be able to draw, archive, and unarchive itself; thus, the
drawSelf::, write:, and read: methods above.    The other methods are peculiar to the ProgressView
class and aren't required by all custom palette objects.

The drawSelf:: method is invoked when the palette is first loaded, to draw the ProgressView in the
Palettes window.    It's also invoked when you put Interface Builder in test mode and there's a
ProgressView object in your application's window.    Of course, when an application that contains a
ProgressView is run, drawSelf:: is invoked whenever the ProgressView needs to draw itself, such as
after it receives an increment: message.

The read: and write: methods are needed so that the ProgressView can be archived.    When you
create the custom palette, the ProgressView object must archive itself into the palette file.    When
the custom palette is loaded into Interface Builder, the ProgressView is unarchived from the palette
file.

The process of unarchiving involves allocating enough memory for the object and then sending it a
read: message so that it can initialize its variables from the values stored in the archive.    In
unarchiving, the initFrame: method, which would normally establish the values of the total and
stepSize variables, isn't invoked.    Thus, the read: method must establish those values.    The
matching write: method records the values of total and stepSize in the archive file when the palette
is created.    Without these methods, a newly unarchived ProgressView would have 0 as the values of
total and stepSize.    Whenever you create a class that you intend to use in a custom palette,
remember to implement read: and write: methods to archive the variables whose values you want
to store along with the object.

Updating the palette.table File
Before you can compile the palette project, you must update the palette.table file.    Interface
Builder consults this table when it loads a palette file.    It uses the information from the table to
identify and instantiate the nib file's owner, to display the proper image for the button in the Palette
window, and to insert class names within the Classes display of the File window, among other
things.

Locate palette.table under Other Resources in Project Builder's Project window.    Double-click the
entry to reveal the file's contents:

Class = ProgressPalette; /* (a subclass of IBPalette) */
NibFile = ProgressPalette; /* (a nib file name) */
/* Icon =; (a tiff/eps file name) */
/* ExportClasses = (); (a list of class names) */
/* ExportImages = (); (a list of icon names) */
/* ExportSounds = (); (a list of sound names) */

The first two lines identify the names of the class of the nib file's owner and of the nib file itself.   
The remaining lines can be used to identify other elements of the palette file.    For this project, you
need to specify the name of the image to be used for the Palette window button and to specify the
name of the class, ProgressView, that should be added to the Classes browser.    Make the changes
that appear in bold below:

Class = ProgressPalette; /* (a subclass of IBPalette) */
NibFile = ProgressPalette; /* (a nib file name) */

Icon = ProgressPalette; /* (a tiff/eps file name) */
ExportClasses = (ProgressView); /* (a list of class names) */
/* ExportImages = (); (a list of icon names) */
/* ExportSounds = (); (a list of sound names) */

After you've made these changes, save and close palette.table.

Compiling and Loading the Palette
You're now ready to compile the custom palette.    Switch to Project Builder's Builder display and
click the Build button.    When the process is finished, a file with the name ProgressPalette.palette
is added to the project directory.

To load the custom palette, choose Interface Builder's Load Palette command from its Tools menu.   
In the Open panel that appears, select that palette file and click OK.    After a moment, Interface
Builder's Palette window is updated to show the new palette.

Figure 18-3.    ProgressView Custom Palette

Notice that a horizontal scroller appears to give you access to palette buttons that no longer fit
within the Palettes window.

Testing the Palette
Now that a ProgressView is available from within Interface Builder, it's easy to test its operation.   
Close the palette project by closing the Project window for the ProgressPalette project.    Now, start a
new project by choosing New in Project Builder's Project menu.    In the panel that appears, name
the project ªTestº and make sure the Project Type button reads ªApplicationº.      Finally, open the nib
file.

In Interface Builder, drag a ProgressView object from the Palettes window into the application's
window.    To test the ProgressView's operation, you have to send it increment: action messages.   
Add a button to the window and change its title to ªIncrementº.    Control-drag a connection from the
button to the ProgressView.    (Make sure the connection is made to the ProgressView and not to the
Box that surrounds itÐcheck the Connections list in the Connections Inspector to confirm the
identity of the destination object.)    Using the Connections Inspector, specify that the Button sends
an increment: message to the ProgressView.

Finally, test the ProgressView by putting Interface Builder in test mode and clicking the Increment
button.    The gray bar should step across the ProgressView with each click.    If nothing happens,
quit the test mode, recheck the connection between the button and the ProgressView, and try again.

Using Custom Palette Objects in Other Applications
Building an application using a custom palette object is in most respects identical to building one
using the standard objects that are available within Interface Builder; the few differences are
described here.

You've demonstrated that the ProgressView custom object works within Interface Builder's test
mode.    However, if you compile the new application and attempt to run it, this error appears in the
Workspace Manager Console window:

> objc: class `ProgressView' not linked into application
> An uncaught exception was raised
> Typed streams library error: class error for 'ProgressView': class not
loaded

The problem is that although the application's nib file contains an archived ProgressView object, the
ProgressView class hasn't been linked into the application.    Thus, none of the ProgressView's
methods can be invoked.

There are several ways to ensure that the ProgressView class is linked into an application.    The
easiest is to add the ProgressView class files (ProgressView.h and ProgressView.m) to the list of
class files in Project Builder's Files window.    For your own applications, this is a reasonable
solution.    If, however, you don't want to distribute source code along with the custom palettes you
develop, you can either distribute object files (in this case, ProgressView.o) or a library containing
object modules for your custom classes.    The object files or library can be added to the appropriate
list in Project Builder.

Another consideration when developing applications using custom palettes concerns the editing of
nib files.    If you create a nib file that contains a custom palette object, that interface file can be
opened only by a similarly configured Interface Builder application.    In other words, if the nib file
contains a ProgressView, then you will have to load the ProgressView palette before you'll be able to
open the nib file.    As normally configured, Interface Builder won't have access to the class
information for the custom object.

Adding a ProgressView Inspector
A palette file can provide Attribute, Connection, Size, and Help inspectors for the custom objects it
contains.    (Custom Connection and Help inspectors are rarely needed, however.)        For example,
when a user attempts to display the Attributes inspector associated with the custom object (say, by
selecting the object and choosing Inspector from the Tools menu), Interface Builder loads the
inspector and uses it as the Attributes display of the Inspector window.    For example, an Attributes
Inspector for the ProgressView class might look like this:

Figure 18-4.    ProgressView Inspector

An Attributes Inspector typically lets a user set an object's characteristics that can't be set through
direct mouse manipulation.    For example, the ProgressView Inspector pictured above lets the user
adjust a ProgressView's stepSize variable, thus determining the amount the dark gray bar advances
across the ProgressView with each increment: message.

Inspectors can have OK and Revert buttons, although they aren't required.    If the user adjusts the
controls in an inspector and then clicks Revert, the changes are discarded and the previous values
are reestablished; if the user clicks OK, the new values are sent to the object that's being inspected.

Interface Builder identifies the appropriate inspector to display for a selected object by sending the
object one of these messages, depending on the setting of the pop-up list in the Inspector window:

getInspectorClassName
getConnectInspectorClassName
getSizeInspectorClassName
getHelpInspectorClassName

The getInspectorClassName message is sent to determine the name of the class of the Attributes
inspector.    For example, the ProgressView class could implement this method this way:

- (const char *)getInspectorClassName
{
 return "ProgressViewInspector";
}

Since each custom object can identify its inspector, a custom palette file can contain multiple classes
of objects, each with its own inspector.

Another benefit of this system of identifying an object's inspector is that inspectors are inherited.   
Interface Builder provides inspectors for each of the classes represented in the Palettes window.    If
you create a subclass of one of these classes and don't implement the inspectorName: method,
Interface Builder will display the superclass's inspector whenever the custom object is inspected.

For debugging purposes, it's often better to create the inspector for an object only after the object
itself has been debugged and placed in a custom palette.    This is the approach we take in this
project.    Now that ProgressView objects are available through a custom palette, we'll create a
simple inspector for the ProgressView class.

Designing the ProgressView Inspector
Creating an inspector for a custom palette object is much like creating the custom palette itself.   
You start by assembling an interface for the custom object inspector.    The owner of this nib file is
an object you define that translates actions taken on this interface into messages to send to the object
that's being inspected.    The class files for the owner object and the inspector's nib file are added to
the palette project and compiled into the palette file along with the custom palette object.    Let's start
by assembling the inspector's user interface.

Interface Builder provides a New Inspector command for our purposes.    Choose the New Module
command in the Document menu and, in the menu that appears, choose New Inspector.    A new File
window and a panel titled ªInspectorº appear.

Now, let's add some objects to the panel.    Drag a horizontal slider into the panel and then add labels
for each end (as in Figure 18-4 above).    Edit the left label to read ª0º and the right one ª10º.   
Calibrate the slider to these values by using the Slider Inspector to set its minimum value to 0 and
the maximum value to 10.    Set the current value to 5 and press Return.

Add an editable text field above the center of the slider.    This text field will read out the slider's
current setting.    Resize the text field to accommodate two-digit numbers and then edit its contents
to read ª5º.    Using the Alignment group of buttons in the TextField Inspector, specify that the
TextField's display is right aligned:

Figure 18-5.    Setting the Alignment of the TextField

Finally, select all the objects in the panel and choose the Group command from the Layout menu (a
submenu of the Format menu) to surround them in a box.    Edit the box's title to read ªStep Sizeº.

The interface to the ProgressView inspector is complete.    Save the interface in a file called
ProgressViewInspector.nibÐthe Open panel will suggest saving the nib file in the proper language
directory of the ProgressPalette projectÐand, when the attention panel appears, confirm that you
want the file added to the project.

Designing the ProgressViewInspector Class
The interface that you just created will act on a selected object through the intervention of a
ProgressViewInspector object, which we will now define.

Inspectors inherit from Interface Builder's IBInspector class, a subclass of Object.    (See
/NextDeveloper/Headers/apps/InterfaceBuilder.h for the class interface to the IBInspector class.)
The IBInspector class has these important outlets:

Outlet Description
object id of the object that's being inspected
window id of the Panel that contains the inspector's user interface
okButton id of the OK button, if present
revertButton id of the Revert button, if present

The IBInspector class adopts the IBInspectors protocol, which declares these methods:

Method Description
ok: Sets the inspected object to reflect the user's choices in the Inspector

panel.

revert: Cancels any pending changes to the inspected object.    This method is
also invoked when the Inspector is first instantiated.

wantsButtons: Invoked by Interface Builder to determine if OK and Revert buttons
should be displayed for this inspector.

Let's create a subclass of IBInspector for our inspector.    The IBInspector class is listed under Object
in Interface Builder's Classes browser.    Select this entry and drag to Subclass in the Operations pull-
down list.    In the Class inspector, rename this new class ªProgressViewInspectorº.    Note that the
Class Inspector reports that the ProgressViewInspector class inherits the window outlet and ok: and
revert: methods of its superclass.    A ProgressViewInspector needs two more outlets, which it will
use to communicate with the slider and text field in its user interface.    Add these outlets and name
them theSlider and theTextField.

Now, create template source files for the ProgressViewInspector class.    Drag to Unparse in the
Operations pull-down list of the Classes display.    In the first panel that appears, confirm that you
want to create ProgressViewInspector.h and ProgressViewInspector.m.    In the second panel,
confirm that you want to add these files to the project.    We'll fill in these template files later.

Next, reassign the class of the File's Owner object to the ProgressViewInspector class.    Select the
File's Owner object in the Objects display of the File window.    In the File's Owner Inspector panel,
select ProgressViewInspector.    Finally, save the nib file.

Connecting the Objects
The File's Owner, a ProgressViewInspector, must be connected to its user interface objects.   
Control-drag a connection from the File's Owner to the Slider and connect the two using the
theSlider outlet.    Similarly, connect the File's Owner to the TextField using the theTextField
outlet.    Notice that Interface Builder has already connected the File's Owner and the inspector panel
using the window outlet.    All inspectors are connected to their user interfaces through this outlet.

The Slider and the TextField must also be connected to the File's Owner so that actions taken on
these controls are reflected in the object being inspected.    Control-drag a connection from the Slider

to the File's Owner, and using the Connections inspector, make the File's Owner the target of an ok:
message from the Slider.    Similarly, make the TextField send an ok: message to its target, the File's
Owner.

These are the only connections you need to make.    When the inspector is being used in Interface
Builder, its object outlet will be set automatically to the id of the object that's currently being
inspected.    When the user clicks OK or Revert in an inspector that has these buttons, Interface
Builder will send the appropriate message to the ProgressViewInspector object.

Editing the ProgressViewInspector Class Files
The next step is to fill in the template class files that Interface Builder has added to the project.    The
finished files are listed here.    (If you're reading this on-line, you can copy the listings into the
template files in your project.)    A description of the files follows each listing.

ProgressViewInspector.h
This file declares the interface to the ProgressViewInspector class.

#import <apps/InterfaceBuilder.h>

@interface ProgressViewInspector:IBInspector <IBInspectors>
{
 id theSlider;
 id theTextField;
}
- init;

@end

The file starts by importing InterfaceBuilder.h, which contains the declaration of the IBInspector
class, ProgressViewInspector's superclass.    Note that the ProgressViewInspector class adopts the
IBInspectors protocol, which declares the ok:, revert: and wantsButtons: methods.

This interface file then declares two instance variables, theSlider and theTextField.    These
variables correspond to the two outlets that you added using Interface Builder's Class Inspector.   
Finally, the file declares the init method, which is described in the next section.

ProgressViewInspector.m
This file contains the implementation of the methods declared in ProgressViewInspector.h.

#import "ProgressViewInspector.h"
#import "ProgressView.h"

@implementation ProgressViewInspector

- init
{
 char buf[MAXPATHLEN + 1];
 id bundle;

 [super init];

 bundle = [NXBundle bundleForClass:[ProgressView class]];
 [bundle getPath:buf

 forResource:"ProgressViewInspector"
 ofType:"nib"];
 [NXApp loadNibFile:buf
 owner:self
 withNames:NO
 fromZone:[self zone]];
 return self;
}

- ok:sender
{
 if (sender == theSlider) {
 [object setStepSize:[theSlider intValue]];
 [theTextField setIntValue:[theSlider intValue]];
 }
 else if (sender == theTextField) {
 [object setStepSize:[theTextField intValue]];
 [theSlider setIntValue:[theTextField intValue]];
 }
 return [super ok:sender];
}

- revert:sender
{
 int step;

 step = [object stepSize];
 [theSlider setIntValue:step];
 [theTextField setIntValue:step];
 return [super revert:sender];
}

- (BOOL)wantsButtons
{
 return NO;
}
@end

The init method initializes a newly allocated ProgressViewInspector.    As in all init... methods, the
chain of initializations is maintained through a message to the superclass (IBInspector) to initialize
itself.

Next, the inspector's user interface is loaded from the appropriate nib file; however, since the palette
file could be located anywhere, you have to enlist the services of an NXBundle object to find the
proper directories to search.    The NXBundle object is initialized on the directory that provided the
code for the ProgressViewInspector class.    Given the user's language preferences, the nib file will
be sought in one of its subdirectories (for example, English.lproj, French.lproj, etc.).    In contrast,
if you were to try to load the nib file by sending a loadNibFile:... message, Interface Builder's file
package would be searched for the nib file.    (See the NXBundle class specification for more
information.)

When the nib file is loaded, the inspector's theSlider and theTextField outlets are automatically
initialized to the id's of the appropriate objects from the nib file.    (In addition, the
ProgressViewInspector's object outlet is set to the id of the ProgressView that the user has selected.)

The ok: and revert: methods synchronize the values in the inspector panel with each other and with
the object being inspected.    When a user acts on the slider, for example, an ok: message is sent to
the ProgressViewInspector.    The inspected object's step size is set to the value of the Slider object,
and then the TextField's value is made to match that of the Slider.

The revert: method asks the selected ProgressView for its current step size and then sends messages
to the Slider and TextField to reflect this value.    The implementation of each method ends by
invoking the IBInspector class's implementation of the identical method:

return [super ok:sender];

return [super revert:sender];

In the ok: and revert: methods of inspector classes you write, remember to invoke the IBInspector
class's ok: and revert: methods, as demonstrated here.    This is required for the correct operation of
inspectors.

Besides being sent when the user clicks Revert, a revert: message is sent to the
ProgressViewInspector whenever the user selects a ProgressView and the inspector is open. This lets
the inspector update its controls so that they reflect the state of the inspected object.

Interface Builder sends a wantsButtons: message to the ProgressViewInspector to determine if OK
and Revert buttons should appear in the Inspector panel.    Most Inspectors won't need these buttons;
rather, a user's actions in the panel will immediately and visibly change the state of the inspected
object, as in this example.

Modifying the ProgressView Class Files
As mentioned earlier, Interface Builder identifies the inspector for a selected object by sending the
object an inspectorName message.    Since you've created an inspector for ProgressView objects, it's
time to add this method to the ProgressView class files.

In ProgressView.h, add this declaration:

- (const char *)getInspectorClassName;

In ProgressView.m, add the implementation of the inspectorName method:

- (const char *)getInspectorClassName
{
 return "ProgressViewInspector";
}

Compiling and Testing the Inspector
After saving the class and nib files, use Project Builder's Build command to compile the project.   
When the process is finished, you can load the new palette file, ProgressPalette.palette.   
(Remember that only one version of a given palette can be loaded at a time.    If you already have an
older version of the ProgressView palette loaded, you'll have to restart Interface Builder in order to
load the new version.)

Once the custom palette is loaded, test its operation by creating a new application that contains a
ProgressView and a button, as illustrated here:

Figure 18-6.    Testing the ProgressView Inspector

Use the ProgressView Inspector to set the step size, and then put the application in test mode to test
the ProgressView's operation.

If the inspector doesn't appear when you attempt to inspect a ProgressView, recheck the connections
in the ProgressViewInspector nib file.    (Especially check that the window outlet is connected to the
panel that contains the inspector's user interface).

