
Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

14

Mach Object Files

This chapter describes the format of Mach object files.    This format is used by default, rather than
the UNIX 4.3BSD a.out format, for object files on NEXTSTEP computers.

The current Mach object format is still evolving at Carnegie Mellon, and enhancements in
NEXTSTEP are part of this evolving process.    These enhancements refine the design and clean up
some implementation details.    The concepts of the original design are still present, but names have
been changed for consistency.

The Mach object file format has two components:

· A static header containing information common to all files

· A variable number of load commands that provide information about the structure of the file

The load commands provide the following types of information:

· The layout of the run-time memory image
· The symbol table information
· The initial thread execution state
· The names of any referenced shared libraries

The layout of the file is determined by the file type:

· For types MH_EXECUTE and MH_FVMLIB the segments are padded out and aligned on a
segment alignment boundary for efficient demand paging.    Both these file types also have the
headers included as part of their first segment.

· The type MH_OBJECT is a compact format (the ª.oº format).    It's intended only as output of the
assembler and input (or possibly output) of the link editor.    All sections are in one unnamed
segment with no padding.

· The type MH_PRELOAD is an executable format intended for files that aren't executed under
the kernel (such as PROMs, standalone programs, and kernels).

· The type MH_CORE is for core files.

The structures of a Mach object file are defined in the header file mach-o/loader.h, and are
described below.    The structures and what they're used for are described first, followed by a list of
what structures make up Mach object files.

The Mach Header
The Mach header appears at the beginning of the object file.    Only information that's truly general
to the file is contained in the Mach header.    Other information is put in the load commands that

follow.

The format of the Mach header is:

struct mach_header {
 unsigned long magic; /* Mach magic number identifier */
 cpu_type_t cputype; /* cpu specifier */
 cpu_subtype_t cpusubtype; /* machine specifier */
 unsigned long filetype; /* type of file */
 unsigned long ncmds; /* number of load commands */
 unsigned long sizeofcmds; /* size of all load commands */
 unsigned long flags; /* flags */
};

The value for the magic field of the mach_header structure is:

#define MH_MAGIC 0xfeedface /* the Mach magic number */

The values for the cputype and cpusubtype fields are defined as follows in the header file
sys/machine.h:

#define CPU_TYPE_MC680x0 ((cpu_type_t) 6)
#define CPU_SUBTYPE_MC68030 ((cpu_subtype_t) 1)
#define CPU_SUBTYPE_MC68040 ((cpu_subtype_t) 2)

The values for the filetype field are defined as follows in the header file sys/loader.h:

#define MH_OBJECT 0x1 /* relocatable object file */
#define MH_EXECUTE 0x2 /* executable object file */
#define MH_FVMLIB 0x3 /* fixed vm shared library file */
#define MH_CORE 0x4 /* core file */
#define MH_PRELOAD 0x5 /* preloaded executable file */

The ncmds field contains the number of load_command structures that follow the Mach header.   
The load_command structures directly follow the Mach header in the object file.

The sizeofcmds field contains the total size in bytes of all of the load commands that follow it.

The following constants are used for the flags field:

#define MH_NOUNDEFS 0x1 /* object file has no undefined references;
 can be executed */
#define MH_INCRLINK 0x2 /* object file is the output of an
 incremental link against a base file;
 can't be link-edited again */

The Load Commands
The load commands appear directly after the Mach header.    They are variable in size.    The number
of load commands and the total size of the commands are given in the ncmds and sizeofcmds fields
of the mach_header structure.

All load commands must have as their first two fields cmd and cmdsize:

· The cmd field contains a constant for that command type.    Each command type has a specific
structure corresponding to it.

· The cmdsize field is the size in bytes of the particular load_command structure plus anything
that follows it that's a part of the load command (for example, section structures or strings).    To
advance to the next load command, the value of the cmdsize field can be added to the offset or
pointer of the current load command.

The value of the cmdsize field must be a multiple of sizeof(long).    This is the maximum alignment

of any load command.    The padded bytes must be zero-filled.    Because the file will be memory
mapped, all tables in the object file must also follow these rules; otherwise the pointers to these
tables are not guaranteed to work.    With all padding zero-filled, like objects will compare byte for
byte.

The following structure is the minimum form of a load command:

struct load_command {
 unsigned long cmd; /* type of load command */
 unsigned long cmdsize; /* total size of command in bytes */
};

Constants for the cmd field of the load_command structure are:

#define LC_SEGMENT 0x1 /* file segment to be mapped */
#define LC_SYMTAB 0x2 /* link-edit stab symbol table info
 (obsolete) */
#define LC_SYMSEG 0x3 /* link-edit gdb symbol table info */
#define LC_THREAD 0x4 /* thread */
#define LC_UNIXTHREAD 0x5 /* UNIX thread (includes a stack) */
#define LC_LOADFVMLIB 0x6 /* load a fixed VM shared library */
#define LC_IDFVMLIB 0x7 /* fixed VM shared library id */
#define LC_IDENT 0x8 /* object identification information
 (obsolete) */
#define LC_FVMFILE 0x9 /* fixed VM file inclusion */

A variable-length string in a load command is represented by an lc_str union.    The string is stored
just after the load_command structure, and the offset is from the start of the load_command
structure.    The size of the string is reflected in the cmdsize field of the load command.    Any
padded bytes to bring the cmdsize field to a multiple of sizeof(long) must be zero-filled.

union lc_str {
 unsigned long offset; /* offset to the string */
 char *ptr; /* pointer to the string */
};

The LC_SEGMENT Load Command
The LC_SEGMENT load command indicates that a part of this file is to be mapped into the task's
address space.    The size of this segment in memory, vmsize, can be equal to or larger than the
amount to map from this file, filesize.    The file, starting at fileoff, is mapped to the beginning of the
segment in memory at vmaddr.    The rest of the memory of the segment, if any, is allocated zero-
fill on demand.

struct segment_command {
 unsigned long cmd; /* LC_SEGMENT */
 unsigned long cmdsize; /* includes size of section
 structures */
 char segname[16]; /* segment's name */
 unsigned long vmaddr; /* segment's memory address */
 unsigned long vmsize; /* segment's memory size */
 unsigned long fileoff; /* segment's file offset */
 unsigned long filesize; /* amount to map from file */
 vm_prot_t maxprot; /* maximum VM protection */
 vm_prot_t initprot; /* initial VM protection */
 unsigned long nsects; /* number of sections */
 unsigned long flags; /* flags */
};

The segment's maximum virtual memory protection and initial virtual memory protection are
specified by the maxprot and initprot fields.    The values for these fields are set to some
combination of the constants defined in the header file vm/vm_prot.h:

#define VM_PROT_NONE ((vm_prot_t) 0x00)
#define VM_PROT_READ ((vm_prot_t) 0x01) /* read permission */
#define VM_PROT_WRITE ((vm_prot_t) 0x02) /* write permission */
#define VM_PROT_EXECUTE ((vm_prot_t) 0x04) /* execute permission */

/* The default protection for newly created virtual memory */
#define VM_PROT_DEFAULT \
 (VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE)

/* Maximum privileges possible, for parameter checking. */
#define VM_PROT_ALL \
 (VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE)

A segment's address and virtual memory protection are set at link edit time.

The following constants can be used for the flags field of the segment_command structure:

#define SG_HIGHVM 0x1
#define SG_FVMLIB 0x2
#define SG_NORELOC 0x3

SG_HIGHVM indicates that the file contents for this segment occupy the high part of the virtual
memory space; the low part is zero-filled (for stacks in core files).    SG_FVMLIB indicates that the
segment is the virtual memory that's allocated by a fixed virtual memory library for overlap
checking in the link editor.    SG_NORELOC indicates that the segment has nothing that was
relocated in it and nothing relocated to it (that is, it may be safely replaced without relocation).

A segment is made up of zero or more sections.    If the segment contains sections, the section
structures directly follow the segment command and their size is reflected in the cmdsize field.

If sections have the same section name and are going into the same segment, they're combined by
the link editor.    The resulting section is aligned to the maximum alignment of the combined
sections and is the new section's alignment.    The combined sections are aligned to their original
alignment in the combined section.    Any padded bytes used to get the specified alignment are zero-
filled.

Only non-MH_OBJECT files have all their segments with the proper sections in each padded to the
specified segment alignment.    The default segment alignment for the link editor is the page size.   
The first segment of an executable or shared library always contains the Mach header and load
commands of the object file before its first section.    The zero-filled sections are always last in their
segment, allowing the zeroed segment padding to be mapped into memory where zero-filled
sections might be.

struct section {
 char sectname[16]; /* section's name */
 char segname[16]; /* segment the section is in */
 unsigned long addr; /* section's memory address */
 unsigned long size; /* section's size in bytes */
 unsigned long offset; /* section's file offset */
 unsigned long align; /* section's alignment */
 unsigned long reloff; /* file offset of relocation entries */
 unsigned long nreloc; /* number of relocation entries */
 unsigned long flags; /* flags */
 unsigned long reserved1; /* reserved */
 unsigned long reserved2; /* reserved */
};

Flags currently defined for the flags field of a section structure are the following:

#define S_ZEROFILL 0x1 /* zero-filled on demand */
#define S_CSTRING_LITERALS 0x2 /* section has only literal C
 strings */
#define S_4BYTE_LITERALS 0x2 /* section has only 4-byte literals */
#define S_8BYTE_LITERALS 0x2 /* section has only 8-byte literals */
#define S_LITERAL_POINTERS 0x2 /* section has only pointers to
 literals */

S_ZEROFILL is used for the uninitialized data sections; sections with literal flags cause the link
editor to coalesce redundant literals into sections and perform the proper relocation, resulting in a
smaller file.

The format of the relocation entries referenced by the reloff and nreloc fields is described in the
header file reloc.h.

Although the names of segments and sections in them are mostly meaningless to the link editor,
there are a few things to support traditional UNIX executables that will require the link editor and
assembler to use some agreed-upon names.

The link editor will allocate common symbols at the end of the __common section in the __DATA
segment, creating the section and segment if needed.    The __common section must be a zero-fill
section (marked with S_ZEROFILL).

The default maxprot and initprot (maximum and initial virtual memory protection) will always be
read, write, and execute.    If there's a __TEXT or __LINKEDIT segment its initprot won't be
writable by default.

The following are constants for the conventional segment and section names:

#define SEG_PAGEZERO "__PAGEZERO" /* pagezero segment; has no
 protections; catches NULL
 references for MH_EXECUTE
 files */
#define SEG_TEXT "__TEXT" /* traditional UNIX text segment */
#define SECT_TEXT "__text" /* real text part of the text
 section; no headers and
 padding */
#define SECT_FVMLIB_INIT0 "__fvmlib_init0" /* fvmlib initialization
 section */
#define SECT_FVMLIB_INIT1 "__fvmlib_init1" /* the section following
 the fvmlib
 initialization
 section */
#define SEG_DATA "__DATA" /* traditional UNIX data segment */
#define SECT_DATA "__data" /* real initialized data section;
 no padding, no bss overlap */
#define SECT_BSS "__bss" /* real uninitialized data
 section; no padding */
#define SECT_COMMON "__common" /* the section common symbols
 are allocated in by the link
 editor */
#define SEG_OBJC "__OBJC" /* run-time segment */
#define SECT_OBJC_SYMBOLS "__symbol_table" /* symbol table */
#define SECT_OBJC_MODULES "__module_info" /* (obsolete!) */
#define SECT_OBJC_STRINGS "__selector_strs" /* string table */
#define SECT_OBJC_REFS "__selector_refs" /* string table */
#define SEG_ICON "__ICON" /* NeXT icon segment */
#define SECT_ICON_HEADER "__header" /* icon headers */
#define SECT_ICON_TIFF "__tiff" /* icons in TIFF format */

The LC_SYMTAB Load Command
The LC_SYMTAB command specifies the location and size of the symbol table information created
by the compiler used for link editing and debugging.    This UNIX 4.3BSD stab-style symbol table
information is defined in the header files nlist.h and stabs.h:

struct symtab_command {
 unsigned long cmd; /* LC_SYMTAB */
 unsigned long cmdsize; /* sizeof(struct symtab_command) */
 unsigned long symoff; /* symbol table offset */

 unsigned long nsyms; /* number of symbol table entries */
 unsigned long stroff; /* string table offset */
 unsigned long strsize; /* string table size in bytes */
};

The LC_SYMTAB command contains the offsets for both the symbol table entries and the string
table used by those entries.    This format is different from the UNIX 4.3BSD a.out format:    The
string table offset and size are explicitly defined, and the symbol table and string tables are located
at the end of the file (not after the LC_SYMTAB command).

The format of a symbol table entry is defined in the header file nlist.h:

struct nlist {
 union {
 char *n_name; /* for use when in-core */
 long n_strx; /* index into file string table */
 } n_un;
 unsigned char n_type; /* type flag; see below */
 unsigned char n_sect; /* section number or NO_SECT */
 short n_desc; /* see the header file stab.h */
 unsigned n_value; /* value of this symbol table entry
 (or stab offset) */
};

Symbols with an index into the string table of zero (n_un.n_strx == 0) are defined to have a null
("") name.    Therefore, all string indexes to non-null names must not have a zero string length.

In the file, a symbol's n_un.n_strx field gives an index into the string table.    An n_strx value of 0
indicates that no name is associated with a particular symbol table entry.    The field n_un.n_name
can be used to refer to the symbol name only if the program sets this up using n_strx and
appropriate data from the string table.

The flag values that distinguish symbol types are defined in the header file nlist.h.    The n_type
field actually contains three fields, and if declared as such would be:

unsigned char N_STAB:3,
 N_TYPE:4,
 N_EXT:1;

These fields are used by specifying the following masks:

#define N_STAB 0xe0 /* if any bits are set, this is a symbolic
 debugging entry */
#define N_TYPE 0x1e /* mask for the type bits */
#define N_EXT 0x01 /* external symbol bit; set for external
 symbols */

Some of the N_STAB bits will be set if and only if the entry is a symbolic debugging entry (an
stab)Ðin this case, the values for the N_TYPE bits of the n_type field (the entire field) are as shown
in the header file stab.h.    Normal values for the N_TYPE bits of the n_type field are:

#define N_UNDF 0x0 /* undefined; n_sect == NO_SECT */
#define N_ABS 0x2 /* absolute; n_sect == NO_SECT */
#define N_SECT 0xe /* defined in section number n_sect */
#define N_INDR 0xa /* indirect */

If the type is N_SECT, the n_sect field contains an ordinal of the section the symbol is defined in.   
The sections are numbered from 1 and refer to sections in the order in which they appear in the load
commands for the file they're in.    Therefore the same ordinal may refer to different sections in
different files.    This is the most common type of symbol.

If the type is N_INDR, the symbol is defined to be the same as another symbol.    In this case the
n_value field is an index into the string table of the other symbol's name.    When the other symbol
is defined, they both take on the defined type and value.

The n_value field for all symbol table entries (including N_STABs) gets updated by the link editor

based on the value of the n_sect field and where the section's n_sect references get relocated.    If the
value of the n_sect field is NO_SECT, its n_value field isn't relocated by the link editor.

#define NO_SECT 0 /* the symbol isn't in any section */
#define MAX_SECT 255 /* 1 through 255 inclusive */

Common symbols are represented by undefined (N_UNDF) external (N_EXT) types whose values
(n_value) are nonzero.    In this case the value of the n_value field is the size in bytes of the
common symbol, and the value of the n_sect field is NO_SECT.

The LC_THREAD and LC_UNIXTHREAD Load
Commands
Thread commands contain machine-specific data structures suitable for use in the thread state
primitives.    The machine-specific data structures follow the struct thread_command or struct
unixthread_command as follows:    Each flavor of machine-specific data structure is preceded by
an unsigned long constant for the flavor of that data structure and an unsigned long that's the count
of longs of the size of the state data structure, and then the state data structure follows that.    This
triple may be repeated for many flavors.

The constants for the flavor, count, and state data structure definitions are expected to be in the
header file machine/thread_status.h; these machine-specific data structure sizes must be multiples
of sizeof(long).    The cmdsize reflects the total size of the thread_command structure and all of the
sizes of the constants for the flavor, count, and state data structures.

struct thread_command {
 unsigned long cmd; /* LC_THREAD or LC_UNIXTHREAD */
 unsigned long cmdsize; /* sizeof(struct thread_command) */
 /* unsigned long flavor flavor of thread state */
 /* unsigned long count count of longs in thread state */
 /* struct XXX_thread_state state flavor's thread state */
 /* . . . */
};

The LC_UNIXTHREAD command specifies an initial thread execution state for a UNIX process.   
For an executable object that's a UNIX process, there's one unixthread_command created by the
link editor.    A stack is created based on the UNIX rlimit for the stack.    This stack will contain the
command arguments and environment variables when the program is executed.    The entry point is
placed in the program counter in the thread state.    The stack address is placed in the stack pointer
by the kernel when this program is executed.    The stack is created as a zero-fill on demand region
when the object is launched.    Then the command line and environment arguments are placed on the
stack and the stack pointer in the thread state is modified.

The LC_LOADFVMLIB and LC_IDFVMLIB
Commands
A fixed virtual shared library has the file type MH_FVMLIB in the Mach header, and contains the
fvmlib_command LC_IDFVMLIB to identify the library.    An object that uses a fixed virtual
shared library contains the fvmlib_command LC_LOADFVMLIB for each library it uses:

struct fvmlib_command {
 unsigned long cmd; /* LC_IDFVMLIB or LC_LOADFVMLIB */
 unsigned long cmdsize; /* includes pathname string */
 struct fvmlib fvmlib; /* the library identification */
};

Fixed virtual memory shared libraries are identified by the target pathname (the name of the library
as found for execution) and the minor version number:

struct fvmlib {
 union lc_str name; /* library's target pathname */
 unsigned long minor_version; /* library's minor version
 number */
};

The LC_LOADFVMFILE Command
 The LC_LOADFVMFILE command contains a reference to a file to be loaded at the specified
virtual address:

 struct fvmfile_command {
 unsigned long cmd; /* LC_FVMFILE */
 unsigned long cmdsize /* includes pathname string */
 union lc_str name; /* files pathname */
 unsigned long header_addr; /* files virtual address */
};

Relocation Information
The value of a byte in a section that isn't a portion of a reference to an undefined external symbol is
exactly the value that will appear in memory when the file is executed.    If a byte in a section
involves a reference to an undefined external symbol, as indicated by the relocation information, the
value stored in the file is an offset from the associated external symbol.    When the file is processed
by the link editor and the external symbol becomes defined, the value of the symbol will be added to
the bytes in the file.

If relocation information is present, it amounts to eight bytes for each relocatable entry.    The
structure of a relocation entry as given in the header file reloc.h is as follows:

struct relocation_info {
 int r_address; /* offset in the section to what is
 being relocated */
 unsigned r_symbolnum:24, /* symbol index if r_extern == 1 or
 section ordinal if r_extern == 0 */
 r_pcrel:1, /* was relocated pc-relative already */
 r_length:2, /* 0=byte, 1=word, 2=long */
 r_extern:1, /* doesn't include value of symbol
 referenced */
 r_reserved:4; /* reserved */
};
#define R_ABS 0 /* absolute relocation type for Mach-O files */

The r_address is an offset rather than an address.    For Mach-O object files this offset is from the
start of the section the relocation entry is for.

If r_extern is 0, r_symbolnum is an ordinal representing the section that contains the symbol being
relocated.    These ordinals refer to the sections in the object file in the order in which their section
structures appear in the headers of the object file they're in.    The first section has the ordinal 1, the
second has the ordinal 2, and so on.    Therefore the same ordinal in two different object files could
refer to two different sections.    Furthermore, the ordinals could change when combined by the link
editor.    The value R_ABS is used for relocation entries of absolute symbols that need no further
relocation.

To make scattered loading by the link editor work correctly, ªlocalº relocation entries can't be used

when the item to be relocated is the value of a symbol plus an offset (where the resulting expression
is outside the block the link editor is moving, blocks are divided at symbol addresses).    If the item
is a symbol value plus offset, the link editor needs to know more than just the section in which the
symbol was defined.    What is needed is the actual value of the symbol without the offset, so the link
editor can do the relocation correctly based on where the value of the symbol got relocated to, not
the value of the expression (with the offset added to the symbol value).    For Release 2.0, no ªlocalº
relocation entries are ever used when there is a nonzero offset added to a symbol.    The ªexternalº
and ªlocalº relocation entries remain unchanged.

It's assumed that a section will never be bigger than 2**24 - 1 (0x00ffffff or 16,777,215) bytes.   
This assumption allows the r_address (which is really an offset) to fit into 24 bits, and for the high
bit of the r_address field in the relocation_info structure to indicate that it's really a
scattered_relocation_info structure.    Since these are only used in places where ªlocalº relocation
entries are used and not where ªexternalº relocation entries are used, the r_extern field has been
removed.

#define R_SCATTERED 0x80000000 /* mask to be applied to r_address
 field of a relocation_info struct
 to tell that it is really a
 scattered_relocation_info struct */
struct scattered_relocation_info {
 unsigned int r_scattered:1, /* 1=scattered, 0=non-scattered */
 r_pcrel:1, /* was relocated pc relative already */
 r_length:2, /* 0=byte, 1=word, 2=long */
 r_reserved:4, /* reserved */
 r_address:24; /* offset in the section to what is
 being relocated */
 long r_value; /* the value the item to be relocated
 refers to (with no offset added) */
};

The Makeup of Executable Object Files
A typical executable (that is, with the filetype MH_EXECUTE) Mach-O object file produced by the
link editor would contain the following components, in the order shown here:

· A Mach header

· An LC_SEGMENT load command for the __PAGEZERO segment

· An LC_SEGMENT load command for the __TEXT segment, followed by section headers for
the sections in that segment.    These section headers could include __text, __fvmlib_init0,
__fvmlib_init1, __const, __string, __literal8, and __literal4.

· An LC_SEGMENT load command for the __DATA segment, followed by the section headers
for the sections in that segment.    These section headers could include __data, __bss, and
__common.

· An LC_SEGMENT load command for the __OBJC segment, followed by the section headers
for the sections in that segment.    These section headers could include __class, __meta_class,
__cat_inst_meth, __els_meth, __inst_meth, __message_refs, __symbols, __category,
__class_vars, __module_info, and __selector_strs.

· An LC_SEGMENT load command for the __LINKEDIT segment

· An LC_SYMTAB load command

· An LC_UNIXTHREAD load command

· An LC_LOADFMVLIB load command for each shared library it uses

· The __TEXT segment rounded out to the segment alignment

· The __DATA segment rounded out to the segment alignment

· The __OBJC segment rounded out to the segment alignment

· All the relocation entries, if saved (normally not saved)

· All the stab symbol and string tables, if not stripped

You can use the otool command to print the contents of object files and libraries that are in Mach-O
format or in UNIX 4.3BSD a.out format.    Various options allow you to specify certain portions of
the Mach-O file.    For example:

-h Print the Mach header
-l Print the load commands
-t Print the contents of the __text section

    (used with the -v flag, this disassembles the text;
      with the -V flag it also symbolically disassembles the operands)

-d Print the contents of the __data section
-r Print the relocation entries

Complete documentation for the otool command is contained in a UNIX manual page, which you
can access through the Digital Librarian.

Additional information related to the Mach-O file format is contained in section 1 (commands),
section 3 (subroutines), and section 5 (file formats and conventions) of the UNIX manual pages.   
You can use the following list and the Digital Librarian to find the documentation you need:

atom(1) Converts an object file from a.out to Mach-O format
gdb(1) Debugs using the GNU debugger
ld(1) Links using the link editor
nm(1) Prints a symbol table
otool(1) Prints parts of an object file or library
size(1) Prints the size of an object file
strip(1) Removes symbols and relocation bits
getmachheaders(3) Gets the Mach headers for an executable
getsectbyname(3) Gets the section information for a section
getsegbyname(3) Gets the segment command for a segment
nlist(3) Gets entries from a name list
Mach-O(5) Describes Mach-O assembler and link editor output
stab(5) Describes symbol table types

