
ChangeManager

INHERITS FROM Responder : Object

DECLARED IN ChangeManager.h

CLASS DESCRIPTION

The ChangeManager class is the part of the undo mechanism that collects
change objects and manipulates the undo and redo menu items. This class
works with the Change class to provide a simple way to implement multi-level
undo. Change managers communicate with change objects through the
responder chain. By deriving window delegates from ChangeManager you
can easily implement document-level undo. By installing a change manager
as an application delegate you can also implement application wide undo.

INSTANCE VARIABLES

Inherited from Object Class isa;

Inherited from Responder id nextResponder;

Declared in ChangeManager List *_changesList;
Change *_lastChange;
Change *_nextChange;

Change *_changeInProgress;
int _numberOfDoneChanges;
int

_numberOfUndoneChanges;
int

_numberOfDoneChangesAtLastClean;
BOOL _someChangesForgotten;
int _changesDisabled;

_changesList A list of changes that have been made.

_lastChange The id of the change that can be undone.

_nextChange The id of the change that can be redone.

_changeInProgress The id of the change which is currently
underway.

_numberOfDoneChanges The number of changes made.

_numberOfUndoneChanges The number of changes that have been
undone.

_numberofDoneChangesAtLastClean A count of changes made when
clean was last called.

_someChangesForgotten YES if some changes have been thrown
away

_changesDisabled The number of nested calls to
disableChanges:.

METHOD TYPES

Initializing and freeing - init
± free

Disabling undo ± disableChanges:
± enableChanges:

Examining state ± canUndo
± canRedo
± isDirty

Setting state ± dirty:
± clean:
± reset:

Validating Menu Commands ± validateCommand:

Undoing and Redoing ± undoOrRedoChange:
± undoChange:
± redoChange:

Tracking change progress ± changeInProgress:
± changeComplete:

Subclass notification ± changeWasDone
± changeWasUndone
± changeWasRedone

INSTANCE METHODS

canRedo
- (BOOL)canRedo

Returns YES if there is a Change that can be redone. The name of this
Change will be visible in the redo or undo/redo menu item. You should not
need to override this method.

See also:    ± validateCommand:

canUndo
- (BOOL)canUndo

Returns YES if there is a Change that can be undone. The name of this
Change will be visible in the undo or undo/redo menu item. You should not
override this method.

See also:    ± validateCommand:

changeComplete:
- changeComplete:change

Called by Change objects to signify that change is done. The receiving
ChangeManager will then ask change to save the new state information via
saveAfterChange. Just before returning, the changeComplete: method
sends a changeWasDone message to self, which provides subclasses of
ChangeManager with an opportunity to react to the change. You should never
call changeComplete: directly, nor should you override it.

See also:    ± changeInProgress:, ± changeWasDone, ± saveAfterChange
(Change)

changeInProgress:
- changeInProgress:change

Called by Change objects to signify that a change is about to be made. If
changes have been disabled using disableChanges: then
changeInProgress: will send a disable message to change and immediately
return. If changes have not been disabled, the receiving ChangeManager
tries to find a home for change. If another Change is already in progress that
Change is sent an incorporateChange: message with change as the
argument. If the Change in progress returns YES then change is sent a
saveBeforeChange message, otherwise it is sent a disable message. If
there is no Change already in progress, but there is a previous completed
Change then the previous Change is sent a subsumeChange: message with
change as the argument. If the previous Change returns YES then change is
sent a disable message. If the previous Change returns NO, or if there is no
previous Change, change is sent a saveBeforeChange message and set to
be the current Change in progress, and the previous Change, if there is one,
is sent a finishChange message. You should never need to call
changeInProgress: directly, nor should you need to override it.

See also:    ± changeComplete:, ± saveBeforeChange (Change), ±
incorporateChange: (Change), ± subsumeChange: (Change), ±
finishChange (Change)

changeWasDone
- changeWasDone

Override this method if your subclass needs to know when a change has
been made. For example, this hook can be used to update the close box on a
document window to reflect the dirty state of the ChangeManager. You should
not call this method directly.

See also:    ± changeWasRedone, ± changeWasUndone, ± isDirty

changeWasRedone
- changeWasRedone

Override this method if your subclass needs to know when a change has
been redone. For example, this hook can be used to update the close box on
a document window to reflect the dirty state of the ChangeManager. You
should not call this method directly.

See also:    ± changeWasDone, ± changeWasUndone, ± isDirty

changeWasUndone
- changeWasUndone

Override this method if your subclass needs to know when a change has
been undone. For example, this hook can be used to update the close box on
a document window to reflect the dirty state of the ChangeManager. You
should not call this method directly.

See also:    ± changeWasDone, ± changeWasRedone, ± isDirty

clean:
- clean:sender

Tells the receiving ChangeManager to consider its current state to be clean.
Calls to isDirty will return NO until further change activity occurs. In
ChangeManagers that correspond to documents, you should call clean: each
time the document is saved. By doing this, the isDirty method can be used to
tell whether the saved representation of the document matches the internal
memory representation. When overriding this method you should begin your
method with ª[super clean:sender]º.

See also:    ± dirty:, ± reset:, ± isDirty

dirty:

- dirty:sender

Forces the receiving ChangeManager to appear dirty. Call this method when
your code as made a change that wasn't recorded with a Change object. After
a dirty message is received the isDirty method will return YES until a clean:
or reset: message is received. When overriding this method you should begin
your method with ª[super dirty:sender]º.

See also:    ± clean:, ± reset:, ± isDirty

disableChanges:
- disableChanges:sender

This method increments the receiver's changesDisabled instance variable. As
long as changesDisabled is non-zero, new change objects will be disabled.
You should not need to override this method.

See also: ± enableChanges, ± disable (Change)

enableChanges:
- enableChanges:sender

Decrements the receiver's changesDisabled instance variable. You should
not need to override this method.

See also:    ± disableChanges

free
- free

Calls reset: to clean out any change objects and frees the ChangeManager
object.

init

- init

Initializes the receiver, a newly allocated ChangeManager object.

isDirty
- (BOOL)isDirty

Returns NO if no net change activity has occurred since the ChangeManager
was initialized or since the last clean: or reset: message was received. For
example, if a single Change has been undone and then redone since the last
clean: message, then isDirty will return NO. The completion of the next new,
non-disabled Change will cause isDirty to return YES. You should not need
to override this method.

See also:    ± disableChanges:, ± clean:, ± dirty:, ± reset:

redoChange:
- redoChange:sender

This method should be the action performed by the redo menu item in an
application with multiple-undo. The redoChange: method sends a
redoChange message to the last Change that was undone. The name of this
Change will then appear in the undo menu item. Your application should not
use both redoChange: and undoOrRedoChange: at the same time. You
should not need to override this method.

See also:    ± undoChange:, ± undoOrRedoChange:

reset:
- reset:sender

Causes the receiving ChangeManager to free all the Change objects that it is
managing. The state of the ChangeManager is re-initialized to the state after
it first received the init message. When overriding this method you should

begin your method with ª[super reset:sender]º.

undoChange:
- undoChange:sender

This method should be the action performed by the undo menu item in an
application with multiple-undo. The undoChange: method sends an
undoChange message to the last Change that was done or redone. The
name of this Change will then appear in the redo menu item. Your application
should not use both undoChange: and undoOrRedoChange: at the same
time. You should not need to override this method.

See also:    ± redoChange:, ± undoOrRedoChange:

undoOrRedoChange:
- undoOrRedoChange:sender

This method should be the action performed by the undo menu item in an
application offering single-level undo. If the last change has already been
done, then it will be undone. If was just undone, then it will be redone. In
order to make your application use single-level undo you must edit
ChangeManager.m and define the N_LEVEL_UNDO constant to be 1. Your
application should not use both undoChange: and undoOrRedoChange: at
the same time. You should not need to override this method.

Although undoOrRedoChange: is really intended for applications with single-
level undo, it will attempt to do something reasonable in applications with
multiple-undo. If there is a Change that can be undone
undoOrRedoChange: sends an undoChange message to the Change. If
there is no Change that can be undone, but there is a Change that can be
redone then undoOrRedoChange: sends a redoChange message to the
Change.

See also:    ± undoChange:, ± redoChange:

validateCommand:
- (BOOL)validateCommand:menuCell

This method can be used to change the state of menu items corresponding to
undo, redo and undo/redo. Use this method as the update action for menu
cells that invoke undoChange:, redoChange:, or undoOrRedoChange:.
The value returned is YES if the command specified in the update action of
menuCell is valid.

Independent of whether the command is valid or not, the change manager
may update the title of menuCell to contain the correct name of the current
changes.

See also:    ± undoChange:, ± redoChange:, ± undoOrRedoChange:, ±
setUpdateAction:forMenu: (MenuCell)

