
Quick RenderMan Interface and Implementation
Specification

Pixar

paste.tiff ¬

This is the 0.1 Beta version of the Quick RenderMan* Interface and
Implementation Specification.    In conjunction with version 3.1 of the Pixar
RenderMan Interface Specification, this document represents the state of the
application interface to Quick RenderMan at the time of the release.    The reader
is cautioned that    the Quick RenderMan software and its application interface
are in transition, and that any information appearing herein may become obsolete
in the future without warning from Pixar or its affiliates.

This document is a technical specification, and, as such, is quite terse and
requires substantial knowledge of computer graphics in general and
photorealistic image synthesis in particular.    The reader is also assumed to be
familiar with the RenderMan Interface.    For an introduction to RenderMan, the
reader is referred to The RenderMan Companion: A Programmer's Guide to
Realistic Computer Graphics (Steve Upstill, 1989).

How to use this document

This document should be used in conjunction with Version 3.1 of the RenderMan
Interface Specification.    RenderMan features defined in the RenderMan 3.1
specification and implemented in Quick RenderMan per that specification are not
discussed here; refer to the 3.1 Interface Specification for descriptions of these
features.    Features defined in the RenderMan 3.1 specification and implemented
differently (or not implemented at all) within Quick RenderMan are discussed
here, along with new features that do not appear in the 3.1 specification.

Quick RenderMan Concepts

Contexts

As an extension to RenderMan Version 3.1, Quick RenderMan introduces the notion of a context,
which is a rendering environment possessing its own renderer, graphics state, and output
medium.    An application program may create multiple contexts and switch among them during
the course of its execution.    At any time, at most one context within an application may be active.
Several extracontextual commands are available to control the creation, selection, and
destruction of contexts.    All other Quick RenderMan commands implicitly affect the currently
active context.

Separation of Front End and Renderer

Quick RenderMan has a modular organization:    multiple renderers are driven by one front end.   
The front end is responsible for receiving RenderMan commands from the application program
and performing basic validation of the commands and their arguments.    As a part of the image
synthesis process, the front end will invoke a renderer to create the image.    Quick RenderMan
presently offers only one image renderer, referred to as the Quick Renderer.    Alternatively, the
application may direct the output from a context into a RIB archive in lieu of producing an image,
so the RIB writer within Quick RenderMan is, in a sense, a renderer.    When discussing the status
of the implementation of Quick RenderMan features, this document may draw a distinction
between the respective contributions of both the front end and the renderer to the operation of
those features.

Quick RenderMan Command Summary

The following lists summarize the present status of each command in the Quick RenderMan
implementation.    The next section discusses in greater detail the differences between Quick
RenderMan and the 3.1 specification.    Unless otherwise indicated, all commands have entry
points in Quick RenderMan and perform some validation of their arguments.

RenderMan 3.1 Commands

Quick RenderMan support of RenderMan Version 3.1 commands is summarized here, breaking it
into separate categories for front-end, renderer, and RIB output.

The following abbreviations are used:
Full Fully implemented at the indicated level
Limited Partially implemented
Incorrect Effects may occur, but are likely to be incorrect
Geo Fully implemented, with the exception of certain standard shaders and all

programmable shaders (a special case of "Limited")
NA No action is taken other than argument validation
± Not applicable

Numbers in parentheses refers to the implementation notes following the list of commands.

A "I" preceding the name of a command indicates the Quick RenderMan implementation of the

command is syntactically and/or semantically not backward-compatible with RenderMan Version
3.1.    An "E" preceding the command name indicates that the syntax of the command are
extended beyond the RenderMan 3.1 specification in a backward-compatible way.

Command Name Front-End Quick Renderer RIB Output

ArchiveRecord Full ± Full
I AreaLightSource Full Limited(2,18) Full

Atmosphere Full Full(18) Full
Attribute Full Full Full

I AttributeBegin Full Full Full
I AttributeEnd Full Full Full

Basis Full Full Full
I Begin Full Full ±

Bound Full NA(3) Full
Clipping Full Full Full

Color Full Full Full
ColorSamples Full Full(15) Full
ConcatTransform Full Full Full
Cone Full Geo Full
CoordinateSystem NA NA(5) Full
CropWindow Full Full Full
Cylinder Full Geo Full

E Declare Full Full Full
Deformation NA NA(9,18) NA
DepthOfField Full NA(7) Full
Detail Full Limited(13,25) Full
DetailRange Full Full(13) Full
Disk Full Geo Full
Displacement NA NA(4,8,18) Full
Display Full Limited(24) Full

I End Full Full ±
ErrorAbort Full ± ±
ErrorDefault Full ± ±
ErrorHandler Full ± ±
ErrorIgnore Full ± ±
ErrorPrint Full ± ±
Exposure Full Full Full
Exterior NA NA(18,23) Full
Format Full Full Full
FrameAspectRatio Full Full Full
FrameBegin Full Full Full
FrameEnd Full Full Full
GeneralPolygon Full Geo Full

E GeometricApproximation Full Limited(12) Full
Geometry Full Full Full

Hider Full Limited(11) Full
Hyperboloid Full Geo Full
Identity Full Full Full

I Illuminate Full Full Full
Imager NA NA(18) Full
Interior NA NA(18,19,23) Full

I LightSource Full Limited(18) Full
MakeBump NA NA(4,8) Incorrect
MakeCubeFaceEnvironment NA NA(10) Incorrect
MakeLatLongEnvironment NA NA(10) Incorrect
MakeShadow NA NA(17) Incorrect
MakeTexture NA NA(22) Incorrect
Matte Full NA(11) Full
MotionBegin Full Limited(14) Full
MotionEnd Full Limited(14) Full
NuPatch Full Geo Full

I ObjectBegin Full Full Incorrect
I ObjectEnd Full Full Incorrect
I ObjectInstance Full Full Full

Opacity Full NA(11) Full
Option Full Full Full
Orientation Full Full Full
Paraboloid Full Geo Full
Patch Full Geo Full
PatchMesh Full Geo Full
Perspective Full Full Full
PixelFilter Full NA(1) Full
PixelSamples Full NA(1) Full
PixelVariance Full NA(1) Full
PointsGeneralPolygons Full Geo Full
PointsPolygons Full Geo Full
Polygon Full Geo Full
Procedural Full NA ±
Projection Full Geo(9,16,18) Full
Quantize Full Limited(6) Full
RelativeDetail Full Full(13) Full
ReverseOrientation Full Full Full
Rotate Full Full Full
Scale Full Full Full
ScreenWindow Full Full Full
ShadingInterpolation Full Full Full
ShadingRate Full NA(20) Full
Shutter Full NA(14) Full
Sides Full Full Full
Skew Full Full Full
SolidBegin Full NA(19) Full

SolidEnd Full NA(19) Full
Sphere Full Geo Full
Surface Full Limited(10,18,22) Full
TextureCoordinates Full NA(4,10,22) Full
Torus Full Geo Full
Transform Full Full Full
TransformBegin Full Full Full
TransformEnd Full Full Full
TransformPoints Full Limited(5) ±
Translate Full Full Full
TrimCurve Full NA(21) Full
WorldBegin Full Full Full
WorldEnd Full Full Full

IMPLEMENTATION NOTES
1 Quick RenderMan performs no antialiasing.
2 Quick RenderMan does not support the optional Area Light Source capability, and

therefore treats this command as equivalent to LightSource, per the 3.1 specification.
3 Quick RenderMan does not take advantage of a bound specification in culling.
4 Quick RenderMan does not support the optional Bump Mapping capability, and thus treats

the required standard "bumpy" shader as a null displacement shader, per the 3.1
specification.

5 Quick RenderMan does not support user-defined coordinate systems.
6 Quick RenderMan does not perform dithering.
7 Quick RenderMan does not support the optional Depth of Field capability, and thus treats

all depth of field settings as equivalent to a pin-hole, per the 3.1 specification.
8 Quick RenderMan does not support the optional Displacement Shading capability.
9 Quick RenderMan does not support the optional Deformations capability, and thus treats

all deformations as equivalent to concatenating an identity transformation, per the 3.1
specification.

10 Quick RenderMan does not support the optional Environment Mapping capability, nor
does it support the required standard "shinymetal" surface shader.

11 Quick RenderMan employs a z-buffer hider for the "hidden" hider, so it does not support
transparency.

12 Quick RenderMan does not honor the "deviation" type correctly.
13 Quick RenderMan does support the optional Level of Detail capability; specifically, any

representation with a detail level greater than one half is rendered.
14 Quick RenderMan does not support the optional Motion Blur capability, and therefore

heeds only the first command within a motion block.
15 Quick RenderMan does not support the optional Spectral Colors capability, and thus

converts all colors to RGB space on input.
16 Quick RenderMan does not support the optional Special Camera Projections capability,

and thus treats all special projections as equivalent to orthographic.
17 Quick RenderMan does not support the optional Shadow Depth Mapping capability.
18 Quick RenderMan does not implement the RenderMan shading language or

programmable shaders.
19 Quick RenderMan does not support the optional Solid Modeling capability, and thus treats

all solid set operations as being equivalent to "union", per the 3.1 specification.
20 Quick RenderMan ignores the shading rate.    It shades once per polygon for "constant"

shading interpolation, once per vertex for "smooth", and never for "none".
21 Quick RenderMan does not support the optional Trim Curves capability, and thus ignores

all trim curves, per the 3.1 specification.
22 Quick RenderMan does not support the optional Texture Mapping capability, nor does it

support the required standard "paintedplastic" surface shader.
23 Quick RenderMan does not support the optional Volume Shading capability, and thus

ignores interior and exterior volume shaders.
24 RiDisplay ignores the mode parameter and always outputs an "rgba" image with

alpha = 1.0.
25 The raster space bounding box is not clipped by the near clipping plane.

New Commands Introduced In Quick RenderMan

Command Name Front-End Quick Renderer RIB Output

Circle Full NA Full
Context Full ± ±
CreateHandle Full Full Full
Curve Full NA Full
GeometricRepresentation Full Full Full
Line Full NA Full
MacroBegin Full Full Full
MacroEnd Full Full Full
MacroInstance Full Full Full
NuCurve Full NA Full
PointsLines Full NA Full
ReadArchive Full Full Full
Resource Full Full Full
Synchronize Full Full Full

Quick RenderMan Command Descriptions

This section describes in detail the differences between commands appearing in Version 3.1 of
the RenderMan Interface and the Quick RenderMan command set.    Special attention should be
paid to the IMPLEMENTATION STATUS, as Quick RenderMan does not completely implement
some commands yet.

RtToken
RiAreaLightSource(handle, shader, parameterlist)

RtToken handle;
RtToken shader;

Make shader the current area light shader.    RiAreaLightSource defines an area light
source of the given shader name and type, and adds it to the current light source list, thus
turning it on.    shader is the name of a predefined area light shader, or a user-defined area
light shader previously declared with RiResource.    Each subsequent geometric primitive
until the next area light definition or the end of the attribute block is added to the list of
surfaces that define the area light source.    If shader is "null" (the default), the geometric
primitives do not emit light.

Light sources defined with RiAreaLightSource are attributes, and are stackable with
RiAttributeBegin/RiAttributeEnd.

The area light source is implicitly instantiated (and thus potentially self-illuminating) when it is
defined, and implicitly disinstantiated at the end of the attribute block in which it is defined;    in
addition, it can be explicitly disinstantiated or reinstantiated with RiIlluminate.

RIB BINDING
AreaLightSource handle shader parameterlist

For backward compatibility, RenderMan 3.1 RIB syntax is also accepted:

AreaLightSource shader sequencenumber parameterlist

EXAMPLE
RtToken myarealight, amb;
RtFloat intensity = 0.5;
amb = RiResource("ambientlight", RI_LIGHTSOURCE, RI_NULL);
myarealight = RiAreaLightSource("myalight", amb,
 "intensity", &intensity, RI_NULL);

AreaLightSource "pin" "ambientlight" "intensity" [0.5]

SEE ALSO
RiLightSource, RiResource, RiIlluminate, RiCreateHandle

IMPLEMENTATION STATUS
Quick RenderMan does not support the Area Light Source capability, so
RiAreaLightSource has the same effect as RiLightSource.

RiAttributeBegin()
RiAttributeEnd()

Push and pop the current set of attributes and the current transformation.    When invoked
outside a world block, RiAttributeBegin pushes (and RiAttributeEnd pops) the
current options in addition to attributes and transforms.    Although the pushing and popping of
options is technically not backward-compatible with RenderMan 3.1, it is likely that this will not
be a problem while porting applications developed under RenderMan 3.1 to Quick

RenderMan.

RIB BINDING
AttributeBegin
AttributeEnd

EXAMPLE
RiAttributeBegin();

SEE ALSO
RiFrameBegin, RiTransformBegin, RiWorldBegin

RtToken
RiBegin(handle, parameterlist)

char *handle;

RiEnd()

The bracketed set of commands RiBegin-End initialize and terminate a rendering session,
or context. handle gives the new context a specific name which may be used to refer to this
context in later RiContext calls.    It is illegal for any single client to create two contexts with
the same name. If handle is RI_NULL, Quick RenderMan will create a unique context handle.

When RiBegin is called, the currently active context (if any) is suspended, a new context is
created, and all graphics state variables in the new context are set to their default values.   
The new context then becomes the active context. When RiEnd is called, the currently active
context is terminated, all resources devoted to the context are released, and any cleanup
operations that need to be done are performed.    Following an RiEnd call, no context is
active.    The application may call RiContext at any time to activate a suspended context, or
call RiBegin to create a new context.

All other RenderMan Interface procedures must be called within an RiBegin-RiEnd block
and are specific to the currently active context; the only exceptions to this rule are
RiErrorHandler and RiContext, which perform extracontextual services.

RiBegin accepts parameters that select the identity of the renderer to be run and the basic
initialization of that renderer.

"renderer" selects among various renderer implementations that may be available.
Quick RenderMan presently accepts only two values, "draft" and
"archive".    The latter produces no image.    If the "renderer"
parameter is not specified, Quick RenderMan uses the "draft"
renderer by default.

"filepath" is an RtToken value specifying the name of an output archive file into
which a RIB archive should be written. This parameter is meaningful only
when the "archive" renderer is selected.    If the "archive" renderer

is selected and "filepath" is not specified, the RIB output is written to
the default file name ri.rib in the current directory.

"format" is an RtToken specifying the type of output archive; it is used in
conjunction with "filepath".    The valid values are "asciifile",
which specifies ASCII RIB output, and "binaryfile", which specifes
binary RIB output.    If "format" is not specified, ASCII RIB is output by
default.

RiBegin returns a tokenized version of the context handle, which can be used to switch
among existing contexts, or RI_NULL if the context cannot be created for any reason.
RiBegin can be called at any time to create a new context, since it is completely
independent of the graphics state of any currently active context.

EXAMPLE
RtToken c1, c2;
char *filename = "myfile.rib", *archive = "archive";

c1 = RiBegin("c1", "renderer", &archive,
 "filepath", &filename, RI_NULL);
/* context "c1" is now active */
c2 = RiBegin("c2", RI_NULL);
/* context "c2" is now active */
RiEnd(); /* terminates context "c2" */
/* no context is active */
RiContext(c1, RI_NULL);
/* context "c1" is now active */
RiEnd(); /* terminates context "c1" */
/* no context is active */

SEE ALSO
RiContext

RiCircle(radius, thetamax, parameterlist)
RtFloat radius, thetamax;

Requests a circular arc defined by the following equations:

theta = u * thetamax
x = radius * cos(theta)
y = radius * sin(theta)
z = 0.0

parameterlist is a list of token-value pairs where each token is one of the standard geometric
primitive variables applicable to lines, or a variable that has been defined with RiDeclare.   
Position variables should not be given.    If a geometric primitive variable is varying, it contains
two values, one for each arc endpoint.    If a variable is uniform, it contains a single element.   
The angle theta is measured in degrees.

RIB BINDING
Circle radius thetamax parameterlist

EXAMPLE
RiCircle(2.0, 180.0, RI_NULL);

Circle 1 290 "Cs" [1 0 0 0 0 1]

SEE ALSO
RiDisk

RtToken
RiContext(context, reserved)

RtToken context, reserved;

Suspend the currently active context (if any) and make context become the active context.   
context is a context handle returned by a previous call to RiBegin.    reserved must be
RI_NULL; this argument is reserved for expansion of capabilities in a future version of the
interface.    Returns the handle of the suspended context.    RiContext can be called at any
time to switch contexts, since it is completely independent of the graphics state of any
currently active context. If there is no active context, only the extracontextual RenderMan
Interface procedure calls may be made.

EXAMPLE
RtToken tmp;
tmp = RiContext(c1, RI_NULL);
(void) RiContext(tmp, RI_NULL);

SEE ALSO
RiBegin

RtToken
RiCreateHandle(handle, type)

char *handle;
RtToken type;

Predeclare a handle of a resource or data structure. Informs the RenderMan Interface that the
user intends to define a data structure or an external resource identified by handle, and
wishes its scope to be the current attribute block, rather than the interior attribute block within
which it will be later defined.

Six Quick RenderMan Interface routines create handles: RiAreaLightSource,
RiCoordinateSystem, RiLightSource, RiMacroBegin, RiObjectBegin, and
RiResource.    RiAreaLightSource and RiLightSource create identical types of
handles, and RiResource makes four different types of handles. type identifies the type of
handle which is being created by RiCreateHandle, and may be any one of the following:

"archive" RIB archive resource
"coordinatesystem" application-defined coordinate system
"image" hardware frame buffer or image data file resource
"lightsource" light source or area light source
"macro" RenderMan command macro
"object" composite object
"shader" programmable shader resource (.slo file)
"texture" texture map resource

RiCreateHandle returns handle, or a tokenized version of handle if handle has not already
been declared, or RI_NULL on errors.    It is an error to use a data structure handle before it
has been defined with type.

RiCreateHandle replaces the scoping mechanisms available in version 3.1 of the
RenderMan Interface with a more powerful (but not backward-compatible) scoping
mechanism.

RIB BINDING
CreateHandle handle type

EXAMPLE
RtToken mylight = RiCreateHandle("mylight", RI_LIGHTSOURCE);
RiAttributeBegin();
RiLightSource(mylight, "ambientlight", RI_NULL);
...
RiAttributeEnd();
RiIlluminate(mylight, RI_TRUE);

CreateHandle "mylight" "lightsource"

SEE ALSO
RiAreaLightSource, RiLightSource, RiMacroBegin, RiObjectBegin,
RiResource, RiCoordinateSystem

RiCurve(type, nvertices, wrap, parameterlist)
RtToken type;
RtInt nvertices;
RtToken wrap;

type can be either "linear" or "cubic".    nvertices is the number of control points in a
piecewise-type curve.    parameterlist is a list of token-array pairs where each token is one of
the standard geometric primitive variables applicable to lines, or a variable which has been
defined with RiDeclare.    The parameter list must include at least position ("P", "Pw", or
"Pz") information.    "cubic" curves use the ustep step and ubasis basis matrix from
RiBasis.

If a curve wraps (wrap is "periodic"), it closes upon itself at the ends and the first control
points will be automatically repeated.    As many as three control points may be repeated,
depending on the u-basis step of the curve.    Linear curves have a step of 1.

The actual number of curve segments produced by this request depends on the type of the
curve and the wrap mode specified.    For linear curves, the number of segments (nsegments)
is:

nvertices if wrap = "periodic"
nvertices-1 if wrap = "nonperiodic"

while for cubic curves, nsegments is given by:

nvertices/ustep if wrap = "periodic"
((nvertices-4)/ustep)+1 if wrap = "nonperiodic"

If a variable other than position is varying, it contains nsegments+1 values if wrap is
"nonperiodic" or nsegments if wrap is "periodic", one for each segment endpoint.    If a
variable is uniform, it contains nsegments elements.

Height fields can be specified with the "Pz" parameter by giving just a z coordinate of each
vertex.    The x coordinates are set equal to the parametric surface parameter u, running from
0 at the first vertex to 1 at the last.    The y coordinates are set to 0.    Height fields cannot be
wrapped.

RIB BINDING
Curve type wrap parameterlist

The number of vertices in the curve is determined implicitly by the number of elements in the
required position array.

EXAMPLE
RtPoint verts[] = { 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.25, 0.25, 4.0 };
RiCurve(RI_LINEAR, 3, RI_NONPERIODIC,
 "P", (RtPointer)verts, RI_NULL);

Curve "linear" "nonperiodic"
 "P" [0.0 0.0 0.0 0.0 1.0 0.0 0.25 0.25 4.0]

SEE ALSO
RiLine, RiNuCurve, RiPatchMesh

RtToken
RiDeclare(name, declaration)

char *name;
char *declaration;

Declare the name and type of a parameterlist variable. The declaration indicates the size and

semantics of values associated with the variable. This information is used by the renderer in
processing the variable argument list semantics of the RenderMan Interface. Returns
RI_NULL on errors.

The syntax of name is:

[[namespace:]table:]var

If name begins with an optional table name, the declaration of var is installed into the
specified table; otherwise it is installed in the global table. There are twelve table
namespaces, corresponding to the six types of programmable shaders and the six types of
implementation-definable interface extensions: light, surface, volume, imager,
displacement, transformation, attribute, option,
geometricapproximation, geometry, hider, and resource.    The use of the
namespace is optional only if it is not required to identify the table uniquely.

The syntax of declaration is:

[class] type ['['n']']

where class is either uniform (the default) or varying (required only for primitive variables)
and type is either float, point, color, integer, or string (corresponding to
parameterlist values of arrays of type RtFloat, RtPoint, RtColor, RtInt and
RtString, respectively). The optional bracket notation indicates an array of n items of type,
where n is a positive integer. If no array is specified, one item is assumed.

A new declaration replaces any existing declaration of name in the specified table. A
declaration is automatically removed at the end of the current attribute block, unless name
has been predeclared as described in RiCreateHandle. The declaration table associated
with a shader and all of its declarations are removed when the shader itself is deallocated.

Quick RenderMan RiDeclare is backward-compatible with RenderMan Version 3.1.

RIB BINDING
Declare name declaration

Additionally, type may be vertex, which indicates position data, such as bicubic patch
control points. This is provided for renderer-internal data types, and user-specified data visible
in the shading language cannot have this type.

EXAMPLE
RiDeclare("temperature", "varying float");
RiDeclare("surface:weird:p", "uniform point");

Declare "option:shadow:bias" "float[2]"

SEE ALSO
RiCreateHandle, RiResource

IMPLEMENTATION STATUS
Programmable shaders are not implemented in Quick RenderMan.

RiDisplay

Quick RenderMan extends RiDisplay as follows:    The name argument may be either a
literal name (per Version 3.1 of the RenderMan Interface specification) or a resource handle
of type "image", obtained from RiResource.    Under Quick RenderMan, platform-specific
window-ID information can be specified to RiResource and the resultant resource passed to
RiDisplay.

If name is not a resource, Quick RenderMan performs an implicit RiResource command to
create a resource by that name.    The created resource will go out of scope at the end of the
current attribute block.

EXAMPLE
RtToken res;
RtInt origin[2], windownum;

{ set up origin and windownum }
res = RiResource("mywindow", RI_IMAGE,
 RI_WINDOWID, &windownum, RI_NULL);
RiDisplay(res, RI_FRAMEBUFFER, RI_RGBAZ,
 RI_ORIGIN, (RtPointer)origin, RI_NULL);

SEE ALSO
RiResource

IMPLEMENTATION STATUS
RiDisplay ignores the mode parameter and always outputs an "rgba" image with alpha =
1.0.

RiErrorHandler(handler)
RtFunc handler;

Associate with the current context an error handling procedure to be invoked by the renderer
when an error is detected. Error handling procedures have the following form:

RtVoid handler(type, severity, message, routine, context)
RtInt type, severity;
char *message;
RtToken routine, context;

type indicates the type of error, and severity indicates how serious the error is. Values for type
and severity are defined in <ri.h>. The message is a character string containing an error
message formatted by the renderer whch can be printed or displayed, as the handler desires.

context identifies the individual context within which the error occurred.    routine identifies the
RenderMan function in which the error occurred.

The following standard error handlers are supplied:

RiErrorAbort An error of severity RIE_WARNING or greater will cause a
diagnostic message to be generated and the rendering system will
immediately abort the rendering of the current image.    On less
serious errors, the rendering system will generate the diagnostic
message but attempt to continue rendering.    When an image is
aborted due to an error, the current world block is immediately
terminated and no further pixels are generated. The graphics state
stack is left as though RiWorldEnd had been executed.    If the
error occurs outside of a world block, there is no change to the
graphics state stack.    Note the similarity between this behavior
and that of the "abort" function of RiSynchronize.

RiErrorDefault Identical to RiErrorAbort, except that any error of severity
RIE_SEVERE or greater causes the rendering system to abort
rendering of the current image.

RiErrorIgnore All errors are silently ignored, and the rendering system attempts to
continue rendering.

RiErrorPrint A diagnostic message is generated and written to stderr for each
warning and error. The rendering system ignores the erroneous
information and attempts to continue rendering.

RIB BINDING
ErrorHandler "abort"
ErrorHandler "default"
ErrorHandler "ignore"
ErrorHandler "print"

SEE ALSO
RiSynchronize

Geometric Approximation

Geometric primitives are typically approximated by using small surface elements or polygons.
The size of these surface elements affects the accuracy of the geometry, since large surface
elements may introduce straight edges at the silhouettes of curved surfaces or cause
particular points on a surface to be projected to the wrong point in the final image. However,
the size of these surface elements also affects the speed of rendering, since it controls the
number of surface elements into which an object is subdivided. Renderer implementations
may be able to increase rendering performance by using coarse approximations, or by
representing objects with collections of lower-dimensional geometric primitives, such as lines

or points.

RiGeometricApproximation(type, parameterlist)
RtToken type;

Specify a geometric approximation criterion to be applied to future primitives. The only
predefined geometric approximation types are "deviation" and "tesselation".
"deviation" accepts the RtFloat parameter "raster", specifying the maximum
permissible distance from the approximated surface to the true surface in raster-space pixels.
"tesselation" accepts the parameter "parametric", an array of two RtFloats
specifying the minimum number of approximating surface elements per unit in each of the two
parametric dimensions.

RIB BINDING
GeometricApproximation type parameterlist

For backward compatibility, RenderMan 3.1 RIB syntax is also accepted:

GeometricApproximation "flatness" value

EXAMPLE
RtFloat v = 2.5;
RiGeometricApproximation(RI_DEVIATION, RI_RASTER, &v, RI_NULL);

GeometricApproximation "deviation" "raster" [2.5]
GeometricApproximation "tesselation" "parametric" [8 8]

GRAPHIC EXAMPLE
The effects of different parametric tesselation densities on the RiSphere command rendered
in wire-frame:

                            844725_paste.tiff ¬

Tesselation [4 4] [8 8] [16 16]

SEE ALSO
RiShadingRate, RiGeometricRepresentation

IMPLEMENTATION STATUS
The "tesselation" type is fully implemented.    When called with the "deviation" type,
RiGeometricApproximation ignores its parameter list and uses the default tesselation
instead.

RiGeometricRepresentation(type)
RtToken type;

Select the current geometric representation for geometric primitives. This function specifies
the type of rendering primitives that will be used to represent the subsequent geometric

primitives.    type is one of the following:

"points" representation of an object as a set of colored, drawn dots
"lines" representation of an object as a set of colored, drawn line segments
"primitive" representation of an object as the unapproximated true shaded primitive

Certain renderers have algorithmic limitations on which representations can be rendered, or
on which representations can be renderered quickly. Such a renderer will always represent
geometric primitives with surface elements that it can render as quickly as possible, and no
less complex than type, if possible (e.g., a vector-drawing renderer will always draw spheres
as lines, but possibly as high quality circular curves if "primitive" is selected, whereas a
ray tracer may decide it is always faster to render a sphere exactly, even if the "lines"
representation is selected). In no case will the renderer be expected to represent geometric
primitives as objects more complex than the primitives themselves. The default value for type
is "primitive".

RiGeometricRepresentation does not affect rendering and display options.

RIB BINDING
GeometricRepresentation type

EXAMPLE
RiGeometricRepresentation("lines");

SEE ALSO
RiShadingRate, RiGeometricApproximation

RiGeometry

IMPLEMENTATION STATUS
Quick RenderMan supports the "teapot" primitive under the RiGeometry command.

192935_paste.tiff ¬

RiHider

Quick RenderMan recognizes the following values for type:

"hidden" Performs complete, accurate hidden surface elimination.    Every surface
obscures every other farther-away surface.

"sketch" Identical to "hidden", with the following exception:    Before processing
a tile, its vertices are tested against the other surfaces already in the
image.    If all vertices are obscured by nearer surfaces, the tile is

discarded and none of it appears in the image; otherwise, the "hidden"
algorithm is performed for every pixel of the tile.    "sketch" can
execute faster than "hidden" but can in some instances fail to display
tiles that should appear.

"paint" Geometric primitives are written to the image in the order in which they
are defined, with no attempt to suppress the appearance of hidden
surfaces.    New surfaces obscure overlapping old surfaces.

"null" Performs no pixel computations and produces no output.    Very efficient.
"pick" Calls an application-provided subroutine with information identifying

geometric primitives being rendered and their respective minimum z
values.    This hider produces no graphic output.

RiIlluminate(lightsource, on)
RtToken lightsource;
RtBoolean on;

If on is RI_TRUE and the light source referred to by lightsource is not in the current light
source list, add it to the list.    If on is RI_FALSE and the light source referred to by lightsource
is in the current light source list, remove it from the list.    lightsource is the name of a light
source previously defined with RiLightSource or RiAreaLightSource.    Note that
popping the attributes restores the on values of all lights to their previous values.

RIB BINDING
Illuminate lightsource on

For backward RIB compatibility, lightsource may be an integer instead of a token.

EXAMPLE
RtToken myamb;
RtFloat intensity = 0.2;
myamb = RiLightSource("myamb", "ambientlight",
 "intensity", &intensity, RI_NULL);
RiIlluminate(myamb, RI_FALSE);

LightSource "myamb" "ambientlight" "intensity" [0.2]
Illuminate "myamb" 0

SEE ALSO
RiLightSource, RiAreaLightSource

RtToken
RiLightSource(handle, shader, parameterlist)

RtToken handle;
RtToken shader;

RiLightSource defines a non-area light source of the given name and type, and adds it to
the current light source list, thus turning it on.    shader is the name of a predefined light
shader, or a user-defined light shader previously declared with RiResource.

Light sources defined with RiLightSource are attributes, and are stackable with
RiAttributeBegin/RiAttributeEnd.

The light source is implicitly instantiated (turned on) when it is defined, and implicitly
disinstantiated (turned off) at the end of the attribute block in which it is defined;    in addition, it
can be explicitly disinstantiated or reinstantiated with RiIlluminate.

RIB BINDING
LightSource handle shader parameterlist

For backward compatibility, RenderMan 3.1 RIB syntax is also accepted:

LightSource shader sequencenumber parameterlist

EXAMPLE
RtFloat angle = 40.0;
RtToken mylight;
mylight = RiLightSource("mylight", "spotlight", "coneangle",
 (RtPointer)&angle, RI_NULL);

LightSource "redAmbientLight" "ambientlight" "lightcolor"
 [.5 0 0] "intensity" [.6]

SEE ALSO
RiIlluminate, RiResource, RiCreateHandle, RiAreaLightSource

IMPLEMENTATION STATUS
Only the standard light shaders are supported.    Quick RenderMan presently supports no
programmable light shaders.

RiLine(nvertices, parameterlist)
RtInt nvertices;

nvertices is the number of vertices in a connected piecewise-linear curve.    If nvertices is one,
a single point is drawn.    parameterlist is a list of token-array pairs where each token is one of
the standard geometric primitive variables applicable to lines, or a variable which has been
defined with RiDeclare.    The parameter list must include at least position ("P" or "Pw")
information.    If a primitive variable is varying, the array contains nvertices elements of the
type corresponding to the token.    If the variable is uniform, the array contains a single
element.    The number of floats associated with each type is given in the table, Standard
Geometric Primitive Variables.

RIB BINDING
Line parameterlist

The number of vertices in the line is determined implicitly by the number of elements in the
required position array.

EXAMPLE
RtPoint points[3] = {
 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.25, 0.25, 4.0
};
RiLine(3, RI_P, (RtPointer)points, RI_NULL);

Line "P" [0 0 0 0 1 0 0.25 0.25 4] "Cs" [1 1 1 1 0 0 0 0 1]

SEE ALSO
RiCurve, RiPolygon

Macros

Quick RenderMan provides a mechanism for defining and instantiating hierarchical named
macros, whose use is encouraged both to clarify the structure of complex scenes for the
benefit of other RIB-processing programs and people, to speed up the RenderMan Interface
and compact the RIB representation of repetitive scenes, and to provide caching hints to the
renderer.    Any sequence of RenderMan Interface function calls, with few exceptions, may be
retained as a named macro by enclosing it within an RiMacroBegin/RiMacroEnd block.    A
macro so defined can then be instantiated with RiMacroInstance or redefined with a
subsequent RiMacroBegin/End block.    Hierarchical macros can be defined by instantiating
submacros within macro definitions.    Except for data-type information, the current graphics
state has no effect on a macro definition, nor does the macro definition have any effect on the
current graphics state or cause any rendering to occur; in contrast, macro instances outside of
all macro definition blocks do inherit and alter the current graphics state, and do (if they
contain geometry) cause rendering to occur.    Specifically, the dimensionality of any colors
and the sizes of any patch-mesh parameter arrays specified in the macro definition are
determined by the current color dimensionality and spline basis step sizes, and the class,
type, dimension, and size of any user-defined parameters are determined by the current
declarations of those parameters.

In some implementations, macros may be interpreted by the server rather than by the client
library.    Thus, metacontextual function calls (RiBegin, RiEnd, RiContext,
RiSynchronize, and RiErrorHandler) may not appear within a macro definition.   
Furthermore, when a macro is instantiated, its contents are executed without actually being
called by the application, so if the macro included a call to a function returning a value, the
return value would have no recipient.    Thus, function calls that return irrecoverable values
(for example, RiTransformPoints) may not appear in macro definitions.    With these two
exceptions, any RenderMan Interface commands can be enclosed in a macro definition.    In
particular, the definition need not contain any geometry, and side effects, though discouraged,
are allowed.    However, since macros provide natural caching handles, restricting the
contents of macro definitions can greatly facilitate caching of more than just the sequence of
RenderMan Interface commands for some renderers.

Note that, when changing color spaces with RiColorSamples, the current color
dimensionality during the macro definition must agree with the current color dimensionality
during its instantiations if the macro contains any color specifications; similarly, when
changing spline bases (with RiBasis), the current spline step sizes during the macro
definition must agree with the current spline step sizes during its instantiations if the macro
contains any patch meshes or curve chains.    And in general, when using user-defined
parameters, the class, type, and dimension of such parameters used during a macro definition
must agree with the declarations current during macro instantiation.

MacroBegin "cube"
TransformBegin
Scale .8 .8 .8
Polygon "P" [-0.5 -0.5 0.5 -0.5 -0.5 -0.5 0.5 -0.5 -0.5 0.5 -0.5 0.5]
Polygon "P" [-0.5 -0.5 0.5 -0.5 0.5 0.5 -0.5 0.5 -0.5 -0.5 -0.5 -0.5]
Polygon "P" [0.5 0.5 -0.5 -0.5 0.5 -0.5 -0.5 0.5 0.5 0.5 0.5 0.5]
Polygon "P" [0.5 0.5 -0.5 0.5 0.5 0.5 0.5 -0.5 0.5 0.5 -0.5 -0.5]
Polygon "P" [0.5 -0.5 0.5 0.5 0.5 0.5 -0.5 0.5 0.5 -0.5 -0.5 0.5]
Polygon "P" [-0.5 0.5 -0.5 0.5 0.5 -0.5 0.5 -0.5 -0.5 -0.5 -0.5 -0.5]
TransformEnd

MacroEnd
MacroBegin "row"
TransformBegin
Translate 0 0 -1
MacroInstance "cube"

TransformEnd
MacroInstance "cube"
TransformBegin
Translate 0 0 1
MacroInstance "cube"

TransformEnd
MacroEnd
MacroBegin "face"
TransformBegin
Color [1 0 0]
Translate 0 -1 0
MacroInstance "row"

TransformEnd
Color [1 1 0]
MacroInstance "row"
TransformBegin
Translate 0 1 0
Color [1 0 1]
MacroInstance "row"

TransformEnd
MacroEnd
MacroBegin "lotsofcubes"
TransformBegin
Translate -1 0 0
MacroInstance "face"

TransformEnd
MacroInstance "face"
TransformBegin
Translate 1 0 0
Rotate 20 1 0 0
MacroInstance "face"

TransformEnd
MacroEnd

WorldBegin
MacroInstance "lotsofcubes"
WorldEnd

Macro Example: A 3x3 cube constructed out of nested macro instantiations

224974_paste.tiff ¬

RtToken
RiMacroBegin(handle, parameterlist)

char *handle;

RiMacroEnd()

RiMacroBegin starts the definition of a macro, storing the following sequence of RenderMan
Interface calls up to the next RiMacroEnd call under the specified name.    macro is the name
given to the macro itself.    A macro implicitly persists until the end of the outermost attribute
block in which it is defined with RiMacroBegin or declared with RiCreateHandle(macro,
"macro").    The macro can be redefined with a subsequent RiMacroBegin call as a
stackable attribute; if it is predeclared with RiCreateHandle, the outermost definition
persists until that declaration goes out of scope.    A macro is not instantiated when it is
defined, but can be subsequently instantiated with RiMacroInstance.    Presently, no
parameters are valid for RiMacroBegin, so parameterlist must be empty.

RiMacroEnd ends the definition of the current macro.

RIB BINDING
MacroBegin macro parameterList

MacroEnd

EXAMPLE
MacroBegin "unitSphere"
Sphere 1 -1 1 360
MacroEnd

SEE ALSO
RiMacroInstance, RiCreateHandle

IMPLEMENTATION STATUS
When writing a RIB file, commands appearing between a MacroBegin command and the
following MacroEnd command are not output to the file.    This is a known problem.

Any pairing RenderMan primitives (e.g., RiAttributeBegin and RiAttributeEnd)

appearing within a macro must be balanced.    For example, this is legal:

myhandle = RiMacroBegin("mymacro", RI_NULL);
RiAttributeBegin();
...
RiAttributeEnd();
RiMacroEnd();

while this is not:

myhandle = RiMacroBegin("mymacro", RI_NULL);
RiAttributeEnd(); /* not balanced with RiAttributeBegin */
RiMacroEnd();

RiMacroInstance(macro, parameterlist)
RtToken macro;

Create an instance of the specified, previously defined macro.    The macro inherits the current
graphics state at the time of instantiation.    macro is the RtToken returned by
RiMacroBegin.    Presently, no parameters are valid for RiMacroInstance, so
parameterlist must be empty.

RIB BINDING
MacroInstance macro parameterlist

EXAMPLE
MacroInstance "unitSphere"

SEE ALSO
RiMacroBegin, RiMacroEnd

Motion
Quick RenderMan does not support the Motion Blur capability as defined in the RenderMan
3.1 specification.    Thus, only the first element in the list of RiMotionBegin is evaluated, as
prescribed by the specification.

RiNuCurve(nvertices, order, knot, min, max, parameterlist)
RtInt nvertices, order;
RtFloat knot[], min, max;

Create a rational or polynomial non-uniform B-spline curve.    parameterlist is a list of token-
array pairs where each token is one of the standard geometric primitive variables applicable
to lines, or a variable that has been defined with RiDeclare.    The parameter list must

include at least position ("P" or "Pw") information.    The curve specified is rational if the
positions of the control points are 4-vectors (x,y,z,w), and polynomial if the positions are 3-
vectors (x,y,z).

nvertices is the number of control points in the curve.    The order must be positive and is
equal to the degree of the polynomial basis plus 1.    The number of control points should be
at least as large as the order of the polynomial basis.    If not, a spline of order equal to the
number of control points is computed.    The knot vector associated with each control point
must also be specified.    Each value in this array must be greater than or equal to the
previous value.    The number of knots is equal to the number of control points plus the order
of the spline.    The curve is defined in the range min to max.    This is different from other
curve primitives where the parameter value is always assumed to lie between 0 and 1.    min
must be less than max, and must also be greater than or equal to knot[order-1].    max
must be less than or equal to knot[nvertices].

RIB BINDING
NuCurve order knot min max parameterlist

The number of vertices in the non-uniform curve is determined implicitly by the order and the
number of elements in the knot array, and this number must match the number of elements in
the required position array.

EXAMPLE
RtFloat knots[] = { 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4 };
RtPoint verts[] = {
 1, .5, 0, 1, 1, 1, 0, 1, 1, 2, 0, 2, 0, 1, 0, 1, 0, .5, 0, 1,
 0, 0, 0, 1, 1, 0, 0, 2, 1, 0, 0, 1, 1, .5, 0, 1
};
RiNuCurve(9, 3, knots, 0, 4, RI_PW, (RtPointer)verts, RI_NULL);

NuCurve 3 [0 0 0 1 1 2 2 3 3 4 4 4] 0 4
 "Pw" [1 .5 0 1 1 1 0 1 1 2 0 2 0 1 0 1 0 .5 0 1
 0 0 0 1 1 0 0 2 1 0 0 1 1 .5 0 1]

SEE ALSO
RiCurve, RiNuPatch, RiTrimCurve

Retained Geometry
A single geometric primitive or a hierarchy of geometric primitives may be retained by
enclosing them in an RiObjectBegin-ObjectEnd object block. The RenderMan Interface
identifies each object using the user-supplied RtToken as a handle to this retained data
structure. This handle can subsequently be used to reference the object when creating
instances with RiObjectInstance.

An object may contain an arbitrary sequence of geometric primitives, geometric attributes and
transformations, including attribute and transformation stack manipulations. The single
restriction is that the attribute and transformation stacks must properly balanced and closed,

that is, end at the same stacking level as they started. Functions that are invalid inside the
RiWorldBegin-WorldEnd world block, such as options and texture making subroutines,
are invalid inside the object block. Object block creation may be nested. A more general
method of retaining and reusing RenderMan Interface procedure calls is provided by
RiMacroBegin.

An instanced object will inherit the graphics state that exists at the time it is instanced, not at
the time at which is created. Any attributes set in the object will modify the graphics state for
subsequent primitives inside, but not after the object instanced, (that is, objects do not have
side effects). RiObjectBegin can be called outside of the world block, and this is the only
time that geometric primitives can be called outside of a world block.

RtToken
RiObjectBegin(handle)

RtToken handle;

RiObjectEnd()

RiObjectBegin starts the definition of an object.    Returns handle, or a tokenized version of
handle if handle has not already been declared, or RI_NULL if the object could not be created
for any reason.

Objects are not rendered when they are defined within the RiObjectBegin-RiObjectEnd
block; only an internal definition is created.    After definition, an object may then be instanced
any number of times until it is deleted.    Objects are automatically deleted at the end of the
current attribute block, unless handle has been predeclaredwith RiCreateHandle.

Note that    RiObjectBegin in Quick RenderMan returns an RtToken, whereas in
RenderMan Version 3.1 the return type is RtObjectHandle.

RIB BINDING
ObjectBegin handle
ObjectEnd

EXAMPLE
RtToken sph;
sph = ObjectBegin("myobject");
RiSphere(1.0, -1.0, 1.0, 360.0, RI_NULL);
ObjectEnd();

ObjectBegin "myobject"
Color 1 1 0
Sphere 1 -1 1 360
ObjectEnd

SEE ALSO
RiObjectInstance, RiCreateHandle, RiMacroBegin

IMPLEMENTATION STATUS
Quick RenderMan presently implements the RiObject commands by calling the
corresponding RiMacro commands internally.    This implies that the "macro" handle type
(see RiCreateHandle) applies instead of the "object" handle type, and that objects are
subject to all the restrictions and freedoms of macros.

When writing a RIB file, commands appearing between an ObjectBegin command and the
following ObjectEnd command are not output to the file.

RiObjectInstance(handle)
RtToken handle;

Create an instance of a previously defined object.    The object inherits the current set of
attributes from the graphics state.

RIB BINDING
ObjectInstance handle

SEE ALSO
RiObjectBegin

IMPLEMENTATION STATUS
When writing a RIB file, Quick RenderMan writes MacroInstance commands in lieu of
ObjectInstance commands.

RiPointsLines(nlines, nvertices, vertices, parameterlist)
RtInt nlines, nvertices[], vertices[];

Define nlines lines that share vertices.    The array nvertices contains the number of vertices in
each line and has length nlines.    The array vertices contains, for each line vertex, an index
into the varying primitive variable arrays.    The varying arrays are 0-based.    vertices has a
length equal to the sum of all of the values in the nvertices array.    Individual vertices in
parameterlist are thus accessed indirectly through the indices in the array vertices.   
parameterlist is a list of token-value pairs where each token is one of the standard geometric
variables applicable to lines, or a variable which has been declared with RiDeclare.    The
parameter list must include at least position ("P" or "Pw") information.    If a primitive variable
is varying, the array contains n elements of the type corresponding to the token, where n is
equal to the maximum value in the array nvertices plus one.    If the variable is uniform, the
array contains nlines elements of the associated type.    The number of floats associated with
each type is given in the table, Standard Geometric Primitive Variables.

RIB BINDING
PointsLines nvertices vertices parameterlist

The number of lines is determined implicitly by the length of the nvertices array.

EXAMPLE
RtInt nvertices[5] = { 4, 3, 3, 3, 3 };
RtInt vertices[16] = {
 1, 2, 3, 4, 0, 1, 2, 0, 2, 3, 0, 3, 4, 0, 4, 1
};
RtPoint verts[5] = {
 0, 0, 0, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1
};
RiPointsLines(5, nvertices, vertices,
 RI_P, (RtPointer)verts, RI_NULL);

PointsLines [4 3 3 3 3] [1 2 3 4 0 1 2 0 2 3 0 3 4 0 4 1]
 "P" [0 0 0 -1 -1 1 -1 1 1 1 -1 1 1 1 1]
 "Cs" [1 1 1 0 0 0 1 0 0 0 0 1 1 0 1]

SEE ALSO
RiPointsPolygons

RiReadArchive(resource, callback, parameterlist)
RtToken resource;
RtFunc callback;

Interpolate the contents of a RIB archive resource.    Quick RenderMan will parse and execute
each command in the archive as if it had been called by the application program directly.   
resource is the name of a resource (as returned by RiResource) or the host-specific
pathname of a file containing RIB.    callback is a user-supplied C function with the following
definition:

callback(type, format, data)
RtToken type;
char *format, *data;

Quick RenderMan calls this function each time it encounters a user data record (beginning
with '#') within the archive.    If callback is zero, Quick RenderMan will not call back to the
application.    type will be either "comment" or "structure" as described in
RiArchiveRecord. data is a NUL-terminated ASCII string that contains the text of the user
data record; the application should not modify this data.    format is always the literal string
"%s".    Notice that the calling sequence for callback is compatible with RiArchiveRecord.
Under RenderMan Version 3.1, any user data records encountered within a RIB archive were
automatically fed to RiArchiveRecord by the RIB parser.    This is no longer the case in
Quick RenderMan, but the application is free to call RiArchiveRecord itself.

The only legal parameter is the RtInt value "defer", which governs the action taken when
Quick RenderMan is writing a RIB archive.    If "defer" is specified as a non-zero value,
Quick RenderMan writes a ReadArchive command into the output RIB stream and does not
attempt to read the contents of the archive; otherwise, Quick RenderMan opens the RIB

archive resource and processes its contents, writing them into the RIB output stream.
"defer" has no effect if Quick RenderMan is not writing a RIB archive.

It is legal for a RIB resource to contain a ReadArchive command itself; however, Quick
RenderMan makes no effort to detect circular inclusion.

RIB BINDING
ReadArchive resource parameterlist

EXAMPLE
Including a file resource containing RIB commands:

char *myrib = "test.rib";
RtToken myname;
myname = RiResource("myres", RI_ARCHIVE,
 RI_FILEPATH, &myrib, RI_NULL);
RiReadArchive(myname, mycallback, RI_NULL);

Including a memory resource (NUL-terminated ASCII text) containing RIB commands:

char *myrib = "Cylinder .5 .2 1 360";
RtToken myname;
myname = RiResource("myres", RI_ARCHIVE,
 RI_ADDRESS, &myrib, RI_NULL);
RiReadArchive(myname, mycallback, RI_NULL);

RIB example:
ReadArchive "myrib.rib"

SEE ALSO
RiResource, RiBegin, RiArchiveRecord

External Resources

Certain RenderMan entities, such as images and RIB files, may be defined externally to
RenderMan, and are known as resources.    Resources can be either memory-resident or file-
resident.    Resources are attributes, and can thus be redeclared with subsequent calls to
RiResource and stacked with RiAttributeBegin/RiAttributeEnd.

RtToken
RiResource(handle, type, parameterlist)

char *handle;
RtToken type;

Images, shaders, maps, and RIB entities, known collectively as resources, are declared as to
type.    Images, declared as the type "image", can be both input and output.    The current

output image of the renderer is set by RiDisplay, and defined by everything until
RiWorldEnd, where the output is an image.    ASCII RIB data for input to Quick RenderMan
can be declared as type "archive".    type may be any one of the following:

"archive" RIB archive
"image" hardware frame buffer or image data file
"shader" programmable shader (.slo file)
"texture" texture map

Note that each resource type has a corresponding handle type (see RiCreateHandle).

For memory-resident resources, the parameter "address" is an RtPointer specifying the
address of an array in the application's address space; memory-resident framebuffer
resources also recognize the parameter "windowid", an RtInt specifying an open window
in a window-system-specific fashion.    For file-resident resources, the parameter
"filepointer" is a stdio FILE€* pointing to an open file in an operating-system-specific
fashion, while "filepath" specifies the name of the file in a file-system-specific fashion.

If the resource was created successfully, RiResource returns an RtToken, which can be
passed to other Quick RenderMan commands that accept a resource identifier, for example,
RiSurface and RiDisplay.    RiResource returns RI_NULL on failure.

RIB BINDING
Resource handle type parameterlist

EXAMPLE
This example demonstrates declaring and using a memory resource containing RIB
commands.

char *myrib = "Cylinder .5 .2 1 360";
RtToken myname;
myname = RiResource("myres", RI_ARCHIVE,
 RI_ADDRESS, &myrib, RI_NULL);
RiReadArchive(myname, mycallback, RI_NULL);

SEE ALSO
RiDisplay, RiReadArchive

RiSurface

IMPLEMENTATION STATUS
Quick RenderMan presently implements only the "constant", "matte", "metal",
"shinymetal", "paintedplastic", and "plastic" standard surface shaders.    Since
Quick RenderMan does not yet support texture maps, "shinymetal" is equivalent to
"metal", and "paintedplastic" is equivalent to "plastic".    In addition, Quick
RenderMan provides two implementation-specific surface shaders, "defaultsurface" and
"show_nxnynz".    Programmable surface shaders are not implemented.

Synchronization

RenderMan implementations may employ remote rendering servers or renderers that are
accessed through interprocess communication on computers that support multiprocessing.   
RenderMan provides a mechanism for coordinating the synchronization of renderers that run
outside of the execution thread of the user application.    The current synchronization mode
determines how soon the RenderMan implementation returns control to the application when
asked to transmit a RenderMan Interface subroutine call to such an external renderer.

RiSynchronize(mode)
RtToken mode;

Synchronize the renderer with the application program according to mode, which is one of:

"synchronous" Set the current synchronization mode of the current context to wait
for the processing required by each RenderMan Interface call to
complete before returning from that call.

"unbuffered" Set the current synchronization mode of the current context to
transmit each RenderMan Interface call to the renderer without
delay, and return after the call is transmitted but possibly before the
processing required by the call is completed.

"asynchronous" Set the current synchronization mode of the current context to
buffer each RenderMan Interface call and return from the call
immediately, transmit the buffer to the renderer as is appropriate
and efficient.

"flush" Transmit all buffered RenderMan Interface calls to the renderer and
return from RiSynchronize immediately, but do not otherwise
modify the synchronization mode.

"wait" Transmit all buffered RenderMan Interface calls to the renderer,
and return from RiSynchronize only when all processing
required from these calls is complete, but do not otherwise modify
the synchronization mode.

"abort" Abort rendering of the current image, but do not otherwise modify
the synchronization mode.    The current world block (and any
interior blocks) is immediately terminated and no further graphic
output is generated.    The graphics state stack is left as though
RiWorldEnd had been executed.    If called outside a world block,
there is no effect upon the graphics state.

Note that the first three modes described above select a mode of operation that endures until
the next call to RiSynchronize or until the context terminates.    The last three modes
specify a one-time action that does not affect the synchronization of subsequent RenderMan
commands.

RIB BINDING
Synchronize mode

EXAMPLE
RiSynchronize("asynchronous");
RiWorldBegin();
...
RiWorldEnd();
RiSynchronize("wait");

Synchronize "flush"

RiTransformPoints

IMPLEMENTATION STATUS
Only the predefined spaces may be specified as tospace and fromspace. The predefined
spaces are "camera", "world", "object",    and "raster".

Quick RenderMan Special Features

The following Quick RenderMan features are not part of the Interface Specfication.

Clip Object RIB Archives

The RiReadArchive command can be instructed to regard a RIB file as a clip object, and
process a particular subset of the commands in the file.    When a RIB file is read in clip object
mode, Quick RenderMan processes only the Declare commands and all commands appearing
between (but not including) the first WorldBegin and WorldEnd commands.    To select clip
object mode, the application must set the value of a special "clipobject" option variable to 1.   
Subsequent RiReadArchive commands will be executed in clip object mode.    For example:

static RtInt clipon = 1, clipoff = 0;

/* select clip object mode and read a RIB file */
RiOption(RI_ARCHIVE, "clipobject", &clipon, RI_NULL);
RiReadArchive("myclipobject", mycallback, RI_NULL);
/* return to normal (not clip object) mode */
RiOption(RI_ARCHIVE, "clipobject", &clipoff, RI_NULL);

Writing Version 3.1-Compatible RIB Archives

When an application creates a context to write a RIB file, Quick RenderMan will normally write RIB
conforming to this specification.    An application desiring to write RIB that is compatible with
RenderMan Version 3.1 can specify this immediately after creating the context, as shown in the
example below.

static RtInt v31 = 301;
char *outputfile = "myfilename", *archive = RI_ARCHIVE;

RiBegin(RI_NULL, RI_RENDERER, &archive,
 RI_FILEPATH, &outputfile, RI_NULL);
RiOption(RI_ARCHIVE, "outputversion", &v31, RI_NULL);

Expanding Macros During RIB Output

When an application writes to a RIB file, Quick RenderMan will normally pass all RiMacroBegin,
RiMacroEnd, and RiMacroInstance commands, as well as the macro definition itself directly
into the RIB archive.    An application can alternatively request that all RiMacroInstance
commands be replaced by their respective macro definitions    immediately after creating the
context, using the code below.

static RtInt one = 1;
RiOption(RI_ARCHIVE, "expandmacros", &one, RI_NULL);

Expanding Macros During RIB Output

When an application writes to a RIB file, Quick RenderMan will normally pass all RiMacroBegin,
RiMacroEnd, and RiMacroInstance commands, as well as the macro definition itself directly
into the RIB archive.    An application can alternatively request that all RiMacroInstance
commands be replaced by their respective macro definitions    immediately after creating the
context, using the code below.

static RtInt one = 1;
RiOption(RI_ARCHIVE, "expandmacros", &one, RI_NULL);

Picking

Quick RenderMan provides a "pick" hider as a graphic option.    This hider produces no graphic
output, but instead calls an application-provided routine with information identifying geometric
primitives being rendered and their respective minimum z values.    As each primitive is rendered,
it inherits the pickable and pick tag attributes from the graphics state.    Both of these attributes
are set with RiAttribute, using the "picking" name    The pickable attribute is a boolean
value expressed as an RtInt; if it is non-zero, the application program will be called when the

primitive is rendered.    The pickable attribute is initialized to 1 (true) when the context is created.
The application calls QRMSetPickCallback() to associate a callback routine with a Quick
RenderMan context:

RtVoid QRMSetPickCallback(RtVoid (*func)(RtInt, RtInt *, RtFloat));

When QuickRenderMan renders a pickable geometric primitive, it calls the callback routine.    A
pick tag is a list of RtInt values.    The application can set the last element of the list with the
RiAttribute command.    The list grows by one value the first time the application sets a pick
tag within an attribute block.    Subsequent RiAttribute calls within an attribute block replace
the last value in the list.    The first argument to the callback routine is the length of the tag list.   
The second argument is a pointer to the zeroth element of the tag list.    The third argument is the
minimum z value of the primitive.

An example of using the pick hider follows:

RtVoid mycallback(RtInt tagCount, RtInt *tagList, RtFloat z)
{
 ...
}

static RtInt tag1 = 1, tag2 = 2, tag3 = 3, tag4 = 4;
static RtInt isPickable = 1, notPickable = 0;

QRMSetPickCallback(mycallback);
RiHider(RI_PICK, RI_NULL);
... set up camera and other options ...
RiWorldBegin();
RiAttribute(RI_PICKING, RI_PICKTAG, &tag1, RI_NULL);
/* the tag list now contains { 1 } */
RiAttribute(RI_PICKING, RI_PICKTAG, &tag2, RI_NULL);
/* the tag list now contains { 2 } */
/* the following RiSphere command will cause Quick RenderMan to
 * invoke the application's routine mycallback() */
RiSphere(1.0, -1.0, 1.0, 360.0, RI_NULL);
RiAttributeBegin();
RiAttribute(RI_PICKING, RI_PICKTAG, &tag3, RI_NULL);
/* the tag list now contains { 2, 3 } */
RiAttribute(RI_PICKING, RI_PICKABLE, ¬Pickable, RI_NULL);
/* the following RiSphere command will not cause a callback
 * because "pickable" is presently False */
RiSphere(1.0, -1.0, 1.0, 360.0, RI_NULL);
RiAttribute(RI_PICKING, RI_PICKTAG, &tag4, RI_NULL);
/* the tag list now contains { 2, 4 } */
RiAttributeEnd();
/* the tag list now contains { 2 } */
/* the "pickable" attribute has returned to True */
RiWorldEnd();

RIB Reader Intercept

When Quick RenderMan reads a RIB archive resource, it parses each RIB command and then
calls a command-specific handler subroutine to process the RIB command.    By default, the
handler routine for each RIB command is its respective Ri subroutine.    Quick RenderMan
provides two C language entry points that permit the application to substitute its own RIB handlers
for the defaults on a per-context basis.    QRMGetRIBHandlers() returns a structure with the
current handlers for the active context.    QRMSetRIBHandlers() accepts a structure containing
handler pointers and associates them with the active context.

RtVoid QRMGetRIBHandlers(RtRIBHandlers *handlersPointer);
RtVoid QRMSetRIBHandlers(RtRIBHandlers *handlersPointer);

An example of intercepting the Rotate command follows.    The header file ribhdlr.h contains the
definition of the RtRIBHandlers structure.

#include <ri.h>
#include <ribhdlr.h>

RtVoid myRotate(RtFloat angle, RtFloat dx, RtFloat dy, RtFloat dz)
{

if (angle > 30.0)
RiRotate(angle + 20.0, dx, dy, dz);

}

main(int argc, char **argv)
{

RtRIBHandlers handlers;

.
RiBegin(...
.
QRMGetRIBHandlers(&handlers); /* get current handlers */
handlers.Rotate = myRotate;
/* note that all other handlers remain unchanged */
QRMSetRIBHandlers(&handlers);
.
RiReadArchive(...

}

Note that although the application-specified handler is free to call one or more Ri routines, is is
not obligated to do anything.

*RenderMan is a registered trademark of Pixar.

