
initFetchGroup:aFetchGroup Initializes associates aFetchGroup with aDest
expression:anExpr
destination:aDest

destinationThe association's user interface object
fetchGroupThe DBFetchGroup that owns the association
expressionThe DBExpression that selects the properties displayed
setDestination:newDestinationSets the user association's user interface object

contentsDidChangeNotice to redisplay because the value changed
currentRecordDidDeleteNotice to redisplay because a record was deleted
endEditingNotification that editing the destination must end
getValue:valueGets an object containing the association's data
(unsigned int)selectedRowAfter:(unsigned int)previousRow

The index of the next selected row
selectionDidChangeNotice that the user has changed the selection
setValue:valueSets the association's data
validateEditingNotice to validate changes the user has made

association:associationGets an object containing the association's data
getValue:(DBValue *)value

association:associationSets the association's data
setValue:(DBValue *)value

associationContentsDidChange:associationNotice to redisplay because the value changed
associationCurrentRecordDidDelete:association

Notice to redisplay because a record was deleted
associationSelectionDidChange:associationNotice that the user has changed the selection

initInitializes a new DBBinder instance
initForDatabase:aDBDatabase Initializes database, properties, qualifier frees DBBinder



withProperties:(List *)propertyList
andQualifier:(DBQualifier *)aDBQualifier

freeFrees the space allocated to a DBBinder

(DBDatabase *)databaseThe DBBimder's DBDatabase
setDatabase:(DBDatabase *)aDatabaseSets the DBBimder's DBDatabase

(List *)getProperties:(List *)aListGets and returns the DBBinder's properties
(List *)setProperties:(List *)aListSets and returns the DBBinder's properties
addProperty:anObjectAdds an object to the list of properties
removePropertyAt:(unsigned int)indexDeletes one of the objects from the list of properties

(DBQualifier *)qualifierThe DBBinder's qualifier
setQualifier:(DBQualifier *)aQualifierSets the DBBinder's qualifier

(id <DBContainers>)containerThe DBBinder's container
setContainer:(id <DBContainers>)anObjectSets the DBBinder's container
setFlushEnabled:(BOOL)flagSets whether flushing the DBBinder is permitted
(BOOL)isFlushEnabledReports whether flushing is enabled default YES
setFreeObjectsOnFlush:(BOOL)flagSets whether the DBBinder is freed when flushed
(BOOL)areObjectsFreedOnFlushYES if container objects freed when DBBinder is flushed

setRecordPrototype:anObjectMakes anObject the prototype for the DBBinder's records
createRecordPrototypeCreate default prototype object for the DBBinder's records
(BOOL)ownsRecordPrototypeYES if createRecordPrototype will work (no prototype)
recordPrototypeThe DBBinder's record prototype
associateRecordIvar:(const char *)variableName Makes variableName report the value of aProperty

withProperty:(id <DBProperties>)aProperty
associateRecordSelectors:(SEL)set Sets the selectors for storing and retrieving aProperty

:(SEL)get
withProperty:(id <DBProperties>)aProperty

(DBValue *)valueForProperty:(id <DBProperties>)aProperty
The value of aProperty for the current record

addRetrieveOrder:(DBRetrieveOrder)anOrder for:(id <DBProperties>)aProperty
Appends aProperty to the retrieve ordering criteria

removeRetrieveOrderFor:(id <DBProperties>)aProperty
Removes aProperty from the list of ordering criteria

(DBRetrieveOrder)retrieveOrderFor:(id <DBProperties>)aProperty
The direction in which aProperty is sorted on retrieve

(unsigned int)positionInOrderingsFor:(id <DBProperties>)aProperty
The rank order of aProperty in the list of order criteria

(BOOL)ignoresDuplicateResultsYES if duplicate records are ignored during select
setIgnoresDuplicateResults:(BOOL)flagSets whether duplicate records will be ignored in select



fetchFetches record puts in record objects (in the container)
selectSelects records and fetches them
selectWithoutFetchingSelects records in the database for fetching
insertInserts the DBBinder's record objects into the database
updateUpdates the database for each record object
deleteDeletes record object from the database
(BOOL)evaluateString:(const unsigned char *)aString

Tells the adaptor to evaluate aString (without qualifier)
(BOOL)adaptorWillEvaluateString:(const unsigned char *)aString

YES if delegate permits evaluation of aString default YES

fetchInThreadStarts an asynchronous fetch to the container
cancelFetchAborts an asynchronous fetch
checkThreadedFetchCompletion:(double)timeout

Sends binderDidFetch: if an asynchronous fetch completes within timeout seconds

setMaximumRecordsPerFetch:(unsigned int)limit
Sets maximum records per synchronous fetch

(unsigned int)maximumRecordsPerFetchReturns maximum records per fetch default unlimited
(BOOL)recordLimitReachedYES if the previous fetch stopped for the record limit

setSharesContext:(BOOL)flagSet whether this binder uses the shared cursor
(BOOL)sharesContextYES if this binder uses the shared cursor

resetCancels any fetch, then flushes and frees objects
(BOOL)flushIf enabled, empties the container
(NXZone *)scratchZoneThe zone the DBBinder is now using for allocations

delegateThe object that receives notification messages
setDelegate:anObjectSets the object to receive notification messages

read:(NXTypedStream *)streamCreates an instance by reading from a typed stream
write:(NXTypedStream *)streamArchives an instance by writing to a typed stream

binder:aBinder didEvaluateString:(const unsigned char *)aString
Notification that aString was evaluated by the adaptor

(BOOL)binder:aBinder willEvaluateString:(const unsigned char *)aString
Notification that aString will be sent the adaptor YES lets evaluation proceed

binderDidDelete:aBinderNotification that records were deleted from the database
binderDidFetch:aBinderNotification that records were fetched from the database
binderDidInsert:aBinderNotification that records were inserted in the database
binderDidSelect:aBinderNotification that records were selected (but not fetched)



binderDidUpdate:aBinderNotification that database records were updated
(BOOL)binderWillDelete:aBinderYES permits deleting binder's records from the database
(BOOL)binderWillFetch:aBinderYES permits records to be fetched from the database
(BOOL)binderWillInsert:aBinderYES permits records to be in sorted in the database
(BOOL)binderWillSelect:aBinderYES permits records to be selected in the database
(BOOL)binderWillUpdate:aBinderYES permits records to update the database

initFromFile:(const char *)aPathInitializes and loads information from a model file

(const char *)directoryThe directory from which the model was loaded
(const char *)nameThe model's name in the class's name table
(BOOL)setName:(const char *)aStringSets the model's name in the class's name table
(const char *)currentAdaptorNameThe name of the current database adaptor
(const char *)defaultAdaptorNameThe name of the model's default adaptor
(const unsigned char *)defaultLoginStringThe model's default login string
(const unsigned char *)currentLoginStringThe current login string
(const unsigned char *)loginStringForUser:(const char *)aUser

The the model's login string for user aUser

(id <DBEntities>)entityNamed:(const char *)aName
Returns an object embodying entity aName
(List *)getEntities:(List *)aListReturns a list of the names of the model's entities

emptyDataDictionaryFrees the current data dictionary
loadDefaultDataDictionaryReplaces the data dictionary by querying the database

(BOOL)connect Opens a connection to database using the default login
(BOOL)connectUsingString:(const unsigned char *)aString

Opens database connection to database by sending aString
(BOOL)connectUsingAdaptor:(const char *)aClassname

andString:(const unsigned char *)aString
(BOOL)disconnect Disconnects from the database
(BOOL)disconnectUsingString:(const unsigned char *)aString

Disconnects from the database by sending it aString



(BOOL)isConnectedYES if there is a valid connection to the database
(const unsigned char *)connectionNameThe name assigned to the current connection

(BOOL)beginTransactionYES if a new transaction is successfully started
(BOOL)rollbackTransactionYES if a the current transaction is successfully rolled back
(BOOL)commitTransactionYES if a the current transaction is successfully committed
(BOOL)isTransactionInProgressYES is a transaction is in progress
(BOOL)areTransactionsEnabledYES if transactions are enabled
(BOOL)enableTransactions:(BOOL)flagEnable/disable transaction returns YES if successful

delegateThe object that receives notification messages
setDelegate:anObjectSets the object that receives notification messages

(BOOL)evaluateString:aStringReturns YES if the adaptor evaluates the string

(BOOL)arePanelsEnabledYES if UI panels can respond to problems
setPanelsEnabled:(BOOL)flagEnable/disable response by UI panels

read:(NXTypedStream *)streamCreates an instance by reading from a typed stream
write:(NXTypedStream *)streamArchives an instance by writing to a typed stream

db:aDatabaseNotification of log message sent by aDatabase
log:(const char*) fmt, ¼

(BOOL)db:aDatabase Notification of a message received from aDatabase
notificationFrom:anObjectReturns YES when the user acknowledges the notifiation.
message:(const unsigned char*)msg
code:(int)n

(BOOL)db:aDatabase Notice that aString will be evaluated YES lets it proceed
willEvaluateString:(const char *)aString
usingBinder:(const char *)aBinder

dbDidRollbackTransaction:senderNotification that database rolled back a transaction
dbDidCommitTransaction:senderNotification that database committed a transaction
dbWillCommitTransaction:senderNotification that database will commit a transaction
dbWillRollbackTransaction:senderNotification that database will roll back a transaction

initInitializes a new instance
freeFrees the space an instance formerly used

fontReturns the font used in the editable display
setFont:aFontSets the font used in the editable display



drawFieldAt:(unsigned int) row Displays one field of the data source's current record
:columntaken from position row or column of the dynamic axis,
inside:(NXRect *)frameusing rowAttrs or colAttrs to identify static attributes,
inView:aView and flags useRowPos and useColumnPos to select which
withAttributes:(id <DBTableVectors>) rowAttrs
:(id <DBTableVectors>)columnAttrs
usePositions:(BOOL)useRowPos
:(BOOL)useColumnPos

(BOOL)editFieldAt:(unsigned int)row Displays and prepares to edit one field of the data source's
:(unsigned int)column current record, taken from row or column of dynamic axis,
inside:(NXRect *)frameusing rowAttrs or colAttrs to identify static attributes,
inView:aViewand flags useRowPos and useColumnPos to select which
withAttributes:(id <DBTableVectors>) rowAttrs
:(id <DBTableVectors>) columnAttrsreturns YES if editing was permitted
usePositions:(BOOL)useRowPos
:(BOOL)useColumnPos
onEvent:theEvent

abortEditingForces an end to editing and discards changes returns self
(BOOL)endEditingEnds editing when user clicks elsewhere Returns YES if that becomes first responder

read:(NXTypedStream *)streamCreates an instance by reading from a typed stream
write:(NXTypedStream *)streamArchives an instance by writing to a typed stream
finishUnarchivingAutomatically invoked final step in unarchiving

initForEntity:(id <DBEntities>)anEntity Initializes for anEntity, with description string shown
fromDescription:(const unsigned char *)descriptionFormat, ¼

initForEntity:(id <DBEntities>)anEntity Initializes anEntity, from property aName,
fromName:(const char *)aName to have data type aType
usingType:(const char *)aType

copyFromZone:(NXZone *)zoneReturns new copy of receiver, allocated from zone
freeFrees the space that an instance formerly used

setEntity:(id <DBEntities>)anEntity Sets anEntity, with the description string shown
andDescription:(const unsigned char *)descriptionFormat, ¼

read:(NXTypedStream *)streamCreates an instance by reading from a typed stream
write:(NXTypedStream *)streamArchives an instance by writing to a typed stream



initEntity:anEntityInitialize a new instance for links to anEntity
setName:(const char *)aNameInvoked automatically matches the name to the attribute it fetches

(const char *)nameReturns the name (set to match the attribute it fetches)
moduleThe DBModule that owns the fetch group
entityThe DBEntity for which the fetch group fetches
recordListThe DBRecordList in which fetched records are stored
(unsigned int)currentRecordThe index within the DBRecordList of the current record
(unsigned int)recordCountThe number of records in the DBRecordList

setAutoselect:(BOOL)flagIf YES, fetch selects first row, delete selects next rowf
(BOOL)doesAutoSelectReturns flag set by setAutoselect: default YES
setCurrentRecord:(unsigned int)newIndexSets a position within the DBRecordList
clearCurrentRecordDeselects current record
(unsigned int)selectedRowAfter:(unsigned int)previousRow

Index of first selected row after previousRow
redisplayEverythingDisplays all of DBFetchGroup's DBAssociations

deleteCurrentSelectionDeletes the selected records from the DBRecordList
(BOOL)insertNewRecordAt:(unsigned int)indexInserts a (default) record in the DBRecordList at index
fetchContentsOf:aSource usingQualifier:aQualifier

Replaces all records by reading aSource using aQualifier

(BOOL)hasUnsavedChangesYES if the DBRecordList has been changed but not saved
(BOOL)validateCurrentRecordYES unless delegates for editor or DDModule object
saveChangesSaves changes in this or subordinate fetch groups
discardChangesDiscards changes in this and subordinate fetch groups

addExpression:newExpressionAdds newExpression to the list of expressions to fetch
takeValueFromAssociation:anAssociationPuts the displayed value into the DBRecordList
addAssociation:newAssociationAdds newAssociation to the list of associations
removeAssociation:anAssociationRemoves anAssociation from the list of associations

delegateThe object that receives notification messages
setDelegate:anObjectSets the object to receive notification messages

fetchGroup:fetchGroup
didInsertRecordAt:(int)indexNotification of a new record in the DBRecordList



(BOOL)fetchGroup:fetchGroup Notification of pending validation YES lets it proceed
willValidateRecordAt:(int)index

fetchGroup:fetchGroup Notification of pending deletion YES lets it proceed
willDeleteRecordAt:(int)index

(DBFailureResponse)fetchGroup:fetchGroupReturns constant to indicate response to failure notice
willFailForReason:(DBFailureCode)code

fetchGroupDidFetch:fetchGroupNotification of new contents in DBRecordList
fetchGroupDidSave:fetchGroupNotification that DBRecordList has been saved
fetchGroupWillChange:fetchGroupNotification that user made changes in the DBRecordList
fetchGroupWillFetch:fetchGroupNotification that fetch will change the DBRecordList
(BOOL)fetchGroupWillSave:fetchGroupNotification of pending save YES lets it proceed

dataSourceReturns the DBRecordList (or other source)
setDataSource:newDataSourceMakes newDataSource the place to get values for display

getValueAt:(unsigned int) row Returns a DBValue from the DBRecordList,
:columntaking it from position row or column of the dynamic axis,
inside:(NXRect *)frameusing rowAttrs or colAttrs to identify static attributes,
inView:aView and flags useRowPos and useColumnPos to select which
withAttributes:(id <DBTableVectors>) rowAttrs
:(id <DBTableVectors>)columnAttrs
usePositions:(BOOL)useRowPos
:(BOOL)useColumnPos

drawFieldAt:(unsigned int) row Displays one field of the data source's current record
:columntaken from position row or column of the dynamic axis,
inside:(NXRect *)frameusing rowAttrs or colAttrs to identify static attributes,
inView:aView and flags useRowPos and useColumnPos to select which
withAttributes:(id <DBTableVectors>) rowAttrs
:(id <DBTableVectors>)columnAttrs
usePositions:(BOOL)useRowPos
:(BOOL)useColumnPos

beginBatching:(id <DBTableVectors>) attrsNotification that format attrs apply to all following items
endBatchingMarks the end of a block of items formatted the same way
resetBatching:(id <DBTableVectors>)attrsBegin batching if not already started

delegateThe object that receives notification messages
setDelegate:anObjectSets the object to receive notification messages

initInitializes a new instance
freeFrees the space an instance formerly used



setDefaultImage:anImageSet image to be shown when the data has none
defaultImageThe image displayed when the data has none

drawFieldAt:(unsigned int) row Displays one image from the data source's current record
:columntaken from position row or column of the dynamic axis,
inside:(NXRect *)frameusing rowAttrs or colAttrs to identify static attributes,
inView:aView and flags useRowPos and useColumnPos to select which
withAttributes:(id <DBTableVectors>) rowAttrs
:(id <DBTableVectors>)columnAttrs
usePositions:(BOOL)useRowPos
:(BOOL)useColumnPos

read:(NXTypedStream *)streamCreates an instance by reading from a typed stream
write:(NXTypedStream *)streamArchives an instance by writing to a typed stream

initFrame:(const NXRect *)frameRectInitializes the view in the frame coordinates
drawSelf:(const NXRect *)rects Called by display to draw the image

:(int)rectCount

imageReturns the image being displayed
setImage:newImageMakes newImage the image to display

setStyle:(int)newStyleSets the style of border for the image
(int)styleReturns a constant indicating the border style

(BOOL)isEditableYES if the image can be deleted or replaced
setEditable:(BOOL)flagAllow/prohibit deleting or replacing the image

databaseThe DBModule's DBDatabase
entityThe DBModule's DBEntity
rootFetchGroupThe DBModule's root DBFetchGroup
associationForObject:anObjectThe DBAssociation that handles UI object anObject
editingAssociationThe DBAssociation currently involved in editing
getFetchGroups:(List *)aListReturns a list of all the DBModule's DBFetchGroups
fetchGroupNamed:(const char *)aNameReturns the DBFetchGroup for the property named aName



initDatabase:aDatabase
entity:anEntityInitializes a new DBModule with the given DBDatabase and DBEntity,

fetchContentsOf:aSource Fetches records for the DBEntity or DBValue aSource,
usingQualifier:aQualifierusing aQualifier to select records

addFetchGroup:aFetchGroupInvoked to add aFetchGroup to the list of fetch groups

fetchAllRecords:senderFetches all records for the DBModule's root fetch group
saveChanges:senderSaves in the database changes made to the fetched records
discardChanges:senderDiscard changes proposed for the fetched records
deleteRecord:senderDelete one of the fetched records
appendNewRecord:senderAppend a new (default) record to those fetched
insertNewRecord:senderInsert a new (default) record at the current position
nextRecord:senderSelect the next of the fetched records
previousRecord:senderSelect the preceding of the fetched records
takeValueFrom:senderUI object has a new value, so fetched record is revised
textDidEnd:textObjectUser has finished editing a text field

endChar:(unsigned short)whyEnd
(BOOL)textWillChange:textObjectUser has entered an editable field YES lets editing proceed
(BOOL)textWillEnd:textObjectNotification that an editable field will relinquish first responder YES lets the change proceed

delegateThe object that receives notification messages
setDelegate:anObjectSets the object to receive notification messages

moduleDidSave:moduleCalled when module has completed a save to the database
(BOOL)moduleWillLoseChanges:moduleCalled when module is about to discard user's changes
(BOOL)moduleWillSave:moduleCalled when module is about to save to the database

initForEntity:(id <DBEntities>)anEntityInitializes a new instance to select from anEntity
initForEntity:(id <DBEntities>)anEntityInitializes to select from anEntity by descriptionFormat

fromDescription:(const unsigned char *)descriptionFormat, ¼
copyFromZone:(NXZone*)zReturns a copy of the DBQualifier, allocating from z
freeFrees space that a DBQualifier formerly used

addDescription:(const unsigned char *)descriptionFormat, ¼
Appends descriptionFormat to the qualifier descriptions

setEntity:(id <DBEntities>)anEntitySets both anEntity and qualifying descriptionFormat
andDescription:(const unsigned char *)descriptionFormat, ¼

(BOOL)setName:(const char *)aNameAssigns the DBQualifier aName and returns YES
(BOOL)emptyDeletes the qualifying descriptions and returns YES



(const char *)nameReturns the name assigned to the DBQualifier
(id <DBEntities>)entityReturns the DBQualifier's entity
(BOOL)isEmptyReturns YES if the qualifying descriptions are empty

read:(NXTypedStream *)streamCreates an instance by reading from a typed stream
write:(NXTypedStream *)streamArchives an instance by writing to a typed stream

initInitializes a new instance of DBRecordList
freeFrees the space a DBRecordList formerly used
clearEmpties the record list and lists of properties

setRetrieveMode:(DBRecordListRetrieveMode)aMode
Sets the DBRecordList's retrieval strategy

(DBRecordListRetrieveMode)currentRetrieveMode
Returns a constant identifying the retrieval strategy

fetchRecordForRecordKey:(DBValue *)aValueFetches records qualified by matching aValue
fetchUsingQualifier:(DBQualifier *)aQualifierEmpties, then fetches records selected by aQualifier
fetchUsingQualifier:(DBQualifier *)aQualifierFetches records selected by aQualifier

empty:emptyFirstif emptyFirst is YES, first empties the record list
(unsigned int)recordLimitReturns the maximum number of records to fetch
setRecordLimit:(unsigned int)countSets the maximum number of records to fetch

getValue:(DBValue *)aValuePuts the current record's value for aProperty into aValue
forProperty:aProperty

getValue:(DBValue *)aValuePuts value of aProperty for the record at index into aValue
forProperty:aProperty
at:(unsigned int)index

getRecordKeyValue:(DBValue *)aValuePuts the key value for the current record into aValue
getRecordKeyValue:(DBValue *)aValuePuts the key value for the record at index into aValue

at:(unsigned int)index

setValue:(DBValue *)aValueSets the current record's value of aProperty to aValue
forProperty:aProperty

setValue:(DBValue *)aValue Sets value of aProperty for record at index to aValue
forProperty:aProperty
at:(unsigned int)index

insertRecordAt:(unsigned int)indexInserts a (default) record ahead of the record at index
appendRecordInserts a (default) record after the last one
newRecordInserts a (default) record to precede the current record



(BOOL)isNewRecordYES if the current record is one that has been inserted
(BOOL)isNewRecordAt:(unsigned int)indexYES if the record at index had been inserted
deleteRecordDeletes the current record
deleteRecordAt:(unsigned int)indexDeletes the record at index
(BOOL)isModifiedYES if the current record has been changed or inserted
(BOOL)isModifiedAt:(unsigned int)indexYES if the record at index has been changed or inserted
(BOOL)isModifiedForProperty:aProperty YES if aProperty of the record at index has been changed

at:(unsigned int)index

(unsigned int)positionForRecordKey:(DBValue *)aValue
Returns the index of the record whose key is aValue

moveRecordAt:(unsigned int)sourceIndexMoves record at sourceIndex to precede the record now
to:(unsigned int)destinationIndex at destinationIndex

swapRecordAt:(unsigned int)anIndexTransposes the positions of the two records
withRecordAt:(unsigned int)anotherIndex

(unsigned int)saveModificationsSaves to the database any changes since the fetch returns code for success, partial success, or failure

initInitializes a new instance
freeFrees space formerly used by a DBRecordStream

addRetrieveOrder:(DBRetrieveOrder)anOrderAppends anOrder (up/down) to sort criteria for aProperty
for:(id <DBProperties>)aProperty

(List *)setProperties:(List *)propertyList Sets/returns list of properties wanted from entity aSource
ofSource:aSource

(List *)getProperties:(List *)propertyListReturns and puts into propertyList the stream's properties
(List *)setKeyProperties:(List *)propertyListSets and returns propertyList as the stream's key properties
(List *)getKeyProperties:(List *)keyListReturns/ puts into propertyList the stream's key properties

fetchUsingQualifier:(DBQualifier *)aQualifierStarts fetching records that pass aQualifier
cancelFetchStops fetching and sends fetchDone to DBDatabase
(DBRecordRetrieveStatus)currentRetrieveStatusDB_Ready/NotReady, DB_FetchInProgress/Completed

getValue:(DBValue *)aValue forProperty:aProperty
Puts current record's aProperty's value into aValue

getRecordKeyValue:(DBValue *)aValuePuts current record's key value into aValue
setNextMakes next record available nil if none left

setValue:(DBValue *)aValue forProperty:aPropert
Sets the current record's aProperty to aValue

newRecordInserts new, empty record at the current record
deleteRecordDeletes the current record



(BOOL)isNewRecordYES if the current record is a new one
(BOOL)isModifiedYES if the current record is new or has been modified
(BOOL)isReadOnlyYES if the record stream cannot be modified

(unsigned int)saveModificationsWrites current record's modifications to the database

clearResets everything except the delegate

delegateThe object that receives notification messages
setDelegate:anObjectSets the object that will receive notification messages
binderDelegateThe object that receives notification messages for binders
setBinderDelegate:anObjectSets the object to receive notification messages for binders

(BOOL)recordStream:sender Invoked when changes can't be saved aCode tells why
willFailForReason:(DBFailureCode) aCodeYES acknowledges failure NO tries to proceed with those records that are not affected

(BOOL)recordStreamPrepareCurrentRecordForModification:aRecordStream
Invoked when a record will be modififed or deleted YES permits modification to proceed

initIdentifier:anIdentiferInitialize a DBTableVector for property anIdentifier
freeFree the space formerly allocated to a DBTableVector

initFrame:(const NXRect *)newFrameInitializes an instance located within newFrame
freeFrees space formerly used by a DBTableView

setDataSource:aSourceSets the object that will provide data for the display
dataSourceThe object that provides data for the display
setDelegate:delegateSets the object that will receive notification messages
delegateThe object that receives notification messages

drawSelf:(const NXRect *) rects :(int) count

formatterAt:(unsigned int)row :(unsigned int)column
Returns the DBFormatter for the field at row and column

(BOOL)dynamicRowsYES if rows are dynamic



(BOOL)dynamicColumnsYES if columns are dynamic
(BOOL)isRowHeadingVisibleYES if row heading view is visible
(BOOL)isColumnHeadingVisibleYES if column heading view is visible
setIntercell:(const NXSize *)aSizeSets space between neighboring rows and columns
getIntercell:(NXSize *)theSizePuts space between rows and columns into theSize
setGridVisible:(BOOL)flagMakes grid lines between rows and columns visible or not
(BOOL)isGridVisibleYES if grid lines are visible
acceptArrowKeys:(BOOL)flagMakes arrow keys acceptable for navigation
(BOOL)doesAcceptArrowKeysYES if arrow keys are accepted for navigation
allowVectorReordering:(BOOL)flagLets/prevents user drag static row/column to new position
(BOOL)doesAllowVectorReorderingYES if user is permitted to reorder static row or column
allowVectorResizing:(BOOL)flagLets/prevents user drag the width of static row or column
(BOOL)doesAllowVectorResizingYES if user can drag row or column to change width

reloadData:senderRedraw because data may have changed
layoutChanged:senderRedraw because row or column spacing changed
rowsChangedFrom:(unsigned int)startRowRedraw because data changed in a block of rows

to:(unsigned int)endRow
columnsChangedFrom:(unsigned int)startColumn Redraw because data changed in a block of columns

to:(unsigned int)endColumn

(unsigned int)columnCountTotal number of columns
(unsigned int)rowCountTotal number of rows
(id <DBTableVectors>)rowAt:(unsigned int)aPosition

Object specifying format of the static row at aPosition
(id <DBTableVectors>)columnAt:(unsigned int)aPosition

Object specifying format of the static column at aPosition
addColumn:identifier Adds an static column at aPosition

at:(unsigned int)aPosition
addColumn:identifier Adds a static column with title at aPosition

withTitle:(const char *)title
addColumn:identifierAdds a static column with title and formatter at aPosition

withFormatter:formatter
andTitle:(const char *)title
at:(unsigned int)aPosition

removeColumnAt:(unsigned int)columnPositionDeletes a static column
(BOOL)moveColumnFrom:(unsigned int)oldPosChanges a static column's position

to:(unsigned int)newPos
addRow:identifier Adds an static row at aPosition

at:(unsigned int)aPosition
addRow:identifier Adds a static row with title at aPosition

withTitle:(const char *)title
addRow:identifierAdds a static row with title and formatter at aPosition

withFormatter:formatter
andTitle:(const char *)title
at:(unsigned int)aPosition

removeRowAt:(unsigned int)rowPositionDeletes a static row
(BOOL)moveRowFrom:(unsigned int)oldPosChanges a static row's position

to:(unsigned int)newPos
(unsigned int)indedOfColumnWithIdentifier:anIdentifier

Position in sequence of static column anIdentifier
(unsigned int)indexOfRowWithIdentifier:anIdentifier

Position in sequence of static row anIdentifier



editFieldAt:(unsigned int)rowSelects an item and invokes editor
:(unsigned int)column

setEditable:(BOOL)flagEnables/disables editing.
(BOOL)isEditableYES of the DBTableView is editable.

setMode:(int)newModeMake selection list mode, radio mode, or none.
(int)modeReturns DB_NOSELECT/RADIOMODE/LISTMODE
allowEmptySel:(BOOL)flagAllow/prohibit user to leave nothing selected
(BOOL)doesAllowEmptySelYES if user may leave nothing selected
(unsigned int)selectedRowCountNumber of rows currently selected
(unsigned int)selectedColumnCountNumber of columns currently selected
(int)selectedRowThe row number of the selected row
(int)selectedColumnThe column number of the selected column
(BOOL)isRowSelected:(unsigned int)rowYES if row is selected
(BOOL)isColumnSelected:(unsigned int)columnYES if column is selected
deselectAll:senderMakes nothing selected.
selectAll:senderMakes all rows and columns selected.
setRowSelectionOn:(unsigned int)start Sets block of rows to selected (YES) or deselected (NO)

:(unsigned int)end
to:(BOOL)flag

setColumnSelectionOn:(unsigned int)start Sets block of columns to selected (YES) or deselected
:(unsigned int)end
to:(BOOL)flag

selectRow:(unsigned int)rowSelects row, or extends selection if flag is YES
byExtension:(BOOL)flag

selectColumn:(unsigned int)columnSelects row, or extends selection if flag is YES
byExtension:(BOOL)flag

deselectRow:(unsigned int)rowDeselects the indicated row
deselectColumn:(unsigned int)columnDeselects the indicated column
(unsigned int)selectedRowAfter:(unsigned int)aRow

Index of the first selected row after aRow
(unsigned int)selectedColumnAfter:(unsigned int)aColumn

Index of the first selected column after aColumn
sendAction:(SEL)anActionSends anAction to anObject for each selected row

to:anObjectif YES, does it for each selected row
forSelectedRows:(BOOL)flag

sendAction:(SEL)anActionSends anAction to anObject for each selected column
to:anObjectif YES, does it for each selected column
forSelectedColumns:(BOOL)flag

rowHeadingReturns the row heading view
setRowHeading:newRowHeadingMakes newRowHeading the row heading view
setRowHeadingVisible:(BOOL)flagMakes the row heading visible or not
columnHeadingReturns the column heading view
setColumnHeading:newColumnHeadingMakes newColumnHeading the column heading view
setColumnHeadingVisible:(BOOL)flagMakes the column heading visible or not

displayDisplays the DBTableView
scrollClip:aClip Sets aClip's origin to be newOrigin in the content view

to:(const NXPoint *)newOrigin



(BOOL)isHorizScrollerVisibleYES if the content view's horizontal scroller is enabled
setHorizScrollerVisible:(BOOL)flagMakes the content view's horizontal scroller visible or not
(BOOL)isVertScrollerVisibleYES if the content view's vertical scroller is visible
setVertScrollerVisible:(BOOL)flagMakes the content view's vertical scroller visible
tileRecalculate positions of the component views and redraw
sizeTo:(NXCoord)width Adjust the overall size to width and height, and redraw

:(NXCoord)height
scrollRowToVisible:(unsigned int)rowScroll the content so that row is visible in the scroll clip
scrollColumnToVisible:(unsigned int)columnScroll the content so that column is visible in the scroll clip
(BOOL)acceptsFirstResponderYES if the DBTableView will handle keyboard events

setAction:(SEL)aSelectorMakes aSelector the action in response to a click
(SEL)actionThe action to be sent on a click
setDoubleAction:(SEL)aSelectorMakes aSelector the action in response to a double click
(SEL)doubleActionThe action in response to a double click
setTarget:anObjectMakes anObject the target for an action message
targetThe target for an action message

read:(NXTypedStream *)streamCreates an instance by reading from a typed stream
write:(NXTypedStream *)streamArchives an instance by writing to a typed stream
finishUnarchivingAutomatically invoked final step in unarchiving

initInitializes a new DBTextFormatter instance
freeFrees the space allocated to a DBTextFormatter.

fontReturns the formatter's font
setFont:aFontMakes aFont the formatter's font

beginBatching:(id <DBTableVectors>) attrsThe format attrs applies to all following records
resetBatching:(id <DBTableVectors>) attrsBegins batching if not already in effect
endBatchingCompletes sequence of records in same format

read:(NXTypedStream *)streamCreates an instance by reading from a typed stream
write:(NXTypedStream *)streamArchives an instance by writing to a typed stream

initInitialize a DBValue instance



freeFree space formerly used by a DBValue instance

setDoubleValue:(double)aDoubleSets the object's value to aDouble
setFloatValue:(float)aFloatSets the object's value to aFloat
setIntValue:(int)anIntSets the object's value to anInt
setObjectValue:(id)anObjectSets the object's value to anObject
setObjectValueNoCopy:(id)anObjectSets the object's value so that it points to anObject
setStringValue:(const char *)aStringSets the object's value to aString
setStringValueNoCopy:(const char *)aStringSets the object's value so that it points to aString
setValueFrom:(DBValue *)aValueSets the object's to have the same value as aValue
setNullSets the object's value to NULL

(id <DBTypes>)valueTypeReturns the type of value the object contains
(BOOL)isEqual:(DBValue *)anotherValueYEs if this object has same type and value as anotherValue
(double)doubleValueReturns the object's value as a double
(float)floatValueReturns the object's value as a float
(int)intValueReturns the object's value as an int
objectValueReturns the object's value as an object
(const char *)stringValueReturns the object's value as a string
(BOOL)isNullYES if the object's value is NULL

read:(NXTypedStream *)streamCreates an instance by reading from a typed stream
write:(NXTypedStream *)streamArchives an instance by writing to a typed stream


