
Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

DBEntities

Adopted By: no NeXTSTEP classes

Incorporates: DBTypes

Declared In: dbkit/entities.h

Protocol Description
The DBEntities protocol lets an object represent a database entity.    An entity comprises a list of
data categories, or properties.    As data is read from a database for a particular entity, an ªinstanceº
of the entity (a record) is created and filled with data, one datum per property.

It's tempting to speak of an entity as a database table.    They're similar. You can think of a table as
the corporealization of an entity.    Put another way, an entity describes how a table organizes its data
into columns (properties).    However, you should keep in mind that an entity doesn't contain data
(nor do the properties within the entity).    Furthermore, neither entities nor properties are
ªplaceholdersº for data.    Entities and properties neither store nor make room for data, they simply
provide a description of the type and location of data so some other object (a record) can be created
to adequately store this data.

Typically, an application doesn't create entity objects directly, but, instead, reads them from a
database model file.    This is performed by creating a DBDatabase object and connecting it to the
file (through methods described in the DBDatabase class specification).    You can retrieve, in a List,
the entity objects that the DBDatabase read from the model file by sending the DBDatabase a
getEntities: message.    Alternatively, you can retrieve a single entity object by name through
entityNamed:.    Both of these methods return private DBEntities-conforming objects that are
created and owned by the Database Kit.

Entity object are used as arguments in a handful of important methods.    Most notable of these, you
typically use an entity as the source in an invocation of DBRecordList's setProperties:ofSource:.   
In addition, an entity is required by the DBQualifier and DBExpression initialization methods.

The DBEntities protocol incorporates the DBTypes protocol.    It does this for one reason:    the type
of Objective C data described by a property that represents a relationship is a DBEntities object.   
Thus, if the isEntity message returns YES when sent to the value returned by sending
propertyType to a property, then that property is a relationship.    This is demonstrated in the
following example:

/* Get the properties from an entity. Check for relationships. */
int counter;
List *propList = [[List alloc] init];
id prop;

[anEntity getProperties:propList];
for (counter = 0; counter < [aList count]; counter++)
{
 prop=[aList objectAt:counter];
 if ([[prop propertyType] isEntity])
 printf("Property named %s is a relationship.\n", [prop name]);
}

Warning: You should never send the DBTypes messages objcClassName or databaseType to the private
entity objects that are returned by the aforementioned DBDatabase methods.    The private entity
class implements these DBTypes methods to raise DB_UNIMPLEMENTED_ERROR exceptions.

It isn't anticipated that you should need to create your own class that adopts the DBEntities protocol.
The entity objects returned by getEntities: and entityNamed: should be adequate for most
applications.

Method Types
Querying the object - name

- database
- getProperties:
- propertyNamed:

Comparing the object - matchesEntity:

Instance Methods
database

- (DBDatabase *)database

Returns the DBDatabase object that created the entity.

getProperties:
- getProperties:(List *)aList

Returns, in aList, a list of the entity's properties.    Each object in the list conforms to the
DBProperties protocol.

matchesEntity:
- (BOOL)matchesEntity:(id <DBEntities>)anEntity

Returns YES or NO if the receiving entity and anEntity were created from the same model file
entity.

name
- (const char *)name

Returns the entity's name.    This is the same name as given to the entity in the model file from which
it was read.

propertyNamed:
- propertyNamed:(const char *)aName

Returns the property named aName.    If the entity has no such property, nil is returned.

