
Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

NS_DEV_DOCFOR:objc_class:Pasteboard
;, Pasteboard

Inherits From: Object

Declared In: appkit/Pasteboard.h

Class Description
Pasteboard objects transfer data to and from the pasteboard server, pbs.    The server is shared by all
running applications.    It contains data that the user has cut or copied and may paste, as well as other
data that one application wants to transfer to another.    Pasteboard objects are an application's sole
interface to the server and to all pasteboard operations.

Named Pasteboards

Data in the pasteboard server is associated with a name that indicates how it's to be used.    Each set
of named data is, in effect, a separate pasteboard, distinct from the others.    An application keeps a
separate Pasteboard object for each named pasteboard that it uses.    There are five standard
pasteboards in common use:

General pasteboard The    pasteboard that's used for ordinary cut, copy, and paste
operations.    It holds the contents of the last selection that's been
cut or copied.

Font pasteboard The pasteboard that holds font and character information and
supports the Copy Font and Paste Font commands.

Ruler pasteboard The pasteboard that holds information about paragraph formats
in support of the Copy Ruler and Paste Ruler commands.

Find pasteboard The pasteboard that holds information about the current state of
the active application's Find panel.    This information permits
users to enter a search string into the Find panel, then switch to
another application to conduct the search.

Drag pasteboard The pasteboard that stores data to be manipulated as the result of
a drag operation.

Each standard pasteboard is identified by a unique name designated by a global variable of type
NXAtom:

NXGeneralPboard
NXFontPboard
NXRulerPboard
NXFindPboard
NXDragPboard

You can also create private pasteboards by asking for a Pasteboard object with any other name.    The
name of a private pasteboard can be passed to other applications to allow them to share the data it
holds.

The Pasteboard class makes sure there's never more than one object for each named pasteboard.    If
you ask for a new object when one has already been created for the pasteboard, the existing one will
be returned to you.

Data Types

Data can be placed in the pasteboard server in more than one representation.    For example, an
image might be provided both in Tag Image File Format (TIFF) and as encapsulated PostScript code
(EPS).    Multiple representations give pasting applications the option of choosing which data type to
use.    In general, an application taking data from the pasteboard should choose the richest
representation it can handleÐrich text over plain ASCII, for example.    An application putting data
in the pasteboard should promise to supply it in as many data types as possible, so that as many
applications as possible can make use of it.

Data types are identified by character strings containing a full type name.    The following global
variables (of type NXAtom) are string pointers for the standard NeXT pasteboard types.    This list is
not exhaustive; NEXTSTEP kits define some other data types that can only be read by kit objects
and are not intended for general purpose data interchange.

Type Description
NXAsciiPboardType Plain ASCII text
NXPostScriptPboardType Encapsulated PostScript code (EPS)
NXTIFFPboardType Tag Image File Format (TIFF)
NXRTFPboardType Rich Text Format (RTF)
NXSoundPboardType The Sound object's pasteboard type
NXFilenamePboardType ASCII text designating a file name
NXTabularTextPboardType Tab-separated fields of ASCII text
NXFontPboardType Font and character information
NXRulerPboardType Paragraph formatting information
NXFileContentsPboardType A representation of a file's contents
NXColorPboardType NXColor data
NXSelectionPboardType Describes a selection
NXDataLinkPboardType Defines a link between documents

Types other than those listed can also be used.    For example, your application may keep data in a
private format that's richer than any of the types listed above.    That format can also be used as a
pasteboard type.

Reading and Writing Data

Typically, data is written to the pasteboard using writeType:data:length: and read using
readType:data:length:.    However, file contents and colors must be written using special
pasteboard methods:

· Data of NXFileContentsPboardType, representing the contents of a named file, must be written
using writeFileContents: and read using readFileContentsType:toFile:.

· NXColor data should be written using the NXWriteColorToPasteboard() function, and read
using NXReadColorFromPasteboard().

It's often convenient (and most memory-efficient) to prepare data for the pasteboard by writing data
to a memory stream through functions such as NXWrite(), NXPrintf(), and NXPutc().    After the
data has been written, the stream can be sent to the pasteboard server using
writeType:fromStream:.

Similarly, you can get a memory stream for the data received from the pasteboard server via
readTypeToStream: and use functions like NXGetc(), NXRead(), and NXScanf() to parse it.   
Objects can be archived to and from the pasteboard server using typed streams.

Errors

Except where errors are specifically mentioned in the method descriptions, any communications
error with the pasteboard server raises an NX_pasteboardComm exception.

Instance Variables
id owner;

owner The object responsible for putting data in the pasteboard.

Method Types
Creating and freeing a Pasteboard object
+ new

+ newName:
+ newUnique
- free
- freeGlobally

Getting data in different formats
+ newByFilteringFile:

+ newByFilteringData:ofType:
+ newByFilteringTypesInPasteboard:
+ typesFilterableTo:

Referring to a Pasteboard by name
+ newName:

- name

Writing data - declareTypes:num:owner:
- addTypes:num:owner:
- writeType:data:length:
- writeType:fromStream:
- writeFileContents:

Discerning types - types
- findAvailableTypeFrom:num:

Reading data - changeCount
- readType:data:length:
- readTypeToStream:
- readFileContentsType:toFile:
- deallocatePasteboardData:length:

Class Methods
NS_DEV_DOCFOR:objc_method:[Pasteboard-alloc];, alloc

Generates an error message.    This method cannot be used to create Pasteboard instances.    Use new
or newName: instead.

See also:    + new, + newName:

NS_DEV_DOCFOR:objc_method:[Pasteboard-allocFromZone:];, allocFromZone:

Generates an error message.    This method cannot be used to create Pasteboard instances.    Use new
or newName: instead.

See also:    + new, + newName:

NS_DEV_DOCFOR:objc_method:[Pasteboard-new];, new
+ new

Returns the Pasteboard object for the selection pasteboard by passing NXGeneralPboard to the
newName: method.

NS_DEV_DOCFOR:objc_method:[Pasteboard-newByFilteringData:ofType:];,
newByFilteringData:ofType:

+ newByFilteringData:(NXData *)data ofType:(const char *)type

Creates and returns a new Pasteboard with a unique name that has, declared within it, data of every
type that can be provided by the available filter services from data.    The returned pasteboard also
declares data of the supplied type type.    No filter service is invoked until the data is actually
requested, so invoking this method is reasonably inexpensive.

NS_DEV_DOCFOR:objc_method:[Pasteboard-newByFilteringFile:];, newByFilteringFile:
+ newByFilteringFile:(const char *)filename

Creates and returns a new Pasteboard with a unique name that has, declared within it, data of every
type that can be provided by the available filter services from the file filename.    No filter service is
invoked until the data is actually requested, so invoking this method is reasonably inexpensive.

NS_DEV_DOCFOR:objc_method:[Pasteboard-newByFilteringTypesInPasteboard:];,
newByFilteringTypesInPasteboard:

+ newByFilteringTypesInPasteboard:(Pasteboard *)pboard

Creates and returns a new Pasteboard with a unique name that has, declared within it, data of every
type that can be provided by the available filter services from the data on pasteboard pboard.    This
process can be thought of as expanding the pasteboard, since the new pasteboard generally will
contain more representations of the data on pboard.

This method returns pboard if pboard is a pasteboard returned by one of the newByFiltering...
methods, so a pasteboard can't be expanded multiple times.    This method only returns the original
types and the types that can be created as a result of a single filter; the pasteboard will not have
defined types that are the result of translation by multiple filters.

No filter service is invoked until the data is actually requested, so invoking this method is
reasonably inexpensive.

NS_DEV_DOCFOR:objc_method:[Pasteboard-newName:];, newName:
+ newName:(const char *)name

Returns the Pasteboard object for the name pasteboard.    A new object is created only if the
application doesn't yet have a Pasteboard object for the specified name; otherwise, the existing one
is returned.    To get a standard pasteboard, name should be one of the following variables:

NXGeneralPboard
NXFontPboard
NXRulerPboard
NXFindPboard
NXDragPboard

Other names can be assigned to create private pasteboards for other purposes.

NS_DEV_DOCFOR:objc_method:[Pasteboard-newUnique];, newUnique
+ newUnique

Creates and returns a new Pasteboard with a name that is guaranteed to be unique with respect to
other Pasteboards on the system.      This method is useful for applications that implement their own
interprocess communication using    pasteboards.

NS_DEV_DOCFOR:objc_method:[Pasteboard-typesFilterableTo:];, typesFilterableTo:
+ (NXAtom *)typesFilterableTo:(const char *)type

Returns a null-terminated array of NXAtoms indicating the types that data of type type can be
converted to by available filter services.    The array contains the original type.    The caller is
responsible for freeing the returned array.

Instance Methods
NS_DEV_DOCFOR:objc_method:[Pasteboard-addTypes:num:owner:];, addTypes:num:owner:

- (int)addTypes:(const char *const *)newTypes
num:(int)numTypes
owner:newOwner

Adds additional types to the pasteboard.    This method can be useful when multiple entities (such as
a combination of application and library methods) contribute data for a single copy command.    It
should only be invoked after a    declareTypes:num:owner: message has been sent for the same
data.    The owner for the new types may be different from the owner(s) of the previously declared
data.

Returns the pasteboard's change count, or 0 in case of an error.

See also:    - changeCount

NS_DEV_DOCFOR:objc_method:[Pasteboard-changeCount];, changeCount
- (int)changeCount

Returns the current change count for the pasteboard.    The change count is a system-wide variable
that increments every time the contents of the pasteboard changes (a new owner is declared).    By
examining the change count, an application can determine whether the current data in the pasteboard
is the same as the data it last received.

An independent change count is maintained for each named pasteboard.

See also:    - declareTypes:num:owner:

NS_DEV_DOCFOR:objc_method:[Pasteboard-deallocatePasteboardData:length:];,
deallocatePasteboardData:length:

- deallocatePasteboardData:(char *)data length:(int)numBytes

This method should be used to deallocate the memory returned by readType:data:length:.   
Returns self if the memory is successfully deallocated, otherwise raises an NX_appkitVMError
exception.

NS_DEV_DOCFOR:objc_method:[Pasteboard-declareTypes:num:owner:];,

declareTypes:num:owner:
- (int)declareTypes:(const char * const *)newTypes

num:(int)numTypes
owner:newOwner

Prepares the pasteboard for a change in its contents by declaring the new types of data it will contain
and a new owner.    This is the first step in responding to a user's copy or cut command and must
precede the messages that actually write the data.    A declareTypes:num:owner: message is
tantamount to changing the contents of the pasteboard.    It invalidates the current contents of the
pasteboard and increments its change count.

numTypes is the number of types the new contents of the pasteboard may assume, and newTypes is
an array of null-terminated strings that name those types.    The types should be ordered according to
the preference of the source application, with the most preferred type coming first (typically, the
richest representation is first).

The newOwner is the object responsible for writing data to the pasteboard in all the types listed in
newTypes.    Data is written using the writeType:data:length: method.    You can write the data
immediately after declaring the types, or wait until it's required for a paste operation.    If you wait,
the owner will receive a pasteboard:provideData: message requesting the data in a particular type
when it's needed.    You might choose to write data immediately for the most preferred type, but wait
for the others to see whether they'll be requested.

The newOwner can be NULL if data is provided for all types immediately.    Otherwise, the owner
should be an object that won't be freed.    It should not, for example, be the View that displays the
data if that View is in a window that might be closed.

Returns the pasteboard's change count.

See also:    - writeType:data:length:,    - pasteboard:provideData:,   
-_addTypes:num:owner:,    -_changeCount

NS_DEV_DOCFOR:objc_method:[Pasteboard-findAvailableTypeFrom:num:];,
findAvailableTypeFrom:num:

- (const char *)findAvailableTypeFrom:(const char *const *)types
num:(int)numTypes

Scans the types defined by types (which is an array of size numTypes) and returns the first type that
matches a type declared on the pasteboard.    A types or findAvailableTypeFrom:num: message
should be sent before reading any data from the pasteboard.

NS_DEV_DOCFOR:objc_method:[Pasteboard-free];, free
- free

Frees the Pasteboard object.    A Pasteboard object should not be freed if there's a chance that the
application might want to use the named pasteboard again; standard pasteboards generally should
not be freed at all.

NS_DEV_DOCFOR:objc_method:[Pasteboard-freeGlobally];, freeGlobally
- freeGlobally

Frees the Pasteboard object and the domain for its name within the pasteboard server.    This means
that no other application will be able to use the named pasteboard.    A temporary, privately named
pasteboard can be freed when it's no longer needed, but a standard pasteboard should never be freed
globally.

NS_DEV_DOCFOR:objc_method:[Pasteboard-name];, name
- (NXAtom)name

Returns the name of the Pasteboard object.

See also:    + newName:

NS_DEV_DOCFOR:objc_method:[Pasteboard-readFileContentsType:toFile:];,
readFileContentsType:toFile:

- (char *)readFileContentsType:(const char *)type toFile:(const char *)filename

Reads data representing a file's contents from the pasteboard, and writes it to the file filename.   
Data of any file contents type should only be read using this method.    type should generally be
specified; if type is NULL, a type based on filename's extention (as returned by
NXCreateFileContentsPboardType()) is substituted.    If data matching type isn't found on the
pasteboard, data of type NXFileContentsPboardType is requested.    Returns an allocated string with
the name of the file that the data was actually written to.

You should send the types or findAvailableTypeFrom:num: message before reading any data from
the pasteboard.

See also:    - writeFileContents:

NS_DEV_DOCFOR:objc_method:[Pasteboard-readType:data:length:];, readType:data:length:
- readType:(const char *)dataType

data:(char **)theData
length:(int *)numBytes

Reads the dataType representation of the current contents of the pasteboard.    dataType should be
one of the types returned by the types method.    The data is read by setting the pointer referred to by
theData to the address of the data, and setting the integer referred to by numBytes to the length of
the data in bytes.

If the data is successfully read, this method returns self.    It returns nil if the contents of the
pasteboard have changed (if the change count has been incremented by a declareTypes:num:owner
message) since they were last checked with the types method. It also returns nil if the pasteboard
server can't supply the data in timeÐfor example, if the pasteboard's owner is slow in responding to
a pasteboard:provideData: message and the interprocess communication times out.    All other
errors raise an NX_pasteboardComm exception.

If nil is returned, the application should put up a panel informing the user that it was unable to carry
out the paste operation.    It shouldn't attempt to use the pointer referred to by theData, as it won't be
valid.

The memory for the data that this method provides must eventually be freed by the caller using
deallocatePasteboardData:length:;    you should not attempt to free the returned memory using
vm_deallocate() or free().    For example:

char *data;
int length;

if ([myPasteboard readType:NXAsciiPboardType
 data:&data length:&length])
{
 /* Use the data here, keeping it for as long as necessary */
 [myPasteboard deallocatePasteboardData:data length:length];
}

You should send the types or findAvailableTypeFrom:num: message before reading any data from
the pasteboard.

See also:    - readTypeToStream:

NS_DEV_DOCFOR:objc_method:[Pasteboard-readTypeToStream:];, readTypeToStream:
- (NXStream *)readTypeToStream:(const char *)dataType

Reads data    from the pasteboard to a stream.    This method uses the readType:data:length:
method to read data of the type dataType from the pasteboard.    It then opens a stream on the data,
and returns the stream, or NULL if there is an error.    Data returned with this method must
eventually be freed using

NXCloseMemory(theStream, NX_FREEBUFFER)

You should not free the data using deallocatePasteboardData:length:.    You should send the types
or findAvailableTypeFrom:num: message before reading any data from the pasteboard.

See also:    - writeType:fromStream:

NS_DEV_DOCFOR:objc_method:[Pasteboard-types];, types
- (const NXAtom *)types

Returns the list of the types that were declared for the current contents of the pasteboard.    The list is
an array of character pointers holding the type names, with the last pointer being NULL.    Each of
the pointers is of type NXAtom.

Types are listed in the same order that they were declared.    A types or
findAvailableTypeFrom:num: message should be sent before reading any data from the
pasteboard.

See also:    - declareTypes:num:owner:, - readType:data:length:, -
findAvailableTypeFrom:num:, NXUniqueString()

NS_DEV_DOCFOR:objc_method:[Pasteboard-writeFileContents:];, writeFileContents:
- (BOOL)writeFileContents:(const char *)filename

Writes the contents of the file filename to the pasteboard, and declares the data to be of type
NXFileContentsPboardType and also of a type appropriate for the file's extention (as returned by
NXCreateFileContentsPboardType() when passed the files extention), if it has one.    Returns YES
if the data from filename was successfully written to the pasteboard, and NO otherwise.

See also:    - readFileContentsType:toFile:

NS_DEV_DOCFOR:objc_method:[Pasteboard-writeType:data:length:];, writeType:data:length:
- writeType:(const char *)dataType

data:(const char *)theData
length:(int)numBytes

Writes data to the pasteboard server.    dataType gives the type of data being written; it must be a
type that was declared in the previous declareTypes:num:owner: message.    theData points to the
data to be sent to the pasteboard server, and numBytes is the length of the data in bytes.

A separate writeType:data:length: message is required for each data representation that's written to
the server.

This method returns self if the data is successfully written.    It returns nil if an object in another
application has become the owner of the pasteboard.    Any other error raises an
NX_pasteboardComm exception.

See also:    - declareTypes:num:owner:

NS_DEV_DOCFOR:objc_method:[Pasteboard-writeType:fromStream:];, writeType:fromStream:
- writeType:(const char *)dataType fromStream:(NXStream *)stream

Writes the type dataType to the pasteboard from the supplied stream stream.    The stream must be
readable.    If the stream is seekable, it is seeked back to the beginning before the data is read;
otherwise, data is read from the current position.    In either case, all data to the end of the stream is
read.

This method returns self if the data is successfully written.    It returns nil if an object in another
application has become the owner of the pasteboard.    Any other error raises an
NX_pasteboardComm exception.

See also:    - writeType:data:length:

Method Implemented By The Owner
NS_DEV_DOCFOR:objc_method:[Pasteboard-pasteboardChangedOwner:];,

pasteboardChangedOwner:
- pasteboardChangedOwner:sender

Notifies a prior owner of the sender Pasteboard (and owners of representations on the pasteboard)
that the pasteboard has changed owners.    This method is optional and need only be implemented by
pasteboard owners that need to know when they have lost ownership.      The owner is not able to
read the contents of the pasteboard when responding to this method.    The owner should be prepared
to receive this method at any time, even from within the declareTypes:num:owner: used to declare
ownership.

NS_DEV_DOCFOR:objc_method:[Pasteboard-pasteboard:provideData:];,pasteboard:provideData:
- pasteboard:sender provideData:(NXAtom)type

Implemented by the owner (previously declared in a declareTypes:num:owner: message) to
provide promised data.    The owner receives a pasteboard:provideData: message from the sender
Pasteboard when the data is required for a paste operation; type gives the type of data being
requested.    The requested data should be written to sender using the writeType:data:length:
method.

pasteboard:provideData: messages may also be sent to the owner when the application is shut
down through Application's terminate: method.    This is the method that's invoked in response to a
Quit command.    Thus the user can copy something to the pasteboard, quit the application, and still
paste the data that was copied.

A pasteboard:provideData: message is sent only if type data hasn't already been supplied.    Instead
of writing all data types when the cut or copy operation is done, an application can choose to
implement this method to provide the data for certain types only when they're requested.

If an application writes data to the pasteboard in the richest, and therefore most preferred, type at the
time of a cut or copy operation, its pasteboard:provideData: method can simply read that data
from the pasteboard, convert it to the requested type, and write it back to the pasteboard as the new
type.

See also:    - declareTypes:num:owner:, - writeType:data:length:

