
Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

1

Using the Assembler

This chapter describes how to run the as assembler, which produces an object file from one or more
files of assembly language source code.

Note:    Although a.out is the default file name that as gives to the object file that's created (as is
conventional with most UNIX-style compiler systems), the format of the object file is not standard
UNIX 4.3BSD a.out format.    Object files produced by the assembler are in Mach-O (Mach object)
file format.    For more information about the Mach-O file format, see the NEXTSTEP Development
Tools and Techniques manual.

Command Syntax
To run the assembler, type the following command in a shell window:

as [option] ... [file] ...

You can specify one or more command-line options.    These assembler options are described in the
following section.

You can specify one or more files containing assembly language source code.    If no files are
specified, as uses the standard input (stdin) for the assembly source input.

Note:    By convention,    files containing assembly language source code should have a .s
extension.

Assembler Options
The following command-line options are recognized by the assembler:

-o name The name argument after -o is used as the name of the as output file, instead of a.out.

-- Use the standard input (stdin) for the assembly source input.

-f Fast; no need to run    app (the assembler preprocessor).    This option is intended for
use by compilers that produce assembly code in a strict ªcleanº format that specifies
exactly where whitespace can go.    The app preprocessor needs to be run on
handwritten assembly files and on file that have been preprocessed by    cpp (the C
preprocessor).    This typically is needed when assembler files are assembled through
the use of the cc(1) command, which automatically runs the C preprocessor on
assembly source files.    The assembler preprocessor strips out excess spaces, turns

each single-quoted character into a decimal constant, and turns occurrences of

 # number filename level

into:

 .line number;.file filename

The assembler preprocessor can also be turned off by starting the assembly file with
#NO_APP\n.    When the assembler preprocessor has been turned off in this way, it
can be turned on and off with pairs of #APP\n and #NO_APP\n at the beginning of
lines.    This is used by the compiler to wrap assembly statements produced from asm()
statements.

-g Produce debugging information for the symbolic debugger gdb(1) so the the assembly
source can be debugged symbolically.    For include files (included by the C
preprocessor's #include or by the assembler    directive .include) that produce
instructions in the (__TEXT,__text) section, the include file must be included while a
.text directive is in effect (that is, there must be a .text directive before the include)
and end with the a .text directive in effect (at the end of the include file).    Otherwise
the debugger will have trouble dealing with that assembly file.

-v Print the version of the assembler (both the NeXT version and the GNU version that it
is based on).

-n Don't assume that the assembly file starts with a .text directive.

-Idir Add dir to the list of directories to search for files included with the .include directive.
The default places to search are the current directory, and then /usr/include.

-L Save defined labels beginning with an `L' (the compiler generates these temporary
labels).    Temporary labels are normally discarded to save space in the resulting
symbol table.

-W Suppress warnings.

Architecture Options
The program /bin/as is a driver that executes assemblers for specific target architectures.    If no
target architecture is specified, it defaults to the architecture of the host it is running on.

-arch arch_type
Specifies to the target architecture, arch_type, the assembler to be executed.    The target assemblers

for each architecture are in /lib/arch_type/as.

-arch_multiple
This is used by the cc(1) driver program when it is run with multiple -arch arch_type flags and

instructs programs like as(1) that if it prints any messages to precede the messages
with one line stating the program nameÐin this case asÐand the architecture (from the
-arch arch_type flag) to distinguish which architecture the error messages refer to.   
This flag is accepted only by the actual assemblers (in /lib/arch_type/as) and not by the
assembler driver, /bin/as.

M68000-Specific Options

-l For offsets from an address register that refers to an undefined symbol (as in a6@(var)
where var is not defined in the assembly file), make the offset and the relocation entry
width 32 bits rather than 16 bits.

-k Produce a warning when a statement of the form

 .word symbol1-symbol2+offset

does not fit in a 16-bit word.    This is only applicable on the 68000 processor, where
.word is 16 bits and all addresses are 16 bits; therefore, this option isn't applicable on
NeXT computers.

-mc68000 and -mc68010
Don't generate branches that use 32-bit pc-relative displacements (which aren't implemented on the

68000 and 68010 processors).    These options aren't applicable on NeXT computers.

-mc68020 Generate branches that use 32-bit pc-relative displacements.    This is the default
behavior.

