
activeDocumentReturns the active document

selectionOwnerReturns the editor of the currently selected object

connectSourceReturns the object that's the source of the connection
connectDestinationReturns the object that's the destination of the connection
(BOOL)isConnectingReturns YES if connection lines are being displayed
stopConnectingRemoves any connection lines from the screen
displayConnectionBetween:sourceCauses Interface Builder to draw connection lines between

and:destinationsource and destination

(BOOL)isTestingInterfaceReturns YES if Interface Builder is in Test mode

registerDocumentController:aControllerAdds aController to the list of objects to be notified when documents are opened or saved
unregisterDocumentController:aControllerRemoves aController from the list of document controllers

destinationImplement to return the object that's the destination of the connection
establishConnectionImplement to connect the source and destination objects
freeImplement to release the storage for the connector object
nibInstantiateImplement to verify the identities of the connector's source and destination objects
read:(NXTypedStream *)streamImplement to unarchive the connector object from stream
renewObject:oldImplement to update a connector by replacing its old

to:newsource or destination object with a new object
sourceImplement to return the object that's the source of the connection
write:(NXTypedStream *)streamImplement to archive the connector object to stream

touchMarks the document as edited
getDocumentPathIn:(char *)bufferPlaces the document's path in buffer



attachObject:anObject Adds anObject to the hierarchy by attaching it to parent
to:parent

attachObjects:(List *)objectListAdds the objects in objectList to the hierarchy by attaching
to:parentthem to parent

deleteObject:anObjectRemoves anObject from the object hierarchy
deleteObjects:(List *)objectListRemoves objects in objectList from the object hierarchy
copyObject:anObjectCopies anObject to the specified pasteboard

type:(NXAtom)type
inPasteboard:(Pasteboard *)aPasteboard

copyObjects:(List *)objectListCopies the objects in objectList to the specified pasteboard
type:(NXAtom)type
inPasteboard:(Pasteboard *)aPasteboard

(List *)pasteType:(NXAtom)typeAlerts the document object that objects were pasted
fromPasteboard:(Pasteboard *)pboard
parent:theParent

(BOOL)objectIsMember:anObjectReturns YES if anObject is a part of the object hierarchy
getObjects:(List *)objectListPlaces the objects from the object hierarchy into objectList
getParentForObject:anObjectReturns the object above anObject in the object hierarchy

(BOOL)setName:(const char *)nameSets the name associated with the anObject
for:anObject

getNameIn:(char *)name Places the name associated with anObject in the buffer
for:anObjectname

addConnector:aConnectorAdds a connector object to Interface Builder's list
removeConnector:aConnectorRemoves aConnector from the list of connectors
listConnectors:(List *)aListPlaces in aList connector objects whose sources

forSource:aSourceare aSource
listConnectors:(List *)aListPlaces in aList connector objects whose destinations

forDestination:aDestinationare aDestination
listConnectors:(List *)aListPlaces in aList the connector objects of class

forSource:aSourcefilterClass whose sources are aSource
filterClass:filterClass

listConnectors:(List *)aListPlaces in aList the connector objects of class
forDestination:aDestinationfilterClass whose destinations are aDestination
filterClass:filterClass

setSelectionFrom:anEditorRegisters anEditor as the editor that owns the selection
editorDidClose:anEditorInforms the document object that anEditor is no longer

for:anObjectactive
getEditor:(BOOL)createItReturns the editor object for anObject

for:anObject
(BOOL)openEditorFor:anObjectOpens the editor object for anObject

redrawObject:anObjectRedraws the selected object by opening required editors



didOpenDocument:theDocumentNotifies the controller that theDocument has been opened
didSaveDocument:theDocumentNotifies the controller that theDocument has been saved
willSaveDocument:theDocumentNotifies the controller that the user is attempting to save theDocument

initWith:anObjectImplement to initialize a newly allocated editor
inDocument:aDocument

documentImplement this method to return the active document
editedObjectImplement to return the object that's being edited
windowImplement to return the editor window

resetObject:anObjectImplement to redraw anObject

(BOOL)wantsSelectionImplement to return YES if the editor is willing to become the selection owner
selectObjects:(List *)objectListImplement to draw the objects in objectList as selected
makeSelectionVisible:(BOOL)showItImplement to make the current selection visible

(BOOL)copySelectionImplement to copy the selected object(s) to the pasteboard
(BOOL)deleteSelectionImplement to delete the selected object(s)
(BOOL)pasteInSelectionImplement to paste object(s) from pasteboard into selection
(NXAtom)acceptsTypeFrom:(const NXAtom *)typeList

Implement to return the pasteboard type your editor accepts

closeImplement to close the editor and free its resources
openSubeditorFor:anObjectImplement to open the subeditor for anObject
closeSubeditorsImplement to close all subeditors

orderFrontImplement to bring the editor's window to the front
(BOOL)activateImplement to activate the editor

ok:senderImplement in subclass to commit changes made in the Inspector panel
revert:senderImplement in subclass to load data into inspector's display
(BOOL)wantsButtonsReturns whether the inspector requires Interface Builder to display OK and Revert buttons in the Inspector panel



(const char *)getConnectInspectorClassNameReturns the class name of the receiver's connection inspector
(const char *)getEditorClassNameReturns the class name of the receiver's editor
(const char *)getHelpInspectorClassNameReturns the class name of the receiver's help inspector
(NXImage *)getIBImageReturns the image that's displayed in the File window when an instance of this class is created
(const char *)getInspectorClassNameReturns the class name of the receiver's attributes inspector
(const char *)getSizeInspectorClassNameReturns the class name of the receiver's size inspector

getSelectionInto:(List *)objectListImplement to place the selected objects into objectList
redrawSelectionImplement to redraw the objects in the selection
(unsigned)selectionCountImplement to return the number of objects in the editor's selection


