
Driver Kit Example:
Building, Loading, and Debugging

This example shows you how to compile a simple Driver Kit driver, load it, and debug it with
GDB.    (GDB is a source-level debugger that's described in Chapter 9 of NEXTSTEP
Operating System Software and in NEXTSTEP Development Tools and Techniques.)

You need superuser access to two Intel-based computers to use GDB on your driver.    The
driver will run on one (the slave computer), and GDB will run on the other (the master
computer).

For information about the Driver Kit, use the Driver Kit target of
/NextLibrary/Bookshelves/NextDeveloper.bshlf.

Building the example driver

To build the driver, follow these steps:

1) Copy the myTestDriver directory to the place you'd like to work in, such as your home
directory.

2) Open your copy of myTestDriver/PB.project.    This opens the driver project in
ProjectBuilder.    You can browse the Files view to see how the driver files are organized.

3) Change to the Builder view by clicking the rightmost button in the top of the
ProjectBuilder window.

4) Make sure the Target pop-up list is set to bundle, and click the Build button.   
ProjectBuilder builds the driver and the user-level tester tool, and puts them into a
configuration bundle at myTestDriver/myTestDriver.config.

You must perform one more step to build a debuggable version of the driver:

5) In a Terminal window, change to the directory myTestDriver/myTestDriver_reloc.tproj,
make a debug version of the driver, and copy the relocatable file into
myTestDriver/myTestDriver.config.
slave> make debug
slave> rm ../myTestDriver.config/myTestDriver_reloc
slave> cp myTestDriver_reloc ../myTestDriver.config

Loading the example driver

To load the driver:

1) Copy the driver bundle into the /usr/Devices directory of the slave computer.
slave> su
slave# "rm" -r /usr/Devices/myTestDriver.config
slave# cp -r ../myTestDriver.config /usr/Devices

2) Load the driver and initialize it using driverLoader and, optionally, kl_util.

To load and initialize the driver the simple way:

slave# driverLoader d=myTestDriver
Answer queries with 'y' for 'yes', anything else is 'no'.

 Load driver myTestDriver? y
Using Default table for myTestDriver
Configure driver myTestDriver unit 0? y
slave#

To load and initialize the driver so that you can set breakpoints in initialization code
(setting breakpoints is described later):

slave# kl_util -a /usr/Devices/myTestDriver.config/myTestDriver_reloc
Adding server with relocatable

/usr/Devices/myTestDriver.config/myTestDriver_reloc
/usr/Devices/myTestDriver.config/myTestDriver_reloc is thin mach-o
Allocating server myTestDriver
Server myTestDriver linking

/usr/Devices/myTestDriver.config/myTestDriver_reloc against /mach
Server myTestDriver linking relocatable

"/usr/Devices/myTestDriver.config/myTestDriver_reloc" into loadable
"/usr/Devices/myTestDriver.config/myTestDriver_loadable"

Server myTestDriver Allocated
slave# kl_util -l myTestDriver
Server myTestDriver loading
state.eip = 15cd80
Server myTestDriver download complete
Server myTestDriver starting up
Server myTestDriver Loaded

...Attach the debugger and establish breakpoints, as described later...

slave# driverLoader d=myTestDriver

Important:    Driver Kit drivers can't be unloaded and then reloaded.    To reload a Driver Kit
driver, you must restart the computer.

4) The driver's output appears in the system message log.
slave> tail -2 /usr/adm/messages
Aug 18 18:02:50 slave mach: myTestDriver: interrupt 2 channel 1

Aug 18 18:02:50 slave mach: Registering: myTestDriver0

If your driver didn't load, make sure you followed all the above steps properly.   
/usr/adm/messages may contain hints at the reason the driver failed to load.    Specifying
the verbose option to driverLoader (driverLoader d=myTestDriver v) may produce some
useful output, as well.

Debugging the example driver with GDB

Note:    In 3.2, to use GDB to debug a kernel, the slave machine needs to have an Ethernet
card that's controlled by a NeXT driver.    Non-NeXT drivers don't currently contain support
for GDB.

To debug the example driver with GDB, follow these steps:

1) Copy the loadable object file from /usr/Devices into a place accessible to the master.   
You need to do this again every time the driver is loaded.
slave> cp /usr/Devices/myTestDriver.config/myTestDriver_loadable ~

2) If the master computer is running the same kernel as the slave, change to the root
directory.    Otherwise, copy the slave's kernel to a place where the master can read it,
and change to that directory.

master> cd /

3) Update the network entry for the slave by running the ping command.    Press Control-C
after a few seconds.    If    the output of ping shows 100% packet loss, contact your
system administrator.
master> /etc/ping slave
PING slave: 56 data bytes
64 bytes from 129.18.2.98: icmp_seq=0. time=34. ms
64 bytes from 129.18.2.98: icmp_seq=1. time=3. ms
<Control-C>
----slave PING Statistics----
2 packets transmitted, 2 packets received, 0% packet loss
round-trip (ms) min/avg/max = 3/18/34

4) Start GDB, specifying the kernel's file.
master> gdb mach
GDB is free software and you are welcome to distribute copies of it
 under certain conditions; type "show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.7 (NeXT 3.1), Copyright 1992 Free Software Foundation, Inc...
Reading symbols from /mach...(no debugging symbols found)...done.

5) On the slave computer, open the Kernel Debugger window by holding down both
Alternate keys and pressing the NumLock key.

6) On the master computer, enter the kattach command.
(gdb) kattach slave
Attaching program: /mach to kernel on slave.

0x16e6eb in thread_io_bmap ()
(gdb)

Tip:    If kattach fails, see the troubleshooting section below for help.

7) Bring the symbol information from the loadable file into GDB.
(gdb) add-file /Net/users/jsmith/myTestDriver_loadable
Reading symbols from /Net/users/jsmith/myTestDriver_loadable...done.
(gdb)

8) Tell GDB where the driver's source files are.
(gdb) dir /Net/users/jsmith/myTestDriver
Source directories searched: /Net/users/jsmith/myTestDriver://:$cdir:
$cwd
(gdb)

9) Set breakpoints and then continue the slave kernel's execution.
(gdb) b panic
Breakpoint 1 at 0x10d63c
(gdb) b getCharValues:forParameter:count:
The following classes implement getCharValues:forParameter:count::
1) -EventDriver 4) -IODevice 7) -IOVPCodeDisplay
2) -EventSrcPCKeyboard 5) -IODisplay 8) -myTestDriver
3) -EventSrcPCPointer 6) -IOFrameBufferDisplay
Which one do you want? 8
Reading in symbols for myTestDriver.m...done.
Breakpoint 2 at 0x1f90996: myTestDriver.m:85.
(gdb) c

Continuing.

On the slave machine, you can run the user-level program to exercise the driver
(/usr/Devices/myTestDriver.config/tester).

10) To stop the slave's kernel (and get a "(gdb)" prompt) without hitting a breakpoint,
generate a nonmaskable interrupt on the slave computer by pressing both Alternate
keys and the NumLock key.
Program received signal 5, Trace/BPT trap
0x156e7a in idle_thread ()
(gdb)

11) To detach from the slave machine, first get a "(gdb)" prompt.    Then enter the kill
command and quit GDB.
(gdb) kill
Kill the inferior process? (y or n) y
(gdb) quit
master>

Note: The kill command does not kill the slave's kernel; in the future, another GDB
command will likely be used for detaching from the slave kernel.

Troubleshooting

This section describes problems you might encounter when following the instructions in this
document.    Some of these problems might already be corrected in this release.

GDB won't attach to the slave computer.

This is usually caused by one of these three reasons:

· The slave computer doesn't have the Kernel Debugger window open.      To open the
Kernel Debugger window, hold down both Alternate keys and press the NumLock key.

· Another copy of GDB is attached to the slave.    Use ps -aux | grep gdb to find this
other copy; you should terminate it with the kill command.

· The network entry for the slave has expired.    To update the network entry, exit GDB as
described below, and use the ping command as described in step 3 of the debugging
section.    You can retain the network entry until the master reboots by using the arp
command, as follows:

master# arp slave
slave (129.18.2.98) at 0:aa:0:18:5c:3d
master# arp -s slave 0:aa:0:18:5c:3d

You can make sure the arp -s command worked by running arp host again and checking
for "permanent" in the output:

master# arp slave
slave (129.18.2.98) at 0:aa:0:18:5c:3d permanent

GDB is attached to the slave computer, but you can't get a "(gdb)" prompt.

If the slave computer is unresponsive to Alternate-Alternate-NumLock, restart it by turning its
power off and then on again.    (Checking the disks will take a few minutes.)    To quit GDB,
type Control-Z, enter bg to see which background process GDB is, and then enter kill %n,
where n is the number shown by bg:

Control-Z
Stopped
master> bg
[1] gdb mach &
master> kill %1

