
Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

3

Assembly Language Statements

This chapter describes the assembly language statements that make up an assembly language
program.

The general format of an assembly language statement is shown below.    Each of the fields shown
here is described in detail in one of the following sections.

[label_field] [opcode_field [operand_field]] [comment_field]

A line may contain multiple statements separated by semicolons, or by at (@) signs for the hppa,
which may then be followed by a single comment:

[statement [; statement ...]] [comment_field]
[statement [@ statement ...]] [comment_field]

The following rules apply to the use of whitespace within a statement:

· Spaces or tabs are used to separate fields.
· At least one space or tab must occur between the opcode field and the operand field.
· Spaces may appear within the operand field.
· Spaces and tabs are significant when they appear in a character string.

Label Field
Labels are identifiers that you use to tag the locations of program and data objects.    Each label is
composed of an identifier and a terminating colon.    The format of the label field is:

identifier: [identifier:] ...

The optional label field can only occur first in a statement.    The following example shows a label
field containing two labels, followed by a (M68000-style) comment:

var: VAR: | two labels defined here

As shown here, letters in identifiers are case-sensitive, and both uppercase and lowercase letters may
be used.

Operation Code Field
The operation code field of an assembly language statement identifies the statement as a machine
instruction, an assembler directive, or a macro defined by the programmer:

· A machine instruction is indicated by an instruction mnemonic.    An assembly language
statement that contains an instruction mnemonic is intended to produce a single executable
machine instruction.    The operation and use of each instruction is described in the
manufacturer's user manual.

· An assembler directive (or pseudo-op) performs some function during the assembly process.    It
doesn't produce any executable code, but it may assign space for data in the program.

· Macros are defined with the .macro directive (see Chapter 4 for more information).

One or more spaces or tabs must separate the operation code field from the following operand field
in a statement.    Spaces or tabs are optional between the label and operation code fields, but they
help to improve the readability of the program.

Architecture- and Processor-Specific Caveats

M68000 (including MC68882)

· Many M68000 machine instructions can operate on byte, word, or long word data.    The desired
size is indicated as part of the instruction mnemonic by adding a trailing b, w, or l:

b byte (8-bit) data

w word (16-bit) data

l long word (32-bit) data

For instance, a movb instruction moves a byte of data, but a movw instruction moves a 16-bit
word of data.    In general, the default size for data manipulation instructions on the 68030 and
68040 processors is 16-bit word.

· Many 68882 instructions (as well as built-in floating-point instructions on the 68040) can operate
on other types of data besides byte, word, or long word integer data.    Again, the size required is
specified as part of the instruction mnemonic by a trailing letter:

s single-precision (32-bit) floating-point data

d double-precision (64-bit) floating-point data

x extended-precision (96-bit) floating-point data

p packed decimal (96-bit) floating-point data (note that the assembler currently doesn't
support packed immediate formats)

Intel i386 Architecture

· As with the Motorola 68000 family, i386 instructions can operate on byte, word, or long word
data (the last is called ªdouble wordº by Intel).    The size can be indicated in the same way as it is
for the MC68000.    If no size is specified, the assembler attempts to determine the size from the
operands.    For example, if the 16-bit names for registers are used as operands, a 16-bit operation
will be performed.    When both a size specifier and a size-specific register name are given, the
size specifier is used.    Thus, the following are all correct and result in the same operation:

 movw %bx,%cx
 mov %bx,%cx
 movw %ebx,%ecx

· An i386 operation code can also contain optional prefixes, which are separated from the
operation code by a slash (`/') character.    The prefix mnemonics are:

data16 operation uses 16-bit data

addr16 operation uses 16-bit addresses

lock exclusive memory lock

wait wait for pending numeric exceptions

cs, ds, es, fs, gs, ss
segment register override

rep, repe, repne
repeat prefixes for string instructions

More than one prefix may be specified for some operation codes.    For example:

lock/fs/xchgl %ebx,4(%ebp)

Segment register overrides and the 16-bit data specifications are usually given as part of the
operation code itself or of its operands.    For example, the following two lines of assembly
generate the same instructions:

movw %bx,%fs:4(%ebp)
data16/fs/movl %bx,4(%ebp)

Not all prefixes are allowed with all instructions.    The assembler does check that the repeat
prefixes for strings instructions are used correctly, but doesn't otherwise check for correct usage.

Operand Field
The operand field of an assembly language statement supplies the arguments to the machine
instruction, assembler directive, or macro.

The operand field may contain one or more operands, depending on the requirements of the
preceding machine instruction or assembler directive.    Some machine instructions and assembler
directives don't take any operand, and some take two or more.    If the operand field contains more
than one operand, the operands are generally separated by commas, as shown here:

[operand [, operand] ...]

The following types of objects can be operands:

· register operands
· register pairs
· address operands
· string constants
· floating-point constants
· register lists
· expressions

Register operands in a machine instruction refer to the machine registers of the processor or
coprocessor.    Register names may appear in mixed case.

Architecture- and Processor-Specific Caveats

Intel 386 Architecture

· The NeXT assembler orders operand fields for i386 instructions in the reverse order from Intel's
conventions.    Intel's convention is destination first, source second;    NeXT's is source first,
destination second.    Where Intel documentation would describe the Compare and Exchange
instruction for 32-bit operands as follows:

CMPXCHG r/m32,r32 # Intel processor manual convention

The NeXT assembler syntax for this same instruction is:

cmpxchg r32,r/m32 # NeXT assembler syntax

So an example of actual assembly code for the NeXT would be:

cmpxchg %ebx,(%eax) # NeXT assembly code

Comment Field
The assembler recognizes two types of comments in source code:

· A line whose first non-whitespace character is the hash character (#) is a comment.    This style
of comment is useful for passing C preprocessor output through the assembler.    Note that
comments of the form

 # line_number file_name level

get turned into

 .line line_number; .file file_name

This can cause problems when comments of this form which aren't intended to specify line
numbers precede assembly errors, since the error will be reported as occurring on a line relative
to that specified in the comment.    Suppose a program contains these two lines of assembly
source:

500
 .var

If ª.varº hasn't been defined, this fragment will result in the following error message:

var.s:500:Unknown pseudo-op: .var

· A comment field, appearing on a line after one or more statements.    The comment field consists
of the appropriate comment character and all the characters that follow it on the line:

| comment character for MC68000 processors

; comment character for hppa processors# comment character for i386 architecture
processors

An assembly language source line can consist of just the comment field; in this case, it's
equivalent to using the hash character comment style:

This is a comment.
| This is a comment.

Note the warning given above for hash character comments beginning with a number.

Direct Assignment Statements
This section describes direct assignment statements, which don't conform to the normal statement
syntax described throughout this chapter.    A direct assignment statement can be used to assign the
value of an expression to an identifier.    The format of a direct assignment statement is:

 identifier = expression

If expression in a direct assignment is absolute, identifier is also absolute, and it may be treated as a
constant in subsequent expressions.    If expression is relocatable, identifier is also relocatable, and it
is considered to be declared in the same program section as the expression.

The use of an assignment statement is analogous to using the .set directive (described in the
following chapter), except that the .set directive requires that expression be absolute.

Once an identifier has been defined by a direct assignment statement, it may be redefinedÐits value
is then the result of the last assignment statement.    There are a few restrictions, however,
concerning the redefinition of identifiers:

· Register identifiers may not be redefined.

· An identifier that has already been used as a label should not be redefined, since this would
amount to redefining the address of a place in the program.    Moreover, an identifier that has
been defined in a direct assignment statement cannot later be used as a label.    Only the second
situation produces an assembler error message.

