
Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

NS_DEV_DOCFOR:objc_class:NXJournal
er;, NXJournaler

Inherits From: Object

Declared In: appkit/NXJournaler.h

Class Description
The NXJournaler class defines an object that lets an application record and play back events and
sounds, a process called journaling.    By using an NXJournaler object, an application can journal
events flowing to one or more applicationsÐincluding itself.    Optionally, sound can be recorded
synchronously with the events.    Later, the recorded events and sound can be played back,
reenacting the activities as they occurred during the recording.    With journaling, you can implement
event-based macros or complete self-running demonstrations for your application.

Journaling is initiated by creating a new NXJournaler object and sending it a
setEventStatus:soundStatus:eventStream:soundfile: message.    The status arguments may have
the values NX_STOPPED, NX_PLAYING, and NX_RECORDING.    The event stream argument is
a stream to record to or play back from.    If you're recording, any data in the stream will be
overwritten.    It's not currently possible to add to the end of an existing event stream.    The sound
file argument is the name of a sound file to record to or play back from.

The new NXJournaler object becomes the application's master journaler, only one of which can exist
in a given application.    When recording begins for the first time, slave journalers are automatically
created in the other NEXTSTEP application that are currently running (and that allow journaling,
see below).    The slave journalers work at the master's behest, either sending it copies of the events
they receive (assuming the master is recording events) or playing back events that they receive from
the master (assuming the master is playing back a prerecorded event stream).    The master and slave
journalers can be accessed by using the Application class's masterJournaler and slaveJournaler
methods.    The masterJournaler method provides a convenient way for you to access this journaler
to start and stop recording.    The slaveJournaler method is rarely needed, unless your application
needs to respond differently when it's a part of a journaling session.    If so, you can query the slave
journaler to discover if a journaling session is under way and react accordingly.

When recording, by default all events going to any application are captured.    Sometimes, you may
not want certain applications to be recorded.    For example, you might want to prevent the
application that's recording the journal from being recorded.    There are two ways to control this:   
with the defaults system and by sending a setJournalable: message to the Application object.    Of
the two, the defaults system is the more general.

To use the defaults system to control journaling, add this code to the initialize method of the object
that will be controlling the journaling:

+ initialize
{
 static NXDefaultsVector myDefaults = {
 {"NXAllowJournaling", "NO"},
 {NULL}};
 NXRegisterDefaults([NXApp appName], myDefaults);
 return self;
}

This will prevent the application that contains the object from being journaled unless a user
overrides the default for that application in the user's default database.

A user can also disallow journaling of any given application by adding an entry to the defaults
database for that application.    This would be done by entering the following command line in a
Terminal window:

dwrite applicationName NXAllowJournaling NO

A less common way of allowing or disallowing journaling in an application is to send a
setJournalable: message to the Application object.    This allows more precise run-time control over
journaling in that application.

Event recording may be aborted by clicking the right mouse button while holding down the
Alternate key.    (Note:    For this to work, you must have the right mouse button enabled in the
Preferences application.)    Event playback can be aborted by typing a character with any key on the
keyboard.

Instance Variables
None declared in this class.

Method Types
Initializing and freeing an NXJournaler

- init
- free

Controlling journaling - setEventStatus:soundStatus:eventStream:soundfile:
- getEventStatus:soundStatus:eventStream:soundfile:
- setRecordDevice:
- recordDevice

Identifying associated objects - speaker
- listener
- setDelegate:
- delegate

Instance Methods
NS_DEV_DOCFOR:objc_method:[NXJournaler-delegate];, delegate

- delegate

Returns the NXJournaler's delegate.

See also:    - setDelegate:

NS_DEV_DOCFOR:objc_method:[NXJournaler-free];, free
- free

Frees the NXJournaler.    Send this message to an NXJournaler after you're completely done with it.

NS_DEV_DOCFOR:objc_method:[NXJournaler-
getEventStatus:soundStatus:eventStream:soundfile:];,

getEventStatus:soundStatus:eventStream:soundfile:
- getEventStatus:(int *)eventStatusPtr

soundStatus:(int *)soundStatusPtr
eventStream:(NXStream **) streamPtr
soundfile:(char **)soundfilePtr

Provides status information about the NXJournaler.    Values returned at eventStatusPtr and
soundStatusPtr can be NX_PLAYING, NX_RECORDING, or NX_STOPPED.    streamPtr is the
address of a pointer to the event stream.    soundfilePtr is the address of a pointer to the name of the
sound file.    Any of the arguments may be NULL if you don't want that piece of information.   
Returns self.

See also:    - setEventStatus:soundStatus:eventStream:soundfile:

NS_DEV_DOCFOR:objc_method:[NXJournaler-init];, init
- init

Initializes a newly allocated NXJournaler object.    The delegate of the new object is nil.    This is the
designated initializer for an NXJournaler object.    Returns self.

NS_DEV_DOCFOR:objc_method:[NXJournaler-listener];, listener
- listener

Returns the listener used by the NXJournaler to communicate with other applications.

See also:    - speaker

NS_DEV_DOCFOR:objc_method:[NXJournaler-recordDevice];, recordDevice
- (int)recordDevice

Returns whether sound is recorded from the CODEC microphone or from the DSP.    The return
value is either NX_CODEC or NX_DSP.

See also:    - setRecordDevice:

NS_DEV_DOCFOR:objc_method:[NXJournaler-setDelegate:];, setDelegate:
- setDelegate:anObject

Sets the delegate used by the NXJournaler.    The delegate is sent the method journalerDidEnd:
when either playing or recording the journal finishes.    If the journal was aborted, the delegate will
first receive the message journalerDidUserAbort:.    Returns self.

See also:    - delegate

NS_DEV_DOCFOR:objc_method:[NXJournaler-
setEventStatus:soundStatus:eventStream:soundfile:];,

setEventStatus:soundStatus:eventStream:soundfile:
- setEventStatus:(int)eventStatus

soundStatus:(int)soundStatus
eventStream:(NXStream *)stream
soundfile:(const char *)soundfile

Controls the recording and playback of events and sounds.    This is the main control point of the
NXJournaler.    The arguments eventStatus and soundStatus may be independently set to
NX_STOPPED, NX_PLAYING, NX_RECORDING.    By setting eventStatus to NX_RECORDING
and soundStatus to NX_STOPPED, it's possible to record events without the sound.    By setting
eventStatus to NX_PLAYING and soundStatus to NX_RECORDING, it's possible to dub new
sound over an existing event track.

The stream argument is the stream to record events to or playback events from.    When recording,

any preexisting data in the stream will be overwritten.    It's not currently possible to record onto the
end of an existing event stream.

The soundfile argument is the name of the file to record sound to or playback sound from.

If you logically OR NX_NONABORTABLEMASK into eventStatus, journaling will be made
nonabortable.

See also:    - getEventStatus:soundStatus:eventStream:soundfile:

NS_DEV_DOCFOR:objc_method:[NXJournaler-setRecordDevice:];, setRecordDevice:
- setRecordDevice:(int)device

Sets whether sound is recorded from the CODEC microphone (the default device) or from the DSP.
The constants NX_CODEC and NX_DSP can be used to specify the device.    The recording from
the DSP assumes that a peripheral is sending CD-quality    data (stereo,16-bit linear, 44.1 kHz) to the
DSP port.    However, to save space, the data is reduced to a 22.05-kHz, mono sound.

See also:    - recordDevice

NS_DEV_DOCFOR:objc_method:[NXJournaler-speaker];, speaker
- speaker

Returns the speaker used by the NXJournaler to communicate with the other applications.

See also:    - listener

Methods Implemented By The Delegate
NS_DEV_DOCFOR:objc_method:[NXJournaler-journalerDidEnd:];, journalerDidEnd:

- journalerDidEnd:journaler

Responds to a message informing the delegate that recording or playback of the journal is finished
or has been aborted.

See also:    - journalerDidUserAbort:

NS_DEV_DOCFOR:objc_method:[NXJournaler-journalerDidUserAbort:];, journalerDidUserAbort:
- journalerDidUserAbort:journaler

Responds to a message informing the delegate that the user has aborted the recording or playback
session.    A journalerDidUserAbort: message is sent when the NXJournaler in the controlling
application receives notice from one of the controlled applications that the user has generated an
abort event during recording or playback.    The delegate receives this message just before the
NXJournaler stops the recording or playback.

See also:    - journalerDidEnd:

