InStore: (I X Store *)aStorel nitializes a new store client in aStore

FromBlock:(unsigned int)aHandl el nitializes a store client from data previously stored in the
inStore: (I X Store *)aStoreblock identified by aHandle in aStore

=FromStoreRemoves the store client's storage from the I XStore and frees the run-time object

eeFromBlock:(unsigned int)aHandleFrees the data for the store client identified by aHandle in
inStore: (I X Store *)aStoreaStore, without necessarily creating an instance

Block:(unsigned int *)aHandleGets the identifier of the block owned by the store client,
andStore: (1 X Store **)aStoreand the | X Store that the block existsin

Comparator: (I X Comparator *)aComparator Sets the function used to compare items also
andContext:(const void *)aContextprovides aContext as arbitrary datato use in comparison

Comparator:(IX Comparator **)aComparatorGets the comparator function and context
andContext:(const void **)aContext

ComparisonFormat:(const char *)formatSets the data format of items compared by the receiver
nst char *)comparisonFormatReturns the data format of items compared

DOL)setKey:(void *)aK eySets the position of the receiver to aKey, if it exists,
andLength:(unsigned int)al engthotherwise to where akey would logically be returns YES if aKey exists

DOL)getKey:(void **)aK eyGets the key for the receiver's position and its length,
andL ength:(unsigned int *)alLengthsliding the receiver forward in the key space if needed and if possible returns YES if the
receiver ends up on akey

DOL)setFirstPositions the receiver at the first key if thereis one returns YES if thereis one, NO if not
DOL)setNextMoves the receiver forward one key value and returns Y ES if there's a key there

AttributeParsers:(List *)alistSets the | X AttributeParsers used to parse files
AttributeParsers:(List *)alistReturnsin aList the I X AttributeParsers used to parse files

SeneratesDescriptions. (BOOL)flagSets whether descriptions are generated automatically for files indexed
DOL)generatesDescriptionsReturns whether descriptions are generated automatically for files indexed

JpdatesAutomatically:(BOOL)flagSets whether the file finder automatically updates its indexes upon finding
DOL)updatesAutomaticallyReturns whether the file finder automatically updates its indexes

CrossesDeviceChanges: (BOOL)flagSets whether the file finder indexes or searches files on a different device
DOL)crossesDeviceChangesReturns whether the file finder indexes or searches files on a different device fror
-0llowsSymbolicLinks:(BOOL)flagSets whether the file finder follows symbolic links when building indexe:
DOL)followsSymbolicLinksReturns whether the file finder follows symbolic links when building indexes
ScansForM odifiedFiles:(BOOL)flagSets whether the file finder scans for files whose modification times have
DOL)scansForM odifiedFilesReturns whether the file finder scans for modified files

gnoredTypes:(const char *)typesSets to types the types of files that won't be indexed

ar *)ignoredTypesReturns the types of files that aren't indexed

gnoredNames:(const char *)namesSets to names the literal, base names of files that won't be indexed
ar *)ignoredNamesReturns the names of filesthat aren't indexed

nst char *)rootPathReturns the base path for the file finder's index

ordM anagerReturns the object that stores the file finder's | XFileRecords

PostingList *)performQuery:(const char *)aQuery
atPath:(const char *)pathEvaluates aQuery for sender returning in an
forSender:senderl X PostingList the | XFileRecords that match

nQueryForSender:sender Stops the query requested by sender

Finder:(IXFileFinder *)aFinderAsynchronously notifies the sender of a
didFindFile:(IXFileRecord *)aRecordperformQuery:atPath:forSender: message that aRecord matches the

Finder: (IXFileFinder *)aFinderAsynchronously notifies the sender of an
didFindList:(IXPostingList *)aListperformQuery:atPath:forSender: message that the I XFileRecordsin aL i

Finder:(IXFileFinder *)aFinderAsynchronously notifies the sender of an
willAddFile:(IXFileRecord *)aRecordupdatel ndexAtPath:forSender: message that aRecord is about to be:

signed int)getL exeme:(char *)aStringPuts the next lexeme from stream into aString
inLength:(unsigned int)aL ength
fromStream: (N X Stream *)stream

signed int)foldCase:(char *)aStringReduces aString to lowercase letters
inLength:(unsigned int)aL ength

WithName:(const char *)aNamel nitializes a new store client under aName in filename
inFile:(const char *)filename

FromName:(const char *)aNamelnitializes a store client from data previously stored under
inFile:(const char *)filenameaName in filename if flag is Y ES, changes can be
forWriting:(BOOL)flagwritten back to thefile

FromStoreRemoves the store client's storage from the I X StoreFile and frees the run-time object

eeFromName:(const char *)aNameFrees the data for the store file client identified by aNamein
andFile:(const char *)filenamefilename, without necessarily creating an instance

Name:(const char **)aNameGets the name of the store client, and the name of thefile
andFile:(const char **)filenamethat the data existsin

signed int)addHandle:(unsigned int)aHandleAdds a postings to the set of postings
withWeight:(unsigned int)aWeight
1oveHandle:(unsigned int)aHandleRemoves a postings from the set

signed int)countReturns the number of postings in the set

ptyEmpties all postings from the set

signed int)setHandle:(unsigned int)aHandleSets the selected posting to the one with aHandle and returns that
Isn't in the set
signed int)getHandle:(unsigned int *)aHandleGets the handle and weight of the selected posting
andWeight:(unsigned int *)aWeight
signed int)setFirstHandleSets the selected posting to the first in the set and returnsits handle, or O if there are
signed int)setNextHandl eSets the selected posting to the next in the set and returnsits handle, or O if there are

signed int)countReturns the number of records in the archive

dRecord:(unsigned int)aHandleReads the record identified by aHandle and returns the
fromZone:(NXZone *)zonecorresponding object allocated from zone

rce:al ranscriberNotifies the record identified by aHandle that it's been read
didReadRecord:(unsigned int)aHandle

rce:al ranscriberNotifies the record identified by aHandle that it's going to
willWriteRecord:(unsigned int)aHandl ebe written

shReadingAllows arecord just read to reinitialize itself or provide areplacement

