
initInStore:(IXStore *)aStoreInitializes a new store client in aStore
initFromBlock:(unsigned int)aHandleInitializes a store client from data previously stored in the

inStore:(IXStore *)aStoreblock identified by aHandle in aStore
freeFromStoreRemoves the store client's storage from the IXStore and frees the run-time object
+ freeFromBlock:(unsigned int)aHandleFrees the data for the store client identified by aHandle in

inStore:(IXStore *)aStoreaStore, without necessarily creating an instance

getBlock:(unsigned int *)aHandleGets the identifier of the block owned by the store client,
andStore:(IXStore **)aStoreand the IXStore that the block exists in

setComparator:(IXComparator *)aComparatorSets the function used to compare items also
andContext:(const void *)aContextprovides aContext as arbitrary data to use in comparison

getComparator:(IXComparator **)aComparatorGets the comparator function and context
andContext:(const void **)aContext

setComparisonFormat:(const char *)formatSets the data format of items compared by the receiver
(const char *)comparisonFormatReturns the data format of items compared

(BOOL)setKey:(void *)aKeySets the position of the receiver to aKey, if it exists,
andLength:(unsigned int)aLengthotherwise to where aKey would logically be returns YES if aKey exists

(BOOL)getKey:(void **)aKeyGets the key for the receiver's position and its length,
andLength:(unsigned int *)aLengthsliding the receiver forward in the key space if needed and if possible returns YES if the

receiver ends up on a key

(BOOL)setFirstPositions the receiver at the first key if there is one returns YES if there is one, NO if not
(BOOL)setNextMoves the receiver forward one key value and returns YES if there's a key there

(BOOL)setLastPositions the receiver at the last key if there is one returns YES if there is one, NO if not
(BOOL)setPreviousMoves the receiver back one key value and returns YES if there's a key there

(BOOL)isMatchReturns YES if the receiver is on akey, NO if it's between two keys or off either end of the key space

setAttributeParsers:(List *)aListSets the IXAttributeParsers used to parse files
getAttributeParsers:(List *)aListReturns in aList the IXAttributeParsers used to parse files

setGeneratesDescriptions:(BOOL)flagSets whether descriptions are generated automatically for files indexed
(BOOL)generatesDescriptionsReturns whether descriptions are generated automatically for files indexed

setUpdatesAutomatically:(BOOL)flagSets whether the file finder automatically updates its indexes upon finding out of date references
(BOOL)updatesAutomaticallyReturns whether the file finder automatically updates its indexes

setCrossesDeviceChanges:(BOOL)flagSets whether the file finder indexes or searches files on a different device from its root directory
(BOOL)crossesDeviceChangesReturns whether the file finder indexes or searches files on a different device from its root directory
setFollowsSymbolicLinks:(BOOL)flagSets whether the file finder follows symbolic links when building indexes
(BOOL)followsSymbolicLinksReturns whether the file finder follows symbolic links when building indexes
setScansForModifiedFiles:(BOOL)flagSets whether the file finder scans for files whose modification times have changed
(BOOL)scansForModifiedFilesReturns whether the file finder scans for modified files

setIgnoredTypes:(const char *)typesSets to types the types of files that won't be indexed
(char *)ignoredTypesReturns the types of files that aren't indexed
setIgnoredNames:(const char *)namesSets to names the literal, base names of files that won't be indexed
(char *)ignoredNamesReturns the names of files that aren't indexed

(const char *)rootPathReturns the base path for the file finder's index

recordManagerReturns the object that stores the file finder's IXFileRecords

(IXPostingList *)performQuery:(const char *)aQuery
atPath:(const char *)pathEvaluates aQuery for sender returning in an
forSender:senderIXPostingList the IXFileRecords that match

stopQueryForSender:senderStops the query requested by sender

updateIndexAtPath:(const char *)pathUpdates the indexes for files within path relative to the file
forSender:senderfinder's root path

(BOOL)isUpdatingReturns whether the file finder is updating its indexes
suspendUpdatingSuspends updating of indexes
resumeUpdatingResumes updating of indexes
cleanRemoves inaccurate or out of data information from indexes
resetCompletely empties indexes

fileFinder:(IXFileFinder *)aFinderAsynchronously notifies the sender of a
didFindFile:(IXFileRecord *)aRecordperformQuery:atPath:forSender: message that aRecord matches the query

fileFinder:(IXFileFinder *)aFinderAsynchronously notifies the sender of an
didFindList:(IXPostingList *)aListperformQuery:atPath:forSender: message that the IXFileRecords in aList match the query

fileFinder:(IXFileFinder *)aFinderAsynchronously notifies the sender of an
willAddFile:(IXFileRecord *)aRecordupdateIndexAtPath:forSender: message that aRecord is about to be added to the index

(unsigned int)getLexeme:(char *)aStringPuts the next lexeme from stream into aString
inLength:(unsigned int)aLength
fromStream:(NXStream *)stream

(unsigned int)foldCase:(char *)aStringReduces aString to lowercase letters
inLength:(unsigned int)aLength

initWithName:(const char *)aNameInitializes a new store client under aName in filename
inFile:(const char *)filename

initFromName:(const char *)aNameInitializes a store client from data previously stored under
inFile:(const char *)filenameaName in filename if flag is YES, changes can be
forWriting:(BOOL)flagwritten back to the file

freeFromStoreRemoves the store client's storage from the IXStoreFile and frees the run-time object
+ freeFromName:(const char *)aNameFrees the data for the store file client identified by aName in

andFile:(const char *)filenamefilename, without necessarily creating an instance

getName:(const char **)aNameGets the name of the store client, and the name of the file
andFile:(const char **)filenamethat the data exists in

setCount:(unsigned int)countSets the receiver's posting set to count postings
andPostings:(IXPosting *)postings

getCount:(unsigned int *)countGets the receiver's postings and their amount
andPostings:(IXPosting **)thePostings

(unsigned int)addHandle:(unsigned int)aHandleAdds a postings to the set of postings
withWeight:(unsigned int)aWeight

removeHandle:(unsigned int)aHandleRemoves a postings from the set

(unsigned int)countReturns the number of postings in the set

emptyEmpties all postings from the set

(unsigned int)setHandle:(unsigned int)aHandleSets the selected posting to the one with aHandle and returns that handle, or 0 if aHandle
isn't in the set

(unsigned int)getHandle:(unsigned int *)aHandleGets the handle and weight of the selected posting
andWeight:(unsigned int *)aWeight

(unsigned int)setFirstHandleSets the selected posting to the first in the set and returns its handle, or 0 if there are no postings
(unsigned int)setNextHandleSets the selected posting to the next in the set and returns its handle, or 0 if there are no more postings

(unsigned int)countReturns the number of records in the archive
readRecord:(unsigned int)aHandleReads the record identified by aHandle and returns the

fromZone:(NXZone *)zonecorresponding object allocated from zone

source:aTranscriberNotifies the record identified by aHandle that it's been read
didReadRecord:(unsigned int)aHandle

source:aTranscriberNotifies the record identified by aHandle that it's going to
willWriteRecord:(unsigned int)aHandlebe written

finishReadingAllows a record just read to reinitialize itself or provide a replacement

(unsigned int)addRecord:anObjectAdds anObject to the receiver's archive
replaceRecord:(unsigned int)aHandleReplaces the record identified by aHandle with anObject

with:anObject
removeRecord:(unsigned int)aHandleRemoves from the archive the record identified by aHandle

emptyEmpties the receiver's archive of all records

