

free
Registering the class+ deviceStyle
Getting and setting the interrupt port

attachInterruptPort
interruptPort

Handling messages to the interrupt port
commandRequestOccurred
interruptOccurred
interruptOccurredAt:
receiveMsg
timeoutOccurred
waitForInterrupt:

Running an I/O thread startIOThread
startIOThreadWithPriority:
startIOThreadWithFixedPriority:

Getting and setting the IODeviceDescription
deviceDescription
setDeviceDescription:

initFromDeviceDescription:
Reserving I/O ports reservePortRange:

releasePortRange:
Dealing with interrupts enableAllInterrupts

disableAllInterrupts
reserveInterrupt:
releaseInterrupt:
enableInterrupt:
disableInterrupt:
getHandler:level:argument:forInterrupt:

Mapping memory mapMemoryRange:to:findSpace:cache:
unmapMemoryRange:from:

Dealing with DMA channels enableChannel:
disableChannel:
reserveChannel:
releaseChannel:

Dealing with DMA buffers startDMAForBuffer:channel:
createDMABufferFor:length:read:needsLowMemory:

limitSize:
freeDMABuffer:
abortDMABuffer:

Setting the DMA mode setTransferMode:forChannel:
setAutoinitialize:forChannel:
setIncrementMode:forChannel:

Using the EISA extended mode register
setDMATransferWidth:forChannel:
setDMATiming:forChannel:
setEOPAsOutput:forChannel:
setStopRegisterMode:forChannel:

Getting a DMA channel's status currentAddressForChannel:
currentCountForChannel:
getDMATransferWidth:forChannel:
isDMADone:

Optional DMA locking reserveDMALock
releaseDMALock

Getting information about EISA slots
isEISAPresent
getEISAId:forSlot:

isPCIPresent
Reading and writing the entire configuration space

+ getPCIConfigSpace:withDeviceDescription:
+ setPCIConfigSpace:withDeviceDescription:
getPCIConfigSpace:withDeviceDescription:
setPCIConfigSpace:withDeviceDescription:

Reading and writing the configuration space
+ getPCIConfigData:atRegister:withDeviceDescription:
+ setPCIConfigData:atRegister:withDeviceDescription:
getPCIConfigData:atRegister:withDeviceDescription:
setPCIConfigData:atRegister:withDeviceDescription:

mapAttributeMemoryTo:findSpace:
unmapAttributeMemory:

(IOReturn)attachInterruptPort

Creates the interrupt port, if none exists already, and requests that the interrupt port receive all interrupt messages for the
device's reserved interrupts. This method is invoked whenever an interrupt is enabled. Returns IO_R_SUCCESS if
successful otherwise, returns IO_R_NOT_ATTACHED.

interruptPort, enableAllInterrupts (ªInstance Methods (ISA/EISA Architecture)º)

(void)commandRequestOccurred

Does nothing subclasses can implement this method if desired. This method is invoked by the default I/O thread
(implemented by startIOThread...) whenever it receives a bodyless message with ID IO_COMMAND_MSG. The part of
a driver that handles user requests can use this message to notify the I/O thread that it should execute a command that's
been placed in global data.

startIOThread

deviceDescription

Returns the IODeviceDescription associated with this instance.

setDeviceDescription:

free

Deallocates the IODirectDevice's memory and its interrupt port, if one exists. Returns nil.

(void)interruptOccurred

Invokes interruptOccurredAt: with an argument of zero. This method is invoked by the default I/O thread (implemented
by startIOThread...) whenever it receives a bodyless Mach message with the ID IO_DEVICE_INTERRUPT_MSG.
Subclasses that support only one interrupt should implement this method so that it processes the hardware interrupt, as
described in Chapter 1 and 2.

interruptOccurredAt:, startIOThread

(void)interruptOccurredAt:(int)localInterrupt

Does nothing subclasses that need to handle interrupts should implement this method so that it processes the hardware
interrupt, as described in Chapter 1. This method is invoked by the default I/O thread (implemented by startIOThread...)
whenever it receives a bodyless Mach message with an ID between IO_DEVICE_INTERRUPT_MSG_FIRST and
IO_DEVICE_INTERRUPT_MSG_LAST (excluding IO_DEVICE_INTERRUPT_MSG).

interruptOccurred, startIOThread

(port_t)interruptPort

Returns the Mach port on which the IODirectDevice should receive interrupt messages. The returned port_t is in the
context of the kernel I/O task.

attachInterruptPort:

(void)otherOccurred:(int)msgID

Does nothing subclasses can implement this method if desired. This method is invoked by the default I/O thread
(implemented by startIOThread...) whenever it receives a bodyless message with an unrecognized ID. The ID is given in
msgID.

receiveMsg, startIOThread

(void)receiveMsg

Dequeues the next Mach message from the interrupt port and throws it away subclasses can implement this method if
desired to handle custom messages. This method is invoked by the default I/O thread (implemented by startIOThread...)
whenever it tries to receive a message that has a body. To implement this message, you need to call msg_receive() on the
interrupt port. In this sample implementation, fill in the italicized text between angle brackets, that is << >>, with device-
specific code:

otherOccurred:, startIOThread

(void)setDeviceDescription:deviceDescription

Records deviceDescription as the IODeviceDescription associated with this instance. ISA/EISA-architecture devices
don't need to invoke this method because initFromDeviceDescription: already does so.

deviceDescription

(IOReturn)startIOThread

Invokes attachInterruptPort and, if attaching the interrupt port was successful, forks a thread to serve as the instance's I/O
thread. This thread, which is appropriate for most drivers, sits in an endless loop that does the following:

·Waits for a Mach message on the interrupt port by invoking waitForInterrupt:

·If the message couldn't be dequeued because it was too large, invokes receiveMsg so that the subclass can dequeue and
handle the message itself

·If the message is dequeued successfully, invokes one of five methods, depending on the message ID:

startIOThreadWithFixedPriority:, startIOThreadWithPriority:

(IOReturn)startIOThreadWithFixedPriority:(int)priority

The same as startIOThreadWithPriority:, except that the I/O thread's priority never lessens due to aging. This method lets
you do performance tuning by disabling priority aging.

For more information about scheduling policies and priorities, see Chapter 1 of the NEXTSTEP Operating System
Software manual.

startIOThread, startIOThreadWithPriority:

(IOReturn)startIOThreadWithPriority:(int)priority

The same as startIOThread, except that the I/O thread runs at the specified priority. This method lets you do performance
tuning by raising or lowering the thread's scheduling priority. By default, kernel I/O threads start with a priority equal to
the maximum user priority (currently 18).

For more information about priorities, see Chapter 1 of the NEXTSTEP Operating System Software manual.

startIOThread, startIOThreadWithFixedPriority:

(void)timeoutOccurred

Does nothing subclasses that support timeouts can implement this method. See the IOEthernet class for an example of
implementing this method as part of timeout support. This method is invoked by the default I/O thread (implemented by
startIOThread...) whenever it receives a bodyless Mach message with an ID of IO_TIMEOUT_MSG. See the
IOSCSIController class for an example of sending Mach messages.

startIOThread

(IOReturn)waitForInterrupt:(int *)msgID

Listens to the interrupt port until it detects a Mach message dequeues the message if possible. This method should be
invoked by the I/O thread whenever the thread needs to listen to the interrupt port. The default I/O thread provided by
IODirectDevice invokes this message as described under startIOThread.

If the interrupt port hasn't been set, this message returns IO_R_NO_INTERRUPT. If the message has a body, this method
leaves the message on the queue and returns IO_R_MSG_TOO_LARGE. If the message couldn't be dequeued due to
another reason, this method returns IO_R_IPC_FAILURE and logs an error message.

If a message is already on the queue when this method is invoked, this method dequeues the message and then attempts to
give up the processor before returning. Without this precaution, a thread with many messages queued could prevent other
kernel threads from being executed.

If this method successfully detects and dequeues a message, it sets msgId to the message's ID and returns
IO_R_SUCCESS.

startIOThread

(void)abortDMABuffer:(IOEISADMABuffer)buffer

Frees the memory allocated to buffer. If a read transfer is in progress, the data read is lost.

freeDMABuffer:

(IOEISADMABuffer)createDMABufferFor:(unsigned int *)physicalAddress length:(unsigned int)numBytes
read:(BOOL)isRead
needsLowMemory:(BOOL)lowerMem
limitSize:(BOOL)limitSize

Returns a DMA buffer for the contents of physical memory starting at physicalAddress and continuing for numBytes
bytes. You should specify YES for isRead if the data will be read from the device if the data will be written to the device,
specify NO. lowerMem should be YES if the transfer must be from or to the first 16MB of physical memory (as required
by some ISA devices) otherwise, it should be NO. To limit the size of the transfer to 64KB, specify limitSize as YES
otherwise, limitSize should be NO.

This method changes the physical address if necessary to accommodate the ISA bus. When the physical address is
changed, the data is copied to the new physical address (if the transfer is a write), and the new physical address is returned
in physicalAddress.

Returns NULL if kernel memory for the buffer couldn't be allocated.

freeDMABuffer:

(unsigned int)currentAddressForChannel:(unsigned int)localChannel

Returns the physical address currently in the address register of the specified DMA channel. This method can be invoked
at any timeÐeven when DMA is in progress. This method is often used along with autoinitialize mode. It's also used to
help diagnose errors when a device or channel aborts a DMA transfer.

Because this method uses a local equivalent of a resource, it can't be invoked until after this category's implementation of
initFromDeviceDescription: is invoked.

currentCountForChannel:, setAutoinitialize:forChannel:

(unsigned int)currentCountForChannel:(unsigned int)localChannel

Returns the number of bytes remaining to be transferred on the specified channel. The maximum number returned is equal

to the length of the DMA buffer currently being handled by the channel. This method is often used along with
autoinitialize mode. It's also used to help diagnose errors when a device or channel aborts a DMA transfer.

Because this method uses a local equivalent of a resource, it can't be invoked until after this category's implementation of
initFromDeviceDescription: is invoked.

currentAddressForChannel:, setAutoinitialize:forChannel:

(void)disableAllInterrupts

Disables all interrupts associated with this IODirectDevice, so that no interrupts can be generated by the hardware.
Returns IO_R_NO_INTERRUPT if no interrupt port is attached otherwise, returns IO_R_SUCCESS.

enableAllInterrupts, disableInterrupt:

(void)disableChannel:(unsigned int)localChannel

If the DMA channel corresponding to localChannel is reserved by this device, this method disables the channel. You
typically disable the channel just before changing its setting. You need to invoke enableChannel: once the channel is set
up so that transfers can occur.

Because this method uses a local equivalent of a resource, it can't be invoked until after this category's implementation of
initFromDeviceDescription: is invoked.

enableChannel:

(void)disableInterrupt:(unsigned int)localInterrupt

Disables the interrupt corresponding to localInterrupt.

Because this method uses a local equivalent of a resource, it can't be invoked until after this category's implementation of
initFromDeviceDescription: is invoked.

disableAllInterrupts, enableInterrupt:

(IOReturn)enableAllInterrupts

Creates and attaches an interrupt port, if one isn't already attached, and enables all interrupts associated with this
IODirectDevice. Returns IO_R_NO_INTERRUPT if the interrupt port couldn't be attached otherwise, returns
IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can't be invoked until after this category's implementation of
initFromDeviceDescription: is invoked.

attachInterruptPort, disableAllInterrupts, enableInterrupt:

(IOReturn)enableChannel:(unsigned int)localChannel

Enables transfers on the DMA channel corresponding to localChannel. Returns IO_R_NOT_ATTACHED if localChannel
doesn't correspond to a DMA channel or if the DMA channel isn't reserved by this device. Otherwise, returns
IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can't be invoked until after this category's implementation of
initFromDeviceDescription: is invoked.

disableChannel:, startDMAForBuffer:channel:

(IOReturn)enableInterrupt:(unsigned int)localInterrupt

Invokes attachInterruptPort and, if attachInterruptPort succeeds, enables the interrupt corresponding to localInterrupt and
returns IO_R_SUCCESS. If attachInterruptPort doesn't succeed, returns IO_R_NOT_ATTACHED.

Because this method uses a local equivalent of a resource, it can't be invoked until after this category's implementation of
initFromDeviceDescription: is invoked.

disableInterrupt:, enableAllInterrupts

(void)freeDMABuffer:(IOEISADMABuffer)buffer

Completes the transfer associated with buffer and frees the buffer. buffer should be a value returned by
createDMABufferFor:.... If createDMABufferFor:... changed the physical address and the transfer is a read, this method
moves the data from the new physical address to the old one. In other words, any data that's read appears at the address
passed to createDMABufferFor:... in the physicalAddress argument, not at the address returned in physicalAddress.

abortDMABuffer:, createDMABufferFor:length:read:needsLowMemory:limitSize:

(IOReturn)getDMATransferWidth:(IOEISADMATransferWidth *)width forChannel:(unsigned int)localChannel

Returns in width the width currently used for DMA transfers on the specified channel. The width can be 8-bit (IO_8Bit),
16-bit (IO_16BitByteCount), or 32-bit (IO_32Bit). On EISA systems, you can set the width using setDMATransferWidth:
forChannel:.

If localChannel doesn't correspond to a DMA channel, this method does nothing and returns IO_R_INVALID_ARG. If
the DMA channel isn't reserved by this device, this method does nothing and returns IO_R_NOT_ATTACHED.
Otherwise, this method returns IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can't be invoked until after this category's implementation of
initFromDeviceDescription: is invoked.

setDMATransferWidth:forChannel:

(BOOL)getEISAId:(unsigned int *)id forSlot:(int)slotNumber

Returns in id the EISA id for the specified slot. Returns YES if the slot is a valid EISA slot otherwise, returns NO. You
can use this method to loop through the computer's slots, testing each slot for whether it contains a particular card. For
example, the following code is executed in the QVision display driver's initFromDeviceDescription: method to determine
whether QVision hardware is present in the system.

isEISAPresent

(BOOL)getHandler:(IOInterruptHandler *)handler
level:(unsigned int *)ipl
argument:(unsigned int *)arg
forInterrupt:(unsigned int)localInterrupt

Does nothing and returns NO. Subclasses can implement this method to specify a function to directly handle the interrupt
specified by localInterrupt. This method is invoked every time an interrupt is enabled.

If this method returns YES, interrupts from the device result directly in a call to handler, with the driver-dependent
argument arg, at interrupt level ipl. Otherwise, interrupts result in a Mach message to the instance's interrupt port.

If you implement this method, you should use interrupt level 3 (IPLDEVICE, as defined in kernserv/i386/spl.h) unless a
higher interrupt level is absolutely necessary. Using interrupt levels greater than 3 requires great care and a good grasp of
NeXT kernel internals.

initFromDeviceDescription:deviceDescription

Initializes and returns the IODirectDevice instance. Records deviceDescription as the IODeviceDescription corresponding
to this IODirectDevice. Reserves all the interrupts, DMA channels, and I/O ports specified in deviceDescription. If any
resources can't be reserved, releases all resources and returns nil.

This method must be invoked before any methods that require local equivalents of resources can be used. For example,
mapMemoryRange:... requires that you specify the local equivalent of a memory range. However, IODirectDevices don't
know what memory ranges they can use until initFromDeviceDescription: has been invoked. This means, for example,
that subclass implementations of initFromDeviceDescription: must invoke the superclass's implementation of
initFromDeviceDescription: before they can map any memory ranges or do anything else that requires access to
resources.

(BOOL)isDMADone:(unsigned int)localChannel

Returns YES if DMA has completed on the specified channel otherwise, returns NO. If localChannel doesn't correspond
to a DMA channel, this method does nothing and returns IO_R_INVALID_ARG.

Because this method uses a local equivalent of a resource, it can't be invoked until after this category's implementation of
initFromDeviceDescription: is invoked.

(BOOL)isEISAPresent

Returns YES if the computer conforms to the EISA specification otherwise, returns NO.

getEISAId:forSlot:

(IOReturn)mapMemoryRange:(unsigned int)localMemoryRange to:(vm_address_t *)destinationAddress
findSpace:(BOOL)findSpace
cache:(IOCache)caching

Maps the device memory corresponding to localMemoryRange into the calling task's address space. localMemoryRange
is the local range number in the device description.

If findSpace is TRUE, this method ignores the destinationAddress and determines where the mapped memory should go,
returning the value in destinationAddress. If findSpace is FALSE, this method truncates destinationAddress to the nearest
page boundary, maps the memory to the truncated address, and returns the truncated address.

The caching argument determines how the memory is cached. Usually, it should be IO_WriteThrough. However, if
caching seems to be causing problems, try using IO_CacheOff instead.

If localMemoryRange doesn't correspond to one of this device's memory ranges, IO_R_INVALID_ARG is returned.
There must also be more than one I/O port range associated with the device (i.e. [deviceDescription numPortRanges] > 1)
otherwise IO_R_INVALID_ARG is returned. If the mapping couldn't be performed for another reason,
IO_R_NO_SPACE is returned. If the mapping was successful, returns IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can't be invoked until after this category's implementation of
initFromDeviceDescription: is invoked.

unmapMemoryRange:from:

(void)releaseChannel:(unsigned int)localChannel

Releases the DMA channel corresponding to localChannel so that another device can use the channel.

reserveChannel:

(void)releaseDMALock

Releases the lock associated with DMA. This method panics if this IODirectDevice doesn't hold the DMA lock.

Most drivers don't need to use DMA locking. However, the floppy drive (and possibly other devices) tends to have DMA
underruns when the bus is saturated. As a result, the floppy driver and drivers for devices that tend to saturate the bus use
DMA locking to avoid performing I/O at the same time. DMA locking is ignored by all other device drivers.

You don't have to use DMA locking unless your device is having DMA underruns or is causing another device to have
underruns. Sometimes these underruns occur on ISA computers, but not EISA ones. If your device is causing the floppy
drive to have underruns, you'll see the following error on the console while your device is performing I/O:

reserveDMALock

(void)releaseInterrupt:(unsigned int)localInterrupt

Releases the interrupt corresponding to localInterrupt so that another device can use the interrupt.

reserveInterrupt:

(void)releasePortRange:(unsigned int)localPortRange

Releases the range of I/O ports corresponding to localPortRange.

reservePortRange:

(IOReturn)reserveChannel:(unsigned int)localChannel

Reserves the DMA channel corresponding to localChannel so that no other device can use the channel. Returns
IO_R_NOT_ATTACHED if localChannel doesn't correspond to a DMA channel or if the DMA channel is reserved by
another device. Otherwise, returns IO_R_SUCCESS.

You don't normally have to invoke this method, since initFromDeviceDescription: reserves all the device's DMA
channels.

releaseChannel:

(void)reserveDMALock

Reserves the lock associated with DMA. See releaseDMALock for information on DMA locking.

(IOReturn)reserveInterrupt:(unsigned int)localInterrupt

Reserves the interrupt corresponding to localInterrupt so that no other device can use it. Returns
IO_R_NOT_ATTACHED if localInterrupt doesn't correspond to an interrupt or if another device has already reserved the
interrupt. Otherwise, returns IO_R_SUCCESS.

You don't normally have to invoke this method, since initFromDeviceDescription: reserves all the device's interrupts.

releaseInterrupt:

(IOReturn)reservePortRange:(unsigned int)localPortRange

Releases the range of I/O ports corresponding to localPortRange and returns IO_R_SUCCESS.

You don't normally have to invoke this method, since initFromDeviceDescription: reserves all the device's I/O ports.

releasePortRange:

(IOReturn)setAutoinitialize:(BOOL)flag forChannel:(unsigned int)localChannel

Sets the specified channel's autoinitialize DMA mode to on if flag is YES otherwise, sets it off. The new autoinitialize
mode stays in effect until this method is invoked again or the computer is rebooted. By default, autoinitialize mode is
disabled.

If localChannel doesn't correspond to a DMA channel, this method does nothing and returns IO_R_INVALID_ARG. If
the DMA channel isn't reserved by this device, this method does nothing and returns IO_R_NOT_ATTACHED.
Otherwise, this method returns IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can't be invoked until after this category's implementation of
initFromDeviceDescription: is invoked.

setIncrementMode:forChannel:, setTransferMode:forChannel:

(IOReturn)setDMATiming:(IOEISADMATiming)timing forChannel:(unsigned int)localChannel

Makes the specified channel use the specified DMA bus cycleÐISA- compatible (IO_Compatible), Type A (IO_TypeA),
Type B (IO_TypeB), or burst (IO_Burst), which is also known as Type C. This method is valid only on EISA systems.

If the system is ISA-based, this method does nothing and returns IO_R_UNSUPPORTED. If localChannel doesn't
correspond to a DMA channel, this method does nothing and returns IO_R_INVALID_ARG. If the DMA channel isn't
reserved by this device, this method does nothing and returns IO_R_NOT_ATTACHED. Otherwise, this method returns
IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can't be invoked until after this category's implementation of
initFromDeviceDescription: is invoked.

(IOReturn)setDMATransferWidth:(IOEISADMATransferWidth)width forChannel:(unsigned int)localChannel

Makes the specified channel use the specified width for DMA transfers. The width can be 8-bit (IO_8Bit), 16-bit
(IO_16BitByteCount), or 32-bit (IO_32Bit). The 16-bit mode requires byte counting, not word counting (which is
unsupported). This method is valid only on EISA systems.

If the system is ISA-based, this method does nothing and returns IO_R_UNSUPPORTED. If localChannel doesn't
correspond to a DMA channel, this method does nothing and returns IO_R_INVALID_ARG. If the DMA channel isn't
reserved by this device, this method does nothing and returns IO_R_NOT_ATTACHED. Otherwise, this method returns
IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can't be invoked until after this category's implementation of
initFromDeviceDescription: is invoked.

(IOReturn)setEOPAsOutput:(BOOL)flag forChannel:(unsigned int)localChannel

Selects whether the specified channel's EOP pin is an output signal (the default) or an input signal. This method is valid
only on EISA systems.

If the system is ISA-based, this method does nothing and returns IO_R_UNSUPPORTED. If localChannel doesn't
correspond to a DMA channel, this method does nothing and returns IO_R_INVALID_ARG. If the DMA channel isn't
reserved by this device, this method does nothing and returns IO_R_NOT_ATTACHED. Otherwise, this method returns
IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can't be invoked until after this category's implementation of
initFromDeviceDescription: is invoked.

(IOReturn)setIncrementMode:(IOIncrementMode)mode forChannel:(unsigned int)localChannel

This method lets the driver specify how the start address and length of its DMA buffers should be interpreted. By default,
the increment mode is IO_Increment, so each DMA buffer is interpreted so that if the start address is n and the length is
m, the data in addresses n through n + m 1 are transferred. By setting the increment mode to IO_Decrement, however, the
driver specifies that the affected addresses should be n through n m + 1. The new increment mode is in effect until this
method is invoked again or until the computer is rebooted.

If localChannel doesn't correspond to a DMA channel, this method does nothing and returns IO_R_INVALID_ARG. If
the DMA channel isn't reserved by this device, this method does nothing and returns IO_R_NOT_ATTACHED.
Otherwise, this method returns IO_R_SUCCESS.

setAutoinitialize:forChannel:, setTransferMode:forChannel:

(IOReturn)setStopRegisterMode:(IOEISAStopRegisterMode)mode forChannel:(unsigned int)localChannel

Enables or disables the specified channel's Stop register. By default, the Stop register is disabled. You can enable it by
specifying mode to be IO_StopRegisterEnable. This method is valid only on EISA systems.

(IOReturn)setTransferMode:(IODMATransferMode)mode forChannel:(unsigned int)localChannel

Sets the specified channel's transfer mode to mode. The new transfer mode stays in effect until this method is invoked
again or the computer is rebooted.

If localChannel doesn't correspond to a DMA channel, this method does nothing and returns IO_R_INVALID_ARG. If
the DMA channel isn't reserved by this device, this method does nothing and returns IO_R_NOT_ATTACHED.
Otherwise, this method returns IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can't be invoked until after this category's implementation of
initFromDeviceDescription: is invoked.

setAutoinitialize:forChannel:, setIncrementMode:forChannel:

(IOReturn)startDMAForBuffer:(IOEISADMABuffer)buffer channel:(unsigned int)localChannel

Begins DMA with buffer on the DMA channel specified by localChannel, and returns IO_R_SUCCESS. DMA isn't
started if localChannel doesn't correspond to a DMA channel (in which case IO_R_INVALID_ARG is returned), if the
DMA channel isn't assigned, or if no DMA frames could be allocated (IO_R_NO_FRAMES is returned).

Because this method uses a local equivalent of a resource, it can't be invoked until after this category's implementation of
initFromDeviceDescription: is invoked.

(void)unmapMemoryRange:(unsigned int)localMemoryRange
from:(vm_address_t)address

Unmaps the device memory corresponding to localMemoryRange from the calling task's address space. The value of
address must be the same as the value returned by the destinationAddress argument of mapMemoryRange:to:findSpace:
cache: for the same localMemoryRange.

mapMemoryRange:to:findSpace:cache:

(IOReturn)getPCIConfigData:(unsigned long *)data
atRegister:(unsigned char)address

Reads from the device's configuration space at the byte address address. All accesses are 32 bits wide and address must
be aligned as such.

(IOReturn)getPCIConfigSpace:(IOPCIConfigSpace *)configurationSpace

Reads the device's entire configuration space. Returns IO_R_SUCCESS if successful. If this method fails, the driver
should make no assumptions about the state of the data returned in the IOPCIConfigSpace struct.

(BOOL)isPCIPresent

Returns YES if PCI Bus support is enabled. Returns NO otherwise.

(IOReturn)setPCIConfigData:(unsigned long)data
atRegister:(unsigned char)address

Writes to the device's configuration space at the byte address address. All accesses are 32 bits wide and address must be
aligned as such.

(IOReturn)setPCIConfigSpace:(IOPCIConfigSpace *)configurationSpace

Writes the device's entire configuration space. Returns IO_R_SUCCESS if successful. If this method fails, the driver
should make no assumptions about the state of the device's configuration space.

(IOReturn)mapAttributeMemoryTo:(vm_address_t *)destinationAddressfindSpace:(BOOL)findSpace

Maps attribute memory to destinationAddress in findSpace.

unmapAttributeMemory:

(void)unmapAttributeMemory

Unmaps attribute memory.

mapAttributeMemoryTo:findSpace:

