
initForNetworkDevice:name:unit:type:
maxTransferUnit:flags:

finishInitialization
Passing packets from the driver up to the protocol stack

handleInputPacket:extra:
Outputting a packet outputPacket:address:
Performing a command performCommand:data:
Allocating a network buffer allocateNetbuf
Keeping statistics collisions

incrementCollisions
incrementCollisionsBy:
incrementInputErrors
incrementInputErrorsBy:
incrementInputPackets
incrementInputPacketsBy:
incrementOutputErrors
incrementOutputErrorsBy:
incrementOutputPackets
incrementOutputPacketsBy:
inputErrors
inputPackets
outputErrors
outputPackets

(netbuf_t)allocateNetbuf

This method creates and returns a netbuf to be used for an impending output.

This method doesn't always have to return a buffer. For example, you might want to limit the number of buffers your
driver instance can allocate (say, 200 kilobytes worth) so that it won't use too much wired-down kernel memory. When
this method fails to return a buffer, it should return NULL.

Here's an example of implementing allocateNetbuf.



(unsigned int)collisions

Returns the total number of network packet collisions that have been detected since boot time.

(int)handleInputPacket:(netbuf_t)packet extra:(void *)extra

Increments the number of input packets and passes packet to the kernel for processing. The kernel dispatches the packet to
the appropriate protocol handler, as described <<only in the OS book, for now>>.

A network device driver should invoke this method after it's processed a newly received packet. The value of extra should
be zero, unless the protocol handler requires another value. For instance, token ring drivers need to return a valid pointer
to a token ring header. This method returns EAFNOSUPPORT if no protocol handler accepts the packet otherwise, it
returns zero.

(void)incrementCollisions

Increments by one the total number of network packet collisions that have been detected since boot time.

(void)incrementCollisionsBy:(unsigned int)increment

Increments by increment the total number of network packet collisions that have been detected since boot time.

(void)incrementInputErrors

Increments by one the total number of packet input errors that have been detected since boot time.

(void)incrementInputErrorsBy:(unsigned int)increment

Increments by increment the total number of packet input errors that have been detected since boot time.



(void)incrementInputPackets

Increments by one the total number of packets that have been received by the computer since boot time. You usually
don't need to invoke this method because handleInputPacket:extra: does so for you.

(void)incrementInputPacketsBy:(unsigned int)increment

Increments by increment the total number of packets that have been received by the computer since boot time.

(void)incrementOutputErrors

Increments by one the total number of packet output errors that have been detected since boot time.

(void)incrementOutputErrorsBy:(unsigned int)increment

Increments by increment the total number of packet output errors that have been detected since boot time.

(void)incrementOutputPackets

Increments by one the total number of packets that have been transmitted by the computer since boot time.

(void)incrementOutputPacketsBy:(unsigned int)increment

Increments by increment the total number of packets that have been transmitted by the computer since boot time.

initForNetworkDevice:device
name:(const char *)name
unit:(unsigned int)unit
type:(const char *)type
maxTransferUnit:(unsigned int)mtu
flags:(unsigned int)flags

Initializes and returns the IONetwork instance associated with the specified direct device driver device. This method
connects device into the kernel's networking subsystem. It's typically called from a network driver's implementation of
initFromDeviceDescription. You shouldn't invoke initForNetworkDevice:... directly. IOEthernet and IOTokenRing
invoke this method on behalf of their subclasses and return an IONetwork object in their respective
attachToNetworkWithAddress: methods.

The name argument should be set to a constant string that names this type of network device. For example, Ethernet
drivers are named ªenº, and Token Ring drivers are named ªtrº. The unit is an integer greater than or equal to zero that's
unique for name. For example, the first instance of an Ethernet driver is unit 0, the second is unit 1, and so on.

The type is a constant string that describes this module. For example, Ethernet drivers supply the constant
IFTYPE_ETHERNET (which is defined in net/etherdefs.h to be ª10MB Ethernetº) .

The mtu is the maximum amount of data your module can send or receive. For example, Ethernet drivers use the value



(unsigned int)inputErrors

Returns the total number of packet input errors that have been detected since boot time.

(unsigned int)inputPackets

Returns the total number of packets that have been received by the computer since boot time.

(unsigned int)outputErrors

Returns the total number of packet output errors that have been detected since boot time.

(int)outputPacket:(netbuf_t)packet address:(void *)address

This method should deliver the specified packet to the given address. Its return value should be zero if no error occurred
otherwise, return an error number from the header file sys/errno.h.

If you implement this method, you need to check that [self isRunning] == YES. If so, insert the necessary hardware
addresses into the packet and check it for minimum length requirements.

(unsigned int)outputPackets

Returns the total number of packets that have been transmitted by the computer since boot time.

(int)performCommand:(const char *)command data:(void *)data

This method performs arbitrary control operations the character string command is used to select between these
operations. Although you don't have to implement any operations, there are five standard operations. You can also define
your own operations.

The standard commands are listed in the following table. The constant strings listed below are declared in the header file
net/netif.h (under the bsd directory of /NextDeveloper/Headers).




