
Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

1

Driver Kit Architecture

The Driver Kit is a tool kit for writing object-oriented device drivers. Part of the NEXTSTEP 
Developer software (except for 680x0-based computers), it simplifies writing device drivers for 
NEXTSTEP systems. The Driver Kit provides as much of the software in a device driver as possible 
without specific information about the device. The Driver Kit developers have already done much of 
the work of writing a NEXTSTEP device driver for you.

The preface briefly described the Driver Kit and mentioned a few of its advantages. This chapter 
provides greater detail about what a Driver Kit driver is and how it's structured. It discusses the 
components of the Driver Kit and what they do. It contrasts developing a Driver Kit driver to 
developing a typical UNIXädriverÐthis contrast shows some of the advantages of the Driver Kit 
approach. It talks about the various Driver Kit classes and how you create a driver with them. The 
chapter finishes with a discussion of how drivers are integrated into the system at startup time, how 
interrupts are handled, and how users interface with drivers.

Driver Kit Components
The Driver Kit consists of the following tools:

· Objective C classes and protocols that provide the framework for writing drivers for various 
types of devices. The first three chapters discuss how to use these classes. The section ªClassesº 
in Chapter 5, ªDriver Kit Reference,º specifies each class in detail.

· Objective C classes that help user-level programs to configure and communicate with drivers. 
Configuration is discussed in Chapter 4, ªBuilding, Configuring, and Debugging Drivers.º The 
ªThe User-Level Interface to Driversº section in this chapter and ªInterfacing with the Driverº in 
Chapter 2, ªDesigning a Driver,º tell how to communicate with drivers.

· C functions that provide debugging capabilities, kernel services such as memory and time 
management, and other services. These functions provide most of the operating system services 
your driver should need. The ªFunctionsº section of Chapter 5, ªDriver Kit Reference,º contains 
specifications for these functions.

· Utility programs that help you load a driver into an already running system and help you test and 
debug your driver. Chapter 4, ªBuilding, Configuring, and Debugging Drivers,º tells you about 
these programs.

The rest of this chapter describes the basics of Driver Kit architecture.

Why Objective C?



Why is Objective C the required language for the Driver Kit? Part of the reason is that all other 
NEXTSTEP Application Program Interfaces (APIs) are object-oriented and use Objective C. But 
more importantly, drivers benefit in several ways from object-orientation and Objective C:

· NaturalnessÐObject orientation is a natural design method for drivers. Each hardware object can be 
modeled by a software object, and functionality common to a group of drivers (such as display drivers) can be 
provided by superclasses.
· FlexibilityÐObjective C provides dynamic typing and binding, which help different objects communicate 
without having to be compiled together. For example, this lets a SCSI peripheral driver determine at run time which 
SCSI controller driver it should communicate with. You can simulate dynamism using function lookup tables and 
type casting in ANSI C, but this results in code that's harder to understand and maintain. 
· Code reductionÐThe Driver Kit provides classes that significantly lessen the amount of code you have to 
write. For example, the IODirectDevice class greatly simplifies configuration and initialization, and 
IOFrameBufferDisplay takes care of almost everything that a display driver must do.

See NEXTSTEP Object-Oriented Programming and the Objective C Language for more 
information on Objective C.

Device and Bus Support
The Driver Kit has classes to help you write drivers for several kinds of devices:

· Displays
· Network cards for Ethernet and Token Ring networks
· SCSI controllers and peripherals such as tape drives
· Sound cards

The IOEthernet class, for example, provides much of the functionality required for Ethernet drivers. 
To write a driver for a new type of Ethernet card, you need to implement only six methods, filling in 
the details of how your hardware performs the various functions required in an Ethernet driver.

Chapter 3, ªSupport for Specific Devices,º tells you how to implement a driver for device types the 
Driver Kit explicitly supports.

You can write drivers for other kinds of devices than those listed above. The devices above are 
merely those that the Driver Kit specifically supports. 

In addition, the Driver Kit has general-purpose classes that support these computer buses:

· ISA (Industry Standard Architecture)
· EISA (Extended Industry Standard Architecture, a superset of ISA)
· VL-Bus (VESA Local Bus, where VESA is Video Electronics Standards Association)
· PCI (Peripheral Component Interconnect)
· PCMCIA (Personal Computer Memory Card International Association)

Both ISA and VL-Bus are supported through the EISA bus class.

You indicate the bus type that your driver works with in the configuration file for the driver. See 
Chapter 4, ªBuilding, Configuring, and Debugging Drivers,º for more information.

Driver Structure
To appreciate the structural simplicity of a Driver Kit driver, first consider how standard UNIX 
drivers are constructed.



UNIX Driver Architecture
A UNIX driver has a ªtop-halfº that is accessed through the system call interface and runs in the 
kernel on behalf of a user process. It manages the driver state and initiates data transfers. The 
ªbottom- halfº runs at interrupt level since it's driven by interrupts caused by data transfer 
completion or other asynchronous events. Interrupts are handled by the driver's interrupt handler, 
which may call top-half routines at interrupt priorities. Indirect devicesÐdevices that are not directly 
connected to the processor, such as secondary-bus devices or SCSI peripheralsÐare each handled in 
an individual fashionÐthere's no systematic way to treat them.

This design paradigm has several consequences:

· Multiple requests may attempt to access the same hardware or driver data structures at the same 
time.

· Interrupts may occur at any time, and their handlers may also need to access hardware or data 
structures.

To coordinate access to these hardware and data resources, the driver must use such tactics as 
disabling interrupts, changing processor priority, and engaging locks of various types. The resulting 
code is often complicated: difficult to write, debug, understand, and maintain.

Driver Kit Driver Architecture
You can write a UNIX style driver with the Driver Kit, but that's not the best way to go about it. 
Driver Kit drivers differ significantly from traditional UNIX or MS-DOSädrivers. Driver Kit drivers 
have these characteristics:

· Drivers are objects. The Driver Kit is written in the Objective C language, which supports object-
oriented programming. This programming approach also allows code that's common to all 
driversÐor a set of drivers such as network driversÐto be written once and inherited by 
subclasses.

· By default, each driver uses only one threadÐthe I/O threadÐto access its hardware device. All 
I/O threads reside in a separate kernel taskÐthe I/O kernel task. 

· By default, there's one I/O thread for each hardware device. Given any hardware resource, only 
one thread deals with that resource at a time. Traditional device drivers use locks and disable 
interrupts to protect access to hardware and data structures. Limiting resource access to only one 
thread greatly simplifies driver design.

· Interface methods in the driver are invoked from the user thread: the thread running in the kernel 
on behalf of the user. These methods communicate requests to the I/O thread using techniques 
such as Mach messaging, and they enqueue commands for the I/O thread to execute. The I/O 
thread can then handle one request at a time instead of being subjected to a barrage of requests to 
access multiple resources at the same time. (Interface methods don't perform I/O requests 
directly, because only the I/O thread should touch hardware and other critical resources.)

Note:    Mach messages are not the same as Objective C messages that are sent to objects. Mach 
messaging refers to use of the Mach operating system's message system. See the references on the 
Mach operating system and the Objective C language in the ªSuggested Readingº section of the 
Appendix.

· The kernel takes all interrupts and notifies the I/O thread via Mach messages. Drivers don't need 
to run with interrupts disabled. The Driver Kit's thread-based model lets the driver delay 
responding to interrupts until it's ready to deal with them. The UNIX concept of a direct interrupt 
handlerÐa section of driver code that executes as soon as an interrupt is detected by the 



kernelÐhas been replaced by this Mach messaging mechanism. Interrupt handling is discussed in 
greater detail in ªServicing Interruptsº in this chapter. You can register your own interrupt handler 
if that's required, but unless you do, your driver will run at the user or I/O thread levelÐnot at 
interrupt level.

· Drivers for devices that are connected to the processor indirectly through some secondary 
busÐsuch as SCSI peripherals connected to a SCSI busÐhave a structured way to communicate 
with the drivers controlling the secondary bus. For example, SCSI controller objects conform to 
an Objective C protocol that SCSI peripheral drivers can employ. 

· Driver Kit drivers are currently kernel-level drivers, either as loadable kernel servers or as part of 
the kernel supplied by NeXT. User-level drivers are not yet supported.

Tip:    Running drivers at user level would make testing hardware much easier, and it would greatly 
reduce the likelihood of system panics due to driver bugs. This design goal hasn't been realized yet. 
However, when you design your driver, you should keep in mind the possibility of it becoming a 
user-level driver. To make porting drivers from kernel to user level as easy as possible, much of the 
Driver Kit API is identical at kernel level and at user level. In future releases, the goal is to allow all 
drivers to run at user level.

Although it's possible to write a UNIX style driver with the Driver Kit, that's not the best way to 
proceed. You wouldn't be taking full advantage of the capabilities of the Driver Kit, and you would 
be doing a lot of extra work.

Driver Classes and Instances
You implement a driver by creating a subclass of one of the device type classes in the Driver Kit. A 
driver object is an instance of this subclass you've defined.

Each Driver Kit class has a set of methods, some of which don't actually do anything. These 
methodsÐeven the ones that do nothingÐprovide a framework for you to build on. The classes and 
their methods all ignore hardware-dependent aspects of a driver to some extent. Of course, every 
driver must control real hardware, so you must implement or override the methods provided in the 
Driver Kit so that they perform their intended functions with your hardware. You essentially ªfill in 
the blanksº in the methods to develop much of your driver.

You choose the Driver Kit class for which you're going to create a subclass based on the device type, 
such as display, network, sound, and so on.

For example, you can write an Ethernet card driver by creating a subclass of the IOEthernet class. 
You then override each method in the IOEthernet superclass by writing code that performs that 
method's functionsÐusing the software interface to your particular Ethernet card hardware. In other 
words, you take the generic methods provided by the IOEthernet class and make them specific to 
your hardware in the subclass that you implement.

Most Driver Kit classes are never instantiated. Instead, they serve as abstract classes that give 
capabilities to their subclasses. For example, IODisplay is an abstract class that implements 
functionality common to all displays. 

The hierarchy of Driver Kit classes has three main branches, as shown in Figure 1-1.

Figure 1-1. Some Core Driver Kit Classes

Note:    Classes for developing disk drivers, such as IODisk, aren't currently documented.



You create a subclass of a class in the IODevice branch to create your driver. All drivers are 
instances of subclasses of IODevice. These classes provide frameworks for specific types of device 
drivers.

The other two branchesÐIODeviceDescription and IOConfigTableÐprovide information about 
drivers. IOConfigTable objects get configuration information about particular devices and the 
system as a whole from configuration tables, which specify how a driver is to be configured. 
IODeviceDescription objects encapsulate configuration and other information about the driver and 
are used for initializing the driver. These classes allow you to configure the driver into the system 
and allow it to communicate with system hardware.

In summary, the Driver Kit provides a framework for developing a driver for NEXTSTEP systems. 
It provides many of the pieces you need to create a driverÐclasses and protocols, methods, 
functions, and utilitiesÐand puts the pieces together for you. A class hierarchy groups methods 
logically by function and device type. A thread mechanism, including a default I/O thread, ensures 
that methods work together, taking advantage of the NEXTSTEP architecture. You still have to 
implement the methods to fit your hardware, but the basic structure is already there. The paradigm 
embodied in the Driver Kit fits well with NEXTSTEP, but it's different from the model that standard 
UNIX drivers use. You can write a driver using a UNIX model, but it would require greater effort. 

Direct and Indirect Device Drivers
Some devices, such as displays and network devices, are connected directly to the processor, and 
their drivers are referred to as direct device drivers. Other devices are connected to the processor 
indirectly through some secondary busÐsuch as SCSI peripherals connected to a SCSI bus. Drivers 
for such devices are called indirect device drivers. Drivers for direct devices talk to the hardware 
directly. Indirect device drivers talk to their device hardware indirectly through some direct device. 
A SCSI disk driver, for instance, communicates with the disk through a SCSI controller driver, 
which controls the SCSI bus.

Thus drivers talk to hardware either directly or indirectly, or they may not deal with hardware at all. 
Drivers are thus further classified into these three types:

· Direct device drivers (for example, drivers for SCSI controllers)
· Indirect device drivers (for example, drivers for disks attached to SCSI controllers)
· Pseudo device drivers (drivers that control no hardware)

These classes work differently, are initialized differently, and require different system resources. 
This manual focuses primarily on direct and indirect drivers, not pseudo device drivers.

Note that the IODevice branch in Figure 1-1 is further split into two branches. On one side is 
IODirectDevice, from which you would create a subclass for a direct device driver. Indirect device 
drivers stem from the other branch and are subclasses of IODevice.

Terminology Used in This Document

The term driver refers to the implementation of a subclass of one of the Driver Kit device 
classesÐsince Driver Kit classes are typically abstract classes. Instances of a driver are 
instances of the subclass. Often an object is referred to as an object of one of its 
superclassesÐfor example, as an IOSCSIController object or IODevice objectÐto indicate that 
the object is an instance of any subclass of the superclass. Finally, device is sometimes used to 
refer to any IODevice object.

As Figure 1-1 shows, IOSCSIController, IODisplay, and IOEthernet are subclasses of 
IODirectDevice. This classification occurs because instances of their subclasses talk directly to the 



hardware, performing such operations as handling interrupts, mapping memory, and performing 
DMA operations. IODisk, an indirect device class, is a subclass of IODeviceÐbut not of 
IODirectDevice. This occurs because IODisk objects don't talk directly to the hardware: They talk 
indirectly to the hardware by sending request messages to IODirectDevice objects such as 
IOSCSIControllers.

Figure 1-2 shows how two objectsÐone an instance of a direct device driver, the other an instance of 
an indirect device driverÐcombine to control two pieces of hardware. The indirect driver, an 
IOSCSIDisk object, uses the direct driver, an IOSCSIController object, to control the hardware.

Note:    IOSCSIDisk is a nonpublic subclass of IODisk.

Figure 1-2. How Objects Correspond to Hardware

One Device Driver Object per Hardware Device
There is one device driver object for each hardware device. In Figure 1-3, one IOSCSIController 
object manages the SCSI controller, and an IOSCSIDisk object manages each disk. Both disks are 
connected to the same SCSI controller, so both IOSCSIDisk objects communicate with the hardware 
using the single IOSCSIController object.

Figure 1-3. One-to-One Correspondence between Driver Objects and Hardware Devices

Key Driver Kit Classes
You typically create a subclass of either IODevice or IODirectDevice (or one of its subclasses) to 
create a driver.

IODevice: The Generic Device Driver

Every driver is a subclass of IODevice. This class provides a standard programming interface for 
probing hardware and for creating, initializing, and registering a driver instance.

IODirectDevice: The Class for All Direct Devices

IODirectDevice is the class for drivers that directly control hardware. This class adds data (that is, 
instance variables) and methods for managing interrupts, DMA channels, address ranges, and other 
resources. It contains a configuration table, an NXStringTable object of key/value pairs that hold 
configuration data provided by the system and the user.

The IODirectDevice class has Objective C categories for specific hardware buses:

· IOEISADirectDevice for EISA-, ISA-, and VL-Bus-based systems
· IOPCIDirectDevice for PCI-based systems
· IOPCMCIADirectDevice for PCMCIA-based systems

Display, network, SCSI controller, and sound drivers are all direct drivers that can be implemented 
as subclasses of IODirectDeviceÐor its subclasses. IODirectDevice has subclasses for each of these 
specific device types. For example, you can use the IODisplay class (a subclass of IODirectDevice) 



to write a display driver.

IODeviceDescription: Device Information

For every IODevice object, there's a device description objectÐan instance of the 
IODeviceDescription classÐthat contains information about the device. Thus every device in a 
system has a device description that contains information about the device:

· Device address 
· System resources (IRQ, DMA channels, and so on) used by the device
· Other information specific to the bus type

Instance variables in IODevice (of which the driver is a subclass) contain the rest of the device 
information, such as device type. The configuration tables, such as Default.table and 
Instancen.table, contain the device driver configuration information. These tables can be modified 
using the Configure application.

Class Components
When you create a subclass, you add instance variables that are appropriate for your hardware, such 
as variables for memory-mapped registers. A subclass might include the following typical instance 
variables:

· Pointers to hardware registers
· Device state from volatile or write-only registers
· Driver mode or state
· I/O management variables such as queue heads, locks for critical structures, or data buffer 

pointers
· Any per-device private data that normally goes in a UNIX driver's ªsoftcº structure

Your subclass inherits a set of methods from its superclass to perform such actions such as these:

· Initialize the driver object
· Get and set values of instance variables
· Send commands to hardware
· Receive notifications such as interrupts, I/O completions, and timeouts

In your subclass you can override methods from the superclass, and you can also add new ones. You 
customize these methods to work with your device's hardware.

Suppose, for example, you're implementing a display driver for a display card that can linearly map 
the entire frame buffer. Create a subclass of the IOFrameBufferDisplay class (a subclass of 
IODisplay), then override four methods to do the following operations:

· initFromDeviceDescription: to invoke super's implementation of 
initFromDeviceDescription:, map the display into the memory, and select the display mode.

· enterLinearMode to place the frame buffer device into the linear frame buffer mode selected 
during device initialization.

· revertToVGAMode to set the display to run as a standard VGA device.
· setBrightness: to control screen brightness, if the hardware supports this function.

Once you've done this, you've finished much of your driver.

The User-Level Interface to Drivers



You typically don't need to be concerned about interfacing with your driver: The kernel 
automatically finds the driver and uses its methods to communicate with the driver. Most display, 
network, SCSI controller, and sound drivers are integrated into the system this way. For some 
devices, such as SCSI peripherals, you may need to write an interface program called by user 
programs or other drivers. This interface program invokes the driver's methods to communicate with 
the driver.

See ªInterfacing with the Driverº in Chapter 2 for more discussion of user-level to driver-level 
communication.

How IODevice Objects are Created
Drivers are packaged into driver bundles. A driver bundle contains its relocatable code and 
configuration informationÐeverything needed to load and configure the driver. It may also contain 
help information, programs to be run before and after loading the driver, and a configuration 
inspector that the Configure application uses to access configuration data. Chapter 4, ªBuilding, 
Configuring, and Debugging Drivers,º tells you more about bundle contents and how to create a 
driver bundle.

When the system starts up, it goes through three steps to create each driver object, using the 
information in the driver bundle:

1. Load the relocatable code for the driver.

2. Create an IODeviceDescription object for the device.

3. Send a probe: message to the IODevice class object to instantiate a driver object.

The system goes through two phases of driver creation. In the first phase, it performs these three 
steps to create all the boot device drivers. Boot drivers are the drivers that must be loaded before the 
kernel can be active, such as the driver for the boot device. In the second phase, the system creates 
the active device driversÐdrivers for the rest of the devices in the system. The 
System.config/Instance0.table file defines the boot and active devices.

Some driver objects need to know about each other. For instance, an indirect driver controlling a 
SCSI peripheral needs to communicate with the direct driver that manages the SCSI controller. 
These drivers get connected with each other during the startup process. See ªConnecting the Driver,º 
in Chapter 2, ªDesigning a Driver.º

The system is not limited to creating drivers only at system start up time. You can also load a driver 
after the system has started up with the driverLoader command. See ªUsing the driverLoader 
Commandº in Chapter 4, ªBuilding, Configuring, and Debugging Drivers,º for more information.

Loading Driver Relocatable Code
In the first phase of driver object creation, the kernel loads the driver's relocatable code (in the file 
Driver_reloc in the driver bundle, where Driver is the driver's name) if necessary. The driver is 
already loaded if it's in the kernel. If there are multiple instances of the driver, the relocatable code is 
loaded only once. 

Creating a Device Description



Next, the kernel creates an IOConfigTable object that provides methods to examine the appropriate 
configuration file for the driver (either Default.table or Instancen.table). The IOConfigTable object 
parses the configuration information it gets, which is in configuration key/value pairs in this file. 
From this information, the kernel instantiates an IODeviceDescription object, which encapsulates 
information about the driver.

The driver's bus type is indicated in the configuration table as the value associated with the ªBus 
Typeº configuration key (see ªConfiguration Keysº in the Appendix). The kernel creates the 
appropriate IODeviceDescription object for the bus:

Bus Type IODevice Description Subclass
EISA, ISA, VL-Bus IOEISADeviceDescription
PCI IOPCIDeviceDescription
PCMCIA IOPCMCIADeviceDescription

IOPCIDeviceDescription and IOPCMCIADeviceDescription are subclasses of 
IOEISADeviceDescription, which is a subclass of IODeviceDescription.

After instantiating the IODeviceDescription object, the kernel may do further initialization, using 
methods in IODeviceDescription to get configuration information. For example, for a PCI-bus 
device, the kernel might check whether the location of the object on the bus is correct, and if it isn't, 
the kernel doesn't initialize that device.

If the system supports automatic detection of devices, it automatically scans all system buses to 
determine which devices are present and to obtain additional configuration information. For more 
information, see ªAuto Detection of Devicesº in ªOther Featuresº of Chapter 5, ªReference.º Some 
EISA- and PCI-based systems support this feature.

For more information on configuration tables, see Chapter 4.

Instantiating Drivers
The kernel invokes probe:, a class method in the IODevice class, to instantiate a driver. You must 
override this method in your driver. 

The receiver of a probe: message determines whether to create a new instance of itself, with the 
help of information passed as the probe: message's argumentÐthe IODeviceDescription object 
created in the previous step. The IODeviceDescription object contains information about the 
device's logical location in the system, and the device can query this object for additional 
information about the way it is configured. From this information, probe: can determine whether the 
device exists. If the device is present, probe: instantiates and initializes the driver. Your probe: 
method should invoke the initFromDeviceDescription: method, which initializes the driver.

Note:    Use the alloc and initFromDeviceDescription: methods to instantiate and initialize the 
driver, not the new method.

If probe: creates a driver instance, it returns YES. Otherwise, it returns NO.

Note:    Declare your probe: method to return BOOLÐnot id.

I/O and Interrupt Requests
Everything a driver doesÐwhether or not it's a Driver Kit driverÐis the result of one of two types of 
requests:



· I/O requests (from a user-level program, the kernel, or another driver)
· Interrupt requests (from the hardware)

Interrupt requests include ªsoft interrupts,º such as timeout notifications. The Driver Kit thread-
based design allows you to manage I/O requests and interrupts one at a time.

Scheduling Hardware Access with I/O Threads
Different drivers have different requirements for ordering their accesses to the hardware. Driver Kit 
display drivers are very simple in this respect: they don't have to queue requests because the 
Window Server is the only process that makes requests, and it sends them one at a time. Display 
drivers may be particularly simple because on many systems, display hardware doesn't generate 
interrupts.

Other drivers have to be more careful. These drivers use an I/O threadÐa single thread of execution 
that handles all access to a single hardware device. Some of the device classes, such as those for 
SCSI controllers, network, and sound devices, start up the default I/O thread for you.

Typically, each driver instance has exactly one I/O thread. However, some drivers use a single I/O 
thread for more than one instance. What matters is that only one thread at a time has access to any 
particular hardware resource. 

Note:    Some hardware devices can handle more than one request at once. For example, some SCSI 
controllers can queue multiple commands.

 At any given time, the I/O thread should be doing exactly one of two things:

· Waiting for an I/O request (from a user, the kernel, or another driver) or an interrupt message
· Executing (dealing with the hardware)

Processes can use a variety of mechanisms to communicate I/O requests to the I/O thread. One of 
these mechanismsÐMach messagesÐis the same way the kernel informs the I/O thread that an 
interrupt has occurred. In this scheme, the kernel enqueues Mach messages for the I/O thread. When 
the I/O thread isn't executing a request, it dequeues the message and invokes an appropriate driver 
method in response. (You can also write a custom I/O thread to take whatever action you want in 
response to messages.) ªSynchronizing with the I/O Threadº in Chapter 2 provides more details.

The I/O thread model greatly simplifies driver development and lessens the time needed for 
debugging the driver. Only one thread deals with any hardware resource at a time, so it's not 
necessary to use locks and disable interrupts to protect access to hardware and data structures. The 
user thread communicates requests to the I/O thread, and commands can be enqueued for the I/O 
thread to execute. The driver can handle one request at a timeÐinstead of many requests to access 
multiple resources at the same time.

Servicing Interrupts
The Driver Kit has a simple scheme for servicing interrupts: The kernel notifies drivers of interrupts 
by sending them Mach messages. Each driver can receive these messages whenever it chooses, 
typically when it isn't executing any other requests. 

The advantages of this scheme become clear when you consider an alternativeÐthe traditional UNIX 
method of handling interrupts. Traditional UNIX drivers handle interrupts as soon as they 
happenÐeven if the driver is already executing an I/O request. Each driver registers an interrupt 
handling function that's called whenever the device interrupts. Some systems can't tell exactly which 
device interrupted, so they call several drivers' interrupt handlers until one accepts the interrupt. 
While an interrupt is being handled, nothing else in the system (except higher priority interrupt 



handlers) can execute. 

Under the traditional UNIX scheme, drivers can't control when interrupts occur. All they can do is 
control when interrupts don't occur by disabling interrupts. Drivers disable interrupts to protect 
critical sections of code, such as those that access hardware or access data structures that are also 
used by interrupt handlers. However, disabling interrupts has disadvantages:

· If a driver disables interrupts for too long, the consequences can be anything from reduced 
performance to system crashes or hangs.

· If a driver disables interrupts and, through some bug, fails to reenable them, the system will 
hang.

· It's easy to fail to protect a critical sectionÐespecially when you're changing code that someone 
else wroteÐwhich can result in bugs that are hard to track down.

The Driver Kit scheme of interrupt handling lets you choose when to handle interrupts, so you don't 
have to protect critical sections from interrupt handlers. This scheme works well with most hardware 
devices.

IODirectDevice provides a default I/O thread that intercepts Mach interrupt messages and notifies 
drivers of them with Objective C messages. Driver objects are notified of interrupts with the 
interruptOccurred or interruptOccurredAt: message. See the sections ªInterfacing with the 
Driverº and ªHandling Interruptsº in Chapter 2 and the IODirectDevice class specification in Chapter 
5 for more information.

A few devices require that interrupts be handled immediately. For example, a device might have a 
register that must be read within 50 microseconds of the interrupt occurring. On some devices data 
overruns occur if interrupts aren't handled quickly enough. In these cases, a kernel-level driver 
might need to register a direct interrupt handlerÐa function that's called as soon as the interrupt is 
detected. This function should perform any time-critical operations and, if necessary, send a Mach 
message so that the driver can further process the interrupt. The section ªCustom Interrupt Handlersº 
in Chapter 2 describes how this interrupt handling function should work.


