
initFromDeviceDescription:
free
reset

Starting and stopping DMA startDMAForChannel:read:buffer:
bufferSizeForInterrupts:
stopDMAForChannel:read:

Getting DMA buffer address and size



getInputChannelBuffer:size:
getOutputChannelBuffer:size:

Handling interrupts interruptOccurredForInput:forOutput:
interruptClearFunc

Getting notification of I/O thread difficulties
timeoutOccurred

Getting and setting information about sound channels
channelCountLimit
isInputActive
isOutputActive

Getting supported sampling rates
acceptsContinuousSamplingRates
getSamplingRates:count:
getSamplingRatesLow:high:

Getting supported data encodings
getDataEncodings:count:

Getting device settings channelCount
dataEncoding
sampleRate

Determining what hardware settings are or should be
inputGainLeft
inputGainRight
isOutputMuted
isLoudnessEnhanced
outputAttenuationLeft
outputAttenuationRight

Setting hardware state updateInputGainLeft
updateInputGainRight
updateOutputMute
updateLoudnessEnhanced
updateOutputAttenuationLeft
updateOutputAttenuationRight

(BOOL)acceptsContinuousSamplingRates

Returns NO. Drivers that accept continuous sampling rates, as opposed to accepting a few, discrete sampling rates, should
implement this method so that it returns YES. For example, if a device has a low rate of 2000 Hz and a high rate of 44100
Hz and supports every sampling rate in between, its implementation of this method should return YES.

getSamplingRates:, getSamplingRatesLow:High:

(unsigned int)channelCount

Returns the number of sound channels to be used for the audio data that's about to be played or recorded. This value,
which can be either 1 (for mono) or 2 (for stereo), is determined during mixing and is set before startDMAForChannel:...
is invoked.

dataEncoding, sampleRate

(unsigned int)channelCountLimit

Returns zero. Drivers must implement this method so that it returns either 1 (if only mono is supported) or 2 (if both
mono and stereo are supported).



channelCount

(NXSoundParameterTag)dataEncoding

Returns the data encoding to be used for the audio data that's about to be played or recorded. This value is determined
during mixing and is set before startDMAForChannel:... is invoked. Possible values (defined in the header file soundkit/
NXSoundParameterTags.h) are currently NX_SoundStreamDataEncoding_Linear16,
NX_SoundStreamDataEncoding_Linear8, NX_SoundStreamDataEncoding_Mulaw8, and
NX_SoundStreamDataEncoding_Alaw8.

channelCount, sampleRate

free

Frees the instance and returns nil.

(void)getDataEncodings:(NXSoundParameterTag *)encodings count:(unsigned int *)numEncodings

Returns zero in numEncodings. Subclasses must override this method to supply an array of supported data encodings.
Possible values (defined in the header file soundkit/NXSoundParameterTags.h) are currently
NX_SoundStreamDataEncoding_Linear16, NX_SoundStreamDataEncoding_Linear8,
NX_SoundStreamDataEncoding_Mulaw8, and NX_SoundStreamDataEncoding_Alaw8. Below is an example of
implementing this method. Note that you don't have to allocate memory for encodings it already has enough space to hold
all possible encodings.

(void)getInputChannelBuffer:(void *)address size:(unsigned int *)byteCount

Gets the starting address and size of the (already allocated) DMA buffer for the input channel. This method allows the
driver to access data in the audio buffer directly.

getOutputChannelBuffer:size:

(void)getOutputChannelBuffer:(void *)address size:(unsigned int *)byteCount

Gets the starting address and size of the (already allocated) DMA buffer for the output channel. This method allows the
driver to access data in the audio buffer directly.

getInputChannelBuffer:size:

(void)getSamplingRates:(int *)rates count:(unsigned int *)numRates

Returns zero in numRates. Subclasses must override this method to supply the supported sampling rates in rates array,
which has room for up to 256 entries. If the driver supports continuous sampling rates, this method should return some
common sampling rates, as shown below.



acceptsContinuousSamplingRates, getSamplingRatesLow:High:

(void)getSamplingRatesLow:(int *)lowRate high:(int *)highRate

Returns zero in lowRate and highRate. Subclasses must override this method to supply their highest and lowest supported
sampling rates. Here's an example of implementing this method.

acceptsContinuousSamplingRates, getSamplingRates:

initFromDeviceDescription:description

Initializes a newly allocated IOAudio instance. Subclasses don't generally override this method they merely invoke it in
their probe: method. Subclasses perform device-specific initialization in their implementation of the reset method.

IOAudio's implementation of initFromDeviceDescription: invokes super's version of initFromDeviceDescription:,
invokes attachInterruptPort, sets the interrupt port to have a maximum backlog, and then performs the reset method. Next,
it creates and initializes the private objects that perform much of the driver's work, creates private ports, and forks threads
to listen to requests on the ports. Finally, it invokes registerDevice. Returns nil if initialization was unsuccessful
otherwise, returns the IOAudio instance.

(unsigned int)inputGainLeft

Returns the general scaling factor that's applied to the left channel of the incoming sound. This value can be anywhere
from 0 to 32768, where 0 is no gain and 32768 is maximum gain. User-level programs specify the gain using the Sound
Kit. To support input gain, you must implement updateInputGainLeft and updateInputGainRight.

inputGainRight

(unsigned int)inputGainRight

Returns the general scaling factor that's applied to the right channel of the incoming sound. This value can be anywhere
from 0 to 32768, where 0 is no gain and 32768 is maximum gain. User-level programs specify the gain using the Sound
Kit. To support input gain, you must implement updateInputGainLeft and updateInputGainRight.

inputGainLeft

(IOAudioInterruptClearFunc)interruptClearFunc

Does nothing and returns zero. Subclasses must implement this method so that it returns the address of a function that
clears interrupts on the card. The function is called only when the audio system needs to guarantee that your card has no
pending interrupts. If you don't implement this method and function, your card is likely to suffer from poor performance
with some applications. The function runs at interrupt level, so it must not block.



Here's an example of implementing this method.

(void)interruptOccurredForInput:(BOOL *)serviceInput
forOutput:(BOOL *)serviceOutput

Notifies the instance that an interrupt occurred for its hardware. The IOAudio version of this method generates an error
message each subclass must implement this method.

The subclass implementation of this method should try to determine whether the hardware really has interrupted. If so,
this method should clear the card's interrupt state, set serviceInput to YES if the interrupt was for input, and set
serviceOutput to YES if the interrupt was for output. (The values of serviceInput and serviceOutput are initialized to NO.
)

After invoking this method, IOAudio checks whether any more data is available for DMA on the channels that require
service. If none is available, stopDMAForChannel:read: is invoked. IOAudio always invokes this method from the I/O
thread.

(BOOL)isInputActive

Returns YES if data is being read from the hardware using DMA otherwise, returns NO.

isOutputActive

(BOOL)isLoudnessEnhanced

Returns YES if loudness is enhanced otherwise, returns NO. Loudness enhancement refers to the ability of some
hardware to help compensate for the decreased sensitivity of the human ear by boosting the gain at low and high
frequencies as the volume is decreased. User-level programs specify whether to use loudness enhancement with the
NX_SoundDeviceOutputLoudness parameter. To support loudness enhancement, you must implement
updateLoudnessEnhanced.

(BOOL)isOutputActive

Returns YES if data is being sent to the hardware using DMA otherwise, returns NO.

isInputActive

(BOOL)isOutputMuted

Returns YES if output is muted otherwise, returns NO. The user can mute audio output by holding down the Command
key and pressing the Delete key. User-level programs can mute output using the Sound Kit.

updateOutputMute

(int)outputAttenuationLeft



Returns the attenuation setting of the left channel of the device. The user modifies the left and right attenuation
simultaneously using the Volume slider in the Preferences application or with the Insert and Delete keys on the keyboard.
User-level programs can specify the attenuation using the Sound Kit. The range is -84 decibels (inaudible) to 0 decibels
(no attenuation).

updateOutputAttenuationLeft, outputAttenuationRight

(int)outputAttenuationRight

Returns the attenuation setting of the right channel of the device. The user modifies the left and right attenuation
simultaneously using the Volume slider in the Preferences application or with the Insert and Delete keys on the keyboard.
User-level programs can specify the attenuation using the Sound Kit. The range is -84 decibels (inaudible) to 0 decibels
(no attenuation).

updateOutputAttenuationRight, outputAttenuationLeft

(BOOL)reset

Generates an error message and returns NO. Subclasses must implement this method so that it resets and initializes the
hardware. This method is invoked from initFromDeviceDescription:, as described above.

This method should initialize basic information by invoking setName: and setDeviceKind:. It should then check whether
its interrupt (IRQ) and DMA channels (all obtained from its IODeviceDescription) have valid values. After initializing the
hardware, this method should disable its DMA channels and then set any DMA parameters necessary, such as the transfer
width.

This method should return YES on success otherwise, it should return NO, which will cause initFromDeviceDescription:
to return nil.

initFromDeviceDescription:, setName: (IODevice), setDeviceKind: (IODevice)

(unsigned int)sampleRate

Returns the sample rate to be used for the audio data that's about to be played or recorded. This value is determined
during mixing and is set before startDMAForChannel:... is invoked.

channelCount, dataEncoding

(BOOL)startDMAForChannel:(unsigned int)localChannel
read:(BOOL)isRead
buffer:(IODMABuffer)buffer
bufferSizeForInterrupts:(unsigned int)bufferSize

Generates an error message and returns NO. Subclasses must override this method.

This method should perform DMA after configuring the hardware to reflect the values returned by sampleRate,
dataEncoding, and channelCount. The DMA should be set up so that it generates an interrupt after every bufferSize byte
interval. If isRead is YES, then the DMA is from the card to memory otherwise, DMA is from memory to the card. See
the example IOAudio driver for an implementation of this method.

IOAudio invokes this method from the I/O thread. You should never invoke this method in an IOAudio subclass
implementation.

This method should return YES if it started DMA successfully otherwise, it should return NO.

startDMAForBuffer:channel (IODirectDevice architecture-specific category), enableChannel (IODirectDevice
architecture-specific category), enableAllInterrupts (IODirectDevice architecture-specific category)

(void)stopDMAForChannel:(unsigned int)localChannel read:(BOOL)isRead



Generates an error message. Subclasses must override this method.

This method should disable the specified DMA channel, disable interrupts, and do anything else necessary to stop the
DMA in progress on localChannel. See the example IOAudio driver for an implementation of this method.

IOAudio invokes this method from the I/O thread. You should never invoke this method in an IOAudio subclass
implementation.

This method is invoked when an interrupt occurs and no more data is available to be transferred. It's also invoked any
time that startDMAForChannel:... returns NO.

startDMAForChannel:read:buffer:bufferSizeForInterrupts:, disableChannel (IODirectDevice architecture-specific
category), disableAllInterrupts (IODirectDevice architecture-specific category)

(void)timeoutOccurred

Notifies the instance that although a DMA transaction is in progress, no interrupts have been detected for a long time
(currently one second). The IOAudio version of this method does nothing each subclass can implement it or not.

The subclass implementation of this method might reset the hardware. IOAudio invokes this method from the I/O thread.

(void)updateInputGainLeft

Does nothing. Subclasses should implement this method so that it updates the hardware to the value returned by
inputGainLeft. You generally have to convert the device-independent value returned by inputGainLeft to the appropriate
value for your device.

updateInputGainRight

(void)updateInputGainRight

Does nothing. Subclasses should implement this method so that it updates the hardware to match the value returned by
inputGainRight. You generally have to convert the device-independent value returned by inputGainRight to the
appropriate value for your device. IOAudio invokes this method from the I/O thread.

updateInputGainLeft

(void)updateLoudnessEnhanced

Does nothing. Subclasses that support loudness enhancement should implement this method so that it updates the
hardware to match the value returned by isLoudnessEnhanced. IOAudio invokes this method from the I/O thread.

(void)updateOutputAttenuationLeft

Does nothing. Subclasses should implement this method so that it updates the hardware to match the value returned by
outputAttenuationLeft. You generally have to convert the device-independent value returned by outputAttenuationLeft to
the appropriate value for your device. Here's an example of implementing this method.



updateOutputAttenuationRight

(void)updateOutputAttenuationRight

Does nothing. Subclasses should implement this method so that it updates the hardware to match the value returned by
outputAttenuationRight. You generally have to convert the device-independent value returned by outputAttenuationRight
to the appropriate value for your device. IOAudio invokes this method from the I/O thread.

updateOutputAttenuationLeft

(void)updateOutputMute

Does nothing. Subclasses should implement this method so that it mutes the output if isOutputMuted returns YES and
unmutes the output if isOutputMuted returns NO. IOAudio invokes this method from the I/O thread.


