
Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

3

Using Loadable Kernel Servers

This chapter discusses how to use the kernel-server loader functions to interact with loadable kernel
servers.    Loadable kernel servers are modules, such as device drivers and network protocols, that
can be added to the NeXT Mach kernel.    One example of interaction with a loadable kernel server
is using the function kern_loader_load_server() to load a loadable kernel server.    Another
example is using the function kern_loader_server_list() to get a list of all loadable kernel servers
that are either loaded or prepared for loading (allocated).

The following section gives more information on loadable kernel servers and on the kernel-server
loader, kern_loader.    The next section gives some examples of using the kernel-server loader
functions.    Each kernel-server loader function is described in detail in Chapter 4, ªMach Functions.º

For more information about loadable kernel servers, see Part 2 of this manual, ªWriting Loadable
Kernel Servers.º    Part 2 also has information about the kernel-server utility, kl_util, which is a
command-line interface to many of the functions described in this chapter.

How Loadable Kernel Servers Work
The kernel-server loader is a server task that's automatically called during system startup.    When
started, it reads a list of loadable kernel servers out of its configuration file, /etc/kern_loader.conf,
and allocates these servers.

A loadable kernel server is a module that's loaded into the kernel after the system has been booted.   
Because loadable kernel servers are the only way to add kernel functionality without recompiling the
whole kernel, they're the only way for anyone outside of NeXT to write kernel-level device drivers
and network protocols.    However, third parties aren't the only ones to use loadable kernel
serversÐNeXT uses them for drivers of devices that many people won't have.

For example, the graphics tablet driver is a loadable kernel server that is loaded by the
application /NextAdmin/InstallTablet.    Having a loadable tablet driver is advantageous because
performance on NeXT computers that don't have a graphics tablet (the majority of NeXT computers)
is better than if the tablet driver were always in the kernel.

Loadable kernel servers can have three states:

· AllocatedÐThe kernel-server loader (kern_loader) has allocated space and resources for the
loadable kernel server and is listening for Mach messages to its ports.    However, the server isn't
currently loaded into the kernel.

· LoadedÐThe loadable kernel server is running.

· UnallocatedÐThe kernel-server loader has no space or other resources allocated for the loadable
kernel server.

Not all loadable kernel servers stay in the allocated state when they're initialized.    Servers that don't
use Mach messages, for example, are loaded immediately.    Most message-based servers, however,
stay in the allocated state until the kernel-server loader receives either a message for the server or a
request such as kern_loader_load_server() that tells it to load the server.

Each loadable kernel server stays loaded until the kernel-server loader either shuts down or receives
a request to unload or delete the server (such as kern_loader_unload_server()).

See Chapter 5, ªOverview of Loadable Kernel Servers,º for more information on loadable kernel
servers and on using kern_loader.

Overview of Kernel-Server Loader Functions
This section describes the use of the kernel-server loader functions.    See the ªKernel-Server Loader
Functionsº section of Chapter 4 for more information on each of the functions.

The kernel-server loader functions are broken into two groupsÐthose that deal with a single loadable
kernel server, and those that deal with the kernel-server loader itself.    Two more functions help you
print error messages:    kern_loader_error() and kern_loader_error_string().

Before you can call any other kernel-server loader function, you must call kern_loader_look_up()
to obtain the port of the kernel-server loader.    You must provide this port as an argument to all of
the following function calls.    A similar argument, returned by kern_loader_server_com_port(), is
required only for calls to functions that deal with a server's message logging.

Use kern_loader_add_server() to cause a loadable kernel server to be allocated.    If the server
starts automatically, then it will be loaded into the kernel; otherwise, you can send a message to the
server or call kern_loader_load_server() to load the server into the kernel.    To remove a loadable
kernel server from the kernel, use kern_loader_unload_server() (to leave the server in the
allocated state) or kern_loader_delete_server() (to deallocate kernel-server loader resources for the
server).

For each loadable kernel server, logging is off by default.    To get status messages from a particular
loadable kernel server, use kern_loader_log_level() to turn the server's logging on and
kern_loader_get_log() to get the next log message.    You might want to turn logging off (by again
using kern_loader_log_level()) before you stop collecting log messages, since messages continue
to be logged and take system space even when no one requests them.

You can get detailed information about the state of a particular server by calling
kern_loader_server_info().

Use kern_loader_status_port() to register a port where log messages from the kernel-server loader
should be sent.    These messages usually reflect changes in the state of one or more loadable kernel
servers.    You can get a list of all the servers that the kernel-server loader knows about by calling
kern_loader_server_list().    Use kern_loader_abort() to shut down or reconfigure the kernel-
server loader.    Use kern_loader_ping() to make sure either that the kernel-server loader is
responding normally to messages, or that all outstanding status messages have been sent.

Functions for Asynchronous Messages
Three of the kernel-server loader functions don't immediately return information.    Instead, these
three functions tell the kernel-server loader to send asynchronous reply messages that contain the
information.    Whenever you call one of these functions, you must supply the code necessary to
handle the kernel-server loader's reply message.    The following table shows the three asynchronous

kernel-server loader functions and their corresponding user-written functions.

Asynchronous Function User-Written Function
kern_loader_ping() ping_func()
kern_loader_get_log() log_data_func()
kern_loader_status_port() string_func()

This section describes how to handle asynchronous reply messages from the kernel-server loader.   
First it describes the code that all three of the asynchronous functions require in your program.   
Then it describes how to implement the handler necessary for each of the functions.

Common Code for Handling Reply Messages
If your program calls a kernel-server loader function that sends an asynchronous reply message, then
your program must follow these steps to handle reply messages:

1. Allocate a port on which to receive messages from the kernel-server loader.

2. Call the asynchronous function, passing as data the receiving port.

3. Listen to the receiving port (often in a separate thread).

4. After receiving a message on the port, call kern_loader_reply_handler().

5. Take care of the reply message in a handling function, which is called by
kern_loader_reply_handler().

You must write the handling function that's called by kern_loader_reply_handler().    You must
also create a structure that specifies which handling functions exist; you pass a pointer to this
structure to kern_loader_reply_handler() every time you call it.    The structure is of type
kern_loader_reply_t, which is defined in the header file kernserv/kern_loader_reply_handler.h
as the following:

typedef struct kern_loader_reply {
 void *arg; /* argument to pass to function */
 msg_timeout_t timeout; /* timeout for RPC return msg_send */
 kern_return_t (*string)(/* kern_loader_status_port() function */
 void *arg,
 printf_data_t string,
 unsigned int string_count,
 int level);
 kern_return_t (*ping)(/* kern_loader_ping() function */
 void *arg,
 int id);
 kern_return_t (*log_data)(/* kern_loader_get_log() function */
 void *arg,
 printf_data_t log_data,
 unsigned int log_data_count);
} kern_loader_reply_t;

The following example calls one of the asynchronous kernel-server loader functions,
kern_loader_status_port().    The handler for the reply message is called print_string(), and is
specified to the kernel-server loader using the structure reply_handlers.

#import <mach/mach.h>
#import <mach/mach_error.h>
#import <kernserv/kern_loader_types.h>
#import <kernserv/kern_loader.h>
#import <kernserv/kern_loader_reply_handler.h>
#import <kernserv/kern_loader_error.h>
#import <mach/cthreads.h>
#import <libc.h>

#import <stdio.h>

void receive_thread(port_name_t port);
kern_return_t print_string(void *arg, printf_data_t string,
 unsigned int string_count, int level);

void main()
{
 kern_return_t r;
 port_name_t status_port, kl_port;

 r = kern_loader_look_up(&kl_port);
 if (r != KERN_SUCCESS) {
 mach_error("kl_util: can't find kernel loader", r);
 exit(1);
 }

 r = port_allocate(task_self(), &status_port);
 if (r != KERN_SUCCESS) {
 mach_error("kl_util: can't allocate reply port", r);
 exit(1);
 }

 /* Get generic status messages on this port. */
 r = kern_loader_status_port(kl_port, status_port);
 if (r != KERN_SUCCESS) {
 kern_loader_error("Couldn't specify status port", r);
 exit(1);
 }

 /* Create a thread to listen on status_port. */
 cthread_detach(cthread_fork((cthread_fn_t)receive_thread,
 (any_t)status_port));

 /*
 * Sleep for a while so we can enter kl_util commands at a shell
 * window. The output of all commands (except status lines from
 * kl_util -s) will show up in both the window that's running this
 * program and in the window that's running kl_util. (kl_util
 * also has a status port registered.)
 */
 sleep(30);
 exit(0);
}

kern_loader_reply_t reply_handlers = {
 0, /* argument to pass to function */
 0, /* timeout for rpc return msg_send */
 print_string, /* string function */
 0, /* reply_ping function */
 0 /* log_data function */
};

void receive_thread(port_name_t port)
{
 char msg_buf[kern_loader_replyMaxRequestSize];
 msg_header_t *msg = (msg_header_t *)msg_buf;
 kern_return_t r;

 /* message handling loop */
 while (TRUE) {
 /* Receive the next message in the queue. */
 msg->msg_size = kern_loader_replyMaxRequestSize;
 msg->msg_local_port = port;
 r = msg_receive(msg, MSG_OPTION_NONE, 0);
 if (r != KERN_SUCCESS)
 break;

 /* Handle the message we just received. */
 kern_loader_reply_handler(msg, &reply_handlers);
 }

 /* We get here only if msg_receive returned an error. */
 mach_error("receive_thread", r);
 exit(1);
}

/*
 * This function is called by kern_loader every time it has status to
 * report.
 */
kern_return_t print_string(void *arg, printf_data_t string,
 unsigned int string_count, int level)
{
 /* If the string is empty, return. */
 if (string_count == 0 || !string)
 return KERN_SUCCESS;

 /* Print the string we were passed, with our special prefix. */
 printf("print_string: %s", string);

 return KERN_SUCCESS;
}

Handling a Status Message
You can receive many reply messages as the result of just one call to kern_loader_status_port().   
The function you must use to handle these reply messages is defined as follows:

kern_return_t string_func(void *arg, printf_data_t string, u_int string_count, int level)

The first argument, arg, has the same value as the arg field in the kern_loader_reply_t structure.   
The string that the kernel-server loader is logging is returned in string, with the string's length
returned in string_count.    The level argument is set to the priority of the log message, using the
priorities defined in the header file sys/syslog.h (LOG_EMERG, LOG_ALERT, and so on).

Your function should return KERN_SUCCESS.

The following code is an example of a string_func named print_string().

/*
 * This function is called by kern_loader every time it has status to
 * report.
 */
kern_return_t print_string(void *arg, printf_data_t string,
 u_int string_count, int level)
{
 /* If the string is empty, return. */
 if (string_count == 0 || !string)
 return KERN_SUCCESS;

 /* Print the string we were passed, with our special prefix. */
 printf("print_string: %s", string);

 return KERN_SUCCESS;
}

Handling a Synchronization Message

A call to kern_loader_ping() results in a single reply message.    Your handler for this reply
message must have the following syntax:

kern_return_t ping_func(void *arg, int id)

The first argument, arg, is the value in the arg field of the kern_loader_reply_t structure.    id is the
same as the id value specified in the call to kern_loader_ping().    Your ping_func should return
KERN_SUCCESS.

Here's an example of a ping_func that causes its task to shut down.

/* This function is called after a kern_loader_ping(). */
kern_return_t ping (void *arg, int id)
{
 exit(0); /* Kill this process. */
}

Handling a Log Message
Each time you call kern_loader_log_data(), you receive a single reply message as soon as any log
data from the specified driver is available.    The function you write to handle this message must
have the following syntax:

kern_return_t log_func(void *arg, printf_data_t log_data, unsigned int log_data_count)

The first argument has the same value as the arg field in the kern_loader_reply_t structure.    The
log_data argument is a string containing the log entry from the loadable kernel server, preceded by a
time stamp that indicates the relative time when the kernel-server loader received the log message.   
The log_data_count is the size of log_data in bytes.    You should call vm_deallocate() on log_data
when it's no longer needed.

Your log_func should return KERN_SUCCESS.

Here's an example of a log_func called log_data.    It prints out the log message it's passed, and then
requests another log message.

kern_return_t log_data(void *arg, printf_data_t log_data,
 unsigned int log_data_count)
{
 kern_return_t r;

 /* Print the string we were passed, with our prefix. */
 printf("log_data: %s\n", log_data);
 vm_deallocate(task_self(), (vm_address_t)log_data,
 log_data_count*sizeof(*log_data));

 /* Request the next log message. */
 r = kern_loader_get_log(kl_port, server_com_port, reply_port);
 if (r != KERN_SUCCESS) {
 kern_loader_error("log_data: Error calling
 kern_loader_get_log", r);
 exit(1);
 }

 return KERN_SUCCESS;
}

