
Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

inb(), inw(), inl(), outb(), outw(), outl()

SUMMARY Read or write data to an I/O port

DECLARED IN driverkit/i386/ioPorts.h

SYNOPSIS unsigned char inb(unsigned int address)
unsigned short inw(unsigned int address)
unsigned long inl(unsigned int address)
void outb(unsigned int address, unsigned char data)
void outw(unsigned int address, unsigned short data)
void outl(unsigned int address, unsigned long data)

DESCRIPTION These inline functions let drivers read and write I/O ports on Intel-based computers. 
Use inb() to read a byte at the I/O port address. Use inw() to read the two bytes at address and 
address + 1, and inl() to read four bytes starting at address. To write a byte, use outb(); to write two 
bytes (to address and address + 1), use outw(); to write four bytes, use outl().

These functions have nothing to do with main memory; they work only for the 64 kilobytes of I/O 
address space on an Intel-based computer. These functions use the special machine instructions that 
are necessary for reading and writing data from and to the I/O space.

Note:    These functions work only at kernel level and only on Intel-based computers.

EXAMPLE temp_cr = inb(base+CR); /* get current CR value */

IOAddDDMEntry()

SUMMARY Add one entry to the Driver Debugging Module

DECLARED IN driverkit/debugging.h

SYNOPSIS void IOAddDDMEntry(char *format, int arg1, int arg2, int arg3, int arg4, int arg5)

DESCRIPTION This is the exported function that is used to add events to the DDM's circular buffer. 
However, drivers typically don't use this directly; instead, they should use macros that call 
IOAddDDMEntry() conditionally based on the current state of debugging flags. See the description 
of IODEBUG() for examples.

Note:    The last 5 arguments to this function are typed above as int, but they are really untyped and 
could be any 32-bit quantity. They are stored in the debugging log as int but are eventually 
evaluated as arguments to sprintf(), so they could be int, char, short, or pointers to a string. See 
IOCopyString(), later in this section, for information on passing string pointers to 
IOAddDDMEntry().

SEE ALSO IODEBUG()

IOAddToBdevsw(), IOAddToCdevsw(), IOAddToVfssw()

SUMMARY Add UNIX-style entry points to a device switch table



DECLARED IN driverkit/devsw.h

SYNOPSIS int IOAddToBdevsw(IOSwitchFunc openFunc, IOSwitchFunc closeFunc, IOSwitchFunc 
strategyFunc, IOSwitchFunc dumpFunc, IOSwitchFunc psizeFunc, BOOL isTape)

int IOAddToCdevsw(IOSwitchFunc openFunc, IOSwitchFunc closeFunc, IOSwitchFunc readFunc, IOSwitchFunc 
writeFunc, IOSwitchFunc ioctlFunc, IOSwitchFunc stopFunc, IOSwitchFunc resetFunc, 
IOSwitchFunc selectFunc, IOSwitchFunc mmapFunc, IOSwitchFunc getcFunc, IOSwitchFunc 
putcFunc)

int IOAddToVfssw(const char *vfsswName, const struct vfsops *vfsswOps)

DESCRIPTION These functions find a free row in a device switch table and add the specified entry 
points. Each function returns the major number (equivalent to the row number) for the device, or -1 
if the device couldn't be added to the table.

Note:    You should use IODevice's addToBdevsw... and addToCdevsw... methods instead of 
IOAddToBdevsw() and IOAddToCdevsw(), whenever possible.

SEE ALSO IORemoveFromBdevsw(), IORemoveFromCdevsw(), IORemoveFromVfssw()

IOAlign()

SUMMARY Truncate an address so that it's aligned to a buffer size

DECLARED IN driverkit/align.h

SYNOPSIS type IOAlign(type, address, bufferSize)

DESCRIPTION This macro truncates address to a multiple of bufferSize.

SEE ALSO IOIsAligned()

IOClearDDM()

SUMMARY Clear the Driver Debugging Module's entries

DECLARED IN driverkit/debugging.h

SYNOPSIS void IOClearDDM()

DESCRIPTION This function empties the DDM's circular buffer.

IOConvertPort()

SUMMARY Convert a port name from one IPC space to another

DECLARED IN driverkit/kernelDriver.h

SYNOPSIS port_t IOConvertPort(port_t port, IOIPCSpace from, IOIPCSpace to)

DESCRIPTION This function lets a kernel driver convert a port name (port) so that the port can be used 



in a different IPC space. Three types of conversion are supported:

· From the current task's IPC space to the kernel I/O task's space
· From the kernel's IPC space to the kernel I/O task's space
· From the kernel I/O task's IPC space to kernel's IPC space

The arguments from and to should each be specified as one of the following: IO_Kernel, 
IO_KernelIOTask, or IO_CurrentTask. For example, the following code converts a port name from 
the current task's name to the name used by the kernel I/O task.

ioTaskPort = IOConvertPort(aPort, IO_CurrentTask, IO_KernelIOTask);

Note:    This function works only in kernel-level drivers.

RETURN Returns the port's name in the to space. Specifying an invalid conversion results in a return 
value of PORT_NULL. 

IOCopyMemory()

SUMMARY Copy memory using the specified transfer width

DECLARED IN driverkit/generalFuncs.h

SYNOPSIS void IOCopyMemory(void *from, void *to, unsigned int numBytes, 
                unsigned int bytesPerTransfer)

DESCRIPTION Copies memory 1, 2, or 4 bytes at a time (as specified by bytesPerTransfer) until 
numBytes bytes starting at from have been copied to to. The from and to buffers must not overlap.

This function is useful when devices have mapped memory that can be accessed in only 8-bit or 16-
bit quantities. In these situations, bcopy() isn't appropriate, since it assumes 32-bit access to all 
memory involved.

If from is not aligned on a bytesPerTransfer boundary, IOCopyMemory() performs 8-bit transfers 
until it has reached a bytesPerTransfer boundary. Similarly, if the end of the from buffer extends past 
a bytesPerTransfer boundary, the remaining memory is copied 8 bits at a time. 

IOCopyString()

SUMMARY Return a copy of the specified string

DECLARED IN driverkit/debugging.h

SYNOPSIS const char *IOCopyString(const char *instring)

DESCRIPTION This function is required when you want to use a pointer to a string whose existence is 
transitory as an argument. The reason for this is that the string won't be read until the Driver 
Debugging Module's buffer is examined, which could be a long time (minutes or more) after the call 
to IOAddDDMEntry(). By then, the string pointer passed to IOAddDDMEntry() no longer might 
no longer point to a useful string.

Warning:    The string returned by this function is created with IOMalloc() and is never freed. Use 
this function with discretion.



IODEBUG()

SUMMARY Conditionally add one entry to the Driver Debugging Module

DECLARED IN driverkit/debugging.h

SYNOPSIS void IODEBUG(int index, int mask, char *format, int arg1, int arg2, int arg3, int arg4, int 
arg5)

DESCRIPTION This macro is used to add entries to the DDM's circular buffer. The entry is added only 
if both of the following are true:

· The C preprocessor flag DDM_DEBUG is defined.
· A bitwise and operation performed on mask and IODDMMasks[index] results in a nonzero 

result.

IODEBUG() is typically used to define other macros specific to a driver, as shown in the following 
example. 

EXAMPLE #define MY_INDEX      0

#define MY_INPUT       0x00000001    // 
#define MY_OUTPUT      0x00000002    // 
#define MY_OTHER       0x00000004    // 

#define logInput(x, a, b, c, d, e) \
    IODEBUG(MY_INDEX, MY_INPUT, x, a, b, c, d, e)

#define logOutput(x, a, b, c, d, e) \
    IODEBUG(MY_INDEX, MY_OUTPUT, x, a, b, c, d, e)

#define logOther(x, a, b, c, d, e) \
    IODEBUG(MY_INDEX, MY_OTHER, x, a, b, c, d, e)

. . .
IODDMMasks[MY_INDEX] = MY_INPUT | MY_OUTPUT;
. . .
logInput("Input error %d: %s\n", error, IOFindNameForValue(error,
    &errorList));

IODelay()

SUMMARY Wait (without blocking) for the indicated number of microseconds

DECLARED IN driverkit/generalFuncs.h

SYNOPSIS void IODelay(unsigned int microseconds)

DESCRIPTION This is a quick, nonblocking version of IOSleep(). 

Note:    This function guarantees a minimum ªspinº delay in the user-level version; due to thread 
scheduling, the call to IODelay() could take much longer than the indicated time. This should not be 
a problem with properly designed user-level drivers as this is a common real-time constraint on all 
user-level code.



IODisableInterrupt()

SUMMARY Prevent interrupt messages from being sent

DECLARED IN driverkit/IODirectDevice.h

SYNOPSIS void IODisableInterrupt(void *identity)

DESCRIPTION This function allows handlers of non-shared interrupts to indicate that the interrupt 
should be left disabled on return from the    interrupt handler.

The identity argument should be set to the value that the interrupt handler received in its own 
arguments.

Note:    IODisableInterrupt() must be called inside a special    interrupt handler function. It can't 
be called from any other context.

SEE ALSO IOEnableInterrupt(), IOSendInterrupt()

IOEnableInterrupt()

SUMMARY Allow interrupt messages to be sent

DECLARED IN driverkit/IODirectDevice.h

SYNOPSIS void IOEnableInterrupt(void *identity)

DESCRIPTION This function allows    interrupt handlers to indicate that the interrupt should be 
reenabled on return from the    interrupt handler. You should only re-enable the interrupt after 
removing the source of the interruptÐby clearing the interrupt status register on the device, or by 
using whatever mechanism is necessary for the hardware your driver controls.

The identity argument should be set to the value that the interrupt handler received in its own 
arguments.

Note:    IOEnableInterrupt() must be called inside a special    interrupt handler function. It can't be 
called from any other context.

SEE ALSO IODisableInterrupt(), IOSendInterrupt()

IOExitThread()

SUMMARY Terminate the execution of the current thread

DECLARED IN driverkit/generalFuncs.h

SYNOPSIS volatile void IOExitThread()

DESCRIPTION This function terminates the execution of the current (calling) thread. Note that there's 
no way for one thread to kill another thread other than by sending some kind of message to the soon-
to-be-terminated thread instructing it to kill itself.

Note:    In the user-level implementation, the main C thread (the first thread in the task) doesn't exit 
until all other C threads in the task have exited.



IOFindNameForValue(), IOFindValueForName()

SUMMARY Convert an integer to a string, or vice versa, using an IONamedValues array

DECLARED IN driverkit/generalFuncs.h

SYNOPSIS const char *IOFindNameForValue(int value, const IONamedValues *array)
IOReturn IOFindValueForName(const char *string, const IONamedValue *array, int *value)

DESCRIPTION These functions are the primary use of the IONamedValues data type, which maps 
integer values to strings. IOFindNameForValue() maps a given integer value to a string, given a 
pointer to an array of IONamedValues. IOFindValueForName() maps a given string into an 
integer, returning the integer in value.

One typical use for IOFindNameForValue() is to map integer return values into error strings. 
IODevice's IOStringFromReturn: method performs this function. A subclass that defines 
additional IOReturn values should override this method and call [super IOReturnToString:] if the 
specified value does not match one of the class-specific IOReturns.

RETURN IOFindNameForValue() returns the string corresponding to value, or a string indicating that 
value is undefined if the integer wasn't found. IOFindValueForName() returns IO_R_SUCCESS if 
it finds the specified string; otherwise, it returns IO_R_INVALIDARG.

IOForkThread()

SUMMARY Start a new thread

DECLARED IN driverkit/generalFuncs.h

SYNOPSIS IOThread IOForkThread(IOThreadFunc function, void *arg)

DESCRIPTION This function causes a new thread to be started up. For kernel-level drivers, the new 
thread is in the IOTask's address space; for user-level drivers, the thread is in the current task. The 
thread begins execution at function, which is passed arg as its argument.

IOFree()

SUMMARY Free memory allocated by IOMalloc()

DECLARED IN driverkit/generalFuncs.h

SYNOPSIS void IOFree(void *var, int numBytes)

DESCRIPTION This function frees memory allocated by IOMalloc().

Note:    You must use the same value for numBytes as you used for the call to IOMalloc() that 
allocated the memory you're now freeing.

IOFreeLow()



SUMMARY Free memory allocated by IOMallocLow()

DECLARED IN driverkit/i386/kernelDriver.h

SYNOPSIS void IOFreeLow(void *var, int numBytes)

DESCRIPTION This function frees memory allocated by IOMallocLow().

Note:    This function works only in kernel-level drivers.

IOGetDDMEntry()

SUMMARY Obtain an entry from the Driver Debugging Module 

DECLARED IN driverkit/debugging.h

SYNOPSIS int IOGetDDMEntry(int entry, int outStringSize, char *outString, ns_time_t *timestamp, int 
*cpuNumber)

DESCRIPTION Returns in outString an entry from the DDM. The entry argument should indicate 
which entry to return, counting backwards from the most recent entry. The timestamp argument is 
set to a value indicating the time at which the entry was logged. The cpuNumber argument is set to 
the number of the CPU that the retrieved entry is associated with. 

RETURN Returns a nonzero value if the specified entry doesn't exist. Otherwise, returns zero.

IOGetDDMMask()

SUMMARY Returns the specified bitmask word

DECLARED IN driverkit/debugging.h

SYNOPSIS unsigned IOGetDDMMask(int index)

DESCRIPTION This is typically not used by drivers; it provides a procedural means of obtaining a 
specified bitmask value. For performance reasons, the macros that filter and call 
IOAddDDMEntry() typically read the index words directly (the IODDMMasks array is a global 
variable).

IOGetObjectForDeviceName()

SUMMARY Obtain the id of a kernel device, given its name

DECLARED IN driverkit/kernelDriver.h

SYNOPSIS IOReturn IOGetObjectForDeviceName(IOString deviceName, id *deviceId)

DESCRIPTION This function provides a simple mapping of device names to objects. Since this is valid 
only at kernel level, no security mechanism is provided; any kernel code can get the id of any kernel 
IODevice.

Note:    This function works only in kernel-level drivers.



RETURN Returns IO_DR_NOT_ATTACHED if deviceName isn't found; otherwise returns 
IO_R_SUCCESS.

IOGetTimestamp()

SUMMARY Obtains a microsecond-accurate current timestamp

DECLARED IN driverkit/generalFuncs.h

SYNOPSIS void IOGetTimestamp(ns_time_t *nsp)

DESCRIPTION This function obtains a quick, microsecond-accurate, system-wide timestamp.

IOHostPrivSelf()

SUMMARY Returns the kernel I/O task's version of the privileged host port

DECLARED IN driverkit/kernelDriver.h

SYNOPSIS port_t IOHostPrivSelf()

DESCRIPTION This function is necessary because the Mach function host_priv_self() doesn't work at 
kernel level.

Note:    This function works only in kernel-level drivers. In user-level drivers, use host_priv_self() 
instead.

IOInitDDM()

SUMMARY Initialize the Driver Debugging Module

DECLARED IN driverkit/debugging.h

SYNOPSIS Kernel level: void IOInitDDM(int numBufs)
User level: void IOInitDDM(int numBufs, char *serverPortName)

DESCRIPTION This function must be called once by your driver before calling any other DDM 
functions.

IOInitGeneralFuncs()

SUMMARY Initialize the general-purpose functions

DECLARED IN driverkit/generalFuncs.h

SYNOPSIS void IOInitGeneralFuncs()



DESCRIPTION Each user-level driver must call IOInitGeneralFuncs() once before calling any other 
functions declared in the driverkit/generalFuncs.h header file. 

Note:    Kernel-level drivers don't need to call this function, because it's automatically called by the 
kernel.

IOIsAligned()

SUMMARY Determine whether an address is aligned

DECLARED IN driverkit/align.h

SYNOPSIS unsigned int IOIsAligned(address, bufferSize)

DESCRIPTION This macro returns a nonzero value if address is a multiple of bufferSize; otherwise, it 
returns 0. 

IOLog()

SUMMARY Adds a string to the system log

DECLARED IN driverkit/generalFuncs.h

SYNOPSIS void IOLog(const char *format, ...)

DESCRIPTION This is the Driver Kit's substitute for printf(); its implementation is similar to syslog(). 
IOLog() logs the string to /usr/adm/messages by default; you can specify another destination in the 
configuration file /etc/syslog.conf. The arguments are stdargs, just as for printf(). This function 
doesn't block on single-processor systems. It runs at level LOG_ERR and its facility is kern.

SEE ALSO printf(3) UNIX manual page, syslog(3) UNIX manual page

IOMalloc()

SUMMARY Standard memory allocator

DECLARED IN driverkit/generalFuncs.h

SYNOPSIS void *IOMalloc(int numBytes)

DESCRIPTION This function causes numBytes bytes of memory to be allocated; a pointer to the 
memory is returned. No guarantees exist as to the alignment or the physical contiguity of the 
allocated memory, but when IOMalloc() is called at kernel-level, the allocated memory is 
guaranteed to be wired down. Memory allocated with IOMalloc() should be freed with IOFree().

Warning:    If no memory is available, IOMalloc() blocks until it can obtain memory. For this 
reason, you shouldn't call IOMalloc() from a direct interrupt handler. 

Drivers that can control (directly or indirectly) disks, network cards, or other devices used by a file 
system can run into a deadlock situation if they use IOMalloc() during I/O. This deadlock can occur 
when the pageout daemon attempts to free memory by moving pages out to disk. When the pageout 
daemon requests this I/O and the driver uses IOMalloc() to request more memory than is available, 



IOMalloc() blocks. The result is deadlock: the driver can't perform the I/O until memory is freed, 
and the memory can't be freed by the pageout daemon until the I/O happens. In general, a driver can 
avoid this deadlock by not allocating large amounts of memory during I/O. For example, allocating 
less than 100 bytes is safe, but allocating 8K bytes is very unsafe.

IOMallocLow()

SUMMARY Allocates memory in the low 16MB of the computer's memory range

DECLARED IN driverkit/i386/kernelDriver.h

SYNOPSIS void *IOMallocLow(int numBytes)

DESCRIPTION This function acts like IOMalloc(), except that the allocated range of memory is 
guaranteed to be in the low 16MB of system memory and to be physically contiguous. This function 
is provided because some cards for Intel-based computers must be mapped to low memory. Memory 
allocated with IOMallocLow() should be freed with IOFreeLow().

Note:    This function works only in kernel-level drivers running on Intel-based computers.

IOMapPhysicalIntoIOTask

SUMMARY Map a physical address range into your IOTask's address space

DECLARED IN driverkit/kernelDriver.h

SYNOPSIS IOReturn IOMapPhysicalIntoIOTask(unsigned physicalAddress,
unsigned length,
vm_address_t *virtualAddress)

DESCRIPTION This function maps a range of physical memory into your IOTask. It returns the virtual 
address at which the range is mapped in the virtualAddress argument.

Note:    This function works only in kernel-level drivers.

RETURN Returns an error if the specified physical range could not be mapped; otherwise, returns 
IO_R_SUCCESS.

SEE ALSO IOUnmapPhysicalFromIOTask()

IONsTimeFromDDMMsg()

SUMMARY Extracts the time from a Driver Debugging Module message

DECLARED IN driverkit/debuggingMsg.h

SYNOPSIS ns_time_t IONsTimeFromDDMMsg(IODDMMsg *msg)

DESCRIPTION This inline function combines the timestampHighInt and timestampLowInt fields 
from msg and returns the result.



IOPanic()

SUMMARY Panic or dump memory after logging a string to the console

DECLARED IN driverkit/generalFuncs.h

SYNOPSIS void IOPanic(const char *reason)

DESCRIPTION The reason argument is logged to the console, after which either a kernel panic (if in 
kernel space) or a memory dump (if in user space) occurs. 

Note:    Use of this function is an extreme measure. Use IOPanic() only when continued execution 
may cause system corruption.

IOPhysicalFromVirtual()

SUMMARY Find the physical address corresponding to a virtual address

DECLARED IN driverkit/kernelDriver.h

SYNOPSIS IOReturn IOPhysicalFromVirtual(vm_task_t task, vm_address_t virtualAddress, 
unsigned int *physicalAddress)

DESCRIPTION This function gets the physical address (if any) that corresponds to virtualAddress. It 
returns IO_R_INVALID_ARG if no physical address corresponds to virtualAddress. On success, it 
returns IO_R_SUCCESS. If virtualAddress is in the current task, then the task argument should be 
set to IOVmTaskSelf(). This function will never block. Use this function only to find the physical 
address of wired down memory since the physical address of unwired down memory might change 
over time.

Note:    This function is available only at kernel level. This function shouldn't be used in a custom 
interrupt handlerÐit can't run at the interrupt level.

IOReadRegister(), IOWriteRegister(), IOReadModifyWriteRegister()

SUMMARY Read or write values of display registers

DECLARED IN driverkit/i386/displayRegisters.h

SYNOPSIS unsigned char IOReadRegister( IOEISAPortAddress port, unsigned char index)
void IOWriteRegister( IOEISAPortAddress port, unsigned char index, unsigned char value)
void IOReadModifyWriteRegister( IOEISAPortAddress port, unsigned char index, unsigned char 

protect, unsigned char value)

DESCRIPTION These inline functions perform operations commonly used to read or write display 
registers. IOReadRegister reads and returns the value of the register specified by port and index. 
IOWriteRegister() writes value to the register specified by port and index. 
IOReadModifyWriteRegister() reads the specified register, zeroes every bit that isn't set in the 
protect mask, sets every bit that's set in value, and sets the register to the new value. When the 
protect mask is zero, the effect is to set the register to value.

Note:    These functions are supported only on Intel-based computers.



IORemoveFromBdevsw(), IORemoveFromCdevsw(), IORemoveFromVfssw()

SUMMARY Remove UNIX-style entry points from a device switch table

DECLARED IN driverkit/devsw.h

SYNOPSIS void IORemoveFromBdevsw(int bdevswNumber)
void IORemoveFromCdevsw(int cdevswNumber)
void IORemoveFromVfssw(int vfsswNumber)

DESCRIPTION These functions remove a device from a device switch table, replacing it with a null 
entry.

Note:    You should use IODevice's removeFromBdevsw and removeFromCdevsw methods 
instead of IORemoveFromBdevsw() and IORemoveFromCdevsw(), whenever possible.

SEE ALSO IOAddToBdevsw(), IOAddToCdevsw(), IOAddToVfssw()

IOResumeThread()

SUMMARY Resume the execution of a thread suspended with IOSuspendThread()

DECLARED IN driverkit/generalFuncs.h

SYNOPSIS void IOResumeThread(IOThread thread)

DESCRIPTION This function causes the execution of a suspended thread to continue.

IOScheduleFunc()

SUMMARY Arrange for the specified function to be called at a certain time in the future

DECLARED IN driverkit/generalFuncs.h

SYNOPSIS void IOScheduleFunc(IOThreadFunc function, void *arg, int seconds)

DESCRIPTION This function causes function to be called in seconds seconds, with arg as function's 
argument. The call to function occurs in the context of the caller's task, but in a thread that is unique 
to the Driver Kit. The call to function can be cancelled with IOUnscheduleFunc(). 

Note:    The kernel version of IOScheduleFunc() performs the callback in the kernel task's context, 
not the I/O Task context. One consequence is that function can't send Mach messages with 
msg_send(); it needs to use msg_send_from_kernel() instead, as described in Chapter 2.

IOSendInterrupt()

SUMMARY Arrange for an interrupt message to be sent

DECLARED IN driverkit/IODirectDevice.h



SYNOPSIS void IOSendInterrupt(void *identity, void *state, unsigned int msgId)

DESCRIPTION This function is useful if you need to handle interrupts directlyÐfor example, because 
of a timing constraint in the hardwareÐbut don't wish to give up the advantages of interrupt 
notification by messages. To handle interrupts directly, you must implement the 
getHandler:level:argument:forInterrupt: message of IODirectDevice. 

The msgId argument specifies the message ID of the interrupt message that will be sent. This should 
be IO_DEVICE_INTERRUPT_MSG unless the driver's documentation specifies otherwise. The 
identify and state arguments should be set to the values that the interrupt handler received in its own 
arguments. For example (italicized text delineated in angle brackets, that is << >>, is to be filled in 
with device-specific code): 

static void myInterruptHandler(void *identity, void *state, 
    unsigned int arg)
{
    << handle the interrupt >>
    IOSendInterrupt(identity, state, IO_DEVICE_INTERRUPT_MSG);
}

SEE ALSO IODisableInterrupt(), IOEnableInterrupt()

IOSetDDMMask()

SUMMARY Set specified bitmask word to specified value

DECLARED IN driverkit/debugging.h

SYNOPSIS void IOSetDDMMask(int index, unsigned int bitmask)

DESCRIPTION This is typically used by individual user-level drivers at initialization time, if then. 
Subsequently, it is usually used only by the Driver Debugging Module's server thread to change the 
current bitmask value. 

The index argument is an index into IODDMMasks, which is an array of unsigned int. Each entry 
of the array contains 32 mask bits.

IOSetUNIXError()

SUMMARY Explicitly return an error value from a UNIX-style driver

DECLARED IN driverkit/kernelDriver.h

SYNOPSIS void IOSetUNIXError(int errno)

DESCRIPTION Most UNIX-style drivers don't need to use this function. However, those that explicitly 
set the caller's errno can use this function to do so. This function is used when the caller executes as 
a result of a UNIX-style entry point.

Note:    This function works only in kernel-level drivers.

IOSleep()



SUMMARY Sleep for indicated number of milliseconds

DECLARED IN driverkit/generalFuncs.h

SYNOPSIS void IOSleep(unsigned int milliseconds)

DESCRIPTION This function causes the caller to block for the indicated number of milliseconds.

IOSuspendThread()

SUMMARY Suspend the execution of a thread started with IOForkThread()

DECLARED IN driverkit/generalFuncs.h

SYNOPSIS void IOSuspendThread(IOThread thread)

DESCRIPTION This function causes the execution of a running thread to pause. The thread can be 
resumed with IOResumeThread().

IOUnmapPhysicalFromIOTask

SUMMARY Unmap a physical address range from your IOTask's address space

DECLARED IN driverkit/kernelDriver.h

SYNOPSIS IOReturn IOUnmapPhysicalFromIOTask(vm_address_t virtualAddress, 
unsigned length)

DESCRIPTION This function unmaps a range of memory that was mapped with 
IOMapPhysicalIntoIOTask(). You should use this to destroy a mapping when you no longer need 
to use it.

Note:    This function works only in kernel-level drivers.

RETURN Returns an error if the specified virtual range was not mapped by 
IOMapPhysicalIntoIOTask(); otherwise, returns IO_R_SUCCESS.

SEE ALSO IOMapPhysicalIntoIOTask()

IOUnscheduleFunc()

SUMMARY Cancel a request made with IOScheduleFunc()

DECLARED IN driverkit/generalFuncs.h

SYNOPSIS void IOUnscheduleFunc(IOThreadFunc function, void *arg)

DESCRIPTION This function removes a request made using IOScheduleFunc() from the current list of 
pending requests. An error will be logged to the console if the specified function/arg pair is not 
currently registered.



IOVmTaskCurrent()

SUMMARY Returns the vm_task_t of the current task

DECLARED IN driverkit/kernelDriver.h

SYNOPSIS vm_task_t IOVmTaskCurrent()

DESCRIPTION Returns the vm_task_t for the current task. The only reason to use this function is to 
perform DMA to user space memory transfers in a UNIX-style driver.

Note:    This function works only in kernel-level drivers.

SEE ALSO IOVmTaskSelf()

IOVmTaskForBuf()

SUMMARY Returns the vm_task_t associated with a buf structure

DECLARED IN driverkit/kernelDriver.h

SYNOPSIS vm_task_t IOVmTaskForBuf(struct buf *buffer)

DESCRIPTION Block drivers use this function to determine the task for which they're doing I/O. The 
value returned by this function is used in calls to IOPhysicalFromVirtual(), which returns an 
address that's used in IODirectDevice's createDMABufferFor:... method.

Note:    This function works only in kernel-level drivers.

IOVmTaskSelf()

SUMMARY Obtain the vm_task_t of the kernel

DECLARED IN driverkit/kernelDriver.h

SYNOPSIS vm_task_t IOVmTaskSelf()

DESCRIPTION This function is used to obtain the kernel's vm_task_t, which is the vm_task_t for 
memory allocated with IOMalloc(). This function is required because the type definition of 
vm_task_t at kernel level is different from that of vm_task_t at user level.

Note:    This function works only in kernel-level drivers. 


