
allocateNetbuf
finishInitialization
outputPacket:address:
performCommand:data:

free
initFromDeviceDescription:
attachToNetworkWithAddress:

Transmitting packets transmit:
Setting and handling hardware timeouts

setRelativeTimeout:
relativeTimeout
clearTimeout

Setting and getting the state of the hardware
setRunning:
isRunning
resetAndEnable:



Setting and getting maximum sizes
setMaxInfoFieldSize:
maxInfoFieldSize

Getting other configuration information
earlyTokenEnabled
nodeAddress
ringSpeed
shouldAutoRecover

(IONetwork *)attachToNetworkWithAddress:(token_addr_t)address

Invokes registerDevice, sets the node address to address, creates an IONetwork instance, and attaches to the network
subsystem by sending the IONetwork an initForNetworkDevice:... message. Besides starting up the IP protocol stack for
the device, this method also starts up an 802.2-compliant Null SAP interface. Finally, this method logs a message stating
the node address. Returns the IONetwork instance just created.

To determine the value to specify for address, first invoke nodeAddress. If nodeAddress returns a nonzero value, use that
value. Otherwise, use the hardware's burnt-in address.

You invoke this method at the end of your implementation of initFromDeviceDescription:. You must invoke
resetAndEnable:NO before invoking this method, as described under initFromDeviceDescription:, later in this
specification.

(void)clearTimeout

If a transmission timeout is scheduled, unschedules the timeout. This method is normally invoked from a subclass's
implementation of interruptOccurred.

setRelativeTimeout:, relativeTimeout

(BOOL)earlyTokenEnabled

Returns YES if Early Token Release (ETR) is supported by the station otherwise, returns NO. Stations that support ETR
can co-exist with non-ETR stations in the ring. The value returned by this method is set by initFromDeviceDescription:.

free

Frees the IOTokenRing instance and its resources and returns nil.

initFromDeviceDescription:(IODeviceDescription *)devDesc

Invokes the superclass implementation, starts an I/O thread (using startIOThread), and sets the device name, kind, and
unit.

Next, it examines the device configuration table for such parameters as ring speed and early token enablement. It then sets
the maximum packet size, based on the ring speed. If the ring speed is 4 megabits per second, the maximum info field size
is MAC_INFO_4MB. If the ring speed is 16, the maximum info field size is MAC_INFO_16MB. (The maximum packet
size is the maximum info field size plus MAC_HDR_MAX.) These constants are defined in the header file bsd/net/
tokendefs.h.

Subclasses of IOTokenRing should implement this method so that it invokes the superclass version of
initFromDeviceDescription:, makes sure the configuration is correct, invokes setMaxInfoFieldSize:, does any other
device-specific software and hardware initialization, and invokes attachToNetworkWithAddress:.



This method should free the instance and return nil on failure otherwise, it should return self. A rough example of
implementing this method is below.

(BOOL)isRunning

Returns YES if the hardware is currently inserted in the ring otherwise, returns NO.

setRunning:

(unsigned int)maxInfoFieldSize

Returns the maximum size of the info field. This value is used by allocateNetbuf. It's also used as the maximum transfer
unit specified to the network subsystem.

setMaxInfoFieldSize:

(token_addr_t)nodeAddress

Returns the node address for this station. Currently, only burnt-in addresses are supported. In the future, however,
IOTokenRing will be able to initialize the node address from the device configuration table. The value returned by this
method is set by attachToNetworkWithAddress:.

(unsigned int)relativeTimeout

Returns the number of milliseconds until a transmission timeout will occur. If no transmission timeout is currently
scheduled, this method returns zero.

clearTimeout, setRelativeTimeout:

(BOOL)resetAndEnable:(BOOL)enable

Does nothing and returns YES. Subclasses of IOTokenRing must implement this method so that it resets and initializes
the hardware. This method should invoke setRunning: to record the basic state of the device.

If enable is YES and the station is already in the ring, this method should do nothing but invoke setRunning: with a YES
argument and return YES. If enable is YES and the station isn't in the ring, interrupts should be enabled and the station
inserted in the ring setRunning: should be used to update the device running status to YES or NO, depending on the
success of the insertion. If enable is NO, interrupts should be left disabled, the station should be removed from the ring,
and setRunning: should be invoked with a NO argument.



This method should return YES if it encounters no errors (no matter what value enable has) if it encounters errors, it
should return NO. For example, the result from resetAndEnable:NO should be YES if the reset is successful.

The only time this method is invoked, with the exception of any invocations from your IOTokenRing subclass
implementation, is during initialization. Specifically, resetAndEnable:YES is invoked once in the I/O thread after
attachToNetworkWithAddress: is invoked.

setRunning:

(unsigned int)ringSpeed

Returns the speed of the Token Ring, in megabits per second. This value, which is either 4 or 16, is set to the amount
specified by the ªRing Speedº key in the device configuration table. If the value is missing or invalid, the ring speed is set
to 16.

(void)setMaxInfoFieldSize:(unsigned int)size

Sets the maximum size of the info field. This value is used by allocateNetbuf. It's also used as the maximum transfer unit
specified to the network subsystem. Your subclass should invoke this method in its implementation of
initFromDeviceDescription:.

maxInfoFieldSize

(void)setRelativeTimeout:(unsigned int)timeout

Schedules a timeout to occur in timeout milliseconds. When timeout milliseconds pass without the timeout being cleared
(with clearTimeout), timeoutOccurred is invoked.

clearTimeout, relativeTimeout, timeoutOccurred (IODirectDevice)

(void)setRunning:(BOOL)running

Sets whether the hardware is inserted into the ring. The value of running should be YES to indicate that the hardware is
inserted otherwise, it should be NO. This method is invoked only by methods in IOTokenRing subclassesÐnot by
IOTokenRing's own method implementations. You should invoke this method in your implementation of
resetAndEnable:.

isRunning

(BOOL)shouldAutoRecover

Returns YES if the device should try to recover from a failed attempt at inserting itself into the ring or from an
unexpected removal from the ring otherwise, returns NO. IOTokenRing sets this value depending on the value of the
ªAuto Recoveryº key in the device configuration table. This method is provided as a convenience for IOTokenRing
subclasses that support automatic recovery.

(void)transmit:(netbuf_t)packet

Does nothing except free packet, using the nb_free() function. This method is invoked by the kernel networking
subsystem when the hardware should transmit a packet.

Subclasses of IOTokenRing can implement this method or they can reimplement the method that invokes it: outputPacket:
address:. To determine the number of bytes of data to be transmitted, use the nb_size() function. To get a pointer to the
data, use nb_map(). After getting the information you need from packet, you should free it with nb_free().

outputPacket:address: (IONetworkDeviceMethods protocol)




