
allocateNetbuf
finishInitialization
outputPacket:address:
performCommand:data:

free
initFromDeviceDescription:
attachToNetworkWithAddress:

Handling interrupts interruptOccurred (IODirectDevice)
Transmitting packets transmit:

performLoopback:
Setting and handling hardware timeouts

setRelativeTimeout:
relativeTimeout
clearTimeout
timeoutOccurred (IODirectDevice)

Setting and getting the state of the hardware
isRunning



resetAndEnable
Supporting multicast enableMulticastMode

disableMulticastMode
addMulticastAddress:
removeMulticastAddress:
isUnwantedMulticastPacket:

Supporting promiscuity disablePromiscuousMode
enablePromiscuousMode

(void)addMulticastAddress:(enet_addr_t *)address

Does nothing. Subclasses that support multicast mode can implement this method so that it notifies the hardware that it
should receive packets sent to address. Some subclasses that support multicast don't implement this method because their
hardware doesn't provide filtering based upon individual multicast addresses. Instead, they inspect all multicast packets,
using isUnwantedMulticastPacket: to weed out packets to unwanted multicast addresses. This method, followed by
enableMulticastMode, is invoked in the I/O thread every time a new multicast address is added to the list that IOEthernet
maintains.

enableMulticastMode, isUnwantedMulticastPacket:, removeMulticastAddress:

(IONetwork *)attachToNetworkWithAddress:(enet_addr_t)address

Creates an IONetwork instance and attaches to the network subsystem by sending the IONetwork an
initForNetworkDevice:... message. Before returning, this method logs a message including the ethernet address. Returns
the IONetwork instance just created.

You invoke this method at the end of your implementation of initFromDeviceDescription:. You must invoke
resetAndEnable:NO before invoking this method, as described under initFromDeviceDescription:.

(void)clearTimeout

If a transmission timeout is scheduled, unschedules the timeout. This method is normally invoked from a subclass's
implementation of interruptOccurred.

(void)disableMulticastMode

Does nothing. Subclasses that support multicast mode and implement enableMulticastMode should implement this
method so that it disables the hardware's support for multicast mode. This method is invoked in the I/O thread when the
last multicast address has been removed from the list that IOEthernet maintains.

enableMulticastMode

(void)disablePromiscuousMode

Does nothing. Subclasses that support promiscuous mode must implement this method so that it disables the hardware's
support for promiscuous mode. This method is invoked in the I/O thread by the networking subsystem.

enablePromiscuousMode

(BOOL)enableMulticastMode



Does nothing and returns YES. Subclasses that support multicast mode can implement this method so that it enables the
hardware's support for multicast mode. Every time a new multicast address is added to the list that IOEthernet maintains,
addMulticastAddress: and this method are invoked in the I/O thread.

disableMulticastMode

(BOOL)enablePromiscuousMode

Does nothing and returns YES. Subclasses that support promiscuous mode must implement this method so that it enables
the hardware's support for promiscuous mode. This method is invoked in the I/O thread by the networking subsystem.

enablePromiscuousMode

free

Frees the IOEthernet instance and returns nil.

initFromDeviceDescription:(IODeviceDescription *)deviceDescription

Initializes a newly allocated IOEthernet instance. This includes invoking initFromDeviceDescription: on super invoking
startIOThread setting the name, kind, and unit of this instance and invoking registerDevice.

Subclasses of IOEthernet should implement this method so that it invokes [super initFromDeviceDescription:] and then
performs any device-specific initialization. The subclass implementation should invoke resetAndEnable:NO and should
finish by invoking attachToNetworkWithAddress:. An example of a subclass implementation of this method is below.
Italicized text delineated in angle brackets, that is << >>, is to be filled in with device-specific code.

(BOOL)isRunning

Returns YES if the hardware is currently capable of communication with other stations in the network otherwise, returns
NO.

setRunning:

(BOOL)isUnwantedMulticastPacket:(ether_header_t *)header

Determines whether the specified packet is to a multicast address that this device shouldn't listen to. Returns YES if the
packet should be dropped otherwise, returns NO.



addMulticastAddress:

(void)performLoopback:(netbuf_t)packet

Determines whether the outgoing packet should be received by this device (because it's a broadcast packet, for example,
or a multicast packet for an enabled address). If so, simulates reception by sending a copy of packet to the protocol stack.
You should invoke this method in your transmit: method if your hardware device can't receive its own packets.

(unsigned int)relativeTimeout

Returns the number of milliseconds until a transmission timeout will occur. If no transmission timeout is currently
scheduled, this method returns zero.

(void)removeMulticastAddress:(enet_addr_t *)address

Does nothing. Subclasses that support multicast mode can implement this method so that it notifies the hardware that it
should stop listening for packets sent to address.

addMulticastAddress:, disableMulticastMode

(BOOL)resetAndEnable:(BOOL)enable

Does nothing and returns YES. Subclasses of IOEthernet must implement this method so that it resets and initializes the
hardware. Interrupts should be enabled if enable is YES otherwise, they should be left disabled. In either case, this
method should invoke setRunning: to record the basic state of the device.

This method should return YES if it encounters no errors (no matter what the value of enable is) if it encounters errors, it
should return NO. For example, the result from resetAndEnable:NO should be YES if the reset is successful.

The only time this method is invoked, with the exception of any invocations from your IOEthernet subclass
implementation, is during initialization. Specifically, resetAndEnable:YES is invoked once in the I/O thread after
attachToNetworkWithAddress: is invoked.

setRunning:

(void)setRelativeTimeout:(unsigned int)timeout

Schedules a timeout to occur in timeout milliseconds. This method is generally invoked by the IOEthernet's transmit:
method. When timeout milliseconds pass without the timeout being cleared (with clearTimeout), the method
timeoutOccurred is invoked.

(void)setRunning:(BOOL)running

Sets whether the hardware is on line. The value of running should be YES to indicate that the hardware is on line
otherwise, it should be NO. This method is invoked only by methods in IOEthernet subclassesÐnot by IOEthernet's own
method implementations. You should invoke this method in your implementation of resetAndEnable:.

isRunning



(void)transmit:(netbuf_t)packet

Does nothing except free packet, using the nb_free() function. This method is invoked by the kernel networking
subsystem when the hardware should transmit a packet.

Subclasses of IOEthernet must implement this method. To determine the number of bytes of data to be transmitted, use
the nb_size() function. To get a pointer to the data, use nb_map(). After getting the information you need from packet,
you must free it with nb_free(). Just before transmitting the packet, you can set a timeout with setRelativeTimeout:. If
your hardware can't receive packets it transmits, you must invoke performLoopback: in your implementation of this
method.

This method can be invoked in many contexts, not just from the I/O thread (or from the I/O task). For example, transmit:
and interruptOccurred can run at the same time, so any common structures they both use must be protected with locks.


