
initFromDeviceDescription:
Getting and setting parameters getIntValues:forParameter:count:

setCharValues:forParameter:count:
setIntValues:forParameter:count:

Handling the cursor hideCursor:
moveCursor:frame:token:
showCursor:frame:token:

Setting screen brightness setBrightness:token:
Setting the gamma correction table

setTransferTable:count:
Mapping the frame buffer mapFrameBufferAtPhysicalAddress:length:
Choosing display modes enterLinearMode

revertToVGAMode



selectMode:count:
selectMode:count:valid:

initFromDeviceDescription:

(void)enterLinearMode

Implemented by subclasses to put the display into linear frame buffer mode. This method is invoked by the system when
appropriate, such as when the window server starts running.

revertToVGAMode

(IOReturn)getIntValues:(unsigned int *)parameterArray
forParameter:(IOParameterName)parameterName
count:(unsigned int *)count

Handles NeXT-internal parameters specific to IOFrameBufferDisplays forwards the handling of all other parameters to
super.

getIntValues:forParameter:count: (IODevice)

hideCursor:(int)token

Implements this method, as described in the IOScreenEvents protocol specification. You should never need to invoke or
implement this method.

initFromDeviceDescription:deviceDescription

Invokes initFromDeviceDescription: on super. If successful, sets the unit number and the name (to ªDisplayº followed by
the unit number). Frees itself if initialization was unsuccessful.

Subclasses must implement this method so that it performs all initialization necessary to set up the device and the driver.
This includes setting the IODisplayInfo structure (as described in the IODisplay class description) and invoking
mapFrameBufferAtPhysicalAddress:length:. If possible, this method should also check the hardware to see if it matches
the IOConfigTable. If the hardware doesn't match, the driver should do what it can to ensure that the display is still
usable.

(vm_address_t)mapFrameBufferAtPhysicalAddress:(unsigned int)address length:(int)numBytes

Maps the physical memory for this instance into virtual memory for use by the device driver. If address is 0, this method
maps the physical memory corresponding to local memory range 0, and numBytes is ignored. If address is not 0, the
reserved resources are overriddenÐ address is used as the physical memory address and numBytes is used as the length.
The mapped memory range is cached as specified in the IODisplayInfo for this instance.



initFromDeviceDescription:

moveCursor:(Point *)cursorLoc
frame:(int)frame
token:(int)token

Implements this method, as described in the IOScreenEvents protocol specification. You should never need to invoke or
implement this method.

(void)revertToVGAMode

Implemented by subclasses to remove the display from whatever advanced mode it's in and enter a mode in which it can
be used as a standard VGA device.

enterLinearMode

(int)selectMode:(const IODisplayInfo *)modeList count:(int)count

Invokes selectMode:count:valid:, specifying 0 for the last argument.

(int)selectMode:(const IODisplayInfo *)modeList
count:(int)count
valid:(const BOOL *)isValid

Determines which IODisplayInfo in the driver-supplied modeList matches the value of the ªDisplay Modeº key in the
device's IOConfigTable. Drivers that support multiple advanced modes should invoke this method during initialization.
When the driver receives a enterLinearMode message, it should enter the mode selected by this method. If this method
doesn't find a valid mode, the driver should determine a mode that will work.

The ªDisplay Modeº key is a configuration key that can be used by drivers to support multiple modesÐfor example, both
8-bit gray and 16-bit RGB. IODisplayInfo is defined in the header file driverkit/displayDefs.h.

The modeList argument should contain a IODisplayInfo for each advanced mode the driver supports. The count argument
should specify the number of IODisplayInfos in modeList. isValid should either be 0 (in which case it's ignored) or an
array that corresponds to the modeList. If isValid[1] is NO, for example, then this method ignores the IODisplayInfo
pointed to by modeList[1].

If this method finds a match, it returns the index of the matching IODisplayInfo in modeList. If the ªDisplay Modeº key
is missing or its value is improperly formatted, or if a corresponding IODisplayInfo isn't found, this method returns -1.

See the IODisplay class description for information on display modes and the IODisplayInfo type.

setBrightness:(int)level token:(int)token

Checks whether level is between EV_SCREEN_MIN_BRIGHTNESS and EV_SCREEN_MAX_BRIGHTNESS
(inclusive). If not, this method logs an error message. Subclasses that support brightness changes should override this
method and implement it as described in the IOScreenEvents protocol specification.

Returns self.

(IOReturn)setCharValues:(unsigned char *)parameterArray



forParameter:(IOParameterName)parameterName
count:(unsigned int)count

Handles NeXT-internal parameters specific to IOFrameBufferDisplays forwards the handling of all other parameters to
super.

setCharValues:forParameter:count: (IODevice)

(IOReturn)setIntValues:(unsigned int *)parameterArray
forParameter:(IOParameterName)parameterName
count:(unsigned int)count

Handles NeXT-internal parameters specific to IOFrameBufferDisplays forwards the handling of all other parameters to
super.

setIntValues:forParameter:count: (IODevice)

setTransferTable:(const unsigned int *)table count:(int)numEntries

Specifies new gamma correction values to be used by the hardware. The default implement does nothing but return self.
Subclasses that support multiple gamma correction transforms must override this method so that it sets the hardware to
reflect the values in table.

Gamma correction is necessary because displays respond nonlinearly to linear ranges of voltage. For example, consider a
pixel that can have red, green, and blue values between 0 and 15. This pixel's brightness when the values are (7, 0, 0)
might be more than 7/15 its brightness when the values are (15, 0, 0). Gamma correction lets the hardware adjust the
voltage of the beamÐfor example, using 6.5/15 of maximum voltage instead of 7/15, so that the pixel isn't too bright.

Each entry in table specifies the gamma correction (a value scaled to be between 0 and 255, inclusive) for the
corresponding pixel component values. For example, for RGB color modes, table[7] specifies the gamma corrections for a
red value of 7, a green value of 7, and a blue value of 7 (using one byte of the entry per component). If a pixel's value is
(0, 5, 15), for example, the hardware should use the red gamma correction from table[0], the green gamma correction
from table[5], and the blue gamma correction from table[15]. Which bytes you use from each table entry depends on
whether the transfer table is for a color or black-and-white mode you can determine the mode from the value of
numEntries.

When numEntries is IO_2BPP_TRANSFER_TABLE_SIZE or IO_8BPP_TRANSFER_TABLE_SIZE (as defined in the
header file driverkit/displayDefs.h), the table is for a black-and-white display. In this case, each table entry has only one
meaningful byte: the least significant byte.

When numEntries is IO_12BPP_TRANSFER_TABLE_SIZE, IO_15BPP_TRANSFER_TABLE_SIZE, or
IO_24BPP_TRANSFER_TABLE_SIZE, the table is for an RGB display, and each entry has three meaningful bytes. The
most significant byte holds the red gamma correction, the next most significant byte holds the green gamma correction,
and the next holds the blue gamma correction. The least significant byte holds no information.

The following example shows how to copy the correction information from the transfer table to a particular type of
hardware.



showCursor:(Point *)cursorLoc



frame:(int)frame
token:(int)token

Implements this method, as described in the IOScreenEvents protocol specification. You should never need to invoke or
implement this method.


