
Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

4

Building, Configuring, and
Debugging Drivers

This chapter tells you how to integrate your Driver Kit driver with the rest of the system. It first
describes building the driver using Project Builder. It tells how to set up the initial configuration
files and set the configuration parameters with the Configure application. Finally, it highlights some
of the debugging aids available for finding driver bugs and tracing your driver's execution. Consult
the other sources mentioned for in-depth information about the tools.

Also see Chapter 9, ªBuilding, Loading, and Debugging Loadable Kernel Serversº in NEXTSTEP
Operating System Software for details on that topic. Look at
/NextLibrary/Documentation/NextDev/Examples/DriverKit/TestDriver for an example of
building, loading, and debugging a driver.

Driver Bundles
To load your driver into the kernelÐeven if only for testingÐyou need to create a driver bundle for it
with Project Builder. A driver bundle contains all the files needed to load and configure a driver: Its
relocatable code and configuration information. A bundle may also contain help information and a
configuration inspector for Configure to access configuration data. A driver bundle is also called a
config bundle because it contains configuration information for the driver and typically has the name
Driver.config, where Driver is the driver's name.

The driver name should be of the form

<vendor><model><type>Driver

The driver name Adaptec1542SCSIDriver follows this form.

Bundle Locations
Driver bundles for each system deviceÐlike the mouse, display, network card, SCSI devices, and so
onÐreside in a special directory called /NextLibrary/Devices. The bundles for each type of device
are called Driver.config, where Driver is a type of device or a device name. In addition, every
system has a bundle called System.config that configures the whole system.

An average system's directory /NextLibrary/Devices might contain the following directories, each
of which is a bundle for a specific device:

ATI.config PS2Mouse.config

Adaptec1542B.config ParallelPort.config
Beep.config ProAudioSpectrum.config
BusMouse.config          QVision.config
CirrusLogicGD542X.config S3.config
CompaqAudio.config SCSITape.config
DPT2012.config SMC16.config
EtherExpress16.config SerialMouse.config
EtherLink3.config              SerialPorts.config
Floppy.config                    System.config
IDE.config                        TokenExpress.config
IntelGXProAudio.config TsengLabsET4000.config
JAWS.config                VGA.config
MSWSoundSystem.config Wingine.config
PS2Keyboard.config

/NextLibrary/Devices is a link to the /private/Devices directory, which is a link to the driver
directory for the current architecture (for example, /private/Drivers/i386). This link is always valid.

What's in a Bundle
Each driver bundle (including System.config) can contain the following files and directories:

Default.table
Instancen.table (created by Configure)
x.table
Display.modes
x.modes
CustomInspector (optional binary)
Language.lproj/

CustomInspector.nib (optional)
Localizable.strings
Help/ (replaces Info.rtf)

Driver_reloc (omitted for NeXT drivers that are compiled into the kernel)
Pre-Load
Post-Load

Default.table is a commented, read-only file that gives the default configuration settings for a
generic device. Configure uses Default.table to build Instancen.table files, which contain specific
configuration information for each device you have. There may be other x.table files, each
expressing a different possible instance of the driver.

Each .table file is the ASCII representation of an NXStringTable object. Drivers and nondrivers can
get access to these tables by using the IOConfigTable class. In addition, Driver Kit classes
automatically interpret and use some of the standard keys in these tables.

Direct drivers have one Instancen.table for each device. For example, if you have two of the same
card, Configure makes two files called Instance0.table and Instance1.table in the card's bundle.
Indirect drivers and the system bundle have only one file, called Instance0.table.

Note:    Because Configure's default device inspector has no way of knowing whether a device is
direct or indirect, it can create more than one Instancen.table for an indirect driver. The
consequence is that the driver's probe: method gets invoked more than once for each direct driver it
might want to attach to. To get around this, you should either write your own device inspector or
ensure that your driver's probe: method can handle more than one probe per direct driver.

The Display.mode and x.mode files hold display mode information. Default information is in
Display.mode, and x.mode holds the information for other instances of the driver (just as x.table

expresses configuration information for other driver instances).

For each language, Localizable.strings contains the text strings that applications display about the
device. For example, it includes the name of the device as it appears in the list of devices in
Configure. The Help/ directory contains files to inform the user about the driver and help them use
it.

The Driver_reloc file is the relocatable object file of the device driver. The CustomInspector binary
is the executable file for the Inspector panel; its name is the same as the bundle name (without the
.config suffix). CustomInspector.nib is the nib file for the Inspector panel.

The bundle may contain Pre-Load and/or Post-Load programs that are run before and/or after the
driver is loaded.

Configuration Tables

Files with a .table suffix contain strings of key/value pairs that describe a configuration. See
ªConfiguration Keysº in the Appendix for information on what these tables should contain.

You can use the Default.table of an existing driver as a starting point for a configuration. Later, you
should let the Configure application (with your custom inspector, if any) create the Instancen.table
files.

Here's a sample Instancen.table for a parallel port driver:

"Driver Name" = "IOParallelPort";
"Title" = "System Parallel";
"Location" = "System Baseboard";
"Family" = "Parallel";
"Version" = "1.0";
"Server Name" = "ParallelPort";
"Path 0" = "/dev/pp0";
"Post-Load" = "InstallPPDev";
"Memory Maps" = "";
"Pre-Load" = "RemovePPDev";
"DMA Channels" = "";
"Minor Device Number" = "0";
"Valid IRQ Levels" = "7";
"I/O Ports" = "0x378-0x37f";
"Instance" = "0";
"Port Count" = "1";
"IRQ Levels" = "7";

Warning: C-style comment delimiters (that is, /* */) aren't recognized in configuration tables, such as
Default.table or Instance0.table. Anything inside the delimiters will be parsed along with the rest
of the file. This means that, for example, if you are testing a driver under development, you can't
remove a key-value pair by simply commenting it out.

Other Configuration Tables

A bundle may also contain other configuration tables of the form x.table, where x is a prefix such as
ªPCIº. Each of these is a table like default.table but expresses a possible instance of the driver with
a slightly different ªpersonalityº than default.table. For example, PCI.table might be identical to
Default.table except that it contains a line specifying a PCI-compliant driver:

"Bus Type" = "PCI";

By convention, Default.table specifies an ISA or VL-bus compliant driverÐthe simplest case. The
prefix x in x.table usually designates the bus type.

These configuration table files should contain all information appropriate for the bus type. PCI-
compliant drivers, for instance, contain a line specifying the auto detect IDs, such as this:

"Auto Detect IDs" = "0x71789004 0x0e111234";

Custom Device Inspector Files

For initial testing, you probably don't need a custom inspector. Instead, you can put the appropriate
values directly into your test Default.table or Instancen.table files.

If you create a custom inspector, you should put the executable file and nib file in the places
described in ªWhat's in a Bundle,º earlier in this chapter. Project Builder does this for you
automatically. See ªWriting a Custom Inspectorº later in this chapter for information on creating
custom inspectors.

Note:    Project Builder creates an Inspector Panel executable file in the bundle and gives it the
same name as the bundle (without the .config suffix). This executable loads the default inspector.

Localizable Strings File

This file should contain any strings you add to your Configure inspector's user interface, plus the
following strings:

"Driver" = "UltimateTech XYZ-12";
"Long Name" = "Ultimate Technologies XYZ-12 Transmogrifier";

where Driver is the name of the bundle (minus the .config suffix). Configure uses the string
associated with the Driver key (ªUltimateTech XYZ-12º) whenever space is tight. When Configure
has more space to display the driver's name, it uses the string associated with the ªLong Nameº key.

Display Mode Tables

If your driver is a display driver that supports multiple display modes, you need to specify which
modes the user can choose. This information is supplied in the Display.modes file. Here's a sample
file:

"Height: 600 Width: 800 Refresh: 60Hz ColorSpace: RGB:555/16";
"Height: 600 Width: 800 Refresh: 72Hz ColorSpace: RGB:555/16";
"Height: 768 Width:1024 Refresh: 60Hz ColorSpace: RGB:256/8";
"Height: 768 Width:1024 Refresh: 66Hz ColorSpace: RGB:256/8";
"Height: 768 Width:1024 Refresh: 72Hz ColorSpace: RGB:256/8";
"Height: 768 Width:1024 Refresh: 76Hz ColorSpace: RGB:256/8";
"Height: 768 Width:1024 Refresh: 60Hz ColorSpace: BW:8";
"Height: 768 Width:1024 Refresh: 66Hz ColorSpace: BW:8";
"Height: 768 Width:1024 Refresh: 72Hz ColorSpace: BW:8";
"Height: 768 Width:1024 Refresh: 76Hz ColorSpace: BW:8";
"Height: 768 Width:1024 Refresh: 60Hz ColorSpace: RGB:555/16";
"Height: 768 Width:1024 Refresh: 72Hz ColorSpace: RGB:555/16";
"Height:1024 Width:1280 Refresh: 68Hz ColorSpace: RGB:256/8";
"Height:1024 Width:1280 Refresh: 68Hz ColorSpace: BW:8";
"Height: 400 Width: 640 Refresh: 60Hz ColorSpace: RGB:888/32";
"Height: 400 Width: 640 Refresh: 70Hz ColorSpace: RGB:888/32";
"Height: 480 Width: 640 Refresh: 60Hz ColorSpace: RGB:888/32";

If your driver has more than one ªpersonality,º specify alternate display information in x.modes files
where x is the appropriate prefix such as ªPCIº.

See the specification for the IODisplayInspector, IOFrameBufferDisplay, and IOSVGADisplay
classes for more information on display modes.

Help Directory

This directory contains the help files supported by the NeXT help facility. You add this directory to
your project with Project Builder's Add Help Directory command. For more information on adding
help to your driver, see ªAttaching Help to Objectsº in Chapter 3, ªThe Interface Builder Applicationº
of NEXTSTEP Development Tools and Techniques.

The Help directory replaces the Info.rtf file, formerly used to provide information about the driver.

Driver Relocatable Code

This file contains the driver's relocatable code. An example of building a driver relocatable object
file is located in /NextLibrary/Documentation/NextDev/Examples/DriverKit/TestDriver.

Pre- and Post-Load Programs

Your driver may require some action to be taken before and/or after it is loaded. For instance, you
may want to run a program after the driver is loaded to look up its major device number and create a
device node for the driver. Use the ªPre-Loadº configuration key to specify a program that will run
prior to your driver being loaded; use the ªPost-Loadº key to specify a program that runs after the
driver is loaded.

The System Configuration Bundle
The System.config bundle is special in several ways. Its Instance0.table has default configuration
information for the system as a whole. For example, it specifies which device drivers to load at boot
time (ªBoot Driversº) and which to load later (ªActive Driversº). Here's a sample Default._table
from a System.config bundle:

"Version" = "2.0";
"Boot Drivers" = "PS2Keyboard PS2Mouse BusMouse Adaptec1542B DPT2012 IDE
Floppy VGA";
"Active Drivers" = "SerialPorts SerialMouse ParallelPort";
"Kernel" = "mach_kernel";
"Kernel Flags" = "";
"Boot Graphics" = "No";

For writers of Driver Kit drivers, ªActive Driversº and ªBoot Driversº are the most important
keywords. They specify which drivers are automatically loaded into the system the next time it's
started. When someone uses Configure to add a device that has a loadable driver, the driver is added
to one of these two lists. See the ªBoot Driversº and ªActive Driversº keys in the ªConfiguration
Keysº section of the Appendix to see how to specify which list a driver should be in. This section
also lists the other keywords for the system configuration table.

Note:    Changes to system configuration information don't take effect until the system is restarted.
However, you can load a driver without rebooting by using the d option of driverLoader
(documented in ªLoading a Driver with driverLoaderº later in this chapter).

Creating a Driver Bundle
Create a project for your driver with Project Builder, and give the project the name you want your
driver to have. Copy your driver files into the project by dragging them into the appropriate suitcase
(header files to the Header suitcase and so on) or by using the Add command in the Files menu.
Switch to the Builder view in the project window and select ªbundleº as the Target. Click the Build
button. Project Builder builds the driver and puts it in a driver bundle called Driver.config where
Driver is the name you chose for the driver. Now you can configure and load the driver.

See NEXTSTEP Development Tools and Techniques for more information about using Project
Builder. The example in /NextLibrary/Documentation/NextDev/Examples/DriverKit/TestDriver
shows building a bundle with Project Builder.

Configuring Drivers
After you have built your driver, you need to configure it with the Configure application.

Configure Application
You can configure devices and add drivers with the Configure application. When you select a
device, Configure loads the device's inspector, which provides a user interface for manipulating the
device configuration (choosing its DMA channels, for example). If you don't supply a device
inspector for your driver, Configure uses a default device inspector. See the IODeviceInspector class
and IOConfiguration protocol specifications for more information on device inspectors.

The Configure application reads the key/value pairs from a driver bundle's Default.table and
displays them in a Configuration Inspector Panel. The user interface allows the user to change the
displayed parameters and warns of possible value conflicts. When the user finishes modifying the
configuration, Configure writes the updated configuration to the indicated Instancen.table and
configures the driver based on the information in the configuration and kernel tables.

When the system starts up, the kernel uses an IOConfigTable object to parse the configuration
information in the Instancen.table. From this information, the kernel instantiates an
IODeviceDescription object, which encapsulates information about the driver. The kernel passes the
IODeviceDescription object as the parameter to the probe: method, which instantiates the driver
object based on this information.

There's a list of standard key/value configuration pairs in the ªConfiguration Keysº section in the
Appendix.

How Configuring Kernel-Level Driver Kit Drivers Differs from Configuring
Other Loadable Kernel Servers

The configuration of Driver Kit kernel-level drivers differs from that of other Loadable Kernel
Servers (LKSs) in the following ways:

· Each Driver Kit driver has its own configuration directory under /NextLibrary/Devices. Other
LKSs have no standard way of getting configuration information.

· With the Configure application, users can add Driver Kit drivers to the system, as well as
specify configuration information for each driver. Other LKSs are generally added to the
system by adding a line to /etc/kern_loader.conf.

· Driver Kit drivers are allocated and loaded with the driverLoader command, which uses the
information in the driver's configuration directory. You can load an LKS with the kernel-server
utility, kl_util, but it doesn't cause the driver to be probed.

· Driver Kit drivers can't currently be unloaded, unlike other LKSs. For example, if you want to
change a driver that's already running, you must restart the system to be able to load the new
driver.

Writing a Custom Inspector
The Configure application uses inspectors to configure a driver. With the default inspector in
Configure, you can configure values that belong to the standard set of keys with no further
implementation effort. If you've added custom parameters, however, you need to implement a
custom inspector to view and modify them.

You have two choices in implementing a custom inspector:

· Add an accessory view to the inspector, with an 80-pixel height limit.

· Replace the standard inspector completely. You're still limited to a 640´480 view. However, you
can use a button to display a panel if you run out of space.

You implement an inspector by creating a subclass of IODeviceInspector. For example, you can
create a subclass of IODisplayInspector (a subclass of IODeviceInspector) to implement a display
inspector. For an example, study the inspector in
/NextLibrary/Documentation/NextDev/Examples/DriverKit/DriverInspector.

Other classes relevant to creating an inspector include IOAddressRanger, IODeviceDescription,
IODeviceMaster, and IOEISADeviceDescription. Some of these classes adopt the
IOConfigurationInspector protocol.

Creating an Inspector

Override the following methods in the IODeviceInspector class and the IOConfigurationInspector
protocol:

· init. Find and load the nib file that contains the accessory view using the bundle for your
inspector. Initialize the user interface and find your driver.

· inspectionView. Override this if you're replacing the standard inspector.

· setTable:. Invoke the superclass's implementation:

[super setTable:]

Invoke setAccessoryView: to specify and initialize the accessory View. Initialize the user
interface settings from the table being inspected.

· resourcesChanged:. Update the user interface in response to resources being chosen or dropped
in the inspector.

Modifying Custom Parameters

Implement a set of target/action methods to change the custom parameters. The user interface
elements of the inspector invokes these methods. Convert the new parameter state to an appropriate
string value for display, and insert it into the inspected table with insertKey:value:. The key must
be a unique string, and you can use the NXUniqueString() function to generate a unique key based
on the string argument. The value should be a copyÐuse NXCopyStringBuffer() to copy it:

[table insertKey:key value:NXCopyStringBuffer(value)];

Changing Driver Parameters with

IODeviceMaster
Besides Configure, another way to change parameters associated with a driver is through the
IODeviceMaster class, which provides access to a driver instance. First, find your driver using the
lookUpByDeviceName:objectNumber:deviceKind: method. Then manipulate parameters
associated with that instance with these methods:

· getCharValues:forParameter:objectNumber:count:
· setCharValues:forParameter:objectNumber:count:
· getIntValues:forParameter:objectNumber:count:
· setIntValues:forParameter:objectNumber:count:

Active driver values should be displayed in the user interfaceÐeven if they differ from the current
configuration table values. If you want the values you change to persist beyond the time the system
is powered off or restarted, you must write them to the configuration table.

Loading a Driver with driverLoader
You can load your driver into an already running system. The driverLoader command loads or
configures a driver after startup time. You initiate the command as follows (as superuser):

/usr/etc/driverLoader option [v] [instance]

Specifying v results in more verbose output from driverLoader. The instance argument can be used
only with the d option, as described below.

The option is one of the following:

a Configure all devices. This option is used when driverLoader is run during
system boot (by /etc/rc).

i Interactive mode. With this option, you can look at all active and boot drivers
in the system configuration. Note that if you add a driver to the system, the
driver isn't recognized as ªactiveº until you reboot.

d=deviceName Configure one device interactively. This is how you load drivers that aren't
specified in the system configuration. This is usually used for testing
purposes. You can specify instance to use a specific Instancen.table file. For
example, if you specify instance as 1, the driver is probed using the
information in its Instance1.table file.

Here's an example of using the d option:

/usr/etc/driverLoader d=myDriver

Here's an example of using the d option and specifying instance:

/usr/etc/driverLoader d=fooDriver 1

For another example of using driverLoader, see
/NextLibrary/Documentation/NextDev/Examples/DriverKit.

Recovering from a Bad Configuration
If you can't restart your system because of a bad configuration or because of bugs in your driver, try
restarting with a default configuration. To do this, type the following at the boot: prompt when the

system starts:

boot: config=Default

This causes the boot program to use Default.table in System.config as the system configuration,
which usually works. Once you've started up, log in as me or root and use Configure to fix the rest
of the configuration.

If you still can't start the system, try starting in single-user mode and editing the bundles by hand.
This is risky since the configuring process has many ªrules of thumb,º and you might not know all
the effects of a change. To restart in single-user mode, type the following at the boot: prompt after
you restart:

boot: mach_kernel -s config=Default

You can then use a single-user mode editor (such as vi or emacs) to edit the configuration bundles.

Debugging a Driver
You have two choices for creating debugging messages: the IOLog() function and the Driver
Debugging Module (DDM). Most drivers just use IOLog() until a need arises for the more powerful
and complex DDM functions.

Another debugging tool, gdb, is described in NEXTSTEP Development Tools and Techniques. You
can run the driver with gdb from Project BuilderÐthe example located in
/NextLibrary/Documentation/NextDev/Examples/DriverKit/TestDriver shows how to do this.
NEXTSTEP Development Tools and Techniques also describes Project Builder.

Using the IOLog Function
Using IOLog() is similar to using printf() to print error or debug messages. You can output strings
and parameters, just as for printf(). One difference is that output is placed in the
/usr/adm/messages file instead of the console window. Place a call to IOLog() anywhere in your
driver where you want to get information about the driver stateÐor to indicate that the driver reached
that point during execution.

IOLog() is useful both for status messages and as a basic debugging tool. Although IOLog() is
useful for debugging, it can affect the timing of the driver. When timing is important, you should use
DDM instead.

See ªFunctionsº in Chapter 5, ªDriver Kit Referenceº, for more information about IOLog().

Using the Driver Debugging Module (DDM)
The Driver Debugging Module (DDM) provides support for viewing debugging information without
disturbing the timing of the kernel. By using the DDMViewer application (in
/NextDeveloper/Demos), you can specify which information should be stored in the event buffer
and display debugging information from this buffer.

The core of DDM is a circular event buffer that stores the debugging information sent to it by
drivers. Each entry in the buffer is timestamped (to the microsecond) and consists of a printf-style
format string and up to five arguments associated with the format string. A call to the function that
timestamps and stores one entry takes about 10 microseconds.

Gathering DDM Events

The function IOAddDDMEntry() adds an event to the DDM buffer. An event consists of a
character string and several integer values. The IODEBUG() macro is provided to call
IOAddDDMEntry(): A driver typically doesn't call IOAddDDMEntry() directly. Instead, the
driver should define its own macros using the IODEBUG() macro, as in this example:

#define ddm_exp(x, a, b, c, d, e) \
IODEBUG(A7770_DDM_INDEX, DDM_EXPORTED, x, a, b, c, d, e)

#define ddm_him(x, a, b, c, d, e) \
IODEBUG(A7770_DDM_INDEX, DDM_HIM, x, a, b, c, d, e)

These macros can then be called like this:

ddm_him("abort_channel chan %d\n", channel, 2,3,4,5);

ddm_him("scb_int_preempt: scb 0x%x index %d haStat %s\n",
scb_ptr, scb_index,
IOFindNameForValue(compstat, scbHaStatValues),
4,5);

A word of mask bits controls the collection of DDM entries. All calls to IODEBUG() don't add data
to DDM's circular bufferÐonly those events whose mask bits are enabled are added. The mask bits
are enabled and disabled by a user-level tool like DDMViewer. A driver isn't (and shouldn't be)
concerned about which mask bits are enabled. Typically you turn on one or two bits of the mask
word to study the trace information for a particular module.

See the SCSI example driver in /NextDeveloper/Examples/DriverKit/Adaptec1542B, which
illustrates all aspects of using DDM.

Viewing DDM Events with DDMViewer

You can examine DDM traces at the user-level with the DDMViewer application, which is located in
/NextDeveloper/Demos. You can also specify DDM mask bits with this application. DDMViewer
can be run on any computer running NEXTSTEP, not just the machine being tested.

The DDMViewer window contains the following controls:

· Device Name field. Enter the name of the target to which you want to attach. The name is
determined by the driver.

· Host Name field. Enter the name of the host on which the target is running. Leave it empty if
you are debugging a driver or kernel on the current machine.

· List button. Click this button to start and stop the display of DDM entries. Entries are displayed
starting from the last event in time and scrolling backward.

· Set Mask button. Click this button to send the mask defined in the Mask window (see below) to
the target.

· Disable button. Click this button to freeze the state of the DDM buffer at the target. Click again
to reenable.

· Clear Window button. Click this button to clear the display area.

· Clear Buffer button. Click this button to clear the target's circular DDM buffer.

You can specify the value of the DDM mask bits by name if you open a .ddm file that specifies the
names of the mask bits. You create .ddm files with an editor such as Edit. Here's an example of a
.ddm file:

#

DDMViewer data file for kernel devices.
#
Index : 0 : "Kernel Devices"
#
Common fields.
#
0x0001 : "Device Object"
0x0002 : "Disk Object"
0x0004 : "Net"
0x0020 : "DMA"
#
SCSI.
#
0x0100 : "SCSI Control"
0x0400 : "SCSI Disk"

Comments start with ª#º. The line that starts with ªIndexº defines which DDM Mask word is being
defined (there are currently four mask words). The Index line also defines the name of the window
associated with this set of mask bits. All other lines define one bit in the mask word, specifying the
value of the bit and an ASCII name equivalent. The SCSI example driver in
/NextDeveloper/Examples/DriverKit/Adaptec1542B has a sample .ddm file.

