


initFromDeviceDescription:
Getting and setting parameters getIntValues:forParameter:count:

setIntValues:forParameter:count:
Handling the cursor hideCursor:

moveCursor:frame:token:
showCursor:frame:token:

Setting screen brightness setBrightness:token:
Mapping memory mapFrameBufferAtPhysicalAddress:length:
Choosing video modes enterSVGAMode

revertToVGAMode
selectMode:count:
selectMode:count:valid:

Setting planes and segments savePlaneAndSegmentSettings
restorePlaneAndSegmentSettings
setReadPlane:
setReadSegment:
setWritePlane:
setWriteSegment:

(void)enterSVGAMode

Implemented by subclasses to put the display into SVGA mode. This method is invoked by the system when appropriate,
such as when the window server starts running. This method should set up all the registers necessary for the selected
mode, set the color palette, and clear the screen.

You should set the color palette to contain values for the four supported shades of gray in the first four entries the rest of
the entries should be zeroed out. NeXT drivers currently use the palette values shown in the following table.

revertToVGAMode



(IOReturn)getIntValues:(unsigned int *)parameterArray
forParameter:(IOParameterName)parameterName
count:(unsigned int *)count

Handles NeXT-internal parameters specific to IOSVGADisplays forwards the handling of all other parameters to super.

hideCursor:(int)token

Implements this method, as described in the IOScreenEvents protocol specification. You should never need to invoke or
implement this method.

initFromDeviceDescription:deviceDescription

Invokes initFromDeviceDescription: on super. If successful, sets the unit number and the name (to ªSVGADisplayº
followed by the unit number). Frees itself if initialization was unsuccessful.

Subclasses must implement this method so that it performs all initialization necessary to set up the device and the driver.
After invoking initFromDeviceDescription: on super, this method should determine its mode (invoking selectMode:
count: or selectMode:count:valid:, if necessary) and set [self displayMode] to the IODisplayInfo appropriate for the mode.
The driver should finish by invoking mapFrameBufferAtPhysicalAddress:length: and setting the IODisplayInfo's
frameBuffer field to the value returned.

If possible, this method should check the hardware to see if it matches the IOConfigTable. If the hardware doesn't match,
the driver should do what it can to ensure that the display is still usable.

(vm_address_t)mapFrameBufferAtPhysicalAddress:(unsigned int)address length:(int)numBytes

Maps the physical memory for this instance into virtual memory for use by the device driver. If address is 0, this method
maps the physical memory corresponding to local memory range 0, and numBytes is ignored. If address is not 0, the
reserved resources are overriddenÐ address is used as the physical memory address and numBytes is used as the length.
The mapped memory range is cached as IO_WriteThrough.

moveCursor:(Point *)cursorLoc
frame:(int)frame
token:(int)token

Implements this method, as described by the IOScreenEvents protocol. You should never need to invoke or implement
this method.

(void)restorePlaneAndSegmentSettings

Implemented by subclasses to restore the plane and segment settings to the saved values. This method is invoked by
IOSVGADisplay's cursor handling methods. The cursor handling methods invoke savePlaneAndSegmentSettings, do
whatever is necessary to update the cursor, and then invoke restorePlaneAndSegmentSettings to restore the display's
state.

Here's an example of implementing this method by saving the current settings into subclass-defined instance variables.



(void)revertToVGAMode

Implemented by subclasses to remove the display from whatever advanced mode it's in and enter a mode in which it can
be used as a standard VGA device. Implementing this method usually consists of setting registers that aren't used by
VGA.

(void)savePlaneAndSegmentSettings

Implemented by subclasses to save the current plane and segment settings. This method is invoked by IOSVGADisplay's
cursor handling methods. The cursor handling methods invoke savePlaneAndSegmentSettings, do whatever is necessary
to update the cursor, and then invoke restorePlaneAndSegmentSettings to restore the display's state.

Each invocation of savePlaneAndSegmentSettings is followed by exactly one invocation of
restorePlaneAndSegmentSettings, with no intervening invocations of savePlaneAndSegmentSettings. In other words, the
driver only has to remember one group of settings at a time.

Here's an example of implementing this method by saving the current settings into subclass-defined instance variables.

(int)selectMode:(const IODisplayInfo *)modeList count:(int)count

Invokes selectMode:count:valid:, specifying 0 for the last argument.

(int)selectMode:(const IODisplayInfo *)modeList
count:(int)count
valid:(const BOOL *)isValid

Determines which IODisplayInfo in the driver-supplied modeList matches the value of the ªDisplay Modeº key in the
device's IOConfigTable. Drivers that support multiple advanced modes should invoke this method during initialization.
When the driver receives a enterSVGAMode message, it should enter the mode selected by this method. If this method
doesn't find a valid mode, the driver should determine a mode that will work.

The ªDisplay Modeº key is a configuration key that can be used by drivers to support multiple modesÐfor example, 66
Hz and 72 Hz. IODisplayInfo is defined in the header file driverkit/displayDefs.h.

The modeList argument should contain an IODisplayInfo for each advanced mode the driver supports. The count
argument should specify the number of IODisplayInfos in modeList. isValid should either be 0 (in which case it's
ignored) or an array that corresponds to the modeList. If isValid[1] is NO, for example, then this method ignores the
IODisplayInfo pointed to by modeList[1].

If this method finds a match, it returns the index of the matching IODisplayInfo in modeList. If the ªDisplay Modeº key
is missing or its value is improperly formatted, or if a corresponding IODisplayInfo isn't found, this method returns -1.

See the IODisplay class description for information on display modes and the IODisplayInfo type.

setBrightness:(int)level token:(int)token



Checks whether level is between EV_SCREEN_MIN_BRIGHTNESS and EV_SCREEN_MAX_BRIGHTNESS
(inclusive). If not, logs an error message. Subclasses that support brightness changes should override this method. A
typical implementation has code like this:

(IOReturn)setIntValues:(unsigned int *)parameterArray
forParameter:(IOParameterName)parameterName
count:(unsigned int)count

Handles NeXT-internal parameters specific to IOSVGADisplays forwards the handling of all other parameters to super.

setIntValues:forParameter:count: (IODevice)

(void)setReadPlane:(unsigned char)planeNum

Implemented by subclasses to set which of two planes the display subsystem will read from. Only one plane can be active
at a time. Here's an example of implementing this method.

setWritePlane:

(void)setReadSegment:(unsigned char)segmentNum

Implemented by the subclass to set the 64KB segment the display subsystem will read from.



setWriteSegment:

(void)setWritePlane:(unsigned char)planeNum

Implemented by subclasses to set which of two planes the display subsystem will write to. Only one plane can be active at
a time.

setReadPlane:

(void)setWriteSegment:(unsigned char)segmentNum

Implemented by the subclass to set the 64KB segment the display subsystem will read from.

setReadSegment:

showCursor:(Point *)cursorLoc
frame:(int)frame
token:(int)token

Implements this method, as described in the IOScreenEvents protocol specification. You should never need to invoke or
implement this method.


