init
copy
free

Creating, copying, and freeing blocks
createBlock:of Size:

copyBlock:atOffset:forL ength:
freeBlock:

Opening and closing blocks openBlock:atOffset:forL ength:
readBlock:atOffset:forLength:

Accessing the contents getContents.andL ength:
setContents.andL ength:

Reducing memory consumption compact

abortTransaction

Revertsthe I XStore to the state it was in before the last time it received a start Transaction message
enabled. Discards all changes made to blocks that were opened by the current transaction (even if
closes those blocks if necessary, and makes them available to other contexts. Any blocks created |
transaction are destroyed, any blocks freed are reclaimed, and any blocks resized are restored to th
current transaction is terminated, and the transaction in effect, if any, when the current transaction
current transaction. If the nesting level is1 (that is, no transaction is pending), the state revertsto
commitTransaction was received. Returns self.

Blocks opened by an enclosing transaction are not affected, even if their contents have been chang
the last startTransaction message. If transactions aren't enabled, only the block creations and freei
the last commitTransaction message are reverted changes made to the contents of blocks aren't un
code never uses startTransaction, it should periodically send commitTransaction to establish a ches
abortTransaction.

This method increases the change count of the IXStore, indicating that a change in state has occurr
closed blocks.

commitTransaction, startTransaction, nestingLevel, changeCount, closeBlock:

(BOOL)areT ransactionsEnabl ed

Returns YES if transactions are enabled for the IXStore (that is, if the IXStore was ever sent a star
Otherwise, it returns NO. Y ou should use this method if you're not sure whether or not to send ste
messages, or when invoked by higher-level code that establishes the transaction management polic

The transaction management policy is a property of the contents of an IXStore. If your code copie
| X Store that has transactions enabled into an | X Store that doesn't, transactions will be enabled for

startTransaction, nestingLevel

(unsigned int)changeCount

Returns the number of commitTransaction and abortTransaction messages received by the I X Store
That is, this number indicates the number of changes made to the I XStore's contents since the run-
initialized.

This method is useful for determining if cached pointers to the contents of opened blocks are still \
the block opening methods can be avoided. For example, if an object needs to repeatedly accessitl
transaction, it can cache the pointer to the block's contents when it opens the block, along with the
then on, whenever the object needs to access the block, it can check the | XStore's change count if
Increased, then no commits or transactions have occurred since the block was opened, which mear
pointer is still valid, and the object can use the pointer safely without having to open the block aga

UUIT L LAUAND UHTUULL Uit Lt ic A 1oLVl L ik U}JCI ICUuiltiovulininiitocu OIIIIIIall_y, vl 1A IUCOGICI 1L Ul ivuvil iv
that opened the block is aborted. Open blocks are automatically closed when the transaction that ¢
committed or aborted. Returns self.

openBlock:atOffset:forLength:, readBlock:atOffset:forLength:, startTransaction, commitTransa

commitTransaction

Commits all changes made to blocks opened since the last startTransaction, closes the blocks. If tf
becomes 0, makes the blocks available to other contexts. Any creations, freeings or resizes perfor
startTransaction are also committed. The current transaction is terminated, and the enclosing trans
the current transaction. Returns self.

Y our code may use this message even if transactions aren't enabled the reversal of block-level ope
freeing) is supported even in the absence of transactions. commitTransaction commits all such ch:
last commitTransaction, and abortTransaction cancels all such changes made since the last commi
transactions aren't enabled, this method closes all open blocks, making them available to other cor
outstanding creates and frees.

This method increases the change count of the I X Store, indicating that a change in state has occurr
closed blocks.

abortTransaction, startTransaction, changeCount, closeBlock:

compact

Compacts the contents of the I X Store so that they consume as little storage as possible. This meth
around physically within the I X Store, and so may take some time to complete. The amount of stor
reduced by as much as 50%. Returns self.

If this method is invoked while transactions are pending, the actual compaction will be postponed
transactions outstanding. When used with | XStoreFile, this method actually reduces the size of the
may occur automatically. Thiswon't occur unless the I X Store consumes at least 16 MB of storag
until much more storage is actually consumed.

copy

Creates and returns a new store context, which addresses the same storage as the original. Change
context will affect the shared storage, and will be reflected in both contexts.

If you want to create a completely independent duplicate of an IXStore, you can use getContents.a
setContents.andL ength: as follows:

U IViToot AU LUl Tyt .

If thereis no block identified by aHandle, IX_NotFoundError israised. If the block has been oper
IX_LockedError israised. See the class description for more information on when a block becom:
contexts.

openBlock:atOffset:forLength:, readBlock:atOffset:forLength:, abortTransaction, commitTrans:

createBlock:(unsigned int *)aHandle of Size:(unsigned int)size

Creates a new block of size bytes and returns its handle by reference in aHandle. The new block i
zeroed. If you create ablock of sizevm_page size or more, it's guaranteed to be page-aligned (vr
in the header file mach/mach _init.h). Itisn't possibleto create ablock of size 0. Returns self.

free
Freesthe IXStore. The storage substrate is also freed if there are no other store contexts addressin
freeBlock:

freeBlock:(unsigned int)aHandle
Removes and frees the block identified by aHandle. Returns self.

If there is no block identified by aHandle, IX_NotFoundError israised. If the block has been oper
IX_LockedError israised. See the class description for more information on when a block becom:
contexts.

free, abortTransaction, commitTransaction, closeBlock:

getContents:(vm_address t *)theContents andL ength:(vm_size t *)alength

Returns by reference the address and length of a copy of the I XStore's contents. theContentsisac
the original (vm_address t is declared in the header file mach/mach_types.h). Returns self.

Y our code can use this method along with setContents.andL ength: to create an independent copy ¢
copy method description for an example). Be sure to compact the I X Store before invoking this me
amount of memory copied is as small as possible. These methods also provide an efficient means
of an IXStore into an I XStoreFile.

getContents:andL ength: must not be invoked when transactions are pending if it is, IX_ArgumentE
code should also not invoke this method while any blocks are open outside the scope of a transacti
have been changed).

setContents.andLength:, copy

init

UAJUILT TA IDCAULTVLL, LUTTHTHLT TANTIDCAULTVL L, A LT T IotuLT VL I TIGdT L, oL T ot vl

(void *)openBlock:(unsigned int)aHandle
atOffset:(unsigned int)anOffset
forLength:(unsigned int)aL ength

Returns a pointer to aregion of the block identified by aHandle, beginning at anOffset and of aler
it for writing. If your code writes outside of the opened area, your data may become corrupt. Neit
nor commitTransaction will restore data damaged in this manner.

readBlock:atOffset:forLength:, freeBlock:, abortTransaction, commitTransaction, closeBlock:

(void *)readBlock:(unsigned int)aHandle
atOffset:(unsigned int)anOffset
forLength:(unsigned int)aL ength

Returns a pointer to aregion in the block identified by aHandle, beginning at anOffset and of aler
it for reading. It's assumed that your code won't ater the block. If your code does alter the block.
corrupt, and neither abortTransaction nor commitTransaction will restore data damaged in this mai

openBlock:atOffset:forLength:, freeBlock:, abortTransaction, commitTransaction, closeBlock:

resizeBlock:(unsigned int)aHandl e toSize:(unsigned int)aSize
Resizes the block identified by aHandleto aSize. Returns self.
If thereis no block identified by aHandle, I X _NotFoundError israised. If the block has been oper
IX _LockedError israised. See the class description for more information on when a block becom:
contexts.
sizeOfBlock:, openBlock:atOffset:forLength:, readBlock:atOffset:forLength, abortTransaction,
closeBlock:

setContents.(vm_address _t)someContents andL ength:(vm_size t)alength

Replaces the contents of the IXStore with the contents specified by someContentsand aLength. T
the IXStore are lost. someContents should be a virtual memory image retrieved by getContents.an
(vm_address t isdeclared in the header file mach/mach_types.h). The IXStore assumes responsib
virtual memory image, and may simply useit directly. Contents copied in this manner between in:

shared as copy-on-write data. Returns self.

\ul IDIUI U il IL}JLCUI L)IU\;I\.\UI e} UI LA I B) IL}(J.I caanmale
Returnsthe size, in bytes, of the block identified by aHandle.
If thereis no block identified by aHandle, I X _NotFoundError israised. If the block has been oper
IX_LockedError israised. See the class description for more information on when a block becom:
contexts.

resizeBlock:toSize:, openBlock:atOffset:forLength:, readBlock:atOffset:forLength, abortTransa
commitTransaction, closeBlock:

(unsigned int)startTransaction

Begins a new transaction, which will be aborted or committed before all other outstanding transac
context. If transactions aren't enabled for the I XStore, they're permanently enabled. Returnsanu
new transaction, and indicating the number of transactions outstanding, including the new one. Tt
returned by the nestingL evel method. For example, if the nesting level is 0 and the I X Store receiv
three times, the invocations of the method will return, in order, 1, 2, 3.

abortTransaction, commitTransaction, areTransactionsEnabled, nestingLevel

