
init
copy
free

Creating, copying, and freeing blocks
createBlock:ofSize:
copyBlock:atOffset:forLength:
freeBlock:

Opening and closing blocks openBlock:atOffset:forLength:
readBlock:atOffset:forLength:



closeBlock:
Managing block sizes resizeBlock:toSize:

sizeOfBlock:
Using transactions startTransaction

abortTransaction
commitTransaction
areTransactionsEnabled
nestingLevel
changeCount

Accessing the contents getContents:andLength:
setContents:andLength:

Reducing memory consumption compact

abortTransaction

Reverts the IXStore to the state it was in before the last time it received a startTransaction message, if transactions are
enabled. Discards all changes made to blocks that were opened by the current transaction (even if they've been closed),
closes those blocks if necessary, and makes them available to other contexts. Any blocks created by the current
transaction are destroyed, any blocks freed are reclaimed, and any blocks resized are restored to their previous size. The
current transaction is terminated, and the transaction in effect, if any, when the current transaction was started is made the
current transaction. If the nesting level is 1 (that is, no transaction is pending), the state reverts to the last time a
commitTransaction was received. Returns self.

Blocks opened by an enclosing transaction are not affected, even if their contents have been changed since the receipt of
the last startTransaction message. If transactions aren't enabled, only the block creations and freeings performed since
the last commitTransaction message are reverted changes made to the contents of blocks aren't undone. Even if your
code never uses startTransaction, it should periodically send commitTransaction to establish a checkpoint for
abortTransaction.

This method increases the change count of the IXStore, indicating that a change in state has occurred which may have
closed blocks.

commitTransaction, startTransaction, nestingLevel, changeCount, closeBlock:

(BOOL)areTransactionsEnabled

Returns YES if transactions are enabled for the IXStore (that is, if the IXStore was ever sent a startTransaction message).
Otherwise, it returns NO. You should use this method if you're not sure whether or not to send startTransaction
messages, or when invoked by higher-level code that establishes the transaction management policy.

The transaction management policy is a property of the contents of an IXStore. If your code copies the contents of an
IXStore that has transactions enabled into an IXStore that doesn't, transactions will be enabled for the receiving IXStore.

startTransaction, nestingLevel

(unsigned int)changeCount

Returns the number of commitTransaction and abortTransaction messages received by the IXStore since it was created.
That is, this number indicates the number of changes made to the IXStore's contents since the run-time object was
initialized.

This method is useful for determining if cached pointers to the contents of opened blocks are still valid, so the overhead of
the block opening methods can be avoided. For example, if an object needs to repeatedly access the same block within a
transaction, it can cache the pointer to the block's contents when it opens the block, along with the change count. From
then on, whenever the object needs to access the block, it can check the IXStore's change count if the change count hasn't
increased, then no commits or transactions have occurred since the block was opened, which means that the cached
pointer is still valid, and the object can use the pointer safely without having to open the block againÐunless, of course,



the object itself has since closed the block. (The use of this method by IXBTreeCursor accounts for a 40% performance
improvement on sequential key reads when all pages are in memory.)

nestingLevel, abortTransaction, commitTransaction

closeBlock:(unsigned int)aHandle

Closes the block identified by aHandle. This allows the IXStore to relocate the block if needed. Changes to the block
don't take effect until the transaction that opened it is committed similarly, changes aren't undone until the transaction
that opened the block is aborted. Open blocks are automatically closed when the transaction that opened them is either
committed or aborted. Returns self.

openBlock:atOffset:forLength:, readBlock:atOffset:forLength:, startTransaction, commitTransaction, abortTransaction

commitTransaction

Commits all changes made to blocks opened since the last startTransaction, closes the blocks. If the nesting level
becomes 0, makes the blocks available to other contexts. Any creations, freeings or resizes performed since the
startTransaction are also committed. The current transaction is terminated, and the enclosing transaction, if any, becomes
the current transaction. Returns self.

Your code may use this message even if transactions aren't enabled the reversal of block-level operations (creating and
freeing) is supported even in the absence of transactions. commitTransaction commits all such changes made since the
last commitTransaction, and abortTransaction cancels all such changes made since the last commitTransaction. If
transactions aren't enabled, this method closes all open blocks, making them available to other contexts, and commits all
outstanding creates and frees.

This method increases the change count of the IXStore, indicating that a change in state has occurred which may have
closed blocks.

abortTransaction, startTransaction, changeCount, closeBlock:

compact

Compacts the contents of the IXStore so that they consume as little storage as possible. This method moves blocks
around physically within the IXStore, and so may take some time to complete. The amount of storage consumed may be
reduced by as much as 50%. Returns self.

If this method is invoked while transactions are pending, the actual compaction will be postponed until there are no
transactions outstanding. When used with IXStoreFile, this method actually reduces the size of the file. Compaction also
may occur automatically. This won't occur unless the IXStore consumes at least 16 MB of storage, and may not occur
until much more storage is actually consumed.

copy

Creates and returns a new store context, which addresses the same storage as the original. Changes made by either
context will affect the shared storage, and will be reflected in both contexts.

If you want to create a completely independent duplicate of an IXStore, you can use getContents:andLength: and
setContents:andLength: as follows:



getContents:andLength:, setContents:andLength:

(unsigned int)copyBlock:(unsigned int)aHandle
atOffset:(unsigned int)anOffset
forLength:(unsigned int)aLength

Returns a handle to a new block whose contents are identical to the region of the block identified by aHandle specified by
anOffset and aLength.

If there is no block identified by aHandle, IX_NotFoundError is raised. If the block has been opened by another context,
IX_LockedError is raised. See the class description for more information on when a block becomes available to other
contexts.

openBlock:atOffset:forLength:, readBlock:atOffset:forLength:, abortTransaction, commitTransaction, closeBlock:

createBlock:(unsigned int *)aHandle ofSize:(unsigned int)size

Creates a new block of size bytes and returns its handle by reference in aHandle. The new block is guaranteed to be
zeroed. If you create a block of size vm_page_size or more, it's guaranteed to be page-aligned (vm_page_size is declared
in the header file mach/mach_init.h). It isn't possible to create a block of size 0. Returns self.

free

Frees the IXStore. The storage substrate is also freed if there are no other store contexts addressing it. Returns nil.

freeBlock:

freeBlock:(unsigned int)aHandle

Removes and frees the block identified by aHandle. Returns self.

If there is no block identified by aHandle, IX_NotFoundError is raised. If the block has been opened by another context,
IX_LockedError is raised. See the class description for more information on when a block becomes available to other
contexts.

free, abortTransaction, commitTransaction, closeBlock:

getContents:(vm_address_t *)theContents andLength:(vm_size_t *)aLength

Returns by reference the address and length of a copy of the IXStore's contents. theContents is a copy-on-write image of
the original (vm_address_t is declared in the header file mach/mach_types.h). Returns self.

Your code can use this method along with setContents:andLength: to create an independent copy of an IXStore (see the
copy method description for an example). Be sure to compact the IXStore before invoking this method, so that the
amount of memory copied is as small as possible. These methods also provide an efficient means of saving the contents
of an IXStore into an IXStoreFile.

getContents:andLength: must not be invoked when transactions are pending if it is, IX_ArgumentError is raised. Your
code should also not invoke this method while any blocks are open outside the scope of a transaction (since they may
have been changed).

setContents:andLength:, copy

init



Initializes a new IXStore with zero capacity and transactions not enabled. This is the designated initializer for the IXStore
class. Returns self.

(unsigned int)nestingLevel

Returns the number of the transactions pending against the IXStore. If transactions aren't enabled, this method always
returns 0.

abortTransaction, commitTransaction, areTransactionsEnabled, startTransaction

(void *)openBlock:(unsigned int)aHandle
atOffset:(unsigned int)anOffset
forLength:(unsigned int)aLength

Returns a pointer to a region of the block identified by aHandle, beginning at anOffset and of aLength bytes, after opening
it for writing. If your code writes outside of the opened area, your data may become corrupt. Neither abortTransaction
nor commitTransaction will restore data damaged in this manner.

readBlock:atOffset:forLength:, freeBlock:, abortTransaction, commitTransaction, closeBlock:

(void *)readBlock:(unsigned int)aHandle
atOffset:(unsigned int)anOffset
forLength:(unsigned int)aLength

Returns a pointer to a region in the block identified by aHandle, beginning at anOffset and of aLength bytes, after opening
it for reading. It's assumed that your code won't alter the block. If your code does alter the block, your data may become
corrupt, and neither abortTransaction nor commitTransaction will restore data damaged in this manner.

openBlock:atOffset:forLength:, freeBlock:, abortTransaction, commitTransaction, closeBlock:

resizeBlock:(unsigned int)aHandle toSize:(unsigned int)aSize

Resizes the block identified by aHandle to aSize. Returns self.

If there is no block identified by aHandle, IX_NotFoundError is raised. If the block has been opened by another context,
IX_LockedError is raised. See the class description for more information on when a block becomes available to other
contexts.

sizeOfBlock:, openBlock:atOffset:forLength:, readBlock:atOffset:forLength, abortTransaction, commitTransaction,
closeBlock:

setContents:(vm_address_t)someContents andLength:(vm_size_t)aLength

Replaces the contents of the IXStore with the contents specified by someContents and aLength. The original contents of
the IXStore are lost. someContents should be a virtual memory image retrieved by getContents:andLength:
(vm_address_t is declared in the header file mach/mach_types.h). The IXStore assumes responsibility for freeing the
virtual memory image, and may simply use it directly. Contents copied in this manner between instances of IXStore are
shared as copy-on-write data. Returns self.



Your code can use this method along with getContents:andLength: to create an independent copy of an IXStore (see the
copy method description for an example). These methods also provide an efficient means of saving the contents of an
IXStore into an IXStoreFile.

setContents:andLength: must not be invoked when transactions are pending if it is, IX_ArgumentError is raised.

getContents:andLength:

(unsigned int)sizeOfBlock:(unsigned int)aHandle

Returns the size, in bytes, of the block identified by aHandle.

If there is no block identified by aHandle, IX_NotFoundError is raised. If the block has been opened by another context,
IX_LockedError is raised. See the class description for more information on when a block becomes available to other
contexts.

resizeBlock:toSize:, openBlock:atOffset:forLength:, readBlock:atOffset:forLength, abortTransaction,
commitTransaction, closeBlock:

(unsigned int)startTransaction

Begins a new transaction, which will be aborted or committed before all other outstanding transactions on the receiving
context. If transactions aren't enabled for the IXStore, they're permanently enabled. Returns a number identifying the
new transaction, and indicating the number of transactions outstanding, including the new one. This is the same value
returned by the nestingLevel method. For example, if the nesting level is 0 and the IXStore receives startTransaction
three times, the invocations of the method will return, in order, 1, 2, 3.

abortTransaction, commitTransaction, areTransactionsEnabled, nestingLevel


