
setCount:andPostings:
getCount:andPostings:

NXTransport encodeRemotelyFor:freeAfterEncoding:isBycopy:

encodeUsing:
decodeUsing:

initWithSource:
initWithSource:andPostingsIn:

Retrieving the source source
Manipulating objects by handle addHandle:withWeight:

insertHandle:withWeight:at:
replaceHandleAt:with:weight:

Manipulating objects by id addObject:withWeight:
insertObject:withWeight:at:
replaceObjectAt:with:weight:

Manipulating objects by index indexForHandle:
handleOfObjectAt:
weightOfObjectAt:

Sorting the contents sortByWeightAscending:
sortBySelector:ascending:

addHandle:(unsigned int)aHandle withWeight:(unsigned int)aWeight

Inserts aHandle with aWeight at the end of the IXPostingList. The object identified in the IXPostingList's source by
aHandle can be retrieved by id with objectAt:. Returns self.

insertHandle:at:withWeight:, addObject:withWeight:, insertObject:withWeight:at:, handleOfObjectAt:,
weightOfObjectAt:

addObject:anObject withWeight:(unsigned int)aWeight

Inserts anObject with aWeight at the end of the IXPostingList, and returns self. anObject is added to the IXPostingList
with no handle addHandle:withWeight: should be used instead of this method whenever possible, in order to store a valid
handle for every record.

insertHandle:at:withWeight:, handleOfObjectAt:, weightOfObjectAt:

getCount:(unsigned int *)count andPostings:(IXPosting **)thePostings

Returns by reference the number of postings, and a copy of the postings sorted by handle. The sender of this message is
responsible for freeing the postings when they are no longer needed. Returns self.

Since objects can be added to an IXPostingList by id instead of by handle, or inserted in any order, an IXPostingList's set
of postings may not conform to the requirements imposed by the IXPostingExchange protocol (that is, sorted by handle
and containing no null handles). In a future release, IXPostingList may sort its postings by handle and remove null
handles when returning the postings with this method.

setCount:andPostings:

(unsigned int)handleOfObjectAt:(unsigned int)index

Returns the handle of the posting at index if there is a posting there and it has a valid handle. If index is greater than or

equal to the number of postings in the list, or if the object was entered into the list by id instead of by handle, this method
returns 0.

weightOfObjectAt:, objectAt: (List), addHandle:withWeight:, addObject:withWeight:

(unsigned int)indexForHandle:(unsigned int)handle

Returns the position in the IXPostingList of the posting identified by handle, or NX_NOT_IN_LIST if that posting isn't
in the IXPostingList.

handleOfObjectAt:, indexOf: (List)

initWithSource:(id <IXRecordReading>)aSource

Initializes the receiver, a newly allocated IXPostingList, with aSource providing record activation. aSource should be an
object that conforms to the IXRecordReading protocol, for example, an IXRecordManager. The IXPostingList initially
contains no postings. Returns self.

initWithSource:andPostingsIn:, source

initWithSource:(id <IXRecordReading>)aSource
andPostingsIn:(id <IXPostingExchange>)anObject

Initializes the receiver, a newly allocated IXPostingList, with aSource providing record activation, and anObject
providing an initial set of postings (this will usually be an IXPostingCursor or IXPostingSet). anObject should have the
same source as the IXPostingList of this message. This is the designated initializer for the IXPostingList class. Returns
self.

initWithSource:, source, setCount:andPostings:, IXRecordReading protocol

insertHandle:(unsigned int)aHandle
withWeight:(unsigned int)aWeight
at:(unsigned int)index

Inserts aHandle with aWeight at position index in the IXPostingList, moving existing postings down one slot, if
necessary. If index is equal to the number of postings in the IXPostingList, aHandle is added at the end. The insertion
fails, and this method returns nil, if index is greater than the number of postings in the list or if aHandle is 0.

If the insertion is successful, returns self if not, returns nil.

insertObject:withWeight:at:, addHandle:withWeight:, addObject:withWeight:, handleOfObjectAt:, weightOfObjectAt:

insertObject:anObject
withWeight:(unsigned int)aWeight
at:(unsigned int)index

Inserts anObject with aWeight at position index in the IXPostingList, moving existing objects down one slot, if necessary.
If index is equal to the number of postings in the IXPostingList, anObject is added at the end. The insertion fails, and this
method returns nil, if index is greater than the number of postings in the IXPostingList. anObject is inserted into the list
with no handle insertHandle:withWeight:at: should be used instead of this method whenever possible, in order to store a
valid handle for every record.

If the insertion is successful, returns self if not, returns nil.

insertObject:withWeight:at:, addHandle:withWeight:, addObject:withWeight:, handleOfObjectAt:, weightOfObjectAt:

replaceHandleAt:(unsigned int)index
with:(unsigned int)aHandle
weight:(unsigned int)aWeight

Replaces the posting at index with a posting made from aHandle and aWeight. The replacement fails, and this method
returns nil, if index is greater than or equal to the number of postings in the IXPostingList or if aHandle is 0.

If the replacement is successful, returns self if not, returns nil.

replaceObjectAt:with:weight:

replaceObjectAt:(unsigned int)index
with:anObject
weight:(unsigned int)aWeight

Replaces the object and its posting at index with anObject and a posting with a handle of 0 and weight of aWeight. The
replacement fails, and this method returns nil, if index is greater than or equal to the number of postings in the
IXPostingList, or if anObject is nil. anObject is inserted with no handle your code should use replaceHandleAt:with:
weight: whenever possible, in order to store a valid handle for every posting.

If the replacement is successful, returns self if not, returns nil.

replaceHandleAt:with:weight:

sortBySelector:(SEL)aSelector ascending:(BOOL)flag

Sorts the contents of the IXPostingList by constructing a key from the value each record returns when aSelector is sent to
it. If flag is YES, the sort is ascending (ABCD...), if flag is NO, the sort is descending (ZXYW...). Returns self.

The sort ordering used is determined by the return type of aSelector. The IXPostingList determines which of the standard
Indexing Kit comparator functions to use, and applies the appropriate function to the result of each message send.
However, unlike the keys of an IXBTree, the data being compared doesn't have to be inline (serialized) the return value
of aSelector can be a pointer type, and the IXPostingList will construct a proper key for it. See the IXComparisonSetting
protocol specification for more information on legal comparison values.

sortByWeightAscending:, IXCompareBytes() (C Functions)

sortByWeightAscending:(BOOL)flag

Sorts the contents of the IXPostingList based on the weight of each record. If flag is YES, the sort is from low weight to
high, if flag is NO, the sort is from high weight to low.

sortBySelector:ascending:

(id <IXRecordReading>)source

Returns the object which provides storage for the records referenced by the IXPostingList.

initWithSource:, initWithSource:andPostings:, IXRecordReading protocol

(unsigned int)weightOfObjectAt:(unsigned int)index

Returns the weight of the posting at index, or 0 if index is greater than or equal to the number of postings in the
IXPostingList.

handleOfObjectAt:, addHandle:withWeight:

