initlnStore:
initFromBlock:inStore:
freeFromStore
+ freeFromBlock:inStore:
getBlock:andStore:

I XNameAndFileAccess initWithName:inFile:
initFromName:inFile:
freeFromStore

+ freeFromName:inFile:
getName:andFile:

I XRecordWriting addRecord:
removeRecord:

getObJ ectVaueoflvar:forRecord:

| X TransientM essaging getOpagueV al ue:of M essage:forRecord:
getlntV alue:of M essage:forRecord:
getFloatV alue:of M essage: forRecord:
getDoubleV alue:of M essage:forRecord:
getStringV alue: of M essage:forRecord:
getStringV alue:inM essage: of | var:forRecord:
getObjectV a ue:of M essage:forRecord:

addAttributeNamed:forSel ector:
hasAttributeNamed:
removeAttributeNamed:
attributeCount

Key comparison setComparisonFormat:forAttributeNamed:
comparisonFormatForAttributeNamed:
setComparator:andContext:forAttributeNamed:
getComparator:andContext:forAttributeNamed:

Setting attribute targets setTargetClass.forAttributeNamed:
getTargetName:andV ersion:forAttributeNamed:

Accessing attributes cursorForAttributeNamed:

Getting attribute information selectorForAttributeNamed:
attributeNames

Accessing classes classNames
attributeNamesForCl ass:
recordsForClass:

Discarding records discardRecord:
reclaimRecord:
discards
clean

Setting attribute descriptions setDescription:forAttributeNamed:
getDescription:forAttributeNamed:

Setting parsers setParser:forAttributeNamed:
parserForAttributeNamed:

Writing blobs setV alue:andL ength:of Blob:forRecord:
getVaue:andL ength:of Blob:forRecord:

addAttributeNamed:(const char *)aName forSel ector:(SEL)aSel ector

Creates an attribute for records that respond to aSelector, associates it with name aName, and builc
attribute. Note that records already passivated by the | XRecordM anager that respond to aSel ector
new index automatically. This may changein afuture release. If an attribute already exists with r
otherwise returns non-nil.

removeAttributeNamed:, selectorForAttributeNamed:

(char *)attributeNames

Returns a newline-separated list of the names of all attributesin the IXRecordManager. The sende
responsible for freeing the string returned.

addAttributeNamed:forSel ector:

(char *)attributeNamesForClass.aClass

Returns a newline-separated list of the names of all of the attributes maintained by the I’ XRecordM
for instances of aClass. Thisincludes all of the attributes whose selectors are recognized by instan
whose target classis aClass or one of its superclasses. The sender of this message is responsible f
returned.

setTargetClass:.forAttributeNamed:

(char *)classNames

Returns a newline-separated list of the names of al the classes that have instances stored in the I X
sender of this message is responsible for freeing the string returned.

clean
Removes all discarded records from the receiver. Those records will no longer be reclaimable. Re
discardRecord:, reclaimRecord:, empty (IXRecordReading protocol)

(const char *)comparisonFormatForAttributeNamed:(const char *)aName

Returns a string defining the comparison format of keysin the index named aName, or NULL if ol
Is a string encoding the Objective C data types that comprise the key for example, 2[3i]° describes
An IXBTree uses this format to determine how to compare keys. For more information on compal
| X ComparisonSetting protocol specification.

setComparisonFormat:forAttributeNamed:, getComparator:andContext:forAttributeNamed:

(unsigned int)count

Returns the number of records stored in the I XRecordManager, plus the number of attributes defin
number of records, subtract the return value of attributeCount from the return value of this method

attributeCount, count (IXRecordWriting protocol)

(IXPostingCursor *)cursorForAttributeNamed: (const char *)aName

UIILU UiLuul U Uiyl icu Tigyjca id vl e

Discards the record identified by aHandle, so that the record can't be read, removed or replaced. r
discarded records, and clean removes all discarded records. Returns self.

reclaimRecord:, clean, discards, removeRecord: (IXRecordWriting)

(IXPostingList *)discards

Returns an I XPostingList containing all records that have been discarded (by sending discardReco
IXRecordManager). This|XPostingList can be used to reclaim the discarded records with reclaim

If the IXRecordManager is asked to read a discarded record (with the I XRecordReading protocol's
FromZone: method), the result will be nil for most purposes the record no longer exists. However
still have referencesin the I XRecordManager's attribute indexes. |f your code doesn't deal gracef
you can filter posting sets before using them by subtracting the discards from them.

discardRecord:, reclamRecord:, clean

getComparator: (I X Comparator **)aComparator
andContext:(const void **)aContext
forAttributeNamed:(const char *)aName

Returns by reference the function used to compare attribute values, and the context associated witt
attribute named aName. If the attribute has a comparison format set instead, the comparator and ct
comparator function takes two data items and returns an answer indicating whether the first isless
greater than the second. The context is arbitrary datafor use by that function. Returns self.

For more information on comparators, see the | X ComparatorSetting protocol specification and the
specification.

setComparator:andContext:forAttributeNamed:, comparisonFormat:forAttributeNamed:

getDescription:(char **)aDescription forAttributeNamed:(const char *)aName

Returns by reference the description for the attribute named aName. The description can be used t
information pertaining to the attribute. Returns self.

setDescription:forAttributeNamed:, addAttributeNamed:forSelector:

getTargetName:(const char **)aName
andVersion:(unsigned int *)targetVersion
forAttributeNamed:(const char *)aName

Returns by reference the name and version of the class that the attribute named aName is defined f
none has been set. If an attribute has atarget class set, it will be defined only for records of that cl
Returns self.

setTargetClass:forAttributeNamed:

(BOOL)hasAttributeNamed:(const char *)aName
Returns YES if the IXRecordManager has an attribute named aName, NO if it doesn't.

(IXAttributeParser *)parserForAttributeNamed:(const char *)aName

Returns the parser, if any, assigned to the attribute named aName. The parser will break the returr
selector into separate words when the attribute is evaluated.

setParser:forAttributeNamed:

reclaimRecord:(unsigned int)aHandle

Reclaims arecord previously discarded with discardRecord:. aHandle isthe identifier of the disca
discarded record must be reclaimed in order to accessit or remove it completely from the archive {
removes all discarded records at once). Returns self.

discardRecord:, discards, clean

(IXPostingList *)recordsForClass.aClass

Returns an I XPostingList containing all of the records in the I XRecordManager that are direct inst
not of any subclasses of aClass).

removeAttributeNamed:(const char *)aName

Removes the attribute named aName from the I XRecordManager. Records referenced by the attril
affected. Returns self.

addAttributeNamed:forSel ector:

(SEL)sel ectorForAttributeNamed:(const char *)aName

Returns the selector for the message that defines the attribute named aName. Unless the attribute |
class, this message is sent to any record that responds to it in order to evaluate the attribute. Other:
records of the attribute's target class (or a subclass of the target class).

addAttributeNamed:forSel ector:

setComparator: (I X Comparator *)aComparator
andContext:(const void *)aContext

setComparisonFormat:(const char *)aFormat forAttributeNamed:(const char *)aName

Installs a string defining the comparison format of keysin the index named aName. Thisisastrin
Objective C datatypes that comprise the key for example, 2[3i]° describes an array of 3 integers (&
currently ignored). An IXBTree uses thisformat to determine how to compare keys. For more inf
comparison formats, see the | X ComparisonSetting protocol specification.

comparisonFormat:forAttributeNamed:, setComparator:andContext:forAttributeNamed:

setDescription:(const char *)aDescription forAttributeNamed:(const char *)aName

Sets the description for the attribute named aName to aDescription. The description can be used tc
information pertaining to the attribute. Returns self.

getDescription:forAttributeNamed:

setParser: (I X AttributeParser *)aParser forAttributeNamed:(const char *)aName

Assigns the parser aParser to the attribute named aName. The parser will break the return value of
Into separate words when the attribute is evaluated. Returns self.

parserForAttributeNamed:

setTargetClass:aClass forAttributeNamed: (const char *)aName

Sets the target class for the attribute named aName to aClass. The attribute will be defined only fc
aClass or any of its subclasses. Y our code should set the target class before any records have been
I XRecordManager otherwise, the index for the named attribute may collect references to instances
the restriction isimposed. This behavior may change in afuture release, so that records that aren't
from the index when the target classis set. Returns self.

getTargetName:andV ersion:forAttributeNamed:

getVaue:andL ength:of Blob:forRecord:

