


initInStore:
initFromBlock:inStore:
+ freeFromBlock:inStore:
freeFromStore
getBlock:andStore:

IXNameAndFileAccess initWithName:inFile:
initFromName:inFile:forWriting:
+ freeFromName:inFile:
freeFromStore
getName:andFile:

IXFileFinderConfiguration setAttributeParsers:
getAttributeParsers:
setCrossesDeviceChanges:
crossesDeviceChanges
setFollowsSymbolicLinks:
followsSymbolicLinks
setGeneratesDescriptions:
generatesDescriptions
setIgnoredNames:
ignoredNames
setIgnoredTypes:
ignoredTypes
setScansForModifiedFiles:
scansForModifiedFiles
setUpdatesAutomatically:
updatesAutomatically

IXFileFinderQueryAndUpdate rootPath
recordManager
performQuery:atPath:forSender:
stopQueryForSender:
updateIndexAtPath:
isUpdating
suspendUpdating
resumeUpdating
clean
reset

NXReference references
addReference
free

initInStore:atPath:
initFromBlock:inStore:atPath:
initWithName:inFile:atPath:
initWithName:inFile:forWriting:atPath:

initFromBlock:(unsigned int)aHandle inStore:(IXStore *)aStore

Initializes a newly allocated IXFileFinder as initFromBlock:inStore:atPath: with a path argument of NULL. This method
is useful for opening an IXFileFinder whose root directory hasn't changed, which is usually the case.

initFromBlock:inStore:atPath:



initFromBlock:(unsigned int)aHandle
inStore:(IXStore *)aStore
atPath:(const char *)path

Initializes a newly allocated IXFileFinder by opening it from data stored in the block of aStore identified by aHandle.
This data should have been created by a previous instance of IXFileFinder. The IXFileFinder's root path is reset to path it
will search for files within the subtree rooted at that directory. path may be an absolute or relative pathname. If path is
NULL, the root path remains unchanged from its previous value. The root path may not be changed after initialization.
Returns self.

This is the designated initializer for opening a pre-existing IXFileFinder with the IXBlockAndStoreAccess protocol.

initInStore:atPath:, initWithName:inFile:atPath:, IXBlockAndStoreAccess protocol

initFromName:(const char *)aName
inFile:(const char *)filename
forWriting:(BOOL)flag

Initializes a newly allocated IXFileFinder as initFromName:inFile:forWriting:atPath: with a path argument of NULL.
This method is useful for opening an IXFileFinder whose root directory hasn't changed, which is usually the case.

initFromName:inFile:forWriting:atPath:

initFromName:(const char *)aName
inFile:(const char *)filename
forWriting:(BOOL)flag
atPath:(const char *)path

Initializes a newly allocated IXFileFinder by opening it from data stored under aName in filename by a previous instance.
The IXFileFinder's root path is reset to path it will search for files within the subtree rooted at that directory. path can be
an absolute or relative pathname, or it can be NULL, in which case the IXFileFinder's root path remains unchanged. The
root path may not subsequently be changed unless the IXFileFinder is freed and then reopened. If flag is YES, filename
is opened for reading and writing, and the IXFileFinder is initialized to build and update its index if flag is NO, filename
is opened for reading only. Returns self if successful, or nil if flag is YES and filename can't be written or created.

An IXFileFinder opened for reading only can be modified however, the changes occur only in memory, and are never
written to disk. This can be useful for keeping an index up-to-date until the application terminates, without affecting the
original file.

This is the designated initializer for opening a pre-existing IXFileFinder with the IXNameAndFileAccess protocol. Note
that the underlying IXStoreFile is opened by the IXFileFinder when this method is used, and that it will be closed when
the IXFileFinder is freed.

initWithName:inFile:atPath:, IXNameAndFileAccess protocol

initInStore:(IXStore *)aStore

Initializes a newly allocated IXFileFinder as initInStore:atPath: with a path argument of NULL.

initInStore:atPath:

initInStore:(IXStore *)aStore atPath:(const char *)path

Initializes a newly allocated IXFileFinder in aStore, to search for files in the subtree rooted at the directory named path.
path is considered the root path for the IXFileFinder, and can be an absolute or relative pathname. If path is NULL, the
program's working directory is used. The root path may not be changed after initialization. If aStore is nil, then the
IXFileFinder won't attempt to maintain indexes on file attributes using IXRecordManager. This doesn't affect query
semantics in any way an IXFileFinder initialized without an IXStore will return the same query results as an IXFileFinder
initialized with an IXStore. The presence or absence of an IXStore merely affects query performance. Returns self.



This is the designated initializer for creating new IXFileFinders with the IXBlockAndStoreAccess protocol.

initFromBlock:inStore:atPath:, initWithName:inFile:atPath:, initWithName:inFile:forWriting:atPath:,
IXBlockAndStoreAccess protocol

initWithName:(const char *)aName inFile:(const char *)filename

Initializes a newly allocated IXFileFinder as initWithName:inFile:atPath:, with a path argument of NULL.

initWithName:inFile:atPath:

initWithName:(const char *)aName
inFile:(const char *)filename
atPath:(const char *)path

Initializes the IXFileFinder as a store file client named aName in the store file filename. If filename doesn't exist, it's
created. The IXFileFinder will search for files in the subtree rooted at the directory named path, which is considered the
root path for the IXFileFinder. path can be an absolute or relative pathname If path is NULL, the current working
directory will be used. The root path may not be changed after initialization. filename is opened for writing and reading,
so that indexes can be created, updated, and cleaned. Returns self.

This is the designated initializer for creating new IXFileFinders with the IXNameAndFileAccess protocol.

initInStore:atPath:, initFromBlock:inStore:atPath:, initWithName:inFile:forWriting:atPath:, IXNameAndFileAccess
protocol


