
initInStore:
initFromBlock:inStore:
freeFromStore
+ freeFromBlock:inStore:
getBlock:andStore:

IXNameAndFileAccess initWithName:inFile:
initFromName:inFile:
freeFromStore
+ freeFromName:inFile:
getName:andFile:

IXRecordWriting addRecord:
removeRecord:

replaceRecord:with:
empty
count
readRecord:fromZone:

IXTransientAccess getOpaqueValue:ofIvar:forRecord:
getIntValue:ofIvar:forRecord:
getFloatValue:ofIvar:forRecord:
getDoubleValue:ofIvar:forRecord:
getStringValue:ofIvar:forRecord:
getStringValue:inLength:ofIvar:forRecord:
getObjectValue:ofIvar:forRecord:

IXTransientMessaging getOpaqueValue:ofMessage:forRecord:
getIntValue:ofMessage:forRecord:
getFloatValue:ofMessage:forRecord:
getDoubleValue:ofMessage:forRecord:
getStringValue:ofMessage:forRecord:
getStringValue:inMessage:ofIvar:forRecord:
getObjectValue:ofMessage:forRecord:

addAttributeNamed:forSelector:
hasAttributeNamed:
removeAttributeNamed:
attributeCount

Key comparison setComparisonFormat:forAttributeNamed:
comparisonFormatForAttributeNamed:
setComparator:andContext:forAttributeNamed:
getComparator:andContext:forAttributeNamed:

Setting attribute targets setTargetClass:forAttributeNamed:
getTargetName:andVersion:forAttributeNamed:

Accessing attributes cursorForAttributeNamed:
Getting attribute information selectorForAttributeNamed:

attributeNames
Accessing classes classNames

attributeNamesForClass:
recordsForClass:

Discarding records discardRecord:
reclaimRecord:
discards
clean

Setting attribute descriptions setDescription:forAttributeNamed:
getDescription:forAttributeNamed:

Setting parsers setParser:forAttributeNamed:
parserForAttributeNamed:

Writing blobs setValue:andLength:ofBlob:forRecord:
getValue:andLength:ofBlob:forRecord:

addAttributeNamed:(const char *)aName forSelector:(SEL)aSelector

Creates an attribute for records that respond to aSelector, associates it with name aName, and builds an index for that
attribute. Note that records already passivated by the IXRecordManager that respond to aSelector are not added to the
new index automatically. This may change in a future release. If an attribute already exists with name aName, returns nil
otherwise returns non-nil.

removeAttributeNamed:, selectorForAttributeNamed:

(unsigned int)attributeCount

Returns the number attributes defined for the IXRecordManager.

count

(char *)attributeNames

Returns a newline-separated list of the names of all attributes in the IXRecordManager. The sender of this message is
responsible for freeing the string returned.

addAttributeNamed:forSelector:

(char *)attributeNamesForClass:aClass

Returns a newline-separated list of the names of all of the attributes maintained by the IXRecordManager that are defined
for instances of aClass. This includes all of the attributes whose selectors are recognized by instances of aClass, and
whose target class is aClass or one of its superclasses. The sender of this message is responsible for freeing the string
returned.

setTargetClass:forAttributeNamed:

(char *)classNames

Returns a newline-separated list of the names of all the classes that have instances stored in the IXRecordManager. The
sender of this message is responsible for freeing the string returned.

clean

Removes all discarded records from the receiver. Those records will no longer be reclaimable. Returns self.

discardRecord:, reclaimRecord:, empty (IXRecordReading protocol)

(const char *)comparisonFormatForAttributeNamed:(const char *)aName

Returns a string defining the comparison format of keys in the index named aName, or NULL if one hasn't been set. This
is a string encoding the Objective C data types that comprise the key for example, ª [3i]º describes an array of 3 integers.
An IXBTree uses this format to determine how to compare keys. For more information on comparison formats, see the
IXComparisonSetting protocol specification.

setComparisonFormat:forAttributeNamed:, getComparator:andContext:forAttributeNamed:

(unsigned int)count

Returns the number of records stored in the IXRecordManager, plus the number of attributes defined. To get just the
number of records, subtract the return value of attributeCount from the return value of this method.

attributeCount, count (IXRecordWriting protocol)

(IXPostingCursor *)cursorForAttributeNamed:(const char *)aName

Returns an IXPostingCursor that addresses the index for the attribute named aName. This cursor can be used to find
references to records having a given value for the attribute. For more information on using cursors, see the
IXCursorPositioning protocol specification, and the IXPostingCursor class specification.

This method returns a copy of a private cursor each time it's invoked, so your code should free the copy when it's no
longer needed.

discardRecord:(unsigned int)aHandle

Discards the record identified by aHandle, so that the record can't be read, removed or replaced. reclaimRecord: retrieves
discarded records, and clean removes all discarded records. Returns self.

reclaimRecord:, clean, discards, removeRecord: (IXRecordWriting)

(IXPostingList *)discards

Returns an IXPostingList containing all records that have been discarded (by sending discardRecord: to the
IXRecordManager). This IXPostingList can be used to reclaim the discarded records with reclaimRecord:.

If the IXRecordManager is asked to read a discarded record (with the IXRecordReading protocol's readRecord:
FromZone: method), the result will be nil for most purposes the record no longer exists. However, discarded records will
still have references in the IXRecordManager's attribute indexes. If your code doesn't deal gracefully with nil records,
you can filter posting sets before using them by subtracting the discards from them.

discardRecord:, reclaimRecord:, clean

getComparator:(IXComparator **)aComparator
andContext:(const void **)aContext
forAttributeNamed:(const char *)aName

Returns by reference the function used to compare attribute values, and the context associated with that function, for the
attribute named aName. If the attribute has a comparison format set instead, the comparator and context will be NULL. A
comparator function takes two data items and returns an answer indicating whether the first is less than, equal to, or
greater than the second. The context is arbitrary data for use by that function. Returns self.

For more information on comparators, see the IXComparatorSetting protocol specification and the IXBTree class
specification.

setComparator:andContext:forAttributeNamed:, comparisonFormat:forAttributeNamed:

getDescription:(char **)aDescription forAttributeNamed:(const char *)aName

Returns by reference the description for the attribute named aName. The description can be used to record extra
information pertaining to the attribute. Returns self.

setDescription:forAttributeNamed:, addAttributeNamed:forSelector:

getTargetName:(const char **)aName
andVersion:(unsigned int *)targetVersion
forAttributeNamed:(const char *)aName

Returns by reference the name and version of the class that the attribute named aName is defined for, or NULL and 0 if
none has been set. If an attribute has a target class set, it will be defined only for records of that class or a subclass.
Returns self.

setTargetClass:forAttributeNamed:

setValue:andLength:ofBlob:forRecord:

(BOOL)hasAttributeNamed:(const char *)aName

Returns YES if the IXRecordManager has an attribute named aName, NO if it doesn't.

(IXAttributeParser *)parserForAttributeNamed:(const char *)aName

Returns the parser, if any, assigned to the attribute named aName. The parser will break the return value of the attribute's
selector into separate words when the attribute is evaluated.

setParser:forAttributeNamed:

reclaimRecord:(unsigned int)aHandle

Reclaims a record previously discarded with discardRecord:. aHandle is the identifier of the discarded record. A
discarded record must be reclaimed in order to access it or remove it completely from the archive (although clean
removes all discarded records at once). Returns self.

discardRecord:, discards, clean

(IXPostingList *)recordsForClass:aClass

Returns an IXPostingList containing all of the records in the IXRecordManager that are direct instances of aClass (and
not of any subclasses of aClass).

removeAttributeNamed:(const char *)aName

Removes the attribute named aName from the IXRecordManager. Records referenced by the attribute's index aren't
affected. Returns self.

addAttributeNamed:forSelector:

(SEL)selectorForAttributeNamed:(const char *)aName

Returns the selector for the message that defines the attribute named aName. Unless the attribute is restricted to a specific
class, this message is sent to any record that responds to it in order to evaluate the attribute. Otherwise it's only sent to
records of the attribute's target class (or a subclass of the target class).

addAttributeNamed:forSelector:

setComparator:(IXComparator *)aComparator
andContext:(const void *)aContext

forAttributeNamed:(const char *)aName

Sets the function used to compare attribute values, and the context associated with that function, for the attribute named
aName. A comparator function should accept two data items and return an answer indicating whether the first is less
than, equal to, or greater than the second. The context is arbitrary data for use by that function. Returns self.

For more information on comparators, see the IXComparatorSetting protocol specification and the IXBTree class
specification.

getComparator:andContext:forAttributeNamed:, setComparisonFormat:forAttributeNamed:

setComparisonFormat:(const char *)aFormat forAttributeNamed:(const char *)aName

Installs a string defining the comparison format of keys in the index named aName. This is a string encoding the
Objective C data types that comprise the key for example, ª [3i]º describes an array of 3 integers (although the length is
currently ignored). An IXBTree uses this format to determine how to compare keys. For more information on
comparison formats, see the IXComparisonSetting protocol specification.

comparisonFormat:forAttributeNamed:, setComparator:andContext:forAttributeNamed:

setDescription:(const char *)aDescription forAttributeNamed:(const char *)aName

Sets the description for the attribute named aName to aDescription. The description can be used to record extra
information pertaining to the attribute. Returns self.

getDescription:forAttributeNamed:

setParser:(IXAttributeParser *)aParser forAttributeNamed:(const char *)aName

Assigns the parser aParser to the attribute named aName. The parser will break the return value of the attribute's selector
into separate words when the attribute is evaluated. Returns self.

parserForAttributeNamed:

setTargetClass:aClass forAttributeNamed:(const char *)aName

Sets the target class for the attribute named aName to aClass. The attribute will be defined only for instances of class
aClass or any of its subclasses. Your code should set the target class before any records have been added to the
IXRecordManager otherwise, the index for the named attribute may collect references to instances of other classes before
the restriction is imposed. This behavior may change in a future release, so that records that aren't of aClass are removed
from the index when the target class is set. Returns self.

getTargetName:andVersion:forAttributeNamed:

getValue:andLength:ofBlob:forRecord:

