
Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

2

The Project Builder Application

Project Builder is the hub of application development in NEXTSTEP.    It manages the components 
of your application and gives you access to the other development tools you use to create and 
modify these components.    Project Builder is involved in all stages of the development process, 
from providing you with the basic building blocks for a new application to installing the application 
when it's finished.

Project Builder's unit of organization is the project.    A project can be defined in two ways:    
conceptually and physically.    Conceptually, a project comprises a number of source components 
and is intended to produce a given end product, such as an application.    (Other types of end 
products are possible, as described below.)    Physically, a project is a directory containing source 
files and Project Builder's controlling file, PB.project.    This file records the components of the 
project, the intended end product, and other information.    For a file to be part of a project, it must 
reside in the project directory and be recorded in the project's PB.project file.    You don't edit 
PB.project directly; your actions in the Project Builder applicationÐadding source files, modifying 
the project name or installation directory, and so onÐhave the effect of updating this file.

Project Builder can be used to create and maintain the following standard types of NEXTSTEP 
projects:

Type of Project Description
application A stand-alone NEXTSTEP application, such as those found in /NextApps 

or /LocalApps.

subproject A project within a project.    With larger applications, it's often convenient 
to group components into subprojects, which can be built independently 
from the main project.    In building a project, Project Builder builds the 
subprojects as needed and then uses their end productsÐusually ª.oº 
filesÐto build the main project.

bundle A directory containing resources that can be used by one or more 
application.    These resources might include such things as images, 
sounds, character strings, nib files, or executable code.    For more 
information, see the class specification for the NXBundle class in 
NEXTSTEP General Reference.    A bundle can be a stand-alone project, 
or contained within another project.

palette A loadable palette that can be added to Interface Builder's Palettes 
window.    See ªAdding Custom Palettes, Inspectors, and Editorsº in the 
next chapter for more information.

To let you develop applications to run on any architecture that NEXTSTEP runs on (e.g., Motorola, 
Intel, and others), Project Builder supports development of multiple architecture binariesÐalso 
known as ªfatº binaries.    Using this feature, you can create a single version of your application 



containing executable binaries for each supported architecture.    When the user starts such 
applications, the system automatically selects the correct binary for the underlaying architecture and 
runs that.    All other application resourcesÐuser interface archives, images, sounds, and dataÐare 
shared by the various versions of the binary. 

Project Builder also helps you prepare your application (or other type of project) for various 
language markets, a process called ªlocalizationº.    It does this by helping you group language-
dependent components of your applicationÐTIFF and nib files, for exampleÐin subdirectories of the 
project.    These subdirectories are named for a language and have a ª.lprojº extension (for example, 
Spanish.lproj), and so are commonly called ª.lprojº directories.    Through the facilities of the 
NXBundle class, your application can load the appropriate, language-dependent components 
depending on the user's preferred language.    (See the NXBundle class specification in NEXTSTEP 
General Reference and the file 
/NextLibrary/Documentation/NextDev/Concepts/Localization.rtfd for more information.)

You can start Project Builder (located in /NextDeveloper/Apps) from the workspace as you would 
any other application, by double-clicking its icon in the workspace. When it starts up, only the main 
menu is visible.    Once Project Builder is running, you can create a new project or open an existing 
project as described below.

Creating and Maintaining Projects in Project Builder
This section describes how to create a new project in Project Builder and how to convert a pre-
Release 3 project to the Release 3 project format.    You'll also find information here about 
maintaining your project.

Creating a New Project

To create a new project, choose the New command in the Project menu.    A panel appears in which 
you specify a pathname and name for the project.    Specify a new directory on the Name line, or 
choose an existing directory in the browser (and leave the name PB.project in the Name field) if 
you want to use that directory as the root of the new project.

By default, the new project is a stand-alone application.    A pop-up list in the panel lets you create a 
bundle or a palette instead.    No matter what type of project you create, a project window for the 
new project appears.

You'll use this project window to maintain, build, and debug the project, as described in the rest of 
this chapter.    For now, note the three modes of operation indicated by the three buttons in the upper 
right portion of the panel:

Mode Purpose
Attributes Set attributes of your project.
Files Add, remove, or open project files.
Builder Build the project.

Opening an Existing Project



To open an existing project, choose the Open command in the Project menu.    A standard Open 
panel appears in which you specify the project to open.    Select the file named PB.project in the 
project directory and click Open to open the project.

 When you open a project, its project window appears in Project Manager.

Opening and Converting a Older Project Types
To open an existing    project that hasn't been converted to the Release 3 project format, choose the 
Open command in the Project menu.    A standard Open panel appears in which you specify the 
project to open.    Select the file named IB.proj in the project directory and click Open to open the 
project.

A panel appears warning you that the project file is an ªold style IB.projº which needs to be 
converted to a PB.project.    (Note:    Be sure to convert the project if you'll be continuing to 
maintain it in Release 3.)    Since the conversion process overwrite several project files, you're asked 
if you want to back up those files first before converting the project.    Unless you're sure you don't 
need to do this, you should click Backup First (or Cancel if you decide not to continue)Ðthis causes 
a copy of the entire project directory to be made, with the name CopyOfProjectDirectory.

Once the project is converted, its project window appears in Project Manager.    When you save the 
resulting project, it will be saved as a PB.project file in the same directory.    This is the file you'll 
open in the future when you work with the project.    You might want to build your newly converted 
project with the clean target, to make sure that it gets rebuilt from scratch under Release 3.

Setting Project Attributes
To bring up the Attributes display, click the Attributes button in the project window.

The contents of the Attributes display varies depending on the type of projectÐapplication, bundle, 
or palette.    The contents of these three types of Attributes display are shown below.

Application Attributes

If the project is an application, the Attributes display contains the following controls for defining 
application attributes.

This group of controls includes fields for specifying the project name, the primary language (that is, 
the language in which the project is being developed), and the target directory.

This group of controls includes fields for specifying the application class and the application's main 
nib file, plus an option for regenerating the Main file whenever you save the project.    (Project 
Builder maintains this file and you aren't expected to change it; therefore you should leave this 
option checked, unless there's a reason why you need to maintain the Main file yourself) 



The Application Icon well displays the application icon.    The default application (shown here) is 
used if you don't provide one of your own choosing.    To associate a new icon with the application, 
drag its TIFF file from the workspace into the well.    The file is copied to the project directory, 
although it doesn't appear in any of the categories shown in the File display.

The Document Icons and Extensions well is where you indicate what types of documents your 
application is able to deal with.    If you're creating your own document type, create a document icon 
for it and drag the TIFF file containing that icon into the well.    Once the icon is in the well, change 
its label to match the document extension.

System File Types lists NEXTSTEP file types (as identified by their standard NEXTSTEP file 
extensions), any of which you may choose to have your application handle by selecting the file type 
in the scrolling list.    When you select a file type by clicking it, a check mark appears next to its 
name, and it gets added to the Document Icons and Extensions well.    Click the file type again if you 
want to deselect it and remove it from the well.

Bundle Attributes

If the project is a bundle (or subproject), the Attributes display contains the following controls for 
defining project attributes.

This pop-up list contains a Subproject item that lets you convert the bundle to a subproject.    Note, 
however, that this is possible only with a bundle that's part of another project, not with a stand-alone 
bundle.

This group of controls includes fields for changing the project name and the primary language.

Palette Attributes

If the project is a palette, the Attributes display contains the following controls for defining project 
attributes.

This group of controls includes fields for changing the project name and the primary language.

Managing Project Files
The Files display of the project window is used to manage the files in the project.    You can use this 
display to add or delete project files, as well as open them for viewing or editing.

To bring up the Files display, click the Files button in the project window.

The Files display provides a file viewer similar to the Workspace Manager's File Viewer, with 
categories of project components displayed in the left-hand column and project files for each 
category displayed to the right.    Note that these project categories don't correspond to project 
subdirectoriesÐthe categories are logical rather than physical groupings of files.

The project directory provides you and Project Builder with a convenient way to organize the files 



used in putting together your application.    As shown here, files in the project directory are grouped 
by Project Manager into a number of categories.    These categories are represented with a suitcase 
icon (and are frequently referred to as ªsuitcasesº). Briefly, these categories are:

Category Description
Classes Files containing code for custom classes used by an application.

Headers Files containing declarations of methods and functions used by 
an application

Other Sources Files containing code (other than class code) for an application. 
These may include ª.mº files (containing Objective C code), ª.cº 
files (containing standard C code), ª.pswº files (containing 
PostScript code), and other sources.    Project Builder 
automatically adds the file ApplicationName_main.m to Other 
Sources.

Interfaces Nib files for each application and for each new module added to 
an application.    The flag icon next to a file name in the 
Interfaces suitcase indicates that the file is localizable (that is, 
the file is in the Language.lproj subdirectory in the project 
directory, rather than in the project directory itself).

Images Files containing images (other than icons) used by an 
application, including TIFF or EPS files. 

Other Resources Files (such as sound files) for other resources used by an 
application.

Subprojects Directories containing subprojects used by an application

Supporting Files Files not used directly by the application but that should be kept 
with the application.

Libraries Libraries referenced by an application.    NEXTSTEP libraries 
(including the default entries libNeXT_s and libMedia_s) are 
referenced but not copied into the project directory.    Other 
libraries, such as those you create, may be added to the project 
directory. 

You can use Project Builder's file viewer to:

· Browse the project and the files it contains.

· Add files to the project (as described below).

· Remove files from the project by selecting the file in the browser and then choosing Remove in 
the Files menu.

· Open a project file by double-clicking its name or icon (or, selecting the file in the browser and 
then choosing Open in Workspace in the Files menu).

There are in fact several ways to add an existing file to a project.    The file can be already located in 
the project directory, or it can be somewhere else.    To add it, use one of the following methods:

· Drag the file from the File Viewer into the project window.    If you drag it to the suitcase it 
belongs in, that suitcase will open up.    If you let it go, it will be added to that suitcase.    If 
instead you drag it to the project suitcase, the project suitcase will open up and the file will be 
added to it.    The Classes suitcase takes ª.mº files, the Headers takes ª.hº files, and so on.    ªOther 
Sourcesº refers to files that are not headers or classes, but need to be compiled and linked into the 
target of the project (application, bundle or palette).    ªOther Resourcesº refers to files that need 
to be copied into the target.    ªSupporting Filesº refers to files that are necessary to maintain the 



project, but don't end up in the target.

· Select a suitcase and choose the Add command in the Files menu (or simply double-click the 
suitcase).    A panel will appear, in which you specify a file to add to the selected suitcase. 

· Use the service that Project Builder supplies to other applications.    Relevant applications have a 
command named Project in their Services menu.    This command brings up a submenu 
containing two commands: Add To and Build.    Add To can be used to add the current file to the 
project (in this case, the file must already be located in the project directory).

Also note the following shortcuts available in the File display:

· Control-dragging in a file list allows you to reorder the files.    This can be especially important 
in dealing with libraries, since the file order determines the link order.

· Alternate-double-clicking the icon of a selected file selects that file in the workspace File Viewer, 
instead of opening it.

· Command-double-clicking a source file opens both the file and its associated header file, if it 
exists.

Building the Project
When you instruct Project Builder to build the project, the project is compiled by the make program 
using the project's makefile.    The project's source files are compiled and linked into an executable 
file.    The project makefile provides the information make needs to do this job.    The warnings 
generated by the compiler and link editor provide information to help you locate and fix bugs 
detected at compile time.

To build the project, first bring up the Builder display by clicking the Builder button in the project 
window.

The Target pop-up is for specifying build arguments to be passed to make.    The Options button 
brings up a panel for selecting a host to compile on and    the architecture to build to.    If you want to 
specify these build attributes, be sure to do so before starting to build the project.

Note:    If you build the project on a remote host, be sure you know what version of NEXTSTEP the 
host is running.

When you're ready to build the project, click the Build button.    As the build progresses, the two 
views at the bottom of the window inform you of any warnings or error messages that    occurÐthe 
upper Summary view is more selective in what it chooses to display, so you may choose to hide the 
lower Detail view and only refer to its output when you need to.

If an error is encountered during the build process, a message appears in both the Summary view 
and the Detail view, as shown here.    Click a line in the Summary view to open the specified file; if 
you click a line containing an error message (shown in red on color displays and bold on 
monochrome displays), the file opens in Edit and scrolls to display the line that contains the error.

Build Targets

app.make (the shared makefile used to generate the executable file for all applications created with 
Project Builder) defines a number of alternate targets to perform specific tasks at various phases of 
the application development process.    To run make using the alternate targets, select the 



corresponding argument from the Targets pop-up in the Builder display.

The pop-up list provides various targets, listed below along with the tasks they perform.

Target Task
app/bundle/palette Compiles and links a debuggable, optimized version of the project.    The 

target in this first pop-up item can be app, bundle, or palette, depending on 
the type of project you're building.    The default target produces the same 
result.

clean Removes all derived files, such as object and executable files, from the 
project directory, returning the project to its precompiled state.

debug Compiles (with all warnings and -DDEBUG on) and links a debuggable, 
unoptimized version of the executable file with the extension ª.debugº. 

profile Generates (with all warnings and -DPROFILE on) the file 
ApplicationName.profile, an executable containing code to generate a 
gprof report.    This option is useful when you are performance tuning an 
application.    See the UNIX manual page gprof for details on profiling.

depend Generates an optional Makefile.dependencies file, containing a complete 
dependency graph for the project, including headers.    Once this file exists 
in the project directory, it's conditionally included by your project makefile.

install Builds (if needed) and copies the application into the installation directory 
specified in Project Builder, setting permissions and owners as appropriate. 
The default is $(HOME)/Apps, the Apps directory in the user's home 
directory.

default Compiles and links the project in the same way as the first entry in the pop-
up (app, bundle, or palette). 

The Preamble and Postamble File

Sometimes it's necessary to alter the standard build process as defined by the project makefile.    You 
do this by adding to the project a Makefile.preamble file that overrides the macros defined in the 
project makefile.    To override a macro definition in the project makefile, include a definition for the 
same macro in Makefile.preamble.    For example, the following definition for the macro 
INSTALLDIR always appears in the project makefile:

INSTALLDIR = $(HOME)/Apps

This macro causes the make install target to place the executable in the Apps subdirectory of your 
home directory.    To have install place the executable in another directory, define the following 
macro in Makefile.preamble:

INSTALLDIR = /LocalApps

To use one of the macros listed above in app.make, you first define it in Makefile.preamble.    You 
can, for example, define link editor flags to add segments to your executable file.    For example, an 
application might defines the following macro in its Makefile.preamble:

LDFLAGS = -segcreate EXTRA document extra.rtf

Using this macro definition, the link editor will create a segment named ªEXTRAº in the executable 
file; that segment will have a section named ªdocumentº containing the document file extra.rtf.

In other cases, it's useful to perform certain application building processes after those defined in the 
standard application makefile, or to redefine symbols previously defined in the standard application 
makefile.    To do so, you use a Makefile.postamble file. 



The makefiles in /NextDeveloper/Makefiles include two files, Makefile.preamble.template and 
Makefile.postamble.template.    You can look through those files for more information on how to 
create preamble and postamble files.

Setting Preferences
You can specify preferences for a variety of options using the Preferences panel.    To bring up the 
panel, choose the Preferences command in the Info menu.

Enter values or click buttons to specify new preferences, as described below.    Then click Set to set 
the new preferences (or click Revert to restore the previous settings).    Note that the settings on the 
Preferences panel are globalÐthey apply to all projects, not just the current project.

The controls in the Build Defaults group let you specify alternate targets to appear in the Builder 
display's Targets pop-up.    They also let you specify build arguments to be passed to make, a remote 
host on which to build the project, and the architecture to build the project for.    The check box lets 
you choose to continue building projects even when a fatal error is encountered during compiling. 

The controls in the Tools group let you specify the programs to use to edit source code and debug 
the executableÐthese files are used in interactive debugging with Project Builder.    You can also 
specify an alternative to /bin/make, the standard make program.

The controls in the Sounds group let you specify the sound cue to use when the project builds 
successfully, and when the project fails to build. 

The controls in the Build Service group let you specify what (if anything) you want to have happen 
after building your project (specifically, after building your project by choosing Project Builder's 
Build command on the Services menu)ÐBuild only, Build and Run, or Build and Debug.

The controls in the Save Options group let you specify whether projects should be auto-saved, and 
whether the most recent backup file is automatically deleted or retained. 

Running and Debugging an Application
In addition to maintaining and building a project, you can use Project Builder to run or debug the 
resulting application, as described in this section.

Running

To run the project application, click the Run button in the project window.    If the project hasn't been 



built yet, it's built and then the application is run.    The Run button's icon is the same as the 
application iconÐthe icon shown here is the default application icon that's used if no other icon is 
specified in the Attributes display.

Tip:    Alternate-clicking the Run button runs the application without building it first.

Debugging

To debug the project application, click the Debug button in the project window.    If the project hasn't 
been built yet, it's built first and then the application is run in debug mode.

Tip:    Alternate-clicking the Debug button runs the application under the debugger without building 
it first.

When you indicate that you want to debug an application in Project Builder, the following steps 
occur:

· The project is built (unless it's already up to date).

· Terminal creates a new window to run the GDB process in. 

· As GDB starts, it's instructed to read the PB.gdbinit file in the project directory. 

· The view command in the PB.gdbinit file is executed and causes a command named Gdb to 
appear in Edit's main menu.

Choose the Gdb command from Edit's main menu to display the GDB control panel.    This panel 
has the application name as its title, and contains four groups of controls for interacting with GDB 
as you debug the application.    (GDB commands that aren't accessible through the panel can still be 
executed manually in the shell window in which GDB is running.)

The first group (labeled either Running or Stopped) contains the following buttons for controlling 
the execution of the application.

Button Description
Run Starts the application being debugged.

Continue Continues the    application being debugged, after a signal or breakpoint.

Finish Executes until the selected stack frame returns.    (Upon return, the returned 
value is printed and put in the value history.)

Quit Exits GDB.

Step Steps the application until it reaches a different source line.

Next Steps the application, proceeding through subroutine calls.    The Next 
command is like the Step command as long as there are no subroutine calls; if 
there are, the call is treated as one instruction. 

The Line group contains controls for setting breakpoints in source files and running until a 
breakpoint is reached.    These controls use Edit's current file and line as their argument.    Click the 
Break At button to set a breakpoint at the line containing the insertion point in the main Edit 
window.    Click the Run Until    button to run the application until it reaches the next breakpoint.



The Selection group contains controls for evaluating and printing the value of a C or Objective C 
expression.    These controls use Edit's current selection as their argument.    Click the Print button to 
display the value of the selected expression.    Click the Print* button to display the value that the 
expression points to.

The Stack group contains controls for browsing the data in the program being debugged.    Clicking 
the Browse button causes the following browser panel to appear:

You can use this browser to select and inspect particular stack frames and their variables.

Project Builder Command Reference
Project Builder's main menu contains the standard Info, Edit, Windows, Services, Hide, and Quit 
commands.    All commands unique to Project Builder are located in the Project and Files 
submenusÐthese menus and the commands they contain are described below.

Commands in the Project Menu
The Project menu contains commands for creating and maintaining your projects.

Command Description
New Creates a new project. 

Open Opens an existing project. 

Open Makefile Opens a window for just the Makefile of a project and displays 
the Builder view in the window. To build the project, click 
Build. 

Save Saves the current    project.

New Subproject Creates a new subproject.    A panel appears in which you 
specify the name and type of subproject.    The type can be either 
Subproject or Bundle.

Specify a name and type, and then click OK to add the 
subproject or bundle to the current project. 

Add Help Directory Adds a Help directory to the current project.    A template Table 
of Contents file and Index file are placed in the Help directory.    
For more information on adding help to an application, see 
Chapter 3.

Run Application Runs the application associated with the project, just as if you 
had clicked the Run button in the project window.

Debug Application Debugs the application associated with the project, just as if you 
had clicked the Debug button in the project window.

Build Application Builds the application associated with the project, just as if you 



had clicked the Build button in the project window.

Commands in the Files Menu
The Files menu contains commands that affect the files that make up a particular project.    
Commands in this menu are enabled only when the Files view for the project is selected.

Command Description
Add Adds a file to the selected suitcase in the current project.    Be 

sure to select the appropriate suitcase in the File view before 
choosing the command.

Open in Workspace Opens the selected file in the application that's registered with 
the Workspace Manager as the default application for files of 
that type.

Select in Workspace Displays and highlights the selected file in the Workspace 
Manager's File Viewer window.

Remove Removes the selected file from the current project (without 
deleting it from the project directory). 

Sort Alphabetically sorts the files in the current suitcase.

Make Global Makes the selected file global (that is, moves it from the 
Language.lproj directory into the project directory).

Make Localizable Makes the selected file localizable (that is, moves it from the 
project directory into the Language.lproj directory).


