
Release 3.3 Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

Exception Handling

An exceptional condition is one that interrupts the normal flow of program execution.    Each application can
interpret different types of conditions as exceptional.    For example, one application might view as exceptional
the attempt to save a file in a directory that's write-protected.    In this sense, an exceptional condition can be
equivalent to an error.    Another application might interpret the user's keypress as an exceptional condition:    an
indication that a long-running process should be aborted.

A robust application must be able to respond appropriately to exceptional conditions.    Depending on the context,
this might mean:

· Terminating normal processing
· Freeing dynamically allocated memory
· Closing files
· Restarting execution at some other point in the program

Exceptional conditions can occur deep within a calling sequenceÐwithin a function that's called by another
function that's called by yet another function, and so on.    Responding to the condition might entail backing out of
each of these functions in the reverse order that they were called, cleaning up as necessary at each level along
the way.    This process is known as ªunwinding the call stack.º

Traditionally, exceptional conditions are announced through a function's return value.    This system has several
disadvantages.    Only limited information about the condition can be coded in a single return value.    For
example, the UNIX manual page for fopen() states that the function returns NULL if it's unable to open a file, if
too many files are already open, or if other needed resources can't be allocated.    In addition, for the notification
of the exceptional condition to propagate up the call stack, each function along the way must check return values
and respond appropriately.    Failing this, information about the exceptional condition can be lost.    Finally,

providing for exceptional cases can obscure the normal pathways through your code:

if ((returnValue1 = function1()) == NULL) goto onError;
if ((returnValue2 = function2()) == NULL) goto onError;
if ((returnValue3 = function3()) == NULL) goto onError;

onError:
 /* Check where the error occurred and take remedial action */

A good exception handling system must provide the programmer with a unified and organized approach for
responding to exceptional conditions once they've been identified at any level within an application.    The
following sections describe the system used in NEXTSTEP and available for use in applications built with
NEXTSTEP.

Note:    The exception handling system described here is distinct from the one used within the Mach operating
system.    See the NEXTSTEP Operating System Software manual for information on that system.

Detecting Exceptional Conditions

Before an exceptional condition can be responded to, it must be detected.    Typically, an exceptional condition is
discovered through the return value of a function or method, especially those that access data from the file
system.    An example is reading a file into memory, as this program excerpt illustrates:

NXStream *stream;
char *theFile = "/me/filename", *buffer = NULL;
int length, maxlength;

if ((stream = NXMapFile(theFile, NX_READONLY)) != NULL) {
 NXGetMemoryBuffer(stream, &buffer, &length, &maxlength);
 NXClose(stream);
} else {

 /* exceptional condition has been detected */
}

If NXMapFile() is unable to map the file into memory, it returns NULL, indicating an exceptional condition.   
Routines that write data generally have a similar system of reporting such conditions.

Even if the data can be read or written, it may not be usable to the program.    Applications that run consistency
checks on data may also use the exception handling system in case of data inconsistency.

Another situation where the exception handling system can be used is when the user wants to interrupt a long-
running operation.    In the following example, the application displays an attention panel to alert the user of its
current state and to give the user the choice of aborting the operation:

id alert;
NXModalSession session;
int runState;
BOOL done;

alert = NXGetAlertPanel(NULL, "Doing something time-consuming.
 Please wait . . . ", "Stop", NULL, NULL);
[NXApp beginModalSession: &session for:alert];
runState = NX_RUNCONTINUES;
done = NO;
while (!done && runState == NX_RUNCONTINUES) {
 runState = [NXApp runModalSession: &session];
 /* Do small portion of lengthy process. */
 /* Set done == YES when the process is finished. */
}

[NXApp endModalSession: &session];
[alert orderOut:self];
NXFreeAlertPanel(alert);
if (runState == NX_ALERTDEFAULT) {
 /* exceptional condition has been detected */
}

Program execution continues in the while loop either until the incremental processing finishes

done == YES

or until the user clicks the panel's Stop button:

runState != NX_RUNCONTINUES

If the user has interrupted processing, the statements in the body of the if construction are executed and the
exception is detected.

Raising an Exception
Once an exceptional condition is detected, it must be propagated to the routine or routines that will handle it, a
process referred to as ªraising an exception.º    In the NeXT exception handling system, exceptions are raised by
calling the macro NX_RAISE(), as defined in the header file objc/error.h.    This routine takes three arguments:

void NX_RAISE(int code, const void *data1, const void *data2)

The first, code, is an integer that identifies the exception.    As described in the section ªException Codesº below,
some code ranges are reserved for the Application Kit, the Display PostScript client library, and other software
modules; you can define codes for exceptional conditions that might occur in your application.

The second two arguments are pointers to arbitrary data about the exception.    For example, if a function's return
value initiated the call to NX_RAISE(), you could use data1 to pass the return value to the exception handler.   
Or, if the exception handler displays a panel in response to the exception, you could use data2 to pass the text
string to be displayed in the panel.

NX_RAISE() works by calling a function that's registered as the exception raiser; this function is
NXDefaultExceptionRaiser().    NXSetExceptionRaiser() and NXGetExceptionRaiser() give you access to the
exception raiser, although it's unlikely that you'll find a need to alter it.

Handling an Exception
Calling NX_RAISE() initiates the propagation of the exception and passes data about it.    Where and how the
exception is handled depends on where you make the call to NX_RAISE().    Let's first look at a simple case.

In general, NX_RAISE() is called within the domain of an exception handler.    An exception handler is a control
structure created by the macros NX_DURING, NX_HANDLER, and NX_ENDHANDLER, as shown in Figure 1.

F0.eps ,

Figure 1.    Flow of Control in an Exception Handler

The section of code between NX_DURING and NX_HANDLER is the exception handling domain; the section
between NX_HANDLER and NX_ENDHANDLER is the local exception handler.    The normal flow of program
execution is marked by the gray arrow; the code within the local exception handler is executed only if
NX_RAISE() is called.    A call to NX_RAISE() causes program control to jump to the first executable line
following NX_HANDLER, as indicated by the black arrow.

Although you can call NX_RAISE() directly within the exception handling domain, it's more often called indirectly
within one of the procedures called from the domain.    No matter how deeply in a call sequence the call to
NX_RAISE() is made, execution jumps to the local exception handler (assuming there are no intervening
exception handlers, as discussed in the next section).    In this way, exceptions raised at a low level can be
caught at a high level.

Besides transferring execution to the local exception handler, a call to NX_RAISE() initializes the variable
NXLocalHandler of type NXHandler, as defined in objc/errors.h.    This variable is defined only within the local
exception handler and contains those structure members that correspond to the arguments passed to

NX_RAISE():    NXLocalHandler.code, NXLocalHandler.data1, and NXLocalHandler.data2.    These members
transfer information about the exception to the code within the local exception handler.

For example, in the following program excerpt, the local exception handler displays an attention panel after
detecting an exception having the code error_one (see ªException Codesº below for information on defining
exception codes):

. . .
NX_HANDLER
 switch(NXLocalHandler.code) {
 case error_one:
 NXRunAlertPanel ("Error Panel",
 NXLocalHandler.data1, "OK", NULL, NULL);
 break;
 case error_two:
 . . .
 }
NX_ENDHANDLER

If an exception of type error_one is raised, an attention panel appears and displays the text referred to by
NXLocalHandler.data1.

Calling NX_RAISE() is one way for program execution to leave the exception handling domain; three other ways
are permitted:

· ªFalling off the endº
· Calling NX_VALRETURN()
· Calling NX_VOIDRETURN

ªFalling off the endº is simply the normal execution pathway introduced above.    After all appropriate statements
within the domain are executed (and no exception is raised), execution continues on the line following
NX_ENDHANDLER.    Alternatively, you can return control to the caller from within the domain by calling
NX_VALRETURN() or NX_VOIDRETURN, depending on whether you need to return a value.

You can't use goto or return() to exit an exception handling domainÐerrors will result.    Nor can you use
setjmp() and longjmp() if the jump entails crossing an NX_DURING statement.    Since in many cases you won't
know if the NEXTSTEP code that your program calls has exception handling domains within it, it's generally not
recommended that you use setjmp() and longjmp() in your application.

If an exception is raised and execution begins within the local exception handler, it either continues until all
appropriate statements are executed (falling off the end of the local exception handler), or the exception is raised
again to invoke the services of an encompassing exception handler, as described in the next section.

Nested Exception Handlers
Exception handlers can be nested so that an exception raised in an inner domain can be treated by the local
exception handler and any number of encompassing exception handlers.    This hierarchy of exception handlers
is accessed with the macro NX_RERAISE, as illustrated in Figure 2.

F1.eps ,

Figure 2.    Nested Exception Handlers

An exception raised within Function3()'s domain causes execution to jump to its local exception handler.    In a
typical application, this exception handler checks the values contained in NXLocalHandler to determine the
nature of the exception.    For exception types that it recognizes, the local handler responds and then calls
NX_RERAISE() to pass notification of the exception to the handler above it, in this case, the handler in
Function2().    Function2()'s exception handler does the same and then reraises the exception to Function1()'s
handler.    Finally, Function1()'s handler reraises the exception.    Since there's no exception handling domain
above Function1(), the exception is transferred to the default top-level error handler, as discussed below.

An exception that's reraised appears to the next higher handler just as if NX_RAISE() had been called within its
own exception handling domain.    (NX_RERAISE() is in effect a cover for NX_RAISE(), transferring the values of
NXLocalHandler's code, data1, and data2 members to the next higher exception handler.)

For applications based on the Application Kit, exceptions that are reraised within the highest-level local exception
handler are sent to NXDefaultTopLevelErrorHandler().    Through a call to NXReportError(), this function prints
a message about the exception.    (See ªReporting Errorsº below for more information.)    If an application's
connection to the Window Server becomes corrupt or dies, or if the application is unable to form a connection to
the Server, NXDefaultTopLevelErrorHandler() terminates the application by calling exit() with a status code of
-1.

NXSetTopLevelErrorHandler() lets you change the function used as the top-level handler;
NXTopLevelErrorHandler() returns a pointer to the current top-level handler.    If you substitute your own
function for NXDefaultTopLevelErrorHandler(), you should probably call NXDefaultTopLevelErrorHandler() as
part of its implementation.    In this way, your function can give special handling to certain exceptions, passing all
others to NXDefaultTopLevelErrorHandler().

Raising an Exception Outside of an Exception Handler
If an exception is raised outside of any exception handler, it's intercepted by the uncaught exception handler, a
function set by NXSetUncaughtExceptionHandler() and returned by NXGetUncaughtExceptionHandler().   
The default uncaught exception handler for Application Kit programs writes the message ªAn uncaught exception
was raised.º to the Workspace Manager's console window (if the application was launched by the Workspace
Manager) or to a Shell or Terminal window (if the application was launched from either of those applications).    It
then calls the top-level exception handler, passing it the information contained in the arguments to the
NX_RAISE() call that originally raised the exception.

You can change the way uncaught exceptions are handled by using NXSetUncaughtExceptionHandler() to
establish a different procedure as the handler.    However, because of the design of the Application Kit, it's rare for

an exception to be raised outside of an exception handling domain.    The Application object's event loop itself is
within an exception handling domain.    On each cycle of the loop, the Application object retrieves an event and
sends an event message to the appropriate object in the application.    Thus, the code you write for custom
objects (as well as the code for Application Kit objects) is executed within the context of the event loop's
exception handler.    To customize the Application Kit's highest-level response to exceptions, modify the top-level
exception handler.

Exception Codes
Each of the software modules provided by NeXT is assigned a range of exception code values.    The lowest
value within the range is represented by a constant, as listed in the following table.

Exception Category Base Constant
Client Library, Adobe DPS_ERROR_BASE
Client Library, NeXT Extensions DPS_NEXT_ERROR_BASE
Application Kit NX_APPKIT_ERROR_BASE
Streams NX_STREAMERRBASE
Typed Streams TYPEDSTREAM_ERROR_RBASE
DSP C Library DSP_ERRORS
Database Kit DB_ERROR_BASE
Indexing Kit IX_STOREUSERERRBASE
Mach Kit NX_MACH_KIT_EXCEPTION_BASE
Distributed Objects NX_REMOTE_EXCEPTION_BASE

Except for the first two categories, each range spans 1000 exception codes.    The first two categories share a
range of 1000:    The first 100 codes are reserved for exceptions generated by Adobe's client library routines; the
remaining 900 codes are reserved for the NeXT client library.

If, within an exception handler, you want to catch exceptions from one of these modules, you could use code

such as this:

NX_HANDLER
 if (NXLocalHandler.code > = DSP_ERRORS &&
 NXLocalHandler.code < DSP_ERRORS +1000) {
 /* code for custom handling of DSP exceptions */
 } else
 NX_RERAISE();
NX_ENDHANDLER

Defining Codes for Your Application
The Application Kit defines one additional range of exception codes:    the range for applications built on the
Application Kit.    This range extends upward from the base constant NX_APPBASE, as defined in the header file
appkit/errors.h.    For example, you could use this constant in an enumeration of exception types for a database
application:

enum databaseExceptions {
 DS_invalidSearchKey = NX_APPBASE,
 DS_corruptRecord,
 DS_corruptIndex,
 DS_compactionError,
 DS_sortError
};

By initializing exception codes in this way, you can be sure that they won't conflict with those assigned to other
software modules.

Associating Messages with Codes
In general, you'll want to associate a message with each exception code you define for an application.    One
convenient way to centralize this list of messages is to declare an array of pointers to the messages that
correspond to the application-specific exception codes:

char *dsErrorMessages[] = {
 /* DS_invalidSearchKey */ "Invalid search key",
 /* DS_corruptRecord */ "Error reading record",
 /* DS_corruptIndex */ "Error opening index",
 /* DS_compactionError */ "Error during compaction",
 /* DS_sortError */ "Error during sort operation"
};

Using this technique, a call to NX_RAISE() might look like this:

NX_RAISE(DS_corruptIndex,
 dsErrorMessages[DS_corruptIndex -NX_APPBASE], NULL);

The first argument is the exception code, and the second is a pointer to the string ªError opening indexº.

Besides centralizing your application's error messages, associating exception codes and messages in this way
makes it easier for your application to work with the Application Kit's error reporter, as described in the next
section.

Reporting Errors
The Application Kit lets you register a function as the error reporter for a range of exception codes.    An error
reporter typically logs information about the error by writing a message in the Workspace Manager's Console
window.    An application can have many error reporters, each responsible for a specific range of exception
codes.

Once the reporters are registered (as described below), calling NXReportError() causes the Application Kit to
search for the reporter responsible for the specific exception code.    If it finds one, the reporter is called and
passed data about the exception.    If it can't find one, it logs the exception code and a message stating that an
unknown exception code was reported.

An error reporter for the database application example introduced above might look like this:

void
DSErrorReporter(NXHandler *errorState)
{
 if (errorState->code == DS_invalidSearchKey)
 return;
 NXLogError("DS error: %s\n",
 dsErrorMessages[errorState->code -NX_APPBASE]);
 return;
}

This reporter ignores exceptions of type DS_invalidSearchKey (presumably because they are recoverable
errors) but logs messages concerning all other codes within its range.

The function NXLogError() is much like printf():    It lets you write a formatted string to the Console or Terminal
window, depending on where the application was launched.    NXLogError(), however, calls syslog(), which
marks the message with the time of occurrence and the application's process identification number.    See the
UNIX manual page for syslog() for more information.

If your application defines a range of exception codes as its own, it should also register an error reporter.    This is
because the default top-level exception handler calls NXReportError() for all exceptions raised to its level.    If
your application hasn't registered an error reporter for its range, then NXReportError() won't be able to print
anything more informative than the exception code for the error.

Registering Error Reporters
You register an error reporter for a range of exception codes by calling NXRegisterErrorReporter().    You might,
for example, place code such as the following in the initialize method of one of your application's custom
classes:

+ initialize
{
 NXRegisterErrorReporter(NX_APPBASE, NX_APPBASE + 999,
 DSErrorReporter);
 return self;
}

The first two arguments to NXRegisterErrorReporter() represent the minimum and maximum values for
exception codes sent to the reporter referred to by the third argument.    The call above specifies the error
reporter described in the previous section.    Once an error reporter is registered for a specific range, no new
reporter can be set for any part of that range until the existing reporter is removed.

You remove an error reporter by calling NXRemoveErrorReporter().    This function takes one argument, the
minimum exception code value of the existing error reporter's range.    For example, to remove the reporter
registered in the preceding code excerpt, you'd make this call:

NXRemoveErrorReporter(NX_APPBASE);

Handling PostScript Errors
To draw on the screen, your application must send PostScript code to the Window Server, where it's executed by
the PostScript interpreter.    Most of the code that an application sends is generated by user-interface objects
defined in the Application Kit.    Other code is generated by routines you write for your application's custom
classes.    In some applications (for example, a PostScript language previewer such as YapÐsee

/NextDeveloper/Examples/Yap), the code is entered by the user or imported from a file.    Careful debugging
should ensure that PostScript code generated by Application Kit or custom objects won't generate exceptions at
run time.    However, applications that import PostScript code must be prepared to handle exceptions raised by
the PostScript interpreter at run time.

In the following example, a PostScript program is executed from a file.    If the code is faulty, the Display
PostScript client library raises an exception, transferring control to the local exception handler.    After the handler
has logged the exception, the contents of the application's PostScript VM are restored.

(Note:    The NXImage class of the Application Kit provides the functionality illustrated by this exampleÐand in a
more robust way.)

/* save contents of PostScript VM */
NX_DURING
 PSrun(/* file path */); /* for illustration purposes only! */
 NXPing(); /* ensure all code is executed by Window Server */
NX_HANDLER
 switch (NXLocalHandler.code) {
 case dps_err_ps:
 NXReportError(&NXLocalHandler);
 /* restore contents of PostScript VM */
 break;
 . . .
 default:
 NX_RERAISE();
 }
NX_ENDHANDLER
/* restore contents of PostScript VM */

The exception code dps_err_ps identifies errors reported by the PostScript language interpreter in the Window
Server.    (See dpsclient/dpsclient.h for a complete list of exception codes raised by the Display PostScript
client library.)    The local exception handler treats exceptions of this type by calling NXReportError() to log the
error message.    By default, all other exception types are reraised to upper-level handlers.    If the default top-

level exception handler receives a PostScript exception, it logs the corresponding error message in much the
same way as illustrated here.

This excerpt contains a number of additional points of interest.    First, note that NXPing() is called after the
PostScript code is sent to the Window Server.    Since an application and the Window Server are separate
processes that execute asynchronously, notification of an error might not be received by the application until after
control has passed from the exception handling domain.    Calling NXPing() keeps the two processes
synchronized, ensuring that exceptions generated by the PostScript code are raised within the exception
handling domain.

Second, using PSrun() assumes that the file containing the PostScript program has the same path on all
machines that run this applicationÐa perilous assumption!    PSrun() was used for simplicity in this example; a
better choice for sending PostScript code to the Server is DPSWriteData().    (See the Client Library Reference
Manual by Adobe Systems, Inc. for more information on DPSWriteData()).

Managing Exception Data
The macro NX_RAISE() takes three arguments:    an exception code and two pointers to data that you might
pass to the exception handler.    So far in this discussion, we've used one of these pointers to pass an error
message that's associated with the exception (see ªAssociating Messages with Codesº above).    You might, in
some circumstances, need to pass additional data along to the exception handler.    The functions
NXAllocErrorData() and NXResetErrorData() help you manage the memory that you might allocate for this
additional data.

NXAllocErrorData() controls a buffer for error data, allocating the amount of memory you request;
NXResetErrorData() frees this memory.    The Application Kit calls NXResetErrorData() each time through the
event loop, making it unnecessary for you to call the function directly.    (However, if your application doesn't use
the Application object's event loop, be sure to call NXResetErrorData() after getting each event in order to free
this memory.)    Thus, by using NXAllocErrorData() whenever you need to allocate memory within your

exception handler, you don't have to be concerned about freeing this memory when it's no longer needed.

NXAllocErrorData() takes two arguments:    One specifies the amount of memory to allocate, and the other
refers to a pointer to this memory.    This code excerpt illustrates its use:

CheckSearchKey()
{
 char *errorData;
 char theKey[1024];

 NX_DURING
 /* get search string and initialize theKey */
 if (/* invalid search key */) {
 NXAllocErrorData(strlen(theKey+1), &(void *)errorData);
 strcpy(errorData, theKey);
 NX_RAISE(DS_invalidSearchKey,
 dsErrorMessages[DS_ invalidSearchKey - NX_APPBASE],
 errorData);
 }
 . . .
 NX_HANDLER
 switch(NXLocalHandler.code) {
 case DS_invalidSearchKey:
 NXRunAlertPanel (NXLocalHandler.data1,
 NXLocalHandler.data2, "Restart",
 NULL, NULL);
 NX_RERAISE();
 . . .
 default:
 NX_RERAISE();
 }
 NX_ENDHANDLER
 return;
}

In this example, if an exception occurs NXAllocErrorData() allocates memory for the search key that caused the
exception.    The key is then copied into the newly allocated memory.    NX_RAISE() passes this data to the local
exception handler where it's used as part of the text of an attention panel displayed to the user.    From there, the
exception is raised to the next higher-level handler.

We might have avoided allocating the storage represented by errorData by simply using theKey as the third
argument to NX_RAISE().    However, theKey is only defined within the scope of this function; reraising the
exception within the local exception handler exits this block, and so theKey would be undefined for higher-level
exception handlers.    Copying the search key into memory allocated with NXAllocErrorData() not only makes it
available to the higher-level handler, but ensures that the memory will be freed when it's no longer needed.

