Release 3.3 Copyright ©1995 by NeXT Computer, Inc. All Rights Reserved.

Measuring Performance and Memory Usage

Measuring Performance

By just using your application you may already have a sense of where the problem liesbfor example, load times
are too long, redraw time is too long, or maybe response time is sluggish. In fact, this information is organized
along those lines since specific techniques are often useful in solving each of those problems. However, there
are a number of tools that can be used to get a qualitative and quantitative sense of where the cycles are being
consumed within your application. The purpose of this section is to elaborate on them.

gprof

The standard profiling tool in the UNIX®world is gprof, and it's an excellent tool for understanding where in your
process the cycles are being consumed. It generates a call graph for your application showing how many times
a given function was called, and how much time was spent in that function and the function's descendents (that
IS, functions called by the given function). By analyzing the output from gprof you can quickly identify those
areas where it makes sense to focus your optimization efforts. To use gprof:

Compile the application using make profile. This compiles your program with the -pg option, which indicates
profiling and generates an executable file named appName.profile.



Run the application.
When you exit, a file named gmon.out will be placed in your home directory.

Run gprof to create the profile:

gprof appName.profile/appName gmon.out >profile
Use your favorite editor to examine the profile file.

Or if you want to print the file, type

gprof appName.profile/appName gmon.out |enscript
See the UNIX manual page on gprof for an explanation of the output of gprof and its many options.

However, there's one extremely important caveat with gprof. It does not measure the time spent by the Window
Server on your behalf, because gprof only measures time spent within a given process. Effectively this means
that gprof is not very useful in measuring time spent drawing, which is a serious problem because drawing time
often accounts for the bulk of the total time. You must use other techniques to analyze the drawing time.

Qualitatively Measuring Drawing Performance

There are two command-line arguments that can be used to quickly get a qualitative sense of your drawing
performance: NXAIlIWindowsRetained and NXShowPS.

NXAIlIWindowsRetained

The command-line argument NXAllWindowsRetained is extremely useful for identifying situations in which you're



doing unnecessary drawing. NXAIlIWindowsRetained makes all your windows visible, and they're made retained
so all drawing is done directly on the screen. Hence, by visual inspection, you can see all of the drawing that's
going on in your application. NXAIlWindowsRetained is often a good first step in diagnosing performance
problems. To use NXAllWindowsRetained, launch your application from a Terminal window, giving
NXAlIWindowsRetained as an argument:

appName -NXAllWindowsRetained YES

NXShowPS

The command-line argument NXShowPS is a useful aid in diagnosing inefficient drawing, because it writes all
the Display PostScript®code going to the Window Server out to stderr as well. While use of
NXAIlIWindowsRetained will diagnose unnecessary drawing, use of NXShowPS will diagnose inefficient drawing.
While the volume of PostScript code is often a bit overwhelming, you should look for things like multiple erases,
clips, and so on. To use this option, launch your program from a Terminal window, giving NXShowPS as an
argument:

appName -NXShowPS YES
For finer-grain inspection, use the showps and shownops commands within GDB to accomplish the equivalent
of NXShowPS for selected portions of your application. In practice, this is more useful than using NXShowPS

for your entire application, since you're typically interested only in the PostScript code being emitted as a result of
a particular method.

Quantitatively Measuring Drawing Performance



To get hard numbers on the time being consumed by an application in preparation for drawing, or by the Window
Server on your behalf when it's executing drawing commands, you must use interval timing. There are two
standard techniques:

Bracket the relevant code with calls to gettimeofday() and calculate the elapsed time. Note that this will
represent the @wall time,® which is, after all, what the user cares about; it'll account for time spent within your
application as well as within the Server.

Bracket the relevant code with calls to getrusage() and PSusertime() to calculate the elapsed CPU time
spent within your process, and the time spent within the Server on behalf of your application's PostScript
context.

To illustrate these two techniques, we've provided you with a simple Timing class that provides methods that
implement the two techniques (see ListingsForTimingClass.rtf). To use the Timing class, you create an
instance of the class, send a message to the object when you want to begin timing, and then send another
message to it when you want to end timing. It'll keep track of the number of times the timing interval has been
entered and the cumulative elapsed time.

Below are two methods from the Timing class that are used to calculate elapsed wall time.

-wallEnter

{

cumTimesEntered++;

NXPing () ;
gettimeofday (&realtime, &tzone) ;
synctime = realtime.tv sec +realtime.tv usec/1.0E6;

return self;



-wallleave

{

double eTime;

NXPing () ;
gettimeofday (&realtime, &tzone) ;
eTime = (-synctime + realtime.tv sec

+ realtime.tv usec /1.0E6) - tare;
cumWallTime += eTime;
return self;

}

—-tare
{
struct timezone tzonel;
struct timeval realtimel;
struct timeval realtime2;
NXPing () ;
gettimeofday (&realtimel, &tzonel) ;
NXPing () ;
gettimeofday (&realtime?2, &tzonel) ;
tare = (-realtimel.tv _sec + realtime2.tv _sec) +
(-realtimel.tv _usec+ realtime2.tv usec)/1.0E6;
return self;

}
This approach is reasonably accurate, assuming the following:
There are no other active processes on the machine (usually true).

The unit of work being done is large enough that the round-trip overhead doesn't consume most of the time.
The purpose of tare is to account for the round-trip time and measurement latency.



You're not seriously affected by the timing variance this puts into your program (that is, don't do this in
production code!)

The following two methods illustrate the approach of using getrusage() and PSusertime() to calculate the time
spent within your process, and the time spent within the Server on behalf of your application's PostScript context.

-psEnter
{
cumTimesEntered++;
PSusertime (&stime) ;
getrusage (RUSAGE SELF, &rtime) ;
synctime = (rtime.ru utime.tv sec +
rtime.ru stime.tv _sec) +
(rtime.ru utime.tv usec +
rtime.ru stime.tv usec)
/1.0E6;
return self;

}

—-psLeave
{
int et;
double appTime;
double psTime;
getrusage (RUSAGE SELF, &rtime);
appTime = ((rtime.ru utime.tv sec +
rtime.ru stime.tv sec) +
(rtime.ru utime.tv usec +
rtime.ru stime.tv usec)
/1.0E6) -synctime;



cumAppTime += appTime;
PSusertime (&et) ;

psTime = ((et-stime)/1000.0);
cumPSTime += psTime;

return self;

}

In this case, appTime represents the elapsed CPU time spent in the process and in the system on behalf of the
process, and psTime represents the CPU time spent in the Server on your behalf. The equation
(psTime/(appTime +psTime)) will give you the percentage of the time spent in the Server.

The second approach is very useful for seeing the breakdown between application time and Server time within a
chunk of code. For example, you can use this to answer questions like, 2While wrapping and drawing a page of
text, how much time is spent in the Server and how much time in the application?® You can then decide whether
to go after the Server time with showps and timing your graphics operations, or go after the application time with

gprof.
Either technique is extremely useful in understanding where the time is going, so you can then focus on solving

the relevant problem. With either approach you should be sure to average over many trials to get an accurate
value. You should also be sure to remove all timing code from production code.

Measuring Memory Usage

When measuring memory usage, you need to measure not only the amount of memory consumed by your
process, but also the amount of memory consumed by the Window Server on your application's behalf. The
tools described in this section allow you to measure both.



ps

The UNIX utility ps is useful for only a gross measure of how much memory is consumed by your process.
Because of the Mach virtual memory model, the numbers reported by ps are extremely inflated. For example,
every program has a large stack allocated to it, but only the pages that are actually touched ever come into
existence in RAM or in the swapfile. They're created zero-filled on demand. However, the total amount of
virtual memory allocated for your stack shows up in your virtual process size. The shared libraries also appear
in your virtual and resident sizes. Mapped files can also increase virtual sizes without increasing the resident
size appreciably. The best use of the virtual size is finding substantial VM leaks. For most other purposes,
resident size is what counts.

The ps utility is mostly useful in diagnosing large memory leaks. By running ps -ux in a Terminal window at
periodic intervals, and comparing the virtual and resident sizes of your application at the two points in time, you
may be able to identify large memory leaks within your application.

size

The UNIX utility size is useful for determining the size of the various portions of your executable file (text, data,
interface segments, and so on) on disk. For more information, see the UNIX manual page for size.

MallocDebug

The MallocDebug application is the best source for detailed information on your application's use of the malloc



heap. MallocDebug lets you dynamically view a list of all the heap data your application has allocated, sorted by
size, zone, allocation time or the stack backtrace at the time of allocation. MallocDebug lets you find memory
leaks with the press of a single button. This tool also lets you see which heap items are accessed for a
particular operation, so that you can divide your data into zones for better locality of reference. For more
information, see INextLibrary/[Documentation/NextDev/DevTools/08_MallocDebug.

Winfo

The application Winfo is an extremely useful tool for measuring memory consumed by your application in the
form of window backing stores within the Window Server. Winfo graphically shows you all the windows your app
has created, both on-screen and off-screen, and how much memory those windows consume. In addition,
windows that have been promoted to having color or alpha are highlighted for easy detection. The application is
available from NeXT technical support and on various archive servers.

-NXShowAllWindows

To measure how your application uses off-screen windows, run your application with the option "-
NXShowAllWindows YES". This forces all the off-screen windows to be visible on screen. Look for redundant
bitmap caches, or caches for images you rarely use.



