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Building Portable NEXTSTEP 
Applications

The operating system, client processes, development tools, and software libraries that comprise 
NEXTSTEP are standard for all computers on which NEXTSTEP runs.    This means that, in 
general, when you port your NEXTSTEP application to a new computer, you won't have to redesign 
your code to achieve expected behavior.    All the pieces are there, and as they work on one machine, 
so will they work on every other.

If you follow the NEXTSTEP user interface guidelines and avoid hard-wired data values, then your 
application will probably be portable:    It should run properly on all configurations of a given 
architecture and should need only to be recompiled to run on a new architecture.    But few 
applications are perfect.    Yours might fall prey to the differences between computers, requiring a bit 
of fine-tuning before it will work with a new configuration or on a new architecture.    It's anticipated 
that all such necessary changes will be of the type that generalize your codeÐyou should rarely need 
to ªspecial-caseº your code to adapt to a particular computer.

This paper describes some of the differences between computers that can run NEXTSTEP and 
suggests ways to avoid configuration- or architecture-specific code that could make your application 
non-portable.    It's divided into two parts:

· The first part discusses differences between hardware configurations, such as differences in 
screen size and color capability, or between types of keyboards.

· The second part deals with differences in data representation between computer    architectures.    
Almost all problems that arise in this arena can be cured by adhering to the tenets of good 
programming.

Hardware Considerations
Every computer on which NEXTSTEP runs will certainly possess the three hardware pieces that 
have come to be regarded as obligatory:    a screen, a keyboard, and a mouse.    However, the 
attributes of these devices aren't the same on all computers.    The sound capabilities of computers 
also vary widely.    The following sections describe the facilities that allow your application to query 
a computer for the attributes of its hardware devices, and warn against assumptions about the 
computer's configuration that can make your application less portable.

The Screen
Not all screens are the same size, nor do they provide the same color support.    Therefore, a portable 
application shouldn't depend on a particular screen size or color capability.

To guarantee that windows appear on-screen in an appropriate manner, your application should 
always place them relative to the edges of the screen, rather than in absolute positions.    Interface 



Builder's Size Inspector can be used to set the position of a window relative to the edges of a screen, 
so when the window is displayed, it automatically appears in the expected place.    If a window or 
panel must have a minimum size, try to keep it at a reasonable value (computer screens are usually 
at least 640 ´ 480 pixels).    Non-resizable windows and panels should be given similar 
consideration about their sizes.

The Window class guarantees that windows are displayed in such a way that the user can manipulate 
them.    If a window's position would result in its title bar being off-screen, the window will move 
itself enough so that the title bar does appear.    Similarly, if a window is so tall that its resize bar 
would be below the bottom of the screen, the window will change its height to show the resize bar.    
All of Window's placement and movement methods perform this forcing to the screen, so if you 
need a standard window that's not visible, you should use the orderOut: method to remove it from 
the screen list, rather than trying to position the window out of the screen's bounds.

To handle the different color capabilities of screens, your application should use the NXImage class 
for bitmapped images.    NXImage automatically uses the most appropriate image representation for 
a given screen.    You should also make use the View method shouldDrawColor.    This method lets 
application choose appropriate grayscale equivalents of colors (to avoid dithering on a grayscale 
screen, for example).

If you need more control over screen information than that provided by the above facilities, you can 
use the NXScreen structure, which represents the attributes of a screen.    This structure is declared 
in appkit/screens.h.    The Application Kit's Application and Window classes provide methods that 
return the NXScreen structures that represent the screens that are available to your application.

For more information on using the Application, Window, View, and NXImage classes in handling 
different screen configurations, see the specifications of those classes in 
/NextLibrary/Documentation/NextDev/GeneralRef/02_ApplicationKit.    For more information 
on using Interface Builder, see NEXTSTEP Development Tools and Techniques.

The Mouse
All mice have at least one buttonÐsome have two.    If your application was designed for a NeXT 
Computer, you may have used the second button that all NeXT mice have.    This obviously subverts 
portability to a configuration that has a one-button mouse.

You should never depend on having a two-button mouse; the NeXT user interface guidelines urge 
you to ignore the second button on a NeXT mouse.    However, a slightly less strict reading of the 
rule has it that at the very least, you must make sure that all second-button operations can be 
performed through some other method.    For example, if you use the second button to create a 
ªspecialº selection, you might provide a menu item that acts on the current selection to turn it into 
such a selection, or use the Shift or Alternate key to signal this behavior on a mouse click.

If your application needs to know the type of mouse (or other pointing device, such as a tablet) that's 
attached to the computer, the NXEventSystemInfo() function can be used.    This function describes 
the computer's input devices, including the type of mouse (see    
/NextLibrary/Documentation/NextDev/ReleaseNotes/EventStatusDriver.rtf and the header file 
bsd/dev/ev_types.h for more information).    Unfortunately, NEXTSTEP doesn't provide any 
functions or methods through which you can specifically query for the number of mouse buttons.

The Keyboard
The keyboard, like the mouse, can't be queried for its attributes.    However, you generally don't need 
to know how a keyboard is laid outÐfor example, whether it has a number pad as well as number 
keys.    What you do need to know is what character was generated when the user pressed a key. 



The NXEventData structure, defined in dpsclient/event.h, describes a keyboard event in its key 
substructure.    The description is twofold: 

· The key code describes the key that was pressed. 
· The character code describes the character that was generated.

These two attributes, which sound similar, aren't necessarily the same.    For example, the ª1º key 
that's typically found in the top row of the keyboard generates the same character code as the ª1º in 
the number pad, but they have two different key codes, since they are, physically, two different keys.

A keyboard event's key code is described in a single field, key.keyCode.    The event's character 
code is a combination of two fields in the key substructure:    key.charSet, which identifies a set of 
characters (such as ASCII or Symbol), and key.charCode, which indicates the character in the set.    
For portability, you should never use the keyCode field since, by its nature, it's keyboard-dependent. 
For example, the key code for the letter ªaº on one keyboard might be different from that on another. 
However, when the user presses ªaº, the same character code (in other words, the same charSet and 
charCode combination) will be generated regardless of the type of keyboard.

The set of character codes doesn't necessarily distinguish all key codes; as demonstrated in the 
number pad example above, there may be two key codes that are represented by the same character 
code.    Thus, by using only character codes you may lose some keyboard-specific precision, but you 
gain portability.    There are keyboard-independent ways to get certain information, though.    For 
example, you can check for a key on the numeric keypad by masking the event record's flags field 
with the NX_NUMERICPADMASK mask.

As with the mouse, the NXEventSystemInfo() function can be used to determine what type of 
keyboard is attached to the computer (see the online release note 
/NextLibrary/Documentation/NextDev/ReleaseNotes/EventStatusDriver.rtf and the header file 
bsd/dev/ev_types.h for more information).    If your application requires keyboard-specific 
information (as some terminal emulators do, for example), contact NeXT Developer Support.

Sound
The sound capabilities of different computers vary considerably.    You can't assume that a particular 
computer will be able to play a sound created on another computer.    If NEXTSTEP's sound 
software can't play a sound, the function or method will simply return an error code; the inability to 
play a sound should never cause your application to crash.

For information about determining the sound capabilities of a host machine at run time, see the 
online release notes.

Data Representation Considerations
Beyond concern with a computer's configuration, you must consider platform-specific differences 
when recompiling your application for a new architecture. One of the most fundamental differences 
between computer architectures is how data is represented.    These differences fall into four arenas: 
datum size, byte alignment, byte order, and argument passing.    The following paragraphs describe 
these properties and suggest ways to avoid the simple problems that arise from their differences.    
More complicated situations are examined in ªExternal Dataº and ªInternal Data,º below. 

Certain NEXTSTEP kits require special consideration; the Indexing Kit, for example, maps file-
based data directly into memory, which causes problems when the in-memory representations of 
data vary among computer architectures.    If a kit has its own idiomatic portability issues, there will 
be a notice in the introduction to that kit's reference material, and the specific methods and functions 



requiring special care will have notes about how to use them in a portable manner.

Datum Size

Datum sizes, or the amounts of memory that are devoted to single items of the various data types, 
aren't the same for all computers.    Although almost every computer represents (as examples) a char 
in one byte, a short in two, and ints and floats in four, these sizes aren't mandated.    Thus, you 
should never assume how much memory is needed to store the data that you allocate.    In other 
words, you should never use hard-wired values in a call to a memory allocation function (such as 
malloc()); instead, use the sizeof operator to programmatically discover the size of a datum.    This 
also applies to structures and unions, since different alignment restrictions (see below) can force 
them to be different sizes on different machines.

Byte Alignment

Some computers demand that the starting address (the first byte) of a value fall on a particular 
boundary.    For example, a computer that uses natural boundaries expects the address of a value be 
divisible by the number of bytes that it takes to represent the value:    the address of a two-byte value 
must be divisible by two, the address of a four-byte value must be divisible by four, and so on.    In 
general, this isn't a concern to the programmer because the compiler and C allocation routines 
guarantee that all memory allocations, whether static or dynamic, will be on appropriate boundaries. 
However, there are two situations in which the compiler and C functions can't help you:

· By casting the data type of a pointer, you can write data into an illegal location.    This is 
explained further in the section ªInternal Data,º below; briefly, you can avoid this error by never 
casting a data pointer to which you're writing data. 

· If you redefine the memory allocation functions, you're on your own.    Most visible of 
theseÐand most typically reimplementedÐis malloc() (and realloc(), and so on), but also 
included are the zone-allocation functions that make up the NXZone facility.

Byte Order

A datum of a type that can't be represented in a single byte is given as a series of consecutive bytes. 
If the most significant byte is given first, then the computer is said to be ªbig-endianº; if the least 
significant byte is first, then it's a ªlittle-endianº machine.    Byte order is only a concern when you're 
reading or writing ªexternalº data.    The data that your application creates and uses whiles it's 
running will by nature be ordered correctly. 

If you use the data-reading and -writing mechanisms described in the section ªExternal Data,º below, 
your application may never need to know whether its running on a big- or little-endian machine.    
However, there are some situations in which this determination is essential.    For this, the C 
preprocessor macros _ _BIG_ENDIAN_ _ and _ _LITTLE_ENDIAN_ _ can be examined:

#ifdef __BIG_ENDIAN__
/* do something for big-endian data */
#else
/* do something for little-endian data */
#endif

Datum Format

Like alignment restrictions, the form that a data type is given on one architecture may vary from that 
given on another.    The general rule with regard to the internal format of any datum is:    Never rely 
on it.    Always use field names for structures and unions, and don't assume that you can pick apart a 
float's mantissa and exponent directly (there are library functions to do this).



The format of structure bitfields is particularly variable from architecture to architecture.    You 
should use bitfields only for data items that will remain entirely internal.    If a structure is going to 
be written to or read from a file, you should avoid using bitfields unless absolutely necessary.

Argument Passing

The data that you pass as arguments to a function must be put somewhere so the function can 
retrieve it.    Some computers place argument data (contiguously) on the stack, while others put 
arguments in CPU registers, for which there is no notion of contiguity.    As long as a function 
always refers to its arguments symbolically, the difference between the stack and register approaches 
is inconsequential.    However, a function that steps through its arguments by incrementing (or 
decrementing) a data pointerÐthus assuming that the arguments are being passed on the stackÐwon't 
be portable.

Functions that take a determinate number of arguments should never need to use the data-pointer 
approach.    But if you're designing a function that takes a variable number of argumentsÐa function 
in the style of printf(), for exampleÐyou may be tempted to read the arguments by setting and 
moving a data pointer.    The correct approach to reading an indeterminate number of arguments is to 
use the stdarg macros provided by the standard C library.    These macros are included in your 
program by importing the file stdarg.h; they're described under varargs in section 3 of the UNIX 
manual.

External Data
The problems of external dataÐdata that's read from an external sourceÐarise primarily from 
differences in byte-order:    Data written on a little-endian machine will be swapped when it's read on 
a big-endian machine (and vice versa).    All NEXTSTEP data-communication mechanisms (such as 
those provided by the Application Kit's pasteboard and data link objects, and the distributed objects 
paradigm) automatically transform data that's transmitted between applications to the correct byte-
order; thus, inter-application communication is taken care of.

What you need to be concerned with is data that your application reads and writes directly.    The 
rule is simple:    If you're reading and writing multi-byte data, you should always use typed streams.  
The typed stream functions recognize the byte-order differences between machines and can identify 
the sort of machine on which a particular stream of data was written.    Typed streams are 
comprehensively described in Chapter 3, ªCommon Classes and Functions,º of the NEXTSTEP 
General Reference (/NextLibrary/Documentation/NextDev/GeneralRef/03_Common); the typed 
stream functions are declared in the header file objc/typedstream.h.

Note:    Previous versions of NEXTSTEP documentation for the NXRead() and NXWrite() 
functions give an example which ignores this portability issue, and uses these functions to store a 
multi-byte structure.    That example should not be considered a proper use for NXRead() and 
NXWrite().

Given typed streams as the rule, then, you should be aware that there are a few exceptions:

· One-byte data (such as ASCII strings) can be written and read through any of the usual C 
functions, such as read() and write().    Writing ASCII through a typed stream isn't wrong, but it 
is somewhat inefficient.    Of course, this slackening of the typed stream rule depends on the 
immutability of one-byte data on different machines (in other words, you must be sure that one-
byte data on one machine isn't going to be two-byte data on another).

· Bitfields in a structure, even when written through a typed stream, will be improperly 
represented.    The use of bitfields in a file format is strongly discouraged.

· File formats that already exist and that weren't written through typed streams can't be read 



through typed streams.

The following sections describe solutions to the bitfield and existing file format problems.

Reading and Writing Structure Bitfields

Structure bitfields can help you conserve memory when your application is running.    However, 
they're a poor choice with regard to storing data in a file, since neither the compiler nor typed 
streams resolve the order of contiguous bitfields to match the endian-ness of the computer.    If you 
don't do anything to correct this situation, a series of bitfields that are written on a big-endian 
machine will be ordered differently when read on a little-endian machine, and vice-versa.    The best 
solution to this problem is to avoid it altogether.    If, for efficiency or compatibility reasons, your 
application must be able to read and write structure bitfields, you have two general options:    modify 
the routines that read and write the structure, or redefine the structure itself.

Approach 1:    Modify the Read and Write Routines

By modifying the routines that read and write particular structures, you can change the way the 
structure is represented externally.    Thus, you can make sure that the external representation is 
portable.    For example, consider the following class declaration:

@interface Dog : Mammal
{
    char *name;
    short age;
    struct _dogFlags {
        unsigned int canWalk:1;
        unsigned int canTalk:1;
        unsigned int whiskerCount:10;
        unsigned int PAD:20;
    } dogFlags;
}

/* ... */

@end

The name and age instance variables will be written and read correctly by the typed stream 
functions, but the bitfields won't be.    To write the object and ensure its portability, you can define 
the write: method to ªexpandº the bitfields into full-byte values and then write the expanded data:

- write:(NXTypedStream *stream)
{
    [super write:stream];

    /* Create variables for the "expanded" bitfield data. */
    unsigned char canWalkHolder = dogFlags.canWalk;
    unsigned char canTalkHolder = dogFlags.canTalk;
    unsigned int whiskerCountHolder = dogFlags.whiskerCount;

    /* Write the data. */
    NXWriteTypes(stream, "*sCCI", name, &age, &canWalkHolder,
                 &canTalkHolder, &whiskerCountHolder);
    return self;
}

You would, of course, have to create an analogous read: method.    Note that the data type of the 
variables that hold the expanded bitfield data must be big enough to represent the values that the 
bitfields contain.

By writing expanded bitfield data, the external representation of an object or structure may waste 
some space (compared to the internal representation), but unless you're writing thousands of items 
the waste is insignificant.    Also, this is the only approach that's guaranteed to be portable with 



regard to bitfield layout, whatever machine the application is run on.

Approach 2:    Redefine the Structure

A quicker but less elegant (and discouraged) solution is to redefine the structure to accommodate the 
endian-ness of the machine.    This means predicating the order of the bitfields according to the 
machine's byte order:

@interface Dog : Mammal
{
    char *name;
    short age;
    struct _dogFlags {
#ifdef __BIG_ENDIAN__
        unsigned int canWalk:1;
        unsigned int canTalk:1;
        unsigned int whiskerCount:10;
        unsigned int PAD:20;
#else
        unsigned int PAD:20; 
        unsigned int whiskerCount:10;
        unsigned int canTalk:1;
        unsigned int canWalk:1;
#endif
    } dogFlags;
}

/* ... */

@end

This approach works transparently when used in the following manner:

· The bitfield structure is always read or written with the typed streams mechanism.

· The bitfield structure is designed so that its total size in bits is equal to one of the standard 
unsigned integer types:    8 (unsigned char), 16 (unsigned short int), 32 (unsigned int and 
unsigned long int).    This involves using pad fields to fill out the structure, and never using 
zero-width fields to force alignment.

· A multi-byte bitfield structure is treated as its size-equivalent integral type when reading or 
writing it, instead of as an array of chars.    This allows the typed streams mechanism to perform 
byte-swapping if needed.

For example, the dogFlags bitfield structure above is 32 bits, and would be written with this 
function call in Dog's write: method:

/*
 * The proper way to write a bitfield structure. Since dogFlags
 * is written as an unsigned int, NXWriteTypes() swaps it
 * automatically if needed.
 */
NXWriteTypes(stream, "*sI", &name, &age, &dogFlags);

If you don't use typed streams, you need to use the byte-swapping functions described later in this 
paper to swap the structure before writing and after reading it.    In either case, you should always 
make sure that your bitfields are of a total size in bits equal to one of the standard unsigned integer 
types.

Although reversing the bitfield declaration is a quick way to solve the bitfield problem, you should 
be warned that it may not be a permanent solution:    some future architecture may define a new way 
of representing bitfields, and you may have to revisit your code to add another branch to the endian 
predicate.    In general, you should use the first approach (modifying the archival routines) rather 
than reversing bitfields.



Reading Existing Files

If your application defines its own (non-ASCII) file format, but doesn't use typed streams to read 
and write these files, you may have to rewrite the file-reading and -writing routines to accommodate 
the endian-ness of the machine that your application is running on.    NEXTSTEP provides a suite of 
byte-swapping functions that convert individual data items.    These functions come in two 
varietiesÐthose that always swap, and those that only swap if neededÐfor integer and floating-point 
data types.    These functions may be used by including architecture/byte_order.h.

An ªalways-swapº function for an integer value takes an integer, swaps the order of the bytes it 
comprises, and returns the swapped value.    There are four such functions, one for each integer type:

short NXSwapShort(short x)
int NXSwapInt(int x)
long int NXSwapLong(long int x)
long long int NXSwapLongLong(long long int x)

These functions each take a single argument and return a single value.    The value that you pass as 
the argument can be used to store the value that's returned, as shown in the following example:

/* Swap the order of the bytes in a given int. */
givenInt = NXSwapInt(givenInt);

The ªalways-swapº functions for floating-point values are slightly more complex.    Some processors 
modify the value of a floating-point number if that value is invalid, so the swap functions for 
floating-point values can't simply return float or double.    To get around this problem, the types 
NXSwappedFloat and NXSwappedDouble are defined and used by the floating-point swap 
functions.    The following functions are used to convert floating-point values to and from the 
corresponding swapped types:

NXSwappedFloat NXConvertHostFloatToSwapped(float f)
NXSwappedDouble NXConvertHostDoubleToSwapped(double d)
float NXConvertSwappedFloatToHost(NXSwappedFloat sf)
double NXConvertSwappedDoubleToHost(NXSwappedDouble sd)

The floating-point swap functions, then, take a single argument of type NXSwappedFloat or 
NXSwappedDouble, and return a value of the same type:

NXSwappedFloat NXSwapFloat(NXSwappedFloat sf)
NXSwappedDouble NXSwapDouble(NXSwappedDouble sd)

A second set of functions (called predicated functions) also take single data items of a particular 
type, but they're defined to swap the byte order only if the endian-ness indicated in the function 
name doesn't match the endian-ness of the machine the code is being compiled for.    As explained in 
a later section, determining the endian-ness of data is up to you.    There are four groups of these 
functions:

NXSwapBigTypeToHost()
NXSwapLittleTypeToHost()
NXSwapHostTypeToBig()
NXSwapHostTypeToLittle()

where Type is one of the six multi-byte data types (there are 24 of these functions in all). 
NXSwapBigIntToHost(), for example, would swap on a little-endian (i386 family) machine, but 
would do nothing on a big-endian (MC68000 family) machine.    For floating-point types, the 
functions in the first pair each take an argument of type NXSwappedFloat or NXSwappedDouble 
and return a float or double, respectively.    The second pair reverses this, each taking an argument 
of type float or double and returning an NXSwappedFloat or NXSwappedDouble.



How to Use the Byte-Swapping Functions

Regardless of which set of byte-swapping functions you use, you must determine the endian-ness of 
the data that you want to convert.    To use the always-swap functions, you must also know the 
endian-ness of the host computer; you would use these functions only if the format of the given data 
and that of the host aren't the same.    The predicated functions determine the host format for you and 
swap if the format indicated by the function's name doesn't match that of the host.

In the following example of the always-swap functions, it's been determined (by one of the methods 
given in the next section) that the data being read is in big-endian format.    The bytes are swapped if 
the host is little-endian:

#define COUNT 1024
int buf[COUNT];
int byteCount, itemCount;

/* aStream is open to a file that contains big-endian integer data. */

byteCount = NXRead(aStream, (void *)buf, sizeof(buf)))
itemCount = byteCount / sizeof(int);

#ifdef __LITTLE_ENDIAN__

/* Swap if this is a little-endian machine. */
while (itemCount--) {
    buf[itemCount] = NXSwapInt(buf[itemCount]);
}

#endif

How to Determine Endian-ness of External Data

As mentioned above, you need to know the endian-ness of a datum whether you're using the always-
swap functions or the predicated functions.    You can't simply ask a datum for its byte-order, so how 
do you determine which format it's in? 

One approach is to assume that files created by a certain application are of one endian-ness.    For 
example, if you're reading existing data that was written by a NEXTSTEP application prior to the 
release of NEXTSTEP 3.1, you can be sure that it's in big-endian format.    This is because 
NEXTSTEP, until now, only ran on NeXT Computers, and all existing NeXT Computers are big-
endian.    However, if you accept the guarantee that a file format is always of one endian-ness and 
not the other, then you must stick with that endian-ness when you write the data back to a file (so it 
can be read again).    Thus, for example, you would use the NXSwapBigTypeToHost() functions to 
swap data that you've just read, and convert it back through the NXSwapHostTypeToBig() functions 
just before you write it. For applications running on a host with an endian-ness opposite that of the 
file format being used, this results in a performance penalty for both reading and writing that file 
format.

You don't have to adhere to the assumed-big-endian rule if your application inserts a ªmagic numberº 
in the files that it writes.    Magic numbers are used to confirm the identity, format, or version of a 
file, and can also be used to determine whether the file as it lies on disk is in the same or the 
opposite endian-ness as the host machine.    For example:

/* MY_MAGIC is the first long int in the file. If the value read
 * from the file doesn't match, swap it and try again. The magic
 * number shouldn't be byte-symmetric; for example, it shouldn't be
 * 0x50404050, as swapping results in the same number.
 */
#define MY_MAGIC 0x50ab40cd
#define COUNT 1024

BOOL fileNeedsSwapping;
long int magicNumber;



int buf[COUNT];
int byteCount, itemCount;

/* Assuming the file is opened onto aStream */

byteCount = NXRead(aStream, &magicNumber, sizeof(magicNumber));
if (sizeof(magicNumber) != byteCount)
    /* error */

if (MY_MAGIC == magicNumber) fileNeedSwapping = NO;
else {
    magicNumber = NXSwapLong(magicNumber);
    if (MY_MAGIC == magicNumber) fileNeedsSwapping = YES;
    else /* bad file? */
}

/* Now read the rest of the data. */
byteCount = NXRead(aStream, (void *)buf, sizeof(buf));
itemCount = byteCount / sizeof(int);

if (fileNeedsSwapping) {
    while (itemCount--)
        buf[itemCount] = NXSwapInt(buf[itemCount]);
}

Checking for endian-ness mismatch allows the routine to work for hosts of either endian-ness 
reading the file.    This approach permits maximum performance in all possible cases:    writing an 
entire file is always at normal speed regardless of host endian-ness, but reading is only slower when 
there's an endian-ness mismatch between the file format and the host.    The only complication is that 
if an application writes into an existing file, it must remember the original endian-ness of that file 
and alter its output accordingly.

Since magic numbers are used to store several kinds of information, care should be taken in 
choosing a number for a particular version of a file format.    Magic numbers should also never be 
byte-symmetric or mirror images of other magic numbers.    If your application will be reading files 
created by other applications, you'll need to check what magic numbers they use.    You should 
choose a magic number far from the range for file formats you intend to support.    When file 
formats are revised, their magic numbers are often merely incremented instead of re-assigned; if 
you've chosen a magic number 1 greater than the file format's, you could come into conflict with 
that format's magic number when it's updated.

Internal Data
Internal dataÐdata that your application creates and uses while it's runningÐshouldn't be a problem 
as long as you adhere to a few principles:

· Always refer to the elements in a data structure by name.    Because of possible byte-alignment 
padding, the distance between contiguous elements in a data structure (in other words, the 
elements in a struct, or the instance variables in an object) may be different on different 
computers.    You should never try to access these elements by moving a pointer inside the 
structure. 

· Be scrupulous about pointer types:    use character pointers to point to characters, integer pointers 
to point to integers, and so on.    For example, if you've allocated an integer array and then read 
the elements of the array through a character pointer, the data that you read may differ as the 
computer is big-endian or little-endian.    If you must manipulate data of an unknown type 
through a pointer, use a pointer to void instead of a pointer to char.

· Never write the ªwrongº type of data by recasting a pointer.    As a demonstration, the following 
code will break an application running on a computer that expects data on natural boundaries:



/* Create a character array and a pointer to the array. */ 
char buffer[6];
char *bufptr = buffer;

/* Write a character into the array and increment the pointer. */
*bufptr++ = 'd';

/* Write an integer into the array; THE PROGRAM WILL CRASH. */
*((int *)bufptr) = 10; 

The example is trying to use the character array as a data structure.    A better approach is to 
create a struct to store the data:

/* Create a struct that contains a character and an integer. */ 
struct shoeSize {
    char width;
    int length;
} aShoe;

aShoe.width = 'd';
aShoe.length = 10;

Memory-mapped Data
NEXTSTEP's Mach operating system allows files to be mapped directly into the address space of a 
process, turning external data directly into internal data.    For performance reasons, you may want or 
need your application to access file-based data by mapping the file.    If you do this, there are two 
things you should do to make your file format portable:

· Always use a magic number to record the endian-ness of the file's data.

· To skirt your way around alignment restrictions, always pad data elements so they lie on natural 
alignment boundaries.

The first point has been well covered in the previous section.    The second, however, deserves some 
explanation.    As an example, let's assume you have the following structure declaration for use with 
mapped files:

typedef struct _mappedFile {
    unsigned long int magicNumber;
    unsigned long int numRecords;
    addressRecord addresses[0];
} mappedFile;

mappedFile *myFile;  /* a pointer should align on a 32-bit boundary */

The idea is that the application will map a file into myFile, directly accessing the file's data in 
memory (swapping each datum upon access if needed).    In order to avoid any alignment restriction 
problems, the as-yet-undefined addressRecord type should declare all of its fields on the most 
natural alignment boundaries.    For example, 32-bit ints should lie on 4-byte boundaries, 64-bit 
doubles should be on 8-byte boundaries, and so on.    When using character arrays, it's best to 
declare them in multiples of 4 or 8 bytes, to avoid having to keep track of running offsets.    Bitfields 
should be avoided altogether if possible, as using them requires detailed knowledge of how the 
compiler lays them outÐwhich may differ between processor architectures.

Here, then, is the addressRecord type:

typedef _addressRecord {
    char lastName[32];    /* multiple of 4 chars */
    char firstName[32];
    char street[32];
    char city[32];



    char state[2];
    char PAD[2];          /* forces alignment to unsigned long int */

    struct _phone {
        unsigned long int area;   /* kept apart to allow convenient */
        unsigned long int prefix; /* access to each part */
        unsigned long int phone;
    } phone;
} addressRecord;

Note the use of the PAD field after state, which forces the next structure field to be aligned on a 
natural unsigned long int (32-bit) boundary.    The phone number is stored in separate long ints, 
even though each could fit into a short int.    Although groups of two short ints would each make 
32 bits, keeping all fields (and the entire structure) on 32-bit boundaries guarantees that there will be 
no alignment restriction problems when this file is memory-mapped on some new architecture.    The 
phone number could also be stored as an array of characters, or as a single unsigned long int; the 
form chosen depends on space considerations and on how the data will be used.

Note also that the entire structure fits into a multiple of 4 bytes, so that the following structure will 
begin on a natural boundary for most basic datum sizes.    If this structure contained any doubles, it 
would be better declared as fitting into a multiple of 8 bytes.    Keeping alignment at its most general 
at every level of declaration within a mapped file guarantees that the file format will be maximally 
portable.


