
Release 3.3    Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

Localization

This file provides NEXTSTEP application developers with the information needed to develop localized versions
of their applications.

Conceptual material is presented first, followed by the specific procedures for localizing an application.    The
information provided here is relevant at any point in the development cycle, so you can either start off your
application development process with localization in mind, or you can wait and deal with localization issues once
your application is stable.

What is Localization?

Localization is the process of making your application language-independent, so that a user can choose to use
your application in any of a number of languages that you make available.    The process of localizing your
application consists of two distinct phases:

· First, you make your application localizable.    That is, you build localization support into your application by
centralizing the language-specific text, images, and sounds and placing them in files in a language-specific
subdirectory of your project directory.

· Second, you localize the application.    That is, for each additional language that you wish to support, you
create language-specific versions of the text, image, and sound files.    This translation process doesn't
involve modifications to your source code (although any nib files will need to be edited with Interface Builder),
so you can have this step performed for you either by an in-house translator or by an outside translation
service.

Even if you don't have immediate plans to support multiple languages in your application, there are advantages
to designing your application so that it provides support for localization:    First, with proper design your
application's source code won't have to be touched in order for the application to be localized; therefore, you
won't run the risk of introducing additional bugs by putting the necessary hooks in later.    Second, testing of the
localization code can be done along with the initial monolingual product, so the amount of testing needed for any
future localized version will be minimized.

Currently, localization support is provided for the following areas:

· Embedded text strings
· Text strings in nib files
· TIFF and EPS files (which may contain text or culture-specific images)
· Date, time, and currency formats
· Auxiliary files (such as help files and sound files)

In the current release, language support is provided for English, French, German, Italian, Japanese, Portuguese,
Spanish, and Swedish.    If you wish to provide other localized versions of your application, you'll need to contact
NeXT Developer Support for additional information and support.    In general, you can localize your application for
any language that can be expressed in the standard NEXTSTEP character encoding.

Localization Concepts

This section briefly describes some concepts that you need to understand in order to prepare your application for
localization.    A subsequent section describes in detail the procedures you need to follow, and the final two
sections describe the functions you'll be using as you modify your source code.

The Preferences Application and Language Prioritization
The Preferences application lets users prioritize (that is, set the order of) the languages they prefer to use.    In
the current release, the language choices that are available in Preferences include English, French, German,
and Spanish.

If your application isn't localized, users can only use it in the language you wrote it in, no matter how their
language preferences are set in Preferences.    In order to localize your application, you'll start by placing in
external, editable files all the language-specific and culture-specific text, images, and sounds in your application.
Then you'll have those files translated into whatever additional languages you wish to support.

Once your application contains translated versions of the externalized language-specific files, it can load all the
necessary language-specific information from the appropriate set of files, based on the user's language
preferences.    Thus, your application automatically presents itself to each user in that user's preferred
language±ideally (but not necessarily), the user's first choice.    For example, assume that one user has given the
default system languages the order:

1 English
2 Spanish
3 German
4 French
5 Italian
6 Swedish
7 Japanese

8 Portuguese

and another user has given them the order:

1 Spanish
2 French
3 German
4 English
5 Italian
6 Swedish
7 Japanese
8 Portuguese

If your application supported just English and French, then your application would appear to the first user in
English (that user's first choice), and to the second user in French (that user's second choice).

Note:    NeXT software and documentation is currently available in English, French, German, Japanese, Spanish,
and Swedish.    Since the Workspace Manager and other key NeXT applications (for example, Preferences and
Mail) are available in these languages, we recommend that you consider supporting one or more of these
languages now, and then supporting other languages once NeXT software and documentation become available
for them.

If you do localize your application for a language not yet supported by NeXT (Russian, for example), you'll have
to make that language preference available to your users in the Preferences application.    Information about how
to extend the user's set of available languages is available from NeXT Developer Support.

Application Directory Organization
NEXTSTEP applications (at least those developed prior to Release 3.0) may be represented by a single
executable file, which is in Mach-O (Mach object file) format; this executable file contains segments that hold the
application's icon, nib archives, images, sounds, and other data:

F0.eps ,

More typically an application is organized as a file packageÐa special type of directory that looks and behaves
like a file.    The file package contains the executable file, plus any additional files associated with the application.
Although you might still choose to compile interface, image, and sound data into segments of the executable file,
the file package organization allows you the option of leaving such information in external files instead.    In this
case, the organization would look something like this:

F1.eps ,

The file package organization is useful because it gives the developer a place to store external files used by the
application.    This is essential when you localize your application, because you need to create one
language.lproj subdirectory for each language that you want your application to support; each language.lproj
subdirectory will contain the language-specific and culture-specific files used by your application.    Here's how
your application might be organized when it has been localized (note that the files for the source language have
been placed in the executable file, rather than in a ª.lprojº directory):

F2.eps ,

The names for language subdirectories shown in this example aren't arbitrary±the language subdirectories must
be named English.lproj, French.lproj, German.lproj, and Spanish.lproj.    Specifically, the name language in
the language.lproj directory name must be exactly the same as the name of the language as it appears in
Preferences.    Even if you extend the set of available languages beyond the standard four, you'll need to
maintain this exact correspondence between the name of the language as it appears in the directory name and
as it appears in Preferences.

Although it's useful for you to understand the structure of the application wrapper and its language-specific
subdirectories, you don't have to worry about creating and maintaining the correct directory structureÐthe
ProjectBuilder application manages all these details for you.

Note:    Throughout this document, source_language is used to refer to whatever language you're using for
application development (English is typically used for development, but it need not be); target_language refers to
any of a number of additional languages that you intend to support in your application.    The terms
source_language.lproj and target_language.lproj are used as well.

Functions Used in Localization
In addition to organizing the language-specific parts of your application into files contained in your application's
ª.lprojº subdirectories, you'll also add some functions to your source code in order to access the information
contained in those ª.lprojº subdirectories.

These functions work by first getting the list of languages (as the user has set in Preferences), and then looking
through the list in order, until a language is found for which your application has an ª.lprojº subdirectory.    Once
such a match is found, that subdirectory is searched for string files, nib files, or whatever else is needed by your
application.

In the interest of robustness, these functions are defined in such a way that your application can run even if no
ª.lprojº directories exist (for example, if a user accidentally deletes them).    If the appropriate ª.lprojº directory or
file isn't found, the source-language version of the language-specific data is searched for internally, in the
appropriate section of the executable file.

Therefore, you don't actually need to ship a source_language.lproj subdirectory.    Instead, you can put that
version of your application's nib, image, and sound files into the Mach-O file, just as you probably do now.    You'll
need to create a source_language.lproj subdirectory as part of the process of localizing your application, but that
directory is simply a place for you to put the language-specific files that translators will work from.

String Tables and String Files

This section describes string tables and string files, which enable you to externalize and localize the strings that
are embedded in your application's source code.

First, keep in mind that there are two kinds of embedded strings:    those that the user sees, and those that the
user doesn't see.    An example of a string the user doesn't see is contained in the following C statement:

matches = sscanf(s, "%d %d %s", &first, &last, &other);

The string ª%d %d %sº does not need to be made localizable, since the user never sees it and it has no effect on
anything that the user does see (as would a font name).    On the other hand, here is an example of a string that
the user does see, and that therefore does need to be made localizable:

NXRunAlertPanel(NULL, "Your printer is out of paper!", NULL, NULL, NULL);

The purpose of a string table is to associate pairs of character strings, where each pair consists of a key and a
value.    In this example, pairs of keys and values in the string table are used in order to provide French
translations of English character strings:

Key        Value
ªYesº    ªOuiº

ªNoº      ªNonº

ªOKº      NULL

Asking for a value associated with a particular key causes the corresponding value to be returned.    If the value
is NULL, then the key is returned instead.

Internally, applications use the NXStringTable object to represent these tables of associated keys and values.

Externally, these language-specific pairs of keys and values will be stored in string files (which have a ª.stringsº
extension) in your application's language-specific ª.lprojº directories.    If your application looks in a string file
contained in the French.lproj subdirectory, for example, the key ªYesº might have the corresponding value ªOuiº;
in a string file in your application's German.lproj subdirectory, the corresponding value would be ªJaº.

If you use the functions described in this paper, your application will automatically use the contents of the
appropriate ª.lprojº directory to build the internal string table from the external string files, thereby saving you the
work of writing this code yourself.    Other parts of the process±designing your code to use the appropriate
functions and then generating the string files for translation±are described in the remaining parts of this section.

Note:    See the class description for NXBundle, which is useful for finding localized resources in a directory.

Functions and Macros for Dealing with Localized Strings

You make each embedded string in your application localizable by replacing the string with a lookup in a string
table and using the value that's returned.    To perform this lookup, you use functions such as
NXLocalizedString() and NXLocalizedStringFromTable().    These and related functions are described in detail
in NEXTSTEP General Reference, but to give you an idea of how they're used, let's take a look at
NXLocalizedString().

NXLocalizedString() takes three arguments:

NXLocalizedString(key, value, comment)

Normally you'll specify the embedded string as the key and NULL as the value, and include a comment that
provides contextual information for the person who will be translating the string file.    At run-time,
NXLocalizedString() simply uses the key to retrieve the corresponding value from the string table and returns
that value.    If a value isn't found in the string table, then the key string is returned.

Note:    The value and comment arguments are used not at run-time, but during application development when
you generate the strings file from your source files.

For a concrete example of how you would use the NXLocalizedString() function, look again at the string that
was shown earlier:

NXRunAlertPanel(NULL, "Your printer is out of paper!", NULL, NULL, NULL);

To get the localized version of this string, use NXLocalizedString():

NXLocalizedString("Your printer is out of paper!", NULL, Printer Empty message)

Rather than look up the localized version of the string each time it's needed, a good strategy is to define a macro
that retrieves the localized string just once:

#define PRINTER_OUT_OF_PAPER \
NXLocalizedString("Your printer is out of paper!", NULL, Printer Empty message)

NXRunAlertPanel(NULL, PRINTER_OUT_OF_PAPER, NULL, NULL, NULL);

You should use this strategy to localize your application's strings into a single region of #define statements, both
to make them easy to locate and also to avoid having to look up a particular string in a string table more than
once.    Another reason for doing this is to prevent identical entries from being generated in the string file (an
entry is generated for each call to NXLocalizedString() or NXLocalizedStringFromTable(), so redundant macro
calls must be avoided).

Dealing with Non-Unique Strings

It's possible to use the literal string as the value of the key argument to NXLocalizedString() or
NXLocalizedStringFromTable() only if the string is unique (that is, occurring only once in a particular string file).
If your source code contains a string that isn't unique, you'll need to provide a unique identifier as the key
instead, and specify the string as the value.

For example, a commonly used string which may require localization is the name of a font, such as Helvetica:

pagefont = [Font newFont:"Helvetica" size:12.0];
headerfont = [Font newFont:"Helvetica" size:12.0];

To deal with the fact that the string ªHelveticaº occurs twice, for each of the two statements you would use a
unique identifier as the key and ªHelveticaº as the value, like this:

#define PAGE_FONT \
 NXLocalizedString("PageFont", "Helvetica", Font used to draw page)
#define PAGE_FONT_SIZE \

 atof(NXLocalizedString("PageFontSize", "12.0", Font used to draw page))
#define HEADER_FONT \
 NXLocalizedString("HeaderFont", "Helvetica", Font used to draw header)
#define HEADER_FONT_SIZE \
 atof(NXLocalizedString("HeaderFontSize", "12.0", Font used to draw header))

pagefont = [Font newFont:PAGE_FONT size:PAGE_FONT_SIZE];
headerfont = [Font newFont:HEADER_FONT size:HEADER_FONT_SIZE];

In the present case (where a unique identifier is specified as key and the string is specified as the value), if a
value isn't found in the string table then the value string is returned.    (Remember that in the previous
sectionÐwhere the string was specified as key, and value was NULLÐwe said that if a value isn't found, then the
key string would be returned.)

Note:    The point of making a font name localizable is not that you would translate the string ªHelveticaº into
another language (which isn't really possible), but that you would substitute some other value in order to use a
different font that's more appropriate for the target language.    For example, Helvetica doesn't look right mixed
with available Japanese fonts, so a more appropriate English-language font needs to be used instead of
Helvetica if Japanese is the user's preferred language.

Note also that this example externalizes a ªliteral numberºÐin this case, 12.0 (again, you wouldn't translate the
number 12.0 into other languages, but you might choose to substitute a different font size if it's better for a
particular language).    If a lot of literal numbers appear in your program, you may want to write your own
LocalNumber() function to handle them.

Generating String Files

Once your source code and the strings it contains are fairly stable, you'll generate the string file (or files) that will
later be translated into the languages that you wish to support in your application.

A program called genstrings (in /usr/bin) is available to help you generate the string files automatically.   
genstrings works by parsing the source files that you specify, extracting the information from each call to
NXLocalizedString() and NXLocalizedStringFromTable(), and adding that information to the appropriate string

files.    Every entry generated from a call to NXLocalizedString() is placed in a file called Localizable.strings
and every entry generated from a call to NXLocalizedStringFromTable() is placed in a file called table.strings
(where table is the value of the table argument to NXLocalizedStringFromTable()).

It's important to understand that genstrings outputs one entry for each call to NXLocalizedString() or
NXLocalizedStringFromTable(), and duplicates any identical entries.    Therefore, avoid calling either of these
functions more than once with the same arguments.    In particular, each key must be unique (that is, not occur
more than once in a string file).

Editing String Files

The format of a string file is fairly simple.    Each entry in the file should look like this:

/* Comment */
"key" = "value";

For each entry, genstrings automatically generates the relevant fields and gives them the values that you
specified for the key, value, and comment arguments in the call to the NXLocalizedString() or
NXLocalizedStringFromTable() function.    The format of the entries generated by genstrings is affected by the
values that you supplied as key and value; specifically:

· If the key argument is a string and the value argument is NULL, the entry initially lacks a value field:

/* The message the user receives if the given file isn't found. */
"File %s not found.";

· If the key argument is a unique identifier and the value argument is a string, the entry is generated with a
value field that contains the string:

/* The message the user receives if the given file isn't found. */
"FileNotFoundMessage" = "File %s not found.";

During the subsequent translation phase, for both these sample entries you would need to provide a value field
that contains an equivalent version of the English string ªFile %s not found.º      The first entryÐlocalized for

FrenchÐwould look like this:

/* The message the user receives if the given file is not found. */
"File %s not found." = "Fichier %s n'existe pas.";

and the second entry would look like this:

/* The message the user receives if the given file is not found. */
"FileNotFoundMessage" = "Fichier %s n'existe pas.";

Note the following important points about string files:

· You must be careful not to make changes to any of the key fields in the string file.

· As shown here, the strings can contain standard printf() format specifications.    However, if more than one
format specification occurs in a string, they may need to be reordered programmatically to accommodate
particular languages.

· Remember that a string like ªHelveticaºÐrather than requiring translationÐmight need to be replaced by the
name of some other more appropriate font.

· The strings in your application can be grouped into as many string files as you want.    Generally, these files
should be organized on the basis of related functionality or likelihood of occurrence.    The only reason to
break strings up into multiple string files is to reduce the number of entries that need to get parsed, so if your
application doesn't contain a large number of strings you should probably use a single string file.

Translating the External Language-Specific Files
As your application development nears completion, you'll put all the externalized nib, image, sound, and string
files into a source_language.lproj subdirectory inside your project directory.    You can then give that
source_language.lproj directory and its contents to a translator, who should be able to give you back a
corresponding French.lproj, German.lproj, or Spanish.lproj (or other_language.lproj) directory.    You'll place

each of these ª.lprojº directories back in the project directory, and make sure that they get installed in the
application file package.

Procedures for Localizing an Application

This section describes the procedures you'll use to make your application localizable.    The general sequence of
steps is:

1. Configure your application for localizationÐthat is, identify to ProjectBuilder the files containing localizable
information.    These might include nib files, TIFF and EPS files, and auxiliary files containing text or sound
that needs to be made localizable.

2. Make embedded strings localizable.

3. Where appropriate, provide for localizd versions of date, time, and currency formats.

Once these steps have been performed, you are ready to perform the final step, which is to make one or more
localized versions of your application:

4. Localize (that is, translate) your application for each particular target language.

The rest of this section describes these topics in more detail.

Making Nib Files Localizable
Many language-specific strings are contained in the nib files generated by Interface Builder (for example, menu

commands, button titles, and text in panels).    To localize the strings in nib files, you must create and install a
language-specific version of each nib file for every target language supported by your application.    As a first
step, select each of your project's nib files in ProjectBuilder and choose the Make Localizable command in the
Files menu.    This command puts the selected file into the project's source_language.lproj subdirectory so that it
is available for translation.

Making TIFF and EPS Files Localizable
Your application's TIFF and EPS files might contain language-specific text within icons, or even icons which are
culture-specific.    In this case, they should be made localizable as well.    The procedure is similar to that
described in the previous section:    select each TIFF or EPS file in ProjectBuilder and choose the Make
Localizable command in the Files menu.

Making Auxiliary Files Localizable
If you have sound files, help files, sample documents, or other files that require localization support, you should
write a simple function that finds and loads the file from the appropriate ª.lprojº directory.    The procedure is
similar to that described above:    select each file in ProjectBuilder and choose the Make Localizable command in
the Files menu.

Preparing Embedded Strings
Strings embedded in your application's source code must be externalized, so that equivalent strings in another
language may be substituted based upon the user's language preferences.    (If you're designing an application

from scratch, we recommend that you use the functions discussed in this section from the very beginning, so that
you won't need to make any changes to your code later.)

1. Check your application code for occurrences of embedded strings, and replace each one with a call to
NXLocalizedString() or NXLocalizedStringFromTable().    For example, you would replace a statement of
the form:

string = "value";

with one of the following functions:

string = NXLocalizedString("key", "value", "comment");
string = NXLocalizedStringFromTable("table_name","key","value","comment");

Before using the NXLocalizedString() and NXLocalizedStringFromTable() functions, be sure that you've
read and understood the information in the sections ªString Tablesº and ªFunction Descriptionsº.º    It's
important that you understand what these two functions do and how they differ from each other.    In particular,
remember that each NXLocalizedString() and NXLocalizedStringFromTable() statement must occupy no
more than one line (due to limitations in the genstrings program), and that each key needs to be unique
within the context of its string table.

2. Once you are sure that the embedded strings in your source code use the NXLocalizedString() and
NXLocalizedStringFromTable() functions, run genstrings on your source code in order to generate the
primary ªapp_name.stringsº file and any additional string files:

> cd app_dir/source_language.lproj
> genstrings ../*.[hcm] > app_name.strings

The genstrings program outputs to stdout one line for each call made to NXLocalizedString() (which is why
you need to redirect stdout to a string file with the same name as the application), and creates in the current
directory a file for each table named in a NXLocalizedStringFromTable() call (which is why you need to cd
to source_language.lproj before issuing this command).    If genstrings encounters any problems, it reports

them on stderr.

Remember to delete your old string files before running genstrings a second time.    If a string file already
exists, genstrings will append additional strings to it, so your old strings could still stay around.

Displaying Date, Time, and Currency Formats

Most applications don't display date, time, or currency information, and therefore won't require any changes to
support localization of such formats.    Of the applications in which providing such information is critical, most will
provide application-specific ways for the user to choose among various alternative formats, independent of the
user's choice of system language.

If you are one of the small number of developers who need a simple way to provide basic support for localized
date or time formats, you can use the standard ANSI C functions strftime() and localtime(), which get format
information from settings in the user's defaults database.    For more information about these functions (and
related functions such as localeconv()) and how they interact with the NEXTSTEP defaults mechanism, see the
file CLibLocalization.rtf in /NextLibrary/Documentation/NextDev/Concepts.

One thing to be aware of is that the date, time, and currency formats specified in the user's defaults database
don't change when the user changes his or her preferred order of languages in Preferences.    These defaults do
change, however, when the user installs a NeXT-supplied language-specific version of NeXT software and
specifies that language as the primary language (rather than simply as an alternate language).    Currently this
can only be done for French, German Japanese, Spanish, and Swedish, using the official packages.

Since the variables for date, time, and currency formats in the user's defaults database are global variables, your
application shouldn't change their values.

Localizing Your Application for a Particular Target Language
The following steps can be performed when your application development is complete and the contents of the
source_language.lproj directory are ready for translation.    Perform this sequence of steps (or have them
performed by a capable translator) for each target language that you want to make available in your application.

1. Using ProjectBuilder, create a target_language.lproj subdirectory in the same directory as the
source_language.lproj subdirectory, and copy all the language-specific files from the source_language.lproj
subdirectory into the target_language.lproj subdirectory.

2. Open and edit each string file contained in the target_language.lproj subdirectory.    For each line containing
a standalone key string, translate the key string into the target language.    For example:

/* The message the user receives if the given file isn't found. */
"File %s not found.";

might be edited as follows for a French version:

/* The message the user receives if the given file isn't found. */
"File %s not found." = "Fichier %s n'existe pas.";

If a line in the string file contains a key = value pair rather than just a key:

/* The message the user receives if the given file isn't found. */
"FileNotFoundString" = "File %s not found.";

then leave the key string untouched and translate the value string into the target language:

/* The message the user receives if the given file isn't found. */
"FileNotFoundString" = "Fichier %s n'existe pas.";

When you're done with each file, remember to save it to the target_language.lproj subdirectory.

Remember that strings such as ªHelveticaº and ª12.0º aren't meant to be translated; however, they may need be

replaced with values that are more appropriate for the target language.

Note:    Format strings (%s, %d, etc.) may need to have their arguments reordered programmatically to
accommodate particular languages.    If you discover such cases during the translation phase, you may need to
go back and modify the source code in order to handle them.

3. Using Interface Builder, open each nib file in the target_language.lproj subdirectory.    Edit all text strings (in
menus, panels, windows, etc.), translating the text into the target language.

Note:    Translating text strings in nib files may require some resizing of panels, windows, and controls as well.

4. Check the contents of each TIFF and EPS file in the target_language.lproj subdirectory.    Where
appropriate, edit text and images to be consistent with not just the target language, but also the target culture
(for example, the image of a mailbox or trash canÐeven if no text is visibleÐmay need to be changed in order
to be recognizable).

5. If the target_language.lproj subdirectory contains any additional sound files, help files, sample documents,
or other text files that require localization support, these files also need to be translated and saved.

Once these steps have been completed, use ProjectBuilder to copy the target_language.lproj subdirectory into
the project.    Then try running make install on your project.    Check to make sure that no errors are generated
during the compilation or installation process.    Try running the installed application in the target language to
ensure that everything is working properly.

Summary
The procedures described above are intended to cover the commonly encountered situations that might require
localization support in an application.    In addition to checking for and accommodating these common cases, you

should review your application by looking for any other special situations that this document hasn't addressed.   
In general, if there is any text that might appear on the user's screen, that text should be externalized and placed
in the source_language.lproj directory so that it can be translated into your application's target languages.    If
you encounter any other areas that you find require localization support, please let us know so that we can
provide that information in a future release of this document.

