
Release 3.3 Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

10

Fetching and Saving Data

This chapter examines the methods and techniques you use to move data between the server and
your application.    It's divided into two major sections:

· Fetching.    The data-fetching demonstration given in Chapter 8 was far from the whole story.    The
Database Kit lets you adjust the fetching machinery, as explained in the section ªDetails of Fetching.º

· Saving and validating data.    One of the thornier problems confronting a database application
developer is to ensure that the data that's drawn into the application and modified there will ªfitº when
it's sent back to the server.    The checks through which a client of a server, such as your application,
attempts to ensure that its data will fit is called ªvalidationº or ªverificationº (this book adopts the
former term).      Validation is a highly permutable activity, depending greatly on the nature of the
server, the resources of the adaptor, and the type of data that your application uses.    Thus, a
comprehensive and universally-applicable ªvalidation suiteº is impossible to create.    Nonetheless, the
Database Kit provides a few validation techniques that any application should be able to use.    These
are described in the section ªSaving and Validating Data.º

Details of Fetching

There are a number of ways that you can tinker with the fetching machinery.    You can:

· Perform the fetch in a background thread.
· Limit the number of records that are retrieved during a single fetch.
· Set the order of the records that are retrieved.
· Concatenate the results of consecutive fetches.
· Fetch a specific record based on its primary key value.

These manipulations are examined in the following sections.    But first, the DBRecordList's ªretrieve
status,º upon which some of these tinkerings depends, is described.

Retrieve Status

A DBRecordList maintains a ªretrieve status,º a constant that tells you where the DBRecordList is
with regard to a ªfetching session.º    There are five retrieve states, returned through the
currentRetrieveStatus method as one of these DBRecordRetrieveStatus constants:

· DB_NotReady.    This is the status of a freshly made DBRecordList; it indicates that the object
doesn't contain any properties.    If you try to fetch while the DBRecordList isn't ready, the fetch
will fail.

· DB_Ready.    This status indicates that the DBRecordList is ready for a fetch.    More

specifically, it means that the object has had its properties set, but hasn't fetched any records,
whether because it's been recently created or has received an empty or clear message.

· DB_FetchInProgress.    You can only catch a DBRecordList in the act of fetching if the object is
set to fetch in the background; this status indicates that a background fetch has commenced
(whether its actually in progress or has completed can't be determined).

· DB_FetchLimitReached.    This is used to indicate that a previous fetch operation was
completed because the record limit was reached.

· DB_FetchCompleted.    This status means that the previous fetch operation is finished, and that
the entire range of records, given the latest qualification, have been retrieved from the server.

The normal sequence of states for a DBRecordList depends on how the object's fetching mechanism
is set up.    For a default fetch, the states proceed as shown in the following ªcausalº table:

Invoking this method... ...induces this status
init, clear, or empty DB_NotReady

setProperties:ofSource: DB_Ready

fetchUsingQualifier: DB_FetchInProgress (background fetches only)
DB_FetchLimitReached (record-limited fetches only)
DB_FetchCompleted (foreground fetches only)

Fetching in the Background

By default, fetches are performed in the foreground:    The fetch method doesn't return until it's
finished fetching.    You can also set a DBRecordList to fetch in the background, thus allowing the
fetch method to return immediately while the fetch continues asynchronously in its own process
thread.

To set the ªfetch strategyº of a DBRecordList, you pass one of the DBRecordListRetrieveMode
constants to the setRetrieveMode: method:

· DB_SynchronousStrategy.    This is the default foreground strategy.

· DB_BackgroundStrategy.    Records are fetched in the background, as explained above,
allowing your application to proceed.    However, if you try to move the DBRecordList's cursor
to a record that hasn't yet been fetched, the cursor-positioning method will block until the
specified record is retrieved.      (Note that sending a setLast message to a background-fetching
DBRecordList will block until all the records have been fetched and the cursor can be correctly
set to the absolute last record in the record table.)

· DB_BackgroundNoBlockingStrategy.    This is the same as DB_BackgroundStrategy,
except that it doesn't cause the cursor-moving methods to block; if you try to point the cursor
to an as-yet-unretrieved record, the method will fail and immediately return.

The retrieveMode method returns a DBRecordList's current fetch strategy as one of these
constants.

Warning: You should only set a DBRecordList to fetch in the background if you're using the Application Kit
and you have its main event loop running.

Checking for the Completion of a Background Fetch

After you've started a background fetch, you'll probably want to know when the fetch is complete.   
To be so informed, you need to supply a ªbinderº delegate that implements the binderDidFetch:

method.    The binder delegate, and the messages it receives, is described in greater detail later in this
chapter.    The following example provides a quick tutorial on how to prepare your application to
catch the binderDidFetch: message.    First, you create a delegate class:

/* Declare the interface for a class that implements the
binderDidFetch: method. */

@interface MyBinderDelegate : Object
{}
- binderDidFetch:aBinder;
@end;

/* Define the class. */
@implementation MyBinderDelegate
- binderDidFetch:aBinder
{

/* Do what you need to do here. The return value is ignored, but
it isn't declared void, so, to be polite, we return self. */
return self;

}

Then you set the DBRecordList's binder delegate to an instance of your class:

MyBinderDelegate *aDelegate= [[MyBinderDelegate alloc] init];
DBRecordList *aRecordList = [[DBRecordList alloc] init];

[aRecordList setBinderDelegate:aDelegate];

When the fetch is complete, the binder delegate is sent the binderDidFetch: message.    (The
message is sent regardless of the DBRecordList's retrieval strategy; however, it's of particular
importance when the object is fetching in the background.)

Background Fetches and Retrieval Status

After a background fetch has begun, the DBRecordList's retrieval status is set to
DB_FetchInProgress.    It's important to note that the status doesn't change when the fetch is
completeÐit remains DB_FetchInProgress until the DBRecordList is cleared, emptied, or has its
properties reset.    Because of this, you can't use the status to gauge if a background fetch has
finished.

Stopping a Background Fetch

If you get tired of waiting for a background fetch to complete, you can tell it to stop by sending the
cancelFetch message to the DBRecordList.    This doesn't wipe out the fetch entirelyÐrecords that
have already been fetched and placed in the DBRecordList aren't thrown awayÐit simply stops the
fetch process.    As with a naturally-completed background fetch, cancelling a fetch doesn't cause the
DBRecordList's status to changeÐit remains DB_FetchInProgress.

Cancelling a background fetch thwarts the binderDidFetch: delegate message.

Record Limit

When a DBRecordList is commanded to fetch, it normally fetches the entire range of records that
pass the qualification.    You can set the maximum number of records that you want a fetch to
retrieve through the setRecordLimit: method.    The currentRecordLimit method returns the
currently set record limit; a return of DB_NoIndex indicates that there is no limit (this is the
default).    You can use the DB_NoIndex value as the argument to setRecordLimit: to erase the
current limit.

Important:    For the record limit to have an affect, the DBRecordList's fetching strategy must be
DB_SynchronousStrategy:    You can't set the record limit of a DBRecordList that fetches in the
background.

There are two ways to tell if the record limit was reached during a fetch (these are examined in the
following sections):

· The DBRecordList's status is set to DB_FetchLimitReached.

· A recordStream:willFailForReason: message is sent to the DBRecordList's delegate, with
DB_RecordLimitReached as the second argument.

Fetch Limit Reached Status

The DB_FetchLimitReached status is essentially the same as DB_FetchCompleted.    You don't have
to do anything to ªresetº the object or otherwise clean up after the fetch.    The status is provided
merely to inform you that the fetch didn't (necessarily) retrieve all the records that pass the qualifier.

More important, this status doesn't affect a subsequent fetch:    The next fetch doesn't continue where
the previous one left off, it begins fetching at the ªtopº of the server's list of records.    In other words,
you can't use the record limit feature to perform incremental fetches.

If the record limit is greater than the number of candidate records in the server, the DBRecordList's
status, after a fetch, is set to DB_FetchCompleted.    (If the two values are equal, the status is
DB_FetchLimitReached, even though all the records were fetched.)

The Delegate Message

When, during a fetch, a DBRecordList's record limit is reached, the object's delegate is sent a
recordStream:willFailForReason: message, with the DBRecordList object as the first argument
and the value DB_RecordLimitReached (a DBFailureCode constant) as the second.    The delegate's
response to this boolean message is important:

· A response of YES tells the DBRecordList to obey the record limit; the fetch is halted, the
object's status set to DB_FetchLimitReached, and the fetch method returns immediately.

· A response of NO tells the DBRecordList to ignore the limit and continue fetching.    If no other
errors are encountered, the object's status will be set to DB_FetchCompleted when the fetch
method returns.

An implementation of recordStream:willFailForReason: can assume that the DBRecordList
contains (at least) the number of records specified by the limit (if the DBRecordList didn't empty
before fetching, then it may contain more).    The values held in these records may be examined to
determine whether the method should return YES or NO.

Sorting Records

DBRecordList provides methods that let you declare the basis upon which fetched records are sorted
into the record table.    This is done by associating a ªretrieve orderº constant with a particular
property in the DBRecordList object.    There are three retrieve order constants, declared as
DBRetrieveOrder data types; their names describe their meanings:

 DB_NoOrder
 DB_AscendingOrder
 DB_DescendingOrder

The association between a retrieve order and a property is established through the
addRetrieveOrder:for: method:

/* We'll assume that the objects used below exist; "employees" is a
DBRecordList; "name" is a property object rooted at "employees"
source entity. */

[employees addRetrieveOrder:DB_AscendingOrder for:name];

When the DBRecordList fetches, in this example, the records are sorted into alphabetical order
based on the values for the name property.    Similarly, the following causes the records to be stored
in reverse alphabetical order:

[employees addRetrieveOrder:DB_DescendingOrder for:name]

The property argument (the argument to the for: keyword) can be a natural property or
DBExpression object.    Furthermore, the object needn't be present in the DBRecordList's property
list.    The only requirement is that it be rooted at the DBRecordList's source entity.

Secondary Sorting

The example shown above raises a questionÐwhat happens if two records have the same value for
the name property?    You can provide a tie-breaker simply by specifying the retrieve order for yet
another property.    The order in which retrieve-ordered properties are applied during a fetch is the
order in which the addRetrieveOrder:for: messages that declared them were sent.

For example, consider a slightly different Employee entity that has the properties firstName and
lastName.    To sort employee records such that they're sorted alphabetically by last name and then,
in the case of identical last names, by first names, you would send these messages in this order:

/* The firstName and lastName object are assumed to exist. */
[employees addRetrieveOrder:DB_AscendingOrder for:lastName];
[employees addRetrieveOrder:DB_AscendingOrder for:firstName];

You can add any number of properties to the retrieve order equation.

Concatenating Fetches

By default, a DBRecordList empties itself before it fetches dataÐthis means that any previously
fetched data that's stored in the object is thrown away and replaced with the results of the new fetch.
You can tell a DBRecordList to retain ªoldº data by passing NO as the second argument to the
fetchUsingQualifier:empty: method.    This causes the results of the new fetch to be appended to
the records that are already in the DBRecordList (the new records aren't sorted among the old
records).

Fetching without emptying is useful if you're performing successive fetches with a different
qualification at each fetch.    For example, let's say you've set up a DBQualifier with which you've
fetched employee records for employees whose last names begin with ªAº.    Now you want to
retrieve the ªBº employees but you don't want to throw away the ªAº set.    To do this, you modify the
DBQualifier to match last names that start with ªBº and apply the object in a
fetchUsingQualifier:empty: message, passing NO as the second argument.    By repeating this
across the alphabet, you can perform an incremental fetch.

You can't use the fetch-no-empty feature to fetch dissimilar sets of data (in other words, records with
different sets of properties) into the same DBRecordList.    This is because the
setProperties:ofSource: method automatically empties the receiving DBRecordList.

Saving and Validating Data

Writing modified data back to the server is simple:    You invoke DBRecordList's   
saveModifications method.    The method steps through the record table and identifies those records
that contain modified data.    As it checks for modified data, the saveModifications method also
performs an ªintegrityº test that warns you if the data that you're saving will overwrite someone
else's changes.

These two routinesÐfinding modified records and ensuring the integrity of the data these records
containÐconstitute the Database Kit's validation process; the two parts of this process are described
in detail in the following sections.

You should note that the Kit does nothing, at the time data is saved, to check data value ªcorrectnessº
or data format consistency.    In other words, it doesn't look at each value to make sure that (for
example) it falls within certain bounds, or that the value's data type is in the proper format.   
However, these subjects aren't completely unaddressed:

· Checking the value for an attribute is highly dependent on contextÐonly your application can
determine whether a value is appropriate.    The methods described in the next section show you
how to identify modified values so you can perform value checks yourself.

· As described in Chapter 8, the data type of a field in a records is immutable.    The value in a
particular field is converted to the data type declared by the attribute for which the field holds
data; it maintains that type regardless of value modifications.    Thus, data format is, for most
applications, excused from the validation arena.

Finding Modified Data

There are three boolean DBRecordList methods that help you find modified data:

· isModified tells you if the object's record table has been modified such that it might not
correspond to data on the server.    Specifically, the method returns YES if records have been
added or deleted from the table, or if the value of a field within a record has been set (even if the
new value is the same as the old).    The order of the records in the table isn't considered; moving
and swapping records in the table won't, of themselves, mark the table as having been modified.

· isModifiedAt: takes a record index argument and returns YES if the record is new or if the value
of any of the record's fields has been set (again, even if the new value is the same as the old).

· isModifiedForProperty:at: looks at the specific record field designated by the property object
and record index arguments and returns YES if its value has been set (or if the record is new).

You can use these methods to find the fields that have been modified and so, for example, check
their values before sending them back to the server.

The Modified Record List

When you tell a DBRecordList to save its modifications, the object compiles a list of records (its
ªmodified record listº) that are involved in the operation.    This list consists of new or modified records
and deleted records.    Only these records are sent back to (or deleted from) the server.    There are two
reasons why records are selected for modification (as opposed to blithely sending the entire record
table):

· It's more efficient to send back only those records that have been modified or deleted.

· The data integrity test (which is described in the next section) won't stumble over data that you're

not interested in.

Although you can easily determine the new or data-modified records that will be included (by using
the methods described in the previous section), there's no way to ask for the object's deleted records.

The Integrity Test

The Database Kit performs a ªdata integrityº test to make sure that the data in the records that you're
saving won't overwrite someone else's changes.    The manner in which the test is conducted depends
on the adaptor that you're using; the tests for the Oracle and Sybase adaptors are examined in the
following sections.    You should be aware that the integrity test is only run on data-modified or
deleted records.    New records (records that have been added to the DBRecordList) pass the test by
default.

The Oracle Test

The Oracle integrity test examines each modified record and determines if any field in that record
has changed on the server since the record was fetched.    If a field has been changed, the record
won't be used to update the server's data.

For example, let's say you've fetched some employee records into a record table that, after the fetch,
looks like this:

Name Location Salary
Runyon New York 10000
Smith Atlanta 5000
Jones Boston 7000

The Database Kit makes a copy of these just-fetched records for later use.    Changes that you make
to the records (in your record table) won't affect the Kit's copy.

In your record table, you change Runyon's location to San Diego, and Smith's location to Des
Moines and his salary to $2,000:

Name Location Salary

Runyon San Diego 10000
Smith Des Moines 2000
Jones Boston 7000

In the meantime, someone else fetches the same data and changes Smith's location to Omaha (but
leaves all other fields unchanged):

Name Location Salary
Runyon New York 10000
Smith Omaha 5000
Jones Boston 7000

Let's assume that the other user sends saveModifications before you do.    After the save (in which
only the Smith record is sent to the server since it was the only one that was modified) the data on
the server looks like the table shown immediately above.

Now you send saveModifications.    The Database Kit looks at each record and determines that only
Runyon's and Smith's need to be saved.    Next, the Kit re-fetches these records from the server and
compares them to its copy of the just-fetched records.    If there are any differences, it will refuse to
save the record.    Your Runyon record is accepted.    However, since Smith's location was changed
by the other user, your Smith record is rejected.    After the save, the server's data looks like this (the

server data is shown in bold):

Name Location Salary
Runyon San Diego 10000
Smith Omaha 5000
Jones Boston 7000

You should note the finer points of the Oracle integrity test mechanism:

· Data is accepted or rejected on a record-by-record basis.    Even though your Smith record didn't
pass the integrity test, Runyon did.    Thus, Smith was rejected but Runyon was accepted and
written to the server.    Furthermore, the entire Smith record was rejected; even though your
salary modification was valid (in that the other user didn't set the field to a new value), your new
salary value was rejected along with the rest of the record.

· After the save, your record table will still hold modified data for Smith:    According to your
record table Smith is in Des Moines making $2,000.    Even though the Database Kit knows that
your record table is out of sych with the server, it won't alter your table to hold the server's data.

The Sybase Test

The Sybase integrity test proceeds much like that of the Oracle test:    A just-fetched copy of your
records is used to determine if the records have changed since the time that they were fetched.   
Unlike Oracle, the Sybase mechanism doesn't automatically reject a record that shows a discrepancy
between the just-fetched copy and the current (server) state of the record.    By default, all
modifications are accepted, even if they overwrite someone else's changes.

As an example of how this works, let's re-visit the demonstration used above.    Here we have the
employee table before anybody fetches from it:

Name Location Salary
Runyon New York 10000
Smith Atlanta 5000
Jones Boston 7000

You fetch the data into a DBRecordList, and modify the Runyon and Smith records as described
above:

Name Location Salary
Runyon San Diego 10000
Smith Des Moines 2000
Jones Boston 7000

The other user also fetches and modifies the Smith record:

Name Location Salary
Runyon New York 10000
Smith Omaha 5000
Jones Boston 7000

The other user sends saveModifications before you do; the server now holds data as shown in the
table immediately above.    When you send saveModifications, the Smith record doesn't pass the
integrity test, but it doesn't matterÐyour record is still saved, clobbering that of the other user.   
Thus, after you save the server's Smith record looks like yours:

Name Location Salary
Smith Des Moines 2000

When the integrity test finds a questionable record, it sends the DBRecordList's delegate a

recordStream:willFailForReason: message.    The DBRecordList's delegate can implement this
method to thwart the impending overwrite.    This is explained in the next section.

There's another way in which the save-mechanism based on the Sybase adaptor differs from
Oracle's:    Whereas Oracle accepts or rejects whole records, Sybase will accept changes to
individual fields.    Turning, once again, to the example, consider the case in which you and the other
user modify different fields in the same record.    Let's say you change Smith's location to Des
Moines, but you don't change his salary:

Name Location Salary
Smith Des Moines 5000

And the other user's changes his salary to $4,000, but leaves him in Atlanta:

Name Location Salary
Smith Atlanta 4000

The other user saves, writing the new salary value to the server.    Then you save; since location was
the only attribute you changed, only the value of that field is written to the server.    The server's
Smith record, after both changes, looks like this:

Name Location Salary
Smith Des Moines 4000

Even though your modification doesn't overwrite the other user's, your Smith record, as it's being
processed by the save-mechanism, will fail the integrity test.    Thus, you have a chance, through the
recordStream:willFailForReason: delegate method, to reject your own non-destructive change.

Controlling a Save

The saveModifications method sends the DBRecordList's delegate a
recordStream:willFailForReason: message if there's a problem saving the data. The message's
first argument is the DBRecordList object; the second is a DBFailureCode constant that describes
the failing situation.

The first two failure codes indicate an error in the set up of the DBRecordList:

· DB_RecordStreamNotReady.    This indicates that the DBRecordList isn't ready to save,
probably because it hasn't had its property list set.

· DB_NoRecordKey.    This is similar to the above, although it's a bit more precise:    It means that
the DBRecordList doesn't have a primary key attribute.    Given the automatic primary key-
searching mechanism described in Chapter 8, this failure code should rarely be seen.    If you do
see it, you should suspect the model that you're using (it probably doesn't have a primary key
designation).

For both of these errors, the value that's returned by the recordStream:willFailForReason: method is
ignored and the saveModifications method returns immediately, returning the value DB_NoIndex.

The other error codes that can be passed as the second argument in a
recordStream:willFailForReason: message are listed below.    These codes indicate a ªrecord
error.º    In other words, a particular record either didn't pass the integrity test or was otherwise
unable to be saved:

· DB_RecordKeyNotUnique.    This means that the fetch that was performed by the integrity test
found more than one record (on the server) with primary key values that match the primary key
value of the current record (where ªcurrent recordº means the record in the DBRecordList's list of
modified records that's currently being tested or that the DBRecordList is attempting to write to
the server).

· DB_TransactionError.    This error indicates that the current record failed the integrity test
because the analogous record on the server couldn't be found, possibly because some other
process deleted it.

· DB_RecordHasChanged.    This means that the current record failed the integrity test because
of changed data.    In other words, the just-fetch copy of the record didn't match the server's
current version.

· DB_AdaptorError.    This indicates that the adaptor encountered an error while writing the
current record to (or deleting it from) the server.

Because these codes point to errors in particular records, you may see more than one of them within
the course of a single saveModifications invocation.

For each of the four record errors (but not for the DBRecordList errors listed previously) the
boolean value returned by recordStream:willFailForReason: is important.    It answers the
question ªshould this save be aborted?º:

· If recordStream:willFailForReason: returns YES, the entire transaction is aborted.    No more
records are looked at, and any previous records that were successfully saved are ªunsavedº (or
rolled back).    The saveModifications method returns immediately, returning the value
DB_NoIndex.

· If it returns NO, the save process isn't aborted and previously saved records aren't rolled back.   
What happens to the current record (the record that caused the error) depends on the adaptor.    The
Oracle adaptor skips the recordÐit makes no attempt to send it to or delete it from the server.    The
Sybase adaptor goes ahead and processes the record, possibly clobbering someone else's changes, as
described in the previous section.    If the save isn't aborted by a subsequently rejected record, the
saveModifications method will, in this case, return 1.    This indicates that the record table holds
modified but unsaved data.

As a review, the following table describes the meanings of the values that can be returned by
saveModifications:

Return Value Meaning
DB_NoIndex The save was aborted (or never got to the first record).
1 The DBRecordList may contain some unsaved records.
0 The save was completely successful.

Implementing the Delegate Method

When recordStream:willFailForReason: is invoked, the DBRecordList is guaranteed to be
ªpointing toº the record that caused the failure.    This is true even if the record is being deleted and
so doesn't otherwise appear in the DBRecordList.    The following methods, which query the pointed
to record, can be used within a delegate's implementation of the recordStream:willFailForReason:
method:

· getValue:forProperty:
· getRecordKeyValue:
· currentPosition

Warning: These ªrecord cursorº methods, which were proscribed in Chapter 8, should only be used in the
implementation of the recordStream:willFailForReason: method.    They should otherwise be
avoided.

The currentPosition method is particularly useful, for you can use the value it returns
(the record index of the failed record) to determine which properties were modified.    Specifically,
you can use the current record index value as the last argument to the isModifiedForProperty:at:

method.

For example, let's say you've set up a record table that holds employee records, as in the previous
section.    Of the properties that you've set (name, location, and salary), you want to make sure that
the values for location maintain absolute integrityÐyou don't care so much about names and money,
but if a record is rejected because of a bad location value, then you want the entire save to be
aborted.    Here's what the implementation of recordStream:willFailForReason: would look like:

- (BOOL) recordStream:streamOrList
willFailforReason:(DBFailureCode)aCode

{
switch (aCode) {

case DB_RecordKeyNotUnique:
case DB_TransactionError:
case DB_RecordHasChanged:
case DB_AdaptorError:

/* We'll assume that locProp, which represents the
 "locations" property, is declared globally. */
if ([streamOrList isModifiedForProperty:locProp

at:[streamOrList currentPosition]])
return YES;

else
return NO;

default:
return YES;

}
}

Warning: You shouldn't try to fix the error or in any other way modify the record in the implementation of this
method.    By the time the method is invoked, it's too late for the failed record.

Warning: If you're using the Sybase adaptor provided by the Database Kit, you also must not fetch during the
recordStream:willFailForReason: method.

Keep in mind that recordStream:willFailForReason: is also invoked when a fetch has reached a
declared record limit.    This was described in the section on fetching, earlier in this chapter.    As a
convenience, the complete set of failure codes that can appear as the second argument to
recordStream:willFailForReason: are shown below:

Error Code Meaning Return Value
DB_RecordStreamNotReady Bad DBRecordList Ignored
DB_NoRecordKey Bad DBRecordList Ignored
DB_RecordKeyNotUnique Bad record Abort? (YES or NO)
DB_TransactionError Bad record Abort?
DB_RecordHasChanged Bad record Abort?
DB_AdaptorError Bad record Abort?
DB_RecordLimitReached Record limit met during fetch Continue fetch?

