
Release 3.3 Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

6

Model Emulation

The Database Kit modeling objects are created from a class and two protocols:

· Instances of the DBDatabase class represent database models.

· The DBEntities protocol provides methods that let you examine the entities in a model.

· The DBProperties protocol does the same for the properties (attributes and relationships) in an
entity.

The modeling objects are created and configured for you by the Database Kit, based on the design of
a specific model fileÐyou don't (normally) create instances of these objects yourself.    Furthermore,
you can't reasonably subclass DBDatabase nor create your own classes that adopt the DBEntities or
DBProperties protocol.    The story of the modeling objects is, primarily, a description of ªhard-
wiredº Database Kit features.

DBDatabase

In its role as a modeling object, a DBDatabase provides the primary access to a database model:    It
reads a specified model file, and stores the entities (as DBEntities objects) that it finds there.

Reading a Model

To get a DBDatabase object, you ask the DBDatabase class to return an instance that corresponds to
a particular database model.    This is done through the findDatabaseNamed:connect: class
method:

· The method's first argument is a string that names the model.    The model name is given without
a directory path, and without a file extension.

· The second argument is a boolean that determines whether an attempt is made to connect to the
adaptorÐand so to a database serverÐupon which the model is based, a subject that's dealt with
in a later section.    You should note that none of the modeling object manipulations described
here require that the DBDatabase be connected to the server.

The example below returns the DBDatabase object that corresponds to the ªOracleDemoº model (but
it doesn't connect to the server):

/* Find the DBDatabase object for the model "OracleDemo". */
DBDatabase *db = [DBDatabase findDatabaseNamed:"OracleDemo"

connect:NO];

The DBDatabase class maintains a table of existing DBDatabase objects so that multiple invocations

of findDatabaseNamed:connect: for the same model will return the same object.    If you ask for an
as-yet-unread model, the class searches for the model in the following directories (in this order):

1. The path to your application's main bundle.

2. ~/Library/Databases

3. /LocalLibrary/Databases

4. /NextLibrary/Databases

DBDatabase objects can only read models that are in archive format, thus the class only looks for
model files that have the ª.dbmodelº extension.

The directory method returns a string that gives the full pathname of the model that was found
(including the model name and file extension).    The name method returns the model name only.

If the requested model isn't found, the findDatabaseNamed:connect: method returns nil.

Note:    Throughout the access layer, models are referred to as ªdatabases,º as exemplified by the
findDatabaseNamed:connect: method.    This follows from the use of DBDatabase objects to
represent database models.

Finding the Right Model

There are two DBDatabase class methods that help you compile a list of candidate model names:

· databaseNamesForAdaptor: takes, as an argument, the name of an adaptor and returns a
NULL-terminated array of model names (strings) that are based upon that adaptor.    The strings
in the array are suitable for passing as the first argument to findDatabaseNamed:connect:.

· The available adaptor names are returned in an array by the adaptorNames method.

The model names are searched for in the directories listed above.    Adaptors are searched for in
similar places:    the main bundle, ~/Library/Adaptors, /LocalLibrary/Adaptors, and
/NextLibrary/Adaptors.

Reading a Hidden Model

Since the string that you pass to the findDatabaseNamed:connect: isn't a precise filename, you'll
find it impossible to get a model that's ªhiddenº by an identically named model in a preceding
directory (preceding in the sense of the directory search).    One way to work around this is to use the
initFromFile: method.    This method takes a full pathname to a model and initializes (and returns) a
new DBDatabase object for it.    Matter-of-course use of this method is discouraged, however, since
it can subvert the normal and natural one-to-one correspondence between DBDatabase objects and
database models.

DBEntities

As it reads its database model, a DBDatabase object fashions a list of objects that represent the
entities within the model.    You can retrieve this list through the getEntities: method:

/* Find the DBDatabase object. */
DBDatabase *db = [DBDatabase findDatabaseNamed:"OracleDemo"

connect:NO];

/* Allocate a List object to retrieve db's entities ... */
List *entities = [[List alloc] init];

/* ... and retrieve them. */
[db getEntities:entities];

The elements in the entities List are privately created, read-only objects that conform to the
DBEntities protocol.    You can't alter entity objects (because the DBEntities protocol doesn't provide
any methods to do so), and you never free them yourself.

Each entity object has a string name that's retrieved through the name method.    This is the object's
ªpublicº name (using the term as it's defined in Chapter 3), not its ªinternalº name.      You can retrieve
an entity by name through DBDatabase's entityNamed: method.    Given an entity, you can retrieve
the DBDatabase that created it by send it a database message.

More important than an entity's name or database is its list of properties, as explained in the next
section.

DBProperties

Every entity object contains a list of objects that represent the entity's properties (in Entity-
Relationship terms, its attributes and relationships).    You retrieve this list through the DBEntities
method getProperties:, as shown below:

/* Allocate a List object.. */
List *propList;

/* Get the properties from the first in our list of entities. */
[[entities objectAt:0] getProperties:propList];

As with the entity objects themselves, these properties are created for you, they're read-only, and
you never free them yourself.

The DBProperties protocol, to which the property objects conform, is similar to the DBEntities
protocol:    It provides a name method that gives the property's public name, and an entity method
that returns the property's progenitor.    You can find a property by name within a particular entity
object by sending a propertyNamed: message to the entity.    In this example, the entityNamed:
and    propertyNamed: methods are nested to retrieve the property object for the Employee.name
attribute:

/* It's assumed that db was found for a model that contains the
requested entity and property. */

id empName = [[db entityNamed:"Employee"] propertyNamed:"name"];

Note well that only those properties that appear directly in an entity (its ªnaturalº properties) can be
gotten from the entityÐyou can't use the propertyNamed: method to traverse a relationship.    For
example, given the model shown in Figure 73, below, you can ask the Book entity for the properties
named title, authorID, publisher, and bookID, but you can't use the ªrelationship.attributeº format
to ask for a property of the related Author entity.    Thus, the following message will fail and return
nil:

/* WARNING: THIS WON'T WORK. */
id wasteOfTime = [[db entityNamed:"Book"]

propertyNamed:"toAuthor.name"];

Figure_73.    An Example Model

Primary Keys and Value Mutability

The DBProperties protocol supplies boolean methods that further describe a property:

· isKey tells whether a property is, or is part of, its entity's primary key.    Note that the DBEntities
protocol doesn't define a method that returns an entity's primary key(s); thus, the only way to get
this information is to retrieve the entity's list of property objects and send isKey to each.

· isReadOnly speaks of the mutability of the values that are stored for the property.    If this
message returns YES when sent to a property object, then the values that are retrieved for the
property can't be altered.

Property Types

Associated with each property is an object that conforms to the DBTypes protocol; you retrieve this
object through the DBProperties method propertyType.    A property's DBTypes object establishes
the Objective C data type that's used to cast the values for the property.    In other words, when data
is fetched from the server, all the values in the ªcolumnº of data that corresponds to a particular
property will be ªof the typeº denoted by the property's DBTypes object.

A property's DBTypes object has one other important role:    It's used to determine whether a
property is an attribute or a relationship.    This is done by sending the    isEntity message to the
property's DBTypes object.    In the following example function, the properties of an entity are sorted
into attribute and relationship lists:

/* Sort an entity's properties. */
void sortProperties(id entity, List *attrs, List *rels)
{

List *props = [[List alloc] init];
int n;
id thisProp;

/* Get the entity's properties. */
[entity getProperties:props];

/* Sort the properties into the two lists. */
for (n = 0; n < [props count]; n++) {

thisProp = [props objectAt:n];
if ([[thisProp propertyType] isEntity]) {

if (rels)
[rels addObject:thisProp]; }

else {
if (attrs)

[attrs addObject:thisProp]; }
}
[props free];

}

/* For convenience, we define a couple of macros. */
#define getAttributes(ent,attrs) sortProperties(ent, attrs, nil)
#define getRelationships(ent,rels) sortProperties(ent, nil, rels)

Attribute Data Types

Now that the properties are segregated, you can ask each attribute what its Objective C data type is,
by sending the objcType message to the property's DBTypes object.    The method returns a string
that represents the data types according to the following convention:

Data type DBTypes objcType value

object ª@º
string ª*º
integer ªiº
float ªfº
double ªdº

In the following example function, a message is printed stating the name and data type of each
attribute in a given entity:

void printAttributes(id entity)
{

id thisAttr;
int n;
const char *ocType;
List *attrs = [[List alloc] init];

/* Call the previously created macro to get the attributes. */
getAttributes(entity, attrs);

/* Walk down the attribute list. */
for (n = 0; n < [attrs count]; n++) {

thisAttr = [attrs objectAt:n];
ocType = [[thisAttr propertyType] objcType];

/* Switch on the ocType value. Since the data type strings are
all one character long, we can reliably use a simple
character comparison (rather than strcmp()). */

switch (*ocType) {
case '@':

printf("%s represents objects.\n", [thisAttr name]);
break;

case '*':
printf("%s represents strings.\n", [thisAttr name]);
break;

case 'i':
printf("%s represents integers.\n", [thisAttr name]);
break;

case 'f':
printf("%s represents floats.\n", [thisAttr name]);
break;

case 'd':
printf("%s represents doubles.\n", [thisAttr name]);
break;

}
}
[attrs free];

}

If a property's type is object, you can ask for the name of the object's class by sending the
objcClassName message to the property's DBTypes object.    Here, the first branch of the example
above is modified to print the class name:

case '@':
printf("%s represents %s objects.\n", [thisAttr name],

[ocType objcClassName]);
break;

Keep in mind that objcClassName doesn't return the name of the property's class, but of the class
that's used to create instances when data is fetched for the property.

Relationship Data Types

Since a relationships doesn't ªcategorizeº actual database data (as explained in Chapter 1), the notion
of its data type is different from that of an attribute.    In short, you never send a objcType or

objcClassName message to the DBTypes object of a relationship (sending the latter message
actually raises an exception).

However, a relationship's DBTypes object does hold important information:    The DBTypes object is
the relationship's destination entity.    The object that's returned when you send a propertyType
message to a relationship is a DBEntities-conforming object that can be used like any other entity
object.    For example, you can ask for its properties, as shown in the following example:

/* Given a relationship, create and returns a List of the
properties that are contained in the relationship's destination
entity. */

List *getDestinationProperties(id aRelationship)
{

id propType = [aRelationship propertyType];
List *props;

/* First check to make sure that we have a relationship. */
if (![propType isEntity])

return nil;

/* Get the properties and return the list. */
props = [[List alloc] init];
[propType getProperties:props];
return props;

}

The notion that a DBTypes object should be an entity may seem curious, but if you consider the nature of
a relationship, it makes sense.    Just as an attribute categorizes ªatomicº data of a certain type, so too does
a relationship categorize data.    Except that in the case of the relationship, the data values that are being
categorized aren't simple atomic types but, rather, they're vectors of data, where the vector is described by
the properties in a particular entity (the destination entity).    The destination entity, therefore, supplies the
data types for the data that's categorized by a relationship.    Putting this more simply, the destination
entity is the data type of a relationship.

To make this work in the Database Kit, entity objects must conform to the DBTypes protocol.    And,
indeed, the entity objects that you retrieve from a database model are instances of a (private) class that
adopts this protocol.

Relationship Degree

The DBProperties protocol provides a boolean method, isSingular, that you can use to determine a
relationship's degree:    When sent the isSingular message, to-one relationships
(and attributes) return YES; to-many relationships return NO.

The following example defines a function that returns a constant which identifies the argument property
as an attribute, a to-one relationship, or a to-many relationship:

typedef enum _propDegree {
 attribute,
 toOneRelationship,
 toManyRelationship

} propDegree;

propDegree whatIsProperty(id aProp)
{

if ([[aProp propertyType] isEntity])
if ([aProp isSingular])

return toOneRelationship;
else

return toManyRelationship;
else

return attribute;
}

 The following truth table can be deduced from the example:

type singular entity
attribute YES NO
to-one relationship YES YES
to-many relationship NO YES

Modeling Object Tips

There are a few things that you shouldn'tÐor simply can'tÐdo with the modeling objects.

Setting a Property's Name

It was stated above that properties are read-only objects; this isn't strictly true.    There's one aspect
of a property object that you canÐbut probably shouldn'tÐset:    its name.    The DBProperties
protocol defines a setName: method that does what it says; the property objects that the Database
Kit creates when it reads a model don't disallow invocations of this method.

However, the setName: method is provided, principally, to help you define instances of the
DBExpression class, which also conforms to the DBProperties protocol (as explained later in this
chapter).    It's strongly recommended that you never send setName: to a property object that's
gotten from an entity.

Hidden Entities and Properties

The DBModeler application and ASCII model file format let you declare an entity or property as
ªhidden.º    This state is used, as shown in Chapter 4, to determine whether a model element should
be displayed in the Interface Builder model browser.

The access layer objects that represent entities and properties don't discriminate between hidden and
unhidden objects.    When you ask a DBDatabase to return its list of entities, for example, you get all
the entities that are declared in the associated model, hidden or not.    Furthermore, the entity and
property objects don't publicly carry their hidden stateÐyou can't ask these objects if the model
declares them as hidden.

Relationship Attributes

Recall from Chapter 1, that a relationship is defined not only by its destination entity, but also by the
equivalence between a source attribute and a destination attribute.    A property object that represents
a relationship hides the identities of its equivalent attributesÐthere are no methods for retrieving this
information.

In general, you shouldn't need to know the identities of a relationship's source and destination
attributes.    When these objects are neededÐspecifically, when you traverse a relationship, as
described in Chapter 9Ðthey're applied automatically.

