Release 3.3 Copyright ©1995 by NeXT Computer, Inc. All Rights Reserved.

8

Data Storage, Retrieval, and
Manipulation

To retrieve data from the server and store it in your application, you configure a set of data-storage
objects (instances of DBRecordList) and tell them to fetch. This is a fairly simple process that's
complicated, primarily, by the extent to which you refine your DBRecordList objects.

Once you've retrieved and stored data, you use instances of the DBValue class to examine and
modify individual data values in a DBRecordList. The modified data isn't seen by the server
immediately; to save your modifications, you must invoke a method that tells the DBRecordList to
send the modified data back to the server.

This chapter describes the principal techniques for configuring and using DBRecordList and
DBValue objects to fetch, manipulate, and save data. These descriptions are far from the entire
tale; the next two chapters (Chapters 9 and 10) tell you how to refine DBRecordList objects, and
how to exhibit greater control over data transactions. Although the star of this show is
DBRecordList, the story is easier put if DBValue is introduced first.

The DBValue Class

The DBValue class defines general-purpose, atomic-data storage objects. DBValue objects are an
important part of the Database Kit's data-storage system, but their use isn't confined to that
arenabDyou can use a DBValue to represent almost any single-valued data item.

There are two parts to a DBValue: a value and a data type. The value is represented directly; the
data type is represented by a DBTypes-conforming object (the DBTypes protocol was described in
Chapter 6). For example, a DBValue that represents the floating-point number 3.1416 might be
depicted as:

Figure_75. A DBValue Object

Setting a DBValue

You set a DBValue's value and data type at the same time, through one of the set7ypeValue:
methods:

setObjectValue:(id)anObject

setStringValue:(const char *)aString
setIntValue:(int)anlnteger
setFloatValue:(float)aFloat
setDoubleValue:(double)aDouble

The argument to each of these methods supplies the object's value; the individual methods set the
DBTypes object to represent the appropriate (named) data type. The DBValue shown in Figure 75,
for instance, would have been set through the setFloatValue: message, as shown below:

DBValue *aValue = [[DBValue alloc] init]:;
[aValue setFloatValue:3.14167];

The setObjectValue: and setStringValue: methods copy the value of their arguments and then set
the DBValue's value to the copies. To set an object or string value without copying, use one of
these methods:

setObjectValueNoCopy:(id)anObject
setStringValueNoCopy:(const char *)aString

Null Values

In deference to the significance of NULL values in a database (in that they represent *missing®
values, as explained in Chapter 2), DBValue provides the setNull method. This method sets a
DBValue's value to NULL.

You should ask a DBValue if it has a NULL value before asking for the value itself; determining
whether a DBValue holds NULL is done through the isNull method (the value-retrieval methods are
described in the next section). A DBValue will hold NULL if it has received a setNull message or
if it hasn't yet had its value set.

Getting Values

To retrieve a DBValue's value, you invoke one of the value-retrieval methods:

(id)objectValue

(const char *)stringValue
(int)intValue
(float)floatValue
(double)doubleValue

These methods convert the object's value, if necessary, before returning it, thus you don't have to use
the “correct® method when asking a DBValue for its value. In other words, the data type by which
you ask for the value needn't match that by which it was set. Of course, the requested conversion
must be reasonable:

You can convert between any of the numeric types (with a possible loss of precision), from a
number to a string, and from a string to a number (if the string represents a number)

You can never convert a non-object to an object.

If you send an object-laden DBValue a stringValue message, the message will be forwarded to
the embedded object. This is provided as a convenience; however, the courtesy doesn't extend
to the number-retrieving methods (in other words, intValue, floatValue, and doubleValue are
not forwarded to the embedded object).

If an unsupported conversion is requested, the value-getting methods return the following values:

Method Value

objectValue nil

stringValue ae
intValue 0
floatValue 0.0

doubleValue 0.0

Asking a DBValue for its value in an *unnatural® data type, and so prompting a data conversion,
doesn't change the DBValue itself. For example, if you set a DBValue thus:

[aValue setFloatValue:2.6];

and then send it the following message:

int anInt = [aValue intValue];

the anInt variable will properly hold the value 2. However, the aValue object's value and data type
aren't changedDthe object still holds the floating-point value 2.6

Getting Data Types

To retrieve a DBValue's DBTypes object, you send it a valueType message. To the DBTypes
object you send, primarily, the objcType message. As described in Chapter 6, the method returns
a string that represents the data types according to the following convention:

Data type DBTypes objcType value
object ‘@

string ko

integer 4°

float afe

double ad°

The DBRecordList Class

DBRecordList is the Database Kit's pre-eminent data-storage class. It provides a random access
storage system for records that are drawn from a database server.

A DBRecordList stores records in its record table. Each column in this two-dimensional table is
represented by a property, and each row holds a single record. A record is identified by an index
that gives its ordinal position in the table (starting with record 0). The intersection of a column and
row is called a *field.® Each field holds a single atomic value that's cast as the data type of the
property that represents the field's column.

Figure 76, below, illustrates the components of a DBRecordList's record table. The entity to which
the DBRecordList corresponds is Customer; the properties that are shown here are assumed to be
directly contained by this entity.

Figure_76. A Record Table

Properties, Records, and Fields as Programming Elements

The properties, records, and fields that make up a record table are not only architecturally distinct,
they're programmatically different things. Each component demands its own techniques for its

identification and manipulation. Most of the rest of this chapter explains these techniques in detail.
But before proceeding to these explanations, you should be aware of the programmatic differences
between records, properties, and fields:

As mentioned in the previous section, the properties that are used to represent a record table's
columns are the familiar DBProperties objects (described in Chapter 6). The important point
here is that a record table's properties are objects. You set them into a DBRecordList and
retrieve them as objects, you can send them messages, and, perhaps most important, a property
has a meaning independent of its use in a record table.

Records, on the other hand, are not objects. Moreover, what they are is unspecified; as stated
above, you can identify a record (within a record table) by its index, but that's as close as you get
to the record itself. All the methods that manipulate recordsPmethods that add, delete, and
reorder recordsPdo so on the basis of record indices. And these methods are performed within
the context of a particular record table; records have no meaning outside a record table. This
means, for example, that you can't move a record directly from one table to another.

Fields are also identified by position: To identify a particular field, you specify the property
object that represents its column and the index of the record in which it lies. To examine or
change the value that lies in a particular field, you must provide a DBValue object. The
DBValue takes on the value (and data type) of the identified field. Similarly, to alter a field's
value, you provide a DBValue from which you want the value copied, and specify the field that
you want the value copied into. But at all times, the DBValue is independent of the field (and
the record table in general).

One more element deserves consideration: the record table itself. A DBRecordList object
represents a single record table; in object-oriented terms, the object is the table.

DBRecordStream

The DBRecordList class inherits from the DBRecordStream class. This class isn't abstractbyou
can use instances of DBRecordStream directly in your application. However, DBRecordStream
objects aren't as flexible as DBRecordLists: A DBRecordStream provides serial, forward-only,
one-record-at-a-time access to a set of records that lie on the server.

Although DBRecordStreams are sometimes more efficient than DBRecordLists, the increased
efficiency is seldom very compelling. In practice, you rarely create instances of
DBRecordStreamBbyou almost always use DBRecordList objects to store database data in your
application. Accordingly, the sections below employ DBRecordList objects exclusively to

demonstrate and explain the concepts of data storage. Exceptional differences between
DBRecordStream and DBRecordList are noted.

Setting the Properties

Having minted a DBRecordList object (through the usual nesting of alloc and init methods), one of
the first things you do with it is tell it what sort of data you want it to provide storage for. This is
done by setting the object's property list, through the setProperties:ofSource: method:

The method's first argument is a list of property objects (more technically, a list of DBProperties-
conforming objects).

The second argument is the *source® of the properties; in other words, it's an object that
represents the entity to which the properties in the property list belong. In the simplest case, as
exemplified below, this argument is a DBEntities object. An example of a different class of
source object is given in the next chapter.

The single source argument enforces a rule that's stated thus: All the properties that are set in a
DBRecordList must be “rooted at® the same entity. As a convenience, you can pass nil as the
source; this sets the DBRecordList's source to the entity of the first object in the property list.

The following example shows a DBRecordList-creating function called makeRecordList(). The
function creates and returns a DBRecordList that's configured to store data for all the properties in
its entity argument:

/* Create a DBRecordList that contains all the properties found in
the given entity.*/

DBRecordList *makeRecordList (id entity)

{
DBRecordList *recordList = [[DBRecordList alloc] init];
List *props = [[List alloc] init];

/* Get the entity's property list. */
[entity getProperties:props];

/* Make sure the DBDatabase i1s connected to the server (this

is explained in the Note below). */
if (![[entity database] isConnected])
if (![[entity database] connect])

return nil; // failure

/* Set the property list into the DBRecordList object. */
[recordList setProperties:props ofSource:nil];

[props free];

return recordList;

}

Notice that the List object that's passed as the first argument to setProperties:ofSource: is freed
after the method is invoked. DBRecordList maintains its own property List object into which it
copies the contents of the List that you pass, leaving you to free the argument yourself.

Important: If you're using the Oracle adaptor, then you must make sure that your DBDatabase
object is connected to the server before you invoke setProperties:ofSource:. For other adaptors
this isn't a requirement, but it can't hurt.

Property List Discrimination

The function shown in the example above doesn't discriminate between attributes and relationships:
It sets the entity's gamut of properties into the DBRecordList. Even though relationships don't
represent actual data, they're allowed in a DBRecordList's property list. Furthermore, and as will
be shown in the next chapter, this is a necessary practice when constructing master-detail tables.
For the present, it's enough to understand that a DBRecordList's list of properties isn't restricted to
attributes.

As a corollary to this, you don't Zave to use all the properties in an entity when setting a DBRecordList's
property list. In the following example, only string-valued properties are used:

/* Create a DBRecordList that contains all the string-typed
properties found in the given entity.*/

DBRecordList *makeStringRecordList (id entity)

{

DBRecordList *recordList = [[DBRecordList alloc] init];
List *props = [[List alloc] init];
int n;

id thisProp;

/* Get the entity's property list. */
[entity getProperties:props];

/* Remove the non-string properties from the list. */

for (n = [props count]; n > 0; n--) {
thisProp = [props objectAt:n-1];
if (*[[thisProp propertyType] objcType] != '*'")
[props removeObject:thisProp];

}

[recordList setProperties:props ofSource:nil];
[props free]l;

return recordList;

Resetting a Property List

Typically, the lifetime of a DBRecordList object is defined by the desirability of its property

list. Accordingly, you usually send the setProperties:ofSource: message only once to each
DBRecordList that you use. You can then fetch data, modify the values, save the modifications, re-fetch,
re-modify, re-save, and so on, but you rarely send setProperties:ofSource: a second

time. When you're no longer interested in the DBRecordList's set of properties, you should

free the entire object rather than reuse it.

However, if you find that you absolutely must reset a DBRecordList's property list, then be aware
that you must clear the object first, by sending it a clear message. Each time a DBRecordList
object receives a setProperties:ofSource: message it empties its current property list, but it doesn't
fully reset itself to the virgin state that's attained through clear.

Retrieving a DBRecordList's Properties

You retrieve a DBRecordList's properties through the getProperties: method. The method copies
(by reference) the DBRecordList's properties into the List object that you supply as an argument. If
the object isn't able to fulfill the request, it returns nil, otherwise it returns the argument List that you
passed. The method should only fail if the object's property list hasn't been set (or has been
cleared).

The list of properties that you retrieve through the getProperties: method may contain objects that you
didn't explicitly set. Specifically, the list may contain primary key attributes that were added
automatically, as explained in the *Key Properties® section, below.

In the following example function, which demonstrates a use of the getProperties: method, a
DBRecordList's property list is searched for a particular (named) property:

<DBProperties *>findRecordListPropertyByName (DBRecordList *rList,
const char *propName)
{
List *propList = [[List alloc] init];
id prop;
int n;

/* Get the property list (and check for success).*/
if ([rList getProperties:propList]) {

/* Look for the property by name. */
for (n=0; n<[proplist count]; prop=[proplList objectAt:n++])
if (strcmp ([prop name], propName) == 0)
break;
else
prop = nil;

/* Free the (local) property list. */
[propList free];

/* Return the property. */

return prop;

Key Properties

In order to function properly and completely, a DBRecordList must know the primary keys for its
source. One of the features of the setProperties:ofSource: method is that it tries to make this
determination for you: It gets the properties from the source entity and asks each one if it's a
primary key. Ifitis, the method adds the property to the DBRecordList's property list, even if you
didn't ask for it to be included.

You can retrieve a DBRecordList's primary key properties through the getKeyProperties:
method.

Setting the Key Properties Directly

Although the automatic key-searching mechanism is usually sufficient, it's possible to set the
primary keys yourself, through the setKeyProperties: method. However, setting the key properties
of a DBRecordList subverts the design of the model that you're using, so you should rarely have
need of this method. Also, if you set the key properties yourself, you should be aware of some
subtleties of the setKeyProperties: method:

The property objects that you include in the list that you pass as the argument to
setKeyProperties: aren't themselves marked as being key; they're only key with respect to the
DBRecordList that receives the message. The following code example demonstrates this; in it,
the name property responds NO to both invocations of isKey:

/* By the definition of this example, this message returns NO. */
BOOL namelIsKey = [name isKey];
/* Add name to the (existing) keyList List object and set it as a

key property of the (existing) recordList DBRecordList object. */
[keyList addObject:name];
[recordList setKeyProperties:keyList];

/* This will still return NO, even though the name property is used
as a primary key for the recordList object. */
namelIsKey = [name isKey];

An invocation of setKeyProperties: erases the DBRecordList's current notion of its key properties,
whether this notion was gotten from a previous invocation of the method, or through the automatic
key-searching mechanism included with setProperties:ofSource:.

If you invoke setProperties:ofSource: before invoking setKeyProperties:, the primary keys
that were found and added to the DBRecordList through the former method's key-searching
mechanism will still be present in the object's property list (although, as stated above, they will
no longer function as primary keys). If you reverse the sequence of these messagesDif you set
the key properties before setting the *regular® propertiesPthe key-searching mechanism is turned
off, thus the attributes that are marked as primary keys (in the entity) won't automatically appear
in the property list.

Fetching Data

To tell a DBRecordList to retrieve data from the server, you send it a fetchUsingQualifier:
message. The argument is a DBQualifier object that limits the range of records that are returned.

The DBQualifier class is discussed in the next chapter; as a default, you can pass nil as the
argument, thereby returning all the records (for a given entity) that lie on the server. The following
example demonstrates this:

/* For the purposes of the example, we "hard-wire" two properties
from an entity in the OracleDemo model into the DBRecordList. */

DBDatabase *db = [DBDatabase findDatabaseNamed:"OracleDemo"

connect:NOJ;

DBRecordList *customerlList = [[DBRecordList alloc] init];

List *props = [[List alloc] init];

id customer = [db entityNamed:"Customer"];

[props addObject: [customer propertyNamed:"name"]];

[props addObject: [customer propertyNamed:"creditLimit"]];
[customerList setProperties:props ofSource:nil];

/* Remember to connect first. */
[db connect]

/* Test the connection and fetch. */

if (![db isConnected])
fprintf (stderr, "The DBDatabase isn't connected\n");
else if ([customerList fetchUsingQualifier:nil])
fprintf (stderr, "Fetch succeeded\n");
else

fprintf (stderr, "Fetch failed\n");
As implied by this demonstration, the fetchUsingQualifier: method returns nil if the fetch fails.

Figure 76, earlier in this chapter, depicts the record table that's constructed as a result of this fetch.
Notice that the property named customerlD has been added to the DBRecordList's properties.
This is a result of the automatic key-searching mechanism described earlier.

The finer points of fetching are described in Chapter 10.

The Record Table

DBRecordList, through its conformance to the DBContainers protocol, provides a couple of
methods that let you examine and manipulate its record table. These are:

count returns the number of records that are in the table.
empty removes all the records from the table (it sets the record count to 0).

Of these two methods, count is by far the more important. You use it whenever you need to
perform an operation on all the records in a record table. The trivial example below shows a typical
loop construction that uses count for such a purpose:

/* n, a counting variable, and recordList, a DBRecordList, are
assumed to exist. */
for (n = 0; n < [recordList count]; n++)

{

printf ("Got a record.\n");

}

The empty method is invoked automatically when you set a DBRecordList's properties, when you
tell the object to fetch (this can be suppressed, as explained in Chapter 10), and when you send it a
clear message. Because of this automatism, you rarely have to invoke empty directly.

If you do find yourself tempted by the empty method, be aware that emptying a record table is not
the same as deleting all its records. When you delete a record (and this is explained in greater detail
in a section below) and then save the DBRecordList, the data-saving mechanism will attempt to
delete, from the server, the data that corresponds to the deleted record. Emptying a record table

Warning:

Warning:

doesn't mark the removed records for such deletion. You can think of the empty method as setting
a record table to its pre-fetch state.

The DBContainers protocol declares other methods as well, but count and empty are the only
DBContainers messages that you should send to a DBRecordList object.

DBRecordList also conforms to the DBCursorPositioning protocol. This protocol declares methods
that let you point to records in the table by moving a *cursor.® Although these methods will work
with a DBRecordList object, they don't let you do anything that you can't otherwise do through
methods declared directly by the DBRecordList class. Furthermore, it's strongly advised that you
not use the cursor positioning methods as they can cause some confusion, particularly if you're using
Database Kit interface layer objects to control your DBRecordList objects.

Finding a Record

Finding a record in a record table seems like a fairly simple task: As described earlier in this
chapter, you identify a record by the index that gives its position in the table. More specifically, the
DBRecordList methods that act on particular records take record index arguments. The challenge,
here, is in supplying the proper index value.

If you're simply walking down the record table and looking at records one-by-one, then you
shouldn't have much of a problem supplying an index. In the following example function (which
jumps ahead a bit with its use of the getValue:forProperty:at: method), the value for each record's
name property is printed:

void printAllNames (DBRecordList *rList)
{
int n;
id nameProp;
DBValue *nameVal = [[DBValue alloc] init];

/* Get the "name" property by calling the

findRecordListPropertyByName () function (as defined
in a previous example).. */
if (! (nameProp = findRecordListPropertyByName (rList, "name")))

{
printf ("Property not found.\n");
[nameVal free];
return;

}

/* Loop over the record table, printing the name value of each
record. */

for (n = 0; n < [rList count]; n++)

{
[rList getValue:nameVal forProperty:nameProp at:n]
printf ("%$s\n", [nameVal stringValuel]);

}

[nameVal free];

Finding a Specific Record

If you want a specific record, then you have to supply a particular index. But because records can
be reordered (as described in a later section), you can't rely on index values completely. Instead,
the correct way to find a record is to ask for the index of the record with a given value as its primary
key. This is done through the positionForRecordKey: method. The method takes a DBValue
object that's been set to hold the primary key value of the record that you're interested in.

In the following example function, the value of the name property of a particular record is printed.

The function takes, as arguments, a DBRecordList object and an integer that's assumed to
characterize the value of the record's primary key attribute:

void printOneName (DBRecordList *rList, int keyVal)
{
int index;
id nameProp;
DBValue *indexVal = [[DBValue alloc] init];
DBValue *nameVal = [[DBValue alloc] init];

/* Get the "name" property. */
if (! (nameProp = findRecordListPropertyByName (rList, "name")))
{

printf ("Property not found.\n");

[indexVal free];

[nameVal free];

return;

}

/* Set the indexVal object to hold the primary key value. */
[indexVal setIntValue:keyVal];

/* Get the index of the requested record. */
if ((index = [rlist positionForRecordKey:keyVal]) == DB NoIndex)
{
printf ("No record with %d as a primary key.\n", keyVal);
return;
}
/* Get the name value and print it. */
[rList getValue:nameVal forProperty:nameProp at:index];
printf ("%$s\n", [nameVal stringValuel]);
[indexVal free];
[nameVal free];

}

As shown in the example, the positionForRecordKey: method returns DB_Nolndex if the record
table doesn't hold a record with the designated primary key value.

The result of the positionForRecordKey: method should be applied immediately and then
forgotten. Put a better way, if you're searching for a specific record, you should invoke this method
immediately before you need to use the index. The method's return value shouldn't be stored for
later use since this defeats the problem that it's trying to solve, namely the mutability of record
position within a record table.

DBRecordList doesn't provide a method that lets you quickly find a record that has a compound
primary key. To do this, you must ask the DBRecordList for its list of primary key attributes, ask
for the values of these attributes from each record in the table (through the
getValue:forProperty:at: method, which was demonstrated in the examples, and will be explained
in greater detail later in this chapter), and compare these values to the target values.

Manipulating Records

You can change the contents of the record table by manipulating entire records. Specifically, you
can add new records to the table, delete records, and move a record from one position to another (but
only within the same table).

Adding Records

DBRecordList provides two methods that let you add records to its record table:

insertRecordAt: adds a new record at the location specified by the index argument. The
previous occupant of the given index and all subsequent records are moved down to make room
for the new record.

appendRecord adds a new record to the end of the record table.

Both of these methods return nil if the addition is unsuccessfulDthis should only happen if you pass
an out-of-bounds index to insertRecordAt: or if the DBRecordList's property list hasn't been set.

To determine if the record at a particular index is new (as opposed to having been fetched from the
server), you invoke the boolean method isNewRecordAt:.

All the fields in a new record are set to NULL.

New Records and Primary Keys

A newly-added record is in a curious state: Since all its fields are NULL, it has no primary key value.
Whenever you add a new record to a record table, one of your first tasks is to supply a value for its
primary key (the method by which a field's value is set is described later). However, the uniqueness of
a primary key is determined by the server, not by the Database Kit.

Most servers provide routines that generate new primary key values, or that check candidate values.
You should consult your server's API for more information on how to guarantee the unique-ness of
primary key values.

Adding Records Without Fetching

Although the sequence of actions described so far places the act of fetching as a precursor to other
record manipulations, this order isn't inviolable: You don't have to fetch before you add a new
record. For example, consider an application that doesn't care about existing data, all it wants to do
is create new records, fill them with data, and then save them to the server. To create a table to hold
these records, you would create a DBRecordList, set its property list, and then send it a series of
record-adding messages.

Deleting Records

To delete a record, you pass its index to the deleteRecordAt: method.

Moving Records
You can move records within the record table through these methods:

swapRecordAt:withRecordAt: switches the locations of the two records identified by the index
arguments.

moveRecordAt:to: moves the record at the index given by the first argument to the index given
by the second argument.

In general, there's little reason to programmatically move records in a record table. The
DBRecordList class provides a means for sorting records as they're fetched (as described in the next

chapter). You should try to use the sorting techniques rather than move records after they've been
fetched.

Examining and Modifying Fields

You can't examine the values of a record's fields directly; to determine the value of a field, you must
use a DBValue object. A DBValue object takes on a value stored in a DBRecordList object through
DBRecordList's getValue:forProperty:at: method. The method takes, as arguments, a DBValue
object, a property object, and a record index. When the method returns, the DBValue object that
you passed will hold the value that was found at the field designated by the record and property
arguments. An example of this method was given in the *Finding a Record® section, earlier in this
chapter.

To write a value back into a record table field, you use DBRecordList's setValue:forProperty:at:
method. The order and types of arguments are the same as in the getValue:forProperty:at:
method: The method takes a DBValue object, a property object, and a record index.

Record Field Data Type Immutability

The setValue:forProperty:at: method, you'll notice, doesn't let you proclaim the data type of the field
that's being set. This is because you can't change the data type of a field. For example, the
creditLimit property, shown in Figure 76 earlier in this chapter, represents floating-point data. All
fields that are created for this property hold floating-point data. If you try to set an integer-typed
DBValue object into a *creditLimit°® field, the value that's set in the record will be a floating-point
number that's converted from the DBValue's integer value.

Altering Primary Key Values

In general, you shouldn't alter primary key values. However, there are two cases in which you may
have to:

You've added a new record to the DBRecordList. The records that you add through
DBRecordList methods such as newRecord are created with NULL values for every property,
including the primary key attributes. Obviously, you'll have to set the primary key values (at
least) of any new records before they can be sent to the server.

The primary key holds significant value. As described in Chapter 2, the actual values that are
held by most primary keys are arbitrary numbers that are meaningful only to the database (and
then only to discriminate between records). Some primary keys, however, may hold *real world®
values; for example, a table of *people® data might use social security numbers as primary key
values. If such a value changes in the real world, then it will probably have to be changed in the
database.

As a general rule, if you must change the primary key value(s) of an existing record, you should
create a new record with the new primary key, copy all the other values that you need from the old
record, and then delete the old record.

Saving Modified Records

You've fetched records from the server into a DBRecordList, examined the records' values, and
modified some of them; perhaps you've added some new records or deleted some existing ones.
Now you want to write your changes back to the server. To do so, you send a saveModifications
message to the modified DBRecordList. If the attempt at saving is successful, the method returns
Zero.

Warning: DBRecordStream objects, which also respond to saveModifications, return 1 if the save is
successful.

There are a number of reasons why an attempt at saving modified data may fail; these are examined
and their antidotes described in Chapter 10.

