
Release 3.3 Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

7

Connecting to the Server

You can read a model into a DBDatabase object and examine the modeling objects it contains 
without being connected to a database server.    But the ultimate use of modeling objects is to 
configure data-storing objects so the latter can fetch and store data from the server (as explained in 
the next chapter).    However, in order to fetch data, your application must first form a connection to 
the database server that's providing the data. 

This chapter describes the methods that the DBDatabase class defines that let you connect to a 
database server. 

The Adaptor Name and Login String

To connect to a server you must supply an adaptor name and a login string:

· The adaptor name is a string that identifies the adaptor file that implements the connection to the 
server.    The name is given without a path name or extension.    When a connection is attempted, 
the appropriate adaptor file is searched for in the following directories (in this order):

Your application's main bundle
~/Library/Databases
/LocalLibrary/Databases
/NextLibrary/Databases

· Most adaptors require that the user log in to the server.    The login string provides server-specific 
login information that's used when the connection is being forged.    The format of this string is 
the same as in the ASCII model file:

userName/password : hostName : serverName

A DBDatabase object contains default settings for these strings which it reads from the model that it 
represents.    You can retrieve these defaults by sending the messages defaultAdaptorName and 
defaultLoginString to your DBDatabase object.    In some cases, you may want to specify a non-
default adaptor or login string; you do this by passing your values as arguments to a connection-
forming method (as described in the next section). 

When the connection to a server is successfully formed, the DBDatabase object records the adaptor 
name and login string values that were used.    You can retrieve the values of the current settings 
through the currentAdaptorName and currentLoginString methods. 

The Connection Methods



The simplest way to connect your DBDatabase object to the underlying server is to pass YES as the 
second argument to findDatabaseNamed:connect:.    The method attempts a connection to the 
server using the DBDatabase object's default adaptor name and login string values as guides.    The 
adaptor will almost certainly put up its login panel with all but the password field filled in, thus 
allowing the user to supply the password.    See the section ªSuppressing the Login Panel,º below, if 
you're creating an application that doesn't use windows, or if you want to control the login 
information yourself.

The connect method follows the connection rules used by findDatabaseNamed:connect:.    
Specifically, it attempts a connection using the default adaptor name and login string information.    
You should only need to use the connect method if you've passed NO as the second argument to 
findDatabaseNamed:connect:.

The connectUsingAdaptor:andString: is the ªmasterº connection method.    It lets you specify the 
adaptor name and login string as arguments.    If the connection is successful, the method sets the 
current adaptor and login settings to the arguments that you passed (the default settings aren't 
changed).    In general, you should only need to use this method if you want to specify a non-default 
login string.    An attempt to connect through the ªwrongº adaptorÐin other words, through an 
adaptor other than that upon which the model was basedÐis almost certain to fail.

Disconnecting

To disconnect a DBDatabase, you can send it a disconnect or disconnectUsingString: message.    
The argument to the latter is a string that contains an arbitrary statement that's evaluated by the 
adaptor just before the connection is severed.      In addition, an application's connection is 
automatically severed when the application itself is terminated.

You should note that you can't disconnect a DBDatabase by passing NO as the second argument to 
the findDatabaseNamed:connect: method.    If the object that's found by the method is already 
connected, it will remain connected regardless of the second argument value that you pass.

Because connecting to a server can be time-consuming, many application never explicitly 
disconnect:    They connect when they're launched and remain connected thereafter.    However, 
connection ªcontextsº can be precious commodities.    Many server licenses allow only a certain 
number of connections at a time.    In such a case, disconnecting when your application isn't actively 
moving data to or from the server may be the expedient thing to do if connections are limited.

Connection State

To determine if a DBDatabase object is currently connected to its server, you send it an isConnected 
message.    In reply, the method returns a boolean value.

The connect and    connectUsingAdaptor:andString: methods also return booleans that can 
mistakenly be taken to indicate connection status.    But don't be fooled:    The value tells you 
whether a particular invocation of one of these methods successfully formed a connection.    If, for 
example, a DBDatabase is already connected when it receives a connect message, the return value 
for the message will be NO (and the object will remain connected).

Suppressing the Login Panel

If you're creating a command line programÐor any application that doesn't use windowsÐthen you 
certainly won't want the adaptor to put up its login panel.    To suppress the panel, you send your 
DBDatabase object a setPanelsEnabled: message, passing NO as the argument, before you tell it to 



connect.    Obviously, this means that you also have to pass NO as the second argument to the 
previous    findDatabaseNamed:connect: method, as shown in the following example:

DBDatabase *db = [DBDatabase findDatabaseNamed:"myModel" connect:NO];
[db setPanelsEnabled:NO];
[db connect]; 

With panels disabled, the Oracle and Sybase adaptors use the entire login stringÐincluding the 
passwordÐwhen a connection is attempted.    The user isn't prompted to verify the password or 
otherwise supply any login information.    This isn't a requirement, however, so other adaptors may 
ask the user for authentication (through a command line prompt, for example). 

Attention Panels

The adaptor's login panel isn't the only window that a DBDatabase may cause to be displayed.    The 
DBDatabase itself, by default, displays an attention panel when a server error is encountered.    For 
example, if an attempted connection fails, the following panel (or one like it) will appear:

Figure_74.    DBDatabase's Attention Panel

This attention panel can be disabled through the setPanelsEnabled: method (by passing NO as the 
argument). 


