
Release 3.3 Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

2

Entity-Relationship Modeling

A database server stores data in the structures that it defines:    A relational database uses tables to 
store data, an object-oriented database uses objects, a file system uses files, and so on.    Regardless 
of the server's natural bias, the Database Kit creates tables into which database data is fetched.    The 
organization of these tables emulates the organization of the data structures on the server.    But the 
Database Kit needs some help in configuring the tables.    You have to provide a database model that 
describes the server's data structures in terms that the Database Kit can understand.    These terms are 
those of Entity-Relationship modeling (or E-R modeling).

Entity-Relationship modeling isn't unique to the Database Kit; it's a popular discipline with a set of 
rules and terms that are documented in database literature.    The Database Kit uses a modified 
version of the traditional rules of E-R modeling.    This chapter presents the E-R terms and concepts 
as they are used by the Kit.    The next chapter, ªDatabase Models,º puts these concepts into practice. 

Modeling Objects

In an Entity-Relationship model, distinguishable things are known as entities, each entity is defined 
by its component attributes, and the affiliations, or relationships, between entities are identified.    
From these three simple modeling objects (entities, attributes, and relationships), arbitrarily complex 
systems can be modeledÐa company's customer base, a library of books, a network of computers, 
and so on, can all be depicted as E-R models.    If the parts of a system can be identified, the system 
can be expressed as an E-R model.

Pure Entity-Relationship modeling is independent of native database architecture.    Theoretically, an 
E-R model can be implemented as a relational database, an object-oriented database, a file system, 
or any other data storage system.    In practice, the version of E-R modeling used by the Database 
Kit fits most naturally with relational databases; in other words, with databases that store data in 
two-dimensional tables.    This follows from the Database Kit's use of tables as the buffers in which 
it stores data that's fetched from the server.    The examples and illustrations in this chapter follow 
this lead by posing a hypothetical relational database server from which data is drawn. 

Conventions 

Throughout this manual, the names of entities, attributes, and relationships are presented 
typographically as Entity, attribute, and relationship.    The naming conventions for the three 
modeling objects are given as the objects are described in this chapter.

Entities and Attributes



Imagine that you're creating an Entity-Relationship model for a library of books.    Your first task is 
to identify the classes of ªthings,º considered abstractly, that you want to characterize; each such 
class becomes an entity.    An obvious entity for a library is Book. 

Contained within an entity is a list of features, or attributes, of the thing that's being modeled.    The 
Book entity would contain attributes such as title, author, publisher, and so on.    This simple 
model is depicted in Figure 3.

Figure_3.    The Book Entity

Names and Model Paths

Every modeling object is identified by a unique, case-sensitive name.    By convention, entity names 
are capitalized and attributes aren't; thus, as shown above, you have a Book entity and title, author, 
and publisher attributes. 

An attribute can be distinguished as belonging to a particular entity through the model path format 
ªEntity.attributeº.    For example, the model path Book.title identifies the title attribute in the Book 
entity. 

Data

Entities and attributes represent structures that contain data.    In a relational database,    entities 
represent tables; an entity's attributes represent the table's columns.    An example table that could be 
represented by the Book entity (and that will be used through most of this chapter) is shown below:

Figure_4.    The ªBOOKº Table

Each row in the table is called a record.    A record is also referred to as an ªinstance of an entity.º    
Thus, a book record is called an instance of the Book entity. 

Names and the Data Dictionary

The table and column names shown in Figure 4 are the names that a hypothetical server might use.    
The collection of a server's table and column names is called its data dictionary.    In your 
application, you can't refer directly to items in the server's data dictionary.    To identify the server's 
ªBOOKº table, for example, you must refer to the entity that represents the tableÐin other words, the 
Book entity.    The correspondence between the server's names and the names of the modeling 
objects that you create isn't coincidental; you have to tell each modeling object which data 
dictionary name it represents.    This is done as you create the model, a subject that's addressed in the 
next chapter.

Server names (in other words, names in a server's data dictionary) are, typically, case-insensitive.    
As mentioned previously, the names of modeling objects are case-sensitive.    Throughout this 
chapter (and the rest of this manual) modeling objects are given names that match, but for case, the 
corresponding dictionary names (given the hypothetical relational database server that's used in the 
examples).    To distinguish the two, the server names are upper-case and quotedÐfor example, the 



ªBOOKº tableÐwhile modeling object names follow the conventions already described.

Attribute Data

When you use an attribute to identify a particular datum in a table, you refer to the value for that 
attribute, given a particular record.    The author of a book, for example, is the value for the 
Book.author attribute.    The ªvalue for an attributeº construction enforces the notion that the 
attribute itself doesn't contain data. 

NULL Data

Notice that not every book in the table shown in Figure 4 has an author.    If a record's value for a 
particular attribute can't be determined (or doesn't exist), the value is said to be NULL. 

Data Types

Every attribute is assigned a data type (such as int, char *, and so on).    All values for a particular 
attribute take the data type of that attribute.    In other words, the values in a particular column are all 
of the same type. 

None of the candidate data types (which are described in the next chapter) allow lists of data; the 
value for a particular attribute in a particular record must be a single datum.    Thus, the model 
shown in Figure 3 says more than simply that a book has a title, an author, and a publisher.    It 
signifies that every book has a single title, a single author, and a single publisher (where any of these 
single values can be NULL).    This ªatomic attribute ruleº will become particularly important in the 
discussion of relationships, later in this chapter. 

The Primary Key

Each of the records in a table must be uniqueÐno two records can contain exactly the same values.    
To ensure this, the entity from which the records are instantiated must contain an attribute that's 
guaranteed to represent a unique value for each record.    This attribute is called the entity's primary 
key. 

The Book entity, as defined above, doesn't contain a primary key.    If the library were to contain two 
copies of the same book, the records for the two books wouldn't be distinguishable from each other. 
To amend this, a primary key called bookIDÐan attribute for which each distinct book takes a 
unique (and arbitrary) valueÐis added to the Book entity.    Figure 5 shows the amended entity; the 
primary key is marked with a bullet.

Figure_5.    Book Entity with Primary Key

An entity can contain any number of attributes that represent unique data, but only one of them 
needs to be declared as a primary key.    Declaring more than one as a primary key is allowedÐthis 
creates a compound primary key, as described belowÐbut it should be avoided if possible.    In other 
words, if you have more than one ªunique dataº attribute in an entity, you should choose one of them 
to act as the primary key. 

Primary Key Significance



The data that a primary key signifies needn't correspond to an actual facet of the entity.    In other 
words, the value for a primary key can be arbitrary.    The bookID attribute used above is an example 
of a primary key that represents ªmeaninglessº values:    A book record's value for the bookID 
attribute wouldn't tell you anything about the actual (ªreal-worldº) book.    The value would only 
distinguish that particular record from other book records.

Compound Primary Keys

Typically, the primary key for an entity is a single attribute.    However, it's possible to designate a 
combination of attributes as a compound primary key.    In a compound primary key, the value for 
any one of the constituent attributes isn't necessarily unique, but the combination of all of them is. 

For example, every book in our library could be uniquely identified through a combination of its 
ISBN number and an additional copy number (to distinguish multiple copies of the same book).    
Taken on their own, neither of these numbers is necessarily unique for all books, but the 
combination of the two is.    Figure 6 illustrates a modification of the Book entity (renamed 
ISBNBook) in which the attributes ISBNNum and copyNum form a compound primary key. 

Figure_6.    Entity with Compound Primary Key

A compound primary key doesn't provide a benefit beyond that of a simple primary key.    For 
example, the ISBNBook entity doesn't, by force of its compound key, let you do anything that the 
simpler Book entity lets you do.    Furthermore, the simplicity of a single-attribute primary key make 
its a better choice than the compound key alternative.

So why would you ever choose to use a compound primary key?    Actually, you seldom choose to 
do so:    Some entities demand compound keys.    This is demonstrated in the section ªSimulating a 
Bidirectional Relationship,º later in this chapter.

Relationships

If you lend books from your library, you would probably have, in addition to the Book entity, a 
Borrower entity that characterizes a book borrower's name, address, telephone number, and so on.    
There's an obvious affinity between books and borrowers:    Books are lent to borrowers.    To 
express this affinity in an E-R model, you create a relationship between the Book entity and the 
Borrower entity.    Graphically, a relationship is shown as a named arrow that points from one entity 
to another; the Book-Borrower relationship (which is named toBorrower) is depicted in Figure 7. 

Note:    To support the toBorrower relationship, the Book entity has been alteredÐthe borrowerID 
attribute has been added to it.    This is explained in ªRelationship Keys,º below.

Figure_7.    The toBorrower Relationship

Relationship Names

It's suggested that you name your relationships ªtoEntityº, just as the relationship drawn in Figure 7 
is named toBorrower.    However, this convention is often sacrificed in deference to purpose; an 
example of this is given in ªReflexive Relationships,º below.



Relationships and the Data Dictionary

Unlike entities and attributes, relationships don't correspond to names in the server's data dictionary. 
In general, most servers don't define structural elements for relationships, so their data dictionaries 
don't contain names to which E-R relationships can correspond.    But relationships aren't completely 
disassociated from the data dictionary:    A relationship's definition, as explained in the next section, 
depends on the existence of particular entities and attributes (which, as described earlier, must 
correspond to data dictionary names). 

Relationship Keys

The construction of a relationship involves more than just two entities.    You also have to designate 
an attribute from either of the entities as relationship keys.    In the toBorrower relationship, the 
Book.borrowerID and Borrower.borrowerID are so designated; this is indicated in Figure 7 as the 
two attributes lie at either end of the relationship arrow.

The reason you need to designate relationship keys is so the relationship can be used to create cross-
references between specific instances of the related entities (this is called ªresolvingº the 
relationship).      For example, let's say you want the record of the borrower that checked out the 
book Farewell to Farms.    You tell the toBorrower relationship to resolve itself:    It gets the value 
for the book's borrowerID attribute (which identifies the borrower and was set when the book was 
checked out), and compares it to the value for borrowerID in each Borrower instance.    A match 
locates the desired borrower record. 

For this cross-referencing scheme to work, the two relationship keys must characterize the same 
dataÐyou couldn't find a book's borrower by comparing, for example, Book.bookID to 
Borrower.borrowerID.    This is why the borrowerID attribute was added to the Book entity.

The Example with Data

To further the example of how a relationship is resolved, consider the ªBOOKº and ªBORROWERº 
tables presented below (for brevity, only the essential columns are shown).

Figure_8.    ªBOOKº and ªBORROWERº Tables

Here we see that the value for the borrowerID attribute for the book that's titled Farewell to Farms 
is 0.    Looking in the ªBORROWERº table, we see that 0 is the ID of Arrigo Boito.    Thus, Farewell 
to Farms is currently checked out to Mr. Boito.    Similarly we can determine that Mara Wilson has 
Pelican Island checked out, Good Times is being read by Emma Decca, and so on. 

Note:    Reading on through the ªBOOKº table, you'll notice that the record for The Crime of the 
Century has a NULL value for its borrowerID attribute.    The meaning of the value is clear:    The 
book isn't currently checked out.    But it raises an important question:    What happens when an 
attempt is made to resolve the relationship for this record?    The answer is given later in this chapter. 

Choosing the Keys

Any attribute can be used as a relationship key, but some are better suited than others.    In general, 
of the two relationship keys for a particular relationship, one key will be a primary key for its entity 



(or, otherwise, an attribute that characterizes unique data) and the other key is manufactured to 
emulate the first.      In traditional E-R modeling, the emulating attribute is called a foreign key.    The 
toBorrower relationship demonstrated this:    The relationship key in the Borrower entity is 
borrowerID, the primary key for that entity.    The borrowerID attribute is added to Book as a 
foreign key. 

With regard to the toBorrower relationship, you may wonder why the Book entity's primary key 
(bookID) wasn't chosen as a relationship key.    The simple answer is that the presence of the 
requisite foreign key, Borrower.bookID, would mean that a borrower could only check out one 
book at a time (this follows from the atomic attribute rule).    Rare is the library that imposes a one-
book limit. 

Compound Relationships

A relationship's keys needn't be single attributes from the related entities; any number of attributes 
can be paired as relationship keys within the same relationship.    A relationship that designates more 
than one pair of keys is called a compound relationship.

For example, consider a variation of the Borrower entity (which we'll call NamedBorrower) that 
uses the attributes firstName and lastName as a compound primary key (using human names for 
unique identification is a bad idea, but it serves the purpose).    To support the toNamedBorrower 
relationship, borrowerFirstName and borrowerLastName attributes are added as foreign keys to 
Book.    This is depicted in Figure 9.

Figure_9.    A Compound Relationship

Note:    The keys in a compound relationship can be a combination of any attributesÐnot just a 
compound primary key (or foreign keys to a compound primary key).    Conversely, you can use a 
single attribute from a compound primary key as a relationship key in a simple (non-compound) 
relationship. 

Relationship keys always come in pairs (whether the relationship is simple or compound).    In other 
words, if the relationship uses a two-attribute relationship key in one entity, the other entity must 
also have two relationship keys.    If the one has three relationship keys, the other must have three, 
and so on.

The routine that's used to resolve a compound relationship is similar to that for a simple relationship. 
The only difference is the number of pairs of relationship key values that are compared.    For two 
records to correspond, each of the comparisons must be successful.

Ownership

In the figures in this book, the entity that owns a relationship is the one adjacent to the relationship's 
label.    For example, in Figure 10 the Book entity owns the toBorrower relationship, as indicated 
by the proximity of the ªtoBorrowerº label.

A relationship's owner is called its source entity; the entity to which it points is called the destination 
entity.    In the example below, the source entity of the toBorrower relationship is Book; its 
destination entity is Borrower.    Similarly, the relationship key in the source entity is called the 
source key; the destination's relationship key is the destination key. (By extension, the table that's 
represented by the source entity can be called the ªsource tableº, the source table contains ªsource 
records,º and similarly for the destination table and its records.)



The components of the toBorrower relationship are labeled in Figure 10.

Figure_10.    toBorrower's Source and Destination

Note:    As in the case of the toBorrower relationship, the source and destination keys often have 
the same name, although this isn't a requirement of model design. 

Unidirectionality

A consequence of relationship ownership (by the source entity) is unidirectionality.    In a 
unidirectional relationship, the path that leads from the source to the destination can't be traveled in 
the opposite directionÐyou can't use a relationship to go from the destination to the source.    For 
example, although you can use the toBorrower relationship to find the borrower of a particular 
book, you can't use it to get a list of the books that a borrower has checked out. 

Unidirectionality is enforced by the way a relationship is resolved.    Specifically, the source record 
is a given:    Resolving a relationship means finding the correct destination record (or, as explained 
later, multiple records) given a specific source record. 

To simulate a bidirectional relationshipÐin which you can look up records in either directionÐyou 
have to create a separate ªreturn-tripº relationship.    This is demonstrated in a later section.

Reflexive Relationships

The source and destination entities in a relationship needn't be different.    Where the entities in a 
relationship are the same, a reflexive relationship is created.    Reflexive relationships are important 
in characterizing a system in which an instance of an entity points to another instance of the same 
entity.

For example, rather than restrict the use of the Book entity to characterize individually bound works 
in your library, you may want it to represent individual stories in an anthology, articles in a journal, 
entries in an encyclopedia, and so on.    A particular book record may, therefore, need to point to 
another book record that describes the ªvolumeº (in other words, the anthology, journal, 
encyclopedia) that it's part of.    To represent this, you create a reflexive relationship as shown in 
Figure 11.

Figure_11.    A Reflexive Relationship

Note:    The name of the relationship, componentOf, doesn't follow the relationship naming 
convention suggested earlier in this chapter.    However, it follows from the meaning of the 
relationship, and meaning takes precedence over form.

The volumeID attribute acts as the relationship's source key; bookID is the destination key.    Where 
a book's volume ID matches another book's book ID, the first book is said to be a component of the 
second.    If a book isn't part of a volume, the value for the volumeID attribute is NULL (in that 
book's record).

Reflexive relationships can represent arbitrarily deep recursions.    Thus, from the model above, a 
book can be part of a book that's part of yet another book, and so on.    This is useful if, for example, 
you want to characterize an article as being part of a particular issue of a journal.    You would create 



a book record for the article, the issue in which it appears, and the journal taken as a whole, setting 
the value for the volumeID of the article to match the value for the bookID of the issue, and the 
volumeID of the issue to match the bookID of the journal.    The value for the journal's volumeID 
would be NULL, thus denoting that it's the last rung in the recursion. 

Model Paths 

Because it's owned by an entity, a relationship can be identified through a model path.    The format 
of a relationship's model path name is ªSourceEntity.relationshipº; for example,    
Book.toBorrower. 

Furthermore, you can extend the model path through a relationship and on to an attribute in the 
destination entity through the form ªSourceEntity.relationship.destinationAttributeº.      However, 
it's important to understand that this ªrelationship traversalº form of identifying an attribute doesn't 
mean the same thing as identifying the attribute as it lies naturally in its entity.    The difference is in 
the range of values that the attribute represents. 

For example, the range of values for the simple model path Borrower.name is any value that 
appears in the ªNAMEº column of the ªBORROWERº table.    The values for the 
Book.toBorrower.name path, on the other hand, are only those names that can be gotten by 
resolving the Book.toBorrower relationship.    If a particular borrower doesn't have any books 
checked out, then Book.toBorrower.name will never find that borrower's name.

Relationship Degree

Every relationship has a degree; the degree tells you how many destination records can (potentially) 
resolve the relationship.    The Database Kit defines two degrees, to-one and to-many:

· In a to-one relationship, for each source record there's no more than one corresponding 
destination record. 

· In a to-many relationship, for each source record there may be more than one corresponding 
destination record. 

The toBorrower relationship used above is an example of a to-one relationship:    A single book can 
be checked out by no more than one borrower (at a time).    The converse relationship, from 
Borrower to Book, would be to-many:    A single borrower can check out more than one book.    
This relationship, which is owned by Borrower and called toBook, is shown in Figure 12 (for 
clarity, the source and destination components are pointed out).    That the relationship is to-many is 
indicated by the double arrowhead.

Figure_12.    A To-Many Relationship

Notice that the relationship keys for the toBook relationship are the same as for toBorrower.    
However, the source and destination key assignments are reversed.    In other words, whereas 
Book.borrowerID is the source key for the toBook relationship, it's the destination key for 
toBorrower; similarly does Borrower.borrowerID change destination and source key roles between 
the two relationships. 

This switch does more than demonstrate that the same attributes can be used as relationship keys in 
more than one relationship; it also exemplifies the typical orientation of the primary key with regard 
to the relationship keys in to-one and to-many relationships:



· In a to-one relationship, the destination key is usually the primary key for its entity.
· In a to-many relationship, the source key is usually a primary key.

Resolving a To-Many Relationship

The only difference in the relationship resolution routine between a to-one and a to-many 
relationship is the number of destination records that are found.    A to-one relationship stops when 
the first (and what should be the only) matching destination record is found.    A to-many 
relationship finds all the destination records that resolve the relationship for the given source record. 

Simulating a Bidirectional Relationship

Since relationships, as defined by the Database Kit, are unidirectional, it's natural to assume that to 
simulate a bidirectional relationshipÐin other words, to express the natural relationship between two 
entities without regard for directionÐall you need is two relationships:    One that leads from entity A 
to entity B, and one that leads from entity B to entity A, as demonstrated by the toBorrower/toBook 
pair.    Unfortunately, it isn't always that easy.

Consider, for example, the actual relationship between books and authors.    An author can write 
many books, and a single book can be contributed to by more than one author.    Given that attributes 
can only characterize atomic data, the author attribute in the Book entity is improper (since it may 
have to hold a list of names) and should be removed.    To characterize author data, you create a 
separate Author entity, as shown below.

Figure_13.    The Author Entity

You might be tempted to form a to-many relationship between Book and Author (called toAuthor). 
Similarly, you would want to form the to-many toBook relationship between Author and Book (to 
show that a single author may have written more than one book). 

But this doesn't work because it's impossible to assign relationship keys that would support this set-
up.    For example, you can't use, in the toAuthor relationship, the bookID attribute as a source key 
because the destination key, Author.bookID (added as a foreign key), wouldn't be atomic.    This 
follows from the notion that an author may write more than one book.    Importing authorID as a 
foreign key into Book raises the same objection:    The attribute wouldn't be atomic (since a book 
may have more than one author).

To simulate this ªmany-to-manyº relationship (as it's called in traditional E-R modeling), you need to 
create an auxiliary entity that stands between Book and Author, and form a network of relationships 
to and from it.    This is depicted in Figure 14.

Figure_14.    A Many-to-Many Model

The compound primary key used in BookAuthor indicates that the entity characterizes unique 
combinations of books and authors.    The table that the entity represents would hold a different 
record for each author of every book (which is the same as saying it holds a unique record for each 
book of every author).    For example, if three authors contributed to a single book, there would be 
three BookAuthor instances with the same value for the bookID attribute, but each record would 
have a different value for its authorID attribute. 

The relationships between Book, BookAuthor, and Author let you find all the authors for a 



particular book, and all the books for a particular author:

· Given a ªBOOKº record, you resolve the Book.toBookAuthor relationship to find all the 
ªBOOKAUTHORº records for that book.    You would then resolve, in turn, the 
BookAuthor.toAuthor relationship for each of these records.    Thus do you get all the 
ªAUTHORº records for the original ªBOOKº record.

· To get the books for a particular author, you go in the opposite direction:    You start with an 
ªAUTHORº record, resolve Author.toBookAuthor, then resolve BookAuthor.toBook.

The Tables Behind the Many-to-Many Model

To better understand how the many-to-many model works, it helps to see an example of the tables 
that store the data.    First, we must change the contents of our library to introduce multiple authors. 
The new list of books and their authors is:

Farewell to Farms by Harnet Loonset and Aldo Ciccolini
Pelican Island by Giles Binchois
Good Times by Aldo Ciccolini, Celina Rumby, and Giles Binchois
Junior Wrestling Yearbook (no identifiable author)
The Crime of the Century by Giles Binchois and Celina Rumby
David Westfield by Aldo Ciccolini
The Prince and the People by Celina Rumby and Harnet Loonset
The Green Hills of Alabama by Harnet Loonset, Aldo Ciccolini, and Celina Rumby
The Small Business Directory (no identifiable author)
The Tale of Two Towns by Aldo Ciccolini and Giles Binchois
The Rest of the Angels by Giles Binchois

The ªBOOKº and ªAUTHORº tables that are filled with this information are shown in    Figure 15 
(omitting data for non-essential attributes). 

 

Figure_15.    ªBOOKº    and ªAUTHORº Tables

The ªBOOKAUTHORº table is shown in Figure 16 (for clarity, the titles and author names are 
shown in the margins).

Figure_16.    The ªBOOKAUTHORº Table

As expected, some values appear more than once for the bookID attribute; similarly are values for 
authorID repeated.    But since bookID and authorID    form a compound primary key for the 
BookAuthor entity, no two records may possess the same combination of values for these two 
attributes.    This is the E-R way of signifying that a single book may have more than one author, and 
a single author may have written more than one book, but no book may have been written more than 
once by the same author, nor may any single author write the same book twice.

Equijoins and Outer Joins

The Database Kit demands that every relationship be declared as either an equijoin or an outer join. 
The purpose of the declaration only makes sense if you understand what a join is.    Roughly put, the 
practice of joining lets you fabricate a table that contains columns that are based on attributes from 
different entitiesÐin other words, the columns are ªjoinedº together in a single table (it's convenient 



to speak of the attributes that represent these columns as being joined as well).    However, you can't 
join arbitrary attributes from various entities:    To join attributes from two different entities, there 
must be a relationship between the entities.

For example, the toBorrower relationship lets you join attributes from the Book and Borrower 
entities.    The result of the join could be captured in a single table (in your applicationÐa join 
doesn't conjure up an actual server table).    The table below is the result of joining the Book.title 
and Book.toBorrower.name attributes.

Figure_17.    A Join through the toBorrower Relationship

The NULL values in the right column indicate that the books titled The Crime of the Century, The 
Green Hills of Alabama, and The Tale of Two Towns aren't checked out.    Nonetheless, the titles of 
these books find their way into the table.    This is because toBorrower was declared as an outer 
join:    In an outer join, all source records are included in the result of the join.

If we declare toBorrower to be an equijoin, the table would appear as shown below.

Figure_18.    Using toBorrower as an Equijoin

In an equijoin, if a destination record can't be found for a given source record, then the source record 
isn't included in the result of the join.

Joins and To-Many Relationships

Only to-one relationships can join attributes.    Thus, the equijoin/outer join declaration doesn't have 
any meaning for a to-many relationships.    You still have to declare your to-many relationships as 
one or the other, however. 


