
1

NSArchiver

Inherits From: NSCoder : NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSArchiver.h

Class at a Glance

Purpose
An NSArchiver encodes objects into a format that can be written to a file. The archiving process traverses a set
of interconnected objects, making sure to encode each one only once.

Principal Attributes
• An NSMutableData object containing the encoded data

Creation
– initForWritingWithMutableData:

Commonly Used Methods
+ archiveRootObject:ToFile: Archives a graph of objects to a file.
+ archivedDataWithRootObject: Archives a graph of objects into an NSMutableData object.

Class Description

NSArchiver, a concrete subclass of NSCoder, provides a way to encode Objective-C objects into an
architecture-independent format that can be stored in a file. When you archive a set of objects, their class

2

 NSArchiver

information and the values of their instance variables are written to the archive. NSArchiver’s companion
class, NSUnarchiver, decodes an archive into a set of objects equivalent to the original set.

NSArchiver implements encoding by placing the archived data in an NSMutableData object. After
encoding the objects, you can have the NSArchiver write this NSMutableData immediately to a file, or you
can retrieve the encoded data for some other use.

Archiving a Graph of Objects

The easiest way to archive an object is to invoke a single class method—either archiveRootObject:toFile:
or archivedDataWithRootObject:, depending on whether you want the encoded data to be stored in a file
immediately. These convenience methods create a temporary NSArchiver and send it an
encodeRootObject: message—you need do no more. However, if you want to customize the archiving
process (for example, by substituting certain classes for others), you must instead create an NSArchiver
instance yourself, configure it as desired, and send it an encodeRootObject: message explicitly.

The “root object” that you specify as the argument to any of these three methods indicates the starting point
for archiving. The NSArchiver commences archiving by invoking the root object’s encodeWithCoder:
method. That method typically encodes the root object’s instance variables, which isn’t necessarily a
straightforward process—the instance variables can themselves be other objects that respond to
encodeWithCoder:, and so on, yielding a possibly complex graph of objects that need to be archived.

The fact that many objects contain references to other objects poses two problems for archiving. The first
is redundancy. An object graph isn’t necessarily a simple tree structure. Two objects can contain references
to each other, for example, creating a cycle. To address this problem, NSArchiver overrides NSCoder’s
encodeRootObject: method to keep track of all the objects encountered while traversing the graph. If any
object is encountered more than once, the multiple references to it are stored, but the object itself is encoded
only once.

The second problem is that it’s not always appropriate to archive the entire graph. To use an example from
the Application Kit, when you archive an NSView as the root object, its subviews should be archived, but
not its superview. In this case, the superview is considered an extraneous part of the graph. On the other
hand, if you archive the superview as the root object, the NSView should now include a reference to the
superview. To solve this dilemma, NSArchiver implements conditional archiving, overriding the minimal
encodeConditionalObject: method that’s inherited from NSCoder. A class’s encodeWithCoder: method
can invoke encodeConditionalObject: to archive inessential object instance variables. The NSArchiver
doesn’t actually archive a conditionally encoded object unless some other object in the graph encodes it
unconditionally (using one of the other encode...Object: methods declared by NSCoder). When everything
is unarchived, all original references to the conditionally encoded object are properly restored as references
to the single unarchived object. For example, an NSView encodes its superview with
encodeConditionalObject:, because it doesn’t own the superview but does need to preserve its connection
to it if some other object archives the superview.

In contrast, encodeObject: unconditionally instructs an object to encode itself. This method is most often
used in a class’s encodeWithCoder: method for instance variables that are intrinsic to the receiver and

3

essential for proper functioning. An NSView encodes its subviews with encodeObject:, because it owns
them.

All the objects to be placed in a single archive must be interconnected members of a single graph. In other
words, there can only be one root object per archive. The only recommended way to archive objects is to
send an NSArchiver a single encodeRootObject: message, whether directly, or indirectly by invoking
archiveRootObject:toFile: or archivedDataWithRootObject:. Don’t try to add data to the archive by
invoking any of NSCoder’s other encode... methods, except from within the encodeWithCoder: method
of each object that’s part of the graph. (These encodeWithCoder: methods are invoked automatically
when you encode the root object.)

To extract an object graph from an archive, use the NSUnarchiver class method unarchiveObjectWithFile:
or unarchiveObjectWithData: , assigning the return value to the desired root object.

Archiving other Data Types

It’s possible to create an archive that doesn’t contain any objects. To archive other data types, invoke
encodeValueOfObjCType: directly for each data item to be archived, instead of using setRootObject:.
When you create an archive in this way, the corresponding unarchiving code must follow exactly the same
sequence of data types.

This approach shouldn’t be used to archive objects. Use setRootObject: instead, to avoid the problems
mentioned in the previous section and to simplify unarchiving.

An NSSerializer provides another means to store data in an architecture-independent format. See the
NSSerializer class specification for more information.

Superclass Methods to Avoid

NSArchiver’s superclass, NSCoder, supplies methods for both encoding and decoding. However, only the
encoding methods are applicable to NSArchiver—don’t send an NSArchiver any decode... messages.
(Similarly, don’t send encode... messages to an NSUnarchiver.)

Method Types

Initializing an NSArchiver – initForWritingWithMutableData:

Archiving data + archivedDataWithRootObject:
+ archiveRootObject:toFile:
– encodeRootObject:
– encodeConditionalObject:

Getting the archived data – archiverData

4

 NSArchiver

Substituting classes or objects – classNameEncodedForTrueClassName:
– encodeClassName:intoClassName:
– replaceObject:withObject:

Class Methods

archiveRootObject:toFile:
+ (BOOL)archiveRootObject:(id)rootObject toFile:(NSString *)path

Archives rootObject by encoding it into a data object in a temporary NSArchiver and writing that data object
to the file path. This convenience method invokes archivedDataWithRootObject: to get the encoded data,
and then sends that data object the message writeToFile:atomically: , using path for the first argument and
YES for the second. Returns YES upon success.

archivedDataWithRootObject:
+ (NSData *)archivedDataWithRootObject:(id)rootObject

Returns a data object containing the encoded form of the object graph whose root object is rootObject. This
method invokes initForWritingWithMutableData: and encodeRootObject: to create a temporary
archiver that encodes the object graph.

Instance Methods

archiverData
– (NSMutableData *)archiverData

Returns the archived data. The returned data object is the same one that was specified as the argument to
initForWritingWithMutableData: . It contains whatever data has been encoded thus far by invocations of
the various encoding methods. It’s safest not to invoke this method until after encodeRootObject: has
returned. In other words, although it’s possible for a class to invoke this method from within its
encodeWithCoder: method, that method must not alter the data.

classNameEncodedForTrueClassName:
– (NSString *)classNameEncodedForTrueClassName:(NSString *)trueName

Returns the class name used to archive instances of the class trueName.

See also: – encodeClassName:intoClassName:

5

encodeClassName:intoClassName:
– (void)encodeClassName:(NSString *)trueName intoClassName:(NSString *)inArchiveName

Encodes in the archive a substitute name for the class name trueName. Any subsequently encountered
objects of class trueName will be archived as instances of class inArchiveName. It’s safest not to invoke this
method during the archiving process (that is, within an encodeWithCoder: method). Instead, invoke it
before encodeRootObject:.

See also: – classNameEncodedForTrueClassName:

encodeConditionalObject:
– (void)encodeConditionalObject:(id)object

Archives object conditionally. This method overrides the superclass implementation to allow object to be
encoded only if it’s also encoded unconditionally by another object in the object graph. Conditional
encoding lets you encode one part of a graph detached from the rest. (See the class description for more
information.)

This method should be invoked only from within an encodeWithCoder: method. If object is nil , the
NSArchiver encodes it unconditionally as nil . Raises an NSInvalidArgumentException if no root object has
been encoded.

encodeRootObject:
– (void)encodeRootObject:(id)rootObject

Archives rootObject along with all the objects it’s connected to. If any object is encountered more than once
while traversing the graph, it’s encoded only once, but the multiple references to it are stored. (See the
discussion of object graphs in the class description.)

This message mustn’t be sent more than once to a given NSArchiver; an NSInvalidArgumentException is
raised if a root object has already been encoded. Therefore, don’t attempt to reuse an NSArchiver; instead,
create a new one. To encode multiple object graphs, use distinct NSArchivers.

initForWritingWithMutableData:
– (id)initForWritingWithMutableData: (NSMutableData *)data

Initializes an archiver, encoding stream and version information into data. Raises an
NSInvalidArgumentException if data is nil .

See also: – archiverData

6

 NSArchiver

replaceObject:withObject:
– (void)replaceObject:(id)object withObject: (id)newObject

Causes the NSArchiver to treat subsequent requests to encode object as though they were requests to encode
newObject.

