DECLARED IN

SYNOPSIS

DESCRIPTION

DECLARED IN

SYNOPSIS

DESCRIPTION

DECLARED IN

SYNOPSIS

DESCRIPTION

Defined Types

Cache
objc/objc-class.h
typedef struct objc_cach&ache

This is the defined type for a class’s run-time cache of frequently used methods. Each class
has its own cache.

Category
objc/objc-class.h
typedef struct objc_categoryategory;,

This is the type name for the structure that contains information about a category definition.

Ivar
objc/abjc-class.h
typedef struct objc_ivarl¥ar;

The Ivar type identifies a structure containing information about a single instance
variable—including the name of the variable, its type, and its location in the object
data structure.

Types and Constants: Cache 1

DECLARED IN

SYNOPSIS

DESCRIPTION

DECLARED IN

SYNOPSIS

DESCRIPTION

DECLARED IN

SYNOPSIS

DESCRIPTION

marg_list
objc/objc-class.h
typedef void targ_list;

This type is a pointer to the arguments that were passed in a message. It's used by the
Object class'$orward:: method.

Method
objc/abjc-class.h
typedef struct objc_methodviethod;

The Method type designates a structure containing information about a single method—
including its return and argument types, the method selector, and the location of the method
implementation.

Module
objc/objc-runtime.h
typedef struct objc_moduléviodule;

This data type refers to a file that contributes to an Objective C program. The compiler
produces a Module data structure for each file that it encounters.

Run-Time System

DECLARED IN

SYNOPSIS

DESCRIPTION

Symbolic Constants

Type Constants

objc/objc-class.h

Constant

C.ID
_C_CLASS
_C_SEL
~C_VOoID
_C_CHR
_C_UCHR
_C_SHT
_C_USHT
_C_INT
_C_UINT
_C_LNG
_C_ULNG
C_FLT
_C_DBL
_C_UNDEF
“C_PTR
_C_CHARPTR
_C_BFLD
_C_ARY_B
"C_ARY_E
_C_UNION_B
_C_UNION_E
_C_STRUCT_B
_C_STRUCT_E

Meaning
id
Class
SEL
void
char
unsigned char
short
unsigned short
int
unsigned int
long
unsigned long
float
double
an undefined type
a pointer
char *
a bitfield
begin an array
end an array
begin a union
end a union
begin a structure
end a structure

Defined As

These constants identify the character codes used to store method return and argument
types. They're the same codes returned by@leacode()directive.

Types and Constants: Type Constants 3

Structures

objc_cache
DECLARED IN oObjc/objc-class.h

syNnopsis structobjc_cachef
unsigned intmask;
unsigned inbccupied
Methodbucketd1];

h

DESCRIPTION This structure stores a class-specific cache of the methods most recently used by instances
of the class or by the class object. The Cache data type is defined as a pointer to an
objc_cachestructure.

objc_category
DECLARED IN objc/objc-class.h

SYNOPSIS structobjc_category{
char *tategory_name
char *class_name
struct objc_method_listifistance_methods
struct objc_method_listctass_methods
struct objc_protocol_listgrotocols;

h
DESCRIPTION This structure stores the information contained in a category definition. Its fields are:
category_name The name assigned to the category in source code
class_name The name of the class that the category belongs to
instance_methods A list of instance methods defined in the category
class_methods A list of class methods defined in the category
protocols A list of the protocols adopted in the category

4 Run-Time System

The Category data type is defined as a pointer tibprcategory structure.

objc_class
DECLARED IN objc/objc-class.h

sYNoPsIs structobjc_class{
struct objc_classisa;
struct objc_classsuper_class
const char hame
long version;
longinfo;
longinstance_size
struct objc_ivar_list vars;
struct objc_method_listmethods
struct objc_cachecache
struct objc_protocol_listgrotocols;

2
DESCRIPTION This structure holds information about a class definition. Its fields are:
isa The metaclass of this class
super_class The superclass of this class
name The name of this class
version The current version of the class (as sesetyersion)
info The current status of the class
instance_size The number of bytes to allocate for an instance of the class
ivars The instance variables declared in the class interface
methods The instance methods defined in the class implementation
cache The cache of recently used methods
protocols The protocols adopted by the class

This structure is also used to store metaclass information, in which casethozlsfield
lists class methods rather than instance methods.

The Class data type is defined dinjc.h) as a pointer to anbjc_classstructure.

Types and Constants: objc_class 5

DECLARED IN

SYNOPSIS

DESCRIPTION

DECLARED IN

SYNOPSIS

DESCRIPTION

objc_ivar
objc/objc-class.h

structobjc_ivar {
char *ivar_name;
char Hvar_type;
int ivar_offset;

¥
This structure describes a single instance variable. It's fields are:
ivar_name The name of the instance variable
ivar_type The data type declared for the instance variable
ivar_offset The position of the variable in the object (as an offset in bytes)

The Ivar data type is defined as a pointer tolgn_ivar structure.

objc_ivar_list
objc/objc-class.h

structobjc_ivar_list {
intivar_count;
struct objc_ivaivar_list[1];

|3

This structure holds information about the instance variables declared in a class definition.
The first field,jvar_count, gives the number of variables declared and the second field,
ivar_list, is a variable-length array of all the variables.

Run-Time System

DECLARED IN

SYNOPSIS

DESCRIPTION

DECLARED IN

SYNOPSIS

DESCRIPTION

objc_method

objc/objc-class.h

structobjc_method{
SEL method_name
char ‘method_types
IMP method_imp;

¥

This structure describes a single method implemented by the class. The fields are:
method_name The method selector (not the full name)
method_types A string encoding the method return and argument types
method_imp A pointer to the method implementation

The Method data type is defined as a pointer tobgry method structure.

objc_method_description
objc/Protocol.h

structobjc_method_description{
SEL name
char *types

|3

This structure holds the method information returned by two methods defined in the
Protocol classdescriptionForClassMethod: anddescriptionForlnstanceMethod:, and
by two Object methodslescriptionForMethod: anddescriptionForinstanceMethod..

Types and Constants: objc_method 7

DECLARED IN

SYNOPSIS

DESCRIPTION

DECLARED IN

SYNOPSIS

DESCRIPTION

objc_method_description_list
objc/Protocol.h

structobjc_method_description_list{
int count;
struct objc_method_descriptidist[1];

|3

This structure points to a list objc_method_descriptionstructures. Typically the list
describes all the methods declared in a particular protocol.

objc_method_list
objc/objc-class.h

structobjc_method_list{
struct objc_method_listtethod_next
int method_count
struct objc_methodethod_lisf1];

|3

This structure lists all the class or all the instance methods defined within a class or category
(within one group bracketed @implementationand@end. lIts fields are:

method_next A pointer to another group of methods for the same class
method_count The number of methods listed in this group
method_list A variable-length array of method descriptions

Class methods and instance methods are listed in separate structures.

Run-Time System

DECLARED IN

SYNOPSIS

DESCRIPTION

DECLARED IN

SYNOPSIS

DESCRIPTION

objc_module

objc/objc-runtime.h

structobjc_module{
unsigned longersion;
unsigned longize
const char hame
Symtabsymtab;

h

This structure holds information about an object file compiled from Objective C source
code. lts fields are:

version The version of run-time data structures
size The size of the module in bytes

name The name of the file

symtab An obsolete field

The Module data type is defined as a pointer to this structure.

objc_protocol_list
objc/abjc-class.h

structobjc_protocol_list {
struct objc_protocol_listrfext
int count;
Protocol Hist[1];

h

This structure lists all the protocols adopted by a class in one place. Separate lists are kept
for the class interface and for each category that adopts protocols on the class’s behalf. The
fields of the structure are:

next A pointer to another list of protocols adopted by the class
count The number of protocols listed here
list A variable-length array of Protocol objects

Types and Constants: objc_module 9

objc_super
DECLARED IN Objc/objc-runtime.h

SYNOPSIS structobjc_super{
id receiver;
Classclass

|3

DESCRIPTION This structure helps the messaging function find which method implementation to invoke
in response to a message serduper. Its fields are:

receiver The receiver of the message (the object designategher)
class The class where the message is sent

10 Run-Time System

Global Variables

Function Pointers
DECLARED IN Objc/objc-runtime.h

synopsis id (*_alloc)(ClassaClass unsigned inindexedlvarBytgs
id (*_dealloc)(Object *anObjec}
id (*_realloc)(Object *fanObject unsigned inhumBytes
id (*_copy)(Object *anObject unsigned inindexedlvarBytes
id (*_zoneAlloc)(ClassaClass unsigned inindexedlvarBytesNXZone *zong
id (*_zoneRealloc)Object *anObject unsigned inhumBytesNXZone *zong
id (*_zoneCopy)Object *anObject unsigned inindexedlvarByte, NXZone %ong
void (*_error)(Object *anObject const char format, va_listap)

DESCRIPTION These variables point to the functions that the run-time system uses to manage memory and
handle errors. By reassigning a variable, a function can be replaced with another of the
same type. The example below shows a temporary reassignment nbtie\lloc
function:

id (*theFunction)();

theFunction = _zoneAlloc;

_zoneAlloc = someOtherFunction;

/~k

* code that calls the class_createlnstanceFromZone() function,
* or sends alloc and allocFromZone: messages, goes here

*

_zoneAlloc = theFunction;

» _alloc points to the function, called througlass_createlnstance()used to allocate
memory for new instances, angloneAlloc points to the function, called through
class_createlnstanceFromZone(used to allocate the memory for a new instance
from a specifiedone

» _deallocpoints to the function, called throughject_dispose()used to free instances.

» _realloc points to the function, called througbject_realloc(), used to reallocate
memory for an object, andzoneReallogoints to the function, called through
object_reallocFromZone() used to reallocate memory from a specifiede

Types and Constants: Function Pointers 11

e _copypoints to the function, called throughject_copy() used to create an exact copy
of an object, andzoneCopypoints to the function, called through
object_copyFromZone() used to create the copy from memory in the specdibee

» _error points to the function that the run-time system calls in response to an error. By
default, it prints formatted error messages to the standard error stream (or logs them to
the console if there is no standard error stream) andadzdl$() to produce a core file.

12 Run-Time System

