SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

class_addMethods() — See class_getinstanceMethod()

class_createlnstance(), class_createlnstanceFromZone()
Create a new instance of a class
objc/objc-class.h

id class_createlnstancéflassaClass unsigned inindexedlvarBytes
id class_createlnstanceFromZoné&flassaClass unsigned inindexedlvarBytes
NXZone *zong

These functions provide an interface to the object allocators used by the run-time system.
The default allocators, which can be changed by reassigninglibe and_zoneAlloc
variables, create a new instancex@lassby dynamically allocating memory for it,

initializing itsisainstance variable to point to the class, and returning the new instance. All
other instance variables are initialized to 0.

The two functions are identical, except thigtss_createlnstanceFromZone@llocates
memory for the new object from the region specifieddnyeandclass_createlnstance()
allocates memory from the default zone returnetiKpefaultMallocZone().

Object’salloc andallocFromZone: methods uselass_createlnstanceFromZone(fo
allocate memory for a new object, withoc taking the memory from the default zone. The
new method useslass_createlnstance()

The second argument to both functidngdexedlvarBytesstates the number of extra bytes
required for indexed instance variables. Normally, it's O.

Indexed instance variables are instance variables that are not declared or accounted

for in the usual way, generally because they don’t have a fixed size. Usually they're

arrays whose length can't be computed at compile time. Since the components of a C
structure can’t be of uncertain size, indexed instance variables can’t be declared in the class
interface. The class must account for them outside the normal channels provided by the
Objective C language.

Functions: class_addMethods() 1

All of the storage required for indexed instance variables must be allocated through one of
these two functions. The following code shows how they might be used in an
instance-creating class method:

+ new:(unsigned intjnumBytes

{

self = class_createlnstance((Class)self, numBytes);
length = numBytes;

}

- (char *)getArray
{

return(object_getindexedlvars(self));

}

Indexed instance variables should be avoided if at all possible. It's a much better practice
to store variable-length data outside the object and declare one real instance variable that
points to it and perhaps another that records its length. For example:

+ new:(unsigned int)numBytes

{
self = [super new];
data = malloc(numBytes);
length = numBytes;

}
- (char *)getArray
{

return data;

}
RETURN If successful, botlelass_createlnstance(@indclass_createlnstanceFromZone()

return the new instance atClass If not successful, they generate an error message
and callabort().

class_createlnstanceFromZone() — See class_createlnstance()

class_getClassMethod() — See class_getinstanceMethod()

Run-Time System

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

RETURN

class_getinstanceMethod(), class_getClassMethod(),
class_addMethods(), class_removeMethods()

Get, add, and remove methods
objc/objc-class.h

Methodclass_getinstanceMethodtlassaClass SEL aSelectoy
Methodclass_getClassMethod{lassaClass SELaSelectoy

void class_addMethodsClassaClass struct objc_method_listtiethodLisk
void class_removeMethodstlassaClass struct objc_method_listiethodLisk

The first two functionsglass_getinstanceMethod(aindclass_getClassMethod(yeturn

a pointer to the class data structure that describexSthlectormethod. For
class_getinstanceMethod()aSelectomust identify an instance method; for
class_getClassMethod()it must identify a class method. Both functions return a NULL
pointer ifaSelectordoesn’t identify a method defined in or inheritedal@lass

The run-time system uses the next functmass_addMethods()to implement

Objective C categories. Each function adds the methadstinodListo the dictionary of
methods defined faClass To add methods that can be used by instances of a class,
aClassshould be the class object. To add methods that can be used by a classG@lbfct,
should be the metaclass object (Befield of the Class structure). All the methods in
methodLisimust be mapped to valid SEL selectors before they're added to the class. The
sel_registerName(¥unction can be used to accomplish this.

The last functionglass_removeMethods()removes methods that were previously added
usingclass_addMethods() The run-time system uses it to unload categories that were
dynamically loaded at an earlier point in time. Its second argumetitodListmust be
identical to a pointer previously passeatass_addMethods() To remove instance
methodsaClassshould be the class object. To remove class methGtsssshould be the
isafield of the Class structure.

class_getinstanceMethod(andclass_getClassMethod()eturn a pointer to the data
structure that describes ta8electomethod as implemented faClass If aSelectoisn’t
defined foraClass they return NULL.

Functions: class_getInstanceMethod() 3

SUMMARY

DECLARED IN

SYNOPSIS

RETURN

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

RETURN

class_getinstanceVariable()

Get the class template for an instance variable

objc/objc-class.h

Ivar class_getinstanceVariableClassaClass const char variableNamég

This function returns a pointer to the class data structure that descrivesidieName
instance variable. HClassdoesn'’t define or inherit the instance variable, a NULL pointer
is returned.

class_getVersion() - See class_setVersion()

class_poseAs()

Pose as the superclass

objc/abjc-class.h
Classclass_poseAgtlassthelmposterClassheSuperclags

class_poseAs(fauses one clagbelmposterto take the place of its own superclass,
theSuperclassMessages sent theSuperclaswill actually be received bthelmposter

The posing class can't declare any new instance variables, but it can define new methods
and override methods defined in the superclass.

Posing is usually done through ObjeqitsseAs:method, which calls this function.

Normally, class_poseAs(jeturns its first argumerthelmposter However, ithelmposter
defines instance variables or is not a subclass of (or the samme&)erclasst generates
an error message and aborts.

Run-Time System

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

RETURN

class_removeMethods() — See class_getinstanceMethod()

class_setVersion(), class_getVersion()
Set and get the class version
objc/objc-class.h

void class_setVersiorClassaClass int versionNumber
int class_getVersionClassaClas3

These functions set and return the class version number. This number is used when
archiving instances of the class.

Object’ssetVersion: andversion methods do the same work as these functions.

class_getVersion(Jeturns the version number faClasslast set bylass_setVersion()or
0 if no version has been set.

marg_getRef() - See marg_getValue()

Functions: class_removeMethods() 5

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

RETURN

marg_getValue(), marg_getRef(), marg_setValue()
Examine and alter method argument values
objc/objc-class.h

type-namamarg_getValuefnarg_listargFrame int offset type-namg
type-namémarg_getReffmarg_listargFrame int offset type-namg
void marg_setValue(narg_listargFrame int offset type-namgtype-name valye

These three macros get and set the values of arguments passed in a message. They're
designed to be used within implementations offteard:: method, which is described
under the Object class in Chapter 1, “Root Class.”

The first argument to each macaogFrame is a pointer to the list of arguments passed in
the message. The run-time system passes this pointerftowiaed:: method, making it
available to be used in these macros. The next two argumentdfsetmto the argument
list and the type of the argument at that offset—can be obtained by calling
method_getArgumentinfo().

The first macromarg_getValug returns the argument affsetin argFrame The return

value, like the argument, is of typge-name The second macrmarg_getRef returns a
reference to the argumentadtsetin argFrame The pointer returned is to an argument of
thetype-namdype. The third macraenarg_setValue alters the argument affsetin
argFrameby assigning ivalue. The new value must be of the same type as the argument.

Because these are macros, tifpe-namanust be written as types normally are in source
code; it can’t be passed as a variable. Therefore, if the type is obtained from
method_getArgumentinfo(), aswitch statement would be required to select the correct
macro call from a list of predetermined choicegthod_getArgumentinfo() encodes the
argument type according to the conventions ofd@rencode()}compiler directive.

marg_getValuereturns aype-namergument valuemarg_getRefreturns a pointer to a
type-namergument value.

marg_setValue() - See marg_getValue()

method_getArgumentinfo() - See method_getNumberOfArguments()

Run-Time System

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

RETURN

method_getNumberOfArguments(), method_getSizeOfArguments(),
method_getArgumentinfo()

Get information about a method
objc/objc-class.h

unsigned inmethod_getNumberOfArgumentsMethodaMethod

unsigned inmethod_getSizeOfArgumentdflethodaMethod

unsigned intmethod_getArgumentinfo(MethodaMethod intindex const char *type
int * offse)

The three functions described here all provide information about the argument structure of
a particular method. They take as their first argument the method’s data stelttred
which can be obtained by calliatass_getinstanceMethod(r class_getClassMethod()

The first functionmethod_getNumberOfArguments() returns the number of arguments
thataMethodtakes. This will be at least two, since it includes the “hidden” argunsetits,
and_cmd, which are the first two arguments passed to every method implementation.

The second functiomethod_getSizeOfArguments()returns the number of bytes that all
of aMethods arguments, taken together, would occupy on the stack. This information is
required byobjc_msgSendv()

The third functionmethod_getArgumentinfo(), takes arndexinto aMethods

argument list and returns, by reference, the type of the argument and the offset to the
location of that argument in the list. Indices begin with 0. The “hidden” argusedhts
and_cmd are indexed at 0 and 1; method-specific arguments begin at index@exiifs

too large for the actual number of argumentstytheaandoffsetpointers are set to NULL.
Otherwise, the offset is measured in bytes; it depends entirely on the size of arguments
preceding the one atdex The type is encoded according to the conventions of the
@encode()compiler directive.

The information obtained fromethod_getArgumentinfo() can be used in the
marg_getValue marg_getRef andmarg_setValuemacros to examine and alter the
values of an argument on the stack atdethodhas been called. The offset can be passed
directly to these macros, but the type must first be decoded to a full type name.

method_getNumberOfArguments()returns how many arguments the implementation of
aMethodtakes, ananethod_getSizeOfArguments(yeturns how many bytes the
arguments take up on the staokethod_getArgumentinfo() returns théndexit is passed.

Functions: method_getNumberOfArguments() 7

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

method_getSizeOfArguments() -
See method_getNumberOfArguments()

objc_addClass() —» See objc_getClass()

objc_getClass(), objc_lookUpClass(), objc_getMetaClass(),
objc_getClasses(), objc_addClass(), objc_getModules()

Manage run-time structures
objc/objc-runtime.h

id objc_getClass¢onst char &ClassNamg

id objc_lookUpClasstonst char &ClassNamg
id objc_getMetaClass¢onst char &ClassNamg
NXHashTable dbjc_getClasses(oid)

void objc_addClass(ClassaClasg

Module *objc_getModulesgoid)

These functions return and modify the principal data structures used by the run-time
system.

The first two functionsybjc_getClass(andobjc_lookUpClass() both return théd of the
class object for thaClassNamelass. However, if theClassNamelass isn’t known to
the run-time systenmabjc_getClass()prints a message to the standard error stream and
causes the process to abort, wbitgc_lookUpClass()merely returnsiil.

The third functionpbjc_getMetaClass() returns théd of the metaclass object for the
aClassNamelass. The metaclass object holds information used by the class object, just as
the class object holds information used by instances of the classohjikgetClass() it

prints a message to the standard error stream and causes the process alCAassName

isn't a valid class.

Run-Time System

RETURN

objc_getClasses(jeturns a pointer to the hash table containing all the Objective C classes
that are currently known to the run-time system. You can examine the table using the
common hashing functions. In the following examplENextHashState()gets each

class from the table in turn, anbject_getClassName(asks for their names:

NXHashTable *classes = objc_getClasses();
NXHashState state = NXInitHashState(classes);
Class thisClass;

while (NXNextHashState(classes, &state, (void **)&thisClass))
fprintf(stderr, "%s\n", object_getClassName((id)thisClass));

The NXHashTable type returned blgjc_getClasses(is defined in thebjc/hashtable.h

header file and is documented in Chapter 3, “Common Classes and Functions.” This

data structure can be read, as illustrated in the example above, but it should not be modified
or freed.

objc_addClass()addsaClassto the list of classes known to the run-time system. (The
class is added to the hash table tigt_getClasses(jeturns.)

The compiler creates a Module data structure for each file it compiles. The
objc_getModules()function returns a pointer to the run-time system’s list of all current
modules, except those that were dynamically loaded. Module structures are described
under “Supporting Header Files” later in this chapter.

objc_lookUpClass()returns the class object faClassNameor nil if there is no such
class. objc_getClass(Jandobjc_getMetaClass() return the class and metaclass objects
for aClassNamegif such a class exists, and abort otherwisgic _getClasses(jeturns a
pointer to a hash table of all current classesgodj getModules()returns a pointer to all
current modules.

objc_getClasses() — See objc_getClass()
objc_getMetaClass() - See objc_getClass()

objc_getModules() » See objc_getClass()

Functions: objc_getClasses() 9

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

objc_loadModules(), objc_unloadModules()

Dynamically load and unload classes
objc/objc-load.h

long objc_loadModulesghar *fileq], NXStream *stream
void (*callback(Class, Category), struct mach_headdreader
char *debugFilenamge
long objc_unloadModules(NXStream *stream void (*callback(Class, Category)

objc_loadModules()dynamically loads object files containing Objective C class and
category definitions into a running program. Its first arguniiges, is a list of

null-terminated pathnames for the object files containing the classes and categories that are
to be loaded. They can be full paths or paths relative to the current working directory. The
second argumergfream is a pointer to an NXStream where any error messages produced
by the loader will be written. It can be NULL, in which case no messages will be written.

The third argumentallback allows you to specify a function that will be called

immediately after each class or category is loaded. When a category is loaded, the function
is passed both théategory structure and th€lassstructure for that category. When a

class is loaded, it's passed only lassstructure. Likestream callbackcan be NULL.

The fourth argumenheader is used to get a pointer to timach_headerstructure for
the loaded modules. It, too, can be NULL. All the modulddesare grouped under the
same header.

The final argument, which also can be NULL, is the pathname for a file that the loader will
create and initialize with a copy of the loaded modules. This file can be passed to the
debugger and added to the list of files being debugged. For example:

(gdb) add-file debugFilename

obj_unloadModules()unloads all the modules loadeddijc_loadModules() that is, all
the modules from thleslist. Each time it's called, it unloads another set of modules,
working its way back from the modules loaded by the most recent call to
objc_loadModules()to those loaded by the next most recent call, and so on.

The first argument tobj_unloadModules(), stream is a pointer to an NXStream where
error messages will be written. Its second arguneafiback allows you to specify a
function that will be called immediately before each class or category is unloaded. Both
arguments can be NULL.

10 Run-Time System

RETURN

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

Note: The NXBundle class, documented in Chapter 3, “Common Classes and Functions,”
provides a simpler and preferred way to dynamically load classes. NXBundle integrates
dynamic loading with localization (using language-specific resources such as strings,
images, and sounds).

Both functions return 0 if the modules are successfully loaded or unloaded and 1 if
they’re not.

objc_lookUpClass() —» See objc_getClass()

objc_msgSend(), objc_msgSendSuper(), objc_msgSendv()
Send messages at run time
objc/objc-runtime.h

id objc_msgSend(theReceiverSELtheSelectar..)

id objc_msgSendSupertruct objc_supersuperContextSEL theSelectar..)

id objc_msgSendvifd theReceiverSEL theSelectgrunsigned inargSize
marg_listargFrame

The compiler converts every message expression into a call on one of the first two of these
three functions. Messagesdiaper are converted to calls atjc_msgSendSuper()all
others are converted to calls albjc_msgSend()

Both functions find the implementation of tieSelectomethod that's appropriate for the
receiver of the message. Fhjc_msgSend()theReceiveis passed explicitly as an
argument. Foobjc_msgSendSuper()superContextlefines the context in which the
message was sent, including who the receiver is.

Arguments that are included in th8electomessage are passed directly as additional
arguments to both functions.

Calls toobjc_msgSend(andobjc_msgSendSuper(should be generated only by the
compiler. You shouldn’t call them directly in the Objective C code you write. You can
however use the Object instance methedormv:: to send an arbitrary message to an
object..

Functions: objc_lookUpClass() 11

The third functionpbjc_msgSendv()is an alternative tobjc_msgSend(that's designed

to be used within class-specific implementations ofdtweard:: method. Instead of being
passed each of the arguments toaelectomessage, it takes a pointer to the arguments
list, argFrame and the size of the list in bytesgSize argSizecan be obtained by calling
method_getSizeOfArguments()argFrameis passed as the second argument to the
forward:: method.

objc_msgSendv(pparses the argument list based on information storeaSielectorand
the class of the receiver. Because of this additional work, it's more expensive than
objc_msgSend()

RETURN Each method passes on the value returned bgySkkctomethod.

objc_msgSendSuper() -~ See objc_msgSend()
objc_msgSendv() - See objc_msgSend()

objc_setMultithreaded()
SUMMARY Make the run-time system thread safe
DECLARED IN 0bjc/objc-runtime.h
syNopsis void objc_setMultithreaded(BOOL flag)

peEscrIPTION Whenflagis YES, this function ensures that two or more threads of the same task can safely
use the run-time system for Objective C. To guarantee correct run-time behavior, it should
be called immediately before starting up a new thread.

Because of the additional checking required to ensure thread-safe behavior, messaging will
be slower than normal. Therefofiag should be reset to the default NO when there is only
one thread using Objective C.

12 Run-Time System

This function cannot guarantee that all parts of the run-time system are absolutely
thread-safe. In particular, if one thread is in the middle of dynamically loading or unloading

a class (usingbjc_loadModules()or objc_unloadModules() while another thread is

using the class, the second thread might find the class in an inconsistent state. Similarly, a
thread that gets the class hash table (uslijg_getClasses{)cannot be sure that another
thread won't be modifying it at the same time.

objc_unloadModules() — See objc_loadModules()
object_copy() -~ See object_dispose()

object_copyFromZone() - See object_dispose()

object_dispose(), object_copy(), object_copyFromZone(),
object_realloc(), object_reallocFromZone()

SUMMARY Manage object memory
DECLARED IN 0bjc/Object.h

syNnopsis id object_disposeQbject *fanObjec}
id object_copy©bject *anObject unsigned intindexedlvarBytés
id object_copyFromZoneQbject *anObject unsigned intndexedlvarBytes
NXZone *zong
id object_realloc(Object *anObject unsigned inhumBytep
id object_reallocFromZoneObject *anObject unsigned inhumBytesNXZone *zong

DESCRIPTION These five functions, along witihass_createlnstance(@nd
class_createlnstanceFromZone()manage the dynamic allocation of memory for objects.
Like those two functions, each of them is simply a “cover” for—a way of calling—another,
private function.

Functions: objc_unloadModules() 13

object_dispose(frees the memory occupied bBgObjectafter setting it$sa instance
variable tonil, and returngil. The function it calls to do this work can be changed by
reassigning thedeallocvariable.

object_copy()andobject_copyFromZone()create a new object that's an exact copy of
anObjectand return the new objeaibject_copy()allocates memory for the copy from the

same zone as the originabject_copyFromZone()places the copy imone The second
argument to both functionsdexedlvarBytesspecifies the number of additional bytes that
should be allocated to accommodate indexed instance variables; it serves the same purpose
as the second argumentdass_createlnstance()

The functions thabbject_copy()andobject_copyFromZone()call to do their work can
be changed by reassigning theopyand_zoneCopyvariables.

object_realloc()andobject_reallocFromZone()reallocate storage f@anObject adding
numBytesf possible. The memory previously occupiedamObjectis freed if it can't be
reused, and a pointer to the new locatioargdbjectis returnedobject_realloc()allocates
memory for the object from the same zone that it originally occupied,;
object_reallocFromZone()locates the object imone

The functions thabbject_realloc() and object_reallocFromZone(xall to do their work
can be changed by reassigning tiealloc and_zoneReallocvariables.

RETURN object dispose(yeturnsnil, object_copy()andobject_copyFromZone()return the
copy, andobject_realloc() andobject_reallocFromZone()return the reallocated object.
If the attempt to copy or reallocate the object fails, an error message is generated and
abort() is called.

object_getClassName()

SUMMARY Return the class name

DECLARED IN Objc/objc.h

syNopsis const char $bject_getClassNamea¢ anObjec}

DESCRIPTION This function returns the name afiObjecs class, or the string “nil” iinObjectis nil .

14

anObjectcan be either an instance or a class object.

Run-Time System

SUMMARY

DECLARED IN

SYNOPSIS

SEE ALSO

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

object_getindexedlvars()

Return a pointer to an object’'s extra memory
objc/objc.h

void *object_getindexedlvars{d anObjec}
This function returns a pointer to the first indexed instance variabteQifject if anObject

has indexed instance variables. If not, the pointer returned won't be valid and should not
be used.

class_createlnstance()

object_getinstanceVariable() —» See object_setinstanceVariable()
object_realloc() — See object_dispose()

object_reallocFromZone() —» See object_dispose()

object_setinstanceVariable(), object_getinstanceVariable()
Set and get instance variables
objc/Object.h

Ivar object_setinstanceVariableid anObject const char ¥ariableNamevoid *valug
Ivar object_getinstanceVariable{d anObject const char ¥ariableNamevoid **valug

object_setinstanceVariable(Jassigns a new value to thariableNameanstance variable
belonging tcanObject The instance variable must be one that's declared as a pointer;
typically it's anid. The new value of the pointer is passed in the third arguvedog
(Note that the pointer value is passed directly, not by reference.)

Functions: object_getIndexedlvars() 15

RETURN

SUMMARY

DECLARED IN

16

SYNOPSIS

object_getinstanceVariable()gets the value of the pointer storecha®bjects
variableNameanstance variable. The pointer is returned by reference through the third
argumentyalue For example:

int *i;
Ivar var = object_getinstanceVariable(anObject, "num", (void **)&i);

These functions provide a way of setting and getting instance variables that are declared as
pointers, without having to implement methods for that purpose. For example, Interface
Builder callsobject_setinstanceVariable(}to initialize programmer-defined “outlet”

instance variables.

These functions cannot reliably be used to set and get instance variables that are not
pointers.

Both functions return a pointer to the class template that describegridigleName
instance variable. A NULL pointer is returne@ifObjecthas no instance variable with
that name.

The returned template has a field describing the data type of the instance variable. You can
check it to be sure that the value set is of the correct type.

sel_getName() —» See sel_getUid()

sel_getUid(), sel_getName()
Match method names with method selectors
objc/objc.h

SEL sel_getUid€onst char &Namé¢
const char 8el_getName$EL aSelectoy

Run-Time System

DESCRIPTION The first functionsel_getUid() returns the unique identifier that representsatiieme
method at run time. The identifier is a selector (type SEL) and is used in place of the
method name in compiled code; methods with the same name have the same selector.
Whenever possible, you should use@selector()directive to ask the compiler to provide
the selector for a method. This function asks the run-time system for the selector and
should be used only if the name isn’t known at compile time.

The second functiosel_getName()is the inverse of the first. It returns the name that was
mapped t@aSelector

RETURN sel_getUid()returns the selector for tledamemethod, or O if there is no known method
with that name.sel_getName(yeturns a character string with the name of the method
identified by theaSelectorselector. IfaSelectoiisn’'t a valid selector, a NULL pointer is
returned.

sel_isMapped()
suMMARY Determine whether a selector is valid
DECLARED IN objc/objc.h
synopsis BOOL sel_isMappedSEL aSelectoy

RETURN sel_isMapped()returns YES ifaSelectoiis a valid selector (is currently mapped to a
method implementation) or could possibly be one (because it lies within the same range as
valid selectors); otherwise it returns NO.

Because all of a program’s selectors are guaranteed to be mapped at start-up, this function
has little real use. It's included here for reasons of backward compatibility only.

Functions: sel_isMapped() 17

sel_registerName()
SUMMARY Register a method name
DECLARED IN objc/objc.h
synopsis SEL sel_registerNameg¢onst char &Name¢

DESCRIPTION This function registeraNameas a method name and causes it to be mapped to a SEL
selector, which it returns.

No check is made to seedlNameis already a valid method name. If itis, the same name
will be mapped to more than one selector. When the run-time system needs to match a
selector to the name, it's indeterminant which one it will find.

RETURN sel_registerName(yeturns the selector it maps to tifgtringmethod.

18 Run-Time System

