
Getting Started

Chapter 1

14

This chapter introduces you to Enterprise Objects Framework by showing you
how to create a simple application. The steps you take in creating this
application demonstrate the principles you’ll use in every other application you
develop.

The application you’ll be creating in this chapter, Studios, is based on the
Movies sample database distributed with Enterprise Objects Framework (you
must have the sample databases installed to do this tutorial). It centers around
three enterprise objects: Studio, Movie, and Talent. Studios own movies, and
they have a budget for buying new movies. Movies feature actors, or “talent.”
The Studios application lets you transfer movies between studios and buy all of
the movies starring a particular actor. It also lets you add, modify, and delete
studios.

Select a studio to
display its movies.

Use the pop-up list
to transfer a movie to
a different studio.

Click here to transfer
all of the movies
starring the selected
actor to the selected
studio.

15

Getting Started Enterprise Objects and Relational Databases

Enterprise Objects and Relational Databases

The Studio, Movie, and Talent enterprise objects correspond to tables in a
relational database. For example, the Studio enterprise object corresponds to
the STUDIO table in the database, which has NAME and BUDGET columns.
The Studio enterprise object class in turn has name and budget instance variables,
or class properties (instance variables based on database data are called “class
properties”). In an application, Studio objects are instantiated using the data
from a corresponding database row, as shown in the following figure:

The enterprise objects in your application are not just a static representation of
your database data, however. Enterprise objects add behavior to your data. For
example, the Studio enterprise object class has a method for calculating the
studio’s portfolio value based on the revenue of its movies. It also has a method
for buying all of the movies starring a specified actor.

Enterprise Objects Framework manages the interaction between the database,
your enterprise objects, and the user interface. Its primary responsibilities are as
follows:

• Fetching data from relational databases into enterprise objects
• Binding data in enterprise objects to the user interface
• Keeping objects in the application in sync with each other, with the database,

and with the user interface

Studio

1002288 MGGMM 211,,000000,,000000

1113322 Paarraammoouunntt 500,,000000,,000000

STTUUDDIIOO__IIDD NAAMMEE BUUDDGGEETT
STTUUDDIIOO

name "MGM"
budget 21,000,000

Enterprise objects are instantiated from a corresponding
database row. They add behavior to the data they
contain.

Getting Started Creating the Studios Application

16

Creating the Studios Application

As with most Enterprise Objects Framework applications, you create the
Studios application using the following ingredients:

• A model you produce using the EOModeler application provided with Enterprise Objects
Framework. A model defines a mapping between your enterprise objects and
data in a relational database.

• A user interface. You can either use Interface Builder to construct a conventional
user interface, or WebObjects Builder if you want to build an application that
can be deployed on the World Wide Web. The examples in this tutorial use
Interface Builder.

• Source code for enterprise object classes. In the Studios application, these are
Studio and Talent. Movie uses the default enterprise object class,
EOGenericRecord, since it has no custom behavior. This is described in more
detail in later sections.

In addition, the Studios application requires a database server on which you’ve
installed the Movies example database. The final ingredients in the application
are the Enterprise Objects Framework classes and protocols, which you link into
your application.

In this tutorial you’ll learn the basic things you must do to create an Enterprise
Objects Framework application. You’ll discover how to:

• Create a new project using Project Builder.

For Mach Users Only

The examples in this chapter are based on
Windows NT. Most of the operations you
perform on Mach are the same, but there are
a few slight differences:

• On Mach the EOModeler and Project
Builder applications are located in the
/NextDeveloper/Apps directory.

• Some of application behavior may be
subtly different: For example, on Windows
NT, EOModeler starts by displaying an
empty model. On Mach it just displays the
menu.

• After you build an application on Windows
NT, you run it by opening the
<AppName>.app directory in your project
and double-clicking <AppName>.exe. On

17

Getting Started Creating the Studios Project

• Create a new model based on the Movies database using EOModeler.
• Edit your project’s nib file in Interface Builder.
• Write source code for the Studio and Movie enterprise object classes.
• Build your project in Project Builder.

Creating the Studios Project

Every Enterprise Objects Framework application starts out as a project. A project
is a repository for all the elements that go into the application, such as source
code files, makefiles, frameworks, libraries, the application’s user interface,
sounds, and images. You use the Project Builder application to create and
manage projects.

You must create or open a project to get Project Builder’s main window. The
New Project panel allows you to specify a new project’s name and location.

What is an Enterprise Object?

An enterprise object is like any other object,
in that it couples data with the methods for
operating on that data. However, an
enterprise object class has certain
characteristics that distinguish it from other
classes:

• It has properties that map to stored data;
an enterprise object instance typically
corresponds to a single row or record in a
database.

• It knows how to interact with other parts
of the Framework to give and receive
values for its properties.

The ingredients that make up an enterprise
object are its class definition and the data
values from the database row or record with
which the object is instantiated. An
enterprise object also has a corresponding
model that defines the mapping between the
class' object model and the database
schema.

1 Start Project Builder.

In the OPENSTEP Enterprise
program group, double-click the
Project Builder icon.

Getting Started Creating the Model

18

Project Builder creates a project directory named after the project—in this case
Studios—and populates this directory with an assortment of ready-made files
and directories. It then displays its main window.

When you create a project with the type “EOF Application,” it automatically
adds all of the frameworks you need to your project (EOAccess.framework,
EOControl.framework, and EOInterface.framework). A framework is a project
type that packages a shared dynamic library with its headers, documentation,
and resources.

Creating the Model

One of the fundamental features of Enterprise Objects Framework is that it
maps the data in relational databases to objects. The correspondence between
an enterprise object class and stored data is established and maintained by using
a model. A model defines, in entity-relationship terms, the mapping between
enterprise object classes and a database.

The following table describes the database-to-object mapping provided in a
model:

Database Element Model Object Object Mapping

Data Dictionary EOModel —

Table EOEntity Enterprise object class

Column EOAttribute Enterprise object class instance variable
 (class property)

Row — Enterprise object instance

2 Make a new project.

Choose Project m New.

In the New Project panel,
you can either use the Browse...
button to navigate to the directory
in which you want to put the new
project, or you can type the full
path. Give the project the name
“Studios.”

Use the Project Type pop-up list
to set the project type to EOF
Application. This adds all of the
necessary frameworks to your
project.

Click OK to create the project.

19

Getting Started Creating the Model

In addition to storing a mapping between the database schema and enterprise
objects, a model file stores information needed to connect to the database server.
This connection information includes the name of an adaptor to load so that
Enterprise Objects Framework can communicate with the database.

EOModeler displays the login panel for the database that corresponds to the
selected adaptor. The examples in this chapter use the Oracle version of the
Movies database included with Enterprise Objects Framework.

1 Launch EOModeler.

In the OPENSTEP Enterprise
program group, double-click the
EOModeler icon.

An empty model opens.

2 Open a new model.

Choose Model m New.

In the New Model panel,
select the adaptor for the
database you want to use.

Click OK.

Getting Started Creating the Model

20

When you first log in to a database, EOModeler uses an adaptor to read the data
dictionary from the database and create a default model. This model is
displayed in the Model Editor (shown below), which lists the entities available
for the database you specified in the login panel.

The default model created for you by EOModeler when you open a new model
is just a starting point. For most applications, you need to do some additional
work to your model to make it useful in your application. To produce a model
that can be used in the Studios application, you will ultimately need to do all of
the following:

• Assign the primary key for each entity.
• Add relationships to the Studio, Movie, Talent, and Movie Role entities.

3 Fill in the login panel.

The Icon Path changes to indicate

Double-click the Open Entity Icon to

your location as you
navigate in a model.

view an entity’s attributes.

Each row in this table represents
an entity.

21

Getting Started Creating the Model

• Generate template source code for the Studio and Talent classes.

These steps are described in more detail throughout this tutorial.

Assigning Primary Keys
In a relational database, each table has a column or combination of columns
whose values are guaranteed to uniquely identify each row in that table. For
example, in the Movies database the MOVIE table has as its primary key the
column MOVIE_ID. Each row in the MOVIE table has a different value in the
MOVIE_ID column, which uniquely identifies that row. Two movies could
have the same name, but still be distinguished from each other by their primary
keys.

Enterprise Objects Framework uses primary keys to uniquely identify
enterprise objects and to map them to the appropriate database row. Therefore,
you must assign a primary key to each of your entities in EOModeler.

MOVIE_ID is the MOVIE table’s primary key.
This means that each row has a unique value
in the MOVIE_ID column.

1002288 Tooottssiiee
50011

MOOVVIIEE__IIDD TIITTLLEE STTUUDDIIOO__IIDD
MOOVVIIEE

1113322
Taxxii Drriivveerr

50011

1111199
Sttaarr Warrss

30000

Getting Started Creating the Model

22

The following table lists the primary keys you need to assign to each of the
entities in the model. Note that some of the entities (such as Director) have a
compound primary key; that is, a primary key that is composed of more than one
attribute. For more discussion of this subject, see the appendix “Entity-
Relationship Modeling.”

For the entity... Assign as primary key attributes...

Director movieID and talentID

Movie movieID

MovieRole movieID and roleName

PlotSummary movieID

Studio studioID

Talent talentID

TalentPhoto talentID

Before You Go On

Save your model by choosing Model m Save. In the Save panel, give the model
the name Movies and save it into your Studios project folder. When you are
prompted to add the model to your project, click OK. You’ll be returning to

Click in the primary key column for the
attribute you intend to use as your
entity’s primary key. The primary key icon

Click on icons in the icon path to navigate
the model.

means that the attribute is used as the
primary key.

1 Assign a primary key to each
entity.

23

Getting Started Creating the User Interface for the Studios Application

EOModeler to enhance your model in later exercises, but for now you’re ready
to build the first stage of the Studios application.

Creating the User Interface for the Studios Application

When you create an application project, Project Builder puts the main nib file in
the Interfaces suitcase. A nib file is primarily a description of a user interface (or
part of a user interface). The main nib file contains the main menu and any
windows and panels you want to appear when your application starts up.

The default main nib file created by Project Builder is like a blank canvas, ready
for you to craft the interface. Look in the Interfaces suitcase for nib files.

By default, the window entitled “My Window” appears when the application is
launched.

Note: The Interface Builder application is located in the OPENSTEP Enterprise
program group. The icon for the application is this:

1 Open the main nib file.

Locate the appropriate nib file in
the project browser. On Windows
NT this is
WINDOWS_Studios.nib; on
Mach it is
NEXTSTEP_Studios.nib.

To open, double-click the file name.

nib file window When you first open the application’s main nib file,
Interface Builder displays a blank window.

Getting Started Creating the User Interface for the Studios Application

24

In Interface Builder you construct a user interface by dragging objects from a
palette and dropping them onto the window. The palette provided for use in the
Enterprise Objects Framework is the EOPalette. The EOPalette includes two
objects: EODisplayGroup and EOEditingContext.

You can use an NSTableView object (on the TabulationViews Palette) to display
rows of data in your user interface. A new NSTableView has two columns with

EOEditingContext

EODisplayGroup

2 Load the EOPalette.

Choose Tools m Palettes m Open.

In the Open Palette panel,
navigate to
Next/NextDeveloper/Palettes
and double-click
EOPalette.palette.

3 Add an NSTableView to the
window.

Select the TabulationViews
Palette.

Drag a table view from the palette
onto the window.

25

Getting Started Creating the User Interface for the Studios Application

enough room for about six records. You can add columns by copying and pasting
an existing column.

To display data in your user interface, you need an EODisplayGroup object.
EODisplayGroups transport values between an enterprise object and a user
interface object. You also need an EODatabaseDataSource, which acts on behalf
of the EODisplayGroup to fetch enterprise objects from the database. In
combination, EODisplayGroup and EODatabaseDataSource coordinate the
flow of data between the user interface and the database.

To produce an entity EODisplayGroup (which consists of an EODisplayGroup
pre-connected to an EODatabaseDataSource), drag an entity from EOModeler
into the nib file window.

The resulting entity EODisplayGroup has the same name as the corresponding
entity.

4 Drag the entities you want to use
in your application from
EOModeler into the nib file
window.

The model you use must have
been added to your project.You
usually accomplish this by saving
your model into your project
folder.

Getting Started Creating the User Interface for the Studios Application

26

An entity EODisplayGroup has keys that correspond to the properties in its
associated enterprise object class. You can examine these keys in the
EODisplayGroup Inspector.

An EOEditingContext object is added to
your application along with the first
entity you drag into Interface Builder.
Because your application typically needs
only one EOEditingContext, this object is
only added once.

The EODisplayGroup has the same name
as the entity from which it was created.

What is an EOEditingContext?

When you drag an entity into the nib file
window from your model, an
EOEditingContext object is added to your
application along with the EODisplayGroup
that’s created from the entity. An
EOEditingContext manages the graph of
enterprise objects in your application. The
EOEditingContext is responsible for ensuring
that all parts of your application stay in sync.
When an enterprise object changes, the

EOEditingContext broadcasts a notification
so that other parts of the application (such as
the user interface) can update themselves
accordingly. The EOEditingContext also
manages undo, and is the object through
which you save changes to the database. For
more information, see the EOEditingContext
class specification in the Enterprise Objects
Framework Reference.

27

Getting Started Creating the User Interface for the Studios Application

Connecting the Studio EODisplayGroup to the Interface
Now that you’ve dragged the Studio entity from EOModeler into your nib file
in Interface Builder, you’re ready to create the first stage of the Studios
application. You do this by making connections between your table view and the
new Studio EODisplayGroup you just added to your nib file.

Check here.

The keys listed correspond to the properties you
specify for the Studio entity in EOModeler.

5 Examine the EODisplayGroup in
the Inspector.

Select the Studio
EODisplayGroup in the nib file
window.

Choose Tools m Inspector.

Make sure that the “Fetch on
load” checkbox is checked. This
causes data to be fetched from
the database when you start your
application.

Getting Started Creating the User Interface for the Studios Application

28

Interface Builder opens the Connections display of the Inspector panel.

1 Form an association between the
table view columns and the
Studio EODisplayGroup.

Select the title bar of the column
from which you want to connect.
To select a title bar, double-click
it.

Control-drag a connection line
from the column to the Studio
EODisplayGroup in the nib file
window.

When the Studio EODisplayGroup
is outlined in black, release the
mouse button.

29

Getting Started Creating the User Interface for the Studios Application

The Connections Inspector uses different symbols and
notations to distinguish different types of aspects and
class keys.

Class keys that are italicized aren’t class properties.

Class keys that are gray text don’t match the type required by the
selected aspect, and the Inspector won’t let you connect to them.

This symbol next to an aspect in the left column
means that the aspect should be bound to a class
key that’s based on an attribute (as opposed to one that
represents a relationship).

This symbol next to an aspect in the left column means that
the aspect should be bound to a class key that represents a
to-one relationship.

This symbol next to an aspect in the left column means that
the aspect should be bound to a class key that represents a
to-many relationship.

2 Make the connection.

Choose EOColumnAssoc from the
pop-up list at the top of the left
column.

Select value in the left column.

Select name in the right column.

Click Connect or double-click
name to make the connection.

Using the same steps, connect
the remaining table view column
to the budget key.

What is an Association?

When you made a connection from the table
columns to the Studio EODisplayGroup in the
preceding exercise, you formed an
association.

EODisplayGroups use associations
(EOAssociations) to mediate between
enterprise objects and the user interface. An
association ties a single user interface
object, such as a table column, to a key (a
named property) in an enterprise object or
objects managed by the EODisplayGroup.

Associations keep the user interface
synchronized with enterprise object values.
When an object changes, its display in the
user interface updates to reflect the change.
Likewise, when the user edits the user
interface, the values in the object are
updated accordingly.

Associations can have multiple aspects. For
example, in the preceding exercise you
selected the value aspect for the
EOColumnAssociation to display all of the
class keys whose values you could choose
to display in the table column.
EOColumnAssociation has one other aspect,
enabled.

Enterprise Objects Framework includes
associations for different types of user
interface objects, such as table columns, text
fields, pop-up lists, and so on. Each
association has multiple aspects.

For a complete discussion of this subject and
a listing of all possible associations, see the
EOAssociation class and subclass
specifications in the Enterprise Objects
Framework Reference.

Getting Started Creating the User Interface for the Studios Application

30

Now that you’ve formed associations for all of the columns in the table view, you
can test your interface.

Note that because you enabled the “Fetch on load” option for the Studio
EODisplayGroup in the Inspector, the data is automatically fetched when you
test your interface.

Formatting Currency and Dates
When you test your interface, you may notice that the values listed in the
budget table column have no format. That is, the data in the column represents
currency, but it has no comma separators or decimal points.

Interface Builder includes two formatters: one for currency, and one for dates.
You can use these formatters to specify how a user interface control such as a text
field or table view column formats the data it displays. Formatters also ensure
that users enter data that is of the correct type and in the correct format.

3 Test the interface.

Choose File m Test Interface.

31

Getting Started Creating the User Interface for the Studios Application

Once you drag a formatter onto a user interface control, use the Inspector to
specify the formatting characteristics.

You can see the effects of the new formatting by testing your interface.

1 Add formatting.

From the palette, drag the
Currency formatter onto the
budget column.

Note that the formatter hasn’t
been successfully added until
you see the column head outlined
in black.

Display the Inspector for the
budget table view column.

Use the pop-up list at the top of
the Inspector to display the
Formatter view.

Select the format you want to use
to display the budget data.

Getting Started Creating the User Interface for the Studios Application

32

Adding Action Methods
You can add basic behavior to your application, such as giving it the ability to
add, delete, and save objects, without writing a line of code. This is possible
because the EODisplayGroup and EOEditingContext objects in Interface
Builder have predefined action methods that you can use to trigger operations
in your application. An action method is a method that’s invoked when the user
clicks a button or another control object.

These buttons will be used to insert new studios, delete existing studios, and
save changes.

2 Test your interface.

Choose File m Test Interface.

(On Mach choose Document m
Test Interface.)

3 Add action methods.

Add three buttons to your window
and label them “Add,” “Remove,”
and “Save.”

33

Getting Started Creating the User Interface for the Studios Application

Now test-run your application in Interface Builder and try inserting and deleting
some Studio objects. The changes you make aren’t saved to the database until
you click the Save button.

Control-drag from the Add button
to the Studio EODisplayGroup.

In the Inspector, select Outlets
from the pop-up menu at the top
of the left column.

Select target in the left column.

Double-click insert: in the right
column.

Using the same process, connect
the Remove button to the delete:
method.

To connect the Save button,
control-drag from the button to
the EditingContext object in the
nib file window.

In the Inspector, select target in
the left column.

Double-click saveChanges: in the
right column.

4 Test your interface.

Choose File m Test Interface.

Getting Started Creating the User Interface for the Studios Application

34

What if It Doesn’t Work?

What if you test-run the application at this point and it doesn’t work?

• If no data appears in the table view, look in the Interface Builder Inspector to
make sure that you have “Fetch on load” enabled for the Studio
EODisplayGroup.

• If the buttons don’t have the desired effect, check to see that they’re
connected to the appropriate action method in the appropriate object.

• If you get database errors when you try to add and delete studios or save
changes, make sure that your model is properly specified. In particular, check
that all of your entities have primary keys. Finally, choose Check Consistency
from the Model menu in EOModeler to confirm that there are no problems
in your model.

Optional Exercise

Enterprise Objects Framework provides additional action methods that you can
use in connections: fetch: (EODisplayGroup) and undo:, redo:, revert:, and refetch:
(EOEditingContext). Try adding controls (such as buttons or menu items) to
the application and connecting them to some of these action methods.

Until now you have still not written a single line of code. However, because of
the built-in features of Enterprise Objects Framework, all of the following have
been provided for you:

• Automatic primary key generation when you insert a new object

As described in the section “Assigning Primary Keys” on page 21, every row
in a database is uniquely identified by its primary key value. When you
create a new object in your application and save it to the database, you’re
adding a new row to a database table, and this row needs a primary key (that
is, it needs to have a unique value for the primary key attribute you set in
EOModeler). Enterprise Objects Framework handles generating this
unique value for you.

• Formatting of money and dates

• Coordinating the user interface with your data

Enterprise Objects Framework keeps all parts of an application in sync with
the current view of the data. For example, if you have two windows in an
application that are displaying the same data and you change the values in
one window, the other will automatically update to reflect the changes.

35

Getting Started Adding Relationships

Adding Relationships

Creating an application that adds and modifies studios is just the first stage of the
Studios application. Now you can enhance the application to display all of the
movies owned by a selected studio. But in order to make this possible, you first
need to go back to EOModeler and add relationships to the model’s entities.

The Studio, Movie, and Talent entities are not especially interesting when
considered separately. Their real significance only becomes apparent in their
relationships to each other. Every Movie has one corresponding Studio. One
Studio can have many Movies. A particular actor (Talent) can star in several
movies.

Relational databases model not just individual entities, but entities’
relationships to one another. For example, a Movie entity has a corresponding
Studio entity. This is modeled in the database by both the Movie entity and the
Studio entity having a studioID attribute. In Movie, studioID is a foreign key, while
in Studio it’s a primary key. A foreign key correlates with the primary key of
another table in order to model a relationship a source table (Movie) has to a
destination table (Studio). In the following diagram, notice that the value in the
STUDIO_ID column for both movies is “501”. This matches the value in the
STUDIO_ID column of the Columbia Pictures movie studio. In other words, the
movies “Tootsie” and “Taxi Driver” both belong to Columbia Pictures.

This plays out in your running application as follows: Suppose you fetch a Movie
object. Enterprise Objects Framework takes the value for the movie’s studioID
attribute and looks up the studio with the corresponding primary key.

For your application to take advantage of such database-defined relationships,
you need to explicitly add a corresponding relationship to your model.

At this point you need to specify the following relationships:

1002288
Tooottssiiee 50011 50011 Coolluummbbiiaa

1113322
Taxxii Drriivveerr 50011 70033 MGGMM

MOOVVIIEE__IIDD TIITTLLEE STTUUDDIIOO__IIDD STTUUDDIIOO__IIDD NAAMMEE

MOOVVIIEE STTUUDDIIOO

The value of the STUDIO_ID foreign key for the movies "Tootsie" and "Taxi Driver"
matches the value of the STUDIO_ID primary key for Columbia Pictures.

Getting Started Adding Relationships

36

From the Studio (source) entity:

• Form a to-many relationship to the Movie (destination) entity.
• The source attribute is studioID. The destination attribute is studioID.
• Name the relationship movies.

From the Movie (source) entity:

• Form a to-one relationship to the Studio (destination) entity.
• The source attribute is studioID. The destination attribute is studioID.
• Name the relationship studio.

Adding Movies to the Application
The relationships you specified in EOModeler now come into play in your
application. In EOModeler you added a to-many relationship from Studio to
Movie, because a Studio can have many Movies. You can now use this
relationship to display the movies for the selected studio.

In this type of configuration, called master-detail, the master table holds records
for the source of the relationship, while the detail table contains records for the

Select a destination entity.

Then select a source attribute...

... and a destination attribute.

When you’re done, click here.

Set whether your relationship is to-one
or to-many.

1 Create a relationship.

Display the attributes view for the
entity you want to use as the
source of the relationship.

Choose Property m Add
Relationship.

In the Relationship Inspector,
select a destination entity.

Select a source attribute.

Select a destination attribute.

Connect them.

2 Name the relationship.

Type the name in the Name field
(where the text “Relationship”
appears by default) and press
Return.

37

Getting Started Adding Relationships

destination. In the Studios application, Studio is the master table and Movie is
the detail table.

The EODisplayGroup object you just dragged in from the EOPalette has no
EODatabaseDataSource, unlike the Studio EODisplayGroup.

You can now use the movies EODisplayGroup to access all of the properties in
the Movie object.

3 Create a master-detail interface.

From the EOPalette, drag an
EODisplayGroup object into the
nib file window.

Control-drag from the detail
(Movie) EODisplayGroup to the
master (Studio) EODisplayGroup.

In the Inspector, choose
EOMasterDetailAssoc from the
pop-up list at the top of the left
column.

Select parent in the left column.

Select movies in the right column.
movies is the to-many
relationship that Studio has to
Movie.

Click Connect. The name of the
EODisplayGroup changes to
movies.

Getting Started Transferring Movies Between Studios

38

Note that when you select a studio in the Studios table view, the display changes
in the Movies table view to show the selected studio’s movies.

Note: You can also create a master-detail interface by simply dragging a
relationship from EOModeler into your window in Interface Builder. For a
description of this, see the chapter “Creating an Enterprise Objects Framework
Project.”

Transferring Movies Between Studios

One of the primary functions of the Studios application is to allow one studio to
purchase movies from another. To make this possible, you’ll now add a pop-up
list to the user interface.

The pop-up list displays a list of all of the studio titles. When you select a new
studio in the pop-up list, you cause that studio to purchase the movie that’s
selected in the table view.

Notice that labels have been
added to the interface to identify
the Studio and Movie tables.

Drag a new table view into the
window, and connect its columns
to the title and revenue keys in
Movie. You use the same process
that was described in the section
 “Connecting the Studio
EODisplayGroup to the Interface”
on page 27.

Once you’ve connected the
columns in the new table view to
the movies EODisplayGroup, test
the modified interface by
choosing File m Test Interface.

39

Getting Started Transferring Movies Between Studios

Now you have to add another binding to the EOPopupAssociation so that when
you change the selected studio title, it sets the corresponding studio relationship
property in the selected Movie object.

1 Add a pop-up list.

Drag a pop-up list into the
window.

Control-drag from the pop-up list
to the Studio EODisplayGroup.

In the Inspector, select
EOPopupAssoc from the pop-up
list at the top of the left column.

Select titles in the left column.
The titles aspect is bound to the
class key whose values you want
to display in the pop-up.

Select name in the right column
(since you want to display Studio
names in the pop-up).

Getting Started Transferring Movies Between Studios

40

You can now test the behavior of the pop-up list. For example, suppose you want
to transfer the movie “Alien” from the 20th Century Fox studio to MGM. First
select 20th Century Fox to display its movies. Then select “Alien” in the list of
movies. Finally, use the pop-up list to change the selected studio from 20th
Century Fox to MGM. This has the effect of removing “Alien” from 20th
Century Fox’s movies relationship array and adding it to the movies relationship
array of MGM. It also sets the “Alien” Movie object’s studio relationship property

Control-drag from the pop-up list
to the movies EODisplayGroup.

In the Inspector, select
EOPopupAssoc from the pop-up
list at the top of the left column.

Select selectedObject in the left
column. The selectedObject
aspect is bound to the
relationship property (in this
example, Movie’s studio
property) that corresponds to the
object bound to the titles aspect
(Studio).

Select studio in the right column
(since you want to change the
Movie object’s studio).

2 Test your interface and try out the
new pop-up list.

Choose File m Test Interface.

41

Getting Started Putting the Finishing Touches on Your Model

to point to the new studio, MGM. When you use the pop-up list to transfer a
movie, you’ll notice that the movie disappears from the original studio’s movie
list and reappears in the movie list of the new studio.

These changes aren’t committed to the database until you click Save. At that
time Enterprise Objects Framework translates the changes you made in the
object graph into the appropriate database changes. For example, it sets the
foreign key studioID in the transferred Movie object to have the same value as the
studioID primary key of its new studio.

Note that Enterprise Objects Framework manages all of this for you without
requiring you to write any code.

Putting the Finishing Touches on Your Model

You are almost ready to add custom behavior to your enterprise objects. But first
you need to put a few finishing touches on your model.

In “Adding Relationships” on page 35, you added relationships between the
Studio and Movie entities. Now you need to add a few additional relationships
to your model:

From the Movie (source) entity:

• Form a to-many relationship to the MovieRole (destination) entity.
• The source attribute is movieID. The destination attribute is movieID.
• Name the relationship roles.

• Form a to-one relationship to the PlotSummary (destination) entity.
• The source attribute is movieID. The destination attribute is movieID.
• Name the relationship plotSummary.

From the Talent (source) entity:

• Form a to-many relationship to the MovieRole (destination) entity.
• The source attribute is talentID. The destination attribute is talentID.
• Name the relationship roles.

• Form a to-one relationship to the TalentPhoto (destination) entity.
• The source attribute is talentID. The destination attribute is talentID.
• Name the relationship photo.

From the MovieRole (source) entity:

Getting Started Putting the Finishing Touches on Your Model

42

• Form a to-one relationship to the Movie (destination) entity.
• The source attribute is movieID. The destination attribute is movieID.
• Name the relationship movie.

• Form a to-one relationship to the Talent (destination) entity.
• The source attribute is talentID. The destination attribute is talentID.
• Name the relationship talent.

Removing Primary and Foreign Keys as Class Properties
By default, EOModeler makes all of an entity’s attributes class properties
(except for non-database attributes that you add to the entity). When an
attribute is a class property, it means that the property will be included in your
class definition and that it can be fetched from the database. To put it another
way, only attributes that are marked as class properties become part of your
enterprise objects.

You should only mark as class properties those attributes whose values are
meaningful in the objects that are created when you fetch from the database.
Attributes that are essentially database artifacts, such as primary and foreign
keys, shouldn’t be marked as class properties unless the key has meaning to the
user and must be displayed in the user interface.

Eliminating primary and foreign keys as class properties has no adverse effect
on how Enterprise Objects Framework manages enterprise objects in your
application.

Click in an attribute’s Class Property column
to remove it as a class property.

3 Remove primary and foreign keys
as class properties.

In the Model Editor, select the
entity you want to modify.

Click in the Class Property
column to remove the symbol.

43

Getting Started Adding Behavior to Your Enterprise Objects

At this point your model is complete. Looking at your model using the Diagram
View (available through ModelerBundle in the on-line examples) gives you an
overview of the entities in the model and their relationships to other entities.

Adding Behavior to Your Enterprise Objects

As the preceding sections illustrate, you can go quite far in an Enterprise
Objects application without writing any code.

However, the real power of an Enterprise Objects Framework application lies in
the enterprise objects you create. The behavior (business logic) you add to your
objects is what brings your stored data to life.

Specifying Custom Enterprise Object Classes for Studio and Talent
Unless you specify otherwise, EOModeler maps entities to the
EOGenericRecord class, which can be thought of as the default enterprise
object class.

However, when you want to add custom behavior to a class (for example, to
assign default values when you create new objects or to perform validation), you
need to implement a custom enterprise object class. This class includes the
default behavior provided in EOGenericRecord as well as the custom behavior
you implement.

Getting Started Adding Behavior to Your Enterprise Objects

44

You need to perform this operation for the Studio and Talent entities. Movie
doesn’t need to be a custom class since it doesn’t have any specialized behavior.
By convention, class names are capitalized and based on the name of
corresponding entity. Consequently, you should name the classes Studio and
Talent.

Once you specify a custom class for an entity in EOModeler, you can generate
template source code for that entity.

When Do You Use a Custom Enterprise Object Class?

Enterprise Objects Framework provides a
“default” enterprise object class,
EOGenericRecord. An EOGenericRecord can
take on values for any properties defined in
your application’s model, but it implements
no custom behavior. EOGenericRecord
objects can hold simple values as well as
refer to other enterprise objects through
relationships defined in the model.

The criterion for deciding whether to make
your enterprise objects custom classes or to
simply use the EOGenericRecord class is
behavior. One of the main reasons to use the
Enterprise Objects Framework is to

associate behavior with your persistent data.
Behavior is implemented as methods that
“do something” (as opposed to merely
setting or returning the value for a property).
Since the Framework itself handles most of
the behavior related to persistent storage,
you can focus on the behavior specific to
your application.

Because the Studio and Talent classes need
to have specialized behavior (for example, to
perform validation when you attempt to save
changes to the database), they need to be
custom classes.

Replace the text “EOGenericRecord” with the name y
want to use for the class.

1 Specify custom enterprise object
classes.

In the Model Editor, select the
entity for which you want to
specify an enterprise object
class.

Specify an enterprise object
class for the entity by typing the
class name in the Class Name
field.

For the Studios application, you
need to create custom classes
for both Studio and Talent. These
classes should be named Studio
and Talent, respectively.

45

Getting Started Adding Behavior to Your Enterprise Objects

Generating Template Source Code
To begin creating your custom classes, generate template source code for the
Studio and Talent entities. You use this template source code as a basis for
adding your own methods to your enterprise objects.

Generating template files produces:

• A header (.h) file that declares instance variables for all of the class properties,
and optional accessor methods for those instance variables. Accessor methods
set and return the values of the object’s instance variables.

• An implementation (.m) file that provides basic implementations for the
accessor methods.

Note: To generate template source code for an entity, you must have provided a
name for it (that is, you must have replaced the text “EOGenericRecord”) in the
Class Name field.

The header file Studio.h shows you the instance variables and accessor methods
that are automatically created for you when you generate template source code
for the Studio class.

Studio.h
@interface Studio : NSObject

{

 NSDecimalNumber *budget;

1 Generate template source code.

In the Model Editor, select the
entity for which you want to
generate template source code.

Choose Property m Create
Template from the Property menu.
EOModeler displays a Choose
Template Name panel.

If you opened the model file from
Project Builder, the Choose
Template Name panel displays
the project as the default
destination, and <Class>.m as the
default file name. Click Save.

A panel appears, asking if you
want to insert the files in your
project. Click OK.

You need to generate template
source code for both the Studio
and Talent entities.

Getting Started Adding Behavior to Your Enterprise Objects

46

 NSString *name;

 NSMutableArray *movies;

}

- (void)setBudget:(NSDecimalNumber *)value;

- (NSDecimalNumber *)budget;

- (void)setName:(NSString *)value;

- (NSString *)name;

- (NSArray *)movies;

- (void)addToMovies:(Movie *)object;

- (void)removeFromMovies:(Movie *)object;

@end

Implementing Custom Behavior for Your Classes
The user interface you designed in Interface Builder already allows you to insert
and delete Studio objects. However, it doesn’t do any additional processing
when these operations take place. For example, what if you want to assign
default values to newly created objects? And how can you prevent users from
inserting objects that contain invalid data? You can add methods to your
enterprise objects to handle such issues.

Managing Relationships
In the section “Transferring Movies Between Studios” on page 38, you added a
pop-up list to the user interface to transfer movies between studios. However,
there is still work to be done. When a movie is sold to a new studio, you need to

Adding Behavior to Enterprise Objects

Some of the more common ways to add
behavior to your enterprise object classes
are:

• Performing computations based on the
values of class properties. For example,
from an Employee’s salary property, you
might calculate a bonus.

• Managing the creation and insertion of
objects (for example, assigning default
values to newly created objects, creating
related objects as the by-product of

inserting a new object, appropriately
setting relationships for new objects, and
so on)

• Performing validation when a particular
operation (such as save or delete) takes
place

• Adding sophisticated business logic

For a more complete discussion of this
subject, see the chapter “Designing
Enterprise Objects.”

47

Getting Started Adding Behavior to Your Enterprise Objects

add the amount of the movie’s revenue to the old studio’s budget (to show the
studio’s profit from the sale). Likewise, you need to subtract the amount of the
movie’s revenue from the new studio’s budget (to reflect the expense of
purchasing the movie).

When you transfer movies between studios, you’re actually manipulating the
movies relationship property in each of the Studio objects, deleting the Movie
object from the movies array of the old studio, and adding the Movie object to the
movies array of the new studio. Enterprise Objects Framework automatically
invokes the method addObject:ToPropertyWithKey: when you add an object to an
array that represents a relationship property, and invokes
removeObject:fromPropertyWithKey: when you delete an object from the array. These
methods are part of the EOKeyRelationshipManipulation protocol; for more
information see the NSObject Additions class specification in the EOControl
framework.

When passed a key (such as movies), the default implementations of these
methods look for a method that has the name addToKey: (when an object is being
added) and removeFromKey: (when an object is being removed). Skeletal versions
of these methods are provided in your template source code.

To intervene and perform your own processing when objects are added to and
removed from the movies relationship array, you add code to the methods
addToMovies: and removeFromMovies: in the Studio class:

- (void)addToMovies:(id)movie

{

 NSDecimalNumber *newBudget;

[self willChange];

 newBudget = [[self budget] decimalNumberBySubtracting:
[movie valueForKey:@"revenue"]]

 [self setBudget:newBudget];

 [movies addObject:movie];

}

- (void)removeFromMovies:(id) movie

{

 NSDecimalNumber *newBudget;

[self willChange];

 newBudget = [[self budget] decimalNumberByAdding:
[movie valueForKey:@"revenue"]]

 [self setBudget:newBudget];

 [movies removeObject:movie];
}

Getting Started Adding Behavior to Your Enterprise Objects

48

Writing Derived Methods
One kind of behavior you might want to add to your enterprise object class is the
ability to perform computations based on the values of class properties. For
example, studios have movies, and the total revenue of the movies constitutes
the studio’s portfolio value. To calculate a studio’s portfolio value, you could
have a method in Studio.m like the following:

- (NSDecimalNumber *)portfolioValue

{

 NSDecimal result = [[NSDecimalNumber zero] decimalValue];

 int i = [movies count];

 while(i--) {

 NSDecimalNumber *value = [[movies objectAtIndex:i]
 valueForKey:@"revenue"];

 if(value) {

NSDecimal total = [value decimalValue];

NSDecimalAdd(&result, &result, &total, NSRoundBankers);

 }

 }

 return [NSDecimalNumber decimalNumberWithDecimal:result];
}

You can display the results of this method in the user interface by forming an
association between a control and the method. That way, whenever a new studio
is selected or when a selected studio’s movie revenues change, its portfolio value
is dynamically recalculated and displayed.

Once you’ve added the method as a class key, you can use it in associations.

Type the method name here.

2 Associate a method with a user
interface control.

Display the Attributes view of the
Inspector for the Studio
EODisplayGroup.

Add the name of the method
(portfolioValue) you want to use
in an association.

Click Add.

49

Getting Started Adding Behavior to Your Enterprise Objects

To see the effects of the change, you must compile and run the application.

Drag a text field into the window,
and add a Currency formatter to
it.

Control-drag from the text field to
the Studio EODisplayGroup.

In the Connections Inspector,
choose EOControlAssoc from the
pop-up list at the top of the left
column.

Select value in the left column.

In the right column select the
method (portfolioValue) you want
to associate with the control.

Double-click portfolioValue to
connect.

Getting Started Adding Behavior to Your Enterprise Objects

50

You can now run the application to see the effects of the portfolioValue method.

Performing Validation
Another element you’ll likely want to add to your enterprise object classes is
validation. For example, suppose that when a studio buys a new movie, you

Click here to display the Build panel.

Click here to build
your application.

3 Use Project Builder to build the
application.

The selected studio’s portfolio value is
displayed here. It’s dynamically
recalculated whenever you select a
new studio or when the selected studio’s
portfolio value changes.

4 Run the application.

Choose Tools m Launcher m Run,
or else open the Studios.app
directory and double-click
Studios.exe.

51

Getting Started Adding Behavior to Your Enterprise Objects

want to check to make sure that acquiring the movie won’t cause the studio to
exceed its budget. You could implement a method in the Studio class like the
following:

- (NSException *)validateForSave

{

 if ([[self budget] doubleValue] < 0)

 return [NSException validationExceptionWithFormat:
@"You're exceeding your budget!"];

 return [super validateForSave];
}

Now when a studio buys more movies than it can afford, a panel displaying the
message “You’re exceeding your budget!” appears when the user attempts to
save the changes to the database.

The validateForSave method is part of a category of NSObject that uses the
EOClassDescription class to provide default implementations of validation
methods. These methods are invoked automatically by framework components
such as EODisplayGroup and EOEditingContext. They are:

• validateValue:forKey:
• validateForSave
• validateForDelete
• validateForInsert
• validateForUpdate

For more discussion of this topic, see the chapter “Designing Enterprise
Objects.”

Providing Default Values for Newly Inserted Objects
When new objects are created in your application and inserted into the database,
it’s common to assign default values to some of their properties. For example,
you might decide to assign newly created Studio objects a default budget (the
budget is the amount a studio is allowed to spend on new movies).

To assign default values to newly created enterprise objects, use the method
awakeFromInsertionInEditingContext:. This method is automatically invoked right
after your enterprise object class creates a new object and inserts it into an
EOEditingContext.

The following implementation of awakeFromInsertionInEditingContext: in the Studio
class sets the default value of the budget property to be one million dollars:

- (void)awakeFromInsertionInEditingContext:(EOEditingContext *)ctx

{

Getting Started Adding Behavior to Your Enterprise Objects

52

if (!budget)

budget = [NSDecimalNumber

decimalNumberWithString:@"1000000.00"];

 [super awakeFromInsertionInEditingContext:ctx];
}

When a user clicks the Add Studio button in the Studios application, a new
record is inserted, with “$1,000,000.00” already displayed as a value in the budget
column. Notice that because you put a formatter on this column, the value is
formatted correctly after you insert the object.

Adding Business Logic
In addition to such operations as assigning default values to new objects and
performing validation, enterprise objects can also implement more
sophisticated business logic. For example, suppose you want to give studios the
ability to buy all of the movies that star a specified actor. You can implement a
method such as the following in Studio.m:

- (void)buyAllMoviesStarring:(Talent *)talent

{

 NSArray *actorsMovies = [talent moviesStarredIn];

 unsigned i = [actorsMovies count];

 while (i--) {

 id movie = [actorsMovies objectAtIndex:i];

 if (![movies containsObject:movie]) {

 [self addToMovies:movie];

}

 }
}

This method invokes the moviesStarredIn method, which is implemented in
Talent.m:

- (NSArray *)moviesStarredIn

{

 unsigned i = [roles count];

 NSMutableArray *result = [NSMutableArray arrayWithCapacity:i];

 while (i--) {

 id movie = [[roles objectAtIndex:i] valueForKey:@"movie"];

 if (![result containsObject:movie]) {

 [result addObject:movie];

}

 }

 return result;
}

53

Getting Started Adding Behavior to Your Enterprise Objects

You can associate the buyAllMoviesStarring: method with a user interface control.
But first you need to add to your user interface a table view that lists all actors
(talent).

Now that you’ve added the table view, connected it to the firstName and lastName
properties of the Talent EODisplayGroup, and added a Buy button to the
window, you’re ready to use an EOActionAssociation to connect the button to
the buyAllMoviesStarring: method.

5 Add a new table view to your
user interface.

Drag the Talent entity from your
model into the nib file window in
Interface Builder.

Add a table view to your window.

Control-drag from each table
view column to the Talent
EODisplayGroup.

Using the value aspect of the
EOColumnAssoc, connect the
table view columns to the
firstName and lastName class
keys, respectively.

6 Add a button to the window.

Drag a button into the window
next to the Talent table view and
label it “Buy”.

Getting Started Adding Behavior to Your Enterprise Objects

54

You can now use the buyAllMoviesStarring: method in associations.

7 Associate a method with a user
interface control.

Display the Attributes view of the
Inspector for the Studio
EODisplayGroup.

Add the name of the method
(buyAllMoviesStarring:) you
want to use in an association.

Click Add.

55

Getting Started Adding Behavior to Your Enterprise Objects

Because the buyAllMoviesStarring: method takes a Talent object as an argument,
you need to make a connection from the Buy button to the Talent
EODisplayGroup.

Control-drag from the Buy button
to the Studio EODisplayGroup.

In the Connections Inspector,
choose EOActionAssociation
from the pop-up list at the top of
the left column.

Select action in the left column,
and the method you want to
connect to
(buyAllMoviesStarring:) in the
right column.

Click Connect.

Getting Started Adding Behavior to Your Enterprise Objects

56

Once you finish connecting the button, you can use it to purchase all of the
movies starring the selected actor for the selected studio.

Optional Exercise

You can display different types of data in your user interface. For example, you
can add an image view to display the photo of a selected actor, and a scroll view
to display the plot summary for the selected movie.

To use image data in your application, you must first have set up an NSImage
custom value for TalentPhoto’s photo attribute in your model. In the Attribute
Inspector, use the pop-up list to set photo’s data type to Custom. In the Class
text field, type NSImage. In the Factory Method text field, type
imageWithData:.In the Conversion Method text field, type
TIFFRepresentation. Finally, use the Init Argument pop-up list to specify the
type NSData.

Control-drag from the Buy button
to the Talent EODisplayGroup.

In the Inspector, select argument
in the left column. The argument
aspect takes the destination of
the connection (Talent) as an
argument, which will be supplied
to the buyAllMoviesStarring:
method.

Click Connect.

57

Getting Started Running the Studios Application

To add an image view, drag an EODisplayGroup from the EOPalette into the
nib file window. Control-drag to form an EOMasterDetailAssociation between
it and the Talent EODisplayGroup; select parent in the left column and photo
in the right. Then drag an image view object from the palette into the window.
Control-drag to connect it to the new photo EODisplayGroup using an
EOControlAssociation; select value in the left column and photo in the right.

To add a text view, drag an EODisplayGroup from EOPalette into the nib file
window. Control-drag to form an EOMasterDetailAssociation between it and
the movies EODisplayGroup; select parent in the left column and plotSummary
in the right. Drag a scroll view into the window.

To connect the text view portion of the scroll view to the EODisplayGroup, you
have to use the outline view of the nib file window. To navigate to the scroll view
that contains the text view in the nib file window, place the cursor in the text
view and press Command-e. This displays the outline view of the nib file
window with the scroll view selected. In the nib file window, open the scroll
view and select the text view it contains. Control-drag within the outline view
of the nib file window to connect the text view to the new plotSummary
EODisplayGroup using an EOControlAssociation; select value in the left
column and summary in the right.

Running the Studios Application

Congratulations! You’ve just finished creating your first Enterprise Objects
Framework application. Build your application using Project Builder, open the
Studios.app directory in your project directory, start it by double-clicking
Studios.exe, and try it out.

Although it’s a simple example, the Studios application introduced you to many
of the concepts, tools, and skills you’ll need to create Enterprise Objects
Framework applications. You’ve learned about:

• Creating a model using EOModeler
• Generating template source code for enterprise object classes
• Composing a graphical user interface for an Enterprise Objects Framework

with Interface Builder
• Adding formatting to your user interface
• Creating a master-detail interface
• Using EODisplayGroup and EOEditingContext action methods

Getting Started Running the Studios Application

58

• Implementing custom behavior for enterprise object classes

59

Getting Started Running the Studios Application

A Quick Guide to Enterprise Objects Framework and Relational Database Terminology

Several of the terms listed here apply to relational databases
and entity-relationship modeling. For a more complete
discussion of this subject, see the appendix “Entity-
Relationship Modeling.”

attribute

In Entity-Relationship modeling, an identifiable characteristic of
an entity. For example, lastName can be an attribute of an
Employee entity. An attribute typically corresponds to a column in
a database table. See flattened attribute, entity, and relationship.

class property

An instance variable in an enterprise object that meets two
criteria: it’s based on an attribute in your model, and it can be
fetched from the database. “Class property” can either refer to an
attribute or a relationship.

column

In a relational database, the dimension of a table that holds values
for a particular attribute. For example, a table that contains
employee records might have a column titled “LAST_NAME” that
contains the values for each employee’s last name. See attribute.

compound primary key

In a database table, the group of columns whose values, taken in
combination, are guaranteed to uniquely identify each row. See
primary key.

data dictionary

In relational databases, the system tables that describe the
organization of data in a particular database.

database server

A data storage and retrieval system. Database servers typically
run on a dedicated computer and are accessed by client
applications over a network.

enterprise object

An Objective-C object that conforms to the key-value coding
protocol, whose properties (data) can map to stored data. An
enterprise object brings together stored data with the methods
for operating on that data. See key-value coding and property.

entity

In Entity-Relationship modeling, a distinguishable object about
which data is kept. For example, you can have an Employee entity
with attributes such as lastName, firstName, address, and so on.
An entity typically corresponds to a table in a relational database;
an entity’s attributes in turn correspond to a table’s columns. See
attribute and table.

Entity-Relationship modeling

A discipline for examining and representing the components and
interrelationships in a database system. Also known as E-R
modeling, this discipline factors a database system into entities,
attributes, and relationships.

fetch

In Enterprise Objects Framework applications, to retrieve data
from the database server into the client application, usually into
enterprise objects.

flattened attribute

A special kind of attribute that you add from one entity to another
by traversing a relationship. For example, employees work for
departments; you can add an attribute (such as
departmentName) from the Department entity to the Employee
entity as a flattened attribute. A flattened attribute is normally
implemented by joining the tables corresponding to the source
and destination entities whenever the attribute’s data is fetched.
See relationship and attribute.

foreign key

An attribute in an entity that gives it access to rows in another
entity. This attribute must be the primary key of the related entity.
For example, an Employee entity can contain the foreign key
deptID, which matches the primary key in the entity Department.
You can then use deptID as the source attribute in Employee and
as the destination attribute in Department to form a relationship
between the entities. See key, primary key, and relationship.

Getting Started Running the Studios Application

60

generic record

An instance of the EOGenericRecord default enterprise object
class. A generic record has properties that map to stored data,
but unlike a custom enterprise object, it adds no behavior to that
data. Like custom enterprise objects, generic records conform to
the key-value coding protocol; see key-value coding.

join

An operation that provides access to data from two tables at
the same time, based on the values contained in related
columns.

key-value coding

The mechanism that allows the properties in enterprise objects to
be accessed by name (that is, as key-value pairs) by other parts
of the Framework.

many-to-many relationship

A relationship in which each record in the source entity may
correspond to more than one record in the destination entity, and
each record in the destination may correspond to more than one
record in the source. For example, an employee can work on
many projects, and a project can be staffed by many employees.
See relationship.

model

An EOModel object that defines, in Entity-Relationship terms, the
mapping between enterprise object classes and the database
schema. This definition is typically stored in a file created with the
EOModeler application. A model also includes the information
needed to connect to a particular database server; see
connection dictionary.

record

The set of values that describes a single instance of an entity; in a
relational database, a record is equivalent to a row.

relational database

A database designed according to the relational model, which
uses the discipline of Entity-Relationship modeling and the data
design standards called normal forms.

relationship

A link between two entities that’s based on attributes of the
entities. For example, the Department and Employee entities can
have a relationship based on the deptID attribute as a foreign key
in Employee, and as the primary key in Department (note that
though the join attribute deptID is the same for the source and
destination entities in this example, it doesn’t have to be). This
relationship would make it possible to find the employees for a
given department. See to-one, to-many, many-to-many, primary
key, and foreign key.

row

In a relational database, the dimension of a table that groups
attributes into records.

table

A two-dimensional set of values corresponding to an entity. The
columns of a table represent characteristics of the entity and the
rows represent instances of the entity.

to-many relationship

A relationship in which each source record has zero to many
corresponding destination records. For example, a department
has many employees

to-one relationship

A relationship in which each source record has exactly one
corresponding destination record. For example, each employee
has one job title.

.

