Entity-Relationship Modeling






Modeling Objects

A database server stores data in the structures that it defines: A relational
database uses tables to store data, an object-oriented database uses objects, a file
system uses files, and so on. The Enterprise Objects Framework uses the
terminology of Entity-Relationship modeling (or E-R modeling) to describe a
server’s data structures in a way that allows those data structures to be mapped
to enterprise objects.

Entity-Relationship modeling isn’t unique to the Enterprise Objects
Framework; it’s a popular discipline with a set of rules and terms that are
documented in database literature. The Enterprise Objects Framework uses a
modified version of the traditional rules of E-R modeling.

When your data store is a relational database, you can use the EOModeler
application to specify the mapping between the database data and your
enterprise objects. The model file you produce using EOModeler describes the
server’s data structures in terms that the Enterprise Objects Framework can
understand. Note that if you’re working with a data store other than a database,
you must create your own data structures to map the server’s data to your
enterprise objects.

This chapter presents the E-R terms and concepts as they are used by the
Framework. See the chapter “Using EOModeler” for instructions on putting
these concepts into practice.

In an Entity-Relationship model, distinguishable things are known as entities,
each entity is defined by its component attributes, and the affiliations, or
relationships, between entities are identified (together, attributes and
relationships are known as properties). From these three simple modeling objects,
arbitrarily complex systems can be modeled. For instance, a company’s
customer base, a library of books, or a network of computers can all be depicted
as E-R models. If the parts of a system can be identified, the system can be
expressed as an E-R model.

Pure Entity-Relationship modeling is independent of native database
architecture. Theoretically, an E-R model can be implemented as a relational
database, an object-oriented database, a file system, or any other data storage
system. In practice, E-R modeling fits most naturally with relational databases;
in other words, with databases that store data in two-dimensional tables. The
examples and illustrations in this chapter follow this lead by posing a
hypothetical relational database server from which data is drawn.

211



Entity-Relationship Modeling

Entities and Attributes

Entities and Attributes

212

Entities and attributes represent structures that contain data. In a relational
database, entities represent tables; an entity’s attributes represent the table’s
columns. A sample table that could be represented by an Employee entity is
shown below:

PHOME

Wiintan James 41500257200
Wezey Kai 41500326511
hacAskill Jane 4150254407
=S John

Lu hau ken 4153222515
Windgste Tlzrk, 415-021-3718
Cebeysar John 415-012-3455
Kanzaki Mz rk, 415022 3100
kallimani Woshinari

Fizh. Gearge 41 5005 4505
Cavidson Cary 41505533555

Figure 60. The “EMPLOYEE” Table

Each row in the table can be thought of as an “instance of an entity.” Thus, an
employee record is called an instance of the Employee entity. In the Enterprise
Objects Framework, each instance of an entity typically maps to one enterprise
object.

Contained within an entity is a list of features, or attributes, of the thing that’s
being modeled. The Employee entity would contain attributes such as the
employee’s last name, first name, phone number, and so on. This simple model
is depicted in Figure 60.

entity
kstMatme _
firstMarme attributes
phone

Figure 61. The Employee Entity




Entity-Relationship Modeling

Entities and Attributes

In traditional E-R modeling, each entity represents all or part of one database
table. The Enterprise Objects Framework allows you to go beyond this,
however, by adding attributes to an entity that actually reflect data in other,
related tables (the process of adding attributes from other entities is known as
flattening). An entity in the Framework is analogous to a database view; in a sense
it’s a virtual table that maps to one or more real database tables.

Entities can also have derived attributes, which do not correspond directly to any
of the columns in a database table. Frequently, these are computed from one or
more attributes. For instance, a derived attribute could be used to automatically
compute an employee’s annual salary by multiplying his monthly salary
(obtained from a simple monthly salary attribute) by twelve.

Enterprise objects are based on entities. Typically, each of an entity’s properties
are represented in the enterprise object as instance variables (although this is
not a requirement). Enterprise objects can have instance variables that do not
correspond to any of the entity’s properties.

Names and the Data Dictionary

The table and column names shown in Figure 60 are the names that a
hypothetical server might use. The collection of a server’s table and column
names is called its data dictionary. In your application, you can’t refer directly to
items in the server’s data dictionary. To identify the server’s “EMPLOYEE”
table, for example, you must refer to the entity that represents the table—in
other words, the Employee entity. The correspondence between the server’s
names and the names of the modeling objects that you create isn’t coincidental,
you have to tell each modeling object which data dictionary name it represents.
This is done as you create the model.

Server names (in other words, names in a server’s data dictionary) are, typically,
case-insensitive. The names of modeling objects, on the other hand, are case-
sensitive. Throughout this chapter (and the rest of this manual) modeling
objects are given names that match, except for case, the corresponding
dictionary names (given the hypothetical relational database server that’s used
in the examples). To further distinguish the two, server names are uppercase
and quoted—for example, the “EMPLOYEE” table—while modeling object
names use a different font: AnEntity, anAttribute, aRelationship. Note that
entity names are capitalized like Objective C class names, while attribute and
relationship names are lowercase with intervening capital letters. Attributes are
occasionally identified by their definition, with the entity and attribute names
connected by a period: AnEntity.anAttribute.

213



Entity-Relationship Modeling

Entities and Attributes

214

Attribute Data

When you use an attribute to identify a particular datum in a table, you refer to
the value for that attribute, given a particular record. An employee’s phone
number, for example, is the value for the Employee.phone attribute. The
“value for an attribute” construction enforces the notion that the attribute itself
doesn’t contain data.

Not every employee will necessarily have a phone number. If a record’s value
for a particular attribute can’t be determined (or doesn’t exist), the value is said
to be NULL.

Data Types

Every database attribute is assigned a data type (such as int, char *, and so on).
All values for a particular attribute take the data type of that attribute. In other
words, the values in a particular column are all of the same type. When an
enterprise object is fetched from the database, the value for each attribute is
converted from its external data type into a suitable scalar or value class type that
can be used by the enterprise object. For example, a Sybase varchar would
become an NSString in an enterprise object.

None of the candidate data types allow lists of data; the value for a particular
attribute in a particular record must be a single datum. Thus, in addition to
indicating that an employee has a last name, a first name, and a phone number,
the diagram in Figure 60 indicates that every employee has a single last name, a
single first name, and a single phone number (where any of these single values can
be NULL). This “atomic attribute rule” will become particularly important in
the discussion of relationships, later in this chapter.

Attribute Types

An attribute may be simple, derived, or flattened. A simple attribute corresponds to
a single column in the database, and may be read or updated directly from or to
the database.

A derived attribute doesn't correspond to a single database column and is usually
based on some other attribute, which is modified in some way. For example, if
an Employee entity has a simple monthly salary attribute, you could define a
derived annualSalary attribute as “salary * 12”. Derived attributes, since they
don’t correspond to real values in the database, are effectively read-only; it
makes no sense to write a derived value.

A flattened attribute (which, in the Enterprise Objects Framework, is a special
type of derived attribute) is actually an attribute of some other entity reached
through a relationship. A flattened attribute's definition consists of one or more



Entity-Relationship Modeling

Entities and Attributes

relationships separated by periods, ending in an attribute name. For example, if
the Employee entity has the relationship toDepartment and the Department
entity has the attribute departmentName, you can define
employeeDeptName as an attribute of your Employee entity by creating an
attribute for it with a definition of “toDepartment.departmentName”. In the
Enterprise Objects Framework, because flattened attributes are a type of
derived attribute, they are read-only. For a more complete discussion of
flattened attributes, see “Flattened Attributes.”

The Primary Key

Each of the records in a table must be unique—no two records can contain
exactly the same values. To ensure this, each entity must contain an attribute
that’s guaranteed to represent a unique value for each record. This attribute is
called the entity’s primary key.

The Employee entity, as defined above, doesn’t contain a primary key. If the
company were to hire two employees with the same name, the records for those
two employees wouldn’t be distinguishable from each other. To amend this, a
primary key called emplD—an attribute for which each distinct employee has
a unigue value—is added to the Employee entity. Figure 62 shows the
amended entity; the primary key is marked with a key symbol.

kstMatme

firstMarme
phone )
ew. E111 2l [} e Primary kFy .

Figure 62. The Employee Entity with a Primary Key

The value for a primary key may or may not represent a real-world value. The
emplD attribute used above may, for instance, contain the employee’s social
security number. Or, it may just contain an arbitrary value used only to
distinguish a particular record from other employee records.

An entity can contain any number of attributes that represent unique data, but
only one of them needs to be declared as a primary key. Declaring more than one
as a primary key creates a compound primary key.

Compound Primary Keys

Typically, the primary key for an entity is a single attribute. However, you can
designate a combination of attributes as a compound primary key. In a

215



Entity-Relationship Modeling

Relationships

Relationships

216

compound primary key, the value for any one of the constituent attributes isn’t
necessarily unique, but the combination of all of them is.

For example, consider employee time cards. Every time card could be uniquely
identified through a combination of its employee number and an additional time
card number (to distinguish multiple cards for the same employee). Taken on
their own, neither of these numbers is necessarily unique for all time cards, but
the combination of the two is. Figure 63 illustrates a TimeCard entity in which
the attributes empID and timeCardID form a compound primary key.

end Titne
start Tirne
SUmmary
@remplD
B timeCard|D

Figure 63. An Entity with a Compound Primary Key

Your employee database might have, in addition to the Employee entity, a
JobTitle entity that identifies the various job titles that an employee can have
and whether each title represents a salaried or an hourly position. A relationship
between the Employee entity and the JobTitle entity expresses the affinity
between employees and titles, and allows you to access the title information for
a given employee. Graphically, a relationship can be shown as a named arrow
that points from one entity (the source entity) to another (the destination entity); the
Employee-JobTitle relationship (which is named toJobTitle) is depicted in
Figure 64.

Note: To support the toJobTitle relationship, the Employee entity has been
altered—the titleID attribute has been added to it. This is explained in
“Relationship Keys.”

The table that’s represented by the source entity can be called the source table;
the source table contains source records. Similarly, the table that’s represented by
the destination entity can be called the destination table; it contains destination
records.

Be aware that you can’t just randomly create relationships between your
entities. Relationships that you add to your entities must reflect real



Entity-Relationship Modeling

Relationships

relationships between the tables in the database. For more information, see

“Relationship Keys.”

e — e
en ity enity
stMame titke
firztMarme tite Type destingtion
phone B tite|D e
B 2mplD tolahTite
TORNCE Kew titlelDr

Figure 64. The toJobTitle Relationship

Relationship Directionality

Relationships are unidirectional. In a unidirectional relationship, the path that
leads from the source to the destination can’t be traveled in the opposite
direction—you can’t use a relationship to go from the destination to the source.
For example, although you can use the toJobTitle relationship to find the title
for a particular employee, you can’t use it to get a list of the employees that share
a particular title.

Unidirectionality is enforced by the way a relationship is resolved. Specifically,
the source record is a given. Resolving a relationship means finding the correct
destination record (or records) given a specific source record.

Bidirectional relationships—in which you can look up records in either
direction—can be created by adding a separate “return-trip” relationship. This
is demonstrated in “Bidirectional Relationships.”

Naming Relationships

Most of the relationships described in this manual use a simple naming
convention: relationships are named after the destination entity. For example, a
Movie entity can have a studio relationship to a Studio entity, and a roles
relationship to a MovieRoles entity. Note that singular names are typically used
for to-one relationships, and plural names are used for to-many relationships.
However, you’re not bound by this convention—EOModeler lets you give
relationships any names you like.

In the figures throughout this book, the entity that is adjacent to the
relationship’s label is said to own the relationship. For example, in Figure 64 the
Employee entity owns the toJobTitle relationship, as indicated by the
proximity of the “toJobTitle” label to the entity.

217



Entity-Relationship Modeling

Relationships

218

Relationships and the Data Dictionary

Unlike entities and attributes, relationships don’t correspond to names in the
server’s data dictionary. In general, most servers don’t define structural
elements for relationships, so their data dictionaries don’t contain names to
which E-R relationships can correspond. But relationships aren’t completely
disassociated from the data dictionary: A relationship’s definition, as explained
in the next section, depends on the existence of particular entities and attributes
(which, as described earlier, must correspond to data dictionary names).

Relationship Keys

The construction of a relationship involves more than just two entities. You also
have to designate at least one attribute from each entity as a relationship key. In
the toJobTitle relationship, for instance, the Employee.titlelD and
JobTitle.titleID are so designated,; this is indicated in Figure 64 as the two
attributes that lie at either end of the relationship arrow. Just as the tables are
called source and destination tables, so are the relationship keys named. In the
source entity, the relationship key is called the source key. The destination
entity’s relationship key is called the destination key.

Note: As in the case of the toJobTitle relationship, the source and destination
keys often have the same name, although this isn’t a requirement of model
design.

The reason you need to designate relationship keys is so the relationship can be
used to create cross-references between specific instances of the related entities
(this is called “resolving” the relationship). For example, let’s say you fetch an
employee object. The Enterprise Objects Framework takes the value for the
employee’s titlelD attribute and compares it to the value for titlelD in each
JobTitle instance. A match locates the desired job title record.

For this cross-referencing scheme to work, the source and destination keys must
characterize the same data—you couldn’t find an employee’s job title by
comparing, for example, Employee.emplD to JobTitle.titleID. This is why the
titleID attribute was added to the Employee entity.An Example with Data

To further illustrate how a relationship is resolved, consider the “EMPLOYEE”
and “JOB_TITLE” tables presented in Figure 65 (for the purpose of this
example, only the essential columns are shown).

Here we see that the value for the titlelD attribute for James Winton is 1.
Looking in the “JOB_TITLE" table, we see that 1 is the ID of the President.
Thus, James Winton is the company president. Similarly, we can determine that
Kai Veasey is a manager.



Entity-Relationship Modeling Relationships

i TR
ST AME | FRSTNANE
Wil intan James 1 Presidert 1
iEasay Kai 3 Yice President 2
Macaskil Jare 7 hiarager 3
Mazeli Jahn 5 Engireer 4
Lunau Ken Fil Deszicner 5
Wind gate LE=T 4 Sakes Repressntative =}
Dekeyssr John 7 Administrstor 7
Kareaki M ark. &

Fallimani Yashinot 4
Fish. George &
Davidsan cary Il

Figure 65. The “EMPLOYEE” and “JOB_TITLE” Tables

Choosing Relationship Keys

Any attribute can be used as a relationship key, but some are better suited than
others. In general, of the two relationship keys for a particular relationship, the
destination key will be a primary key for its entity (or, otherwise, an attribute
that characterizes unique data) and the source key is manufactured to emulate
the destination key. In traditional E-R modeling, the emulating attribute is
called a foreign key. The toJobTitle relationship demonstrates this: The
destination key in the JobTitle entity is titleID, the primary key for that entity.
The titlelD attribute is added to Employee as foreign key.

Note that if emplID had been used as the relationship key for the toJobTitle
relationship, a given title could only be assigned to a single employee.

Compound Relationship Keys

A relationship’s keys needn’t be single attributes from the related entities; any
number of attributes can be paired as relationship keys within the same
relationship to form a compound relationship key. A relationship that designates
more than one pair of keys is called a compound relationship.

For example, consider an entity (empPhoto) containing the employee’s picture
that uses the attributes firstName and lastName as a compound relationship
key. (Using people’s names for unique identification is generally a bad idea, but
it serves the purpose for illustration. In actual practice, this relationship would

219



Entity-Relationship Modeling

Relationships

220

likely use emplD as its relationship key.) This relationship is depicted in Figure
66.

Ia.estName —I taEmpPhato photo

firstMarme ¥ g TirstMame

phone I.).. B |astMame
gmemplD

titelD

Figure 66. A Compound Relationship

The algorithm used to resolve a compound relationship is similar to that for a
simple relationship. The only difference is the number of pairs of relationship
key values that are compared. For two records to correspond, all of the
comparisons must be successful.

Note: The keys in a compound relationship can be a combination of any
attributes—not just a compound primary key (or foreign keys to a compound
primary key). Conversely, you can use a single attribute from a compound
primary key as a relationship key in a simple (non-compound) relationship.

Joins

Relationships are made up of source-destination key pairs. A join is the pairing
of one source attribute and one destination attribute for purposes of establishing
a relationship. Thus, simple relationships consist of one join. Compound
relationships are composed of two or more joins. In Figure 66, for example, the
toEmpPhoto relationship is composed of two joins: one linking
Employee.lastName to EmpPhoto.lastName, and one linking
Employee.firstName to EmpPhoto.firstName.

The Enterprise Objects Framework requires you to declare each join as either
an inner join, a right outer join, a left outer join, or a full outer join. These four join
semantics are defined as follows:

< Inaninner join, if a destination record can’t be found for a given source
record, that source record isn’t included in the result of the join. Destination
records that don’t match up to any records in the source table are not included
in the result of an inner join, either.

< In aright outer join, destination records for which no source record can be
found are included, but not the reverse.



Entity-Relationship Modeling

Relationships

< Inaleft outer join, source records for which no destination record can be
found are included, but not the reverse.

< Inafull outer join, all source records from both tables are included in the
result of the join.

The Enterprise Objects Framework also lets you select one of six join operators
(less than, greater than, equal to, less than or equal to, greater than or equal to,
and not equal to). The join operator is used to specify how the destination
attribute relates to the source attribute. Thus, you are not limited to
relationships where the source and destination attributes are equal to one
another. Instead, you can specify a join where, for instance, the destination is all
records whose destination attribute is greater than the value of the source
attribute.

Relationship Cardinality

Every relationship has a cardinality; the cardinality tells you how many
destination records can (potentially) resolve the relationship. The Enterprise
Objects Framework defines two cardinalities, to-one and to-many:

= Inato-one relationship, for each source record there’s exactly one
corresponding destination record.

= Inato-many relationship, for each source record there may be zero, one, or
more corresponding destination records.

The toJobTitle relationship is an example of a to-one relationship: An
employee can only have one title. The converse relationship, from JobTitle to
Employee, would be to-many: a single title can be shared by more than one
employee, or there may be no employees with a given title. This relationship,
which is owned by JobTitle and called toEmployee, is shown in Figure 67 (for
clarity, the source and destination components are pointed out). That the
relationship is to-many is indicated by the double arrowhead.

Notice that the relationship keys for the toEmployee relationship are the same
as for toJobTitle. However, the source and destination key assignments are
reversed. In other words, whereas Employee.titlelD is the source key for the
toJobTitle relationship, it’s the destination key for toEmployee; similarly,
JobTitle.titleID changes destination and source key roles between the two
relationships.

This switch does more than demonstrate that the same attributes can be used as
relationship keys in more than one relationship; it also exemplifies the typical

221



Entity-Relationship Modeling

Relationships

222

orientation of the primary key with regard to the relationship keys in to-one and
to-many relationships:

< In ato-one relationship, the destination key is always the primary key for its
entity.

< Inato-many relationship, the source key is usually a primary key.

snron — T I

eniity enity
stMame titke
firstMarme toEmployes t?tieT}.rp:e
phone B titie|Dr TOUCE
@ empl / key
destingtion =———t— fitlelD
e

Figure 67. A To-Many Relationship

Resolving a To-Many Relationship

The only difference in the relationship resolution routine between a to-one and
a to-many relationship is the number of destination records that are found. A to-
one relationship stops when the first (and what should be the only) matching
destination record is found. A to-many relationship finds all the destination
records that resolve the relationship for the given source record.

Bidirectional Relationships

Since relationships, as defined by the Enterprise Objects Framework, are
unidirectional, it’s natural to assume that to simulate a bidirectional
relationship—in other words, to express the natural relationship between two
entities without regard for direction—all you need is two relationships: One that
leads from entity A to entity B, and one that leads from entity B to entity A.
Unfortunately, it isn’t always that easy.

Consider, for example, the actual relationship between employees and projects.
A project can involve many employees, and a single employee can contribute to
more than one project.

Fmiject

projectMame
summarylmage
@ pinjectiD

Figure 68. The Project Entity



Entity-Relationship Modeling

Relationships

Forming a to-many relationship between Employee and Project (toProject)
and a to-many relationship between Project and Employee (toEmployee)
doesn’t work, because it’s impossible to assign relationship keys that would
support this set-up. For example, in the toProject relationship you can’t use the
emplD attribute as a source key because the destination key, Project.emplD
(added as a foreign key), wouldn’t be atomic (since a project may consist of more
than one employee). Importing projectlD as a foreign key into Employee has
the same problem: The attribute wouldn’t be atomic (since an employee may
be involved with more than one project).

The most common way to establish this “many-to-many” relationship (as it’s
called in traditional E-R modeling) is to insert an auxiliary entity between
Employee and Project, and form a network of relationships to and from it. This
is depicted in Figure 69.

snron — T I

eniity enity
stMame titke
firstMarme toEmployes t?tieT}.rp:e
phone B titie|Dr FOUCE
@ empl / key
destingtion =———t— fitlelD
e

Figure 69. A Many-to-Many Model

The compound primary key used in EmpProject indicates that the entity
characterizes unique combinations of employees and projects. The table that
the entity represents would hold a different record for each employee of every
project. For example, if three employees were involved with a single project,
there would be three EmpProject instances with the same value for the
projectlD attribute, but each record would have a different value for its emplID
attribute. The Tables Behind the Many-to-Many Model

To better understand how the many-to-many model works, it helps to see an
example of the tables that store the data. Sample “EMPLOYEE” and
“PROJECT™ tables that are filled with this information are shown in Figure 70
(for clarity, only relevant attributes are shown).

223



Entity-Relationship Modeling

Relationships

224

EMPLOYEE

_MNAME FIRST_MAME EMP_ID

Winton James 101
Wemsey Fai 12
Macaskil Jane 103
M=z i John 106
Lunau ken 107
Windgste INE=TE 107
Dekeysar John 105
Kanzaki Mz, 112
Kallimani shinari 115
Fizk. George 134
Davidzon Cary 137

Figure 70. “EMPLOYEE” and “PROJECT”

The “EMP_PROJECT” table is shown in Figure 71 (for clarity, the last names

Tables

and project names are shown in the margins).

EMP_PROJECT

EmP_ID PROJECT_ID

Winton 1 g07
WessEy 102 55
easey 102 10
il ac:Askill 105 g7
RS 106 g7
hilz=eli 106 )
Lu hau 107 10
Windgate 105 a1
Dekeysar 108
kanzaki 112 507
kallitnani 115 )
kallirmani 115 a1
Fizk. 134
Cevidsan 137 10

Figure 71. The “EMP_PROJECT” Table

Met Desinworks
I vfa Enviroment
Info vaul

Met DesinWorks
Met DesinWorks
Infa Envimment
Info vaul

Infa Wz i

Met DesinWorks
Info Envimment

Info Wault

Infoviault

| nfo E rvinarment 203
Met Desigritiarks BO7
| rfevault 510




Entity-Relationship Modeling

Relationships

As expected, some values appear more than once for the emplD attribute;
similarly, some values for projectID are repeated. But since empID and
projectlD form a compound primary key for the EmpProject entity, no two
records may possess the same combination of values for these two attributes.
This fact—that no two records can have the same emplD and the same
ProjectiD—signifies that a given employee cannot be assigned to a single
project more than once.

Reflexive Relationships

The source and destination entities in a relationship needn’t be different.
Where the entities in a relationship are the same, a reflexive relationship is
created. Reflexive relationships are important in characterizing a system in
which an instance of an entity points to another instance of the same entity.

For example, to show who a given employee reports to, you could create a
separate Manager entity. It would be easier, however, to just create a reflexive
relationship, as shown in Figure 72.

Ern ployes

kstMatme
firstMarme
phone
rie @ cimplD
titlel D

manszenf
manszer|D

Figure 72. A Reflexive Relationship

Note: The name of the relationship, managerOf, doesn’t follow the relationship
naming convention suggested earlier in this chapter. However, it follows from
the meaning of the relationship, and meaning takes precedence over form.

The managerID attribute acts as the relationship’s source key; emplD is the
destination key. Where an employee’s managerID matches another
employee’s emplD, the first employee reports to the second. If an employee
doesn’t have a manager, the value for the managerID attribute is NULL in that
employee’s record.

Reflexive relationships can represent arbitrarily deep recursions. Thus, from the
model above, an employee can report to another employee who reports to yet
another employee, and so on. This could go on until an employee who’s
managerID is NULL is reached, denoting an employee who reports to no one
(probably the company president!).

225



Entity-Relationship Modeling

Relationships

226

Flattened Attributes

At the beginning of this chapter, it was stated that an entity maps to a table in
the database. This is not strictly true, however, because the Enterprise Objects
Framework allows you to add flattened attributes (and flattened relationships) to your
entity, effectively extending the entity’s mapping to more than one table in a
database.

A flattened attribute is an attribute that you effectively add from one entity to
another by traversing a relationship. You can’t add arbitrary attributes from
various entities, however. To add an attribute from one entity to another, there
must be a to-one relationship between those entities.

For example, by traversing the toJobTitle relationship, you can determine a
given employee’s title. If you add the title attribute from the JobTitle entity to
the Employee entity as a flattened attribute, the Enterprise Objects
Framework will automatically traverse the relationship and locate the
employee’s title when the employee is fetched from the database.

To your code, the flattened attribute looks like any other. After adding the title
attribute to the Employee entity as a flattened attribute (which has no effect on
the “EMPLOYEE” table in the database), for instance, your application’s view
of the Employee table would look like Figure 73:

EMPLOYEE
LAST_MNAME FIRST_MAME | JOB_TITLE
Winton James Preside it
Wensey Fai Marager
Ml e Akl Jare Adrn inistrator
E==21f Jaohn Designer
Lureau Ken Ereireer
Windgate Mlark, Ergineer
Dekeysar Jahn Adm inistrator
Kanzaki Itz Zaks Repressntative
Hallimani Yoshinor Ergireer
Fizk, George Zaks Representative
Cavidsan Cary Engineer

Figure 73. A View of the “EMPLOYEE” Table After Adding a Flattened Attribute

You are not limited to flattening attributes across a single relationship; any
number of relationship traversals can be employed. Thus, if there was a



Entity-Relationship Modeling

Relationships

relationship between the JobTitle entity and a SalaryRange entity, you could
include an employee’s maximum salary with the rest of the employee
information by flattening a toJobTitle.toSalaryRange.maxSalary attribute
into the Employee entity.

Flattened Relationships

Just as you can flatten an attribute to add it to another entity, so can you flatten
a relationship. This gives a source entity access to relationships that a
destination entity has with other entities. It is equivalent to performing a multi-
table join.

As an example, suppose you need department information for corporate assets
that are assigned to employees, using the entities and relationships shown in
Figure 74. One way to obtain the needed information is to flatten the relevant
attributes (deptName and location, perhaps) across the toEmployee and
toDepartment relationships. A simpler way would be to flatten the
toDepartment relationship itself, so that it appears to your code as if the
Department entity is a part of the Equipment entity.

B z2timlMum ber lastMatme deptMame
emplD firstMatne cation
d it h & deptD
es:rlptnN oEm phyee il u:unIEl ept
= @ SMP toDepartment
deptiD

Figure 74. Equipment Allocated by Department

Figure 75 shows how the Equipment entity might look after the flattened
relationship had been added. In it, toDepartment is a relationship defined as
toEmployee.toDepartment. When your code asks an Equipment object for
the value of its toDepartment property, it receives the corresponding
Department object. Your code can then query the Department object for the
needed properties.

B zerialNumber
emplD
description
toDepatt ment

Figure 75. A Flattened Relationship

227



Entity-Relationship Modeling Relationships

While the entities involved in a flattened relationship must be related, those
relationships can either be to-one or to-many. If any of the relationships are to-
many and your code requests the value for a flattened relationship, it will receive
an array of objects corresponding to the flattened relationship’s destination
entity.

228



