
1

NSCountedSet

Inherits From: NSMutableSet : NSSet : NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying (NSSet) 
NSObject (NSObject) 

Declared In: Foundation/NSSet.h

Class at a Glance


Purpose
An NSCountedSet object stores a modifiable set of objects, where a given object can be included in the set 
multiple times.

Principal Attributes
• The objects that make up the set.
• For each object in the set, a count of the number of times the object is included in the set.

Commonly Used Methods
– addObject: Adds an object to the set.
– removeObject: Removes an object from the set.



2

 NSCountedSet

Class Description

The NSCountedSet class declares the programmatic interface to an object that manages a mutable set of 
objects. NSCountedSet provides support for the mathematical concept of a counted set. A counted set, both 
in its mathematical sense and in the implementation of NSCountedSet, is an unordered collection of 
elements, just as in a regular set, but the elements of the set aren’t necessarily distinct. A counted set is also 
known as a bag.

Each distinct object inserted into an NSCountedSet object has a counter associated with it. NSCountedSet 
keeps track of the number of times objects are inserted and requires that objects be removed the same 
number of times. Thus, there is only one instance of an object in an NSSet even if the object has been added 
to the set multiple times. The NSSet and NSMutableSet classes are provided for static and dynamic sets 
(respectively) whose elements are distinct.

You add or remove objects from a counted set using the addObject: and removeObject: methods. An 
NSCountedSet may be queried using the objectEnumerator method, which provides for traversing 
elements of the set one by one. The countForObject: method returns the number of times the specified 
object has been added to this set.

Method Types

Initializing an NSCountedSet – initWithArray:
– initWithSet:

Adding and removing entries – addObject:
– removeObject:

Accessing the members – allObjects
– count
– countForObject:
– member:
– objectEnumerator

Instance Methods

addObject:
– (void)addObject:(id)anObject

Adds anObject to the receiver if it isn’t already a member. If anObject is already a member, addObject: 
increments the count associated with the object. In either case, anObject is then sent a retain message.



3

allObjects
– (NSArray *)allObjects

Returns an array containing the set’s members, or an empty array if the set has no members. Each object is 
only represented in the array once—that is, if you add an object to the set more than once, it will appear 
only once in the array that is returned by allObjects. The order of the objects in the array isn’t defined. This 
method invokes objectEnumerator as part of its implementation.

count
– (unsigned int)count

Returns the number of unique members in the set. Objects that are added to the set multiple times are only 
reflected in the count once.

countForObject:
– (unsigned int)countForObject:(id)anObject

Returns the count associated with anObject in the receiver, which can be thought of as the number of 
occurrences of anObject that are present in the set.

initWithArray:
– (id)initWithArray: (NSArray *)anArray

Initializes a newly allocated counted set object with the contents of anArray. Returns self.

See also: – initWithArray: (NSSet), –initWithSet: (NSSet), +setWithCapacity:(NSMutableSet)

initWithSet:
– (id)initWithSet: (NSSet *)aSet

Initializes a newly allocated counted set object with the contents of aSet. Returns self.

See also: – initWithArray: (NSSet), –initWithSet: (NSSet), +setWithCapacity:(NSMutableSet)



4

 NSCountedSet

member:
– (id)member:(id)anObject

Returns anObject if anObject is present in the set (as determined by isEqual:), otherwise returns nil .

See also: – containsObject:(NSSet)

objectEnumerator
– (NSEnumerator *)objectEnumerator

Returns an enumerator object that lets you access each object in the set, independent of its count. This 
means that if you add a given object to the counted set multiple times, an enumeration of the set will produce 
that object only once.

When this method is used with a counted set, your code shouldn’t modify the set during enumeration. If 
you intend to modify the set, use the allObjects method to create a “snapshot,” then enumerate the snapshot 
and modify the original set.

See also: – nextObject (NSEnumerator)

removeObject:
– (void)removeObject:(id)anObject

If anObject is present in the set, decrements the count associated with it. If the count is decremented to zero, 
anObject is removed from the set and is sent a release message. removeObject: does nothing if anObject 
is not present in the receiver.

See also: – countForObject:


