
1

NSConnection

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSConnection.h

Class Description

NSConnection objects manage communication between objects in different threads or tasks, on a single
host or over the network. They form the backbone of the distributed objects mechanism, and normally
operate in the background. You use NSConnection API explicitly when making an object available to other
applications, when accessing such a vended object, and when altering default communication parameters;
the rest of the time you simply interact with the distributed objects themselves.

NSConnection objects work in pairs, one in each communicating application or thread. A server application
has an NSConnection for every client application connected to it, as shown above (the NSConnection
labeled s is used to form new connections, as described under “Vending an Object” and “Getting a Vended
Object”). The circles represent NSConnection objects, and the labels indicate the application itself and the
application it’s connected to. For example, in s/a the s stands for the server and the a stands for client A. If
a link is formed between clients A and B in this example, two new NSConnection objects get created: a/b
and b/a.

Note: For NeXT’s implementation the small letters represent NSPort objects. The letter on the left indicates
the receive port, which messages arrive on; the letter on the right indicates the send port, which
outgoing messages leave through. Similar mechanisms exist for other OpenStep-compliant systems,
but any API exporting them isn’t part of the OpenStep specification. Subclasses of NSConnection
that use them (which they typically must do) are therefore not portable among OpenStep
implementations.

Server

Client A

Client B

a/s

b/s

s/a

s/b

s

2

 NSConnection

Under normal circumstances, all distributed objects passed between applications are tied through one pair
of NSConnection objects. NSConnection objects can’t be shared by separate threads, though, so for
multithreaded applications a separate NSConnection must be created for each thread. This is shown in here:

Finally, an application can use distributed objects between its own threads to make sending messages
thread-safe (see the following figure). This is useful for coordinating work with the Application Kit, for
example.

Vending an Object

To make an object available to other applications, set it up as the root object of an NSConnection and
register the NSConnection by name on the network. This code fragment vends serverObject:

id serverObject; /* Assume this exists. */

NSConnection *theConnection;

theConnection = [NSConnection defaultConnection];

[theConnection setRootObject:serverObject];

if ([theConnection registerName:@"server"] == NO) {

 /* Handle error. */

}

This fragment takes advantage of the fact that every thread has a default NSConnection object, which can
be set up as a server. An NSConnection can vend only one object, so the default NSConnection might not
be available. In this case, you can create additional NSConnections to vend objects with the usual alloc and
init methods.

An NSConnection set up this way is called a named NSConnection. A named NSConnection rarely has a
channel to any other NSConnection (in the illustrations above the named NSConnection is the circle labeled

Client A

a1/s

a2/s

Thread 1

Thread 2

Server

s/a1

s/a2

s

a1/a2

a2/a1

Thread 1

Thread 2

3

s). When a client contacts the server, a new pair of NSConnection objects is created specifically to handle
communication between the two. The following sections describe this in more detail.

An NSConnection adds itself to the current NSRunLoop when it’s initialized. In an application based on
the Application Kit, the NSRunLoop is already running, so there’s nothing more to do to vend an object. In
an application that doesn’t use the NSApplication object, you have to start the NSRunLoop explicitly to
capture incoming connection requests and messages. This is usually as simple as getting the current thread’s
NSRunLoop and sending it a run message:

[[NSRunLoop currentRunLoop] run];

See “Configuring an NSConnection” and the NSRunLoop class description for more information on setting
NSConnections up to handle requests.

Getting a Vended Object

An application gets a vended object by creating a proxy, or a stand-in, for that object in its own address
space. The proxy forwards messages sent to it through its NSConnection back to the vended object. An
application can get a proxy for a vended object in two ways. First, the
rootProxyForConnectionWithRegisteredName:host: class method returns the proxy directly:

id theProxy;

theProxy = [[NSConnection

 rootProxyForConnectionWithRegisteredName:@"server" host:@"*"]

 retain];

[theProxy setProtocolForProxy:@protocol(ServerProtocol)];

This message returns a proxy to the root object of the NSConnection named “server”. The host name of “*”
indicates that any host on the local subnet with such an NSConnection can be used; you can specify a
specific host name to restrict the server to an identified host. If the host name is nil or is empty then only
the local host is searched for a registered NSConnection.

The invocation of setProtocolForProxy: informs the distributed objects system of the set of messages that
theProxy responds to. Normally, the first time a particular selector is forwarded by a proxy the
NSConnection object must confirm the argument and return types with the real object. This can add
significant overhead to distributed messages. Setting a protocol records this information so that no
confirmation is needed for the messages in the protocol, and only the message forwarding costs are
incurred.

Another way to get a proxy is to get an NSConnection to the server and then ask for the proxy of its root
object:

NSConnection *theConnection;

id theProxy;

theConnection = [NSConnection connectionWithRegisteredName:@"server"

 host:@"*"];

4

 NSConnection

theProxy = [[theConnection rootProxy] retain];

[theProxy setProtocolForProxy:@protocol(ServerProtocol)];

This is useful if you need to interact with the NSConnection as well as the proxy (note, though, that
connection isn’t retained in this example).

A named NSConnection spawns a child NSConnection to handle communication between two applications
(s spawning s/b and s/a in the first figure). Though the child NSConnection doesn’t have a name, it shares
the root object and other configuration attributes of its parent (but not the delegate). You shouldn’t register
a child NSConnection with a name or change its root object, but you can change its other attributes, as
described in the next section.

Forming Connections Between Threads

You can use distributed objects between threads in a single application for thread-safe use of shared objects,
such as those in the Application Kit. The Application Kit objects run in the main thread, while special
calculations or other computations run in other threads. You can set up distributed objects between threads
by registering them under names, but doing so exports the object over the entire network, making them
available to other applications. This may not be desirable.

Instead of registering your distributed objects, you can manually set up NSConnections that are linked to
each other with NSPorts using the connectionWithReceivePort:sendPort: message. In the main
(Application Kit) thread, you create an NSConnection with two NSPorts, then switch them to create another
NSConnection in a separate thread. Suppose you have an application that uses a Calculator object to
perform intensive calculations. It might make sense to have this object run in a separate thread and
communicate through an NSConnection. In the following example, the initial work of setting up a
Calculator object is done in the NSApplication delegate’s applicationDidFinishLaunching: method:

- (void)applicationDidFinishLaunching:(NSNotification *)note

{

 NSPort *port1;

 NSPort *port2;

 NSArray *portArray;

 port1 = [NSPort port];

 port2 = [NSPort port];

 kitConnection = [[NSConnection alloc] initWithReceivePort:port1

 sendPort:port2];

 [kitConnection setRootObject:self];

 /* Ports switched here. */

 portArray = [NSArray arrayWithObjects:port2, port1, nil];

 [NSThread detachNewThreadSelector:@selector(connectWithPorts:)

 toTarget:[Calculator class] withObject:portArray];

5

 return;

}

The delegate creates kitConnection, which is an instance variable, and sets itself up as the root object so
that the Calculator object can find it. To set up the server thread, the delegate packages the NSPorts in an
NSArray (note that they’re in reverse order) and creates a Calculator object in a separate thread by invoking
detachNewThreadSelector:toTarget:withObject:. This message starts the new thread by sending
connectWithPorts: to the Calculator class, which creates the Calculator object that the application uses as
an internal server and connects that object to the application delegate:

+ (void)connectWithPorts:(NSArray *)portArray

{

 NSAutoreleasePool *pool;

 NSConnection *serverConnection;

 Calculator *serverObject;

 pool = [[NSAutoreleasePool alloc] init];

 serverConnection = [NSConnection

 connectionWithReceivePort:[portArray objectAtIndex:0]

 sendPort:[portArray objectAtIndex:1]];

 serverObject = [[self alloc] init];

 [(id)[serverConnection rootProxy] setServer:serverObject];

 [serverObject release];

 [[NSRunLoop currentRunLoop] run];

 [pool release];

 [NSThread exit];

 return;

}

connectWithPorts: is responsible for creating the server object and connecting it to the client thread. This
method first creates an NSAutoreleasePool to prevent objects from being leaked if the NSThread ever exits.
It then creates serverConnection using the two NSPorts from kitConnection, and proceeds to set up the
server object. Once this is done, it passes the server object back to the client with a setServer: message.
Finally, it starts the NSRunLoop for its thread. If the NSRunLoop ever stops, the NSAutoreleasePool is
cleaned up and the NSThread is made to exit.

The application delegate’s setServer: message simply sets the protocol and stores the server object:

- (void)setServer:(id)anObject

{

 [anObject setProtocolForProxy:@protocol(CalculatorMethods)];

 calculator = (id <CalculatorMethods>)[anObject retain];

 return;

}

6

 NSConnection

Because anObject arrived through the NSConnections set up between threads, it’s really a proxy to the
serverObject created in connectWithPorts: above.

Configuring an NSConnection

You can control some factors of distributed objects communication by configuring NSConnection objects.
You can set timeouts to limit the amount of time an NSConnection will wait on a remote message, set the
mode it awaits requests and responses on, and control how an NSConnection manages multiple remote
messages. In addition to these parameter settings, you can change an NSConnection’s registered name or
root object for dynamic alteration of your distributed application.

An NSConnection uses two kinds of timeouts, one for outgoing messages and one for replies. An outgoing
network message may take some time to send. Once it goes out, there’s usually a delay before any return
value arrives. If either of these operations exceeds its timeout, the NSConnection raises an
NSPortTimeoutException. You can set the values for these timeouts with the setRequestTimeout: and
setReplyTimeout: messages, respectively. By default these timeouts are set to the maximum possible value.

NSConnections that vend objects await new connection requests in NSDefaultRunLoopMode (as defined
by the NSRunLoop class). When an NSConnection sends a remote message out, it awaits the return value
in NSConnectionReplyMode. You can’t change this mode, but you can use it to set up NSTimers or other
input mechanisms that need to be processed while awaiting replies to remote messages. Use
addRequestMode: to add input mechanisms for this mode.

Normally an NSConnection forwards remote messages to their intended recipients as it receives them. If
your application returns to the run loop or uses distributed objects either directly or indirectly, it can receive
a remote message while it’s already busy processing another. Suppose a server is processing a remote
message and sends a message to another application through distributed objects. If another application
sends a message to the server, its NSConnection immediately forwards it to the intended recipient, even
though the server is also awaiting a reply on the outgoing message. This behavior can cause problems if a
remote message causes a lengthy change in the server application’s state that renders it inconsistent for a
time: Other remote messages may interfere with this state, either getting incorrect results or corrupting the
state of the server application. You can turn this behavior off with the
setIndependentConversationQueueing: method, so that only one remote message is allowed to be in effect
at any time within the NSConnection’s thread. When independent conversation queueing is turned on, the
NSConnection forwards incoming remote messages only when no other remote messages are being handled
in its thread. This only affects messages between objects, not requests for new connections; new
connections can be formed at any time.

Warning: Because independent conversation queueing causes remote messages to block where they
normally don’t, it can cause deadlock to occur between applications. Use this method only when
you know the nature of the interaction between two applications. Specifically, note that multiple
callbacks between the client and server aren’t possible with independent conversation queueing.

One other way to configure a named NSConnection is to change its name or root object. This effectively
changes the object that applications get using the techniques described in “Getting a Vended Object,” but

7

doesn’t change the proxies that other applications have already received. You might use this technique to
field-upgrade a distributed application with an improved server object class. For example, to install a new
server process have the old one change its name, perhaps from “Analysis Server” to “Old Analysis Server”.
This hides it from clients attempting to establish new connections, but allows its root object to serve existing
connections (when those connections close, the old server process exits). In the meantime, launch the new
server which claims the name “Analysis Server” so that new requests for analyses contact the updated
object.

The Delegate

An NSConnection can be assigned a delegate, which has two possible responsibilities: approving the
formation of new connections, and authenticating messages that pass between NSConnections.

When a named NSConnection is contacted by a client and forms a child NSConnection to communicate
with that client, it sends connection:shouldMakeNewConnection: to its delegate first to approve the new
connection. If the delegate returns NO the connection is refused. This method is useful for limiting the load
on a server. It’s also useful for setting the delegate of a child NSConnection (since delegates aren’t shared
automatically between parent and child).

Portable Distributed Objects adds message authentication to NSConnection’s OpenStep API. Delegates in
different applications can cooperate to validate the messages passing between them by implementing
authenticationDataForComponents: and authenticateComponents:withData:. The first method requests
an authentication stamp for an outgoing message, which is used by the second method to check the validity
of the message when it’s received.

authenticationDataForComponents: provides the packaged components for an outgoing network
message in the form of NSData and NSPort objects. The delegate should use only the NSData objects to
create the authentication stamp, by hashing the data, calculating a checksum, or some other method. The
stamp should be small enough not to adversely affect network performance. The delegate in the receiving
application receives an authenticateComponents:withData: message to confirm the message, and should
recalculate the stamp for the components and compare it with the stamp provided. If it returns YES the
message is forwarded; if it returns NO, an NSFailedAuthenticationException is raised and a message is
logged to the console.

Handling NSConnection Errors

NSConnections make use of network resources that can become unavailable at any time. When a server
machine loses power, for example, the objects on that machine that have been vended to other applications
simply cease to exist. In such a case, the NSConnections handling those objects invalidate themselves and
post an NSConnectionDidDieNotification to any observers. This notification allows objects to clean up
their state as much as possible in the face of an error.

To register for the notification, add an observer to the default NSNotificationCenter:

8

 NSConnection

[[NSNotificationCenter defaultCenter] addObserver:proxyUser

 selector:@selector(connectionDidDie:)

 name:NSConnectionDidDieNotification

 object:serverConnection];

The fragment above registers the proxyUser object to receive a connectionDidDie: message when the
serverConnection object in the application posts an NSConnectionDidDieNotification. This allows it to
release any proxies it holds and to handle the error as gracefully as possible. See the NSNotification and
NSNotificationCenter class specifications for more information on notifications.

A less serious error is a timeout on a remote message. This can happen for an outgoing message, meaning
the message was never sent to its recipient, or for a reply to a message successfully sent, meaning either that
the message failed to reach its recipient or that the reply couldn’t be delivered back to the original sender.
An application can put an exception handler in place for critical messages, and if a timeout exception is
raised it can send the message again, check that the server is still running or take whatever other action it
needs to recover.

Method Types

Getting the default instance + defaultConnection

Creating instances + connectionWithReceivePort:sendPort:
– initWithReceivePort:sendPort:

Vending an object – registerName:
– setRootObject:
– rootObject

Getting a remote object + connectionWithRegisteredName:host:
– rootProxy
+ rootProxyForConnectionWithRegisteredName:host:

Getting all NSConnections + allConnections

Configuring instances – setRequestTimeout:
– requestTimeout
– setReplyTimeout:
– replyTimeout
– setIndependentConversationQueueing:
– independentConversationQueueing
– addRequestMode:
– removeRequestMode:
– requestModes
– invalidate

Getting ports – receivePort
– sendPort

9

Getting statistics – statistics

Setting the delegate – setDelegate:
– delegate

Class Methods

allConnections
+ (NSArray *)allConnections

Returns all valid NSConnections in the process.

See also: – isValid

connectionWithReceivePort:sendPort:
+ (NSConnection *)connectionWithReceivePort:(NSPort *)receivePort sendPort:(NSPort *)sendPort

Returns an NSConnection that communicates using receivePort and sendPort. See
initWithReceivePort:sendPort: for more information.

See also: + defaultConnection

connectionWithRegisteredName:host:
+ (NSConnection *)connectionWithRegisteredName:(NSString *)name host:(NSString *)hostName

Returns the NSConnection whose send port links it to the NSConnection registered under name on the host
named hostName. Returns nil if no NSConnection can be found for name and hostName. The returned
NSConnection is a child of the default NSConnection for the current thread (that is, it shares the default
NSConnection’s receive port).

If hostName is nil or empty then only the local host is searched for the named NSConnection. If hostName
is “*” then all hosts on the local subnet are queried for an NSConnection registered under name; where there
are duplicates the connection is made with an arbitrary host, which is then used for every subsequent request
from the local host.

To get the object vended by the NSConnection, use the rootProxy instance method. The
rootProxyForConnectionWithRegisteredName:host: class method immediately returns this object.

See also: + defaultConnection

10

 NSConnection

defaultConnection
+ (NSConnection *)defaultConnection

Returns the default NSConnection for the current thread, creating it if necessary. The default NSConnection
uses a single NSPort for both receiving and sending, and is useful only for vending an object; use the
setRootObject: and registerName: methods to do this.

See also: – init

rootProxyForConnectionWithRegisteredName:host:
+ (NSDistantObject *)rootProxyForConnectionWithRegisteredName:(NSString *)name

host:(NSString *)hostName

Returns a proxy for the root object of the NSConnection registered under name on the host named
hostName, or nil if that NSConnection has no root object set. Also returns nil if no NSConnection can be
found for name and hostName. The NSConnection of the returned proxy is a child of the default
NSConnection for the current thread (that is, it shares the default NSConnection’s receive port).

If hostName is nil or empty then only the local host is searched for the named NSConnection. If hostName
is “*” then all hosts on the local subnet are queried for an NSConnection registered under name; where there
are duplicates the connection is made with an arbitrary host, which is then used for every subsequent request
from the local host.

This method invokes connectionWithRegisteredName:host: and sends the resulting NSConnection object
a rootProxy message.

See also: – setRootObject:

Instance Methods

addRequestMode:
– (void)addRequestMode:(NSString *)mode

Adds mode to the set of run loop input modes that the NSConnection uses for connection requests. The
default input mode is NSDefaultRunLoopMode. See the NSRunLoop class specification for more
information on input modes.

See also: – addPort:forMode: (NSRunLoop)

11

delegate
– (id)delegate

Returns the NSConnection’s delegate.

See also: – setDelegate:

independentConversationQueueing
– (BOOL)independentConversationQueueing

Returns YES if the NSConnection handles remote messages atomically, NO otherwise. See “Configuring
an NSConnection” in the class description for more information on independent conversation queueing.

See also: – setIndependentConversationQueueing:

initWithReceivePort:sendPort:
– (id)initWithReceivePort:(NSPort *)receivePort sendPort:(NSPort *)sendPort

Initializes a newly created NSConnection with receivePort and sendPort. The new NSConnection adds
receivePort to the current NSRunLoop with NSDefaultRunLoopMode as the mode. If the application
doesn’t use an NSApplication object to handle events, it needs to run the NSRunLoop with one of its various
run... messages. Returns self.

This method posts an NSConnectionDidInitializeNotification once the connection is initialized.

receivePort and sendPort affect initialization as follows:

• If an NSConnection with the same ports already exists, releases the receiver, retains the existing
NSConnection, and returns it.

• If an NSConnection exists that uses the same ports, but switched in role, then the new NSConnection
communicates with it. Messages sent to a proxy held by either NSConnection are forwarded through the
other NSConnection. This rule applies both within and across address spaces.

This behavior is useful for setting up distributed objects connections between threads within an
application. See “Forming Connections Between Threads” in the class description for more
information.

• If receivePort is nil , deallocates the receiver and returns nil .

• If sendPort is nil or if both ports are the same, the NSConnection uses receivePort for both sending and
receiving, and is useful only for vending an object. Use the registerName: and setRootObject: instance
methods to vend an object.

• If an NSConnection exists that uses receivePort as both of its ports, it’s treated as the parent of the new
NSConnection, and its root object and all of its configuration settings are applied to the new

12

 NSConnection

NSConnection. You should neither register a name for nor set the root object of the new NSConnection.
See “Configuring an NSConnection” in the class description for more information.

• If receivePort and sendPort are different and neither is shared with another NSConnection, the receiver
can be used to vend an object as well as to communicate with other NSConnections. However, it has no
other NSConnection to communicate with until one is set up.

• receivePort can’t be shared by NSConnections in different threads.

This method is the designated initializer for the NSConnection class. Because it isn’t part of the OpenStep
specification, subclasses of NSConnection aren’t portable among different OpenStep implementations.

See also: + defaultConnection

invalidate
– (void)invalidate

Invalidates (but doesn’t release) the receiver. After withdrawing the ports that it has registered with the
current run loop, invalidate posts an NSConnectionDidDieNotification and then invalidates all remote
objects and exported local proxies.

See also: – isValid, – removePort:forMode: (NSRunLoop), –requestModes:

isValid
– (BOOL)isValid

Returns NO if the NSConnection is known to be invalid, YES otherwise. An NSConnection becomes
invalid when either of its ports becomes invalid, but only notes that it has become invalid when it tries to
send or receive a message. When this happens it posts an NSConnectionDidDieNotification to the default
notification center.

See also: – invalidate, – isValid (NSPort)

receivePort
– (NSPort *)receivePort

Returns the NSPort that the NSConnection receives incoming network messages on. You can inspect this
object for debugging purposes or use it to create another NSConnection, but shouldn’t use it to send or
receive messages explicitly. Don’t set the delegate of the receive port; it already has a delegate established
by the NSConnection.

See also: – sendPort, – initWithReceivePort:sendPort:

13

registerName:
– (BOOL)registerName:(NSString *)name

Registers the NSConnection under name on the local host, returning YES if successful, NO if not (for
example, if another NSConnection on the same host is already registered under name). Other
NSConnections can then contact it using the connectionWithRegisteredName:host: and
rootProxyForConnectionWithRegisteredName:host: class methods.

If the NSConnection was already registered under a name and this method returns NO, the old name
remains in effect. If this method is successful, it also unregisters the old name.

To unregister an NSConnection, simply invoke registerName: and supply nil as the connection name.

See also: – setRootObject:

removeRequestMode:
– (void)removeRequestMode:(NSString *)mode

Removes mode from the set of run loop input modes that the NSConnection uses for connection requests.

See also: – removePort:forMode: (NSRunLoop)

replyTimeout
– (NSTimeInterval)replyTimeout

Returns the timeout interval for replies to outgoing remote messages. If a non-oneway remote message is
sent and no reply is received by the timeout, an NSPortTimeoutException is raised.

See also: – requestTimeout, –setReplyTimeout:

requestModes
– (NSArray *)requestModes

Returns the set of request modes (as an array of NSStrings) that the NSConnection’s receive port is
registered for with its NSRunLoop.

See also: – addRequestMode:, –addPort:forMode: (NSRunLoop), –removeRequestMode:

14

 NSConnection

requestTimeout
– (NSTimeInterval)requestTimeout

Returns the timeout interval for outgoing remote messages. If a remote message can’t be sent before the
timeout, an NSPortTimeoutException is raised.

See also: – replyTimeout, –setRequestTimeout:

rootObject
– (id)rootObject

Returns the object that the NSConnection (or its parent) makes available to other applications or threads, or
nil if there is no root object. To get a proxy to this object in another application or thread, invoke the
rootProxyForConnectionWithRegisteredName:host: class method with the appropriate arguments.

See also: – rootProxy, –setRootObject:

rootProxy
– (NSDistantObject *)rootProxy

Returns the proxy for the root object of NSConnection’s peer in another application or thread. The proxy
returned can change between invocations if the peer NSConnection’s root object is changed.

Note: If the NSConnection uses separate send and receive ports and has no peer, when you invoke
rootProxy it will block for the duration of the reply timeout interval, waiting for a reply.

See also: – rootObject

sendPort
– (NSPort *)sendPort

Returns the NSPort that the NSConnection sends outgoing network messages through. You can inspect this
object for debugging purposes or use it to create another NSConnection, but shouldn’t use it to send or
receive messages explicitly. Don’t set the delegate of the send port; it already has a delegate established by
the NSConnection.

See also: – receivePort, – initWithReceivePort:sendPort:

15

setDelegate:
– (void)setDelegate:(id)anObject

Sets the NSConnection’s delegate to anObject. Doesn’t retain anObject.

setIndependentConversationQueueing:
– (void)setIndependentConversationQueueing:(BOOL)flag

Sets whether the NSConnection handles remote messages atomically. The default is NO: An NSConnection
normally forwards remote message to the intended recipients as they come in. See “Configuring an
NSConnection” in the class description for more information.

See also: – independentConversationQueueing

setReplyTimeout:
– (void)setReplyTimeout:(NSTimeInterval)seconds

Sets the timeout interval for replies to outgoing remote messages to seconds. If a non-oneway remote
message is sent and no reply is forthcoming by the timeout, an NSPortTimeoutException is raised. The
default timeout is the maximum possible value.

See also: – setRequestTimeout:, – replyTimeout

setRequestMode:
– (void)setRequestMode:(NSString *)mode

Sets the run loop mode that the NSConnection uses for connection requests to mode and reregisters the
NSConnection’s receive port with the current NSRunLoop. The default request mode is
NSDefaultRunLoopMode. See the NSRunLoop class specification for more information on run modes.

See also: – requestMode

setRequestTimeout:
– (void)setRequestTimeout:(NSTimeInterval)seconds

Sets the timeout interval for outgoing remote messages to seconds. If a remote message can’t be sent before
the timeout, an NSPortTimeoutException is raised. The default timeout is the maximum possible value.

See also: – setReplyTimeout:, – requestTimeout

16

 NSConnection

setRootObject:
– (void)setRootObject:(id)anObject

Sets the object that the NSConnection makes available to other applications or threads to anObject. This
only affects new connection requests and rootProxy messages to established NSConnections; application
that have proxies to the old root object can still send messages through it.

See also: – rootObject

statistics
– (NSDictionary *)statistics

Returns an NSDictionary containing various statistics for the NSConnection, such as the number of vended
objects, the number of requests and replies, and so on. The statistics dictionary should be used only for
debugging purposes; see the release notes for more information on its contents.

Methods Implemented by the Delegate

authenticateComponents:withData:
– (BOOL)authenticateComponents:(NSArray *)components

withData:(NSData *)authenticationData

Returns YES if the authenticationData provided is valid for components, NO otherwise. components
contains NSData and NSPort objects belonging to an NSPortMessage object. See the NSPortMessage class
specification for more information. authenticationData should have been created by the delegate of the peer
NSConnection with authenticationDataForComponents:.

Use this message for validation of incoming messages. An NSConnection raises an
NSFailedAuthenticationException on receipt of a remote message that the delegate doesn’t authenticate.

authenticationDataForComponents
– (NSData *)authenticationDataForComponents:(NSArray *)components

Returns an NSData object to be used as a authentication stamp for an outgoing message. components
contains the elements of a network message, in the form of NSPort and NSData objects. The delegate
should use only the NSData elements to create the authentication stamp. See the NSPortMessage class
specification for more information on the components.

components will be validated on receipt by the delegate of the peer NSConnection with
authenticateComponents:withData:.

17

connection:shouldMakeNewConnection:
– (BOOL)connection:(NSConnection *)parentConnection

shouldMakeNewConnection:(NSConnection *)newConnnection

Returns YES if parentConnection should allow newConnnection to be created and set up, NO if
parentConnection should refuse and immediately release newConnection. Use this method to limit the
amount of NSConnections created in your application or to change the parameters of child NSConnections.

makeNewConnection:sender:
– (BOOL)makeNewConnection:(NSConnection *)newConnection

sender:(NSConnection *)parentConnection

Returns YES if parentConnection should allow newConnnection to be created and set up, NO if
parentConnection should refuse and immediately release newConnection. Use this method to limit the
amount of NSConnections created in your application or to change the parameters of child NSConnections.

This delegate method is obsolete, and shouldn’t be used. Use connection:shouldMakeNewConnection:
instead.

Notifications

NSConnectionDidDieNotification

Posted when the NSConnection is deallocated or when it’s notified that its NSPort has become invalid. The
notification contains:

Notification Object The NSConnection object.

The NSConnection object posting this notification is no longer useful, so all receivers should unregister
themselves for any notifications involving the NSConnection.

See also: NSPortDidBecomeInvalidNotification (NSPort)

NSConnectionDidInitializeNotification

Posted when the NSConnection is initialized using initWithReceivePort:sendPort: (the designated
initializer for NSConnection). The notification contains:

Notification Object The NSConnection object.

See also: initWithReceivePort:sendPort:

