
1

NSDistributedLock

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSDistributedLock.h

Class Description

The NSDistributedLock class defines an object that multiple applications on multiple hosts can use to
restrict access to some shared resource, such as a file.

The lock is implemented by an entry (such as a file or directory) in the file system. For multiple applications
to use an NSDistributedLock to coordinate their activities, the lock must be writable on a file system
accessible to all hosts on which the applications might be running.

Use the tryLock method to attempt to acquire a lock. You should generally use the unlock method to release
the lock rather than breakLock.

NSDistributedLock doesn’t conform to the NSLocking protocol nor does it have a lock method. The
protocol’s lock method is intended to block the execution of the thread until successful. For an
NSDistributedLock object, this could mean polling the file system at some predetermined rate. A better
solution is to provide the tryLock method and let you determine the polling frequency that makes sense for
your application.

Method Types

Creating an NSDistributedLock + lockWithPath:
– initWithPath:

Acquiring a lock – tryLock

Relinquishing a lock – breakLock
– unlock

Getting lock information – lockDate

2

 NSDistributedLock

Class Methods

lockWithPath:
+ (NSDistributedLock *)lockWithPath: (NSString *)aPath

Returns an NSDistributedLock object initialized to use the file system entry specified by aPath as the
locking object. For applications to use the lock, this location in the file system must be accessible—and
writable—to all hosts on which the applications might be running.

aPath shouldn’t yet exist when this method is invoked, although all of aPath up to the last component itself
must exist. Use NSFileManager to create (and set permissions) for any nonexistent intermediate directories.

See also: – initWithPath:

Instance Methods

breakLock
– (void)breakLock

Forces the lock to be relinquished. This method always succeeds unless the lock has been damaged. If
another process has already unlocked or broken the lock, this method has no effect. You should generally
use unlock rather than breakLock to relinquish a lock.

Warning: Since breakLock can release another process’s lock, it should be used with great caution.

Even if you break a lock, there’s no guarantee that you will then be able to acquire the lock: Another process
might get it before your tryLock is invoked.

Raises NSGenericException if the lock could not be removed.

See also: – unlock

initWithPath:
– (NSDistributedLock *)initWithPath: (NSString *)aPath

Initializes a newly allocated NSDistributedLock object to use the file system entry specified by aPath as the
lock. For applications to use the lock, this location in the file system must be accessible—and writable—to
all hosts on which the applications might be running.

aPath shouldn’t yet exist when this method is invoked, although all of aPath up to the last component itself
must exist. Use NSFileManager to create (and set permissions) for any nonexistent intermediate directories.

See also: – lockWithPath:

3

lockDate
– (NSDate *)lockDate

Returns the time that the lock occurred.

This method is potentially useful to applications that want to use an age heuristic to decide if a lock is too
old and should be broken. Returns nil if the lock doesn’t exist.

If the creation date on the lock isn’t the date on which you locked it, you’ve lost the lock: It’s been broken
since you last checked it.

tryLock
– (BOOL)tryLock

Attempts to acquire the lock. Returns immediately with a value of YES if successful and NO otherwise.

Raises NSGenericException if a file system error occurs.

See also: – unlock

unlock
– (void)unlock

Relinquishes the lock. You should generally use the unlock method rather than breakLock to release a lock.

An NSGenericException is raised if the lock doesn’t already exist.

See also: – breakLock

