
1

NSCharacterSet Class Cluster

Class Cluster Description

An NSCharacterSet object represents a set of Unicode characters. NSString and NSScanner objects use
NSCharacterSets to group characters together for searching operations, so that they can find any of a
particular set of characters during a search. The cluster’s two public classes, NSCharacterSet and
NSMutableCharacterSet, declare the programmatic interface for static and dynamic character sets,
respectively.

The objects you create using these classes are referred to as character set objects (and when no confusion
will result, merely as character sets). Because of the nature of class clusters, character set objects aren’t
actual instances of the NSCharacterSet or NSMutableCharacterSet classes but of one of their private
subclasses. Although a character set object’s class is private, its interface is public, as declared by these
abstract superclasses, NSCharacterSet and NSMutableCharacterSet. (See “Class Clusters” in the
introduction to the Foundation Kit for more information on class clusters and on creating subclasses within
a cluster.) The character set classes adopt the NSCopying and NSMutableCopying protocols, making it
convenient to convert a character set of one type to the other.

Building a Character Set

NSCharacterSet defines class methods that return commonly used character sets, such as letters (uppercase
or lowercase), decimal digits, whitespace, and so on. These “standard” character sets are always immutable,
even if created by sending a message to NSMutableCharacterSet. See “Standard Character Sets and
Unicode Definitions” below for more information on standard character sets.

You can use a standard character set as a starting point for building a custom set by making a mutable copy
of it and changing that. (You can also start from scratch by creating a mutable character set with alloc and
init and adding characters to it.) For example, this fragment creates a character set containing letters, digits,
and basic punctuation:

NSMutableCharacterSet *workingSet;

NSCharacterSet *finalCharSet;

workingSet = [[NSCharacterSet alphanumericCharacterSet] mutableCopy];

[workingSet addCharactersInString:@";:,."];

finalCharSet = [workingSet copy];

[workingSet release];

For performance reasons (explained in “Using a Character Set”), always finish by converting the working
mutable character set into an immutable set. If you need to keep changing the character set after you’ve
created it, of course, you should just use the mutable set.

2

If your application frequently uses a custom character set, you’ll want to save its definition in a resource file
and load that instead of explicitly adding individual characters each time you need to create the set. You can
save a character set by getting its bitmap representation (an NSData object) and saving that object to a file:

NSString *filename; /* Assume this exists. */

NSString *absolutePath;

NSData *charSetRep;

BOOL result;

absolutePath = [filename stringByStandardizingPath];

charSetRep = [finalCharSet bitmapRepresentation];

result = [charSetRep writeToFile:absolutePath atomically:YES];

Character set filenames by convention use the extension .bitmap. If you intend for others to use your
character set files, you should follow this convention. To read a character set file with a .bitmap extension,
simply use the characterSetWithContentsOfFile: method.

Using a Character Set

A character set object doesn’t perform any tasks; it simply holds a set of character values to limit operations
on strings. The NSString and NSScanner classes define methods that take NSCharacterSets as arguments
to find any of several characters. For example, this code excerpt finds the range of the first uppercase letter
in myString:

NSString *myString = @"some text in an NSString...";

NSRange letterRange;

letterRange = [myString rangeOfCharacterFromSet:[NSCharacterSet

 uppercaseLetterCharacterSet]];

After this fragment executes, letterRange.location is equal to the index of the first “N” in “NSString” after
rangeOfCharacterFromSet: is invoked. If the first letter of the string were “S” then letterRange.location
would be 0.

Because character sets often participate in performance-critical code, you should be aware of the aspects of
their use that can affect the performance of your application. Mutable character sets are generally much
more expensive than immutable character sets. They consume more memory and are costly to invert (an
operation often performed in scanning a string). Because of this, you should follow these guidelines:

• Create as few mutable character sets as possible.

• Cache character sets (in a global dictionary, perhaps) instead of continually recreating them.

• When creating a custom set that doesn’t need to change after creation, make an immutable copy of the
final character set for actual use, and dispose of the working mutable character set. Alternatively, create
a character set file as described in “Building a Character Set” and store it in your application’s main
bundle.

3

• Similarly, avoid archiving character set objects; store them in character set files instead. Archiving can
result in a character set being duplicated in different archive files, resulting in wasted disk space and
duplicates in memory for each separate archive read.

Standard Character Sets and Unicode Definitions

The standard character sets, such as that returned by letterCharacterSet, are formally defined in terms of
the normative and informative categories established by the Unicode standard, such as Uppercase Letter,
Combining Mark, and so on. The formal definition of a standard character set is in most cases given as one
or more of the categories defined in the standard. For example, the set returned by
lowercaseLetterCharacterSet include all characters in normative category Lowercase Letters, while the
set returned by letterCharacterSet includes the characters in all of the Letter categories.

Note that the definitions of the categories themselves may change with new versions of the Unicode
standard. You can download the files that define category membership from http://www.unicode.org/.

4

 NSCharacterSet

NSCharacterSet

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSCharacterSet.h

Class Description

The NSCharacterSet class declares the programmatic interface for an object that manages a set of Unicode
characters (see the NSString class cluster specification for information on Unicode). NSCharacterSet’s
principal primitive method, characterIsMember:, provides the basis for all other instance methods in its
interface. A subclass of NSCharacterSet needs only to implement this method, plus
mutableCopyWithZone:, for proper behavior. For optimal performance, a subclass should also override
bitmapRepresentation which otherwise works by invoking characterIsMember: for every possible
Unicode value.

Adopted Protocols

NSCoding – encodeWithCoder:
– initWithCoder:

NSCopying – copyWithZone:

NSMutableCopying – mutableCopyWithZone:

5

Method Types

Creating a standard character set + alphanumericCharacterSet
+ controlCharacterSet
+ decimalDigitCharacterSet
+ decomposableCharacterSet
+ illegalCharacterSet
+ letterCharacterSet
+ lowercaseLetterCharacterSet
+ nonBaseCharacterSet
+ punctuationCharacterSet
+ uppercaseLetterCharacterSet
+ whitespaceAndNewlineCharacterSet
+ whitespaceCharacterSet

Creating a custom character set + characterSetWithRange:
+ characterSetWithCharactersInString:
+ characterSetWithBitmapRepresentation:

Opening a character set file + characterSetWithContentsOfFile:

Testing set membership – characterIsMember:

Inverting a character set – invertedSet

Getting a binary representation – bitmapRepresentation

Class Methods

alphanumericCharacterSet
+ (NSCharacterSet *)alphanumericCharacterSet

Returns a character set containing the characters in the categories Letters, Marks, and Numbers. Informally,
this is the set of all characters used as basic units of alphabets, syllabaries, ideographs, and digits.

See also: + letterCharacterSet, + decimalDigitCharacterSet

characterSetWithBitmapRepresentation:
+ (NSCharacterSet *)characterSetWithBitmapRepresentation:(NSData *)data

Returns a character set containing characters determined by the bitmap representation data. This method is
useful for creating a character set object with data from a file or other external data source.

6

 NSCharacterSet

A raw bitmap representation of a character set is a byte array of 216 bits (that is, 8192 bytes). The value of
the bit at position n represents the presence in the character set of the character with decimal Unicode value
n. To add a character with decimal Unicode value n to a raw bitmap representation, use a statement such as:

unsigned char bitmapRep[8192];

bitmapRep[n >> 3] |= (((unsigned int)1) << (n & 7));

To remove that character:

bitmapRep[n >> 3] &= ~(((unsigned int)1) << (n & 7));

See also: – bitmapRepresentation, + characterSetWithContentsOfFile:

characterSetWithCharactersInString:
+ (NSCharacterSet *)characterSetWithCharactersInString:(NSString *)aString

Returns a character set containing the characters in aString. Returns an empty character set if aString is
empty.

characterSetWithContentsOfFile:
+ (NSCharacterSet *)characterSetWithContentsOfFile:(NSString *)path

Returns a character set read from the bitmap representation stored in the file at path, which must end with
the extension .bitmap. To read a bitmap representation from any file, use NSData’s
dataWithContentsOfFile: method and pass the result to characterSetWithBitmapRepresentation:.

This method doesn’t perform filename-based uniquing of the character sets it creates. To prevent
duplication of character sets in memory, cache them and make them available through an API that checks
whether the requested set has already been loaded.

characterSetWithRange:
+ (NSCharacterSet *)characterSetWithRange:(NSRange)aRange

Returns a character set containing characters whose Unicode values are given by aRange. aRange.location
is the value of the first character, and aRange.location+ aRange.length– 1 is the value of the last. Returns
an empty character set if aRange.length is 0.

This code excerpt creates a character set object containing the lowercase English alphabetic characters:

NSRange lcEnglishRange;

NSCharacterSet *lcEnglishLetters;

7

lcEnglishRange.location = (unsigned int)’a’;

lcEnglishRange.length = 26;

lcEnglishLetters = [NSCharacterSet

 characterSetWithRange:lcEnglishRange];

controlCharacterSet
+ (NSCharacterSet *)controlCharacterSet

Returns a character set containing the characters in the categories of Control or Format Characters. These
are specifically the Unicode values U+0000 to U+001F and U+007F to U+009F.

See also: + illegalCharacterSet

decimalDigitCharacterSet
+ (NSCharacterSet *)decimalDigitCharacterSet

Returns a character set containing the characters in the category of Decimal Numbers. Informally, this is
the set of all characters used to represent the decimal values 0 through 9. These include, for example, the
decimal digits of the Indic scripts and Arabic.

See also: + alphanumericCharacterSet

decomposableCharacterSet
+ (NSCharacterSet *)decomposableCharacterSet

Returns a character set containing all individual Unicode characters that can also be represented as
composed character sequences (such as for letters with accents), by the definition of “standard
decomposition” in version 1.1 of the Unicode character encoding standard. These include compatibility
characters as well as precomposed characters.

Note: This character set doesn’t currently include the Hangul characters defined in version 2.0 of the
Unicode standard.

See also: + nonBaseCharacterSet

8

 NSCharacterSet

illegalCharacterSet
+ (NSCharacterSet *)illegalCharacterSet

Returns a character set containing values in the category of Non-Characters, or that have not yet been
defined in version 2.0 of the Unicode standard.

See also: + controlCharacterSet

letterCharacterSet
+ (NSCharacterSet *)letterCharacterSet

Returns a character set containing the characters in the categories Letters and Marks. Informally, this is the
set of all characters used as letters of alphabets and ideographs.

See also: + alphanumericCharacterSet, + lowercaseLetterCharacterSet,
+ uppercaseLetterCharacterSet

lowercaseLetterCharacterSet
+ (NSCharacterSet *)lowercaseLetterCharacterSet

Returns a character set containing the characters in the category of Lowercase Letters. Informally, this is
the set of all characters used as lowercase letters in alphabets which make case distinctions.

See also: + uppercaseLetterCharacterSet, + letterCharacterSet

nonBaseCharacterSet
+ (NSCharacterSet *)nonBaseCharacterSet

Returns a character set containing the characters in the category of Marks. This set is also defined as all
legal Unicode characters with a non-spacing priority greater than zero. Informally, this is the set of all
characters used as modifiers of base characters.

See also: + decomposableCharacterSet

punctuationCharacterSet
+ (NSCharacterSet *)punctuationCharacterSet

Returns a character set containing the characters in the category of Punctuation. Informally, this is the set
of all non-whitespace characters used to separate linguistic units in scripts, such as periods, dashes,
parentheses, and so on.

9

uppercaseLetterCharacterSet
+ (NSCharacterSet *)uppercaseLetterCharacterSet

Returns a character set containing the characters in the category of Uppercase Letters. Informally, this is
the set of all characters used as uppercase letters in alphabets which make case distinctions.

See also: + lowercaseLetterCharacterSet, + letterCharacterSet

whitespaceAndNewlineCharacterSet
+ (NSCharacterSet *)whitespaceAndNewlineCharacterSet

Returns a character set containing only the whitespace characters space (U+0020) and tab (U+0009) and
the newline character (U+000A).

See also: + whitespaceCharacterSet

whitespaceCharacterSet
+ (NSCharacterSet *)whitespaceCharacterSet

Returns a character set containing only the in-line whitespace characters space (U+0020) and tab (U+0009).
This set doesn’t contain the newline or carriage return characters.

See also: + whitespaceAndNewlineCharacterSet

Instance Methods

characterIsMember:
– (BOOL)characterIsMember:(unichar)aCharacter

Returns YES if aCharacter is in the receiving character set, NO if it isn’t.

bitmapRepresentation
– (NSData *)bitmapRepresentation

Returns an NSData object encoding the receiving character set in binary format. This format is suitable for
saving to a file or otherwise transmitting or archiving.

A raw bitmap representation of a character set is a byte array of 216 bits (that is, 8192 bytes). The value of
the bit at position n represents the presence in the character set of the character with decimal Unicode value

10

 NSCharacterSet

n. To test for the presence of a character with decimal Unicode value n in a raw bitmap representation, use
an expression such as:

unsigned char bitmapRep[8192];

if (bitmapRep[n >> 3] & (((unsigned int)1) << (n & 7))) {

 /* Character is present. */

}

See also: + characterSetWithBitmapRepresentation:

invertedSet
– (NSCharacterSet *)invertedSet

Returns a character set containing only characters that don’t exist in the receiver. Inverting an immutable
character set is much more efficient that inverting a mutable character set.

See also: – invert (NSMutableCharacterSet)

11

NSMutableCharacterSet

Inherits From: NSCharacterSet : NSObject

Conforms To: NSCoding (NSCharacterSet)
NSCopying (NSCharacterSet)
NSMutableCopying (NSCharacterSet)
NSObject (NSObject)

Declared In: Foundation/NSCharacterSet.h

Class Description

The NSMutableCharacterSet class declares the programmatic interface to objects that manage a modifiable
set of Unicode characters. You can add or remove characters from a mutable character set as numeric values
in NSRanges or as character values in strings; combine character sets by union or intersection; and invert a
character set.

Mutable character sets are less efficient to use than immutable character sets. If you don’t need to change a
character set after creating it, create an immutable copy with copy and use that.

NSMutableCharacterSet defines no primitive methods. Subclasses must implement all methods declared by
this class in addition to the primitives of NSCharacterSet. They must also implement
mutableCopyWithZone:.

Method Types

Adding and removing characters – addCharactersInRange:
– removeCharactersInRange:
– addCharactersInString:
– removeCharactersInString:

Combining character sets – formIntersectionWithCharacterSet:
– formUnionWithCharacterSet:

Inverting a character set – invert

12

 NSMutableCharacterSet

Instance Methods

addCharactersInRange:
– (void)addCharactersInRange:(NSRange)aRange

Adds the characters whose integer values are given by aRange to the receiver. aRange.location is the value
of the first character to add, aRange range.location+ aRange.length– 1 is the value of the last. If
aRange.length is 0 this method has no effect.

See also: – removeCharactersInRange:, –addCharactersInString:

addCharactersInString:
– (void)addCharactersInString:(NSString *)aString

Adds the characters in aString to those in the receiver. This method has no effect if aString is empty.

See also: – removeCharactersInString:, –addCharactersInRange:

formIntersectionWithCharacterSet:
– (void)formIntersectionWithCharacterSet:(NSCharacterSet *)otherSet

Modifies the receiver so that it contains only characters that exist in both the receiver and in otherSet.

See also: – formUnionWithCharacterSet:

formUnionWithCharacterSet:
– (void)formUnionWithCharacterSet: (NSCharacterSet *)otherSet

Modifies the receiver so that it contains all characters that exist in either the receiver or otherSet.

See also: – formIntersectionWithCharacterSet:

invert
– (void)invert

Replaces all of the characters in the receiver with all the characters it didn’t previously contain. Inverting a
mutable character set, whether by invert or by invertedSet, is much less efficient that inverting an
immutable character set with invertedSet.

See also: – invertedSet(NSCharacterSet)

13

removeCharactersInRange:
– (void)removeCharactersInRange:(NSRange)aRange

Removes from the receiver the characters whose integer values are given by aRange. aRange.location is the
value of the first character to remove, and aRange.location+ aRange.length– 1 is the value of the last. If
aRange.length is 0 this method has no effect.

See also: – addCharactersInRange:, – removeCharactersInString:

removeCharactersInString:
– (void)removeCharactersInString:(NSString *)aString

Removes the characters in aString from those in the receiver. This method has no effect if aString is empty.

See also: – addCharactersInString:, – removeCharactersInRange:

