
Classes: DOEventLoop 1

DOEventLoop

Inherits From: Object

Conforms To: DOMachMessageHandling

Declared In: remote/DOEventLoop.h

Class Description

The DOEventLoop class is provided with Portable Distributed Objects systems so that
PDO applications can have an object that handles the concept of a “run loop” in much the
way that NEXTSTEP’s Application object does. You can register objects with a
DOEventLoop such that they’ll be notified when data is available to be read from a file
descriptor, when a Mach message is waiting on a port, or when a specified amount of time
has passed. Such objects are called event “handlers.”

Normally, you’ll set up a few handlers on an event loop and then run it (with the run
method). The handler objects may in turn add more handlers for new file descriptors, ports,
and timeout events.

There are three new protocols and two new data types used with the DOEventLoop class.
Since they’re all quite small, they’re described at the end of this class specification.

Instance Variables

None declared in this class.

Adopted Protocols

DOEventHandling – machMessageReceived:handlerData:

2 Distributed Objects

Method Types

Managing event handlers – addConnection:
– addFileDescriptor:handler:handlerData:
– removeFileDescriptor:
– addPort:handler:handlerData:
– removePort:
– addTimeoutEntry:handler:handlerData:
– removeTimeoutEntry:

Running a loop – run
– stop

Instance Methods

addConnection:

– addConnection:(NXConnection *)aConnection

This methods adds aConnection to the event loop, allowing it to handle remote messages.

See also: – run

addFileDescriptor:handler:handlerData:

– addFileDescriptor:(int)fd handler:(id <DOFileDescriptorHandling>)anObject
handlerData:(void *)data

This method registers anObject as the handler for incoming data on the UNIX file
descriptor fd. The handler data, data, may be anything needed by anObject.

When data is ready to be read from the file descriptor, anObject will receive a
dataOnFileDescriptor:handlerData: message. Handler objects aren’t notified until the
DOEventLoop has received a run message.

Returns self if fd is successfully added, nil otherwise.

See also: – removeFileDescriptor:,
– dataOnFileDescriptor:handlerData: (DOFileDescriptorHandling protocol)

Classes: DOEventLoop 3

addPort:handler:handlerData:

– addPort:(port_t)port handler:(id <DOMachMessageHandling>)anObject
handlerData:(void *)data

This method registers anObject as the handler for incoming Mach messages on the Mach
port port. The handler data, data, may be anything needed by anObject.

When a Mach message is waiting on port, anObject will receive a
machMessageReceived:handlerData: message. Handler objects aren’t notified until the
DOEventLoop has received a run message.

Returns self if successful, or nil if an error occurs.

See also: – removePort:,
– machMessageReceived:handlerData:(DOMachMessageHandling protocol)

addTimeoutEntry:handler:handlerData:

– (DOTimeoutReceipt)addTimeoutEntry: (DOTimeInterval)timeout
handler:(id <DOTimeoutHandling>)anObject handlerData:(void *)data

This method registers anObject as the handler for a timeout event timeout milliseconds
from the time this method is invoked. The handler data, data, may be anything needed by
anObject.

When the timeout occurs, anObject will receive a timeoutOccurred:handlerData:
message. Timing doesn’t begin and handler objects aren’t notified until the DOEventLoop
has received a run message.

Returns a receipt that can later be used to identify the timeout event created by this method;
for example, in a removeTimeoutEntry: message.

See also: – removeTimeoutEntry:,
– timeoutOccurred:handlerData: (DOTimeoutHandling protocol)

removeFileDescriptor:

– removeFileDescriptor:(int)fd

Deregisters the handler object for the file descriptor fd. Returns self if fd was registered, nil
if it wasn’t.

See also: – addFileDescriptor:handler:handlerData:

4 Distributed Objects

removePort:

– removePort:(port_t)port

Deregisters the handler object for the Mach port port. Returns self if port was registered,
nil if it wasn’t.

See also: – addPort:handler:handlerData:

removeTimeoutEntry:

– removeTimeoutEntry:(DOTimeoutReceipt)receipt

Deregisters the handler object for the timeout event identified by receipt. Returns self if
receipt identified a registered timeout, nil if it wasn’t.

See also: – addTimeoutEntry:handler:handlerData:

run

– run

Runs the event loop. The receiver waits for data or timeouts, and notifies the appropriate
handlers. This method returns self if the event loop receives a stop message, and otherwise
returns nil if a serious error occurs, such as the program deallocating a port and not
removing the handler for it.

If you send run to an event loop with no connections or handlers, your application will be
caught in an infinite loop. You should never send run to an event loop that’s already
running.

See also: – stop

stop

– (void)stop

Stops a running event loop. The loop’s run method will then return self. You should never
send stop to an event loop that isn’t running.

See also: – run

Classes: DOEventLoop 5

DOFileDescriptorHandling Protocol

dataOnFileDescriptor:handlerData:

– (void)dataOnFileDescriptor:(int)fd handlerData:(void *)data

An event handler object receives this message when there’s data available to read on the file
descriptor fd. The handler should do whatever it needs to process the event. data is the data
originally passed in by the invocation of addFileDescriptor:handler:handlerData: that
registered the handler object.

See also: – addFileDescriptor:handler:handlerData: (DOEventLoop class)

DOMachMessageHandling Protocol

machMessageReceived:handlerData:

– (void)machMessageReceived:(msg_header_t *)msg handlerData:(void *)data

An event handler object receives this message when there’s a Mach message waiting to be
read. The handler should do whatever it needs to process the event. data is the data
originally passed in by the invocation of addPort:handler:handlerData: that registered
the handler object.

See also: – addPort:handler:handlerData: (DOEventLoop class)

DOTimeoutHandling Protocol

timeoutOccurred:handlerData:

– (void)timeoutOccurred:(DOTimoutReceipt)receipt handlerData:(void *)data

An event handler object receives this message when a timeout previously requested occurs.
receipt identifies the particular timeout event. The handler should do whatever it needs to
process the event. data is the data originally passed in by the invocation of
addTimeoutEntry:handler:handlerData: that registered the handler object.

See also: – addTimeoutEntry:handler:handlerData: (DOEventLoop class)

6 Distributed Objects

Data Types

typedef unsigned long DOTimeInterval ;
typedef unsigned long DOTimeoutReceipt;

These two data types are used to specify the time in milliseconds before a timeout occurs,
and to identify a particular timeout event. Their use is explained in the timeout-handling
methods above.

