
1

NSObject

Inherits From: none (NSObject is a root class)

Conforms To: NSObject

Declared In: Foundation/NSObject.h

Class at a Glance

Purpose
NSObject is the root class of most Objective-C class hierarchies. Through NSObject, objects inherit a basic
interface to the run-time system and the ability to behave as Objective-C objects.

Principal Attributes
• isa pointer

Creation
+ alloc
+ allocWithZone:
– init (designated initializer)

Class Description

NSObject is the root class of most Objective-C class hierarchies; it has no superclass. From NSObject, other
classes inherit a basic interface to the run-time system for the Objective-C language, and its instances obtain
their ability to behave as objects.

NSObject adopts the NSObject protocol. The NSObject protocol allows for multiple root objects. For
example, NSProxy is another root class—it does not inherit from NSObject but adopts the NSObject
protocol so that it shares a common interface with other Objective-C objects. Some of the methods
discussed below are declared by NSObject protocol, not this class.

Among other things, the NSObject class provides inheriting classes with a framework for creating,
initializing, deallocating, copying, comparing, archiving and distributing objects, for performing methods
selected at run-time, for querying an object about its methods and its position in the inheritance hierarchy,

2

 NSObject

and for forwarding messages to other objects. For example, to ask an object what class it belongs to, you’d
send it a class message. To find out whether it implements a particular method, you’d send it a
respondsToSelector: message.

The NSObject class is mostly an abstract class; programs use instances of classes that inherit from
NSObject, but rarely instances of NSObject itself.

Initializing an Object to Its Class

Every object that inherits directly or indirectly from NSObject is connected to the run-time system through
its isa instance variable. isa identifies the object’s class; it references a structure that’s compiled from the
class definition. Through isa, an object can find whatever information it needs at run-time—such as its place
in the inheritance hierarchy, the size and structure of its instance variables, and the location of the method
implementations it can perform in response to messages.

The installation of the class structure—the initialization of isa—is one of the responsibilities of class
methods that create (allocate memory for) new instances: alloc, allocWithZone: and new. In other words,
a small part of instance initialization is taken care of by these creation methods; it’s not left to the methods,
such as init , that initialize individual objects with their particular characteristics.

Instance and Class Methods

The run-time system treats methods defined in the root class in a special way:

Instance methods defined in a root class can be performed both by instances and by class objects.

Therefore, all class objects have access to the instance methods defined in the root class. Any class object
can perform any root instance method, provided it doesn’t have a class method with the same name.

For example, a class object could be sent messages to perform NSObject’s respondsToSelector: and
perform:withObject: instance methods:

SEL method = @selector(riskAll:);

if ([MyClass respondsToSelector:method])

 [MyClass perform:method withObject:self];

Note that the only instance methods available to a class object are those defined in its root class. In the
example above, if MyClass had reimplemented either respondsToSelector: or perform:withObject: , those
new versions would be available only to instances. The class object for MyClass could perform only the
versions defined in the NSObject class. (Of course, if MyClass had implemented respondsToSelector: or
perform:withObject: as class methods rather than instance methods, the class would perform those new
versions.)

3

Interface Conventions

The NSObject class defines a number of methods that subclasses are expected to override. Often,
NSObject’s default implementation simply returns self. Putting these “empty” methods in the NSObject
class serves two purposes:

• It means that every object can readily respond to certain standard messages, such as init , even if the
response is to do nothing. It’s not necessary to check (using respondsToSelector:) before sending the
message.

• It establishes conventions that, when followed by all classes, make object interactions more reliable.
These conventions are explained in full under the method descriptions.

Instance Variables

Class isa;

isa A pointer to the instance’s class structure.

Adopted Protocols

NSObject – autorelease
– class
– conformsToProtocol:
– description
– hash
– isEqual:
– isKindOfClass:
– isMemberOfClass:
– isProxy
– perform:
– perform:withObject:
– perform:withObject:withObject:
– release
– respondsToSelector:
– retain
– retainCount
– self
– superclass
– zone

4

 NSObject

Method Types

Initializing the class + initialize

Creating, copying, and deallocating objects
+ new

+ alloc
+ allocWithZone:
– init
– copy
– mutableCopy
– dealloc

Identifying classes + class
+ superclass

Comparing objects – isEqual:
– hash

Testing class functionality + instancesRespondToSelector:

Testing protocol conformance + conformsToProtocol:

Obtaining method information – methodForSelector:
+ instanceMethodForSelector:
– methodSignatureForSelector:

Describing objects + description
– description

Posing + poseAsClass:

Sending messages – performSelector:object:afterDelay:
+ cancelPreviousPerformRequestsWithTarget:

selector:
object:

Forwarding messages – forwardInvocation:

Error handling – doesNotRecognizeSelector:

Archiving – awakeAfterUsingCoder:
– classForArchiver
– classForCoder
– classForPortCoder
– replacementObjectForArchiver:
– replacementObjectForCoder:
– replacementObjectForPortCoder:
+ setVersion:
+ version

5

Class Methods

alloc
+ (id)alloc

Returns a new instance of the receiving class. The isa instance variable of the new instance is initialized to
a data structure that describes the class; memory for all other instance variables is set to 0. The new instance
will be allocated from the default zone—use allocWithZone: to specify a particular zone.

An init... method should be used to complete the initialization process. For example:

TheClass *newObject = [[TheClass alloc] init];

Subclasses shouldn’t override alloc to include initialization code. Instead, class-specific versions of init...
methods should be implemented for that purpose. Class methods can also be implemented to combine
allocation and initialization, similar to the new class method.

Note that it’s your responsibility to release objects (with either release or autorelease) returned by alloc...
methods.

See also: – init

allocWithZone:
+ (id)allocWithZone: (NSZone *)zone

Returns a new instance of the receiving class where memory for the new instance is allocated from zone.
The isa instance variable of the new instance is initialized to a data structure that describes the class;
memory for its other instance variables is set to 0. If zone is NULL, the new instance will be allocated from
the default zone (as returned by NSDefaultMallocZone()).

An init... method should be used to complete the initialization process. For example:

TheClass *newObject = [[TheClass allocWithZone:someZone] init];

Subclasses shouldn’t override allocWithZone: to include any initialization code. Instead, class-specific
versions of init... methods should be implemented for that purpose.

When one object creates another, it’s often a good idea to make sure they’re both allocated from the same
region of memory. The zone method (declared in the NSObject protocol) can be used for this purpose; it
returns the zone where the receiver is located. For example:

id myCompanion = [[TheClass allocWithZone:[self zone]] init];

Note that it's your responsibility to release objects (with either release or autorelease) returned by alloc...
methods.

See also: + alloc, – init

6

 NSObject

cancelPreviousPerformRequestsWithTarget:selector:object:
+ (void)cancelPreviousPerformRequestsWithTarget:(id)aTarget

selector:(SEL)aSelector
object:(id)anArgument

Cancels perform requests previously registered with the performSelector:object:afterDelay: instance
method. All perform requests having the same target aTarget, and argument anArgument, (determined using
isEqual:), and the same selector aSelector, will be canceled. This method removes perform requests only
in the current run loop, not all run loops.

class
+ (Class)class

Returns the class object.

Only refer to a class by name when it is the receiver of a message. In all other cases, the class object must
be obtained through this, or a similar method. For example, here SomeClass is passed as an argument to the
isKindOfClass: method (declared in the NSObject protocol):

BOOL test = [self isKindOfClass:[SomeClass class]];

See also: – class (NSObject protocol)

conformsToProtocol:
+ (BOOL)conformsToProtocol:(Protocol *)aProtocol

Returns YES if the receiving class conforms to aProtocol, NO otherwise.

A class is said to “conform to” a protocol if it adopts the protocol or inherits from another class that adopts
it. Protocols are adopted by listing them within angle brackets after the interface declaration. For example,
here MyClass adopts the fictitious AffiliationRequests and Normalization protocols:

@interface MyClass : NSObject <AffiliationRequests, Normalization>

A class also conforms to any protocols that are incorporated in the protocols it adopts or inherits. Protocols
incorporate other protocols in the same way that classes adopt them. For example, here the
AffiliationRequests protocol incorporates the Joining protocol:

@protocol AffiliationRequests <Joining>

If a class adopts a protocol that incorporates another protocol, it must also implement all the methods in the
incorporated protocol or inherit those methods from a class that adopts it.

7

This method determines conformance solely on the basis of the formal declarations in header files, as
illustrated above. It doesn’t check to see whether the methods declared in the protocol are actually
implemented—that’s the programmer’s responsibility.

The Protocol required as this method’s argument can be specified using the @protocol() directive:

BOOL canJoin = [MyClass conformsToProtocol:@protocol(Joining)];

See also: – conformsToProtocol:

description
+ (NSString *)description

Returns an NSString that represents the contents of the receiving class. The debugger’s print-object
command invokes this method to produce a textual description of an object.

NSObject’s implementation of this method simply prints the name of the class.

See also: – description

initialize
+ (void)initialize

Initializes the class before it’s used (before it receives its first message). The run-time system sends an
initialize message to each class just before the class, or any class that inherits from it, is sent its first message
from within the program. Each class receives the initialize message just once from the run-time system.
Superclasses will receive this message before subclasses.

For example, if the first message your program sends is this:

[NSApplication new]

the run-time system invokes these three initialize messages:

[NSObject initialize];

[NSResponder initialize];

[NSApplication initialize];

because NSApplication is a subclass of NSResponder and NSResponder is a subclass of NSObject. All the
initialize messages precede the new message.

If your program later begins to use the NSText class,

[NSText instancesRespondToSelector:someSelector]

the run-time system invokes these additional initialize messages:

8

 NSObject

[NSView initialize];

[NSText initialize];

because NSText inherits from NSObject, NSResponder, and NSView. The instancesRespondToSelector:
message is sent only after all these classes are initialized. Note that the initialize messages to NSObject and
NSResponder aren’t repeated.

You can implement your own versions of initialize to provide class-specific initialization as needed.

Normally the run-time system sends a class just one initialize message. However, if for some reason an
application or the run-time system generates additional initialize messages, it is a good idea to prevent code
from being invoked more than once:

+ (void)initialize

{

 static BOOL tooLate = NO;

 if (!tooLate) {

 /* put initialization code here */

 tooLate = YES;

 }

}

See also: – init , –class (NSObject protocol)

instanceMethodForSelector:
+ (IMP)instanceMethodForSelector:(SEL)aSelector

Locates and returns the address of the implementation for the aSelector instance method. An error is
generated if instances of the receiver can’t respond to aSelector messages.

Use this method to ask the class object for the implementation of instance methods only. To ask the class
for the implementation of a class methods, send the methodForSelector: instance method to the class
instead.

instanceMethodForSelector:, and the function pointer it returns, are subject to the same constraints as
those described for methodForSelector:. See methodForSelector: for description of the IMP return value.

instancesRespondToSelector:
+ (BOOL)instancesRespondToSelector:(SEL)aSelector

Returns YES if instances of the class are capable of responding to aSelector messages, NO otherwise. To
ask the class whether it, rather than its instances, can respond to a particular message, send the
respondsToSelector: NSObject protocol instance method to the class instead.

9

If aSelector messages are forwarded to other objects, instances of the class will be able to receive those
messages without error even though this method returns NO.

See also: – forwardInvocation:

new
+ (id)new

Allocates a new instance of the receiving class, sends it an init message, and returns the initialized object.

This method is a combination of alloc and init . Like alloc, it initializes the isa instance variable of the new
object so that it points to the class data structure. It then invokes the init method to complete the
initialization process.

Unlike alloc, new is sometimes reimplemented in subclasses to have it invoke a class-specific initialization
method. If the init... method includes arguments, they’re typically reflected in a new... method as well. For
example:

+ newArg:(int)tag arg:(struct info *)data

{

 return [[self alloc] initArg:tag arg:data];

}

However, there’s little point in implementing a new... method if it’s simply a shorthand for alloc and init...,
as shown above. Often new... methods will do more than just allocation and initialization. In some classes,
they manage a set of instances, returning the one with the requested properties if it already exists, allocating
and initializing a new instance only if necessary. For example:

+ newArg:(int)tag arg:(struct info *)data

{

 MyClass *theInstance;

 if (theInstance = findTheObjectWithTheTag(tag))

 return theInstance;

 return [[self alloc] initArg:tag arg:data];

}

Although it’s appropriate to define new new... methods in this way, the alloc and allocWithZone: methods
should never be augmented to include initialization code.

poseAsClass:
+ (void)poseAsClass:(Class)aClass

Causes the receiving class to “pose as” its aClass superclass. The receiver takes the place of aClass in the
inheritance hierarchy; all messages sent to aClass will actually be delivered to the receiver. The receiver

10

 NSObject

must be defined as a subclass of aClass. It can’t declare any new instance variables of its own, but it can
define new methods and override methods defined in aClass. The poseAsClass: message should be sent
before any messages are sent to aClass and before any instances of aClass are created.

This facility allows you to add methods to an existing class by defining them in a subclass and having the
subclass substitute for the existing class. The new method definitions will be inherited by all subclasses of
the superclass. Care should be taken to ensure that this doesn’t generate errors.

A subclass that poses as its superclass still inherits from the superclass. Therefore, none of the functionality
of the superclass is lost in the substitution. Posing doesn’t alter the definition of either class.

Posing is useful as a debugging tool, but category definitions are a less complicated and more efficient way
of augmenting existing classes. Posing admits only two possibilities that are absent from categories:

• A method defined by a posing class can override any method defined by its superclass. Methods defined
in categories can replace methods defined in the class proper, but they cannot reliably replace methods
defined in other categories. If two categories define the same method, one of the definitions will prevail,
but there’s no guarantee which one.

• A method defined by a posing class can, through a message to super, incorporate the superclass method
it overrides. A method defined in a category can replace a method defined elsewhere by the class, but it
can’t incorporate the method it replaces.

setVersion:
+ (void)setVersion:(int)aVersion

Sets the class version number to aVersion. The version number is helpful when instances of the class are to
be archived and reused later. The default version is 0.

See also: + version

superclass
+ (Class)superclass

Returns the class object for the receiver’s superclass.

See also: + class, –superclass (NSObject protocol)

version
+ (int)version

Returns the version number assigned to the class. If no version has been set, the default is 0.

11

Version numbers are needed for decoding or unarchiving, so that older versions of an object can be detected
and decoded correctly.

Caution should be taken when obtaining the version from within NSCoding protocol or other methods. Use
the class name explicitly when getting a class version number:

version = [MyClass version];

Don’t simply send version to the return value of class—a subclass version number may be returned instead.

See also: + setVersion:, versionForClassName: (NSCoder)

Instance Methods

awakeAfterUsingCoder:
– (id)awakeAfterUsingCoder:(NSCoder *)aDecoder

Overridden by subclasses to return another object in its place after being decoded. Perhaps this object was
just unarchived and an equivalent object already exists (such as a font or image). By returning a replacement
object, redundant objects can be eliminated. If a replacement is returned, this method implementation is
responsible for releasing the receiver. This method is invoked by NSCoder. NSObject’s implementation
simply returns self.

See also: – classForCoder, – replacementObjectForCoder:, – initWithCoder: (NSCoding protocol)

classForArchiver
– (Class)classForArchiver

Overridden by subclasses to substitute a class other than its own during archiving. For example, the private
subclasses of a class cluster substitute the name of their public superclass when being archived. This method
allows specialized behavior for archiving—override classForCoder to add general coding behavior. This
method is invoked by NSArchiver. NSObject’s implementation returns the object returned by
classForCoder.

See also: – replacementObjectForArchiver:

12

 NSObject

classForCoder
– (Class)classForCoder

Overridden by subclasses to substitute a class other than its own during coding. For example, the private
subclasses of a class cluster substitute the name of their public superclass when being archived. This method
is invoked by NSCoder. NSObject’s implementation returns the receiver’s class.

See also: – awakeAfterUsingCoder:, – replacementObjectForCoder:

classForPortCoder
– (Class)classForPortCoder

Overridden by subclasses to substitute a class other than its own for distribution encoding. This method
allows specialized behavior for distributed objects—override classForCoder to add general coding
behavior. This method is invoked by NSPortCoder. NSObject’s implementation returns the class returned
by classForCoder.

See also: – replacementObjectForPortCoder:

copy
– (id)copy

Convenience method for classes that adopt the NSCopying protocol. This method returns the object
returned by the NSCopying protocol method copyWithZone: where the zone is NULL. An exception is
raised if there is no implementation for copyWithZone:.

dealloc
– (void)dealloc

Deallocates the memory occupied by the receiver. Subsequent messages to the object will generate an error
indicating that a message was sent to a deallocated object (provided that the deallocated memory hasn’t
been reused yet).

You never send a dealloc message directly. Instead, an object’s dealloc method is invoked indirectly
through the release NSObject protocol method. See the introduction to the Foundation Kit for more details
on the use of these methods.

Subclasses must implement their own versions of dealloc to allow the deallocation of any additional
memory consumed by the object—such as dynamically allocated storage for data, or object instance
variables that are owned by the deallocated object. After performing the class-specific deallocation, the
subclass method should incorporate superclass versions of dealloc through a message to super:

13

- (void)dealloc {

 [companion release];

 NSZoneFree(private, [self zone])

 [super dealloc];

}

See also: – autorelease (NSObject protocol), –release (NSObject protocol)

description
@protocol NSObject
– (NSString *)description

Returns a NSString that represents the contents of the receiver. The debugger’s print-object command
indirectly invokes this method to produce a textual description of an object. NSObject’s implementation of
this method simply prints the name of the receiver’s class and the hexadecimal value of its id.

See also: + description

doesNotRecognizeSelector:
– (void)doesNotRecognizeSelector:(SEL)aSelector

Handles aSelector messages that the receiver doesn’t recognize. The run-time system invokes this method
whenever an object receives an aSelector message that it can’t respond to or forward. This method, in turn,
raises an NSInvalidArgumentException, and generates an error message.

doesNotRecognizeSelector: messages are generally sent only by the run-time system. However, they can
be used in program code to prevent a method from being inherited. For example, an NSObject subclass
might renounce the copy or init method by reimplementing it to include a doesNotRecognizeSelector:
message as follows:

- copy

{

 [self doesNotRecognizeSelector:_cmd];

}

The _cmd variable identifies the current selector; in this example, it identifies the selector for the copy
method. This code prevents instances of the subclass from responding to copy messages or superclasses
from forwarding copy messages—although respondsToSelector: will still report that the receiver has
access to a copy method.

See also: – forwardInvocation:

14

 NSObject

forwardInvocation:
– (void)forwardInvocation: (NSInvocation *)anInvocation

Overridden by subclasses to forward messages to other objects. When an object is sent a message for which
it has no corresponding method, the run-time system gives the receiver an opportunity to delegate the
message to another receiver. It does this by creating an NSInvocation object representing the message and
sending the receiver a forwardInvocation: message containing this NSInvocation as the argument. The
receiver’s forwardInvocation: method can then choose to forward the message to another object. (If the
that object can’t respond to the message either, it too will be given a chance to forward it.)

The forwardInvocation: message thus allows an object to establish relationships with other objects that
will, for certain messages, act on its behalf. The forwarding object is, in a sense, able to “inherit” some of
the characteristics of the object it forwards the message to.

An implementation of the forwardInvocation: method has two tasks:

• To locate an object that can respond to the message encoded in anInvocation. This need not be the same
object for all messages.

• To send the message to that object using anInvocation. anInvocation will hold the result, and the run-time
system will extract and deliver this result to the original sender.

In the simple case, in which an object forwards messages to just one destination (such as the hypothetical
friend instance variable in the example below), a forwardInvocation: method could be as simple as this:

- (void)forwardInvocation:(NSInvocation *)invocation
{
 if ([friend respondsToSelector:[invocation selector]])
 [invocation invokeWithTarget:friend];
 else
 [self doesNotRecognizeSelector:aSelector];
}

The message that’s forwarded must have a fixed number of arguments; variable numbers of arguments (in
the style of printf()) are not supported.

The return value of the message that’s forwarded is returned to the original sender. All types of return values
can be delivered to the sender: ids, structures, double-precision floating point numbers.

Implementations of the forwardInvocation: method can do more than just forward messages.
forwardInvocation: can, for example, be used to consolidate code that responds to a variety of different
messages, thus avoiding the necessity of having to write a separate method for each selector. A
forwardInvocation: method might also involve several other objects in the response to a given message,
rather than forward it to just one.

NSObject’s implementation of forwardInvocation: simply invokes the doesNotRecognizeSelector:
method; it doesn’t forward any messages. Thus, if you choose not to implement forwardInvocation: ,
unrecognized messages will raise an exception.

15

hash
@protocol NSObject
– (unsigned)hash

Returns an integer that can be used as a table address in a hash table structure. NSObject’s implementation
returns a value based on the object’s id. If two objects are equal (as determined by the isEqual: method),
they must return the same hash value. This last point is particularly important if you define hash in a
subclass and intend to put instances of that subclass into a collection.

init
– (id)init

Implemented by subclasses to initialize a new object (the receiver) immediately after memory for it has
been allocated. An init message is generally coupled with an alloc or allocWithZone: message in the same
line of code:

TheClass *newObject = [[TheClass alloc] init];

An object isn’t ready to be used until it has been initialized. The version of the init method defined in the
NSObject class does no initialization; it simply returns self.

Subclass versions of this method should return the new object (self) after it has been successfully initialized.
If it can’t be initialized, they should release the object and return nil . In some cases, an init method might
release the new object and return a substitute. Programs should therefore always use the object returned by
init , and not necessarily the one returned by alloc or allocWithZone:, in subsequent code.

Every class must guarantee that the init method either returns a fully functional instance of the class or
raises an exception. Typically this means overriding the method to add class-specific initialization code.
Subclass versions of init need to incorporate the initialization code for the classes they inherit from, through
a message to super:

- init

{

if (self = [super init]) {

/* class-specific initialization goes here */

}

return self;

}

Note that the message to super precedes the initialization code added in the method. This ensures that
initialization proceeds in the order of inheritance.

Subclasses often define init... methods with additional arguments to allow specific values to be set. The
more arguments a method has, the more freedom it gives you to determine the character of initialized
objects. Classes often have a set of init... methods, each with a different number of arguments. For example:

16

 NSObject

- init;

- initArg:(int)tag;

- initArg:(int)tag arg:(struct info *)data;

The convention is that at least one of these methods, usually the one with the most arguments, includes a
message to super to incorporate the initialization of classes higher up the hierarchy. This method is called
the designated initializer for the class. The other init... methods defined in the class directly or indirectly
invoke the designated initializer through messages to self. In this way, all init... methods are chained
together. For example:

- init

{

 return [self initArg:-1];

}

- initArg:(int)tag

{

 return [self initArg:tag arg:NULL];

}

- initArg:(int)tag arg:(struct info *)data

{

 [super init. . .];

 /* class-specific initialization goes here */

}

In this example, the initArg:arg: method is the designated initializer for the class.

If a subclass does any initialization of its own, it must define its own designated initializer. This method
should begin by sending a message to super to perform the designated initializer of its superclass. Suppose,
for example, that the three methods illustrated above are defined in the B class. The C class, a subclass of
B, might have this designated initializer:

- initArg:(int)tag arg:(struct info *)data arg:anObject

{

 [super initArg:tag arg:data];

 /* class-specific initialization goes here */

}

If inherited init... methods are to successfully initialize instances of the subclass, they must all be made to
(directly or indirectly) invoke the new designated initializer. To accomplish this, the subclass is obliged to
cover (override) only the designated initializer of the superclass. For example, in addition to its designated
initializer, the C class would also implement this method:

- initArg:(int)tag arg:(struct info *)data

{

 return [self initArg:tag arg:data arg:nil];

}

17

This ensures that all three methods inherited from the B class also work for instances of the C class.

Often the designated initializer of the subclass overrides the designated initializer of the superclass. If so,
the subclass need only implement the one init... method.

These conventions maintain a direct chain of init... links, and ensure that the new method and all inherited
init... methods return usable, initialized objects. They also prevent the possibility of an infinite loop wherein
a subclass method sends a message (to super) to perform a superclass method, which in turn sends a
message (to self) to perform the subclass method.

This init method is the designated initializer for the NSObject class. Subclasses that do their own
initialization should override it, as described above.

isEqual:
@protocol NSObject
– (BOOL)isEqual:(id)anObject

Returns YES if the receiver and anObject are equal, NO otherwise. NSObject’s implementation compares
the id of anObject and the receiver to determine equality. Subclasses can override this method to redefine
what it means for objects to be equal. For example, a container object might define two containers as equal
if they contain the same contents. See the NSData, NSDictionary, NSArray, and NSString class
specifications for examples of the use of this method. Note that equality as defined by this method is not
necessarily reflexive. For example, A is equal to B, does not imply B is equal to A, especially if B is a
subclass of A.

methodForSelector:
– (IMP)methodForSelector:(SEL)aSelector

Locates and returns the address of the receiver’s implementation for the aSelector method so that it can be
called as a function. If the receiver is an instance, aSelector should refer to an instance method; if the
receiver is a class, it should refer to a class method.

aSelector must be a valid, non-NULL selector. If in doubt, use the respondsToSelector: method to check
before passing the selector to methodForSelector:.

IMP is defined as a pointer to a function that returns an id and takes a variable number of arguments (in
addition to the two “hidden” arguments—self and _cmd—that are passed to every method implementation):

typedef id (*IMP)(id, SEL, ...);

This definition serves as a prototype for the function pointer that methodForSelector: returns. It’s sufficient
for methods that return an object and take object arguments. However, if the aSelector method takes
different argument types or returns anything but an id, its function counterpart will be inadequately
prototyped. Lacking a prototype, the compiler will promote floats to doubles and chars to ints, which the

18

 NSObject

implementation won’t expect. It will therefore behave differently (and erroneously) when performed as a
method.

To remedy this situation, it’s necessary to provide your own prototype. In the example below, the
declaration of the test variable serves to prototype the implementation of the isEqual: method. test is
defined as a pointer to a function that returns a BOOL and takes an id argument (in addition to the two
“hidden” arguments). The value returned by methodForSelector: is then similarly cast to be a pointer to
this same function type:

BOOL (*test)(id, SEL, id);

test = (BOOL (*)(id, SEL, id))[target

 methodForSelector:@selector(isEqual:)];

while (!test(target, @selector(isEqual:), someObject)) {

 . . .

}

In some cases, it might be clearer to define a type (similar to IMP) that can be used both for declaring the
variable and for casting the function pointer methodForSelector: returns. The example below defines the
EqualIMP type for just this purpose:

typedef BOOL (*EqualIMP)(id, SEL, id);

EqualIMP test;

test = (EqualIMP)[target methodForSelector:@selector(isEqual:)];

while (!test(target, @selector(isEqual:), someObject)) {

 . . .

}

Either way, it’s important to cast the return value of methodForSelector: to the appropriate function type.
It’s not sufficient to simply call the function returned by methodForSelector: and cast the result of that call
to the desired type. This can result in errors.

The advantage of obtaining a method’s implementation and calling it as a function, is that you can invoke
the implementation multiple times within a loop, or similar C construct, without the overhead of
Objective-C messaging.

See also: + instanceMethodForSelector:

methodSignatureForSelector:
– (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector

Returns an NSMethodSignature object that contains a description of the aSelector method, or nil if the
aSelector method can’t be found. When the receiver is an instance, aSelector should be an instance method;
when the receiver is a class, it should be a class method. This method is used in the implementation of
protocols.

19

mutableCopy
– (id)mutableCopy

Convenience method for classes that adopt the NSMutableCopying protocol. This method just calls the
NSMutableCopying protocol method mutableCopyWithZone: with the zone as NULL. An exception is
raised if there is no implement for mutableCopyWithZone:.

performSelector:object:afterDelay:
– (void)performSelector:(SEL)aSelector

object:(id)anArgument
afterDelay:(NSTimeInterval)delay;

Sends an aSelector message to the receiver sometime after delay. This method returns before the aSelector
message is sent. The aSelector method should not have a significant return value and should take a single
argument of type id; anArgument will be the argument passed in the message. Note that self and
anArgument are retained until after the message is sent.

See also: – cancelPreviousPerformRequestsWithTarget:selector:object:

replacementObjectForArchiver:
– (id)replacementObjectForArchiver:(NSArchiver *)anArchiver

Overridden by subclasses to substitute another object for itself during archiving. This method is invoked by
NSArchiver. NSObject’s implementation returns the object returned by replacementObjectForCoder:.

See also: – classForArchiver

replacementObjectForCoder:
– (id)replacementObjectForCoder:(NSCoder *)aCoder

Overridden by subclasses to substitute another object for itself during encoding. For example, an object
might encode itself into an archive, but encode a proxy for itself if it’s being encoded for distribution. This
method is invoked by NSCoder. NSObject’s implementation returns self.

See also: – classForCoder, –awakeAfterUsingCoder:

20

 NSObject

replacementObjectForPortCoder:
– (id)replacementObjectForPortCoder:(NSPortCoder *)aCoder

Overridden by subclasses to substitute another object or a copy for itself during distribution encoding. This
method is invoked by NSPortCoder. NSObject’s implementation returns a NSDistantObject for the object
returned by replacementObjectForCoder:, enabling all objects to be distributed by proxy as the default.
However, if replacementObjectForCoder: returns nil , NSObject’s implementation will also return nil .

See also: – classForPortCoder

