@ NSData Class Cluster

Class Cluster Description

NSData objects provide an object-oriented wrapper for byte buffers. This enables simple allocated buffers
(that is, data with no embedded pointers) to take on the behavior of Foundation Kit objects. NSData is
typically used for data storage. It is also useful in Distributed Objects applications, where data contained in
NSData objects can be copied or moved between applications.

NSData objects can be used to wrap data of any size. When the data size is more than a few memory pages,
NSData uses virtual memory management. NSData can also be used to wrap pre-existing data, regardless
of how the data was allocated. NSData contains no information about the data itself (such as its type); the
responsibility for deciding how to use the data lies with the client. In particular, it will not handle byte-order
swapping when distributed between big-endian and little-endian machines. For typed data, use NSValue.

NSData provides an operating system-independent way to benefit from copy-on-write memory. The
copy-on-write technique means that when data is copied through a virtual memory copy, an actual copy of
the data is not made until there is an attempt to modify it.

The cluster’s two public classes, NSData and NSMutableData, declare the programmatic interface for static
and dynamic NSData objects, respectively.

The objects you create using these classes are referredataasbjectsBecause of the nature of class

clusters, data objects are not actual instances of the NSData or NSMutableData classes but of one of their
private subclasses. Although a data object’s class is private, its interface is public, as declared by these
abstract superclasses, NSData and NSMutableData.

Generally, you instantiate a data object by sending one dftlhe . messages to either the NSData or
NSMutableData class object. These methods return a data object containing the bytes you pass in as
arguments. If you use one of thata... methods whose nang®es noinclude “NoCopy” (such as
dataWithBytes:length:), the bytes to be contained by the data object are copied as part of the instantiation
process, and the data object then contains the copied bytes. When you subsequently release a data object
that has been instantiated in this manner, the bytes contained by the data object—those that were copied
during instantiation—are not automatically freed. If you instantiate a data object with one of the methods
whose name includes “NoCopy,” however, (sucdataWithBytesNoCopy:length)) the bytes are not
copied—and, as expected, are not freed when the data object is released.

The NSData classes adopt the NSCopying and NSMutableCopying protocols, making it convenient to
convert between efficient, read-only data objects and mutable data objects.

NSData

¢ NSData

Inherits From:

Conforms To:

Declared In:

NSObject

NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Foundation/NSData.h

Class at a Glance

Purpose
An NSData object stores immutable data in the form of bytes.

Principal Attributes
« A count of the number of bytes in the data object.
» The sequence of bytes contained in the data object.

Creation

+ data Returns an empty data object.

+ dataWithBytes:length: Returns alata object that contains a copy of the specified bytes.

+ datawithBytesNoCopy:length: Returns a data object thaintains the specified bytes (without
copying them).

+ dataWithContentsOfFile: Returns a data object initialized with the contents of a file.

+ dataWithContentsOfMappedFile: Returns alata object initialized with the contents of a mapped file.

+ dataWithData: Returns a data object initialized with the contents of another data
object.

Commonly Used Methods

— bytes Returns a pointer to the data object’s contents.

— getBytes: Copies the data object’s contents into a buffer.

—length Returns the number of bytes contained by the data object.

Primitive Methods

— bytes

— length

Class Description

The NSData class declares the programmatic interface to an object that contains immutable data in the form
of bytes. NSData'’s two primitive method$ytes andlength—provide the basis for all of the other

NSData

methods in the interface. Thgtesmethod returns a pointer to the bytes contained in the data ¢dneth
returns the number of bytes contained in the data object.

NSData provides access methods for copying bytes from a data object into a specifiegebBffars

copies all of the bytes into a buffer, whergatBytes:length:copies bytes into a buffer of a given length.
getBytes:range:copies a range of bytes from a starting point within the bytes themselves. You can also
obtain a data object that contains a subset of the bytes in another data object by using the
subdataWithRange:method. Or, you can use ttlescription method to return an NSString representation
of the bytes in a data object.

For determining if two data objects are equal, NSData providesEhjealToData: method, which does a
byte-for-byte comparison.

ThewriteToFile:atomically: method enables you to write the contents of a data object to a file.

Adopted Protocols

NSCoding — encodeWithCoder:

— initWithCoder:
NSCopying — copyWithZone:
NSMutableCopying — mutableCopyWithZone:

Method Types

Creating data objects + allocWithZone:
+ data
+ dataWithBytes:length:
+ dataWithBytesNoCopy:length:
+ dataWithContentsOfFile:
+ dataWithContentsOfMappedFile
+ dataWithData:
— initWithBytes:length:
— initWithBytesNoCopy:length:
— initWithContentsOfFile:
— initWithContentsOfMappedFile:
— initWithData:

Accessing data — bytes
— description
— getBytes:
— getBytes:length:
— getBytes:range:

— subdataWithRange:
Testing data —isEqualToData:
—length
Storing data — writeToFile:atomically:

Class Methods
allocWithZone
+ (id)allocWithZone:(NSZone *yone

Creates and returns an uninitialized data object in the specified zone. If the receiver is the NSData class
object, an instance of an appropriate immutable subclass is returned; otherwise, an object of the receiver’s
class is returned.

Typically, you create temporary data objects usingitita... class methods, not tladloc... andinit...
methods.

data
+ (id)data

Creates and returns an empty data object. This method is declared primarily for the use of mutable
subclasses of NSData.

dataWithBytes:length:
+ (id)dataWithBytes:(const void *pyteslength:(unsigned intength

Creates and returns a data object contaileingthbytes copied from the bufféytes

See also: + dataWithBytesNoCopy:length:

NSData

NS+

dataWithBytesNoCopy:length:

+ (id)dataWithBytesNoCopy:(void *)byteslength:(unsigned intlength
Creates and returns a data object that Heligthbytes from the buffeoytes
Seealso: + dataWithBytes:length:

dataWithContentsOfFile:
+ (id)dataWithContentsOfFile:(NSString *path
Creates and returns a data object by reading every byte from the file specifat by

The following code example creates a data olijgdatainitialized with the contents ehyFile.txt. The
path must be absolute.

NSString *thePath = @"/u/smith/myFile.txt";
NSData *myData = [NSData dataWithContentsOfFile:thePath];

See also: + dataWithContentsOfMappedFile:

datawithContentsOfMappedFile:
+ (id)dataWithContentsOfMappedFile:(NSString *path

Creates and returns a data object from the mapped file specifiathbBecause of file mapping
restrictions, this method should only be used if the file is guaranteed to exist for the duration of the data
object’s existence. It is generally safer to useddt@aWithContentsOfFile: method.

This methods assumes that mapped files are available from the underlying operating system. A mapped file
uses virtual memory techniques to avoid copying pages of the file into memory until they are actually
needed.

See also: + dataWithContentsOfFile:

dataWithData:
+ (id)dataWithData: (NSData *pData

Creates and returns a data object containing the contents of another dataDbject,

Instance Methods
bytes
— (const void *hbytes
Returns a pointer to the data object’s contents. This method returns read-only access to the data.

See also: — description, — getBytes:, — getBytes:length:, — getBytes:range:

description

@protocol NSObject
— (NSString *Ylescription

Returns an NSString object that contains a hexadecimal representation of the receiver’s contents in the
property list format for NSData objects.

See also: —hytes, — getBytes:, — getBytes:length:, — getBytes:range:

getBytes:
— (void)getBytes(void *)buffer
Copies a data object’s contents intbuffer

For example, the following code excerpt initializes a data ohjgEratawith the NSStringnyString It
then usegetBytes:to copy the contents afiyDatainto aBuffer

unsigned char aBuffer[20];
NSString *myString = @"Test string.";
NSData *myData = [NSData
dataWithBytes:[myString cString]
length:[myString cStringLength]];

[myData getBytes:aBuffer];

See also: — hytes:, —description, —getBytes:length; —getBytes:range:

getBytes:length:
— (void)getBytes(void *)bufferlength:(unsigned infength
Copies up tdengthbytes from the start of the receiver imter.

See also: —hytes:, —description, —getBytes:,— getBytes:range:

NSData

getBytes:range:
— (void)getBytes(void *)bufferrange:(NSRangejange

Copies the receiver’s contents ifttoffer, from rangethat is within the bytes in the objectréingeisn’t
within the receiver’s range of bytes, an NSRangeException is raised.

See also: —bytes;, —description, —getBytes:,— getBytes:length:

hash

@protocol NSObiject
— (unsigned int)ash

Returns an unsigned integer that can be used as a table address in a hash table structure. For a data object,
hashreturns the length of the data object. If two data objects are equal (as determineidbyuhke
method), they have the same hash value.

See also: —isEqual:

initWithBytes:length:
— (id)initWithBytes: (const void *pyteslength:(unsigned intength

Initializes a newly allocated data object by adding to it length bytes of data copied from the buffer bytes.
Returns self.

Seealso: + dataWithBytes:length:, —initWithBytesNoCopy:length:

initWithBytesNoCopy:length:
— (id)initwithBytesNoCopy: (void *)byteslength:(unsigned infength

Initializes a newly allocated data object by adding to it length bytes of data from the buffer bytes. Returns
self.

See also: + dataWithBytes:length:, —initWithBytes:length:

initWithContentsOfFile:
— (id)initwithContentsOfFile: (NSString *path

Initializes a newly allocated data object by reading into it the data from the file specifiathdyeturns
self.

See also: + dataWithContentsOfFile:, — initWithContentsOfMappedFile:

initWithContentsOfMappedFile:
— (id)initWithContentsOfMappedFile: (NSString *)path

Initializes a newly allocated data object by reading into it the mapped file specifiathbiReturns self.

See also: + dataWithContentsOfMappedFile:, —initWithContentsOfFile:

initWithData:
— (id)initwithData: (NSData *fata

Initializes a newly allocated data object by placing in it the contents of another datad#ige&eturns
self.

isEqual:

@protocol NSObject
— (BOOL)isequal:(id)anObject

Returns YES if the receiver aatiObjectare equal; otherwise returns NO. A YES return value indicates
that the receiver arahObjectare both instances of classes that inherit from NSData and that both contain
the same data (as determined byisfigualToData: method).

See also: —isEqualToData:

isEqualToData:
— (BOOL)isequalToData:(NSData *ptherData

Compares the receiving data objecobtioerData If the contents obtherDataare equal to the contents of
the receiver, this method returns YES. If not, it returns NO. Two data objects are equal if they hold the same
number of bytes, and if the bytes at the same position in the objects are the same.

See also: —isEqual:

length
— (unsigned intgngth

Returns the number of bytes contained in the receiver.

NSData

10

subdataWithRange:
— (NSData *pubdataWithRange{NSRangejange

Returns a data object containing a copy of the receiver’s bytes that fall within the limits speaiiegeby
If rangeisn’t within the receiver’s range of bytes, an NSRangeException is raised.

For example, the following code excerpt initializes a data olgjata2 to contain a sub-range détal

NSString *myString = @"ABCDEFG";
NSRange range = {2, 4};
NSData *datal, *data2;

datal = [NSData dataWithBytes:[myString cString]
length:[myString cStringLength]];

data2 = [datal subdataWithRange:range];

The result of this excerpt is thd@ta2contains “CDEF.

writeToFile:atomically:
— (BOOLwriteToFile: (NSString *pathatomically: (BOOL)flag
Writes the bytes in the receiver to the file specifiegdijn

If flagis YES, the data is written to a backup file and then, assuming no errors occur, the backup file is
renamed to the specified file name. Otherwise, the data is written directly to the specified file.

YES is returned if the operation succeeded, otherwise NO is returned.

¢ NSMutableData

Inherits From: NSData : NSObject
Conforms To: NSCoding
NSCopying

NSMutableCopying (NSData)
NSObject (NSObject)

Declared In: Foundation/NSData.h

11

NSMutableData

Class at a Glance

Purpose
An NSMutableData object stores mutable data in the form of bytes.

Principal Attributes
A count of the number of bytes in the mutable data object.
» The sequence of bytes contained in the mutable data object.

Creation

+ dataWithCapacity: Returns an NSMutableData with enough allocated memory to hold a
specified number of bytes.

+ datawithLength: Returns an NSMutableData that contains a specified number of

zero-filled bytes.

Commonly Used Methods

— mutableBytes A pointer to the bytes in the NSMutableData object.

— replaceBytesInRange:withBytes: Replaces a range of bytes in the NSMutableData object.
Primitive Methods

— mutableBytes

— setLength:

Class Description

12

The NSMutableData class declares the programmatic interface to an object that contains modifiable data in
the form of bytes. NSMutableData’s two primitive methodsutableBytesandsetLength—provide the

basis for all of the other methods in its interface. MuableBytesmethod returns a pointer for writing

into the bytes contained in the mutable data obgett.ength: allows you to truncate or extend the length

of a mutable data object.

increaseLengthBy:also allows you to change the length of a mutable data object.

TheappendBytes:length:andappendData: methods let you append bytes or the contents of another data
object to a mutable data object. You can replace a range of bytes in a mutable data object with zeros (using
theresetBytesIinRange:method), or with different bytes (using treplaceBytesIinRange:withBytes:

method).

Method Types

Creating an NSMutableData + allocWithZone:
+ dataWithCapacity:
+ dataWithLength:
— initWithCapacity:
— initWithLength:
Adjusting capacity —increaselLengthBy:
— setLength:
Accessing data — mutableBytes

Adding data — appendBytes:length:
— appendData:

Modifying data — replaceBytesInRange:withBytes:
—resetBytesInRange:
— setData:

Class Methods

allocWithZone
+ (id)allocWithZone:(NSZone *yone

Creates and returns an uninitialized data object in the specified zone. If the receiver is the NSMutableData
class object, an instance of an appropriate subclass is returned; otherwise, an object of the receiver’s class
is returned.

Typically, you create objects using ttigta... class methods, not tladloc... andinit... methods. Note that
it's your responsibility to release objects created withatloe... methods.

13

NSMutableData

dataWithCapacity:
+ (id)dataWithCapacity:(unsigned in@Numltems

Creates and returns an NSMutableData object, initially allocating enough memory &Nboaitems
objects. Mutable data objects allocate additional memory as needddiiistemsimply establishes the
object’s initial capacity.

See also: —dataWithLength:, —initWithCapacity: , —initWithLength:

dataWithLength:
+ (id)dataWithLength: (unsigned infength
Creates an autoreleased, mutable data objéehgthbytes, filled with zeros.

See also: —dataWithCapacity:, —initWithCapacity: , —initWithLength:

Instance Methods

14

appendBytes:length:
— (void)appendBytes(const void *pyteslength:(unsigned infength

Appenddengthbytes to a mutable data object from the buffges
This excerpt copies the bytesdata2into aBuffer and then appenddufferto datal

NSMutableData *datal, *data2;
NSString *firstString = @"ABCD";
NSString *secondString = @"EFGH";
unsigned char *aBuffer;

unsigned len;

datal = [NSMutableData
dataWithBytes:[firstString cString]
length:[firstString cStringLength]];
data2 = [NSMutableData
dataWithBytes:[secondString cString]
length:[secondString cStringLength]];

len = [data2 length];
aBuffer = malloc(len);

[data2 getBytes:aBuffer];
[datal appendBytes:aBuffer length:len];

The final value oflatalis the series of ASCII characters “ABCDEFGH”.

See also: —appendData:

appendData:
— (void)appendData(NSData *ptherData

Appends the contents of a data objgberDatato the receiver.

See also: —appendBytes:length:

increaseLengthBy:
— (void)increaseLengthBy(unsigned in@xtraLength

Increases the length of a mutable data objeetdnalength The additional bytes are all set to zero.

See also: —setLength:

initWithCapacity:
— (id)initwithCapacity: (unsigned intjapacity

Initializes a newly allocated mutable data object, giving it enough memory todymditybytes. Sets the
length of the data object to 0. Retusedf.

Seealso: —dataWithCapacity:, — initWithLength:

initWithLength:
— (id)initWithLength: (unsigned inflgngth

Initializes a newly allocated mutable data object, giving it enough memory téehgfthbytes. Fills the
object with zeros up tength Returnsself

See also: —dataWithCapacity:, — dataWithLength:, — initWithCapacity:

mutableBytes
— (void *)mutableBytes

Returns a pointer to the receiver’s data.

15

NSMutableData

In the following code examplejutableBytesis used to return a pointer to the bytedata2 The bytes in
data2are then overwritten with the contentdatal

NSMutableData *datal, *data2;

NSString *myString = @"string for datal”;
NSString *yourString = @"string for data2";
unsigned char *firstBuffer, secondBuffer[20];

/* initialize datal, data2, and secondBuffer... /

datal = [NSMutableData dataWithBytes:[myString cString]
length:[myString length]];

data2 = [NSMutableData dataWithBytes:[yourString cString]
length:[yourString length]];

[data2 getBytes:secondBuffer];

NSLog(@"data2 before: \"%s\"\n", (char *)secondBuffer);
firstBuffer = [data2 mutableBytes];

[datal getBytes:firstBuffer];

NSLog(@"datal: \"%s\"\n", (char *)firstBuffer);

[data2 getBytes:secondBuffer];

NSLog(@"data2 after: \"%s\"\n", (char *)secondBuffer);

This is the output from the above code example:

Oct 3 15:59:51 [1113] data2 before: "string for data2"
Oct 3 15:59:51 [1113] datal: "string for datal"
Oct 3 15:59:51 [1113] data2 after: "string for datal"

replaceBytesInRange:withBytes:
— (void)yeplaceBytesinRange(NSRangefangewithBytes:(const void *pytes

Specifies a range within the contents of a mutable data object to be replageistdyrangeisn’t within
the receiver’s range of bytes, an NSRangeException is raised.

In the following code excerpt, a range of bytedatalis replaced by the bytes data2

NSMutableData *datal, *data2;

NSString *myString = @"Liz and John";

NSString *yourString = @"Larry";

unsigned len;

unsigned char *aBuffer;

NSRange range = {8, [yourString cStringLength]};

datal = [NSMutableData

dataWithBytes:[myString cString]
length:[myString cStringLength]];

16

NS+

data2 = [NSMutableData
dataWithBytes:[yourString cString]
length:[yourString cStringLength]];

len = [data2 length];

aBuffer = malloc(len);

[data2 getBytes:aBuffer];

[datal replaceBytesInRange:range withBytes:aBuffer];

The contents oflatalchanges from “Liz and John” to “Liz and Larry.”

See also: —resetBytesinRange:

resetBytesinRange:
— (void)resetBytesInRange{NSRangekange

Specifies a range within the contents of a mutable data object to be replaced by mergsidi’'t within
the receiver’s range of bytes, an NSRangeException is raised.

See also: —replaceBytesIinRange:withBytes:

setData:
— (void)setData{NSData *pData

UsesreplaceBytesinRange:withBytesi1o replace the entire contents of the receiver with the contents of
aData

setLength:
— (void)setLength:(unsigned infength

Extends or truncates a mutable data objeldrtgth If the mutable data object is extended, the additional
bytes are filled with zero.

See also: —increaseLengthBy:

17

