
 1 Common Classes and Functions

Defined Types

NXAtom

DECLARED IN objc/hashtable.h

SYNOPSIS typedef const char *NXAtom ;

DESCRIPTION NXAtom is the type for a unique string. A unique string is a string that is allocated once
and for all (that is, never deallocated) and that has only one representation. Unique strings
can therefore be compared using the equality operator (==) rather than using strcmp(). A
unique string should never be modified (and in fact some memory protection is done to
ensure that it won’t be modified). To more explicitly declare that the string has been made
unique, this synonym of const char * has been added.

SEE ALSO NXUniqueString()

NXDefaultsVector

DECLARED IN defaults/defaults.h

SYNOPSIS typedef struct _NXDefault {
 char *name;
 char *value;
} NXDefaultsVector[];

DESCRIPTION This structure is used by the functions NXRegisterDefaults() and NXWriteDefaults() . It
provides a way to specify an open-ended list of default name/value pairs as an argument to
these functions.

Types and Constants: NXExceptionRaiser 2

NXExceptionRaiser

DECLARED IN objc/error.h

SYNOPSIS typedef void NXExceptionRaiser(int code,
const void *data1,
const void *data2);

DESCRIPTION This type is used for the function that handles exceptions raised within an
exception-handling domain. In NEXTSTEP, this function is by default
NXDefaultExceptionRaiser().

SEE ALSO NXDefaultExceptionRaiser()

NXHandler

DECLARED IN objc/error.h

SYNOPSIS typedef struct _NXHandler {
jmp_buf jumpState;
struct _NXHandler *next;
int code;
const void *data1, *data2;

} NXHandler ;

DESCRIPTION This structure is used by the NEXTSTEP exception-handling system to mark nodes in the
chain of exception handlers. Its fields are:

jumpState Place to jump to using longjmp()
next Pointer to next exception handler
code Error code of exception
data1 User-defined data about the exception
data2 User-defined data about the exception

SEE ALSO NX_RAISE()

 3 Common Classes and Functions

NXHashState

DECLARED IN objc/hashtable.h

SYNOPSIS typedef struct {
int i;
int j;

} NXHashState;

DESCRIPTION This type is used for the marker passed between the functions NXInitHashState() and
NXNextHashState(). Its fields may change in the future, so your code shouldn’t rely on
the composition of an NXHashState structure.

SEE ALSO NXInitHashState() and NXNextHashState()

NXHashTable

DECLARED IN objc/hashtable.h

SYNOPSIS typedef struct {
const NXHashTablePrototype *prototype;
unsigned count;
unsigned nbBuckets;
void *buckets;
const void *info;

} NXHashTable;

DESCRIPTION This type is used to identify a hash table, such as the ones returned by
NXCreateHashTable(). Its fields are private and shouldn’t be accessed.

SEE ALSO NXCreateHashTable()

Types and Constants: NXHashTablePrototype 4

NXHashTablePrototype

DECLARED IN objc/hashtable.h

SYNOPSIS typedef struct {
unsigned (*hash)(const void *info, const void *data);
int (* isEqual)(const void *info, const void *data1, const void *data2);
void (*free)(const void *info, void *data);
int style;

} NXHashTablePrototype;

DESCRIPTION This type is used as one of the arguments to NXCreateHashTable(). Its fields specify the
functions to be used for hashing, comparing, and freeing data elements:

hash Identifies the hashing function
isEqual Identifies the comparison function
free Identifies the function that frees a data element
style Reserved for future use

SEE ALSO NXCreateHashTable()

NXUncaughtExceptionHandler

DECLARED IN objc/error.h

SYNOPSIS typedef void NXUncaughtExceptionHandler(int code,
const void *data1,
const void *data2);

DESCRIPTION This type is used for the function that handles exceptions raised outside of an
exception-handling domain. In NEXTSTEP, this function can be set using
NXSetUncaughtExceptionHandler().

SEE ALSO NXSetUncaughtExceptionHandler()

 5 Common Classes and Functions

NXZone

DECLARED IN objc/zone.h

SYNOPSIS typedef struct _NXZone {
void *(*realloc)(struct _NXZone *zonep, void *ptr, size_t size);
void *(*malloc)(struct _NXZone *zonep, size_t size);
void (*free)(struct _NXZone *zonep, void *ptr);
void (*destroy)(struct _NXZone *zonep);

} NXZone;

DESCRIPTION This structure is used to identify and manage memory zones. The fields of the structure are
private and subject to change in future releases; they should not be directly accessed or
altered. Use NXCreateZone() or a similar function to establish a new zone.

SEE ALSO NXCreateZone() and NXZoneMalloc()

Types and Constants: List Constants 6

Symbolic Constants

List Constants

DECLARED IN objc/List.h

SYNOPSIS NX_NOT_IN_LIST

DESCRIPTION This constant is returned by List’s indexOf: method when it can’t find the object it’s passed
anywhere in the List.

NXStringTable Constants

DECLARED IN objc/NXStringTable.h

SYNOPSIS MAX_NXSTRINGTABLE_LENGTH 1024

DESCRIPTION This constant defines the maximum length for keys or values within an NXStringTable
object.

Zone Constants

DECLARED IN objc/zone.h

SYNOPSIS NX_NOZONE (NXZone *)0

DESCRIPTION This constant is used as a return value by NXCreateChildZone(), NXZoneFromPtr() , and
other functions to indicate the absence of a zone.

 7 Common Classes and Functions

Global Variables

Command Line Arguments

DECLARED IN defaults/defaults.h

SYNOPSIS extern int NXArgc ;
extern char **NXArgv ;

DESCRIPTION These global variables pass command-line arguments to a program when it begins
executing. NXArgc is the number of command-line arguments the program was invoked
with. NXArgv is a pointer to an array of character strings that contain the arguments, one
per string.

HashTable Prototypes

DECLARED IN objc/hashtable.h

SYNOPSIS const NXHashTablePrototype NXPtrPrototype ;
const NXHashTablePrototype NXStrPrototype;
const NXHashTablePrototype NXPtrStructKeyPrototype ;
const NXHashTablePrototype NXStrStructKeyPrototype ;

DESCRIPTION These global variables identify hash table prototypes suitable for use with
NXCreateHashTable(). The first two are used for hash tables of pointers and strings,
respectively. They use NXNoEffectFree() as the freeing function (see
NXHashTablePrototype).

NXPtrStructKeyPrototype and NXStrStructKeyPrototype identify prototypes that are
useful for hash tables where the key is the first element of a structure and is either a pointer
or a string.

Types and Constants: HashTable Prototypes 8

For example, NXStrStructKeyPrototype can be used to hash pointers to Example, where
Example is:

typedef struct {

 char *key;

 int data1;

 ...

} Example

For NXPtrStructKeyPrototype and NXStrStructKeyPrototype , NXReallyFree() is
used as the freeing function.

SEE ALSO NXHashTablePrototype and NXCreateHashTable()

9

