
1

NSCoder

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSCoder.h
Foundation/NSGeometry.h
Foundation/NSCompatibility.h

Class Description

The NSCoder abstract class declares the interface used by concrete subclasses to transfer objects and other
Objective-C data items between dynamic memory and some other format. This capability provides the basis
for archiving (where objects and data items are stored on disk) and distribution (where objects and data
items are copied between different processes or threads). The concrete subclasses provided by Foundation
for these purposes are, respectively, NSArchiver and NSUnarchiver, and NSPortCoder. Concrete subclasses
of NSCoder are referred to in general as coder classes, and instances of these classes as coder objects (or
simply coders). A coder object that can only encode values is referred to as an encoder object, and one that
can only decode values as a decoder object.

Coder objects operate on values of any Objective-C type except union and void * . They can also operate
on user-defined structures as well as pointers to any of these data types. A coder object stores object type
information along with the data, so an object decoded from a stream of bytes is normally of the same class
as the object that was originally encoded into the stream. An object can change its class when encoded,
however; this is described in the NSCoding protocol specification under “Making Substitutions During
Coding.”

Encoding and Decoding Objects and Data Items

To encode or decode an object or data item, you must first create a coder object, then send it a message
defined by NSCoder or by the concrete subclass to actually encode or decode the item. NSCoder itself
defines no particular method for creating a coder; this typically varies with the subclass. NSArchiver and
NSUnarchiver, for example, use initForWritingWithMutableData: and initForReadingWithData: .
NSPortCoders are created and used by NSConnection objects; you never create one of these yourself.

To encode an object or data item, use any of the encode... methods, such as encodeRootObject:,
encodeValueOfObjCType:at:, and so on. This sample code fragment uses the NSArchiver concrete
subclass of NSCoder to archive a custom object called myMapView:

2

 NSCoder

MapView *myMapView; /* Assume this exists. */

NSMutableData *data

NSArchiver *archiver;

BOOL result;

data = [NSMutableData mutableData];

archiver = [[NSArchiver alloc] initForWritingWithMutableData:data];

[archiver encodeRootObject:myMapView];

result = [data writeToFile:@"/tmp/MapArchive" atomically:YES];

NSArchiver also provides a convenience method for archiving immediately to a file, rendering the example
above as:

result = [NSArchiver archiveRootObject:myMapView toFile:@"/tmp/MapArchive"];

To decode an object or data item, simply use the decode... method corresponding to the original encode...
method (as given in the individual method descriptions). Matching these is important, as the method
originally used determines the format of the encoded data. See the NSCoding protocol specification for an
example.

NSCoder’s interface is quite general. Concrete subclasses aren’t required to properly implement all of
NSCoder’s methods, and may explicitly restrict themselves to certain types of operations. For example,
NSArchiver doesn’t implement the decode... methods, and NSUnarchiver doesn’t implement the encode...
methods.

When to Retain a Decoded Object

You can decode an object value in two ways. The first is explicitly, using the decodeObject method (or any
decode...Object method). When decoding an object explicitly you must follow the object ownership
convention, and retain the object returned if you intend to keep it. Otherwise the object is owned by the
coder and will be released when the coder is released.

The second means of decoding an object is implicitly, using the decodeValueOfObjCType:at: method or
one of its variants, decodeArrayOfObjCType:count:at: and decodeValuesOfObjCTypes:. These
methods fill a value already claimed by the invoker, so you are responsible for releasing decoded object
values. This behavior can prove useful for optimizing large decoding operations, as it obviates the need for
sending a retain message to each decoded object.

Managing Object Graphs

Objects frequently contain pointers to other objects, creating a graph of references that may contain cycles,
objects that must be shared upon decoding, and inessential objects. NSCoder declares methods that allow
a concrete subclass to manage these cases: encodeRootObject:, encodeObject:, and
encodeConditionalObject:. As implemented by a subclass, encodeRootObject: should encode the given
object along with any objects it contains references to, and so on recursively, keeping track of multiple
references to each object to avoid redundancy. To allow one part of a graph to be encoded without the rest,

3

encodeConditionalObject: should encode an object only if it’s unconditionally encoded elsewhere in the
graph.

However, NSCoder’s implementations of encodeRootObject: and encodeConditionalObject: simply
encode the object unconditionally, whether or not it’s already been encoded. A concrete subclass that
supports object graphs must override these two methods. See the NSArchiver class specification for more
information on managing object graphs.

Creating a Subclass of NSCoder

NSCoder’s abstract implementation is based on these methods: encodeValueOfObjCType:at:,
decodeValueOfObjCType:at:, encodeDataObject:, decodeDataObject:, and versionForClassName:. To
create a functional coder subclass, you must implement at least these methods. Other methods that can be
overridden for more specialized behavior are:

(an initialization method)
encodeRootObject:
encodeConditionalObject:
encodeBycopyObject:
setObjectZone:
objectZone

See the individual method descriptions for more information, and the NSArchiver class specification for an
example of a concrete subclass.

Note that encodeObject: and decodeObject are not among the basic methods. They’re defined abstractly
to invoke encodeValueOfObjCType:at: or decodeValueOfObjCType:at: with an Objective-C type code
of “@”. Your implementations of the latter two methods must handle this case, invoking the object’s
encodeWithCoder: or initWithCoder: method and sending the proper substitution messages (as described
in the NSCoding protocol specification) to the object before encoding it and after decoding it.

In general, the object being coded is fully responsible for coding itself. A few classes, however, push
responsibility back on the coder, whether for performance reasons or because proper support depends on
more information than the object itself has. The two notable classes in Foundation that do this are NSData
and NSPort. NSData’s low-level nature makes optimization important. For this reason, an NSData always
asks its coder to handle its contents directly using the encodeDataObject: and decodeDataObject:
methods described in this class specification. Similarly, an NSPort asks its coder to handle it using the
encodePortObject: and decodePortObject: methods (which only NSPortCoder implements). This is
because an NSPort represents information kept in the operating system itself, which requires special
handling for transmission to another process.

These special cases don’t affect users of coder objects, since the redirection is handled by the classes
themselves in their NSCoding protocol methods. An implementor of a concrete coder subclass, however,
must encode NSData and NSPort objects itself, and take care not to send an encodeWithCoder: or
initWithCoder: message to the NSData or NSPort object. Failure to do so can result in an infinite loop.

4

 NSCoder

Method Types

Encoding data – encodeArrayOfObjCType:count:at:
– encodeBycopyObject:

– encodeConditionalObject:
– encodeDataObject:
– encodeObject:
– encodePropertyList:
– encodePoint:
– encodeRect:
– encodeRootObject:
– encodeSize:
– encodeValueOfObjCType:at:
– encodeValuesOfObjCTypes:

Decoding data – decodeArrayOfObjCType:count:at:

– decodeDataObject
– decodeObject
– decodePropertyList
– decodePoint
– decodeRect
– decodeSize
– decodeValueOfObjCType:at:
– decodeValuesOfObjCTypes:

Managing zones – objectZone
– setObjectZone:

Getting version information – systemVersion
– versionForClassName:

Instance Methods

decodeArrayOfObjCType:count:at:
– (void)decodeArrayOfObjCType:(const char *)itemType

count:(unsigned int)count
at:(void *)address

Decodes an array of count items, whose Objective-C type is given by itemType. The values are decoded into
a buffer beginning at address, which must be large enough to contain them all. itemType must contain
exactly one type code. If you use this method to decode Objective-C objects, you are responsible for
releasing them.

5

This method matches an encodeArrayOfObjCType:count:at: message used during encoding.

For information on creating an Objective-C type code suitable for itemType, see the description of the
@encode() compiler directive in Object-Oriented Programming and the Objective-C Language.

See also: – decodeValueOfObjCType:at:, –decodeValuesOfObjCTypes:

decodeDataObject
– (NSData *)decodeDataObject

Must be overridden by subclasses to decode and return an NSData object. This method matches an
encodeDataObject: message used during encoding.

decodeNXObject
– (Object *)decodeNXObject

Decodes and returns an object descended from the Object class of NEXTSTEP Release 3 or earlier.

This method matches an encodeNXObject: message used during encoding.

decodeObject
– (id)decodeObject

Decodes an Objective-C object that was previously encoded with any of the encode...Object: methods.

decodePoint
– (NSPoint)decodePoint

Decodes and returns a point structure that was previously encoded with encodePoint:.

decodePropertyList
– (id)decodePropertyList

Decodes a property list that was previously encoded with encodePropertyList:. See the NSPPL class
specification for information on property lists.

6

 NSCoder

decodeRect
– (NSRect)decodeRect

Decodes and returns a rectangle structure that was previously encoded with encodeRect:.

decodeSize
– (NSSize)decodeSize

Decodes and returns a size structure that was previously encoded with encodeSize:.

decodeValueOfObjCType:at:
– (void)decodeValueOfObjCType:(const char *)valueType at:(void *)data

Must be overridden by subclasses to decode a single value, whose Objective-C type is given by valueType.
The value is decoded into a buffer beginning at address, which must be large enough to contain the value.
valueType must contain exactly one type code. If you use this method to decode an Objective-C object, you
are responsible for releasing it.

This method matches an encodeValueOfObjCType:at: message used during encoding.

For information on creating an Objective-C type code suitable for valueType, see the description of the
@encode() compiler directive in Object-Oriented Programming and the Objective-C Language.

See also: – decodeArrayOfObjCType:count:at: , –decodeValuesOfObjCTypes:

decodeValuesOfObjCTypes:
– (void)decodeValuesOfObjCTypes:(const char *)valueTypes, ...

Decodes a series of values of differing Objective-C types, as given by valueTypes. The values are decoded
into buffers given by pointer arguments following valueTypes, which must each be large enough to hold
their respective values. valueTypes may contain any number of type codes, so long as each one has a
corresponding buffer following. If you use this method to decode Objective-C objects, you are responsible
for releasing them.

This method matches an encodeValuesOfObjCTypes: message used during encoding.

For information on creating Objective-C type codes suitable for valueTypes, see the description of the
@encode() compiler directive in Object-Oriented Programming and the Objective-C Language.

See also: – decodeArrayOfObjCType:count:at: , –decodeValueOfObjCType:at:

7

encodeArrayOfObjCType:count:at:
– (void)encodeArrayOfObjCType:(const char *)itemType

count:(unsigned int)count
at:(const void *)address

Encodes an array of count items, whose Objective-C type is given by itemType. The values are encoded from
a buffer beginning at address. itemType must contain exactly one type code.

This method must be matched by a subsequent decodeArrayOfObjCType:count:at: message.

For information on creating an Objective-C type code suitable for itemType, see the description of the
@encode() compiler directive in Object-Oriented Programming and the Objective-C Language.

See also: – encodeValueOfObjCType:at:, –encodeValuesOfObjCTypes:

encodeBycopyObject:
– (void)encodeBycopyObject:(id)object

Can be overridden by subclasses to encode object so that a copy rather than a proxy is created upon
decoding. NSCoder’s implementation simply invokes encodeObject:.

This method must be matched by a subsequent decodeObject message.

See also: – encodeRootObject:, –encodeConditionalObject:, –encodeObject:, –encodeNXObject:

encodeConditionalObject:
– (void)encodeConditionalObject:(id)object

Can be overridden by subclasses to conditionally encode object, preserving common references to that
object. object should normally be encoded only if it’s unconditionally encoded elsewhere (with any other
encode...Object: method). NSCoder’s implementation simply invokes encodeObject:.

This method must be matched by a subsequent decodeObject message.

See also: – encodeRootObject:, –encodeObject:, –encodeBycopyObject:, –encodeNXObject:,
– encodeConditionalObject: (NSArchiver)

encodeDataObject:
– (void)encodeDataObject:(NSData *)data

Must be overridden by subclasses to encode the NSData object data. This method must be matched by a
subsequent decodeDataObject message.

See also: – encodeObject:

8

 NSCoder

encodeNXObject:
– (void)encodeNXObject:(Object *)nxobject

Encodes nxobject, an object descended from the Object class of NEXTSTEP Release 3 or earlier. This
method must be matched by a subsequent decodeNXObject message.

See also: – encodeObject:, –encodeConditionalObject:, –encodeBycopyObject:,
– encodeRootObject:

encodeObject:
– (void)encodeObject:(id)object

Encodes object, possibly only creating a reference if object was already encoded by the receiver. This
method must be matched by a subsequent decodeObject message.

See also: – encodeRootObject:, –encodeConditionalObject:, –encodeBycopyObject:,
– encodeNXObject:

encodePoint:
– (void)encodePoint:(NSPoint)point

Encodes point. This method must be matched by a subsequent decodePoint message.

encodePropertyList:
– (void)encodePropertyList:(id)aPropertyList

Encodes a property list. See the NSPPL class specification for information on property lists.

This method must be matched by a subsequent decodePropertyList message.

encodeRect:
– (void)encodeRect:(NSRect)rect

Encodes point. This method must be matched by a subsequent decodeRect message.

9

encodeRootObject:
– (void)encodeRootObject:(id)rootObject

Can be overridden by subclasses to encode an interconnected group of Objective-C objects, starting with
rootObject. NSCoder’s implementation simply invokes encodeObject:.

This method must be matched by a subsequent decodeObject message.

See also: – encodeObject:, –encodeConditionalObject:, –encodeBycopyObject:, –encodeNXObject:,
– encodeRootObject: (NSArchiver)

encodeSize:
– (void)encodeSize:(NSSize)size

Encodes size. This method must be matched by a subsequent decodeSize message.

encodeValueOfObjCType:at:
– (void)encodeValueOfObjCType:(const char *)valueType at:(const void *)address

Must be overridden by subclasses to encode a single value residing at address, whose Objective-C type is
given by valueType. valueType must contain exactly one type code.

This method must be matched by a subsequent decodeValueOfObjCType:at: message.

For information on creating an Objective-C type code suitable for valueType, see the description of the
@encode() compiler directive in Object-Oriented Programming and the Objective-C Language.

See also: – encodeArrayOfObjCType:count:at: , –encodeValuesOfObjCTypes:

encodeValuesOfObjCTypes:
– (void)encodeValuesOfObjCTypes:(const char *)valueTypes, ...

Encodes a series of values of differing Objective-C types, as given by valueTypes. The values are encoded
from the arguments following valueTypes. valueTypes may contain any number of type codes, so long as
each one has a corresponding value following.

This method must be matched by a subsequent decodeValuesOfObjCTypes: message.

For information on creating Objective-C type codes suitable for valueTypes, see the description of the
@encode() compiler directive in Object-Oriented Programming and the Objective-C Language.

See also: – encodeArrayOfObjCType:count:at: , –encodeValueOfObjCType:at:

10

 NSCoder

objectZone
– (NSZone *)objectZone

Returns the memory zone used to allocate decoded objects. NSCoder’s implementation simply returns the
default memory zone, as given by NSDefaultMallocZone().

See also: – setObjectZone:

setObjectZone:
– (void)setObjectZone:(NSZone *)zone

Can be overridden by subclasses to set the memory zone used to allocate decoded objects. NSCoder’s
implementation of this method does nothing.

See also: – objectZone

systemVersion
– (unsigned int)systemVersion

Returns the system version currently in effect during encoding, or during decoding, the version that was in
effect when the data was encoded.

versionForClassName:
– (unsigned int)versionForClassName:(NSString *)className

Must be overridden by subclasses to return the version in effect for the class named className when it was
encoded. Returns NSNotFound if no class named className exists in the encoding.

See also: + version (NSObject)

