
OPENSTEP Release 4.1 Copyright  1996 by NeXT Software, Inc. All Rights Reserved.

OPENSTEP 4.1 Release Notes:
Foundation Framework

The Foundation Framework is a library of Objective-C classes providing the infrastructure for non-user-interface object-based
applications and other user-interface- and non-user-interface-based frameworks. The OPENSTEP Foundation is compliant with the
Foundation portion of the OpenStep specification, and enriches OpenStep with a few extensions.

Within the Foundation are basic classes used by any Objective-C program: collection classes, Distributed Objects, persistence
frameworks, Unicode and internationalization support, the foundations of event-driven programming, and facilities to insulate code from
the underlying operating system.

These release notes are divided in four main sections:

• Comments on compatibility with OPENSTEP 4.0

• Notes specific to developers who have used previous releases of Foundation

• General comments on often-encountered problem areas and interesting things

• Known problems in this release

In the document below, "4.0" and "OPENSTEP 4.0" refer to all products that shipped with the 4.0 Foundation: OPENSTEP 4.0, D’OLE
4.0, and PDO 4.0 for HP-UXTM and SolarisTM. "4.1" and "OPENSTEP 4.1" refers to OPENSTEP 4.1 for Mach and OPENSTEP Enterprise
4.1.

Changes and Compatibility Between OPENSTEP 4.0 and 4.1

There have been a number of changes to Foundation since the shipment of OPENSTEP 4.0, both defect fixes and a few method/function
additions. These are enumerated in the section below.

Note that if your application uses API which was added between 4.0 and 4.1, your application might not run under 4.0. (If you do not want
to deploy your application on 4.0, then this is not an issue.) You can catch some of the potential problems by defining the macro
STRICT_40 at compile time. This #define is similar to STRICT_OPENSTEP and is used in the Application and Foundation Kits to mark
new API. Similarly, if you rely (perhaps unintentionally) on a bug fixed in 4.1, your application may not function correctly under 4.0.
Make sure you test on your intended deployment platform.

A number of performance improvements were also made to Foundation between 4.0 and 4.1. Customers developing on 4.1 may find
performance to be significantly worse in some cases when a project is deployed on 4.0.

Here are the feature and semantic changes to Foundation in 4.1. A list of most of the bugs fixed follows. Note that a fixed bug may also
represent a semantic change from the point of view of the application.

• Some methods in 4.0 were not surrounded by #if !defined(STRICT_OPENSTEP) when they weren’t, in fact, in OpenStep.
CLASS HEADER METHOD

NSCharacterSet NSCharacterSet.h +characterSetWithContentsOfFile:
NSConnection NSConnection.h -connection:shouldMakeNewConnection:
NSArray NSPathUtilities.h -pathsMatchingExtensions:

• These methods have been made public in 4.1. They were not public in 4.0, but existed in the 4.0 Foundation binary so there are no
compatibility issues in using them. They are not in OpenStep, however.

CLASS HEADER METHOD

NSArray NSArray.h -makeObjectsPerformSelector:
NSArray NSArray.h -makeObjectsPerformSelector:withObject:
NSSet NSSet.h -makeObjectsPerformSelector:
NSSet NSSet.h -makeObjectsPerformSelector:withObject:

• These methods and functions were added to Foundation in 4.1 and are not present in the 4.0 Foundation binary. Applications which
do not take some precaution in using them will not run correctly on OPENSTEP 4.0. These methods and functions are also not in
OpenStep.

CLASS HEADER METHOD

NSBundle NSBundle.h +allBundles
NSBundle NSBundle.h +allFrameworks
NSFileHandle NSFileHandle.h +fileHandleWithNullDevice
NSFileHandle NSFileHandle.h -initWithNativeHandle:closeOnDealloc:
NSFileHandle NSFileHandle.h -initWithFileDescriptor:closeOnDealloc:
NSObject NSObject.h +instanceMethodSignatureForSelector:

FUNCTION HEADER

NSFrameAddress NSDebug.h
NSReturnAddress NSDebug.h
NSCountFrames NSDebug.h

• The NSUserDefaults’ _search instance variable changed type from NSMutableArray * to NSArray *. This shouldn’t be a problem,
as applications should not be referencing the instance variables of NSUserDefaults directly.

• NSArray -componentsJoinedByString: sends -description to each of the array’s objects and concatenates the results of that
together, rather than using the objects directly. This means that this method will now operate on arrays which are composed of
objects that are not NSStrings.

• The number-formatting sequences for NSCalendarDates (%d, %e, %H, %I, %j, %m, %M, %S, %w, %y, %Y) during the construction
of a description can now contain formatting flags between the ‘%’ and format code, to the extent that the string methods
+stringWithFormat: , -appendFormat:, etc. understand them. Format flags are not understood during parsing from a format,
however. Note that per 70220 [below], NSDateFormatters use their format string both to display the date and to parse a date from a
string (which the user entered in a text field, for example), so this modest extension should not be used in the format string of
NSDateFormatters. Setting the date formatter to allow natural language may obviate the problem [but may be undesirable for
application reasons].

• The default uncaught exception handler now includes the name of the exception and a "backtrace" in the logged message it
generates. The backtrace consists only of the return addresses on the execution stack. Additionally, on WindowsTM, an application
exception is raised (via RaiseException()), which can be handled by a debugger.

• The byref keyword is no longer ignored when transporting NSCalendarDates (as a parameter or return value) over D.O. Thus, a
parameter or return value which is declared with byref now results in a proxy to the calendar date instance, rather than a real
calendar date instance. By default, NSCalendarDates still go over the wire bycopy. NSDates always go over the wire bycopy.

• The NSBundle class method +pathForResource:ofType:inDirectory: now first searches a Resources subdirectory of the third
parameter if such a subdirectory exists. It used to examine only the directory specified in the third parameter.

• NSDate’s -dateWithCalendarFormat:timeZone: and NSCalendarDate’s -setCalendarFormat: now have the documented
behavior with respect to the first parameter being nil . In 4.0, they would simply set the format to nil , which resulted in the various
-description methods returning an empty string.

• NSString -stringByAppendingPathComponent: would refuse to append a component that began with ‘~’ in 4.0. This was to
prevent the accidental concatenation of "~username" onto a path, but ‘~’ is a valid (but perhaps uncommon) first character of a file
name, and that behavior was of marginal benefit, so it was eliminated.

• A missing strings file has been added to the Foundation, so in 4.1 error strings returned from the formatters (NSDateFormatter and
NSNumberFormatter) will be localized.

This section contains many of the corrected defects to Foundation between OPENSTEP 4.0 and 4.1. Any of these present potential
backwards-deployment issues.

Reference: 48447 [FIXED]

Platforms: HP-UXTM

Problem: D.O. crashed sending some structures containing doubles

Description: D.O. would crash when attempting to send a parameter or return value which was a structure larger than 8 bytes and
contained a double field.

Reference: 50670 [FIXED]

Platforms: All

Problem: NSMethodSignature’s -getArgumentTypeAtIndex: and -methodReturnType returned too much information

Description: These NSMethodSignature methods returned a string which contained the type descriptors for the requested argument plus
all the type descriptors for the arguments following.

Reference: 55579 [FIXED]

Platforms: All

Problem: Collections that contain themselves didn’t unarchive well

Description: Unarchiving an object graph with a collection which contained itself, or contained an object which archived a reference to
the collection, might have caused a program either to crash immediately when the archiving system attempted to retain it,
or to crash later when a freed object was sent a message. The problem here was that the collection got retained when the
recursive reference was unarchived (which is normal) before it had completed its initialization in -initWithCoder: , which
can be a problem for objects which keep track of their own retain count (as the collection classes do).

Reference: 62019 [FIXED]

Platforms: All

Problem: Character tables were not Unicode 2.0 compliant

Description: The tables used by NSCharacterSet and shipped as resources with the 4.0 Foundation were compliant with Unicode 1.1.
The Unicode 2.0 tables were not yet available at the time of release. The tables in 4.1 are Unicode 2.0 compliant.

Reference: 67201 [FIXED]

Platforms: Windows NTTM

Problem: Files mapped with -initWithContentsOfMappedFile: could not be removed

Description: On WindowsTM, a file that a process has mapped cannot be removed; this is a feature of the operating system. However,
even after an NSData initialized with -initWithContentsOfMappedFile: was deallocated, a program may not have been
able to immediately remove the file. The problem was that an internal file-mapping object was autoreleased at the time the
data was initialized.

Reference: 68041 [FIXED]

Platforms: All

Problem: NSString’s -stringByStandardizingPath raised an exception in certain circumstances

Description: When passed an absolute path that ended with .., NSString’s -stringByStandardizingPath method raised an exception.

Reference: 68223 [FIXED]

Platforms: All

Problem: -stringByAbbreviatingWithTildeInPath sometimes incorrectly abbreviated

Description: If the first part of a path matched the user’s home directory, ’~’ would be substituted for that prefix, regardless of whether
or not the partial component at the end of the prefix was a complete component or not. For example,

[@"/me-local/foo/bar" stringByAbbreviatingWithTildeInPath] => @"~/local/foo/bar"

if the example was executed by the "me" user whose account is "/me".

Reference: 68447, 68781 [FIXED]

Platforms: All

Problem: D.O. and archiving type signature checks didn’t take structure tags into account

Description: The NeXT compiler does not include structure names in type encoding strings produced from typedefs of structures (for
example, @encode(NSRange); instead, the structure tag is given as "?". This is a bug in the compiler, but one that cannot
be fixed for backwards compatibility reasons. To achieve compatibility with SunSoft’s compiler (which correctly emits all
structure tags), a "?" as a structure tag was made to act as a "wildcard", matching anything. This is unlikely to affect user
applications, but developers who construct their own type encoding strings should note this, as 4.1 will be more permissive
than OPENSTEP 4.0 and NEXTSTEP was, a possible backwards-deployment issue.

Reference: 68790 [FIXED]

Platforms: All

Problem: NSConnectionDidDieNotification not sent in some circumstances

Description: If a client attempted to send a message to a server which had died before the client had processed the port death
notification (which can take quite a while to arrive), an NSInvalidSendPortException would be raised rather than the
NSConnectionDidDieNotification being sent.

Reference: 69174 [FIXED]

Platforms: All

Problem: Lossy conversion to NSASCIIStringEncoding more lossy than intended

Description: When NSString finds a non-ASCII character during lossy conversion to NSASCIIStringEncoding, NSString converts it to
an underscore. In 4.0, when NSString found a non-ASCII character during such conversion, NSString converted the
character and all the remaining characters in the string to underscores, even if they were ASCII.

Reference: 69321 [FIXED]

Platforms: Windows NTTM

Problem: D.O. leaked every messaged object

Description: On NT, every object that was messaged via D.O. was leaked due to an extraneous retain.

Reference: 69471 [FIXED]

Platforms: All

Problem: NSPipe leaked file descriptors

Description: NSPipes and NSFileHandles do not take ownership of the file descriptor by default. If such an object was released without
an explicit close of the descriptors, the descriptors were not recovered. The new methods
-initWithNativeHandle:closeOnDealloc: and -initWithFileDescriptor:closeOnDealloc: allow for the creation of file
handles which own the descriptors.

Reference: 69699 [FIXED]

Platforms: Windows NTTM

Problem: NSLog() doesn’t send duplicate output

Description: When running under a debugger, NSLog() would send output to the debugger and the event viewer and the standard error
handle (which is often not defined for applications, but is for tools and other console-oriented processes). Now when a
process is running under a debugger, NSLog() only sends its output to the debugger. The normal behavior of NSLog() is to
send the string to the event viewer and standard error.

Reference: 69926 [FIXED]

Platforms: All

Problem: NSNotificationCenter sometimes sent duplicate notifications

Description: In some situations, NSNotificationCenter sent observers two (or more) copies of a single notification. This only happened
to observers which were registered to receive any notification name (perhaps with restriction to particular object).

Reference: 70028 [FIXED]

Platforms: All

Problem: Fault objects could not forward messages

Description: EOFault would cause an unrecognized selector exception rather than causing -forwardInvocation: to be invoked on the
faulted object when the fault was sent a message that the faulted object did not understand (in other words, an object
faulted would not get an opportunity for forward an unknown selector). Faulted objects which wish to forward a message
which may cause them to be faulted should override the new NSObject class method
+instanceMethodSignatureForSelector: to return an NSMethodSignature for the eventual target of the forwarded
message. See the subsection Forwarding Messages in OpenStep in the General Comments section below.

Reference: 70220 [FIXED]

Platforms: All

Problem: NSDateFormatter didn’t convert input in the same way as output

Description: NSDateFormatters did not use the output format string to parse user-entered strings, so in most cases strings could not be
entered in the same format in which they were displayed. Now a date displayed with "%m/%y" (for example) can also be
entered in that format.

Reference: 70323 [FIXED]

Platforms: All

Problem: NSDateFormatter does not allow empty string

Description: Once the user had begun typing in a text field that had a date formatter, the user could not leave the field without entering a
valid date; in particular, the user could not leave the field empty. Empty is now valid, and the date formatter produces nil
for an empty string in its -getObjectValue:forString:errorDescription: method.

Reference: 70334 [FIXED]

Platforms: All

Problem: Time zones generated with wrong offset

Description: The +timeZoneForSecondsFromGMT: was incorrectly using the negative of the supplied parameter to generate the
returned time zone. This also affected the parsing of dates where the time zone was specified with a raw GMT offset, like
"-0700", but not where the time zone was a name, such as "GMT-0800" or "PST".

Reference: 70440 [FIXED]

Platforms: All

Problem: NSRunLoop incorrectly computed whether or not there was work to be done

Description: In some situations using background monitoring of file handles, NSRunLoop would not take into account the file handles in
deciding whether or not it had any more input sources.

Reference: 70580 [FIXED]

Platforms: All

Problem: NSNumber hashed long long numbers incorrectly

Description: NSNumber hashed long longs by simply casting the value to (unsigned int). This caused some equal numbers to have
different hash values, breaking the hash–isEqual: invariant.

Reference: 70612, 70718 [FIXED]

Platforms: All

Problem: NSDecimalNumber inaccuracies

Description: An error in the text from which the division algorithm was taken caused inaccuracies in the less significant end of the
result of -decimalNumberByDividingBy:withBehavior: (in the fractional part, the ones, and tens digits, depending on the
size of the numbers). Also, digits of precision were being lost during initialization on the less significant end of the number,
and the decimal point was being incorrectly positioned in the result of -decimalNumberBySubtracting:withBehavior:.

Reference: 71006 [FIXED]

Platforms: Windows NTTM

Problem: NSFullUserName() always returned nil

Description: The NETAPI32 DLL was not being loaded when needed. Note that this DLL is not implemented on Windows 95TM, so this
function will always return nil on Windows 95TM. Applications should be prepared for a nil return value.

Reference: 71288 [FIXED]

Platforms: All

Problem: Problem popping initial autorelease pool

Description: A program could crash if it repeatedly created and released the top autorelease pool.

Notes for Users of Foundation Prior to OPENSTEP 4.0

There were several releases of the Foundation Framework prior to OPENSTEP 4.0. Foundation shipped with:

• NEXTSTEP 3.3
• Enterprise Objects Framework 1.0
• Enterprise Objects Framework 1.1
• Portable Distributed Objects 3.0

• D’OLE 3.5
• OPENSTEP 4.0 Prerelease 1
• OPENSTEP 4.0 Prerelease 2
• PDO 4.0 Prerelease 1

This section describes only API changes that have been made between those releases and OPENSTEP 4.0. For changes since
OPENSTEP 4.0, see the section above titled Changes and Compatibility Between OPENSTEP 4.0 and 4.1. The semantics of many things
have changed, but most not in a way that will affect programs (NEXTSTEP 3.3 Foundation-based programs and EOF 1.1 programs, being
older, are more likely to be affected). Unfortunately, at this time there is no single source for information about such changes–refer to the
Foundation Framework Reference and specific class specifications for the current behavior. This document does not describe extensions
to Foundation provided by various NeXT products (for example, WebObjects or EOF).

Foundation is now packaged as a ProjectBuilder framework, and resides in /NextLibrary/Frameworks/Foundation.framework . The
headers can be found in /NextLibrary/Frameworks/Foundation.framework/Headers.

All programs based upon previous version of Foundation should be recompiled (even if no conversion is necessary) to function with this
version of Foundation. Compiling against the old static "shlib" (the shared library shipped with NEXTSTEP 3.3, EOF 1.1, and PDO 3.0,
and used by WebObjects) is not supported in OPENSTEP 4.0 (without EOF 1.1 installed).

This section is divided into a subsection for each of the previous releases of the Foundation Framework. There are no specific notes for
Enterprise Objects Framework 1.0, Portable Distributed Objects 3.0, or WebObjects 1.0 developers; please refer to the section for
Enterprise Objects Framework 1.1 developers. The API of the Foundation shipped with Portable Distributed Objects 3.0 and WebObjects
1.0 was identical to that in Enterprise Objects Framework 1.1 (other than extensions made by those products).

Notes Specific to NEXTSTEP 3.3 Developers
Items in the tables below (in the section titled Tables Showing Foundation API Changes) that are marked with "(NS33)" are changes
made to Foundation between NEXTSTEP 3.3 and OPENSTEP 4.0. Also see the general comments in the section Notes Specific to
Enterprise Objects Framework 1.1 Developers below. NEXTSTEP 3.3 developers should note the following additions to those comments:

• The header NXAutoreleaseConnection.h was not in NEXTSTEP 3.3. Comments referring to this header do not apply to
NEXTSTEP 3.3 developers.

• Two additional headers, NSLock.h and NSThread.h, were not in NEXTSTEP 3.3, but are in OPENSTEP 4.0.

Notes Specific to Enterprise Objects Framework 1.1 Developers
Items in the tables below (in the section titled Tables Showing Foundation API Changes) marked with "(EOF11)" are changes made to
Foundation between EOF 1.1 and OPENSTEP 4.0.

Some additional changes are not contained in the tables or are of particular note:

• Headers are now imported as <Foundation/...>, rather than <foundation/...>.

• The structure of imports has changed. The Foundation headers import all ANSI C headers they need and some of the Objective-C
interfaces, but none of the operating system interfaces. The set of headers imported by each header has also changed in many places.
Where a project was getting a header imported "for free" before, it may now need to import additional headers in order to compile.

• The header NXAutoreleaseConnection.h has been removed. Its contents have been moved to NSCompatibility.h.

• A Foundation.h header has been added, which includes the 15 ANSI C headers, and all Foundation headers except
NSCompatibility.h and NSDebug.h.

• The top-level NSAutoreleasePool is no longer created for automatically–a program needs to create it itself. See the Foundation
Framework Reference and the NSAutoreleasePool class specification for more information on creating autorelease pools.

• NSDictionary no longer constrains keys to be instances of NSString. Any object that meaningfully responds to -hash, -isEqual:, and
-copyWithZone: can be an NSDictionary key.

• The name of the exception variable in the NS_HANDLER...NS_ENDHANDLER region has been changed from exception to
localException.

• Some methods that are not in OpenStep, and were not guarded with #if !defined(STRICT_OPENSTEP), now are guarded.

• NSObject no longer conforms to the NSCoding protocol. Instead, the classes that can be archived or distributed, and their
subclasses, conform to the protocol explicitly.

• NSBundle’s and NSNotificationCenter’s instance variables are now declared @private.

• The type of the parameter to NSBundle’s +bundleForClass: method changed from id to Class.

• The type of the parameter to NSValue’s +valueWithPointer: method changed from void * to const void *.

• The typedef NSStringEncoding in NSString.h has changed from a typedef’d enumeration to a typedef’d scalar.

• The value of the enumeration constant NSUnicodeStringEncoding in NSString.h has changed from 0 to 10.

• The location of the resources has changed, and can now be found in the Foundation framework directory. If, in a previous release of
the Foundation, your application was poking around in the Foundation resources, you should carefully consider why you were doing
so, and stop doing it if possible.

• The declarations of the NSAutoreleasePool debugging methods and aids have moved from NSAutoreleasePool.h to NSDebug.h.
Some of the methods are destined for obsolescence, and some new methods have been added.

• The header NSObjCRuntime.h now imports the headers objc/zone.h and stdarg.h.

• Many declarations and definitions were removed from the header NSUtilities.h and moved elsewhere, but all the previous material
is still defined by importing NSUtilities.h. The headers to which things were moved are NSEnumerator.h, NSObjCRuntime.h,
NSDictionary.h, and NSString.h.

Finally, the Foundation shipped with EOF 1.1 did not contain much of the functionality of the Foundation in OPENSTEP 4.0. These
headers, and all the API they declare, were added between EOF 1.1 and OPENSTEP 4.0:

NSAttributedString.h NSFormatter.h NSPPL.h
NSByteOrder.h NSGeometry.h NSProcessInfo.h
NSCompatibility.h NSHashTable.h NSProtocolChecker.h
NSConnection.h NSHost.h NSProxy.h
NSDateFormatter.h NSInvocation.h NSRunLoop.h
NSDebug.h NSMapTable.h NSSerialization.h
NSDecimal.h NSMethodSignature.h NSSet.h
NSDecimalNumber.h NSNotificationQueue.h NSTask.h
NSDistantObject.h NSNumberFormatter.h NSTimer.h
NSDistributedLock.h NSPort.h NSUserDefaults.h
NSEnumerator.h NSPortCoder.h
NSFileHandle.h NSPortMessage.h
NSFileManager.h NSPortNameServer.h

The API added by these headers is not included in the tables below.

Notes Specific to D’OLE 3.5 Developers
Items in the tables below (in the section titled Tables Showing Foundation API Changes) marked with "(40PR1)" are changes made to
Foundation between OPENSTEP 4.0 PR1 and OPENSTEP 4.0. This symbol also marks changes that apply to D’OLE 3.5 developers, with
the exceptions noted below. See also the general comments in the section Notes Specific to OPENSTEP 4.0 PR1 Developers below.

The following are exceptions to the changes noted between OPENSTEP 4.0 PR1 and OPENSTEP 4.0, for D’OLE 3.5 developers:

• The header NSPPL.h isn’t in D’OLE 3.5, but is in OPENSTEP 4.0. API changes referring to this header do not apply to D’OLE 3.5
developers.

• These methods were in D’OLE 3.5, but not in OPENSTEP 4.0 PR1:
CLASS HEADER METHOD

NSString NSPathUtilities.h +pathWithComponents: (+NeXT) (40PR1)
NSString NSPathUtilities.h -isAbsolutePath (+NeXT) (40PR1)
NSString NSPathUtilities.h -pathComponents (+NeXT) (40PR1)

Notes Specific to OPENSTEP 4.0 PR1 Developers
Items in the tables below (in the section titled Tables Showing Foundation API Changes) marked with "(40PR1)" are changes made to
Foundation between OPENSTEP 4.0 PR1 and OPENSTEP 4.0.

Some additional changes are not contained in the tables or are of particular note:

• All applications, frameworks, libraries, bundles, tools, etc. compiled in PR1 should be recompiled.

• The header file NSAccount.h has been removed from Foundation. This header was NeXT-specific.

• The header file NSByteStore.h has been removed from Foundation (both from OpenStep and from NeXT’s implementation).

• The import of the header NSDebug.h has been removed from Foundation.h; however, it still exists. This header contains features
intended for debugging, but not for general use.

• Foundation.h now imports the 15 ANSI C headers (assert.h, ctype.h, errno.h, float.h, limits.h , locale.h, math.h, setjmp.h,
signal.h, stdarg.h, stddef.h, stdio.h, stdlib.h, string.h, time.h) as a convenience.

• The header file NSObjCRuntime.h imported six obsolete headers (ansi/ansi.h, objc/typedstream.h, objc/objc-class.h,
architecture/byte_order.h, objc/hashtable.h, streams/streams.h) in PR1. It no longer does so. This change may mean that some of
these headers may need to be explicitly imported for code written on OPENSTEP 4.0 PR1 to recompile.

• A STRICT_OPENSTEP preprocessor guard now surrounds all API in the headers NSDecimal.h and NSDecimalNumber.h.

• The macro FOUNDATION_EXPORT is now always explicitly defined on WindowsTM (that is, it cannot be predefined with the -D
compiler option) in NSObjCRuntime.h.

• A new header and related functionality, NSTask.h, was added.

• See also changes noted in the section Notes Specific to OPENSTEP 4.0 PR2 Developers. All changes listed apply to OPENSTEP 4.0
PR1 developers.

Notes Specific to OPENSTEP 4.0 PR2 Developers
Items in the tables below (in the section titled Tables Showing Foundation API Changes) marked with "(40PR2)" are changes made to
Foundation between OPENSTEP 4.0 PR2 and OPENSTEP 4.0.

Some additional changes are not contained in the tables or are of particular note. This list of changes applies to both OPENSTEP 4.0 PR1
and PR2 developers:

• The size of NSPort and NSRunLoop instances has changed. The NSPort class has become abstract and no longer has any instance
variables. Applications, tools, frameworks, bundles, or libraries with subclasses of these two classes must be recompiled.

• The header file NSPosixFileDescriptor.h has been removed from Foundation. This header was NeXT-specific. The header
NSFileHandle.h provides portable replacement functionality.

• A few new headers have been added. The API in these headers is not included in the tables below:

NSAttributedString.h NSFormatter.h
NSDateFormatter.h NSNumberFormatter.h
NSEnumerator.h NSProtocolChecker.h
NSFileHandle.h

• Many declarations and definitions were removed from the header NSUtilities.h and moved elsewhere, but all the previous material
is still defined by importing NSUtilities.h. The headers to which things were moved are NSEnumerator.h, NSObjCRuntime.h,
NSDictionary.h, and NSString.h.

• The header NSObjCRuntime.h now imports the headers objc/zone.h and stdarg.h.

• The type of the parameter to NSTask’s -setStandardInput:, -setStandardOutput:, and -setStandardError: methods has changed
from NSPosixFileDescriptor * to id.

• The declarations of the NSAutoreleasePool debugging methods and aids have moved from NSAutoreleasePool.h to NSDebug.h.
Some of the methods are destined for obsolescence, and some new methods have been added.

• These methods are no longer declared on WindowsTM platforms:
CLASS HEADER METHOD

NSDictionary NSFileManager.h -fileSystemFileNumber
NSDictionary NSFileManager.h -fileSystemNumber
NSFileManager NSFileManager.h -createSymbolicLinkAtPath:pathContent:
NSFileManager NSFileManager.h -pathContentOfSymbolicLinkAtPath:

Although they are still declared on WindowsTM, an application should not use the string constants NSFileSystemNumber or
NSFileSystemFileNumber, either.

Notes Specific to PDO 4.0 PR1 Developers
Items in the tables below (in the section titled Tables Showing Foundation API Changes) marked with "(P40PR1)" are changes made to
Foundation between PDO 4.0 PR1 and OPENSTEP 4.0 and PDO 4.0.

Some additional changes are not contained in the tables or are of particular note:

• The Foundation is now shipped as a shared library in PDO 4.0 for SolarisTM. All applications, tools, frameworks, bundles, libraries,
etc. should be recompiled to take advantage of this.

• The size of NSPort and NSRunLoop instances has changed. The NSPort class has become abstract and no longer has any instance
variables. Applications, tools, frameworks, bundles, or libraries with subclasses of these two classes must be recompiled.

• The header file NSPosixFileDescriptor.h has been removed from Foundation. This header was NeXT-specific. The header
NSFileHandle.h provides portable replacement functionality.

• A few new headers have been added. The API in these headers is not included in the tables below:

NSAttributedString.h NSFormatter.h
NSDateFormatter.h NSNumberFormatter.h
NSFileHandle.h NSProtocolChecker.h

• The type of the parameter to NSTask’s -setStandardInput:, -setStandardOutput:, and -setStandardError: methods has changed
from NSPosixFileDescriptor * to id.

Tables Showing Foundation API Changes
There are four tables that list the API changes between previous versions of Foundation and the version of Foundation in OPENSTEP 4.0.
The first table lists general changes to API elements (classes, macros, functions, constants, and so on) except methods, the second table
lists the changes to the set of methods offered by the classes in Foundation, the third table lists changes to the return values of methods
(for methods that didn’t change name, which are listed in the second table), and the fourth table lists changes in the location of
declarations. Other miscellaneous changes that weren’t described well in table format are given in the sections above.

Changes are noted from the perspective of a developer who used a previous release looking to port their Foundation-based code to
OPENSTEP 4.0 (and not through any intermediate releases). For instance, changes that are marked as having been made between
OPENSTEP 4.0 PR1 and PR2 do not necessarily apply to NEXTSTEP 3.3 developers (for example, an API might have been added for
OPENSTEP 4.0 PR1, but removed for OPENSTEP 4.0 PR2).

The rows in the tables are marked with various symbols in the rightmost column. One set of symbols describes between which releases
and OPENSTEP 4.0 the change was made:

SYMBOL MEANING

(NS33) Change occurred between NEXTSTEP 3.3 and OPENSTEP 4.0
(EOF11) Change occurred between EOF 1.1 and OPENSTEP 4.0
(40PR1) Change occurred between OPENSTEP 4.0 PR1 and OPENSTEP 4.0
(40PR2) Change occurred between OPENSTEP 4.0 PR2 and OPENSTEP 4.0

The other set of symbols indicate how the API changed. Both NeXT’s implementation of Foundation, and the OpenStep specification
(since version 1.0 was published) have changed. These symbols attempt to describe what has happened:

SYMBOL MEANING

(OpenStep,NeXT) Generically, a change that did not add or remove API, but affects OpenStep and NeXT’s implementation
(OpenStep) Generically, a change that did not add or remove API and affects OpenStep, but not NeXT’s implementation
(NeXT) Generically, a change that did not add or remove API and affects NeXT’s implementation, but not OpenStep

(+OpenStep,+NeXT) Was in neither OpenStep nor NeXT’s implementation, now in both
(+OpenStep,NeXT) Was in NeXT’s implementation only, now also in OpenStep
(+OpenStep,-NeXT) Was in NeXT’s implementation only, now in OpenStep only
(OpenStep,+NeXT) Was in OpenStep only, now also in NeXT’s implementation
(OpenStep,-NeXT) Was in both, now in OpenStep only
(-OpenStep,+NeXT) Was in OpenStep only, now in NeXT’s implementation only
(-OpenStep,NeXT) Was in both, now in NeXT’s implementation only
(-OpenStep,-NeXT) Was in both, now in neither
(+OpenStep) Was in neither OpenStep nor NeXT’s implementation, now in OpenStep only
(-OpenStep) Was in OpenStep only, now in neither
(+NeXT) Was in neither OpenStep nor NeXT’s implementation, now in NeXT’s implementation only
(-NeXT) Was in NeXT’s implementation only, now in neither

Occasionally, to the right of the rightmost column is a note for removed API which names the replacement.

GENERAL CHANGES IN PUBLIC API SYMBOLS
SYMBOL TYPE HEADER
ABS macro NSObjCRuntime.h (+NeXT) (40PR2) (40PR1) (EOF11) (NS33)
MAX macro NSObjCRuntime.h (+NeXT) (40PR2) (40PR1) (EOF11) (NS33)
MIN macro NSObjCRuntime.h (+NeXT) (40PR2) (40PR1) (EOF11) (NS33)
NSAccount class NSAccount.h (-NeXT) (40PR1) (NS33)
NSAdobeStandardCyrillicStringEncoding constant NSString.h (-NeXT) (40PR2) (40PR1) Use NSWindowsCP1251StringEncoding instead
NSAllocateMemoryPages function NSZone.h (OpenStep,+NeXT) (EOF11) (NS33)
NSArchiverArchiveInconsistency exception NSException.h (-NeXT) (EOF11) (NS33)
NSArchiverClassError exception NSException.h (-NeXT) (EOF11) (NS33)
NSArchiverDescriptorError exception NSException.h (-NeXT) (EOF11) (NS33)
NSArchiverWriteReferenceError exception NSException.h (-NeXT) (EOF11) (NS33)
NSArgumentInfo typedef NSMethodSignature.h (-OpenStep,-NeXT) (40PR1)
NSBTreeBlock class NSByteStore.h (-OpenStep,-NeXT) (40PR1)
NSBTreeComparator typedef NSByteStore.h (-OpenStep,-NeXT) (40PR1)
NSBTreeCursor class NSByteStore.h (-OpenStep,-NeXT) (40PR1)

NSBTreeStoreKeyTooLargeException exception NSByteStore.h (-OpenStep,-NeXT) (40PR1)
NSBecomingMultiThreaded notification NSThread.h (-OpenStep,-NeXT) (40PR1) Use NSWillBecomeMultiThreadedNotification instead
NSBundleDidLoadNotification notification NSBundle.h (+NeXT) (40PR1) (EOF11) (NS33)
NSBundleDidLoadNotification notification NSBundle.h (+OpenStep,NeXT) (40PR2)
NSBundleLoaded notification NSBundle.h (-NeXT) (40PR1) Use NSBundleDidLoadNotification instead
NSByteStore class NSByteStore.h (-OpenStep,-NeXT) (40PR1)
NSByteStoreDamagedException exception NSByteStore.h (-OpenStep,-NeXT) (40PR1)
NSByteStoreFile class NSByteStore.h (-OpenStep,-NeXT) (40PR1)
NSByteStoreLockedException exception NSByteStore.h (-OpenStep,-NeXT) (40PR1)
NSByteStoreVersionException exception NSByteStore.h (-OpenStep,-NeXT) (40PR1)
NSCharacterConversionException exception NSString.h (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSCodingException exception NSException.h (-NeXT) (EOF11) (NS33)
NSComparisonResult typedef NSObjCRuntime.h (+NeXT) (40PR2) (40PR1) (EOF11) (NS33)
NSConnectionDeath notification NSConnection.h (-OpenStep,-NeXT) (40PR1) Use NSConnectionDidDieNotification instead
NSConnectionDidInitializeNotification notification NSConnection.h (+NeXT) (P40PR1) (40PR2) (40PR1)
NSCopyMemoryPages function NSZone.h (OpenStep,+NeXT) (EOF11) (NS33)
NSCurrencyString default name NSUserDefaults.h (-OpenStep,NeXT) (40PR2) Use NSCurrencySymbol instead
NSCurrencyString default name NSUserDefaults.h (OpenStep,-NeXT) (40PR1) Use NSCurrencySymbol instead
NSDateMissingTimeZone exception NSException.h (-NeXT) (EOF11) (NS33)
NSDeallocateMemoryPages function NSZone.h (OpenStep,+NeXT) (EOF11) (NS33)
NSDecimalNumberBehavior class NSDecimalNumber.h (-NeXT) (P40PR1) (40PR2) (40PR1)
NSDecimalNumberBehavior protocol NSDecimalNumber.h (-NeXT) (P40PR1) (40PR2) (40PR1)
NSDecimalNumberBehaviors protocol NSDecimalNumber.h (+NeXT) (P40PR1) (40PR2) (40PR1)
NSDecimalNumberHandler class NSDecimalNumber.h (+NeXT) (P40PR1) (40PR2) (40PR1)
NSDistantObjectRequest class NSConnection.h (+NeXT) (40PR1)
NSEUCStringEncoding constant NSString.h (-NeXT) (EOF11) (NS33) Use NSJapaneseEUCStringEncoding instead
NSEqualRanges function NSRange.h (OpenStep,+NeXT) (EOF11) (NS33)
NSExceptionBase constant NSException.h (-NeXT) (EOF11) (NS33)
NSExtraRefCount function NSObject.h (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSFileGroupOwnerAccountName dict. key NSFileManager.h (+NeXT) (40PR1)
NSFileGroupOwnerAccountNumber dict. key NSFileManager.h (-NeXT) (40PR1) Use NSFileGroupOwnerAccountName instead
NSFileOwnerAccountName dict. key NSFileManager.h (+NeXT) (40PR1)
NSFileOwnerAccountNumber dict. key NSFileManager.h (-NeXT) (40PR1) Use NSFileOwnerAccountName instead
NSFullUserName function NSPathUtilities.h (+NeXT) (40PR1) (EOF11) (NS33)
NSGetSizeAndAlignment function NSObjCRuntime.h (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSGroupAccount class NSAccount.h (-NeXT) (40PR1)
NSHPUXOperatingSystem constant NSProcessInfo.h (+NeXT) (40PR1)
NSHashStringLength constant NSString.h (-OpenStep,-NeXT) (40PR1) (EOF11) (NS33)
NSISO2022JPStringEncoding constant NSString.h (+NeXT) (P40PR1) (40PR2) (40PR1) (EOF11) (NS33)
NSISOLatin2StringEncoding constant NSString.h (OpenStep,+NeXT) (EOF11) (NS33)
NSInconsistentArchiveException exception NSArchiver.h (OpenStep,+NeXT) (EOF11) (NS33)
NSInternationalCurrencyString default name NSUserDefaults.h (OpenStep,+NeXT) (P40PR1) (40PR2)
NSInternationalCurrencySymbol default name NSUserDefaults.h (-NeXT) (P40PR1) (40PR2) Use NSInternationalCurrencyString instead
NSIntersectsRect function NSGeometry.h (+OpenStep,+NeXT) (40PR1)
NSInvalidReceivePort exception NSException.h (-NeXT) (40PR1) Use NSInvalidReceivePortException instead
NSInvalidReceivePortException exception NSException.h (+NeXT) (EOF11) (NS33)
NSInvalidSendPort exception NSException.h (-NeXT) (40PR1) Use NSInvalidSendPortException instead
NSInvalidSendPortException exception NSException.h (+NeXT) (EOF11) (NS33)
NSJapaneseEUCStringEncoding constant NSString.h (OpenStep,+NeXT) (EOF11) (NS33)
NSLastException constant NSException.h (-NeXT) (EOF11) (NS33)
NSLoadedClasses constant NSBundle.h (+OpenStep,+NeXT) (P40PR1) (40PR2) (40PR1) (EOF11) (NS33)
NSLocalizedString macro NSBundle.h (OpenStep,+NeXT) (EOF11) (NS33)
NSLocalizedStringFromTable macro NSBundle.h (OpenStep,+NeXT) (EOF11) (NS33)
NSLocalizedStringFromTableInBundle macro NSBundle.h (OpenStep,+NeXT) (EOF11) (NS33)
NSLogPageSize function NSZone.h (OpenStep,+NeXT) (EOF11) (NS33)
NSMACHOperatingSystem constant NSProcessInfo.h (+NeXT) (40PR1)
NSMakeRange function NSRange.h (OpenStep,+NeXT) (EOF11) (NS33)
NSMallocException exception NSException.h (OpenStep,+NeXT) (EOF11) (NS33)
NSNonRetainedObjectMapValueCallBacks struct NSMapTable.h (+OpenStep,+NeXT) (40PR1)
NSNotFound constant NSObjCRuntime.h (+NeXT) (40PR2) (40PR1) (EOF11) (NS33)
NSNotInArray constant NSArray.h (-NeXT) (EOF11) (NS33)
NSOSF1OperatingSystem constant NSProcessInfo.h (+NeXT) (40PR1)
NSObjCInadequateRuntimeInformation exception NSException.h (-NeXT) (EOF11) (NS33)
NSOldStyleException exception NSException.h (+NeXT) (EOF11) (NS33)
NSOpenStepRootDirectory function NSPathUtilities.h (+NeXT) (40PR1) (EOF11) (NS33)
NSOpenStepUnicodeReservedBase constant NSCharacterSet.h (OpenStep,+NeXT) (EOF11) (NS33)
NSOwnedObjectIdentityHashCallBacks struct NSHashTable.h (+OpenStep,+NeXT) (40PR1)
NSOwnershipTransferException exception NSException.h (-NeXT) (EOF11) (NS33)
NSPPLBecameDirty notification NSPPL.h (-NeXT) (40PR1) Use NSPPLDidBecomeDirtyNotification instead
NSPPLSaved notification NSPPL.h (-NeXT) (40PR1) Use NSPPLDidSaveNotification instead
NSPageSize function NSZone.h (OpenStep,+NeXT) (EOF11) (NS33)
NSParseErrorException exception NSException.h (-NeXT) (EOF11) (NS33)
NSPointFromString function NSGeometry.h (+OpenStep,+NeXT) (40PR1)
NSPortInvalidation notification NSPort.h (-NeXT) (40PR1) Use NSPortDidBecomeInvalidNotification instead
NSPortNameRegistrationError exception NSException.h (-NeXT) (EOF11) (NS33)
NSPortReceiveError exception NSException.h (-NeXT) (40PR1) Use NSPortReceiveException instead
NSPortReceiveException exception NSException.h (+NeXT) (EOF11) (NS33)
NSPortSendError exception NSException.h (-NeXT) (40PR1) Use NSPortSendException instead
NSPortSendException exception NSException.h (+NeXT) (EOF11) (NS33)
NSRangeFromString function NSRange.h (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSRealMemoryAvailable function NSZone.h (OpenStep,+NeXT) (EOF11) (NS33)
NSRectFromString function NSGeometry.h (+OpenStep,+NeXT) (40PR1)
NSRoundDownToMultipleOfPageSize function NSZone.h (OpenStep,+NeXT) (EOF11) (NS33)
NSRoundUpToMultipleOfPageSize function NSZone.h (OpenStep,+NeXT) (EOF11) (NS33)
NSShiftJISStringEncoding constant NSString.h (+NeXT) (NS33)
NSShortDateFormatString default name NSUserDefaults.h (+NeXT) (40PR1)
NSSizeFromString function NSGeometry.h (+OpenStep,+NeXT) (40PR1)

NSSolarisOperatingSystem constant NSProcessInfo.h (+NeXT) (40PR1)
NSStandardApplicationPaths function NSPathUtilities.h (+NeXT) (40PR1) (EOF11) (NS33)
NSStandardLibraryPaths function NSPathUtilities.h (+NeXT) (40PR1) (EOF11) (NS33)
NSSunOSOperatingSystem constant NSProcessInfo.h (+NeXT) (40PR1)
NSTemporaryDirectory function NSPathUtilities.h (+NeXT) (40PR1) (EOF11) (NS33)
NSThreadExiting notification NSThread.h (-OpenStep,-NeXT) (40PR1) (EOF11) Use NSThreadWillExitNotification instead
NSThreadWillExitNotification notification NSThread.h (+OpenStep,+NeXT) (40PR1) (EOF11)
NSTimeIntervalSince1970 constant NSDate.h (OpenStep,+NeXT) (EOF11) (NS33)
NSUTF8StringEncoding constant NSString.h (OpenStep,+NeXT) (EOF11) (NS33)
NSUTFStringEncoding constant NSString.h (-NeXT) (EOF11) (NS33) Use NSUTF8StringEncoding instead
NSUserAccount class NSAccount.h (-NeXT) (40PR1)
NSUserDefaultsChanged notification NSUserDefaults.h (-OpenStep,-NeXT) (40PR1) Use NSUserDefaultsDidChangeNotification instead
NSUserDefaultsDidChangeNotification notification NSUserDefaults.h (+OpenStep,+NeXT) (40PR1)
NSWillBecomeMultiThreadedNotification notification NSThread.h (+OpenStep,+NeXT) (40PR1) (EOF11)
NSWinLatin1StringEncoding constant NSString.h (-NeXT) (40PR2) (40PR1) Use NSWindowsCP1252StringEncoding instead
NSWindows95OperatingSystem constant NSProcessInfo.h (+NeXT) (40PR1)
NSWindowsCP1250StringEncoding constant NSString.h (+NeXT) (40PR2) (40PR1) (EOF11) (NS33)
NSWindowsCP1251StringEncoding constant NSString.h (+NeXT) (40PR2) (40PR1) (EOF11) (NS33)
NSWindowsCP1252StringEncoding constant NSString.h (+NeXT) (40PR2) (40PR1) (EOF11) (NS33)
NSWindowsCP1253StringEncoding constant NSString.h (+NeXT) (40PR2) (40PR1) (EOF11) (NS33)
NSWindowsCP1254StringEncoding constant NSString.h (+NeXT) (40PR2) (40PR1) (EOF11) (NS33)
NSWindowsNTOperatingSystem constant NSProcessInfo.h (+NeXT) (40PR1)
NSZoneFromPointer function NSZone.h (OpenStep,+NeXT) (EOF11) (NS33)
NSZoneFromPtr function NSZone.h (-NeXT) (EOF11) Use NSZoneFromPointer instead
NS_VALRETURN macro NSException.h (-OpenStep,-NeXT) (EOF11) (NS33) Use NS_VALUERETURN instead
NS_VALUERETURN macro NSException.h (+OpenStep,+NeXT) (EOF11) (NS33)
NXReadNSObjectFromCoder function NSCompatibility.h (+NeXT) (P40PR1) (40PR2) (40PR1)
Nil constant NSObjCRuntime.h (+NeXT) (EOF11) (NS33)
exception variable NSException.h (-NeXT) (EOF11) (NS33) Use localException instead for exception object in handler region
localException variable NSException.h (OpenStep,+NeXT) (EOF11) (NS33)
obsolete macro NSObject.h (-NeXT) (EOF11) (NS33)

GENERAL CHANGES IN PUBLIC API METHODS
CLASS/PROTOCOL HEADER METHOD
NSArchiver NSArchiver.h +classNameEncodedForTrueClassName: (-NeXT) (EOF11) (NS33) Use -classNameEncodedForTrueClassName: instead
NSArchiver NSArchiver.h -classNameEncodedForTrueClassName: (OpenStep,+NeXT) (EOF11) (NS33)
NSArchiver NSArchiver.h -encodeClassName:intoClassName: (OpenStep,+NeXT) (EOF11) (NS33)
NSArchiver NSArchiver.h -replaceObject:withObject: (+NeXT) (EOF11) (NS33)
NSArray NSArray.h +arrayWithArray: (+NeXT) (40PR2) (40PR1) (EOF11) (NS33)
NSArray NSArray.h +arrayWithContentsOfFile: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSArray NSArray.h +arrayWithObjects:count: (+NeXT) (40PR2) (40PR1) (EOF11) (NS33)
NSArray NSArray.h -arrayByAddingObject: (OpenStep,+NeXT) (EOF11) (NS33)
NSArray NSArray.h -arrayByAddingObjectsFromArray: (OpenStep,+NeXT) (EOF11) (NS33)
NSArray NSArray.h -descriptionWithIndent: (-NeXT) (EOF11) (NS33) Use -descriptionWithLocale:indent: instead
NSArray NSArray.h -descriptionWithLocale: (OpenStep,+NeXT) (EOF11) (NS33)
NSArray NSArray.h -descriptionWithLocale:indent: (OpenStep,+NeXT) (EOF11) (NS33)
NSArray NSArray.h -getObjects: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSArray NSArray.h -getObjects:range: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSArray NSArray.h -indexOfObject:inRange: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSArray NSArray.h -indexOfObjectIdenticalTo:inRange: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSArray NSArray.h -initWithContentsOfFile: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSArray NSArray.h -sortedArrayHint (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSArray NSArray.h -sortedArrayUsingFunction:context:hint: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSArray NSArray.h -writeToFile:atomically: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSArray NSPathUtilities.h -pathsMatchingExtensions: (+NeXT) (40PR1) (EOF11) (NS33)
NSBundle NSBundle.h +pathForResource:ofType:inDirectory: (+OpenStep,+NeXT) (P40PR1) (40PR2) (40PR1) (EOF11) (NS33)
NSBundle NSBundle.h +pathForResource:ofType:inDirectory:withVersion: (-OpenStep,-NeXT) (40PR1) (EOF11) (NS33)
NSBundle NSBundle.h +setSystemLanguages: (-NeXT) (EOF11) (NS33)
NSBundle NSBundle.h +stripAfterLoading: (-OpenStep,-NeXT) (40PR1) (EOF11) (NS33)
NSBundle NSBundle.h -bundleVersion (-OpenStep,-NeXT) (40PR1) (EOF11) (NS33)
NSBundle NSBundle.h -infoDictionary (+NeXT) (EOF11) (NS33)
NSBundle NSBundle.h -localizedStringForKey:value:comment: (-NeXT) (EOF11) (NS33) Use -localizedStringForKey:value:table: instead
NSBundle NSBundle.h -localizedStringForKey:value:comment:table: (-NeXT) (EOF11) (NS33) Use -localizedStringForKey:value:table: instead
NSBundle NSBundle.h -localizedStringForKey:value:table: (OpenStep,+NeXT) (EOF11) (NS33)
NSBundle NSBundle.h -pathForResource:ofType:inDirectory: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSBundle NSBundle.h -pathsForResourcesOfType:inDirectory: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSBundle NSBundle.h -resourcePath; (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSBundle NSBundle.h -setBundleVersion: (-OpenStep,-NeXT) (40PR1) (EOF11) (NS33)
NSCalendarDate NSDate.h +calendarDate (OpenStep,+NeXT) (EOF11) (NS33)
NSCalendarDate NSDate.h +dateWithString:calendarFormat:locale: (OpenStep,+NeXT) (EOF11) (NS33)
NSCalendarDate NSDate.h -addYear:month:day:hour:minute:second: (-OpenStep,-NeXT) (40PR1) (EOF11) (NS33) Use
-dateByAddingYears:months:days:hours:minutes:seconds: instead
NSCalendarDate NSDate.h -dateByAddingYears:months:days:hours:minutes:seconds: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSCalendarDate NSDate.h -dayOfCommonEra (OpenStep,+NeXT) (EOF11) (NS33)
NSCalendarDate NSDate.h -descriptionWithCalendarFormat:locale: (OpenStep,+NeXT) (EOF11) (NS33)
NSCalendarDate NSDate.h -descriptionWithCalendarFormat:timeZone: (-NeXT) (EOF11) (NS33)
NSCalendarDate NSDate.h -descriptionWithLocale: (OpenStep,+NeXT) (EOF11) (NS33)
NSCalendarDate NSDate.h -initWithString:calendarFormat:locale: (OpenStep,+NeXT) (EOF11) (NS33)
NSCalendarDate NSDate.h -years:months:days:hours:minutes:seconds:sinceDate: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSCharacterSet NSCharacterSet.h +characterSetWithContentsOfFile: (+NeXT) (EOF11) (NS33)
NSCharacterSet NSCharacterSet.h +punctuationCharacterSet (+NeXT) (EOF11) (NS33)
NSCharacterSet NSCharacterSet.h +punctuationCharacterSet (+OpenStep,NeXT) (40PR1)
NSCoder NSCoder.h -decodeBytesWithReturnedLength: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSCoder NSCoder.h -encodeByrefObject: (+NeXT) (40PR1) (EOF11) (NS33)
NSCoder NSCoder.h -encodeBytes:length: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSConnection NSConnection.h +currentConversation (+NeXT) (P40PR1) (40PR2) (40PR1)

NSConnection NSConnection.h -addRequestMode: (+OpenStep,+NeXT) (40PR1)
NSConnection NSConnection.h -addRunLoop: (+NeXT) (P40PR1) (40PR2) (40PR1)
NSConnection NSConnection.h -connection:shouldMakeNewConnection: (+NeXT) (40PR1)
NSConnection NSConnection.h -createConversationForConnection: (+NeXT) (P40PR1) (40PR2) (40PR1)
NSConnection NSConnection.h -enableMultipleThreads (+NeXT) (P40PR1) (40PR2) (40PR1)
NSConnection NSConnection.h -invalidate (+OpenStep,+NeXT) (40PR1)
NSConnection NSConnection.h -localObjects (+NeXT) (P40PR1) (40PR2)
NSConnection NSConnection.h -multipleThreadsEnabled (+NeXT) (P40PR1) (40PR2) (40PR1)
NSConnection NSConnection.h -remoteObjects (+NeXT) (P40PR1) (40PR2)
NSConnection NSConnection.h -removeRequestMode: (+OpenStep,+NeXT) (40PR1)
NSConnection NSConnection.h -removeRunLoop: (+NeXT) (P40PR1) (40PR2) (40PR1)
NSConnection NSConnection.h -requestMode: (-OpenStep,-NeXT) (40PR1)
NSConnection NSConnection.h -requestModes (+OpenStep,+NeXT) (40PR1)
NSConnection NSConnection.h -runInNewThread (+NeXT) (P40PR1) (40PR2) (40PR1)
NSConnection NSConnection.h -setRequestMode:: (-OpenStep,-NeXT) (40PR1) Use -addRequestMode: instead
NSCopyingProtocol NSObject.h -copy (-NeXT) (EOF11) (NS33)
NSData NSData.h +dataWithData: (+NeXT) (40PR2) (40PR1) (EOF11) (NS33)
NSDate NSDate.h +dateWithNaturalLanguageString: (+NeXT) (EOF11) (NS33)
NSDate NSDate.h +dateWithNaturalLanguageString:locale: (+NeXT) (EOF11) (NS33)
NSDate NSDate.h +dateWithString: (+NeXT) (40PR2) (40PR1) (EOF11) (NS33)
NSDate NSDate.h +dateWithTimeIntervalSince1970: (OpenStep,+NeXT) (EOF11) (NS33)
NSDate NSDate.h -descriptionWithCalendarFormat:timeZone: (-NeXT) (EOF11) (NS33)
NSDate NSDate.h -descriptionWithCalendarFormat:timeZone:locale: (OpenStep,+NeXT) (EOF11) (NS33)
NSDate NSDate.h -descriptionWithLocale: (OpenStep,+NeXT) (EOF11) (NS33)
NSDate NSDate.h -isEqualToDate: (+OpenStep,+NeXT) (40PR1)
NSDate NSDate.h -timeIntervalSince1970 (OpenStep,+NeXT) (EOF11) (NS33)
NSDecimalNumber NSDecimalNumber.h +decimalNumberBehaviorWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:raiseOnUnderflow:raiseOnDivideByZero: (-NeXT)
(P40PR1) (40PR2) (40PR1) Use +decimalNumberHandlerWithRoundingMode:... instead
NSDecimalNumber NSDecimalNumber.h +decimalNumberHandlerWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:raiseOnUnderflow:raiseOnDivideByZero: (+NeXT)
(P40PR1) (40PR2) (40PR1)
NSDecimalNumber NSDecimalNumber.h -decimalNumberBySubstracting: (-NeXT) (P40PR1) (40PR2) (40PR1)
NSDecimalNumber NSDecimalNumber.h -decimalNumberBySubstracting:withBehavior: (-NeXT) (P40PR1) (40PR2) (40PR1)
NSDecimalNumber NSDecimalNumber.h -decimalNumberBySubtracting: (+NeXT) (P40PR1) (40PR2) (40PR1)
NSDecimalNumber NSDecimalNumber.h -decimalNumberBySubtracting:withBehavior: (+NeXT) (P40PR1) (40PR2) (40PR1)
NSDecimalNumber NSDecimalNumber.h -maximumDecimalNumber (+NeXT) (P40PR1) (40PR2) (40PR1)
NSDecimalNumber NSDecimalNumber.h -minimumDecimalNumber (+NeXT) (P40PR1) (40PR2) (40PR1)
NSDecimalNumberBehavior NSDecimalNumber.h +defaultDecimalNumberBehavior (-NeXT) (P40PR1) (40PR2) (40PR1)
NSDecimalNumberHandler NSDecimalNumber.h +defaultDecimalNumberHandler (+NeXT) (P40PR1) (40PR2) (40PR1)
NSDictionary NSDictionary.h +dictionaryWithContentsOfFile: (OpenStep,+NeXT) (EOF11) (NS33)
NSDictionary NSDictionary.h +dictionaryWithDictionary: (+NeXT) (40PR2) (40PR1) (EOF11) (NS33)
NSDictionary NSDictionary.h +dictionaryWithObject:forKey: (+NeXT) (40PR2) (40PR1) (EOF11) (NS33)
NSDictionary NSDictionary.h +dictionaryWithObjectsAndKeys:... (OpenStep,+NeXT) (EOF11) (NS33)
NSDictionary NSDictionary.h -descriptionWithIndent: (-NeXT) (EOF11) (NS33) Use -descriptionWithLocale:indent: instead
NSDictionary NSDictionary.h -descriptionWithLocale: (OpenStep,+NeXT) (EOF11) (NS33)
NSDictionary NSDictionary.h -descriptionWithLocale:indent: (OpenStep,+NeXT) (EOF11) (NS33)
NSDictionary NSDictionary.h -initWithObjects:forKeys: (OpenStep,+NeXT) (EOF11) (NS33)
NSDictionary NSDictionary.h -initWithObjectsAndKeys:... (OpenStep,+NeXT) (EOF11) (NS33)
NSDictionary NSDictionary.h -keysSortedByValueUsingSelector: (+NeXT) (40PR2) (40PR1) (EOF11) (NS33)
NSDictionary NSDictionary.h -objectsForKeys:notFoundMarker: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSDictionary NSFileManager.h -fileGroupOwnerAccountName (+NeXT) (40PR1)
NSDictionary NSFileManager.h -fileGroupOwnerAccountNumber (-NeXT) (40PR1) Use -fileGroupOwnerAccountName instead
NSDictionary NSFileManager.h -fileOwnerAccountName (+NeXT) (40PR1)
NSDictionary NSFileManager.h -fileOwnerAccountNumber (-NeXT) (40PR1) Use -fileOwnerAccountName instead
NSDistantObjectRequest NSConnection.h -conversation (+NeXT) (P40PR1) (40PR2) Note class was added after OPENSTEP 4.0 PR1
NSEnumerator NSEnumerator.h -allObjects (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33) For OpenStep compatibility, import
NSUtilities.h
NSException NSException.h -exceptionName (-NeXT) (EOF11) (NS33)
NSException NSException.h -exceptionReason (-NeXT) (EOF11) (NS33)
NSException NSException.h -exceptionUserInfo (-NeXT) (EOF11) (NS33)
NSException NSException.h -name (OpenStep,+NeXT) (EOF11) (NS33)
NSException NSException.h -reason (OpenStep,+NeXT) (EOF11) (NS33)
NSException NSException.h -userInfo (OpenStep,+NeXT) (EOF11) (NS33)
NSMethodSignature NSMethodSignature.h +signatureWithObjCTypes: (-OpenStep,-NeXT) (40PR1)
NSMethodSignature NSMethodSignature.h -argumentInfoAtIndex: (-OpenStep,-NeXT) (40PR1) Use -getArgumentTypeAtIndex: instead
NSMethodSignature NSMethodSignature.h -getArgumentTypeAtIndex: (+OpenStep,+NeXT) (40PR1)
NSMutableArray NSArray.h -removeObject:inRange: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSMutableArray NSArray.h -removeObjectIdenticalTo:inRange: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSMutableArray NSArray.h -removeObjectsInRange: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSMutableArray NSArray.h -replaceObjectsInRange:withObjectsFromArray: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSMutableArray NSArray.h -replaceObjectsInRange:withObjectsFromArray:range: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSMutableArray NSArray.h -setArray: (OpenStep,+NeXT) (EOF11) (NS33)
NSMutableArray NSArray.h -sortUsingSelector: (OpenStep,+NeXT) (EOF11) (NS33)
NSMutableCopyingProtocol NSObject.h -mutableCopy (-NeXT) (EOF11) (NS33)
NSMutableData NSData.h -setData: (+NeXT) (40PR2) (40PR1) (EOF11) (NS33)
NSMutableDictionary NSDictionary.h -setDictionary: (OpenStep,+NeXT) (EOF11) (NS33)
NSMutableSet NSSet.h -setSet: (+NeXT) (40PR2) (40PR1)
NSNotification NSNotification.h +notificationWithName:object:userInfo: (OpenStep,+NeXT) (EOF11) (NS33)
NSNotification NSNotification.h -name (OpenStep,+NeXT) (EOF11) (NS33)
NSNotification NSNotification.h -notificationName (-NeXT) (EOF11) (NS33)
NSNotification NSNotification.h -notificationObject (-NeXT) (EOF11) (NS33)
NSNotification NSNotification.h -object (OpenStep,+NeXT) (EOF11) (NS33)
NSNotification NSNotification.h -userInfo (OpenStep,+NeXT) (EOF11) (NS33)
NSNotificationCenter NSNotification.h -addObserver:selector:name:object: (OpenStep,+NeXT) (EOF11) (NS33)
NSNotificationCenter NSNotification.h -addObserver:selector:notificationName:object: (-NeXT) (EOF11) (NS33)
NSNotificationCenter NSNotification.h -postNotificationName:object:userInfo: (OpenStep,+NeXT) (EOF11) (NS33)
NSNotificationCenter NSNotification.h -removeObserver:name:object: (OpenStep,+NeXT) (EOF11) (NS33)
NSNotificationCenter NSNotification.h -removeObserver:notificationName:object: (-NeXT) (EOF11) (NS33)

NSNumber NSValue.h -descriptionWithLocale: (+NeXT) (EOF11) (NS33)
NSNumber NSValue.h -descriptionWithLocale: (+OpenStep,NeXT) (40PR1)
NSNumber NSValue.h -initWithBool: (+NeXT) (NS33)
NSNumber NSValue.h -initWithBool: (+OpenStep,NeXT) (40PR1)
NSNumber NSValue.h -initWithChar: (+NeXT) (NS33)
NSNumber NSValue.h -initWithChar: (+OpenStep,NeXT) (40PR1)
NSNumber NSValue.h -initWithDouble: (+NeXT) (NS33)
NSNumber NSValue.h -initWithDouble: (+OpenStep,NeXT) (40PR1)
NSNumber NSValue.h -initWithFloat: (+NeXT) (NS33)
NSNumber NSValue.h -initWithFloat: (+OpenStep,NeXT) (40PR1)
NSNumber NSValue.h -initWithInt: (+NeXT) (NS33)
NSNumber NSValue.h -initWithInt: (+OpenStep,NeXT) (40PR1)
NSNumber NSValue.h -initWithLong: (+NeXT) (NS33)
NSNumber NSValue.h -initWithLong: (+OpenStep,NeXT) (40PR1)
NSNumber NSValue.h -initWithLongLong: (+NeXT) (NS33)
NSNumber NSValue.h -initWithLongLong: (+OpenStep,NeXT) (40PR1)
NSNumber NSValue.h -initWithShort: (+NeXT) (NS33)
NSNumber NSValue.h -initWithShort: (+OpenStep,NeXT) (40PR1)
NSNumber NSValue.h -initWithUnsignedChar: (+NeXT) (NS33)
NSNumber NSValue.h -initWithUnsignedChar: (+OpenStep,NeXT) (40PR1)
NSNumber NSValue.h -initWithUnsignedInt: (+NeXT) (NS33)
NSNumber NSValue.h -initWithUnsignedInt: (+OpenStep,NeXT) (40PR1)
NSNumber NSValue.h -initWithUnsignedLong: (+NeXT) (NS33)
NSNumber NSValue.h -initWithUnsignedLong: (+OpenStep,NeXT) (40PR1)
NSNumber NSValue.h -initWithUnsignedLongLong: (+NeXT) (NS33)
NSNumber NSValue.h -initWithUnsignedLongLong: (+OpenStep,NeXT) (40PR1)
NSNumber NSValue.h -initWithUnsignedShort: (+NeXT) (NS33)
NSNumber NSValue.h -initWithUnsignedShort: (+OpenStep,NeXT) (40PR1)
NSNumber NSValue.h -isEqualToNumber: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSObject NSConnection.h -connection:handleRequest: (+NeXT) (40PR1)
NSObject NSObject.h +copyWithZone: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSObject NSObject.h +load (+NeXT) (40PR1)
NSObject NSObject.h +load (+OpenStep,NeXT) (P40PR1) (40PR2)
NSObject NSObject.h +mutableCopyWithZone: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSObject NSObject.h -copy (OpenStep,+NeXT) (EOF11) (NS33)
NSObject NSObject.h -description (-NeXT) (EOF11) (NS33)
NSObject NSObject.h -mutableCopy (OpenStep,+NeXT) (EOF11) (NS33)
NSObject NSRunLoop.h -performSelector:object:afterDelay: (-OpenStep,-NeXT) (40PR1)
NSObject NSRunLoop.h -performSelector:withObject:afterDelay: (+OpenStep,+NeXT) (40PR1)
NSObject NSRunLoop.h -performSelector:withObject:afterDelay:inModes: (+NeXT) (P40PR1) (40PR2) (40PR1)
NSObjectProtocol NSObject.h -description (OpenStep,+NeXT) (EOF11) (NS33)
NSObjectProtocol NSObject.h -perform: (-OpenStep,-NeXT) (40PR1) (EOF11) (NS33) Use -performSelector: instead
NSObjectProtocol NSObject.h -perform:withObject: (-OpenStep,-NeXT) (40PR1) (EOF11) (NS33) Use -performSelector:withObject:
instead
NSObjectProtocol NSObject.h -perform:withObject:withObject: (-OpenStep,-NeXT) (40PR1) (EOF11) (NS33) Use
-performSelector:withObject:withObject: instead
NSObjectProtocol NSObject.h -performSelector: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSObjectProtocol NSObject.h -performSelector:withObject: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSObjectProtocol NSObject.h -performSelector:withObject:withObject: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSPort NSPort.h -addConnection:toRunLoop:forMode: (+NeXT) (P40PR1) (40PR2) (40PR1)
NSPort NSPort.h -removeConnection:fromRunLoop:forMode: (+NeXT) (P40PR1) (40PR2) (40PR1)
NSPort NSPort.h -reservedSpaceLength (+NeXT) (P40PR1) (40PR2) (40PR1)
NSPort NSPort.h -sendBeforeDate:components:from:reserved: (+NeXT) (P40PR1) (40PR2) (40PR1)
NSPortCoder NSPortCoder.h +portCoderWithReceivePort:sendPort:components: (+NeXT) (P40PR1) (40PR2) (40PR1)
NSPortCoder NSPortCoder.h -dispatch (+NeXT) (P40PR1) (40PR2) (40PR1)
NSPortCoder NSPortCoder.h -isByref (+NeXT) (40PR1)
NSPortNameServer NSPortNameServer.h -portForName:host: (+NeXT) (P40PR1) (40PR2) (40PR1)
NSPortNameServer NSPortNameServer.h -registerPort:name: (+NeXT) (P40PR1) (40PR2) (40PR1)
NSProcessInfo NSProcessInfo.h -operatingSystem (+NeXT) (40PR1)
NSProxy NSProxy.h +load (+NeXT) (40PR1)
NSProxy NSProxy.h +load (+OpenStep,NeXT) (P40PR1) (40PR2)
NSProxy NSProxy.h +respondsToSelector: (+NeXT) (40PR1)
NSRunLoop NSRunLoop.h -addPosixFileDescriptor:forMode: (-NeXT) (P40PR1) (40PR2) (40PR1)
NSRunLoop NSRunLoop.h -addRunLoopActivityMonitor: (-NeXT) (40PR1)
NSRunLoop NSRunLoop.h -cancelPerformSelector:target:argument: (+NeXT) (P40PR1) (40PR2) (40PR1)
NSRunLoop NSRunLoop.h -performSelector:target:argument:order:modes: (+NeXT) (P40PR1) (40PR2) (40PR1)
NSRunLoop NSRunLoop.h -removePosixFileDescriptor:forMode: (-NeXT) (P40PR1) (40PR2) (40PR1)
NSScanner NSScanner.h +localizedScannerWithString: (OpenStep,+NeXT) (EOF11) (NS33)
NSScanner NSScanner.h -locale (OpenStep,+NeXT) (EOF11) (NS33)
NSScanner NSScanner.h -scanHexInt: (+NeXT) (EOF11) (NS33)
NSScanner NSScanner.h -scanHexInt: (+OpenStep,NeXT) (40PR1) (EOF11) (NS33)
NSScanner NSScanner.h -setLocale: (OpenStep,+NeXT) (EOF11) (NS33)
NSSet NSSet.h +setWithObjects:count: (+NeXT) (40PR2) (40PR1)
NSSet NSSet.h +setWithSet: (+NeXT) (40PR2) (40PR1)
NSString NSPathUtilities.h +pathWithComponents: (+NeXT) (40PR1) (EOF11) (NS33)
NSString NSPathUtilities.h -fileSystemRepresentation (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSString NSPathUtilities.h -getFileSystemRepresentation:maxLength: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSString NSPathUtilities.h -isAbsolutePath (+NeXT) (40PR1) (EOF11) (NS33)
NSString NSPathUtilities.h -pathComponents (+NeXT) (40PR1) (EOF11) (NS33)
NSString NSPathUtilities.h -stringsByAppendingPaths: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSString NSString.h +availableStringEncodings (OpenStep,+NeXT) (EOF11) (NS33)
NSString NSString.h +localizedNameOfStringEncoding: (OpenStep,+NeXT) (EOF11) (NS33)
NSString NSString.h +localizedStringWithFormat:... (OpenStep,+NeXT) (EOF11) (NS33)
NSString NSString.h +string (+NeXT) (40PR2) (40PR1) (EOF11) (NS33)
NSString NSString.h +stringWithContentsOfFile: (OpenStep,+NeXT) (EOF11) (NS33)
NSString NSString.h +stringWithString: (+NeXT) (40PR2) (40PR1) (EOF11) (NS33)
NSString NSString.h -caseInsensitiveCompare: (OpenStep,+NeXT) (EOF11) (NS33)

NSString NSString.h -doubleValue (OpenStep,+NeXT) (EOF11) (NS33)
NSString NSString.h -getLineStart:end:contentsEnd:forRange: (+NeXT) (P40PR1) (40PR2) (40PR1) (EOF11) (NS33)
NSString NSString.h -initWithFormat:locale:... (OpenStep,+NeXT) (EOF11) (NS33)
NSString NSString.h -initWithFormat:locale:arguments: (OpenStep,+NeXT) (EOF11) (NS33)
NSString NSString.h -lineRangeForRange: (+NeXT) (P40PR1) (40PR2) (40PR1) (EOF11) (NS33)
NSString NSString.h -lossyCString (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSString NSString.h -substringFromRange: (-OpenStep,-NeXT) (40PR1) (EOF11) (NS33) Use -substringWithRange: instead
NSString NSString.h -substringWithRange: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
NSString NSString.h -writeToFile:atomically: (OpenStep,+NeXT) (EOF11) (NS33)
NSThread NSThread.h +exit (OpenStep,+NeXT) (EOF11)
NSThread NSThread.h +sleepUntilDate: (OpenStep,+NeXT) (EOF11)
NSThread NSThread.h -exit (-NeXT) (EOF11)
NSTimer NSTimer.h -isValid (+OpenStep,+NeXT) (40PR1)
NSUnarchiver NSArchiver.h -classNameDecodedForArchiveClassName: (OpenStep,+NeXT) (EOF11) (NS33)
NSUnarchiver NSArchiver.h -decodeClassName:asClassName: (OpenStep,+NeXT) (EOF11) (NS33)
NSUnarchiver NSArchiver.h -replaceObject:withObject: (+NeXT) (EOF11) (NS33)
NSUserDefaults NSUserDefaults.h -setSearchList: (+OpenStep,+NeXT) (40PR1)
NSValue NSValue.h +valueWithBytes:objCType: (+NeXT) (EOF11) (NS33)
NSValue NSValue.h +valueWithBytes:objCType: (+OpenStep,NeXT) (40PR1)
NSValue NSValue.h -initWithBytes:objCType: (+NeXT) (EOF11) (NS33)
NSValue NSValue.h -initWithBytes:objCType: (+OpenStep,NeXT) (40PR1)
NSValue NSValue.h -isEqualToValue: (+OpenStep,+NeXT) (40PR1) (EOF11) (NS33)
Object NSCompatibility.h +allocWithZone: (+NeXT) (EOF11) (NS33)
Object NSCompatibility.h +instanceMethodForSelector: (+NeXT) (EOF11) (NS33)
Object NSCompatibility.h +instancesRespondToSelector: (+NeXT) (EOF11) (NS33)
Object NSCompatibility.h +poseAsClass: (+NeXT) (EOF11) (NS33)
Object NSCompatibility.h -autorelease (+NeXT) (EOF11) (NS33)
Object NSCompatibility.h -conformsToProtocol: (+NeXT) (EOF11) (NS33)
Object NSCompatibility.h -copyWithZone: (+NeXT) (EOF11) (NS33)
Object NSCompatibility.h -dealloc (+NeXT) (EOF11) (NS33)
Object NSCompatibility.h -doesNotRecognizeSelector: (+NeXT) (EOF11) (NS33)
Object NSCompatibility.h -isKindOfClass: (+NeXT) (EOF11) (NS33)
Object NSCompatibility.h -isMemberOfClass: (+NeXT) (EOF11) (NS33)
Object NSCompatibility.h -methodForSelector: (+NeXT) (EOF11) (NS33)
Object NSCompatibility.h -perform:withObject: (-NeXT) (40PR1) (EOF11) (NS33) Use -performSelector:withObject: instead
Object NSCompatibility.h -perform:withObject:withObject: (-NeXT) (40PR1) Use -performSelector:withObject:withObject:
instead
Object NSCompatibility.h -performSelector:withObject: (+NeXT) (40PR1)
Object NSCompatibility.h -performSelector:withObject:withObject: (+NeXT) (40PR1)
Object NSCompatibility.h -release (+NeXT) (EOF11) (NS33)
Object NSCompatibility.h -respondsToSelector: (+NeXT) (EOF11) (NS33)
Object NSCompatibility.h -retain (+NeXT) (EOF11) (NS33)
Object NSCompatibility.h -retainCount (+NeXT) (EOF11) (NS33)

METHOD RETURN TYPE CHANGES
CLASS/PROTOCOL HEADER METHOD OLD RET. TYPE NEW RET. TYPE
NSBundle NSBundle.h -classNamed: (id) (Class) (NeXT) (EOF11) (NS33)
NSBundle NSBundle.h -principalClass (id) (Class) (NeXT) (EOF11) (NS33)
NSCalendarDate NSDate.h +calendarDate (NSCalendarDate *) (id) (NeXT) (40PR1)
NSCalendarDate NSDate.h +dateWithString:calendarFormat: (NSCalendarDate *) (id) (NeXT) (40PR1) (EOF11) (NS33)
NSCalendarDate NSDate.h +dateWithString:calendarFormat:locale: (NSCalendarDate *) (id) (NeXT) (40PR1)
NSCalendarDate NSDate.h +dateWithYear:month:day:hour:minute:second:timeZone: (NSCalendarDate *) (id) (NeXT) (40PR1) (EOF11) (NS33)
NSDate NSDate.h +date (NSDate *) (id) (NeXT) (40PR1) (EOF11) (NS33)
NSDate NSDate.h +dateWithTimeIntervalSince1970: (NSDate *) (id) (NeXT) (40PR1)
NSDate NSDate.h +dateWithTimeIntervalSinceNow: (NSDate *) (id) (NeXT) (40PR1) (EOF11) (NS33)
NSDate NSDate.h +dateWithTimeIntervalSinceReferenceDate: (NSDate *) (id) (NeXT) (40PR1) (EOF11) (NS33)
NSDate NSDate.h +distantFuture (NSDate *) (id) (NeXT) (40PR1) (EOF11) (NS33)
NSDate NSDate.h +distantPast (NSDate *) (id) (NeXT) (40PR1) (EOF11) (NS33)
NSDate NSDate.h -addTimeInterval: (NSDate *) (id) (NeXT) (EOF11) (NS33)
NSDate NSDate.h -initWithTimeInterval:sinceDate: (NSDate *) (id) (NeXT) (40PR1) (EOF11) (NS33)
NSDate NSDate.h -initWithTimeIntervalSinceNow: (NSDate *) (id) (NeXT) (40PR1) (EOF11) (NS33)
NSDecimalNumber NSDecimalNumber.h -initWithDecimal: (NSDecimalNumber *) (id) (OpenStep,NeXT) (40PR2) (40PR1)
NSDecimalNumber NSDecimalNumber.h -initWithMantissa:exponent:isNegative: (NSDecimalNumber *) (id) (OpenStep,NeXT) (40PR2) (40PR1)
NSDecimalNumber NSDecimalNumber.h -initWithString: (NSDecimalNumber *) (id) (OpenStep,NeXT) (40PR2) (40PR1)
NSDecimalNumber NSDecimalNumber.h -initWithString:locale: (NSDecimalNumber *) (id) (OpenStep,NeXT) (40PR2) (40PR1)
NSDictionary NSFileManager.h -filePosixPermissions (unsigned int) (unsigned long) (NeXT) (40PR1)
NSDictionary NSFileManager.h -fileSize (long long) (unsigned long long) (NeXT) (40PR1)
NSDictionary NSFileManager.h -fileSystemFileNumber (unsigned int) (unsigned long) (NeXT) (40PR1)
NSDictionary NSFileManager.h -fileSystemNumber (unsigned int) (unsigned long) (NeXT) (40PR1)
NSMethodSignature NSMethodSignature.h -methodReturnType (char *) (const char *) (OpenStep,NeXT) (40PR1)
NSMutableString NSString.h +stringWithCapacity: (NSMutableString *) (id) (OpenStep,NeXT) (40PR1) (EOF11) (NS33)
NSNotification NSNotification.h +notificationWithName:object: (NSNotification *) (id) (NeXT) (EOF11) (NS33)
NSObject NSObject.h +initialize (id) (void) (NeXT) (EOF11) (NS33)
NSObject NSObject.h +load (id) (void) (NeXT) (EOF11) (NS33)
NSObject NSObject.h +superclass (id) (Class) (NeXT) (EOF11) (NS33)
NSObjectProtocol NSObject.h -superclass (id) (Class) (NeXT) (EOF11) (NS33)
NSPPL NSPPL.h +pplWithPath:create:readOnly: (NSPPL *) (id) (NeXT) (40PR1)
NSPPL NSPPL.h +pplWithPath:fromPPLData:readOnly: (NSPPL *) (id) (NeXT) (40PR1)
NSString NSString.h +localizedStringWithFormat:... (NSString *) (id) (OpenStep,NeXT) (40PR1)
NSString NSString.h +stringWithCString: (NSString *) (id) (OpenStep,NeXT) (40PR1) (EOF11) (NS33)
NSString NSString.h +stringWithCString:length: (NSString *) (id) (OpenStep,NeXT) (40PR1) (EOF11) (NS33)
NSString NSString.h +stringWithCharacters:length: (NSString *) (id) (OpenStep,NeXT) (40PR1) (EOF11) (NS33)
NSString NSString.h +stringWithContentsOfFile: (NSString *) (id) (OpenStep,NeXT) (40PR1)
NSString NSString.h +stringWithFormat:... (NSString *) (id) (OpenStep,NeXT) (40PR1) (EOF11) (NS33)
NSTask NSTask.h -standardInput (NSPosixFileDescriptor *) (id) (NeXT) (P40PR1) (40PR2)
NSTask NSTask.h -standardOutput (NSPosixFileDescriptor *) (id) (NeXT) (P40PR1) (40PR2)

NSTask NSTask.h -standardError (NSPosixFileDescriptor *) (id) (NeXT) (P40PR1) (40PR2)
NSTask NSTask.h +launchedTaskWithLaunchPath:arguments: (id) (NSTask *) (NeXT) (P40PR1) (40PR2)
NSTimeZone NSDate.h +timeZoneWithAbbreviation: (NSTimeZone *) (NSTimeZoneDetail *) (NeXT) (EOF11) (NS33)
NSUserDefaults NSUserDefaults.h -searchList (NSMutableArray *) (NSArray *) (OpenStep,NeXT) (40PR1)
Object NSCompatibility.h +poseAsClass: (id) (void) (NeXT) (NS33)

CHANGES TO API DECLARATION LOCATION
SYMBOL OLD HEADER NEW HEADER
ABS NSUtilities.h NSObjCRuntime.h (NeXT) (40PR2) (40PR1)
MAX NSUtilities.h NSObjCRuntime.h (NeXT) (40PR2) (40PR1)
MIN NSUtilities.h NSObjCRuntime.h (NeXT) (40PR2) (40PR1)
NSCharacterConversionException NSException.h NSString.h (NeXT) (40PR1)
NSComparisonResult NSObject.h NSObjCRuntime.h (NeXT) (40PR2) (40PR1) (EOF11) (NS33) For OpenStep compatibility, import NSObject.h
NSEnumerator class NSUtilities.h NSEnumerator.h (NeXT) (40PR2) (40PR1) (EOF11) (NS33) For OpenStep compatibility, import NSUtilities.h
NSLog() NSUtilities.h NSObjCRuntime.h (NeXT) (40PR2) (40PR1) (EOF11) (NS33) For OpenStep compatibility, import NSUtilities.h
NSLogv() NSUtilities.h NSObjCRuntime.h (NeXT) (40PR2) (40PR1) (EOF11) (NS33) For OpenStep compatibility, import NSUtilities.h
NSNotFound NSObject.h NSObjCRuntime.h (NeXT) (40PR2) (40PR1) (EOF11) (NS33) For OpenStep compatibility, import NSObject.h
NXReadNSObject() NSArchiver.h NSCompatibility.h (NeXT) (EOF11) (NS33)
NXWriteNSObject() NSArchiver.h NSCompatibility.h (NeXT) (EOF11) (NS33)
[NSCoder -decodeNXObject:] NSArchiver.h NSCompatibility.h (NeXT) (EOF11) (NS33)
[NSCoder -encodeNXObject:] NSArchiver.h NSCompatibility.h (NeXT) (EOF11) (NS33)
[NSDictionary -descriptionInStringsFileFormat] NSUtilities.h NSDictionary.h (NeXT) (40PR2) (40PR1) (EOF11) (NS33) For OpenStep compatibility, import NSUtilities.h
[NSString -propertyListFromStringsFileFormat] NSUtilities.h NSString.h (NeXT) (40PR2) (40PR1) (EOF11) (NS33) For OpenStep compatibility, import NSUtilities.h
[NSString -propertyList] NSUtilities.h NSString.h (NeXT) (40PR2) (40PR1) (EOF11) (NS33) For OpenStep compatibility, import NSUtilities.h
[Object +allocWithZone:] NSUtilities.h NSCompatibility.h (NeXT) (EOF11) (NS33)
[Object +instanceMethodForSelector:] NSUtilities.h NSCompatibility.h (NeXT) (EOF11) (NS33)
[Object +instancesRespondToSelector:] NSUtilities.h NSCompatibility.h (NeXT) (EOF11) (NS33)
[Object +poseAsClass:] NSUtilities.h NSCompatibility.h (NeXT) (EOF11) (NS33)
[Object -autorelease] NSUtilities.h NSCompatibility.h (NeXT) (EOF11) (NS33)
[Object -conformsToProtocol:] NSUtilities.h NSCompatibility.h (NeXT) (EOF11) (NS33)
[Object -copyWithZone:] NSUtilities.h NSCompatibility.h (NeXT) (EOF11) (NS33)
[Object -dealloc] NSUtilities.h NSCompatibility.h (NeXT) (EOF11) (NS33)
[Object -doesNotRecognizeSelector:] NSUtilities.h NSCompatibility.h (NeXT) (EOF11) (NS33)
[Object -isKindOfClass:] NSUtilities.h NSCompatibility.h (NeXT) (EOF11) (NS33)
[Object -isMemberOfClass:] NSUtilities.h NSCompatibility.h (NeXT) (EOF11) (NS33)
[Object -methodForSelector:] NSUtilities.h NSCompatibility.h (NeXT) (EOF11) (NS33)
[Object -release] NSUtilities.h NSCompatibility.h (NeXT) (EOF11) (NS33)
[Object -respondsToSelector:] NSUtilities.h NSCompatibility.h (NeXT) (EOF11) (NS33)
[Object -retainCount] NSUtilities.h NSCompatibility.h (NeXT) (EOF11) (NS33)
[Object -retain] NSUtilities.h NSCompatibility.h (NeXT) (EOF11) (NS33)

General Comments

Foundation Examples

There are several Foundation examples in /NextDeveloper/Examples/Foundation.

Various examples illustrating the use of Distributed OLE and the NeXT ORB can be found on NeXTanswers. NeXTanswers can be
accessed through NeXT’s Web page, at http://www.next.com.

I/O Functionality
Two new Foundation classes, NSFileHandle and NSPipe, provide objects that represent open files or communications channels and
support basic I/O operations. They make it easy for developers to write code that is directly portable to other platforms. The interfaces for
these classes are declared in NSFileHandle.h. These classes replace the NSPosixFileDescriptor and NSPosixPipeDescriptor classes
made available in OPENSTEP 4.0 prereleases. The differences from the predecessor classes for the most part involve naming and a
refinement of semantics.

Archiving
NSUnarchivers own the objects that they decode. When an NSUnarchiver is deallocated, so are the objects that it has decoded, unless
they have been retained. The following code, for example, will probably result in a decoded object being used after being freed:

NSAutoreleasePool *pool = [[NSAutoreleasePool allocWithZone:NULL] init];
NSUnarchiver *unarchiver = [[NSUnarchiver allocWithZone:NULL] initForReadingWithData: myData];
id object = [unarchiver decodeObject];
[unarchiver release];
[pool release];
... use or return object here ...

object should be retained before the NSUnarchiver is released, and probably also autoreleased if object is returned from the function or
method. An exception to this are the -decodeValueOfObjCType:at: and -decodeValueOfObjCTypes:... methods. Objects "returned"

from these two methods, like those returned from +allocWithZone: and -copyWithZone:, are not autoreleased, and must be explicitly
released.

User Defaults
Foundation contains API (NSUserDefaults) which replaces the old defaults database suite of functions. User defaults with 4.0
applications are stored differently and in a different place than 3.3 user defaults. There is a new command-line utility called defaults that
allows you to manipulate the new-style defaults just as dread, dwrite , and dremove allowed you to manipulate old-style defaults.

On Windows NTTM, defaults are stored in the WindowsTM registry. There is a program shipped with Windows NTTM, REGEDT32, for
viewing and editing registry entries. NSUserDefaults stores its domains and their key-value pairs under the entry
HKEY_CURRENT_USER\Software\NeXT\UserDefaults. The values are currently stored as strings in the property list format.

The command /usr/bin/defconvert, in OPENSTEP 4.0 for MACH, can be used to convert a user’s 3.3 defaults database to 4.0-style
defaults–simply run it from the command line with no parameters. This program converts all old-style defaults, even those of
non-OpenStep applications, adding them to the user’s new-style database. Since NEXSTEP 3.3 applications may not use the same default
names after conversion to OPENSTEP 4.0, and 3.3 applications do not use the new defaults database, and increasing the size of the
defaults database increases the amount of memory needed by each OpenStep application, converting an old defaults database to the new
style usually provides little utility.

Errors in ASCII Property Lists

When a method like NSDictionary’s +dictionaryWithContentsOfFile: is used to read and parse an ASCII property list from a file,
parse errors and exceptions are suppressed, and nil is returned upon error. Sometimes a program wants to know about syntax errors in a
property list, or wants finer-grained information about why a property list cannot be read and parsed. Another method, NSString’s
-propertyList , can be used for this purpose. The following example illustrates this:

- (id)readPropertyListFromFile:(NSString *)path mustBeOfType:(Class)targetClass logErrors:(BOOL)showErrors {
NSString *string;
id plist = nil;

string = [[NSString allocWithZone:NULL] initWithContentsOfFile:path];
if (showErrors && nil == string) {

NSLog(@"%@: string could not be read from ’%@’", NSStringFromSelector(_cmd), path);
}
NS_DURING

plist = [string propertyList];
NS_HANDLER

if (showErrors) {
NSLog(@"%@: received exception while parsing: %@", NSStringFromSelector(_cmd), localException);

}
plist = nil;

NS_ENDHANDLER
[string release];
if (Nil != targetClass && ![plist isKindOfClass:targetClass]) {

if (showErrors) {
NSLog(@"%@: property list is not of desired type ’%@’. It’s an ’%@’.",

NSStringFromSelector(_cmd), NSStringFromClass(targetClass), NSStringFromClass([plist class]));
}
[plist release];
plist = nil;

}
return plist;

}

Grammars for Serialization and ASCII Property List Formats
Grammars and description of the serialization (NSSerializer) and ASCII property list representation formats are available in the appendix
to the OpenStep specification.

Strings which contain non-alphanumeric characters must be double quoted in property lists to ensure the entire string is parsed as one
string object. Parse failures will result, otherwise.

Retain Cycles and Invalidation
The retain/release strategy used in Foundation allows an incautious programmer to create reference cycles in an object graph (that is, the
graph of objects that retain one another in some manner). These cycles are self-sustaining and constitute a memory leak. The simplest
example is to create a NSMutableArray instance and add it to itself. Since an array retains its objects, it retains itself independent of its

normal usage. Retains are essentially distributed across the network via the Distributed Objects mechanism.

If retain cycles cannot be avoided by careful design, but are known a priori, the following technique can be used to recover the memory.
For the objects in the cycle(s) whose retain counts are solely due to the cycle, all should be retained (perhaps in an array), each one told
to release its retained objects, then all released. The action of releasing its retained objects would undoubtedly cause an object to become
dysfunctional. Some objects already implement such a method by the name "-invalidate". It is a bug that neither NSObject nor the
collections implement this method to facilitate cycle recovery.

More on Autoreleasing and Retaining
The following statements are false:

Returned objects are guaranteed to be valid for the scope of the current method.
Returned objects are guaranteed to be valid until the current autorelease pool is released.
Returned objects are guaranteed to be valid until the end of the current event loop.

The Foundation’s retain count mechanism operates via -retain and -release. A code fragment such as:
id object = [collection returnObject];

creates a reference (in object) to the returned object, but does not increment the retain count of object . If you don’t let the system know
about your reference, by incrementing the retain count with -retain, the system can’t ensure that your reference remains valid for any
length of time. In practice, you can get away with such "weak references" most of the time. But the safest approach formalizes your
reference to the object:

id object = [[collection returnObject] retain];
/* Do operations, some of which may be on ’object’ */
...
/* Don’t need object any longer */
[object release];
object = nil;

The -hash and -isEqual: Invariant

It is worthwhile to highlight an obscure requirement documented in NSObject class specification for the -hash method: The -hash and
-isEqual: methods of a class must be defined so that if two objects are equal, their hash value is the same ([x isEqual:y] implies [x hash]
== [y hash], but not the converse). This is easy to forget, but especially important to ensure when putting custom objects into some
collections (such as NSSet and NSDictionary).

Forwarding Messages in OpenStep

Objects wishing to forward messages with the -forwardInvocation: method must also (re)implement the
-methodSignatureForSelector: method. This is a result of the compiler not providing call stack descriptive information at each call site.
Consequently, the runtime needs a source of information for how the stack frame is constructed. It needs this to build the invocation that
will be supplied to the -forwardInvocation: method call. The -methodSignatureForSelector: method will need to be reimplemented to
provide a method signature for selectors to which the object does not respond.

Fault objects in EOF which wish to forward messages should also override +instanceMethodSignatureForSelector:.

- (NSMethodSignature *)methodSignatureForSelector:(SEL)sel {
NSMethodSignature *result = [super methodSignatureForSelector:sel];

if (nil == result) { // must not respond to the selector, no runtime information available
result = [target methodSignatureForSelector:sel];

return result;
}

- (void)forwardInvocation:(NSInvocation *)invocation {
[invocation invokeWithTarget:target]; // let target implement methods that we do not

}

See the ForwardInvocation example in /NextDeveloper/Examples/Foundation/ForwardInvocation.

Debugging Aids
The OpenStep Conversion Guide describes several techniques for debugging Foundation and AppKit applications. The header file
NSDebug.h also has some global flags, functions, and methods which may be useful. But be warned–although this header file is public,
its contents are mostly unsupported, largely undocumented, and are subject to change without warning. Do not depend on API within this
header for the operation of production programs.

Object Allocation Analysis

One of the useful flags defined in NSDebug.h is NSKeepAllocationStatistics, which allows you to analyze the object allocation activity
in a program. The AnalyzeAllocation command line program can be used to analyze the output generated by running with this option
enabled. You can also use the ObjectAlloc demo application which comes OPENSTEP for Mach and Windows to graph the object
allocation activity in real time.

The +load Method

The +load message is sent to classes when they are added to the Objective C runtime. +load is usually received before +initialize . +load
is not inherited by subclasses.

The order in which +load messages are sent to classes is unspecified (and specifically, a class’s superclass is not guaranteed to have its
+load method called before the class receives the message). Therefore, you should not use any subsystems or classes which are loaded
at the same time, or more generally, which you do not know have received the +load message. If you do, you will probably cause
execution of code which assumes that +load (and anything that had to be done in +load) has been previously executed.

There are two situations typically when classes are added to the runtime:
• when loaded dynamically from a bundle or framework by NSBundle
• at application launch

The restrictions on +load are perhaps most serious at launch time. The Foundation has classes and subsystems (as might any other
library) which depend on +load being called before they are fully functional. For example, you should not use NSZoneMalloc() to
allocate memory in +load methods which are statically linked into an application. You certainly should not create any objects.

Note that calling +load on a class isn’t a solution (and is a generally bad idea), because that will cause +initialize to be sent first, which
the class may not handle. Not to mention that doing so places into your code dependencies on which classes implement +load in a
particular version of a library.

+load is not intended as a general initialization mechanism, and should only be used when absolutely necessary. Use +initialize for early
initialization whenever possible.

Performance and NSNotificationCenter
NSNotificationCenter, although heavily optimized, by its nature can become a significant performance bottleneck if heavy use of
notifications is made. The notification mechanism should be used judiciously.

NSAutoreleasePool’s -addObject: Method

You should never use the NSAutoreleasePool instance method -addObject:. Use the -autorelease method, or [NSAutoreleasePool
addObject:] to autorelease an object. Using the instance method incurs the risk of adding an object to a pool which is not the top
autorelease pool, a semantically suspect operation, since the autorelease pool model is one of a (per-thread) stack of pools. OPENSTEP
4.0 does allow you to add objects to an autorelease pool that is not the top pool, but be warned that it is a much more expensive operation
(and always will be) than adding an object to the top pool.

Frameworks as NSBundles
Frameworks are a specialized form of bundle. An application can statically link against a framework at compile time (like a library), or
dynamically load a framework (like a bundle) at runtime. However, as a specialized type of bundle, there are some constraints placed on
frameworks:

• A framework must have a .framework extension
• The name of the executable code of a framework must have the same name as the framework directory, minus the .framework

extension. For example, the file name of the executable code for the framework MyFramework.framework must be
MyFramework (or on WindowsTM, MyFramework.dll).

• On WindowsTM only: The framework directory must be stored in a directory called Frameworks. The executable code (.dll) must be
stored in a directory called Executables that has the same parent as the Frameworks directory. If the framework is statically linked
into applications, the Executables directory (full path) should be in the PATH environment variable. (On other OPENSTEP
platforms, the executable code file is stored within the framework directory, like a bundle.)

How NSBundles Search for Resources

The algorithm that NSBundles use to find resources has changed somewhat from that of NXBundles, and there are changes to the
structure of bundles themselves. A bundle’s resources are now stored in a directory call Resources within the bundle directory. Within
the Resources directory are the non-localized resources and the localized resource directories (English.lproj , Swedish.lproj, etc., as
with NXBundle). The addition of the Resources directory is primarily a way to simplify Framework versioning. Other changes have been
made to reduce the amount of computation required to find resources.

Suppose we are searching for the resource with name Main and type nib. The bundle’s resource path, the "top level", is searched first,
for the file Main.nib . If the file is not found there, each of the language subdirectories are each searched, in the user’s preference order.
This is a change from NXBundle’s behavior, where the language subdirectories were searched first. This change means that the localized
version of a resource that also exists at the top level will not be found, but the top level one will be. All non-localized resources should be
placed in the top level, and no localized resources should exist at the top level.

When a resource is found, the algorithm checks to see if a resource of the name Main-$(PLATFORM_OS) of type nib exists.
$(PLATFORM_OS) represents the make variable of the same name, and takes on the same values that the make variable takes on at
compile time. For example, on WindowsTM, during a project build, $(PLATFORM_OS) in the Makefile.postamble will have the value
"winnt". When Main.nib is found in a directory, the search algorithm does one final check to see if Main-winnt.nib exists in that same
directory. If it does, the search algorithm returns the path to that resource; if it does not, the search algorithm returns the path to Main.nib .
Note that for Main-winnt.nib to be found, a file named Main.nib must exist in the same directory; this also applies within each language
resource directory. It is expected that a developer will choose one of the platform-specific versions to name without this
$(PLATFORM_OS) suffix, and give the other platform-specific versions of the resource extended names. The values that
$(PLATFORM_OS) can take on are currently "winnt" (on OPENSTEP for WindowsTM), "nextstep" (on OPENSTEP for MACH),
"hpux"(on PDO for HP-UXTM), and "solaris" (on PDO for SolarisTM).

Another way to accommodate platform-specific resources is by using the inDirectory: parameter of the resource-searching methods.
The inDirectory: parameter is primarily intended to facilitate the collection of resources of a common type or purpose into a single
directory; for example, all images could be put into a directory called Images within the resource directory. (Note that the AppKit’s
+imageNamed: method in NSImage does not support searching arbitrary directories for images.) As such, the inDirectory: parameter
can be used to manage platform-specific resources. This is less "automatic" however, and requires the developer to specify the name of
the platform-specific directory as well as replicate the required resources and language projects within that directory. The
$(PLATFORM_OS) mechanism described above is simpler to use, particularly if the number of platform-specific resources is small.

Using API not in OpenStep
Many new methods and classes were added for 4.0 and some new methods for 4.1, many outside the purview of the OpenStep
specification. To restrict those that are defined to the methods and classes in OpenStep, add the flag -DSTRICT_OPENSTEP to the
OTHER_CFLAGS variable in the project’s Makefile.preamble.

The Pointer Returned from malloc()

Asking malloc() for a block of memory that is close to the size of a page will give you a pointer for which NXZoneFromPtr() returns
NULL. This is not a bug; blocks of memory allocated from malloc() do not necessarily come from a zone.

Known Problems in OPENSTEP 4.1

This section documents many of the known problems with Foundation in OPENSTEP 4.1.

Reference: 47347

Platforms: All

Problem: NSArchiver and NSUnarchiver do not understand bitfields

Description: Structures containing bitfields cannot be archived and unarchived.

Workaround: Encode the members of a structure containing bitfields individually, encoding the bitfields as (unsigned) chars, shorts, or
ints.

Reference: 49084

Platforms: All

Problem: NSInvocation always retains the return value

Description: NSInvocation always retains object return values. This can cause problems if the return value of a method is not a fully
initialized object. Only +alloc and +allocWithZone: return uninitialized objects, so this is only a problem if you are using
invocations to send either of those methods to a class object. If you write your own methods which return objects which are
not fully initialized, you should avoid sending those messages with an NSInvocation or over Distributed Objects.

Workaround: None

Reference: 56644

Platforms: All

Problem: NSArchiver tracks char * pointers as equivalent to their contents

Description: During archiving, NSArchiver keeps track of the char * strings it has seen by the address passed in for encoding. If one
uses the stack or malloc() to construct a char *, then encodes it using the "*" type primitive (or @encode(char *)), the
archiver only remembers the stack/malloc address, assuming it has constant contents.

Workaround: Do not archive char * strings from the stack. Do not mutate or free malloc’d char * strings during archiving.

Reference: 56659

Platforms: All

Problem: Proxies cannot be notification observers unless they are retained

Description: Because NSNotificationCenter does not retain observers, registering an observer with a remote NSNotificationCenter (the
observer would be a proxy in the remote process) will eventually cause a crash of the remote process when it tries to
message a freed object, unless the remote process explicitly retains the proxy. This situation is a bit arcane, but the same
type of problem can happen with other objects that don’t retain objects that they know about.

Workaround: Use an explicit protocol to tell the server (the process vending the notification center) to register and unregister an
observer. The server then retains and registers the observer with the vended notification center, and unregisters and
releases the observer when you tell it to do so. (If you don’t include the unregister half of the protocol, the object will never
be released.)

Reference: 57984

Platforms: All

Problem: No way to get list of non-defaults command-line arguments

Description: In NEXTSTEP 3.3 (and earlier releases), command-line arguments that looked like defaults were removed from NXArgv.
The array returned by [[NSProcessInfo processInfo] arguments], NXArgv’s replacement, however, contains all of the
command-line arguments.

Workaround: Code that expected defaults options to have been stripped from NXArgv will have to be rewritten to skip default option
names and their values, or the arguments array will need to be processed to remove them before using it. The
NSArgumentDomain dictionary can be retrieved from the standard user defaults instance to find out what
NSUserDefaults interpreted as a default option.

Reference: 59230

Platforms: Mach, HP-UXTM, SolarisTM

Problem: The main bundle can be allocated with the wrong directory

Description: If an application is not launched with a full path, NSBundle attempts to create the main bundle instance with the current
directory. If the application is launched from the command-line without a full path, and the application is not in the current
directory (but found via the shell path), the main bundle will not be created, and the +mainBundle method will always
return nil . This will also be a problem if the application is launched without a full path and changes its current working
directory before the +mainBundle method is first sent. The Workspace Manager always launches applications as a full
path, so this is not a problem for applications launched with Workspace Manager.

Workaround: Launch the application with the full path; launch the app from the directory in which it exists (but not within an .app
wrapper); create the main bundle instance before changing directories (if applicable); or within the app, change the
working directory to the directory in which it lives and allocate the main bundle.

Reference: 61520

Platforms: All

Problem: Handler is called twice when deleting a directory

Description: NSFileManager’s -removeFileAtPath:handler: method, when deleting a directory, calls the handler method
-fileManager:shouldProceedAfterError: twice on each subdirectory or file error, and fails to call the handler for the
top-level directory itself.

Workaround: None

Reference: 62235

Platforms: All

Problem: Can’t search for characters case-insensitively

Description: NSString’s -rangeOfCharactersFromSet: ignores the NSCaseInsensitiveSearch flag. This also affects NSScanner’s
-scanCharactersFromSet:intoString: method when the scanner has been set to be case insensitive.

Workaround: None

Reference: 62812

Platforms: All

Problem: Changed defaults don’t appear sometimes to have taken affect

Description: The default NSUserDefaults domain search order places the NSArgumentDomain before the application’s domain. This is
usually desirable for reading defaults, but may not be if you set/change default values. If you set a value for a default that
was passed as an option on the command-line, the value is correctly set/changed in the application’s domain, but
-objectForKey: will still return the value found in the NSArgumentDomain, because by default it is searched first.

Workaround: There are various workarounds depending upon the application and its use of user defaults. The following options are
relative to a particular NSUserDefaults instance (that is, if you create multiple user defaults instances, you’d have to do the
workaround for each individually).

1. Remove the NSArgumentDomain from the search list, perhaps after adding any keys it contains to the registration
domain; command-line specified defaults will not be found, or not have priority over same-keyed defaults in the
application’s domain, however.

2. Move the NSArgumentDomain after the application’s domain; command-line specified defaults will not have priority
over same-keyed defaults in the application’s domain, however.

3. Each time you set a default value, set it in the argument domain (difficult and not worth the trouble).

4. Best solution: Create a subclass of NSUserDefaults. For each defaults instance created, create a new volatile domain,
tell the instance about it (-setVolatileDomain:forName:) perhaps calling it "ChangedDefaults" (don’t give it a name
beginning with "NS"!), and insert it first in the domain search list of the new defaults instance. Override the
-setObject:forKey: and -removeObjectForKey: methods to set/remove the value in the "ChangedDefaults" volatile
domain, and then call [super ...] to do the same for the application domain. The following code illustrates what these
override methods might look like:

- (void)setObject:(id)value forKey:(NSString *)defaultName {
NSDictionary *changedDomain;
id oldValue;
[super setObject:value forKey:defaultName];
changedDomain = [self volatileDomainForName:@"ChangedDefaults"];
oldValue = [changedDomain objectForKey:defaultName];
if (![oldValue isEqual:value]) { // Something to do

NSMutableDictionary *newDomain;
newDomain = [[NSMutableDictionary allocWithZone:[self zone]]

initWithDictionary:changedDomain];
[newDomain setObject:value forKey:defaultName];
[self setVolatileDomain:newDomain forName:@"ChangedDefaults"];
[newDomain release];

}
}

- (void)removeObjectForKey:(NSString *)defaultName {
NSDictionary *changedDomain;
id oldValue;
[super removeObjectForKey:defaultName];
changedDomain = [self volatileDomainForName:@"ChangedDefaults"];
oldValue = [changedDomain objectForKey:defaultName];
if (oldValue) { // Something to do

NSMutableDictionary *newDomain;
newDomain = [[NSMutableDictionary allocWithZone:[self zone]]

initWithDictionary:changedDomain];
[newDomain removeObjectForKey:defaultName];
[self setVolatileDomain:newDomain forName:@"ChangedDefaults"];
[newDomain release];

}
}

Reference: 64605

Platforms: HP-UXTM, SolarisTM

Problem: NSBundles cannot dynamically load code

Description: Unlike NeXT’s implementations of OpenStep on other platforms, Foundation in PDO for HP-UXTM and SolarisTM cannot
dynamically load code. This is due to limitations in the compiler and Objective C runtime, which we hope to resolve in a
future release.

Workaround: None

Reference: 66411

Platforms: SolarisTM

Problem: Formatted floats sometimes loose sign

Description: Formatted strings created with the NSString methods like +stringWithFormat: lose the sign of floats formatted with %f
(and %g) in some cases. For instance, [NSString stringWithFormat:@"%f", -2.3e-2] results in @"0.023000". The
situations in which this occurs have not been fully qualified.

Workaround: Use sprintf() to create the character string with the desired format, then create the NSString from that with
+stringWithCString: .

Reference: 66538

Platforms: All

Problem: NSString +stringWithFormat: doesn’t work with %p or some formatting flags

Description: Unlike what the documentation says, NSString does not understand all ANSI C printf() -style formatting escapes and flags,
and never has.

Workaround: Use sprintf() to create the character string with the desired format, then create the NSString from that with
+stringWithCString: .

Reference: 66766

Platforms: All

Problem: NSBundle doesn’t load _profile and _debug binaries in bundles

Description: NSBundle does not attempt to load code from debug or profile versions of their binary code, which the makefiles give the
_debug and _profile suffixes, respectively. If the non-debug/non-profile binary doesn’t exist in the bundle, no code will be
loaded. NSBundle doesn’t care how the binary has been compiled, it just only looks for the file with the name given by the
NSExecutable key in the Info.plist file in the Resources directory.

Workaround: [Mach, SolarisTM, HP-UXTM]: Create a symbolic link named without the _profile or _debug suffix to the _profile or _debug
binary at the top level of the bundle directory. [All platforms]: Move the _profile or _debug binary to a file of the same
name without that suffix. [All platforms]: Modify the value of the NSExecutable key in the Info.plist file to include the
desired _profile or _debug suffix.

Reference: 68449

Platforms: Windows

Problem: Cannot get a proxy for a distributed OLE object using OPENSTEP D.O.

Description: When trying to get a proxy for an OLE object, you may get the following error: "deserializeObjectAt: class
‘NSDistantIDispatchProxy’ not loaded".

Workaround: Include nxorb.m (from NextDeveloper/Libraries) in your client. Although the D’OLE Developer’s Guide states that
nxorb.m is only needed for use with NXConnections, it’s needed in some circumstances for NSConnections as well.

Reference: 71118

Platforms: All

Problem: Collections that contain themselves don’t describe

Description: Sending the -description method to collections which contain themselves, or contain objects that contain the collection,
causes infinite recursion.

Workaround: None
