
1

NSInvocation

Inherits From: NSObject

Conforms To: NSCoding
NSObject (NSObject)

Declared In: Foundation/NSInvocation.h

Class Description

An NSInvocation is an Objective-C message rendered static, an action turned into an object. NSInvocation
objects are used to store and forward messages between objects and between applications, primarily by
NSTimers and the distributed objects system. An NSInvocation contains all the elements of an Objective-C
message: a target, a selector, arguments, and the return value. Each of these elements can be set directly,
and the return value is set automatically when the NSInvocation is dispatched.

An NSInvocation can be repeatedly dispatched to different targets; its arguments can be modified between
dispatch for varying results; even its selector can be changed to another with the same method signature
(argument and return types). This makes it useful for repeating messages with many arguments and
variations; rather than retyping a slightly different expression for each message, you modify the
NSInvocation as needed each time before dispatching it to a new target.

Creating an NSInvocation requires several steps. Consider this method of the custom class MyCalendar:

– (BOOL)updateAppointmentsForDate:(NSDate *)aDate

updateAppointmentsForDate: takes an NSDate as its only argument, and returns YES or NO depending
on whether the appointments could be updated without conflicts. The following code fragment sets up an
NSInvocation for it:

SEL theSelector;

NSMethodSignature *aSignature;

NSInvocation *anInvocation;

theSelector = @selector(updateAppointmentsForDate:);

aSignature = [MyCalendar methodSignatureForSelector:theSelector]

anInvocation = [NSInvocation invocationWithMethodSignature:aSignature];

[anInvocation setSelector:theSelector];

The first two lines get the NSMethodSignature for the updateAppointmentsForDate: method. The last two
lines actually create the NSInvocation and set its selector. Note that the selector can be set to any selector
matching the signature of updateAppointmentsForDate:. Any of these methods can be used with
anInvocation:

2

 NSInvocation

– (BOOL)clearAppointmentsForDate:(NSDate *)aDate
– (BOOL)isAvailableOnDate:(NSDate *)aDate
– (BOOL)setMeetingTime:(NSDate *)aDate

Before being dispatched, anInvocation must have its target and arguments set:

MyCalendar *userDatebook; /* Assume this exists. */

NSDate *todaysDate; /* Assume this exists. */

[anInvocation setTarget:userDatebook];

[anInvocation setArgument:&todaysDate atIndex:3];

setArgument:atIndex: sets the specified argument to the value supplied. Every method has two hidden
arguments, the target and selector, so the first argument that needs to be set is actually at index 3. In this
case, todaysDate will be the NSDate argument to updateAppointmentsForDate:.

To dispatch the NSInvocation, send an invoke or invokeWithTarget: message. invoke only produces a
result if the NSInvocation has a target set. Once dispatched, the NSInvocation contains the return value of
the message, which getReturnValue: produces:

BOOL result;

[anInvocation invoke];

[anInvocation getReturnValue:&result];

Saving NSInvocations for Later Use

Because an NSInvocation doesn’t always need to retain its arguments, by default it doesn’t do so. This can
cause object arguments as well as the target to become invalid if they’re automatically released. If you plan
to cache an NSInvocation or dispatch it repeatedly during the execution of your application, you should
send it a retainArguments message. This method retains the target and all object arguments, and copies C
strings so that they’re not lost because another object frees them.

Using NSInvocations with NSTimers

Suppose the NSInvocation created above is being used in a time-management application that allows
multiple users to set appointments for others, such as group meetings. This application might allow a user’s
calendar to be automatically updated every few minutes, so that the user always knows what his schedule
looks like. Such automatic updating can be accomplished by setting up NSTimer objects with
NSInvocations.

Given the NSInvocation above, this is as simple as invoking one NSTimer method:

[NSTimer scheduledTimerWithInterval:600

 invocation:anInvocation

 repeats:YES];

3

This line of code sets up an NSTimer to dispatch anInvocation every 10 minutes (600 seconds). Note that
an NSTimer always instructs its NSInvocation to retain its arguments; thus, you don’t need to send
retainArguments yourself. See the NSTimer class specification for more information on timers.

Adopted Protocols

NSCoding – encodeWithCoder:
– initWithCoder:

Method Types

Creating instances + invocationWithMethodSignature:

Accessing message elements – setArgument:atIndex:
– getArgument:atIndex:
– setReturnValue:
– getReturnValue:
– setSelector:
– selector
– setTarget:
– target

Managing arguments – argumentsRetained
– retainArguments

Dispatching an invocation – invoke
– invokeWithTarget:

Getting the method signature – methodSignature

Class Methods

invocationWithMethodSignature:
+ (NSInvocation *)invocationWithMethodSignature:(NSMethodSignature *)signature

Returns an NSInvocation object able to construct messages using selectors described by signature. The new
object must have its selector set with setSelector: and its arguments set with setArgument:atIndex: before
it can be invoked.

4

 NSInvocation

Instance Methods

argumentsRetained
– (BOOL)argumentsRetained

Returns YES if the NSInvocation has retained its arguments, NO otherwise.

See also: – retainArguments

getArgument:atIndex:
– (void)getArgument:(void *)buffer atIndex:(int)index

Copies the argument stored at index into the storage pointed to by buffer. Indices 0 and 1 indicate the hidden
arguments self and _cmd, respectively; these values can be retrieved directly with the target and selector
methods. Use indices 2 and greater for the arguments normally passed in a message.

buffer must be large enough to accommodate the argument value. Use NSMethodSignature’s
argumentInfoAtIndex: method to determine the size needed for buffer:

NSArgumentInfo argInfo = [[myInvocation methodSignature]

 argumentInfoAtIndex:3];

buffer = (void *)malloc(argInfo.size);

This method raises NSInvalidArgumentException if index is greater than the actual number of arguments
for the selector.

See also: – setArgument:atIndex: – numberOfArguments (NSMethodSignature)

getReturnValue:
– (void)getReturnValue:(void *)buffer

Copies the invocation’s return value into the storage pointed to by buffer, which should be large enough to
accommodate the value. Use NSMethodSignature’s methodReturnLength method to determine the size
needed for buffer :

unsigned int length = [[myInvocation methodSignature]

 methodReturnLength];

buffer = (void *)malloc(length);

If the NSInvocation has never been invoked the result of this method is undefined.

See also: – setReturnValue:, –methodReturnType (NSMethodSignature)

5

invoke
– (void)invoke

Uses invokeWithTarget: to send the NSInvocation’s message with arguments to its target. The
NSInvocation’s target, selector, and argument values must be set before this method is invoked.

See also: – getReturnValue:, –setSelector:, –setTarget:, –setArgument:atIndex:

invokeWithTarget:
– (void)invokeWithTarget: (id)anObject

Sends the NSInvocation’s message with arguments to anObject and sets the return value. Doesn’t set the
NSInvocation’s target. The NSInvocation’s selector and argument values must be set before this method is
invoked.

See also: – getReturnValue:, – invoke, –setSelector:, –setTarget:, –setArgument:atIndex:

methodSignature
– (NSMethodSignature *)methodSignature

Returns the invocation’s method signature.

retainArguments
– (void)retainArguments

If the NSInvocation hasn’t already done so, retains the NSInvocation’s target and all object arguments, and
copies all C string arguments. Before this method is invoked, argumentsRetained returns NO; after, it
returns YES.

For efficiency, newly created NSInvocations don’t retain or copy their arguments, nor do they retain their
targets or copy C strings. You should instruct an NSInvocation to retain its arguments if you intend to cache
it, since the arguments may otherwise be released before the NSInvocation is invoked. NSTimers always
instruct their NSInvocations to retain their arguments, for example, since there’s usually a delay before an
NSTimer fires.

6

 NSInvocation

selector
– (SEL)selector

Returns the NSInvocation’s selector, or 0 if it hasn’t been set.

See also: – setSelector:

setArgument:atIndex:
– (void)setArgument:(void *)buffer atIndex:(int)index

Copies the contents of buffer as the argument at index. Indices 0 and 1 indicate the hidden arguments self
and _cmd, respectively; these values should be set directly with the setTarget: and setSelector: methods.
Use indices 2 and greater for the arguments normally passed in a message. The number of bytes copied is
determined by the argument size.

This method raises NSInvalidArgumentException if the value of index is greater than the actual number of
arguments for the selector.

See also: – getArgument:atIndex:, –numberOfArguments (NSMethodSignature),
– argumentInfoAtIndex: (NSMethodSignature)

setReturnValue:
– (void)setReturnValue:(void *)buffer

Copies the contents of buffer as the NSInvocation’s return value. This is normally set when you send an
invoke or invokeWithTarget: message.

See also: – getReturnValue:, –methodReturnLength (NSMethodSignature),
– methodReturnType (NSMethodSignature)

setSelector:
– (void)setSelector:(SEL)selector

Sets the NSInvocation’s selector to selector.

See also: – selector

7

setTarget:
– (void)setTarget:(id)anObject

Sets the NSInvocation’s target to anObject. The target is the receiver of the message sent by invoke.

See also: – target, – invokeWithTarget:

target
– (id)target

Returns the NSInvocation’s target, or nil if the NSInvocation has no target.

See also: – setTarget:

