
 1 Mach Kit

NXLock

Adopted By: NXConditionLock
NXLock
NXSpinLock
NXRecursiveLock

Declared In: machkit/NXLock.h

Protocol Description

This protocol is used by classes that provide lock objects. The lock objects provided by
NeXTSTEP are used only for protecting critical sections—they contain no useful data.

Although an object that isn’t a lock could adopt the NXLock protocol, it may be more
desirable to design the object so that all locking is handled internally, through normal use
rather than requiring that the object be explicitly locked and unlocked.

Four classes conform to the NXLock protocol:

Class Usage

NXLock Use NXLock objects to protect regions of code that can
consume long periods of time, such as disk I/O or heavy
computation.

NXConditionLock Protects critical sections of code, but can also be used to
postpone entry to a critical section until a condition is met.
This class is functionally a superset of the NXLock class,
though unlocking is slightly more expensive.

NXSpinLock Use NXSpinLock objects to protect short regions of
critical code. Useful in the implementation of drivers or
more complex locks. A spin lock may be acquired more
quickly than the other locks, but isn’t appropriate for long
sections of code since blocked spin locks busy-wait.

NXRecursiveLock Protects critical sections from access by multiple threads,
but allows a single thread to acquire a lock several times
without deadlocking.

Protocols: NXLock 2

Of these classes, only NXSpinLock busy-waits while the lock is unavailable. The other
classes may all be efficiently used for long sections of atomic code. See the class
specifications for these classes for further information on their behavior and usage.

Instance Methods

lock

− lock

Acquires a lock. Applications generally do this when entering a critical section of their
code.

unlock

− unlock

Releases a lock. Applications generally do this when exiting a critical section of their code.

