
Architectural Overview

Chapter 6

192

Enterprise Objects Framework is a set of tools and resources that helps you
create applications that work with most popular relational databases—or with
your own custom data store. These tools don’t help you build a complete
database system from the ground up—the tasks of data storage and retrieval are
left to a database server supplied by a third party. Rather, Enterprise Objects
Framework lets you design database applications that are easy to build and
maintain, that can communicate with other applications, and that draw upon the
standard interface features common to all OpenStep applications.

Assuming your data store is a relational database, creating an Enterprise Objects
Framework application usually involves the following:

• A database server and an adaptor for that server. An adaptor is a mechanism that
connects your application to a particular server. For each type of server you
use, you need a separate adaptor. Enterprise Objects Framework provides
adaptors for Oracle, Sybase, and Informix servers.

• A model. A model defines the mapping between your enterprise objects and
the server’s data; models are most often built graphically using the
EOModeler application.

• The EOPalette. The EOPalette, used by Interface Builder, gives you access to
objects you use in building a user interface.

• The Enterprise Objects Framework frameworks of classes and protocols. The classes
and protocols provided by the Framework let you programmatically
manipulate data as it passes between the server, your objects, and the user
interface. Although simple applications can be created entirely in Interface
Builder, sophisticated applications will require some use of the Enterprise
Objects Framework classes in your own code.

Enterprise Objects Framework

The architecture of the Framework is divided into three major layers, the
interface layer, the control layer, and the access layer.

The interface layer provides a standard mechanism for displaying data, the
control layer manages a graph of enterprise objects, and the access layer creates
enterprise objects from a relational database. The interface layer is connected to
the control layer by a data source, which supplies the enterprise objects created
in the access layer to the interface layer. A data source is an object that has the
ability to fetch, insert, update, and delete enterprise objects. It is the means by

193

Architectural Overview

which the interface layer accesses stored data; from the perspective of the
interface layer, how data is stored (whether in a relational database or a flat-file
system, for example) is of no consequence. The interface layer interacts with all
data sources in the same way.

Enterprise Objects Framework architecture includes the following
components:

• The adaptor level receives raw data from the database and packages it in
dictionary objects.

• The database level creates enterprise objects from dictionaries and registers
them with the control layer.

• Models are used in the access layer to define the mapping between enterprise
objects and database data.

• An EOEditingContext in the control layer manages a graph of objects and
coordinates change notification.

• A data source provides the EODisplayGroup with enterprise objects.

• An EODisplayGroup (in cooperation with EOAssociations) coordinates the
values displayed in the user interface with its enterprise objects and receives
change notification from the EOEditingContext.

• User interface objects display data from enterprise objects.

Figure 51 shows the architecture of Enterprise Objects Framework.

Architectural Overview

194

Figure 51. Enterprise Objects Framework Architecture

195

Architectural Overview

Figure 52 illustrates how data moves through an Enterprise Objects Framework
application. Data is packaged differently according to where it is in the
Framework. The symbols in the legend indicate the packaging of data at each
level of the Framework.

Data flows in an Enterprise Objects Framework application as follows (starting
from the bottom of the diagram and working up):

• Data comes into the access layer from a relational database in the form of rows.

• The adaptor level packages the raw data as NSDictionary objects. Dictionaries
contain key-value pairs; each key typically represents the name of a column,
and the key’s value corresponds to the data for the column in that particular
row.

• The database level creates enterprise objects from the dictionaries. The
enterprise objects’ properties get their initial values from the corresponding
keys in the dictionary. An enterprise object typically adds behavior to the data
it receives from a dictionary.

• The database level registers objects with an EOEditingContext in the control
layer.

• The enterprise objects pass from the control layer into the interface layer
through a data source, which supplies the objects to an EODisplayGroup.

• The EODisplayGroup notifies EOAssociations that the enterprise objects
have new values. The EOAssociations take the new values from the
enterprise objects and use them to refresh the user interface display.

Movement of data in the Framework is bidirectional: For example, at the user
interface level you can fetch data from the database, modify the data, and then
update the database to reflect your changes. The repackaging of data at various
levels of the Framework is accomplished using reference-counted value classes
provided by the Foundation Framework, thereby allowing data to be shared
with maximum efficiency.

The primary purpose behind the movement that takes place between the layers
of the Framework is to bring together your enterprise objects and persistent
data.

Architectural Overview

196

Figure 52. Data Flow in an Enterprise Objects Framework Application

Interface Layer

Data Source

User Interface

EOEditingContext

Control Layer

EOAssociation

EODisplayGroup

 Access Layer

Adaptor Level

Database Level

Rela tiona l Da tabase

Values

Enterprise Objects

Dictionaries

Database Rows

197

Architectural Overview Framework Dependencies

Framework Dependencies

The architectural depictions of Enterprise Objects Framework in the previous
sections present the ordering of the Framework components in terms of the
conceptual data flow in the system. Another way to look at Enterprise Objects
Framework is in terms of the structural dependencies of the Framework
components on one another.

The control layer is the lowest layer in the Framework. It can be thought of as
an extension of Foundation in that it defines generic core functionality, such as
key-value access and object change notification. The control layer centers
around EOEditingContext, a subclass of EOObjectStore that manages
enterprise objects in memory.

The access layer extends the control layer by implementing an EOObjectStore
for relational databases, EODatabaseContext.

The interface layer extends the control layer and the Application Kit by adding
bindings between enterprise objects and the user interface. This keeps the
values of enterprise objects in sync with their display in the user interface.

Figure 53 shows these relationships.

Figure 53. Framework Dependencies

Foundation

EOAccess

AppKit

EOInterface

EOControl

Architectural Overview What Is an Enterprise Object?

198

What Is an Enterprise Object?

An enterprise object is like any other Objective C object, in that it couples data
with the methods for operating on that data. However, an enterprise object class
has certain characteristics that distinguish it from other Objective C classes:

• It has properties that map to stored data; an enterprise object instance typically
corresponds to a single row or record in a database.

• It knows how to interact with other parts of the Framework to give and
receive values for its properties.

The ingredients that make up an enterprise object are its class definition and the
data values from the database row or record with which the object is instantiated.
An enterprise object also has a corresponding model that defines the mapping
between the class’s object model and the database schema. For more
information, see “Models” on page 207.

Enterprise Objects and Data Transportation
EOKeyValueCoding is the means by which data moves through the
Framework. Regardless of their other characteristics, objects that conform to the
key-value coding protocol (such as enterprise objects) have one thing in
common: Their data is accessed by other parts of the Framework as key-value
pairs. Key-value coding methods enable an object to receive values for its keys
and to give out its keys’ values to other parts of the Framework.

By using key-value coding, different types of objects can pass their values to
each other, thereby transporting data through the layers of the Framework.
When data comes out of the database into the Framework, for example, it’s
initially packaged in dictionaries from which newly-instantiated enterprise
objects get their values (remember, dictionaries are objects that contain data as
key-value pairs). Conversely, when data is transported from enterprise objects
back to the database, it’s repackaged as dictionaries. Note that an enterprise
object can itself carry its properties as an NSDictionary object or as regular
instance variables; key-value coding applies in either case.

Figure 54 shows how the properties in an enterprise object correspond to the
key-value pairs in a dictionary, and how both in turn correspond to a row in a
relational database. Enterprise object properties and dictionary keys (such as
firstName and lastName) map to columns in the database; the value for each key
(for example, “Lesly” and “Oswald”, respectively) matches the column’s value
for the corresponding row.

199

Architectural Overview What Is an Enterprise Object?

An enterprise object class doesn’t have to map to a single table in a database; it
can contain references to multiple tables and have properties for which there are
no corresponding database columns. The mapping described in this section
refers to the simplest case.

Figure 54. Enterprise Objects, Dictionaries, and a Relational Database

An enterprise object can be an instance of either EOGenericRecord or a custom
class. EOGenericRecord is the default enterprise object class; a generic record
uses an NSDictionary to store its properties, and like custom enterprise objects,
conforms to the key-value coding protocol. You use a generic record when you
don’t need to define special behavior for an enterprise object. A custom class, on

Oswald Lesly 104 Jun-19-1992

Scheer Janine 105 Jan-06-1989

LastName FirstName EmpID HireDate

lastName
firstName
empID
hireDate

Oswald
Lesly
104
Jun-19-1992

lastName Oswald
firstName Lesly
empID 104
hireDate Jun-19-1992

Enterprise object

Dictionary keys

Dictionary values

Relational database

Properties

Architectural Overview Enterprise Objects Framework Classes

200

the other hand, can carry its properties as a dictionary or as instance variables,
but it adds behavior beyond that supplied by key-value coding.

Enterprise Objects Framework Classes

The Enterprise Objects Framework classes are grouped into the following
areas:

• User Interface
• Interface Layer
• Data Source (EODatabaseDataSource)
• Control Layer
• Access Layer
• Modeling Classes

Each of these areas and the classes it contains are described in the following
sections. Figure 55 shows the classes that play major roles in Enterprise Objects
Framework and their relation to each other.

201

Architectural Overview Enterprise Objects Framework Classes

Figure 55. Enterprise Objects Framework Detailed Architecture

EOModelGroup

EOObjectStore
Coordinator

EOEditing
Context

EODatabase
Context

EODatabase
EODatabase

Channel
EOModel

EOAdaptor
EOAdaptor

Context
EOAdaptor

Channel

EODatabase
DataSource

EODetail
DataSource

EOUndo
Manager

Object uniquing, and
change tracking

Snapshotting and
batch updating

EODisplayGroup EODisplayGroup

EOQualified
Association

EOColumn
Association

EOControl
Association

Interface Layer

Control Layer

Access Layer

Architectural Overview User Interface Objects

202

User Interface Objects

User interface objects such as NSPopUpButtons, NSForms, NSTextFields, and
NSTableViews can display the values of enterprise objects, and, if the values are
edited in the user interface, communicate the changes back to the enterprise
objects.

The Interface Layer

The relationship between user interface objects and enterprise objects is
managed by an instance of the EODisplayGroup class. EODisplayGroups are
used by EOAssociation objects to mediate between enterprise objects and the
user interface. EOAssociations link a single user interface object to one or more
class properties (keys) in an enterprise object or objects managed by the
EODisplayGroup. The properties’ values are displayed in the association’s user
interface object.

In the Interface layer, EOAssociation objects “observe” EODisplayGroups to
make sure that the data displayed in the user interface remains consistent with
enterprise object data. EODisplayGroups interact with a data source, which
supplies them with enterprise objects.

The Data Source

A data source is an object subclassed from the EODataSource abstract class that
presents an EODisplayGroup object with a standard interface to a store of
enterprise objects. From the perspective of the EODisplayGroup to which a
data source supplies enterprise objects, the actual mechanism used for storing
data is of no concern; everything below the data source is effectively a “black
box.” The interface layer interacts with all data sources in the same way. A data
source takes care of communicating with the external data store to fetch, insert,
update, and delete objects.

For most database applications, the data source is an instance of the class
EODatabaseDataSource or EODetailDataSource (the data source classes
supplied with the Framework). EODatabaseDataSource provides an interface
to the Framework’s access layer and ultimately, to a relational database.
However, the data source can be any object subclassed from EODataSource.
Thus, the user interface layer can be used independently from the access layer

203

Architectural Overview The Control Layer

for other types of data sources, such as an array of objects constructed by an
application, or objects fetched from a flat-file database or a newsfeed.

The Control Layer

Within an Enterprise Objects Framework application, enterprise objects are the
focal point. They encapsulate the most current data for your application
(including data that hasn’t been committed to the database yet), and the
business logic for operating on that data.

The control layer facilitates the central role of enterprise objects by providing an
infrastructure for them that is independent of the user interface and the storage
mechanism being used. From a development standpoint, this means that you
can use the classes in the control layer to write enterprise objects that have no
dependencies on the interface layer or the access layer. The control layer
dynamically manages the interaction between these objects and the rest of your
application by:

• Tracking changes to enterprise objects
• Updating the user interface when object values change
• Updating the database when changes to objects are committed
• Managing undo in the object graph
• Managing uniquing

Uniquing is used in the Framework to uniquely identify enterprise objects and
maintain their mapping to stored data. Enterprise objects have a primary key,
which is defined in the model that maps the object to the database. This primary
key is used to maintain the identification between an enterprise object instance
and a corresponding database row. Uniquing is also used to ensure that if an
object already exists in memory, another instance of it isn’t created when a row
with the same primary key is fetched from the database. So, for example, if two
employee objects have the same manager, a single instance of the manager
object resides in memory, and both employee objects refer to it.

The control layer’s major areas of responsibility and the classes involved are
described in the following table:

Architectural Overview The Control Layer

204

Responsibility Classes

Object Graph Management EOEditingContext
EOUndoManager
EOObserver

Object Storage Abstraction EOObjectStore
EOGlobalID
EOFault

Object Query Specification EOQualifier
EOSortOrdering
EOFetchSpecification

Protocols to interface with enterprise objects Validation (EOClassDescription)
EOKeyValueCoding

Simple Source of Objects (for EODisplayGroup) EODataSource
EODetailDataSource

Because they constitute major conceptual pieces of the Enterprise Objects
Framework architecture, object graph management and the object store
abstraction are discussed in more detail in the following sections.

Object Graph Management
An object graph is a group of related business objects that represent an internally
consistent view of one or more external stores. In a running application, the
object graph is the central repository for data and business logic. The class that
plays the most significant role in object graph management is
EOEditingContext.

EOEditingContext
An EOEditingContext, which represents a single “object space” or document
in an application, manages an in-memory graph of enterprise objects. An
EOEditingContext can also be thought of as a transaction scope. All objects
fetched from an external store are registered in an EOEditingContext along
with a global identifier (EOGlobalID) that’s used to uniquely identify each
object to the external store. The EOEditingContext is responsible for watching
for changes in its objects (using the EOObserving protocol) and recording
snapshots for object-based undo.

The object graph that an EOEditingContext monitors is created by the
EOEditingContext’s parent EOObjectStore. The EOEditingContext is itself
an EOObjectStore, which gives it the ability to act as an EOObjectStore for

205

Architectural Overview The Access Layer

another EOEditingContext. In other words, EOEditingContexts can be nested,
thereby allowing a user to make edits to an object graph in one editing context
and then discard or commit those changes to another object graph (which, in
turn, may commit them to an external store). A single enterprise object instance
exists in one and only one context, but multiple copies of an object can exist in
different EOEditingContexts. Thus object uniquing is scoped to a particular
EOEditingContext. For more information, see the EOEditingContext class
specification in the Enterprise Objects Framework Reference.

Object Storage Abstraction
The class that plays the most significant role in the Enterprise Objects
Framework storage abstraction is EOObjectStore.

EOObjectStore
EOObjectStore defines a abstract class for objects that act as an “intelligent”
source and sink of objects for an EOEditingContext. The object store is
responsible for constructing and registering objects, servicing object faults, and
committing changes made in an EOEditingContext.

Some of the subclasses of EOObjectStore are EOEditingContext (for use in
nested EOEditingContexts), EODatabaseContext (for mapping objects from a
relational database), and EOObjectStoreCoordinator (for coordinating multiple
object stores).

The Access Layer

The access layer allows your application to interact with database servers at a
high level of abstraction. The access layer is divided into two parts:

• A database level that allows applications to treat records as full-fledged
enterprise objects.

• An adaptor level for server-independent access to records that don’t have
custom behavior.

Working with the access layer allows you to have a finer level of control over
database operations.

The top row of classes in Figure 56 (EODatabase, EODatabaseContext, and
EODatabaseChannel) constitutes the database level. The bottom row of classes
(EOAdaptor, EOAdaptorContext, and EOAdaptorChannel) constitutes the

Architectural Overview The Access Layer

206

adaptor level. EOModel objects are used by the access layer to log into a
database server and establish the mapping between enterprise objects and
database data. The database level, adaptor level, and models are described in
the following sections.

Figure 56. The Access Layer

The Database Level
The database level is where enterprise objects are created from the dictionaries
retrieved by the adaptor level. It’s also where snapshotting is performed.
Snapshotting is used by Enterprise Objects Framework to manage updates.
When an object is fetched from the database, a snapshot is taken of its state. A
snapshot is an NSDictionary object; it’s consulted when you perform an update
to verify that the data in the row to be updated has not changed since you
fetched the object.

Figure 57 shows the database level classes and the behaviors associated with
each class.

Figure 57. Database Level

EODatabaseEOModel EODatabase
Context

EOAdaptor
Channel

EOAdaptor

EODatabase
Channel

EOAdaptor
Context

Access Layer

Database Level

EODatabase EODatabase
Context

EODatabase
Channel

Snapshotting Object store for
relational databases.

Handles fetching, faulting
and saving. Manages

transactions and channels.

Used as a slave to
EODatabaseContext

for fetching

207

Architectural Overview Models

The Adaptor Level
While the database level deals with data packaged as enterprise objects, the
adaptor level deals with database rows packaged as dictionaries. An adaptor is
the mechanism through which your application communicates with a database
server.

Figure 58 shows the database level classes and the behaviors associated with
each class.

Figure 58. Adaptor Level

The adaptor level classes define a server-independent interface for working
with relational database systems. Server-specific subclasses encapsulate the
behavior of database servers, thereby offering a uniform way of interacting with
servers while still allowing applications to exploit their unique features.

Models

The correspondence between an enterprise object class and stored data is
established and maintained by using a model. A model defines, in entity-
relationship terms, the mapping between enterprise object classes and a
physical database. Figure 59 shows the modeling classes, including the class
EOJoin. Join objects identify the entities and attributes that are linked by a
relationship.

EOAdaptor
CChannelEOAdaptor EOAdaptor

CContext

Knows the schema,
maintains a database

connection

Performs database
operations: select, insert,

update, delete (SQL cursor)

Manages
channels and
transactions

Adaptor Level

Architectural Overview Models

208

Figure 59. Modeling Classes

The following table describes the database-to-object mapping provided in a
model:

Database Element Class

Data Dictionary EOModel

Table EOEntity

Column EOAttribute

Row Enterprise object class

While a model can be generated at run time, the most common approach is to
use the EOModeler application to create models that can be stored as files and
added to a project. You use a model throughout the development and
deployment of your application to maintain the mapping between enterprise
objects and persistent data.

In addition to storing a mapping between the database schema and enterprise
objects, a model file stores information needed to connect to the database server.
This connection information includes the name of an adaptor bundle to load so
that Enterprise Objects Framework can communicate with the database.

For a discussion of entity-relationship modeling and how it relates to Enterprise
Objects Framework, see the appendix “Entity-Relationship Modeling.”

EOModel

EOAttribute EOEntity

EORelationship

EOJoin

