
1

NSCoding

Adopted By: NSObject

Declared In: Foundation/NSObject.h

Protocol Description

The NSCoding protocol declares the two methods that a class must implement so that instances of that class
can be encoded and decoded. This capability provides the basis for archiving (where objects and other
structures are stored on disk) and distribution (where objects are copied to different address spaces). See
the NSCoder and NSArchiver class specifications for an introduction to coding.

In keeping with object-oriented design principles, an object being encoded or decoded is responsible for
encoding and decoding its instance variables. A coder instructs the object to do so by invoking
encodeWithCoder: or initWithCoder: . encodeWithCoder: instructs the object to encode its instance
variables to the coder provided; an object can receive this method any number of times. initWithCoder:
instructs the object to initialize itself from data in the coder provided; as such, it replaces any other
initialization method and is only sent once per object. Any object class that should be codable must adopt
the NSCoding protocol and implement its methods.

When an object receives an encodeWithCoder: message, it should encode all of its vital instance variables,
after sending a message to super if its superclass also conforms to the NSCoding protocol. An object
doesn’t have to encode all of its instance variables. Some values may not be important to reestablish and
others may be derivable from related state upon decoding. Other instance variables should be encoded only
under certain conditions (for example, with encodeConditionalObject:, as described in the NSArchiver
class specification).

For example, a fictitious MapView class that displays a legend and a map at various magnifications might
implement encodeWithCoder: like this:

- (void)encodeWithCoder:(NSCoder *)coder

{

 [super encodeWithCoder:coder];

 [coder encodeValueOfObjCType:@encode(NSString) at:&mapName];

 [coder encodeValueOfObjCType:@encode(unsigned int) at:&magnification];

 [coder encodeObject:legendView];

 [coder encodeConditionalObject:auxiliaryView];

 return;

}

The @encode() compiler directive generates an Objective-C type code from a type expression. See
Object-Oriented Programming and the Objective-C Language for more information.

2

Similarly, in initWithCoder: the object should first send a message to super (if appropriate) to initialize
inherited instance variables, and then it should decode and initialize its own. MapView’s implementation of
initWithCoder: might look like this:

- (id)initWithCoder:(NSCoder *)coder

{

 self = [super initWithCoder:coder];

 [coder decodeValueOfObjCType:@encode(NSString) at:&mapName];

 [coder decodeValueOfObjCType:@encode(unsigned int) at:&magnification];

 legendView = [[coder decodeObject] retain];

 auxiliaryView = [[coder decodeObject] retain];

 return self;

}

Note the assignment of the return value of initWithCoder: to self in the example above. This is done in the
subclass because the superclass, in its implementation of initWithCoder: , may decide to return a object
other than itself.

Making Substitutions During Coding

During encoding or decoding a coder object invokes methods that allow the object being coded to substitute
a replacement class or instance for itself. This allows archives to be shared among implementations with
different class hierarchies or simply different versions of a class (for example, class clusters take advantage
of this feature). It also allows classes that should maintain unique instances to enforce this policy on
decoding (for example, there need only be a single NSFont instance for a given typeface and size).

Substitution methods are declared by NSObject, and come in two flavors: generic and specialized. The
generic methods are these:

Method Typical Use

classForCoder Allows an object, before being encoded, to substitute a class
other than its own. For example, the private subclasses of a class
cluster substitute the name of their public superclass when being
archived.

replacementObjectForCoder: Allows an object, before being encoded, to substitute another
instance in its place.

awakeAfterUsingCoder: Allows an object, after being decoded, to substitute another
object for itself. For example, an object that represents a font
might, upon being decoded, release itself and return an existing
object having the same font description as itself. In this way,
redundant objects can be eliminated.

The specialized substitution methods are analogous to classForCoder and replacementObjectForCoder:,
but they’re designed for (and invoked by) a specific, concrete coder subclass. NSArchiver invokes
classForArchiver: and replacementObjectForArchiver:, while NSPortCoder invokes classForPortCoder

3

and replacementObjectForPortCoder:. (There isn’t a specialized version of awakeAfterUsingCoder:.)
By implementing these specialized methods, your class can base its coding behavior on the specific coder
class being used. For more information on these methods, see their method descriptions in the NSObject
class specification, as well as the class description in the NSPortCoder class specification.

Method Types

Encoding and decoding objects – encodeWithCoder:
– initWithCoder:

Instance Methods

encodeWithCoder:
– (void)encodeWithCoder:(NSCoder *)encoder

Encodes the receiver using encoder.

initWithCoder:
– (id)initWithCoder: (NSCoder *)decoder

Initializes a newly allocated instance from data in decoder. Returns self.

