
1

NSSet Class Cluster

Class Cluster Description

The NSSet, NSMutableSet, and NSCountedSet classes declare the programmatic interface for objects that
store unordered sets of objects.

Because of the nature of class clusters, the objects you create with the NSSet class cluster are not actual
instances of NSSet or NSMutableSet. Rather, the instances belong to one of their private subclasses. (For
convenience, we use the term set to refer to any one of these instances without specifying its exact class
membership.) Although a set’s class is private, its interface is public, as declared by the abstract
superclasses NSSet and NSMutableSet.Note that NSCountedSet is not part of the class cluster; it is a
concrete subclass of NSMutableSet.

NSSet declares the programmatic interface for static sets of objects. You establish a static set’s entries when
it’s created, and thereafter the entries can’t be modified. NSMutableSet, on the other hand, declares a
programmatic interface for dynamic sets of objects. A dynamic—or mutable—set allows the addition and
deletion of entries at any time, automatically allocating memory as needed.

Use sets as an alternative to arrays when the order of elements isn’t important and performance in testing
whether an object is contained in the set is a consideration—while arrays are ordered, testing for
membership is slower than with sets. For example, the NSSet method containsObject: operates in linear
time when applied to a set, while containsObject: operates in logarithmic time when applied to an array.

Objects in a set must respond to the NSObject protocol methods hash and isEqual:. See the NSObject
protocol for more information.

Note: If mutable objects are stored in a set, either the hash method of the objects shouldn’t depend on the
internal state of the mutable objects or the mutable objects shouldn’t be modified while they’re in the
set (note that it can be difficult to know whether or not a given object is in a collection).

Objects added to a set are not copied; rather, each object receives a retain message before it’s added to a set.

Generally, you create a temporary set by sending one of the set… methods to the NSSet class object. These
methods return an NSSet object containing the elements (if any) you pass in as arguments. The set method
is a “convenience” method to create an empty mutable set. Newly created instances of NSSet created by
invoking the allocWithZone: method can be populated with objects using any of the init… methods.

The set classes adopt the NSCopying and NSMutableCopying protocols, making it convenient to convert a
set of one type to the other.

2

 NSSet

NSSet

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSSet.h

3

Class at a Glance

Purpose
An NSSet object stores an immutable set of objects.

Principal Attributes
• The objects that make up the set.

Creation
+ set Returns an empty set.
+ setWithArray: Returns a set containing a number of objects from an array.
+ setWithObject: Returns a set containing a single object.
+ setWithObjects: Returns a set containing a number of objects.
+ setWithObjects:count: Returns a set containing a specified number of objects.
+ setWithSet: Returns a set containing a number of objects from another set.

Commonly Used Methods
– allObjects Returns an array containing the set’s member objects.
– count Returns the number of objects in the set.
– containsObject: Indicates whether a given object is present in the set.

Primitive Methods
– count
– member:
– objectEnumerator

Class Description

The NSSet class declares the programmatic interface to an object that manages an immutable set of objects.
NSSet provides support for the mathematical concept of a set. A set, both in its mathematical sense and in
the implementation of NSSet, is an unordered collection of distinct elements. The NSMutableSet and
NSCountedSet classes are provided for sets whose contents may be altered.

4

 NSSet

NSSet provides methods for querying the elements of the set. allObjects returns an array containing the
objects in a set. anyObject returns some object in the set. count returns the number of objects currently in
the set. member: returns the object in the set that is equal to a specified object. Additionally, the
intersectsSet: tests for set intersection, isEqualToSet: tests for set equality, and isSubsetOfSet: tests for
one set being a subset of another.

The objectEnumerator method provides for traversing elements of the set one by one.

NSSet’s makeObjectsPerform: and makeObjectsPerform:withObject: methods provides for sending
messages to individual objects in the set.

Exceptions

NSSet implements the encodeWithCoder: method, which raises NSInternalInconsistencyException if the
number of objects enumerated for encoding turns out to be unequal to the number of objects in the set.

Adopted Protocols

NSCoding – encodeWithCoder:
– initWithCoder:

NSCopying – copyWithZone:

NSMutableCopying – mutableCopyWithZone:

Method Types

Creating a set + allocWithZone:
+ set
+ setWithArray:
+ setWithObject:
+ setWithObjects:
– initWithArray:
– initWithObjects:
– initWithObjects:count:
– initWithSet:
– initWithSet:copyItems:

Counting entries – count

5

Accessing the members – allObjects
– anyObject
– containsObject:
– makeObjectsPerform:
– makeObjectsPerform:withObject:
– member:
– objectEnumerator

Comparing sets – isSubsetOfSet:
– intersectsSet:
– isEqualToSet:

Describing a set – description
– descriptionWithLocale:

Class Methods

allocWithZone:
+ (id)allocWithZone:(NSZone *)zone

Creates and returns an uninitialized set in the specified zone. If the receiver is the NSSet class object, an
instance of an immutable private subclass is returned; otherwise, an object of the receiver’s class is returned.

Typically, you create temporary sets using the set... class methods, not the allocWithZone: and init...
methods. Note that it’s your responsibility to free objects created with the allocWithZone: method.

See also: + set, + setWithObject:, + setWithObjects:, + setWithArray:

set
+ (id)set

Creates and returns an empty set. This method is declared primarily for the use of mutable subclasses of
NSSet.

See also: + setWithArray: , + setWithObject:, + setWithObjects:

setWithArray:
+ (id)setWithArray: (NSArray *)anArray

Creates and returns a set containing those objects contained within the array anArray.

See also: + set, + setWithObject:, + setWithObjects:

6

 NSSet

setWithObject:
+ (id)setWithObject:(id)anObject

Creates and returns a set containing a single member, anObject. anObject receives a retain message after
being added to the set.

See also: + setWithArray: , + set, + setWithObjects:

setWithObjects:
+ (id)setWithObjects:(id)anObject, ...

Creates and returns a set containing the objects in the argument list. The argument list is a comma-separated
list of objects ending with nil .

As an example, the following code excerpt creates a set containing three different types of elements
(assuming aPath exits):

NSSet *mySet;

NSData *someData = [NSData dataWithContentsOfFile:aPath];

NSValue *aValue = [NSNumber numberWithInt:5];

NSString *aString = @”a string”;

mySet = [NSSet setWithObjects:someData, aValue, aString, nil];

See also: + setWithArray: , + set, + setWithObject:

setWithObjects:count:
+ (id)setWithObjects:(id *)objects count:(unsigned int)count

Creates and returns a set containing count objects from the list of objects specified by objects.

setWithSet:
+ (id)setWithArray: (NSSet *)aSet

Creates and returns a set containing those objects contained within the set aSet.

7

Instance Methods

allObjects
– (NSArray *)allObjects

Returns an array containing the receiver’s members, or an empty array if the receiver has no members. The
order of the objects in the array isn’t defined.

anyObject
– (id)anyObject

Returns one of the objects in the set (essentially chosen at random), or nil if the set contains no objects.

See also: – allObjects, –objectEnumerator

containsObject:
– (BOOL)containsObject:(id)anObject

Returns YES if anObject is present in the set, NO otherwise.

See also: – member:

count
– (unsigned int)count

Returns the number of members in the set.

description
– (NSString *)description

Returns a string object that represents the contents of the receiver, formatted as a property list.

See also: descriptionWithLocale:

8

 NSSet

descriptionWithLocale:
– (NSString *)descriptionWithLocale:(NSDictionary *)locale

Returns a string object that represents the contents of the receiver, formatted as a property list. locale
specifies options used for formatting each of the receiver’s members (each is sent descriptionWithLocale:,
and locale is passed along as the sole parameter); specify nil if you don’t want them formatted.

See also: description

hash
@protocol NSObject
– (unsigned int)hash

Returns an unsigned integer that can be used as a table address in a hash table structure. For a set, hash
returns the number of members in the set. If two sets are equal (as determined by the isEqual: method),
they will have the same hash value.

See also: – isEqual:

initWithArray:
– (id)initWithArray: (NSArray *)array

Initializes a newly allocated set with the objects that are contained in array. This method steps through
array, adding members to the new set as it goes. Each object receives a retain message as it is added to the
set. Returns self.

See also: – initWithObjects: , – initWithObjects:count: , – initWithSet:, – initWithSet:copyItems: ,
+setWithArray:

initWithObjects:
– (id)initWithObjects: (id)anObject...

Initializes a newly allocated set with members taken from the specified list of objects. initWithObjects:
takes a comma-separated list of objects terminated by nil . Each object receives a retain message as it is
added to the set. Returns self.

See also: – initWithArray: , – initWithObjects:count: , – initWithSet:, – initWithSet:copyItems: ,
+setWithObjects:

9

initWithObjects:count:
– (id)initWithObjects: (id *)objects count:(unsigned)count

Initializes a newly allocated set with count members. This method steps through the objects array, creating
members in the new set as it goes. Each object receives a retain message as it is added to the set. Returns
self.

See also: – initWithArray: , – initWithObjects: , – initWithSet:, – initWithSet:copyItems:

initWithSet:
– (id)initWithSet: (NSSet *)otherSet

Initializes a newly allocated set by placing in it the objects contained in otherSet. Each object is retained as
it is added to the receiver. Returns self.

See also: – initWithArray: , – initWithObjects: , – initWithObjects:count: , – initWithSet:copyItems:

initWithSet:copyItems:
– (id)initWithSet: (NSSet *)otherSet copyItems:(BOOL)flag

Initializes a newly allocated set and, if flag is NO, places in it the objects contained in otherSet. If flag is
YES, the members of otherSet are copied, and the copies are added to the receiver. (Note that
copyWithZone: is invoked in making these copies. Thus, the receiver’s new member objects may be
immutable, even though their counterparts in otherSet were mutable. Also, members must conform to the
NSCopying protocol)

This method returns self.

See also: – initWithArray: , – initWithObjects: , – initWithObjects:count: , – initWithSet:

intersectsSet:
– (BOOL)intersectsSet:(NSSet *)otherSet

Returns YES if at least one object in the receiver is also present in otherSet, NO otherwise.

See also: – isEqualToSet:, – isSubsetOfSet:

10

 NSSet

isEqual:
@protocol NSObject
– (BOOL)isEqual:(id)anObject

Returns YES if the receiver and anObject are equal; otherwise returns NO. A YES return value indicates
that the receiver and anObject both inherit from NSSet and contain the same contents (as determined by the
isEqualToSet: method).

See also: – isEqualToSet:

isEqualToSet:
– (BOOL)isEqualToSet:(NSSet *)otherSet

Compares the receiving set to otherSet. If the contents of otherSet are equal to the contents of the receiver,
this method returns YES. If not, it returns NO.

Two sets have equal contents if they each have the same number of members and if each member of one set
is present in the other.

See also: – intersectsSet:, – isEqual: (NSObject protocol), – isSubsetOfSet:

isSubsetOfSet:
– (BOOL)isSubsetOfSet:(NSSet *)otherSet

Returns YES if every object in the receiver is also present in otherSet, NO otherwise.

See also: – intersectsSet:, – isEqualToSet:

makeObjectsPerform:
– (void)makeObjectsPerform:(SEL)aSelector

Sends aSelector to each object in the set. The aSelector method must be one that takes no arguments. It
shouldn’t have the side effect of modifying this set. The messages are sent using the perform: method
declared in the NSObject protocol.

See also: – makeObjectsPerform:withObject:

11

makeObjectsPerform:withObject:
– (void)makeObjectsPerform:(SEL)aSelector withObject: (id)anObject

Sends aSelector to each object in the set. The message is sent each time with anObject as the argument, so
the aSelector method must be one that takes a single argument of type id. The aSelector method shouldn’t,
as a side effect, modify this set. The messages are sent using the perform:with: method declared in the
NSObject protocol.

See also: – makeObjectsPerform:

member:
– (id)member:(id)anObject

If anObject is present in the set (as determined by isEqual:), anObject is returned. Otherwise, member:
returns nil .

See also: – containsObject:

objectEnumerator
– (NSEnumerator *)objectEnumerator

Returns an enumerator object that lets you access each object in the set:

NSEnumerator *enumerator = [mySet objectEnumerator];

id value;

while ((value = [enumerator nextObject])) {

 /* code that acts on the set’s values */

}

When this method is used with mutable subclasses of NSSet, your code shouldn’t modify the set during
enumeration. If you intend to modify the set, use the allObjects method to create a “snapshot” of the set’s
members. Enumerate the snapshot, but make your modifications to the original set.

See also: – nextObject (NSEnumerator)

12

 NSMutableSet

NSMutableSet

Inherits From: NSSet : NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying (NSSet)
NSObject (NSObject)

Declared In: Foundation/NSSet.h

13

Class at a Glance

Purpose
An NSMutableSet object stores a modifiable set of objects.

Principal Attributes
• The objects that make up the set.

Creation
+ setWithCapacity: Returns An empty set with enough allocated memory to hold a

specified number of objects.

Commonly Used Methods
– addObject: Adds an object to the set, if it isn’t already a member.
– removeObject: Removes an object from the set.

Primitive Methods
– addObject:
– removeObject:

Class Description

The NSMutableSet class declares the programmatic interface to an object that manages a mutable set of
objects. NSMutableSet provides support for the mathematical concept of a set. A set, both in its
mathematical sense, and in the NSMutableSet implementation, is an unordered collection of distinct
elements. The NSCountedSet class, which is a concrete subclass of NSMutableSet, supports mutable sets
that can contain multiple instances of the same element. The NSSet class supports creating and managing
immutable sets.

Objects are added to an NSMutableSet with addObject:, which adds a single object to the set;
addObjectsFromArray: , which adds all objects from a specified array to the set; or with unionSet:, which
adds all the objects from another set.

14

 NSMutableSet

Objects are removed from an NSMutableSet using any of the methods intersectSet:, minusSet:,
removeAllObjects, or removeObject:.

Method Types

Creating an NSMutableSet + allocWithZone:
+ setWithCapacity:
– initWithCapacity:

Adding and removing entries – addObject:
– removeObject:
– removeAllObjects
– addObjectsFromArray:

Combining and recombining sets – unionSet:
– minusSet:
– intersectSet:
– setSet:

Class Methods

allocWithZone:
+ (id)allocWithZone:(NSZone *)zone

Creates and returns an uninitialized mutable set in the specified zone. If the receiver is the NSMutableSet
class object, an instance of a mutable private subclass is returned; otherwise, an object of the receiver’s class
is returned.

Typically, you create temporary sets using the set... class methods, not the allocWithZone: and init...
methods.

See also: + initWithCapacity: , + set (NSSet), + setWithObjects:count: (NSSet)

setWithCapacity:
+ (id)setWithCapacity:(unsigned)numItems

Creates and returns a mutable set, giving it enough allocated memory to hold numItems members. Mutable
sets allocate additional memory as needed, so numItems simply establishes the object’s initial capacity.

See also: – initWithCapacity: , + set (NSSet), +setWithObjects:count: (NSSet)

15

Instance Methods

addObject:
– (void)addObject:(id)anObject

Adds the specified object to the receiver if it is not already a member. anObject is sent a retain message as
it is added to the receiver. If anObject is already present in the set, this method has no effect on either the
set or on anObject.

See also: – addObjectsFromArray: , – unionSet:

addObjectsFromArray:
– (void)addObjectsFromArray: (NSArray *)anArray

Adds each object contained in anArray to the receiver, if that object is not already a member. The new
member is retained. If a given element of the array is already present in the set, this method has no effect
on either the set or on the array element.

See also: – addObject:, – unionSet:

initWithCapacity:
– (id)initWithCapacity: (unsigned)numItems

Initializes a newly allocated mutable set, giving it enough allocated memory to hold numItems members.
Mutable sets allocate additional memory as needed, so numItems simply establishes the object’s initial
capacity. Returns self.

See also: + setWithCapacity:

intersectSet:
– (void)intersectSet:(NSSet *)otherSet

Removes from the receiver each object that isn’t a member of otherSet. Each object that’s removed from
the receiver is sent a release message.

See also: – removeObject:, – removeAllObjects, – minusSet:

16

 NSMutableSet

minusSet:
– (void)minusSet:(NSSet *)otherSet

Removes from the receiver each object contained in otherSet that is also present in the receiver. Each object
that’s successfully removed from the receiver is sent a release message. If any member of otherSet isn’t
present in the receiving set, this method has no effect on either the receiver or on the otherSet member.

See also: – removeObject:, – removeAllObjects, – intersectSet:

removeAllObjects
– (void)removeAllObjects

Empties the set of all of its members. Each member is sent a release message.

See also: – removeObject:, – minusSet:, – intersectSet:

removeObject:
– (void)removeObject:(id)anObject

Removes anObject from the set. The removed object is sent a release message if it was a member of the
receiver.

See also: – removeAllObjects, – minusSet:, – intersectSet:

setSet:
– (void)setSet:(NSSet *)otherSet

Empties the receiver, then adds each object contained in otherSet to the receiver The new member is sent a
retain message as it is added to the receiver.

unionSet:
– (void)unionSet:(NSSet *)otherSet

Adds each object contained in otherSet to the receiver, if that object is not already a member. The new
member is sent a retain message as it is added to the receiver. If any member of otherSet is already present
in the receiver, this method has no effect on either the receiver or on the otherSet member.

See also: – addObject:, – addObjectsFromArray:

