
1

NSArray Class Cluster

Class Cluster Description

The NSArray class clusters manage arrays of objects. The cluster’s two public classes, NSArray and 
NSMutableArray, declare the programmatic interface for static and dynamic arrays, respectively. 

The objects you create using these classes are referred to as arrays. Because of the nature of class clusters, 
arrays are not actual instances of the NSArray or NSMutableArray classes but of one of their private 
subclasses. Although an array’s class is private, its interface is public, as declared by these abstract 
superclasses, NSArray and NSMutableArray.

Generally, you instantiate an array by sending one of the array... messages to either the NSArray or 
NSMutableArray class object. These methods return an array containing the elements you pass in as 
arguments. (Note that arrays can’t contain the nil  object.) In general, objects that you add to an array aren’t 
copied; rather, each object receives a retain message before its id is added to the array. When an object is 
removed from an array, it’s sent a release message.

The NSArray class adopts the NSCopying and NSMutableCopying protocols, making it convenient to 
convert an array of one type to the other.



2

 NSArray

NSArray

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject) 

Declared In: Foundation/NSArray.h



3

Class at a Glance


Purpose
An NSArray stores an immutable array of objects.

Principal Attributes
• A count of the number of objects in the array.
• The set of objects contained in the array.

Creation
+ array Returns an empty array.
+ arrayWithArray: Returns an array containing the elements from another array.
+ arrayWithContentsOfFile: Returns an array initialized from the contents of a file.
+ arrayWithObject: Returns an array containing a single object.
+ arrayWithObjects: Returns an array containing multiple objects.
+ arrayWithObjects:count: Returns an array containing a specified number of objects.

Commonly Used Methods
– count: Returns the number of objects currently in the array.
– objectAtIndex: Returns the object located at the specified index.

Primitive Methods
– count
– objectAtIndex:

Class Description

NSArray declares the programmatic interface to an object that manages an unchanging array of objects. 
NSArray’s two primitive methods—count and objectAtIndex:—provide the basis for all other methods in 
its interface. The count method returns the number of elements in the array. objectAtIndex: gives you 
access to the array elements by index, with index values starting at 0. 



4

 NSArray

The methods objectEnumerator and reverseObjectEnumerator also grant sequential access to the 
elements of the array, differing only in the direction of travel through the elements. These methods are 
provided so that arrays can be traversed in a manner similar to that used for objects of other collection 
classes such as NSDictionary. See the objectEnumerator method description for a code exerpt that shows 
how to use these methods to access the elements of an array.

NSArray provides methods for querying the elements of the array. indexOfObject: searches the array for 
the object that matches its argument. To determine whether the search is successful, each element of the 
array is sent an isEqual: message, as declared in the NSObject protocol. Another method, 
indexOfObjectIdenticalTo: , is provided for the less common case of determining whether a specific object 
is present in the array. indexOfObjectIdenticalTo:  tests each element in the array to see whether its id 
matches that of the argument.

NSArray’s makeObjectsPerform: and makeObjectsPerform:withObject: methods let you send messages 
to all objects in the array. To act on the array as a whole, a variety of other methods are defined. You can 
create a sorted version of the array (sortedArrayUsingSelector: and 
sortedArrayUsingFunction:context:), extract a subset of the array (subarrayWithRange:), or 
concatenate the elements of an array of NSStrings into a single string (componentsJoinedByString:). In 
addition, you can compare two arrays using the isEqualToArray:  and firstObjectCommonWithArray:  
methods. Finally, you can create new arrays that contain the objects in an existing array and one or more 
additional objects with arrayByAddingObject:  and arrayByAddingObjectsFromArray: .

Adopted Protocols

NSCoding – encodeWithCoder:
– initWithCoder:

NSCopying – copyWithZone:

NSMutableCopying – mutableCopyWithZone:



5

Method Types

Creating an array + allocWithZone
+ array
+ arrayWithArray:
+ arrayWithContentsOfFile:
+ arrayWithObject:
+ arrayWithObjects:
+ arrayWithObjects:count:
– initWithArray:
– initWithContentsOfFile:
– initWithObjects:
– initWithObjects:count:

Querying the array – containsObject:
– count 
– getObjects:
– getObjects:range:
– indexOfObject:
– indexOfObject:inRange:
– indexOfObjectIdenticalTo:
– indexOfObjectIdenticalTo:inRange:
– lastObject
– objectAtIndex: 
– objectEnumerator
– reverseObjectEnumerator

Sending messages to elements – makeObjectsPerform:
– makeObjectsPerform:withObject:

Comparing arrays – firstObjectCommonWithArray:
– isEqualToArray:

Deriving new arrays – arrayByAddingObject:
– arrayByAddingObjectsFromArray:
– sortedArrayHint
– sortedArrayUsingFunction:context:
– sortedArrayUsingFunction:context:hint:
– sortedArrayUsingSelector:
– subarrayWithRange:

Working with string elements – componentsJoinedByString:
– pathsMatchingExtensions:



6

 NSArray

Creating a description of the array – description
– descriptionWithLocale:
– descriptionWithLocale:indent:
– writeToFile:atomically:

Class Methods

allocWithZone:
+ (id)allocWithZone:(NSZone *)zone

Creates and returns an uninitialized array in the specified zone. If the receiver is the NSArray class object, 
an instance of an immutable private subclass is returned; otherwise, an object of the receiver’s class is 
returned. 

Typically, you create temporary arrays using the array... class methods, not the allocWithZone: and init... 
methods. Note that it’s your responsibility to free objects created with the allocWithZone: method.

array
+ (id)array

Creates and returns an empty array. This method is used by mutable subclasses of NSArray.

See also: + arrayWithObject: , + arrayWithObjects:

arrayWithArray:
+ (id)arrayWithArray:(NSArray *)anArray

Creates and returns an array containing the objects in anArray.

See also: + arrayWithObjects: , – initWithObjects:

arrayWithContentsOfFile:
+ (id)arrayWithContentsOfFile: (NSString *)aPath

Creates and returns an array containing the contents of the file specified by aPath. Returns self, or nil  if the 
file can’t be opened or if the contents of the file (which should be in property list format) can’t be parsed 
into an array.

See also: – writeToFile:atomically:



7

arrayWithObject:
+ (id)arrayWithObject: (id)anObject

Creates and returns an array containing the single element anObject.

See also: + array, + arrayWithObjects:

arrayWithObjects:
+ (id)arrayWithObjects: (id)firstObj, ...

Creates and returns an array containing the objects in the argument list. The argument list is a 
comma-separated list of objects ending with nil . 

This code example creates an array containing three different types of elements (assuming aPath exists):

NSArray *myArray;

NSData *someData = [NSData dataWithContentsOfFile:aPath];  

NSValue *aValue = [NSNumber numberWithInt:5]; 

NSString *aString = @"a string";

myArray = [NSArray arrayWithObjects:someData, aValue, aString, nil];

See also: + array, + arrayWithObject:

arrayWithObjects:count:
+ (id)arrayWithObjects: (id *)objects count:(unsigned)count

Creates and returns an array containing count objects from objects.

See also: – getObjects:, –getObjects:range:

Instance Methods

arrayByAddingObject:
– (NSArray *)arrayByAddingObject: (id)anObject

Returns a new array that is a copy of the receiver with anObject added to the end. Since anObject is added 
to the array, it receives a retain message. If anObject is nil , an NSInvalidArgumentException is raised.

See also: – addObject: (NSMutableArray)



8

 NSArray

arrayByAddingObjectsFromArray:
– (NSArray *)arrayByAddingObjectsFromArray: (NSArray *)otherArray

Returns a new array that is a copy of the receiver with the objects contained in otherArray added to the end.

See also: – addObjectsFromArray:  (NSMutableArray)

componentsJoinedByString:
– (NSString *)componentsJoinedByString:(NSString *)separator

Constructs and returns an NSString that is the result of interposing separator between the elements of the 
receiver’s array. For example, this code excerpt causes myTextObject to display the path 
/NextDeveloper/Examples (assuming stream exists): 

NSArray *pathArray = [NSArray arrayWithObjects:@"NextDeveloper", 

    @"Examples", nil];

NSLog("The path is /%@.\n", 

[pathArray componentsJoinedByString:@"/"]);

[myTextObject readText:stream];

Each element of the receiver’s array must be an NSString or an error occurs. If the receiver has no elements, 
an NSString representing an empty string is returned.

See also: – componentsSeparatedByString: (NSString)

containsObject:
– (BOOL)containsObject:(id)anObject

Returns YES if anObject is present in the array. This method compares each object in the array to anObject 
by sending them each an isEqual: message.

See also: – indexOfObject:, – indexOfObjectIdenticalTo: , – isEqual: (NSObject)

count
– (unsigned int)count

Returns the number of objects currently in the array.

See also: – objectAtIndex:



9

description
@protocol NSObject
– (NSString *)description

Returns a string that represents the contents of the receiver, formatted as a property list.

See also: – descriptionWithLocale:, – descriptionWithLocale:indent:

descriptionWithLocale:
– (NSString *)descriptionWithLocale:(NSDictionary *)locale

Returns a string that represents the contents of the receiver, formatted as a property list. locale specifies 
options used for formatting each of the receiver’s elements (where recognized); specify nil  if you don’t want 
the elements formatted.

For a description of how locale is applied to each element in the receiving array, see 
descriptionWithLocale:indent: .

See also: – description, – descriptionWithLocale:indent:

descriptionWithLocale:indent:
– (NSString *)descriptionWithLocale:(NSDictionary *)locale indent:(unsigned int)level

Returns a string that represents the contents of the receiver, formatted as a property list. locale specifies 
options used for formatting each of the receiver’s elements; specify nil  if you don’t want the elements 
formatted. level allows you to specify a level of indent, to make the output more readable: set level to 0 to 
use four spaces to indent, or 1 to indent the output with a tab character.

The returned NSString contains the string representations of each of the receiver’s elements, in order, from 
first to last. To obtain the string representation of a given element, descriptionWithLocale:indent:  
proceeds as follows:

• If the element is an NSString, it is used as is.

• If the element responds to descriptionWithLocale:indent: , that method is invoked to obtain the 
element’s string representation.

• If the element responds to descriptionWithLocale:, that method is invoked to obtain the element’s string 
representation.

• If none of the above conditions are met, the element’s string representation is obtained by invoking its 
description method.

See also: – description, – descriptionWithLocale:



10

 NSArray

firstObjectCommonWithArray:
– (id)firstObjectCommonWithArray: (NSArray *)otherArray

Returns the first object contained in the receiver that’s equal to an object in otherArray. If no such object is 
found, this method returns nil . This method uses isEqual: to check for object equality. 

See also: – containsObject:, – isEqual: (NSObject)

getObjects:
– (void)getObjects:(id *)aBuffer

Copies the objects contained in the receiver to aBuffer.

See also: + arrayWithObjects:count:

getObjects:range:
– (void)getObjects:(id *)aBuffer range:(NSRange)aRange

Copies the objects contained in the receiver that fall within the specified range to aBuffer.

See also: + arrayWithObjects:count:

hash
@protocol NSObject
– (unsigned int)hash

Returns an unsigned integer that can be used as a table address in a hash table structure. For an array, hash 
returns the number of elements in the array. If two arrays are equal (as determined by the isEqual: method), 
they will have the same hash value.

See also: – isEqual: (NSObject)

indexOfObject:
– (unsigned int)indexOfObject:(id)anObject

Searches the receiver for anObject and returns the lowest index whose corresponding array value is equal 
to anObject. Objects are considered equal if they have the same id or if isEqual: returns YES. If none of 
the objects in the receiver are equal to anObject, indexOfObject: returns NSNotFound.

See also: – containsObject:, – indexOfObjectIdenticalTo: , – isEqual: (NSObject)



11

indexOfObject:inRange:
– (unsigned)indexOfObject:(id)anObject inRange:(NSRange)aRange

Searches the specified range within the receiver for anObject and returns the lowest index whose 
corresponding array value is equal to anObject. Objects are considered equal if they have the same id or if 
isEqual: returns YES. If none of the objects in the specified range are equal to anObject, indexOfObject: 
returns NSNotFound.

See also: – containsObject:, – indexOfObjectIdenticalTo: , – isEqual: (NSObject)

indexOfObjectIdenticalTo:
– (unsigned int)indexOfObjectIdenticalTo:(id)anObject

Searches the receiver for anObject (testing for equality by comparing object ids) and returns the lowest 
index whose corresponding array value is equal to anObject. If none of the objects in the receiver are equal 
to anObject, indexOfObject: returns NSNotFound.

See also: – containsObject:, – indexOfObject:, – isEqual: (NSObject)

indexOfObjectIdenticalTo:inRange:
– (unsigned)indexOfObjectIdenticalTo: (id)anObject inRange:(NSRange)aRange

Searches the specified range within the receiver for anObject (testing for equality by comparing object ids) 
and returns the lowest index whose corresponding array value is equal to anObject. If none of the objects 
in the specified range are equal to anObject, indexOfObject: returns NSNotFound.

See also: – containsObject:, – indexOfObject:, – isEqual: (NSObject)

initWithArray:
– (id)initWithArray: (NSArray *)anArray

Initializes a newly allocated array by placing in it the objects contained in array. Each object in array 
receives a retain message as it’s added to the array. After an immutable array has been initialized in this 
way, it can’t be modified. Returns self.

See also: + arrayWithObject: , – initWithObjects:



12

 NSArray

initWithContentsOfFile:
– initWithContentsOfFile: (NSString *)aPath

Initializes a newly allocated array by placing in it the contents of the file specified by aPath. Returns self, 
or nil  if the file can’t be opened or if the contents of the file (which should be in property list format) can’t 
be parsed into an array.

See also: – writeToFile:atomically:

initWithObjects:
– (id)initWithObjects: (id)firstObj, ...

Initializes a newly allocated array by placing in it the objects in the argument list. This list is a 
comma-separated list of objects ending with nil . Objects are retained as they’re added to the array. After an 
immutable array has been initialized in this way, it can’t be modified. Returns self.

See also: – initWithObjects:count: , + arrayWithObjects: , – initWithArray:

initWithObjects:count:
– (id)initWithObjects: (id *)objects count:(unsigned int)count

Initializes a newly allocated array by placing in it count objects from the objects array. Each object in the 
objects array receives a retain message as it’s added to the array. After an immutable array has been 
initialized in this way, it can’t be modified. Returns self.

See also: – initWithObjects: , + arrayWithObjects: , – initWithArray:

isEqual:
@protocol NSObject
– (BOOL)isEqual:(id)anObject

Returns YES if the receiver and anObject are equal; otherwise returns NO. A YES return value indicates 
that the receiver and anObject are both instances of classes that inherit from NSArray and that they both 
contain the same objects (as determined by the isEqualToArray:  method).

See also: – isEqualToArray:



13

isEqualToArray:
– (BOOL)isEqualToArray: (NSArray *)otherArray

Compares the receiving array to otherArray. If the contents of otherArray are equal to the contents of the 
receiver, this method returns YES. If not, it returns NO.

Two arrays have equal contents if they each hold the same number of objects and objects at a given index 
in each array satisfy the isEqual: test.

See also:  – isEqual: (NSObject)

lastObject
– (id)lastObject

Returns the object in the array with the highest index value. If the array is empty, lastObject returns nil . 

See also: – removeLastObject

makeObjectsPerform:
– (void)makeObjectsPerform:(SEL)aSelector

Sends the aSelector message to each object in the array in reverse order (starting with the last object and 
continuing backwards through the array to the first object). The aSelector method must be one that takes no 
arguments. It shouldn’t have the side effect of modifying the receiving array. The messages are sent using 
the perform:  method declared in the NSObject protocol. 

See also:  – makeObjectsPerform:withObject:, – perform: (NSObject)

makeObjectsPerform:withObject:
– (void)makeObjectsPerform:(SEL)aSelector withObject: (id)anObject

Sends the aSelector message to each object in the array in reverse order (starting with the last object and 
continuing backwards through the array to the first object). The message is sent each time with anObject as 
an argument, so the aSelector method must be one that takes a single argument of type id. The aSelector 
method shouldn’t, as a side effect, modify the receiving array. The messages are sent using the 
perform:with:  method declared in the NSObject protocol. 

See also: – makeObjectsPerform:, – perform:withObject: (NSObject)



14

 NSArray

objectAtIndex:
– (id)objectAtIndex:(unsigned int)index

Returns the object located at index. If index is beyond the end of the array (that is, if index is greater than or 
equal to the value returned by count), an NSRangeException is raised.

See also: – count

objectEnumerator
– (NSEnumerator *)objectEnumerator

Returns an enumerator object that lets you access each object in the array, in order, starting with the element 
at index 0, as in:

NSEnumerator *enumerator = [myArray objectEnumerator];

id anObject;

while ((anObject = [enumerator nextObject])) {

     /*  code to act on each element as it is returned */

}

When this method is used with mutable subclasses of NSArray, your code shouldn’t modify the array 
during enumeration.

See also: – reverseObjectEnumerator, – nextObject (NSEnumerator)

pathsMatchingExtensions:
– (NSArray *)pathsMatchingExtensions:(NSArray *)filterTypes

Returns a new array that contains those string objects in the receiver that have a filename extension (as 
determined by NSString’s pathExtension method) that matches one of the extensions in filterTypes. 
filterTypes should be an array of NSStrings, each of which identifies a filename extension to be matched 
(such as “tiff” or “eps”). Filenames that don’t have an extension aren’t included in the result. This method 
can be used to identify those files with a particular extension (or set of extensions) within a directory.

reverseObjectEnumerator
– (NSEnumerator *)reverseObjectEnumerator

Returns an enumerator object that lets you access each object in the array, in order, from the element at the 
highest index down to the element at index 0. Your code shouldn’t modify the array during enumeration. 

See also: – objectEnumerator, – nextObject (NSEnumerator)



15

sortedArrayHint
– (NSData *)sortedArrayHint

Analyzes the receiver and returns a “hint” that speeds the sorting of the array when the hint is supplied to 
sortedArrayUsingFunction:context:hint: .

sortedArrayUsingFunction:context:
– (NSArray *)sortedArrayUsingFunction:(int(*)(id, id, void *))comparator context:(void *)context

Returns a new array that lists the receiver’s elements in ascending order as defined by the comparison 
function comparator. The new array contains references to the receiver’s elements, not copies of them. The 
retain count is incremented for each element in the receiving array.

The comparison function is used to compare two elements at a time and should return 
NSOrderedAscending if the first element is smaller than the second, NSOrderedDescending if the first 
element is larger than the second, and NSOrderedSame if the elements are equal. Each time the comparison 
function is called, it’s passed context as its third argument. This allows the comparison to be based on some 
outside parameter, such as whether character sorting is case-sensitive or case-insensitive.

Given anArray (an array of NSNumber objects) and a comparison function of this type:

int intSort(id num1, id num2, void *context)

{

    int v1 = [num1 intValue];

    int v2 = [num2 intValue];

if (v1 < v2)

return NSOrderedAscending;

else if (v1 > v2)

return NSOrderedDescending;

else

return NSOrderedSame;

}

A sorted version of anArray is created in this way:

NSArray *sortedArray;

sortedArray = [anArray sortedArrayUsingFunction:intSort

context:NULL];

See also: – sortedArrayUsingSelector:



16

 NSArray

sortedArrayUsingFunction:context:hint:
– (NSArray *)sortedArrayUsingFunction:(int (*)(id, id, void *))compare context:(void *)context 

hint: (NSData *)hint

Similar to sortedArrayUsingFunction:context:, except that it uses the supplied hint to speed the sorting 
process. To obtain an appropriate hint, use sortedArrayHint . When you know that the array is nearly 
sorted, this method is faster than sortedArrayUsingFunction:context:.

sortedArrayUsingSelector:
– (NSArray *)sortedArrayUsingSelector:(SEL)comparator

Returns an array that lists the receiver’s elements in ascending order, as determined by the comparison 
method specified by the selector comparator. The new array contains references to the receiver’s elements, 
not copies of them. The retain count is incremented for each element in the receiving array.

The comparator message is sent to each object in the array, and has as its single argument another object in 
the array. The comparator method is used to compare two elements at a time and should return 
NSOrderedAscending if the receiver is smaller than the argument, NSOrderedDescending if the receiver is 
larger than the argument, and NSOrderedSame if they are equal.

For example, an array of NSStrings can be sorted by using the compare: method declared in the NSString 
class. Assuming anArray exists, a sorted version of the array can be created in this way:

NSArray *sortedArray = [anArray sortedArrayUsingSelector:@selector(compare:)];

See also: – sortedArrayUsingFunction:context:

subarrayWithRange:
– (NSArray *)subarrayWithRange:(NSRange)range

Returns a new array containing the receiver’s elements that fall within the limits specified by range. If range 
isn’t within the receiver’s range of elements, an NSRangeException is raised. Each object receives a retain 
message as it’s added to the array.

For example, the following code example creates an array containing the elements found in the first half of 
wholeArray (assuming that wholeArray exists).

NSArray *halfArray;

NSRange theRange;

theRange.location = 0;

theRange.length = [wholeArray count] / 2;

halfArray = [wholeArray subarrayWithRange:theRange];



17

writeToFile:atomically:
– (BOOL)writeToFile: (NSString *)path atomically:(BOOL)flag

Writes the contents of the receiver to the file specified by path. path must be an absolute path name.

If flag is YES, the array is written to an auxiliary file, and then the auxiliary file is renamed to path. If flag 
is NO, the array is written directly to path. The YES option guarantees that path, if it exists at all, won’t be 
corrupted even if the system should crash during writing.

This method returns YES if the file is written successfully, and NO otherwise.

See also: – initWithContentsOfFile:



18

 NSMutableArray

NSMutableArray

Inherits From: NSArray : NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying (NSArray) 
NSObject (NSObject) 

Declared In: Foundation/NSArray.h



19

Class at a Glance


Purpose
An NSMutableArray stores a modifiable array of objects. 

Principal Attributes
• A count of the number of objects in the array.
• The set of objects contained in the array.

Creation
+ arrayWithCapacity: An empty array with enough allocated memory to hold a specified 

number of objects

Commonly Used Methods
– insertObject:atIndex: Inserts an object at a specified index.
– removeObject: Removes all occurrences of an object.
– removeObjectAtIndex: Removes the object at a given index.
– replaceObjectAtIndex:withObject: Replaces the object at a given index.

Primitive Methods
– addObject:
– replaceObjectAtIndex:withObject:
– removeLastObject

Class Description

The NSMutableArray class declares the programmatic interface to objects that manage a modifiable array 
of objects. This class adds insertion and deletion operations to the basic array-handling behavior inherited 
from NSArray. 



20

 NSMutableArray

NSMutableArray methods are conceptually based on these three primitive methods:

addObject:
replaceObjectAtIndex:withObject:
removeLastObject

The other methods in its interface provide convenient ways of inserting an object into a specific slot in the 
array and removing an object based on its identity or position in the array.

When an object is removed from a mutable array, it receives a release message. If there are no further 
references to the object, the object is deallocated. Note that if your program keeps a reference to such an 
object, the reference will become invalid unless you remember to send the object a retain message before 
it’s removed from the array. For example, if anObject isn’t retained before removing it from the array, the 
third statement below could result in a run-time error:

id anObject = [[anArray objectAtIndex:0] retain];

[anArray removeObjectAtIndex:0];

[anObject someMessage];

A Note for Those Creating Subclasses of NSMutableArray

Although conceptually the NSMutableArray class has three primitive methods, two others also access the 
array’s data directly. These methods are:

insertObject:atIndex:
removeObjectAtIndex:

These methods could be implemented using the primitives listed above but doing so would incur 
unnecessary overhead. For instance, objects would receive retain and release messages as they were shifted 
to accommodate the insertion or deletion of an element. 

Method Types

Creating an NSMutableArray + arrayWithCapacity:
– initWithCapacity:

Adding and replacing objects – addObject: 
– addObjectsFromArray:
– insertObject:atIndex:
– replaceObjectAtIndex:withObject:
– replaceObjectsInRange:withObjectsFromArray:
– replaceObjectsInRange:withObjectsFromArray:range:
– setArray:



21

Removing objects – removeAllObjects
– removeLastObject 
– removeObject:
– removeObject:inRange:
– removeObjectAtIndex:
– removeObjectIdenticalTo:
– removeObjectIdenticalTo:inRange:
– removeObjectsFromIndices:numIndices:
– removeObjectsInArray:
– removeObjectsInRange:

Rearranging objects – sortUsingFunction:context:
– sortUsingSelector:

Class Methods

arrayWithCapacity:
+ (id)arrayWithCapacity: (unsigned int)numItems

Creates and returns an NSMutableArray, giving it enough allocated memory to hold numItems objects. 
NSMutableArrays expand as needed, so numItems simply establishes the object’s initial capacity. 

See also: – initWithCapacity:

Instance Methods

addObject:
– (void)addObject:(id)anObject

Inserts anObject at the end of the receiver. The object receives a retain message as it’s added to the array. 
If anObject is nil , an NSInvalidArgumentException is raised.

See also: – addObjectsFromArray: , – removeObject:, –setArray:

addObjectsFromArray:
– (void)addObjectsFromArray: (NSArray *)otherArray

Adds the objects contained in otherArray to the end of the receiver’s array of objects.

See also: setArray: , – removeObject:



22

 NSMutableArray

initWithCapacity:
– (id)initWithCapacity: (unsigned int)numItems

Initializes a newly allocated array, giving it enough memory to hold numItems objects. Mutable arrays 
expand as needed, so numItems simply establishes the object’s initial capacity. Returns self.

See also: – arrayWithCapacity:

insertObject:atIndex:
– (void)insertObject:(id)anObject atIndex:(unsigned int)index

Inserts anObject into the receiver at index. If index is already occupied, the objects at index and beyond are 
shifted down one slot to make room. index cannot be greater than the number of elements in the array. 
anObject receives a retain message as it’s added to the array. This method raises an 
NSInvalidArgumentException if anObject is nil  and raises an NSRangeException if index is greater than 
the number of elements in the array.

Note that NSArrays are not like C arrays. That is, even though you do an “initWithCapacity:,” the specified 
capacity is regarded as a “hint”; the actual size of the array is still 0. Because of this, you can only insert 
new objects in ascending order—with no gaps. Once you add two objects, the array's size is 2, so you can 
add objects at indexes 0, 1, or 2. Index 3 is illegal and out of bounds; if you try to add an object at index 3 
(when the size of the array is 2), NSMutableArray raises an exception.

See also: – removeObjectAtIndex:

removeAllObjects
– (void)removeAllObjects

Empties the receiver of all its elements. Each removed object is sent a release message.

See also: – removeObject:, – removeLastObject, – removeObjectAtIndex:, 
– removeObjectIdenticalTo:

removeLastObject
– (void)removeLastObject

Removes the object with the highest-valued index in the array and sends it a release message. 
removeLastObject raises an NSRangeException if there are no objects in the array.

See also: – removeAllObjects, – removeObject:, – removeObjectAtIndex:, 
– removeObjectIdenticalTo:



23

removeObject:
– (void)removeObject:(id)anObject

Removes all occurrences of anObject in the array. This method uses indexOfObject: to locate matches and 
then removes them by using removeObjectAtIndex:. Thus, matches are determined on the basis of an 
object’s response to the isEqual: message.

See also: – removeAllObjects, – removeLastObject, – removeObjectAtIndex:, 
– removeObjectIdenticalTo:, – removeObjectsInArray:

removeObject:inRange:
– (void)removeObject:(id)anObject inRange:(NSRange)aRange

Removes all occurrences of anObject within the specified range in the array. Matches are determined on the 
basis of an object’s response to the isEqual: message and by comparing ids.

See also: – removeAllObjects, – removeLastObject, – removeObjectAtIndex:, 
– removeObjectIdenticalTo:, – removeObjectsInArray:

removeObjectAtIndex:
– (void)removeObjectAtIndex:(unsigned int)index

Removes the object at index and moves all elements beyond index up one slot to fill the gap. The removed 
object receives a release message. This method raises an NSRangeException if index is beyond the end of 
the array.

See also: – insertObjectAtIndex: , – removeAllObjects, – removeLastObject, – removeObject:, 
– removeObjectIdenticalTo:, – removeObjectsFromIndices:numIndices:

removeObjectIdenticalTo:
– (void)removeObjectIdenticalTo:(id)anObject

Removes all occurrences of anObject in the array. This method uses the indexOfObjectIdenticalTo:  
method to locate matches and then removes them by using removeObjectAtIndex:. Thus, matches are 
determined on the basis of an object’s id.

See also: – removeAllObjects, – removeLastObject, – removeObject:, – removeObjectAtIndex:



24

 NSMutableArray

removeObjectIdenticalTo:inRange:
– (void)removeObjectIdenticalTo:(id)anObject inRange:(NSRange)aRange

Removes all occurrences of anObject within the specified range in the array. Matches are determined by 
comparing object ids.

See also: – removeAllObjects, – removeLastObject, – removeObject:, – removeObjectAtIndex:

removeObjectsFromIndices:numIndices:
– (void)removeObjectsFromIndices:(unsigned int *)indices numIndices:(unsigned int)count

This method is similar to removeObjectAtIndex:, but allows you to efficiently remove multiple objects 
with a single operation. count indicates the number of objects to be removed, while indices points to the 
first in a list of indexes. Note that if you sort the list of indexes in ascending order, you will improve the 
speed of this operation.

This method does not distribute and therefore should be used sparingly.

See also: – insertObjectAtIndex: , – removeObjectAtIndex:, – removeObjectsInRange:

removeObjectsInArray:
– (void)removeObjectsInArray:(NSArray *)otherArray

This method is similar to removeObject:, but allows you to efficiently remove large sets of objects with a 
single operation. It assumes that all elements in otherArray—which are the objects to be removed—respond 
to hash and isEqual:.

This method does not distribute and therefore should be used sparingly.

See also: – removeAllObjects, – removeObjectIdenticalTo:

removeObjectsInRange:
– (void)removeObjectsInRange:(NSRange)aRange

Removes each of the objects within the specified range in the receiver using removeObjectAtIndex:.

replaceObjectAtIndex:withObject:
– (void)replaceObjectAtIndex:(unsigned int)index withObject: (id)anObject

Replaces the object at index with anObject. anObject receives a retain message as it’s added to the array, 
and the previous object at index receives a release message. This method raises an 



25

NSInvalidArgumentException if anObject is nil  and raises an NSRangeException if index is beyond the end 
of the array.

See also: – insertObjectAtIndex: , – removeObjectAtIndex:

replaceObjectsInRange:withObjectsFromArray:
– (void)replaceObjectsInRange:(NSRange)aRange 

withObjectsFromArray: (NSArray *)otherArray

Replaces the objects in the receiver specified by aRange with all of the objects from otherArray. If 
otherArray has fewer objects than are specified by aRange, the extra objects in the receiver are removed. If 
otherArray has more objects than are specified by aRange, the extra objects from otherArray are inserted 
into the receiver.

See also: – insertObject:atIndex: , – removeObjectAtIndex:, – replaceObjectAtIndex:withObject:

replaceObjectsInRange:withObjectsFromArray:range:
– (void)replaceObjectsInRange:(NSRange)aRange 

withObjectsFromArray: (NSArray *)otherArray range:(NSRange)otherRange

Replaces the objects in the receiver specified by aRange with the objects in otherArray specified by 
otherRange. aRange and otherRange don’t have to be equal; if aRange is greater than otherRange, the extra 
objects in the receiver are removed. If otherRange is greater than aRange, the extra objects from otherArray 
are inserted into the receiver.

See also: – insertObject:atIndex: , – removeObjectAtIndex:, – replaceObjectAtIndex:withObject:

setArray:
– (void)setArray:(NSArray *)otherArray

Sets the receiver’s elements to those in otherArray. Shortens the receiver, if necessary, so that it contains no 
more than the number of elements in otherArray. Replaces existing elements in the receiver with the 
elements in otherArray, releasing those objects that are being replaced and retaining those objects that are 
replacing them. Finally, if there are more elements in otherArray than there are in the receiver, the additional 
items are then added (and retain is sent to each object as it is added to the receiver).

See also: – addObjectsFromArray:, – replaceObjectAtIndex:withObject:



26

 NSMutableArray

sortUsingFunction:context:
– (void)sortUsingFunction:(int (*)(id, id, void *))compare context:(void *)context

Sorts the receiver’s elements in ascending order as defined by the comparison function compare. The 
comparison function is used to compare two elements at a time and should return NSOrderedAscending if 
the first element is smaller than the second, NSOrderedDescending if the first element is larger than the 
second, and NSOrderedSame if the elements are equal. Each time the comparison function is called, it’s 
passed context as its third argument. This allows the comparison to be based on some outside parameter, 
such as whether character sorting is case-sensitive or case-insensitive.

See also: – sortUsingSelector:, – sortedArrayUsingFunction:context: (NSArray)

sortUsingSelector:
– (void)sortUsingSelector:(SEL)comparator

Sorts the receiver’s elements in ascending order, as determined by the comparison method specified by the 
selector comparator. The comparator message is sent to each object in the array, and has as its single 
argument another object in the array. The comparator method is used to compare two elements at a time and 
should return NSOrderedAscending if the receiver is smaller than the argument, NSOrderedDescending if 
the receiver is larger than the argument, and NSOrderedSame if they are equal.

See also: – sortUsingFunction:context:, – sortedArrayUsingSelector: (NSArray)


