
1

NSProxy

Inherits From: none(NSProxy is a root class)

Conforms To: NSObject

Declared In: Foundation/NSProxy.h

Class Description

NSProxy is an abstract superclass defining an API for objects that act as stand-ins for other objects or for
objects that don’t exist yet. Typically, a message to a proxy is forwarded to the real object, or causes the
proxy to load (or transform itself into) the real object. Subclasses of NSProxy can be used to implement
transparent distributed messaging (for example, NSDistantObject) or for lazy instantiation of objects that
are expensive to create.

NSProxy implements the basic methods required of a root class, including those defined in the NSObject
protocol. However, as an abstract class it doesn’t provide an initialization method, and it raises an exception
upon receiving any message it doesn’t respond to. A concrete subclass must therefore provide an
initialization or creation method and override the forwardInvocation: and methodSignatureForSelector:
methods to handle messages that it doesn’t implement itself. A subclass’s implementation of
forwardInvocation: should do whatever is needed to process the invocation, such as forwarding the
invocation over the network or loading the real object and passing it the invocation.
methodSignatureForSelector: is required to provide argument type information for a given message; a
subclass’s implementation should be able to determine the argument types for the messages it needs to
forward and should construct an NSMethodSignature accordingly. See the NSDistantObject, NSInvocation,
and NSMethodSignature class specifications for more information.

2

 NSProxy

Adopted Protocols

NSObject – autorelease
– class
– conformsToProtocol:
– description
– hash
– isEqual:
– isKindOfClass:
– isMemberOfClass:
– isProxy
– perform:
– perform:withObject:
– perform:withObject:withObject:
– release
– respondsToSelector:
– retain
– retainCount
– self
– superclass
– zone

Method Types

Creating instances + alloc
+ allocWithZone:

Deallocating instances – dealloc

Getting the class + class

Handling unimplemented methods – forwardInvocation:
– methodSignatureForSelector:

Getting a description – description

Class Methods

alloc
+ (id)alloc

Returns a new instance of the receiving class, as described in the NSObject class specification under the
alloc class method.

3

allocWithZone:
+ (id)allocWithZone:(NSZone *)zone

Returns a new instance of the receiving class, as described in the NSObject class specification under the
allocWithZone: class method.

class
+ (Class)class

Returns self. Since this is a class method, it returns the class object.

See also: + class(NSObject), –class (NSObject protocol)

load
+ (void)load

This method is invoked whenever a class or category is added to the Objective-C runtime; implement this
method to perform class-specific behavior upon loading. It is sent to classes and categories that are both
dynamically loaded and statically linked, but only if the newly-loaded class or category implements a
method that can respond. As an example, when Interface Builder loads a palette, the load method is sent to
each class and category in the palette.

load is usually invoked before initialize . It is usually the very first method sent to the class, although this
isn’t guaranteed. The order in which classes are loaded is also not guaranteed, to the point that superclasses
aren’t even guaranteed to be loaded before all of their subclasses. Because you can’t rely on other classes
being loaded at the point when your class is sent a load message, you should be extremely careful when
messaging other classes from within your load method.

Warning: Due to the amount of uncertainty about the environment at the point that load is invoked, you
should avoid using load whenever possible. All class-specific initialization should be done in the
class’s initialize method.

Note that although load is essentially replaces NEXTSTEP’s finishLoading: method, the circumstances
surrounding their invocation is slightly different. Consult your NEXTSTEP Developer documentation if
you are porting code that uses finishLoading:.

See also: + load (NSObject)

respondsToSelector:
+ (BOOL)respondsToSelector:(SEL)aSelector

Returns YES if the receiving class responds to aSelector messages, NO otherwise.

4

 NSProxy

Instance Methods

class
@protocol NSObject
– (Class)class

Returns the class of the receiver (not the class of the real object).

conformsToProtocol:
@protocol NSObject
– (BOOL)conformsToProtocol:(Protocol)aProtocol

Uses forwardInvocation: to send the conformsToProtocol: message to the real object and returns the
result. Note that NSProxy’s implementation of forwardInvocation: merely raises an exception.

dealloc
– (void)dealloc

Deallocates the memory occupied by the receiver, as described in the NSObject class specification under
the dealloc instance method.

description
– (NSString *)description

Returns an NSString containing the real class name and the id of the receiver as a hexadecimal number.

forwardInvocation:
– (void)forwardInvocation: (NSInvocation *)anInvocation

Passes anInvocation on to the real object that the proxy represents. NSProxy’s implementation merely raises
NSInvalidArgumentException. Override this method in your subclass to handle anInvocation appropriately,
at the very least by setting its return value.

For example, if your proxy merely forwards messages to an instance variable named realObject, it can
implement forwardInvocation: like this:

5

– (void)forwardInvocation:(NSInvocation *)anInvocation

{

 [anInvocation setTarget:realObject];

 [anInvocation invoke];

 return;

}

isKindOfClass:
@protocol NSObject
– (BOOL)isKindOfClass:(Class)aClass

Uses forwardInvocation: to send the isKindOfClass: message to the real object and returns the result. Note
that NSProxy’s implementation of forwardInvocation: merely raises an exception.

isMemberOfClass:
@protocol NSObject
– (BOOL)isMemberOfClass:(Class)aClass

Uses forwardInvocation: to send the isMemberOfClass: message to the real object and returns the result.
Note that NSProxy’s implementation of forwardInvocation: merely raises an exception.

isProxy
@protocol NSObject
– (BOOL)isProxy

Returns YES. Subclasses shouldn’t override this method to return NO.

methodSignatureForSelector:
– (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector

Raises NSInvalidArgumentException. Override this method in your concrete subclass to return a proper
NSMethodSignature for aSelector and the class that your proxy objects stand in for. Be sure to avoid an
infinite loop when necessary by checking that aSelector isn’t the selector for this method itself and by not
sending any message that might invoke this method.

For example, if your proxy merely forwards messages to an instance variable named realObject, it can
implement methodSignatureForSelector: like this:

6

 NSProxy

– (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector

{

 return [realObject methodSignatureForSelector:aSelector];

}

See also: – methodSignatureForSelector:(NSObject)

respondsToSelector:
@protocol NSObject
– (BOOL)respondsToSelector:(SEL)aSelector

Uses forwardInvocation: to send the respondsToSelector: message to the real object and returns the result.
Note that NSProxy’s implementation of forwardInvocation: merely raises an exception.

