
1

NSTimer

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSTimer.h

Class Description

NSTimer creates timer objects, or more simply, timers. A timer waits until a certain time interval has
elapsed and then fires, sending a specified message to a specified object. For example, you could create an
NSTimer that sends a message to a window, telling it to update itself after a certain time interval.

Timers work in conjunction with NSRunLoop objects. NSRunLoops control loops that wait for input, and
they use timers to help determine the maximum amount of time they should wait. When the timer’s time
limit has elapsed, the NSRunLoop fires the timer (causing its message to be sent), then checks for new input.

There are several ways to create a timer. The scheduledTimerWithTimeInterval ... class methods
automatically register the new timer with the current NSRunLoop object in the default mode
(NSDefaultRunLoopMode). The timerWithTimeInterval ... class methods create timers that you may
register at a later time by sending the message addTimer:forMode: to the NSRunLoop. If you specify that
the timer should repeat, it will automatically reschedule itself after it fires.

There is no method that removes the association of a timer from an NSRunLoop—send the timer the
invalidate message instead. invalidate disables the timer, so it will no longer affect the NSRunLoop.

See the NSRunLoop class description for more information on NSRunLoops.

Method Types

Creating a timer + scheduledTimerWithTimeInterval:
invocation:repeats:

+ scheduledTimerWithTimeInterval:target:selector:
userInfo:repeats:

+ timerWithTimeInterval:invocation:repeats:
+ timerWithTimeInterval:target:selector:

userInfo:repeats:

Firing a timer – fire

Stopping a timer – invalidate

2

 NSTimer

Getting information about a timer – isValid
– fireDate
– timeInterval
– userInfo

Class Methods

scheduledTimerWithTimeInterval:invocation:repeats:
+ (NSTimer *)scheduledTimerWithTimeInterval: (NSTimeInterval)seconds

invocation:(NSInvocation *)invocation
repeats:(BOOL)repeats

Returns a new NSTimer object and registers it with the current NSRunLoop in the default mode. After
seconds have elapsed, the timer fires, sending invocation’s message to its target. If seconds is less than or
equal to 0.0, this method chooses a nonnegative interval. If repeats is YES, the timer will repeatedly
reschedule itself.

scheduledTimerWithTimeInterval:target:selector:userInfo:repeats:
+ (NSTimer *)scheduledTimerWithTimeInterval: (NSTimeInterval)seconds

target:(id)target
selector:(SEL)aSelector
userInfo:(id)userInfo
repeats:(BOOL)repeats

Returns a new NSTimer object and registers it with the current NSRunLoop in the default mode. After
seconds have elapsed, the timer fires, sending the message aSelector to target. The aSelector method must
take only one argument, an NSTimer object. The timer passes itself as the argument to aSelector. To pass
more information to the target, use userInfo. The target gets userInfo by sending userInfo to the timer.

If seconds is less than or equal to 0.0, this method chooses a nonnegative interval. If repeats is YES, the
timer will repeatedly reschedule itself.

timerWithTimeInterval:invocation:repeats:
+ (NSTimer *)timerWithTimeInterval: (NSTimeInterval)seconds

invocation:(NSInvocation *)invocation
repeats:(BOOL)repeats

Returns a new NSTimer that, when registered, will fire after seconds. If seconds is less than or equal to 0.0,
this method chooses a nonnegative interval. Upon firing, the timer sends invocation’s message to its target.
If repeats is YES, the timer will repeatedly reschedule itself after firing.

3

timerWithTimeInterval:target:selector:userInfo:repeats:
+ (NSTimer *)timerWithTimeInterval: (NSTimeInterval)seconds

target:(id)target
selector:(SEL)aSelector
userInfo:(id)userInfo
repeats:(BOOL)repeats

Returns a new NSTimer that, when registered, will fire after seconds. Upon firing, the timer sends aSelector
to target. The aSelector method must take only one argument, an NSTimer object. The timer passes itself
as the argument to aSelector. To pass more information to the target, use userInfo. The target gets userInfo
by sending userInfo to the timer.

If seconds is less than or equal to 0.0, this method chooses a nonnegative interval. If repeats is YES, the
timer will repeatedly reschedule itself.

Instance Methods

fire
– (void)fire

Causes the receiver’s message to be sent to its target.

fireDate
– (NSDate *)fireDate

Returns the date at which the receiver will fire. If the timer is no longer valid, this method returns the last
date at which the timer fired. Use isValid to verify that the timer is valid.

See also: – isValid

invalidate
– (void)invalidate

Stops the receiver from ever firing again. This is the only way to remove a timer from an NSRunLoop.

isValid
– (BOOL)isValid

Returns YES if the timer is currently valid, no otherwise.

4

 NSTimer

timeInterval
– (NSTimeInterval)timeInterval

Returns the time interval associated with the receiver.

userInfo
– (id)userInfo

Additional data the target may use when the receiver is fired.

See also: + scheduledTimerWithTimeInterval:target:selector:userInfo:repeats:,
+ timerWithTimeinterval:target:selector:userInfo:repeats:

