
1

NSDistantObject

Inherits From: NSProxy

Conforms To: NSCoding
NSObject (NSProxy)

Declared In: Foundation/NSDistantObject.h

Class Description

NSDistantObject is a concrete subclass of NSProxy that defines proxies for objects in other applications or 
threads. When an NSDistantObject receives a message, in most cases it forwards the message through its 
NSConnection object to the real object in another application, supplying the return value to the sender of 
the message if one is forthcoming, and propagating any exception back to the invoker of the method that 
raised it.

NSDistantObject adds two useful instance methods to those defined by NSProxy. connectionForProxy 
returns the NSConnection that handles the receiver. setProtocolForProxy: establishes the set of methods 
that the real object is known to respond to, saving the network traffic required to determine the argument 
and return types the first time a particular selector is forwarded to the remote proxy.

There are two kinds of NSDistantObject: local proxies and remote proxies. A local proxy is created by an 
NSConnection the first time an object is sent to another application. It’s used by the NSConnection for 
bookkeeping purposes and should be considered private. The local proxy is transmitted over the network 
using the NSCoding protocol to create the remote proxy, which is the object that the other application uses. 
NSDistantObject defines methods for an NSConnection to create instance, but they’re intended only for 
subclasses to override—you should never invoke them directly. Use NSConnection’s 
rootProxyForConnectionWithRegisteredName:host: method, which sets up all the required state for an 
object-proxy pair.

Adopted Protocols

NSCoding – encodeWithCoder:
– initWithCoder:



2

 NSDistantObject

Method Types

Creating a local proxy + proxyWithLocal:connection:
– initWithLocal:connection:

Creating a remote proxy + proxyWithTarget:connection:
– initWithTarget:connection:

Getting a proxy’s NSConnection – connectionForProxy:

Setting a proxy’s Protocol – setProtocolForProxy:

Class Methods

proxyWithLocal:connection:
+ (NSDistantObject *)proxyWithLocal: (id)anObject connection:(NSConnection *)aConnection

Returns a local proxy for anObject and aConnection, creating it if necessary. anObject is an id in the 
receiver’s address space. connection is set as the NSConnection for the returned proxy; other applications 
connect to it using NSConnection’s connectionWithRegisteredName:host: class method.

Local proxies should be considered private to their NSConnections. Only an NSConnection should use this 
method to create them, and your code shouldn’t retain or otherwise use local proxies.

proxyWithTarget:connection:
+ (NSDistantObject *)proxyWithTarget: (id)remoteObject connection:(NSConnection *)aConnection

Returns a remote proxy for remoteObject and aConnection, creating it if necessary. remoteObject is an id in 
another thread or in another application’s address space. aConnection is set as the NSConnection for the 
returned proxy; it should have been created using NSConnection’s connectionWithRegisteredName:host: 
class method.

A remote proxy can’t be used until its NSConnection’s peer has a local proxy representing remoteObject in 
the other application.

Instance Methods

connectionForProxy
– (NSConnection *)connectionForProxy

Returns the NSConnection used by the receiver.



3

initWithLocal:connection:
– (id)initWithLocal: (id)anObject connection:(NSConnection *)aConnection

Initializes a newly allocated NSDistantObject as a local proxy for anObject, which is an id in the receiver’s 
address space. aConnection is set as the NSConnection for the returned proxy; other applications connect 
to it using NSConnection’s connectionWithRegisteredName:host: class method. If a proxy for anObject 
and aConnection already exists, the receiver is released and the existing proxy is retained and returned.

Local proxies should be considered private to their NSConnections. Only an NSConnection should use this 
method to create them, and your code shouldn’t retain or otherwise use local proxies.

This is the designated initializer for local proxies. Returns self.

initWithTarget:connection:
– (id)initWithTarget: (id)remoteObject connection:(NSConnection *)aConnection

Initializes a newly allocated NSDistantObject as a remote proxy for remoteObject, which is an id in another 
thread or in another application’s address space. aConnection is set as the NSConnection for the returned 
proxy; it should have been created using NSConnection’s connectionWithRegisteredName:host: class 
method. If a proxy for remoteObject and aConnection already exists, the receiver is released and the existing 
proxy is retained and returned.

A remote proxy can’t be used until its NSConnection’s peer has a local proxy representing remoteObject in 
the other application.

This is the designated initializer for remote proxies. Returns self.

setProtocolForProxy:
– (void)setProtocolForProxy:(Protocol *)aProtocol

Sets the methods known to be handled by the receiver to those in aProtocol. Setting a protocol for a remote 
proxy reduces network traffic needed to determine method argument and return types.

In order to encode a message’s arguments for transmission over the network, the types of those arguments 
must be known in advance. When they’re not known, the distributed objects system must send an initial 
message just to get those types, doubling the network traffic for every new message sent. Setting a protocol 
alleviates this need for the methods defined by that protocol. You can still send messages that aren’t 
declared in aProtocol; in this case the initial message is sent to determine the types, and then the real 
message is sent.


