
1

NSDecimalNumber

Inherits From: NSNumber : NSValue : NSObject

Conforms To: NSDecimalNumberBehavior
NSObject (NSObject)

Declared In: Foundation/NSDecimalNumber.h

Class Description

NSDecimalNumber, an immutable subclass of NSNumber, provides an object-oriented wrapper for doing
base-10 arithmetic. An instance can represent any number that can be expressed as mantissax 10exponent
where mantissa is a decimal integer up to 38 digits long, and exponent is an integer between -128 and 127.

In the course of doing arithmetic, a method may produce calculation errors, such as division by zero. It may
also meet circumstances where it has a choice of ways to round a number off. The way the method acts on
such occasions is called its “behavior.”

Behavior is set by methods in the NSDecimalNumberBehaviors protocol. Every NSDecimalNumber
argument called behavior requires an object that conforms to this protocol. For more on behaviors, see the
specifications for the NSDecimalNumberBehaviors protocol and the NSDecimalNumberHandler class.
Also see the defaultBehavior method description, below.

C Interface to Decimal Numbers

The arithmetic and rounding methods of NSDecimalNumber are also accessible through group of ordinary
C functions, defined in NSDecimal.h. You might consider the C interface if you don’t need to treat
NSDecimalNumbers as objects—that is, if you don’t need to store them in an object-oriented collection like
an NSArray or NSDictionary.

You might also consider the C interface if you need maximum efficiency. The C interface is faster and uses
less memory than the NSDecimalNumberClass.

If you need mutability, you can combine the two interfaces. Use functions from the C interface and convert
their results to NSDecimalNumbers.

The C functions—NSDecimalCompact(), NSDecimalCompare(), NSDecimalRound(),
NSDecimalNormalize(), NSDecimalAdd(), NSDecimalSubtract(), NSDecimalMultiply() ,
NSDecimalDivide(), NSDecimalPower(), NSDecimalMultiplyByPowerOf10(), NSDecimalString()—
are all documented in the “Functions” chapter of the Foundation Framework Reference.

2

 NSDecimalNumber

Method Types

Creating an NSDecimalNumber + decimalNumberWithDecimal:
+ decimalNumberWithMantissa:exponent:isNegative:
+ decimalNumberWithString:
+ decimalNumberWithString:locale:
+ one
+ zero
+ notANumber

Initializing an NSDecimalNumber – initWithDecimal:
– initWithMantissa:exponent:isNegative:
– initWithString:
– initWithString:locale:

Doing arithmetic – decimalNumberByAdding:
– decimalNumberBySubtracting:
– decimalNumberByMultiplyingBy:
– decimalNumberByDividingBy:
– decimalNumberByRaisingToPower:
– decimalNumberByMultiplyingByPowerOf10:
– decimalNumberByAdding:withBehavior:
– decimalNumberBySubtracting:withBehavior:
– decimalNumberByMultiplyingBy:withBehavior:
– decimalNumberByDividingBy:withBehavior:
– decimalNumberByRaisingToPower:withBehavior:
– decimalNumberByMultiplyingByPowerOf10:withBehavior:

Rounding off – decimalNumberByRoundingAccordingToBehavior:

Getting the value in other formats – decimalValue

Asking and changing the behavior + defaultBehavior
+ setDefaultBehavior:

Class Methods

decimalNumberWithDecimal:
+ (NSDecimalNumber *)decimalNumberWithDecimal:(NSDecimal)decimal

Creates and returns an NSDecimalNumber equivalent to decimal.

decimal is an NSDecimal struct, which you can initialize by hand, or generate using the scanDecimal:
method from the NSDecimalNumberScanning category of NSScanner, defined in “NSDecimalNumber.h”.

3

decimalNumberWithMantissa:exponent:isNegative:
+ (NSDecimalNumber *)decimalNumberWithMantissa:(unsigned long long)mantissa

exponent:(short)exponent isNegative:(BOOL)isNegative

Creates and returns an NSDecimalNumber equivalent to the number specified by the arguments.

The arguments express a number in a kind of scientific notation that requires the mantissa to be an integer.
So, for example, if the number to be represented is 1.23, it is expressed as 123x10-2—mantissa is 123,
exponent is -2, and isNegative, which refers to the sign of the mantissa, is NO.

decimalNumberWithString:
+ (NSDecimalNumber *)decimalNumberWithString: (NSString *)numericString

Creates and returns an NSDecimalNumber equivalent to numericString. Besides digits, numericString can
include an initial “+” or “-,” a single “E” or “e”, to indicate the exponent of a number in scientific notation,
and a single NSDecimalSeparator to divide the fractional from the integral part of the number.

Whether the NSDecimalSeparator is a period (as in the United States) or a comma (as in France) depends
on the default locale.

See also: – decimalNumberWithString:locale:

decimalNumberWithString:locale:
+ (NSDecimalNumber *)decimalNumberWithString: (NSString *)numericString

locale:(NSDictionary *)locale

Creates and returns an NSDecimalNumber equivalent to numericString. Besides digits, numericString can
include an initial “+” or “-,” a single “E” or “e”, to indicate the exponent of a number in scientific notation,
and a single NSDecimalSeparator to divide the fractional from the integral part of the number.

locale determines whether the NSDecimalSeparator is a period (as in the United States) or a comma (as in
France).

The following strings are acceptable values for numericString:

• “2500.6” (or “2500,6”, depending on locale)
• “-2500.6” (or “-2500.6”)
• “-2.5006e3” (or “-2,5006e3”)
• “-2.5006E3” (or “-2,5006E3”)

The following are unacceptable:

• “2,500.6”
• “2500 3/5”
• “2.5006x10e3”

4

 NSDecimalNumber

• “two thousand five hundred and six tenths”

See also: – decimalNumberWithString:

defaultBehavior
+ (id <NSDecimalNumberBehaviors>)defaultBehavior

Returns the way that arithmetic methods, like decimalNumberByAdding:, round off and handle error
conditions.

By default, the arithmetic methods do not round numbers off. They assume that your need for precision does
not exceed 38 significant digits. And they raise exceptions when they try to divide by zero, or when they
produce a number that is too big or small to be represented.

If this default behavior doesn’t suit your application, you should use methods that let you specify the
behavior, like decimalNumberByAdding:withBehavior. If you find yourself using a particular behavior
consistently, you can specify a different default behavior with setDefaultBehavior:.

notANumber
+ (NSDecimalNumber *)notANumber

Creates and returns an NSDecimalNumber that specifies no number. Any arithmetic method receiving
notANumber as an argument returns notANumber.

This value can be a useful way of handling non-numeric data in an input file. It can also be a useful response
to calculation errors. For more information on calculation errors, see the
exceptionDuringOperation:error:leftOperand:rightOperand: method description in the
NSDecimalNumberBehaviors protocol specification.

one
+ (NSDecimalNumber *)one

Creates and returns an NSDecimalNumber equivalent to the number 1.0.

See also: + zero

setDefaultBehavior:
+ (void)setDefaultBehavior:(id <NSDecimalNumberBehaviors>)behavior

Specifies the way that arithmetic methods, like decimalNumberByAdding:, round off and handle error
conditions. behavior must conform to the NSDecimalNumberBehaviors protocol.

5

zero
+ (NSDecimalNumber *)zero

Returns a newly allocated NSDecimalNumber equivalent to the number 0.0.

See also: + one

Instance Methods

decimalNumberByAdding:
– (NSDecimalNumber *)decimalNumberByAdding:(NSDecimalNumber *)decimalNumber

Adds decimalNumber to the receiver, and returns the sum, a newly created NSDecimalNumber. This
method uses the default behavior when handling calculation errors and rounding.

See also: – decimalNumberByAdding:withBehavior:, + defaultBehavior

 decimalNumberByAdding:withBehavior:
– (NSDecimalNumber *)decimalNumberByAdding:(NSDecimalNumber *)decimalNumber

withBehavior: (id <NSDecimalNumberBehaviors>)behavior

Adds decimalNumber to the receiver, and returns the sum, a newly created NSDecimalNumber. behavior
specifies the handling of calculation errors and rounding.

decimalNumberByDividingBy:
– (NSDecimalNumber *)decimalNumberByDividingBy:(NSDecimalNumber *)decimalNumber

Divides the receiver by decimalNumber, and returns the quotient, a newly created NSDecimalNumber. This
method uses the default behavior when handling calculation errors and rounding.

See also: – decimalNumberByDividingBy:withBehavior: , + defaultBehavior

decimalNumberByDividingBy:withBehavior:
– (NSDecimalNumber *)decimalNumberByDividingBy:(NSDecimalNumber *)decimalNumber

withBehavior: (id <NSDecimalNumberBehaviors>)behavior

Divides the receiver by decimalNumber, and returns the quotient, a newly created NSDecimalNumber.
behavior specifies the handling of calculation errors and rounding.

6

 NSDecimalNumber

decimalNumberByMultiplyingBy:
– (NSDecimalNumber *)decimalNumberByMultiplyingBy: (NSDecimalNumber *)decimalNumber

Multiplies the receiver by decimalNumber, and returns the product, a newly created NSDecimalNumber.
This method uses the default behavior when handling calculation errors and when rounding.

See also: – decimalNumberByMultiplyingBy:withBehavior: , + defaultBehavior

decimalNumberByMultiplyingBy:withBehavior:
– (NSDecimalNumber *)decimalNumberByMultiplyingBy: (NSDecimalNumber *)decimalNumber

withBehavior: (id <NSDecimalNumberBehaviors>)behavior

Multiplies the receiver by decimalNumber, and returns the product, a newly created NSDecimalNumber.
behavior specifies the handling of calculation errors and rounding.

decimalNumberByMultiplyingByPowerOf10:
– (NSDecimalNumber *)decimalNumberByMultiplyingByPowerOf10: (short)power

Multiplies the receiver by 10power, and returns the product, a newly created NSDecimalNumber. This
method uses the default behavior when handling calculation errors and when rounding.

See also: – decimalNumberByMultiplyingByPowerOf10:withBehavior: , + defaultBehavior

decimalNumberByMultiplyingByPowerOf10:withBehavior:
– (NSDecimalNumber *)decimalNumberByMultiplyingByPowerOf10: (short)power

withBehavior: (id <NSDecimalNumberBehaviors>)behavior

Multiplies the receiver by 10power, and returns the product, a newly created NSDecimalNumber. behavior
specifies the handling of calculation errors and rounding.

decimalNumberByRaisingToPower:
– (NSDecimalNumber *)decimalNumberByRaisingToPower:(unsigned)power

Raises the receiver to power, and returns the result, a newly created NSDecimalNumber. This method uses
the default behavior when handling calculation errors and when rounding.

See also: – decimalNumberByRaisingToPower:withBehavior:, + defaultBehavior

7

decimalNumberByRaisingToPower:withBehavior:
– (NSDecimalNumber *)decimalNumberByRaisingToPower:(unsigned)power

withBehavior: (id <NSDecimalNumberBehaviors>)behavior

Raises the receiver to power, and returns the result, a newly created NSDecimalNumber. behavior specifies
the handling of calculation errors and rounding.

decimalNumberByRoundingAccordingToBehavior:
– (NSDecimalNumber *)decimalNumberByRoundingAccordingToBehavior:(id <NSDecimalNum

berBehaviors>)behavior

Rounds the receiver off in the way specified by behavior, and returns the result, a newly created
NSDecimalNumber. For a description of the different ways of rounding, see the roundingMode method in
the NSDecimalNumberHandler class specification.

decimalNumberBySubtracting:
– (NSDecimalNumber *)decimalNumberBySubtracting:(NSDecimalNumber *)decimalNumber

Subtracts decimalNumber from the receiver, and returns the difference, a newly created
NSDecimalNumber. This method uses the default behavior when handling calculation errors and when
rounding.

See also: – decimalNumberBySubtracting:withBehavior:, + defaultBehavior.

decimalNumberBySubtracting:withBehavior:
– (NSDecimalNumber *)decimalNumberBySubtracting:(NSDecimalNumber *)decimalNumber

withBehavior: (id <NSDecimalNumberBehaviors>)behavior

Subtracts decimalNumber from the receiver, and returns the difference, a newly created
NSDecimalNumber. behavior specifies the handling of calculation errors and rounding.

decimalValue
– (NSDecimal)decimalValue

Returns the receiver’s value, expressed as an NSDecimal struct.

8

 NSDecimalNumber

initWithDecimal:
– (NSDecimalNumber *)initWithDecimal: (NSDecimal)decimal

Returns an NSDecimalNumber initialized to represent decimal. This method is NSDecimalNumber’s
designated initializer.

initWithMantissa:exponent:isNegative:
– (NSDecimalNumber *)initWithMantissa: (unsigned long long)mantissa exponent:(short)exponent

isNegative:(BOOL)isNegative

Creates and returns an NSDecimalNumber equivalent to the number specified by the arguments.

The arguments express a number in a type of scientific notation that requires the mantissa to be an integer.
So, for example, if the number to be represented is 1.23, it is expressed as 123x10-2—mantissa is 123,
exponent is -2, and isNegative, which refers to the sign of the mantissa, is NO.

initWithString:
– (NSDecimalNumber *)initWithString: (NSString *)numericString

Returns an NSDecimalNumber equivalent to numericString. numericString must be a simple string of
digits, possibly including a decimal separator. For a listing of acceptable and unacceptable strings, see the
class method decimalNumberWithString: .

initWithString:locale:
– (NSDecimalNumber *)initWithString: (NSString *)numericString locale:(NSDictionary *)locale

Returns a newly created NSDecimalNumber equivalent to numericString. The interpretation of the numeric
string depends on locale.

See also: + decimalNumberWithString:locale:

