
1

NSRunLoop 

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSRunLoop.h 

Class Description

The NSRunLoop class declares the programmatic interface to objects that manage input sources. An 
NSRunLoop processes input for sources such as mouse and keyboard events from the window system, 
NSPorts, NSTimers, POSIX file descriptors, and NSConnections.

In general, your application won’t need to either create or explicitly manage NSRunLoop objects. Each 
thread has an NSRunLoop object automatically created for it. The NSApplication object creates a default 
thread and therefore creates a default run loop.

If you do want to perform your own explicit run loop management, you do so by running the current thread’s 
run loop (returned by the class method currentRunLoop) with an input mode that specifies the type of input 
to be received. The currently defined input modes are:

NSDefaultRunLoopMode Use this mode to deal with input sources other than 
NSConnections. Defined in the Foundation/NSRunLoop.h 
header file. 

NSConnectionReplyMode Use this mode to indicate NSConnection objects waiting for 
replies. Defined in the Foundation/NSConnection.h header file.

In addition, the Application Kit defines these modes:

NSModalPanelRunLoopMode Use this mode when waiting for input from a modal panel, such 
as NSSavePanel or NSOpenPanel. Defined in the 
AppKit/NSApplication.h  header file. 

NSEventTrackingRunLoopMode Use this mode for event tracking loops. Defined in the 
AppKit/NSApplication.h  header file

Each input mode has a list of input sources (NSPorts, NSTimers, or NSConnections) associated with it. 
Each input source has a limit date associated with it. For NSPorts, the limit date is a timeout value, after 
which input from that port is no longer timely. For NSTimers, the limit date specifies when the timer should 
fire. (When a timer fires, it sends a specified message to a specified object, and it may be scheduled to fire 
again later. See the NSTimer class specification for more information.) 



2

 NSRunLoop

When an NSRunLoop runs, it polls each of the sources for the input mode to determine which one has the 
earliest limit date. During this polling, the input sources may process any input they have queued. Once the 
NSRunLoop determines the earliest limit date for this input mode, it solicits input from the operating 
system up to that limit date. If input arrives, it is processed. At that point, the NSRunLoop may either return 
or it may continue, depending on which method was used to run the loop. 

For example:

NSRunLoop *theLoop = [NSRunLoop currentRunLoop];

[theLoop acceptInputForMode:NSDefaultRunLoopMode beforeDate:[theLoop 

limitDateForMode:NSDefaultRunLoopMode]];

The method limitDateForMode:  returns the earliest limit date of all the input sources for the mode 
NSDefaultRunLoopMode. acceptInputForMode:beforeDate: runs the loop until that date, processing any 
input it receives until that time. As a convenience, you can use runMode:beforeDate: instead. It invokes 
acceptInputForMode:beforeDate: and limitDateForMode:  with the mode you supply. 

To continuously run in NSDefaultRunLoopMode, you can use either of the methods run  or runUntilDate: . 
To run another mode continuously, invoke runMode:beforeDate: in a loop with a date far in the future:

while ([[NSRunLoop currentRunLoop] runMode:NSModalPanelRunLoopMode 

beforeDate:[NSDate distantFuture]])

;

Method Types

Accessing the current run loop + currentRunLoop
– currentMode
– limitDateForMode:

Adding timers – addTimer:forMode:

Managing ports – addPort: forMode:
– removePort:forMode:

Running a loop – run
– runUntilDate:
– runMode:beforeDate:
– acceptInputForMode:beforeDate:

Sending messages – performSelector:target:argument:order:modes:
– cancelPerformSelector:target:argument:



3

Class Methods

currentRunLoop
+ (NSRunLoop *)currentRunLoop

Returns the NSRunLoop for the current thread.

See also: – currentMode

Instance Methods

acceptInputForMode:beforeDate:
– (void)acceptInputForMode:(NSString *)mode beforeDate:(NSDate *)limitDate

Blocks awaiting input from the ports in the port list for the input mode mode until the time specified by 
limitDate. Use the limitDateForMode:  method to calculate limitDate. If input arrives, it is processed using 
the NSPort delegates. This method does not check the timers associated with mode, thus it does not fire 
timers even if their scheduled fire dates have passed.

addPort: forMode:
– (void)addPort:(NSPort *)aPort forMode:(NSString *)mode

Adds aPort to be monitored by the receiver in the input mode mode. The receiver maintains a count of the 
number of ports added, and the same number must be removed.

See also: – removePort:forMode:

addTimer:forMode:
– (void)addTimer:(NSTimer *)aTimer

forMode:(NSString *)mode

Registers the timer aTimer with input mode mode. The run loop causes the timer to fire on or after its 
scheduled fire date. Timers have an Objective-C message associated with them. When a timer fires, it sends 
its message to the appropriate object. To remove a timer from a mode, send the invalidate message to the 
timer. 



4

 NSRunLoop

cancelPerformSelector:target:argument:
– (void)cancelPerformSelector:(SEL)aSelector target:(id)target argument:(id)anArgument 

Cancels the sending of a message previously scheduled using 
performSelector:target:argument:order:modes:. The aSelector message with argument anArgument 
will not be sent to target. 

currentMode
– (NSString *)currentMode

Returns the current input mode. The current mode is set by limitDateForMode:  and 
acceptInputForMode:beforeDate:. 

See also: + currentRunLoop

limitDateForMode:
– (NSDate *)limitDateForMode: (NSString *)mode

Polls mode’s input sources for their limit date (if any) and returns the earliest limit date for this mode. Uses 
the NSPort delegate method limitDateForMode:  to determine the limit dates of ports. Fires timers if their 
limit dates have passed. Polls ports for activities appropriate for mode. Returns nil  if there are no input 
sources for this mode.

performSelector:target:argument:order:modes:
– (void)performSelector:(SEL)aSelector target:(id)target argument:(id)anArgument 

order: (unsigned)order modes:(NSArray *)modes 

Schedules the sending of an aSelector message. The aSelector message will be sent to target with argument 
anArgument after the run loop has completed an iteration in any of the input modes specified in modes. 
order assigns a priority to the messages. If multiple messages are scheduled to be sent, the messages with 
a lower order value are sent before messages with a higher order value. 

This method returns before the aSelector message is sent. The aSelector method should not have a 
significant return value and should take a single argument of type id. The NSRunLoop does not retain the 
target and anArgument objects. 

Use this method is you want multiple messages to be sent after the current event has been processed and 
you want to make sure that these messages are sent in a certain order. 

See also: – cancelPerformSelector:target:argument: 



5

removePort:forMode:
– (void)removePort:(NSPort *)aPort

forMode:(NSString *)mode

Removes aPort from the list of ports being monitored by the receiver in input mode mode. The receiver 
maintains a count of the ports added, and the same number of ports must be removed. Ports are 
automatically removed from modes if they are detected to be invalid.

See also: – addPort:forMode:

run
– (void)run

Runs the loop in NSDefaultRunLoopMode by repeatedly invoking runMode:beforeDate: until the limit 
dates for all of the input sources have passed.

See also: – runUntilDate:  

runMode:beforeDate:
– (BOOL)runMode:(NSString *)mode

beforeDate:(NSDate *)limitDate

Runs the loop once by invoking acceptInputForMode:beforeDate:, accepting input for mode mode until 
a limit date. The limit date is determined by using the earliest of limitDate and the limit dates set for all input 
sources in this mode. Returns NO without starting the run loop if the limit dates for all of mode’s input 
sources have passed; otherwise returns YES. 

runUntilDate:
– (void)runUntilDate: (NSDate *)limitDate

Runs the loop in NSDefaultRunLoopMode by repeatedly invoking runMode:beforeDate: until limitDate 
or until the limit dates for all of the input sources have passed.

See also: – run  


