
OPENSTEP Enterprise Release 4.1 Copyright 1996 by NeXT Software, Inc. All Rights Reserved.

OPENSTEP 4.1 Release Notes:
The GNU Source-Level Debugger

This file contains information about gdb, the GNU Debugger. For more
information, see the gdb reference in
/NextLibrary/Documentation/NextDev/DevTools/Debugger.pdf.

The gdb debugger for OPENSTEP Enterprise is based on the version 4.15.1
release from GNU. This brings with it many, if not most of the features of
debugging on Mach, although there are inevitably some differences.

Debugging Objective-C: Differences from Mach gdb

The PDO version of gdb is more of a multi-language debugger than the older gdb
on Mach (especially the older version of gdb available with previous releases of
NEXTSTEP). This gdb has separate features for many different languages,
including Objective-C. It attempts to guess the source language by looking at the
extension of the source file name (.m or .M for Objective-C). To find out what
gdb’s current language is, type show language. To force the current language to
Objective-C, type set language objective-c.

Calling Methods from gdb

To call a method in your program from gdb, use the print , set, or call commands
with an argument that looks just like a method call in Objective-C. For example:

(gdb) print [myClass showValue: 12]

If the method comes from a category, you must include the category name, as
shown here:

(gdb) print [myClass(myCategory) showValue: 12]

Listing and Setting Breakpoints on Methods

To refer to a method in a list or break command, you can supply the full class
and method name, including a + or - to indicate a class method or instance
method. If there is a category name, you must give that too:

(gdb) list +[myClass init]
(gdb) break -[myClass(myCategory) showValue]

You can also set breakpoints or list a method just by giving a selector. If the
selector is implemented by more than one class, gdb will list the corresponding
methods and ask you to choose one or more:

(gdb) break init
[0] cancel
[1] all
[2] -[Change init] at Change.m:20
[3] -[DrawApp init] at DrawApp.m:130
[4] -[Graphic init] at Graphic.m:139
>

You would then enter your choice or choices at the ">" prompt.

Getting Information about Classes and Methods

gdb for PDO has the info classes and info selectors commands. These
commands accept the same regular expression language as gdb’s info type and
info function commands (that is, the UNIX-style regular expression language).
This is a change from the Mach gdb, where info classes and info selectors
accept a slightly different regular expression language. For instance, to learn
about class names beginning with "NS" (using the "^" character to designate
“beginning with”):

(gdb) info classes ^NS

 To learn about selectors, you can use the info selectors command. To find
every selector containing the string "withObject:" you could enter:

(gdb) info selector withObject:

To learn about methods, you can use the info function command, which also
takes a regular expression. Since the square bracket characters (’[’ and ’]’) have
special significance in regular expressions, you can quote them with a backward
slash to prevent their being treated as special characters. To list all the methods
of a class, you might say:

(gdb) info function \[MyClass

To list all the methods whose selector ends with "count:", you might say:

(gdb) info function count:\]

If you want to know about a specific method of a specific class, but you aren’t
sure if it belongs to a category, you can use the ".*" wildcard sequence to stand
for any number of any characters:

(gdb) info function MyClass.*mySelector:

Known Problems

Problems with Underscores

gdb doesn’t correctly handle methods for which either the class, the category, or
the selector has underscores in the name, except when the underscore is the first
character of the class or selector name.

Thread Support

gdb has no support for debugging multiple threads on either Solaris or HP-UX.

Random SIGTRAPs

gdb occasionally throws random SIGTRAPs. If you verify that the instruction at
the $PC is not a trap instruction, you should be able to continue by saying "signal
0" (that’s a zero). This tells gdb to continue the child without passing any signal
to it.

