
1

NSAutoreleasePool

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSAutoreleasePool.h

Class Description

The NSAutoreleasePool class is used to implement the Foundation Kit’s autorelease mechanism. An
NSAutoreleasePool object simply contains objects that have received an autorelease message, and when
deallocated sends a release message to each of those objects. An object can be put into the same pool
several times, and receives a release message for each time it was put into the pool. Thus, sending
autorelease instead of release to an object extends the lifetime of that object until the pool itself is released
or longer if the object is retained. This class specification contains information on fine-tuning your
application’s handling of autorelease pools; see “Object Ownership and Automatic Disposal” in the
introduction to the Foundation Kit for general information on using the autorelease mechanism.

You create an NSAutoreleasePool with the usual alloc and init messages, and dispose of it with release (an
exception will be raised if you send autorelease or retain to an autorelease pool). An autorelease pool
should always be released in the same context (invocation of a method or function, or body of a loop) that
it was created.

NSAutoreleasePools are automatically created and destroyed in applications based on the Application Kit,
so your code normally doesn’t have to worry about them. (The Application Kit creates a pool at the
beginning of the event loop and releases it at the end). There are two cases, though, where you might wish
to create and destroy your own autorelease pools. If you’re writing a program that’s not based on the
Application Kit, such as a UNIX tool, there’s no built-in support for autorelease pools; you must create and
destroy them yourself. Also, if you write a loop that creates many temporary objects, you might wish to
create an NSAutoreleasePool inside the loop to dispose of those objects before the next iteration.

Enabling the autorelease mechanism in a program that’s not based on the Application Kit is easy. Many
programs have a top-level loop where they do most of their work. To enable the autorelease mechanism
you create an NSAutoreleasePool at the beginning of this loop and release it at the end. An autorelease
message sent in the body of the loop automatically puts its receiver into this pool.

Your main() function might look like this:

2

 NSAutoreleasePool

void main()

{

 NSArray *args = [[NSProcessInfo processInfo] arguments];

 unsigned count, limit = [args count];

 for (count = 1; count < limit; count++){

 NSAutoreleasePool *pool =[[NSAutoreleasePool alloc] init];

 NSString *fileContents;

 NSString *fileName;

 fileName = [args objectAtIndex:count];

 fileContents = [[NSString alloc] initWithContentsOfFile:fileName];

 [fileContents autorelease];

 /* Process the file, creating and autoreleasing more objects. */

 [pool release];

 }

 /* Do whatever cleanup is needed. */

 exit (EXIT_SUCCESS);

}

This program processes files passed in on the command line. The for loop processes one file at a time. An
NSAutoreleasePool is created at the beginning of this loop and released at the end. Therefore, any object
sent an autorelease message inside the for loop, such as fileContents, is added to pool, and when pool is
released at the end of the loop those objects are also released.

Similarly, NSAutoreleasePools can be created inside any loop, even in a program based on the Application
Kit, that creates and releases many objects during each iteration.

Nesting Autorelease Pools

Autorelease pools can be nested allowing you to create them in any function or method. For example, the
main() function may create an autorelease pool and call another function that creates another autorelease
pool.

Because an NSAutoreleasePool adds itself to the active pool when created, it doesn’t cause a memory leak
in the face of an exception or other sudden transfer out of the current context. For example, if an
NSAutoreleasePool is created at the beginning of a loop and the program breaks out of the loop during
execution, that pool is released by the application’s default pool (or whatever pool was active before it was
created). In the case of a raised exception, the pool is released when the exception handler’s pool is released.
Thus it is not necessary to add exception handler code to release objects that were autoreleased.

3

Guaranteeing the Foundation Ownership Policy

By creating an NSAutoreleasePool instead of simply releasing objects, you extend the lifetime of temporary
objects to the lifetime of that pool. After an NSAutoreleasePool is deallocated, you should regard any
object that was autoreleased while that pool was active as “disposed of”, and not send a message to that
object or return it to the invoker of your method.

If you must use a temporary object beyond an autorelease context, you can do so by sending a retain
message to the object within the context and then send it autorelease after the pool has been released as in:

– findMatchingObject:anObject

{

 id match = nil;

 while (match == nil) {

 NSAutoreleasePool *subpool = [[NSAutoreleasePool alloc] init];

 /* Do a search that creates a lot of temporary objects. */

 match = [self expensiveSearchForObject:anObject];

 if (match != nil) [match retain]; /* Keep match around. */

 [subpool release];

 }

 return [match autorelease]; /* Let match go and return it. */

}

By sending retain to match while subpool is in effect and sending autorelease to it after subpool has been
released, match is effectively moved from subpool to the pool that was previously active. This extends the
lifetime of match and allows it to receive messages outside the loop and be returned to the invoker of
findMatchingObject: .

Method Types

Adding an object to the current pool + addObject:

Adding an object – addObject:

Debugging autorelease mechanism + enableDoubleReleaseCheck:
+ enableRelease:
+ resetTotalAutoreleasedObjects
+ setPoolCountThreshold:
+ showPools
+ showPoolsWithObjectIdenticalTo:
+ totalAutoreleasedObjects

4

 NSAutoreleasePool

Class Methods

addObject:
+ (void)addObject:(id)anObject

Adds anObject to the active autorelease pool in the current thread, so that it will be sent a release message
when the pool itself is deallocated. The same object may be added several times to the active pool and will
receive a release message for each time it was added. Normally you don’t invoke this method directly—
send autorelease to anObject instead.

See also: – addObject:

enableDoubleReleaseCheck:
+ (void)enableDoubleReleaseCheck:(BOOL)enable

This method aids in debugging the autorelease mechanism. If enable is YES, the release and autorelease
methods check to see if the receiving object has been released too many times. This check is performed by
searching all pools; consequently, programs may run very slow. Double release check is disabled by default.

enableRelease:
+ (void)enableRelease:(BOOL)enable

This method aids in debugging the autorelease mechanism. If enable is NO, release and autorelease
messages are effectively ignored, allowing all objects to remain in memory. Note that this will cause your
application’s use of memory to increase. Release is enabled by default.

resetTotalAutoreleasedObjects
+ (void)resetTotalAutoreleasedObjects

This method aids in debugging the autorelease mechanism. Use totalAutoreleasedObjects to return the
number of all autoreleased objects since the last invocation of this method or from the beginning of program
execution, if this method was never invoked. Use this method to start a new count of autoreleased objects,
beginning with the next object that is sent autorelease.

5

setPoolCountThreshold:
+ (void)setPoolCountThreshold:(unsigned)count

This method aids in debugging the autorelease mechanism. When the pool size reaches a multiple of count,
this method will call a well-known method (indicated in the console). You can then set a breakpoint on that
method in the debugger. If count is 0, this feature is disabled. The default setting is 0.

showPools
+ (void)showPools

This method aids in debugging the autorelease mechanism by printing to stdout a description of all
autorelease pools.

See also: + showPoolsWithObjectIdenticalTo:

showPoolsWithObjectIdenticalTo:
+ (void)showPoolsWithObjectIdenticalTo:(id)anObject

This method aids in debugging the autorelease mechanism by printing to stdout a description of all
autorelease pools containing anObject. Containment is determined by comparing object ids.

See also: + showPools

totalAutoreleasedObjects
+ (unsigned)totalAutoreleasedObjects

This method aids in debugging the autorelease mechanism. Invoke this method to return the number of all
autoreleased objects since the last invocation of resetTotalAutoreleasedObjects or from the beginning of
program execution, if resetTotalAutoreleasedObjects was never invoked. Use
resetTotalAutoreleasedObjects to start a new count of autoreleased objects, beginning with the next object
that is sent autorelease.

6

 NSAutoreleasePool

Instance Methods

addObject:
– (void)addObject:(id)anObject

Adds anObject to the receiver, so that it will be sent a release message when the receiver is deallocated.
The same object may be added several times to the same pool and will receive a release message for each
time it was added. Normally you don’t invoke this method directly—send autorelease to anObject instead.

See also: + addObject:

