
 1 Distributed Objects

NXTransport

Adopted By: List (common classes)
NXData (Mach Kit)
NXPort (Mach Kit)
NXProxy class (Distributed Objects)

Declared In: remote/transport.h

Protocol Description

The NXTransport protocol allows objects to be copied over a Distributed Objects
connection. This protocol consists of three methods:

- encodeRemotelyFor:freeAfterEncoding:isBycopy:

- encodeUsing:

- decodeUsing:

When an object must be vended over a connection, the
encodeRemotelyFor:freeAfterEncoding:isBycopy: method is invoked to determine
what object is sent. The Object class implements a version of this method that returns an
NXProxy; thus all objects may be sent over a connection in virtual form through the use of
a proxy. Classes can override this method to specify another object (that conforms to the
NXTransport protocol) to be sent over the connection. By sending a real object over the
connection rather than a proxy, some applications can save the overhead of remote
messaging (though if the object changes, keeping copies synchronized is an issue).

When an object is to be encoded, it is sent an encodeUsing: message. The portal argument
for this message is an object that implements the NXEncoding protocol and thus knows
how to encode various data types. The object to be encoded should send data to portal
that allows a copy of itself to be decoded.

In order to create the copy of the object on the receiving side, the object is allocated and
adecodeUsing: message is sent to it. The newly allocated object is not initialized, so
thedecodeUsing: implementation generally should invoke the object’s designated
initializer method.

Protocols: NXTransport 2

Instance Methods

decodeUsing:

– decodeUsing:(id <NXDecoding>)portal

A newly allocated instance is sent this message in order to initialize itself when an object
has been sent by copy over a connection. The instance is not initialized, so it should
generally invoke the object’s designated initializer. You must send messages (from the
NXDecoding protocol) to the portal object to fetch any data that was encoded; these
messages may be sent before or after initializing the new instance.

This method generally returns self to indicate that self is the object that is to be used as the
local copy of the sent object. If it returns another object, that object is used as the local
copy, and the instance that received this message is freed.

See also: – encodeUsing:

encodeRemotelyFor:freeAfterEncoding:isBycopy:

– encodeRemotelyFor:(NXConnection *)connection
freeAfterEncoding:(BOOL *)flagp
isBycopy:(BOOL)isBycopy

This method is responsible for returning the object that must be encoded to send the
receiver over connection. The default implementation inherited from the Object class
returns a local proxy to the receiver which, when encoded, yields a remote proxy that
forwards all messages to the original object.

You can override this method to change how an object is transported. If you return another
object (like self), that object will be encoded instead. The returned object must conform to
the NXTransport protocol. You may wish to test the isBycopy flag and return self only if
the object (rather than a proxy) is to be copied across the connection. If you want the
receiving object to be freed after it is encoded, you can set the boolean pointed to by flagp
to YES.

A typical implementation of this method simply ensures that the object or a proxy gets
encoded, based on the value of isBycopy:

- encodeRemotelyFor:(NXConnection *)connection

 freeAfterEncoding:(BOOL *)flagp isBycopy:(BOOL)isBycopy

{

 if (isBycopy) return self;

 return [super encodeRemotelyFor:connection

 freeAfterEncoding:flagp isBycopy:isBycopy];

}

 3 Distributed Objects

encodeUsing:

– encodeUsing:(id <NXEncoding>)portal

This method must send enough data to portal (an object that conforms to the NXEncoding
protocol) that a copy of the object can be created on the other side of a connection using the
decodeUsing: method. See the introduction to Distributed Objects for an example
implementation of this method.

