
OPENSTEP Enterprise Release 4.1 Copyright 1996 by NeXT Software, Inc. All Rights Reserved.

Using Distributed Objects with the
Enterprise Objects Framework

OPENSTEP’s Distributed Objects system provides a relatively simple way for applications to communicate with one
another by allowing them to share Objective C objects, even among applications running on different machines across
a network. Distributed objects are particularly useful for implementing client-server and cooperative applications.

As shipped with OPENSTEP, the Distributed Objects system allows you to pass messages and objects that descend
from the Object class back and forth between applications. The Enterprise Objects Framework augments this
capability, allowing you to pass messages and objects that descend from NSObject as well. Note that these added
capabilities do not alter the support for working with subclasses of Object in a distributed environment; you now can
pass messages and objects that descend from either root class.

Similarly, you can run the Enterprise Objects Framework access layer on a Portable Distributed Objects (PDO) system
to use it as a server for database applications. Of course, you can’t use any of the interface layer (such as the model
builder) on a PDO system, since this depends on the OPENSTEP graphical user interface. Only a OPENSTEP system
can run both layers.

The material in this document supplements that found in the Distributed Objects introduction, found in
/NextLibrary/Documentation/NextDev/Old_PDO_Reference/DistributedObjects/IntroDistObjects.pdf.

Strategies for Using Distributed Enterprise Objects

There are a number of distinct strategies that you can employ when using the Enterprise Objects Framework in a
distributed environment. In particular, two are particularly well supported: that of using a notification server, and that of
using a compute server.

Using a Notification Server

A notification server is used when you have multiple clients that need to coordinate access to a database. Each client
runs the Enterprise Objects Framework in its entirety: both the access and the interface layers—or just the access
layer if it’s a PDO system. They each work directly with the database (through the Enterprise Objects Framework), but
use a notification server to ensure that they all remain synchronized.

The notification server is a separate task, running either on one of the client machines or on a separate machine
altogether. Each client registers with the notification server, and then informs the notification server whenever the
client makes a change to the database (typically, messages to the notification server are sent from
EODatabaseChannel or EOAdaptorContext delegate methods). The notification server in turn then notifies each client
of the change.

Messages are passed between the clients and the notification server using the Distributed Objects system. Because the
messages need only indicate that the database has changed (perhaps also indicating which objects were affected; see
“Passing Unique Identifiers,” below), message traffic between applications is minimized and performance is thus
enhanced.

For an example of how to construct a notification server, see the example code that is supplied with the Enterprise
Objects Framework (in /NextDeveloper/Examples/EnterpriseObjects/DistributedEO).

Using a Compute Server

The notification server has the disadvantage of putting all of the computing burden on each client. Often, you have a
high-powered compute server that you want clients to be able to take advantage of. This server might do database
queries to determine the set of records that a client is interested in, or it might perform calculations on the records in
the database.

When using a compute server, the server should have (at a minimum) the Enterprise Objects Framework’s access layer
installed. Each client would be running the access layer and, if it is capable, the interface layer.

When the client sends a request to the compute server (using the Distributed Objects system), the server interacts with
the database (using the Framework’s access layer methods) to determine the result. If the result is not made up of a set
of objects already in the database server—if, for example, the result is a matrix that indicates the risk factors
associated with a set of securities—the compute server can pass the result to the client directly. If the result is a set of
enterprise objects—the set of securities that meet a particular set of risk criteria, for instance—the server can pass
unique identifiers for those objects to the client, who then fetches the records directly (see “Passing Unique
Identifiers,” below). This allows the client to take advantage of the compute server without having to suffer the
performance penalty that is incurred when passing enterprise objects between applications.

Passing Unique Identifiers

While you are free to pass enterprise objects between applications, you should consider the impact that this will have
on your application’s performance. The Enterprise Objects Framework is optimized to move data very rapidly between
the database and the end user. By splitting your application so that a server acts as a data source and one or more
clients, running the Framework’s interface layer, obtain enterprise objects from that data source using the Distributed
Objects system, you end up negating any performance advantage you might have gained by enlisting the added power
of a separate server.

Imagine, for instance, that you have a data source running on one machine and a browser displaying the objects from
that data source running on another, client, machine. When the user scrolls the browser, hundreds of messages will be
sent back and forth between the client and server, all of which have to be carried by the Distributed Objects system.

A general solution to this problem is to pass not the enterprise objects themselves, but a unique identifier for each
enterprise object (generally, made up of the object’s entity and primary key), encoded into an NSString. When a client
or server receives one of these unique identifiers, it can look for the object in its uniquing table (using EODatabase’s
objectForPrimaryKey:entity: method). If the enterprise object is not currently known to the client or server receiving
the unique identifier, it can simply fetch it from the database using the methods provided by the Enterprise Objects
Framework. This solution is used by both of the preceding two scenarios to minimize the number of messages that are
passed between applications.

Passing unique identifiers also helps you to work around another problem that can arise when passing enterprise
objects directly between applications. Suppose that you have two clients, each passing enterprise objects back and
forth to a data source running on a server. Now suppose the clients each fetch the same enterprise object from the
server. Each client will put that object into its uniquing table. But if one client then passes the object to the other, the
receiving client will not automatically recognize that it already possesses the object and will wind up with two distinct
objects that represent the same data in the database. And these two objects can rapidly get out of sync.

A unique identifier that is made up of an enterprise object’s entity name and primary key, however, would have the
same value on each client. When the identifier is passed from one client to the other, the receiving client can quickly
ascertain that it already possesses the indicated object.

Establishing a Connection

Because of Foundation’s new autorelease mechanism (which is used by all objects that inherit from NSObject), you
must ensure that there’s an autorelease pool in the run loop on both the server and client sides of the distributed object
connection. This is easily done by registering the server using the methods supplied by NXAutoreleaseConnection
(NXAutoreleaseConnection is a subclass of NXConnection that adds no new methods of its own). For example:

id aServer;
id aConnection;

aServer = [[Server alloc] init];
aConnection = [NXAutoreleaseConnection registerRoot:aServer

withName:SERVER_NAME];
if (aConnection) {

[aConnection run];
[aServer release];

} else {
fprintf(stderr, "Couldn’t register server - exiting.\n");
 exit(-1);

}

In the above example, Server is a subclass of NSObject and SERVER_NAME is a C string that contains the name to
be assigned to the server.

Here’s the code on the client side that connects to the server:

id aServer = nil;
unsigned int i;

for(i = 0; i < 10; i++){
/* in case it doesn’t connect right away... */

aServer = [NXAutoreleaseConnection connectToName:SERVER_NAME
onHost:HOST_NAME];

if(aServer)
break;

sleep(2);
}

if(!aServer){
fprintf(stderr, "time out !\n");
exit(1);

}

In the above excerpt, SERVER_NAME is a C string that contains the name of the server to connect to, and
HOST_NAME is a C string that identifies the host on which the server is running.

When a client establishes a connection to an NSObject on the server, connectToName:onHost: returns a proxy that
has been retained (not autoreleased). Once the client is finished with the object returned by connectToName:onHost:,
it must send release or autorelease to it. Similarly, the server should release the connection object when it’s no longer
needed.

Note: Sending NSObjects over an NXConnection (as opposed to an NXAutoreleaseConnection) results in memory
leaks.

Passing Objects

Suppose you have a method on the server named supplyObject that returns to the client an autoreleased object that’s a
subclass of NSObject:

- (NSObject *)supplyObject
{

id anObject = [[anNSObjectSubclass alloc] init];

return [anObject autorelease];
}

The object on the server is retained. On the client side, the proxy is autoreleased.

Every time an NSObject is passed by reference from a server to a client, the source object’s reference count is
incremented. When the proxy on the client disappears (due to a release or autorelease message), the appropriate
number of release messages are sent to the object on the server.

Restrictions on the Objects Passed

NSObjects are passed by reference except for the following, which are passed by copy:

• NSString
• NSNumber
• NSData

Note: NSMutableStrings on the server are passed as NSStrings to the client; on the client, they aren’t mutable.

While you can share NSObjects through the use of proxies, messages to a local copy require much less overhead (and
are thus quicker) than remote messages over a connection. Thus, you may want to avoid passing subclasses of
NSObject (other than NSString, NSNumber, and NSData) if your application is sensitive to performance. Do not use
the bycopy keyword to force other subclasses of NSObject to be passed by copy. If you really need this behavior, you
must implement the methods in the NXTransport protocol for your custom NSObjects.

For an example that illustrates how to pass NSArray and NSDictionary objects, see the Foundation extension code that
is supplied with the Enterprise Objects Framework (FoundationExtensions.[hm] in
/NextDeveloper/Examples/EnterpriseObjects/DistributedEO/DEOClient.subproj/
DOExtensions.subproj. Also see
/NextLibrary/Documentation/NextDev/Old_PDO_Reference/DistributedObjects/IntroDistObjects.pdf.

Copying Proxies

Don’t send copy or mutableCopy to proxies. The proxy that you receive for the object’s copy is autoreleased, which is
contrary to the way that copy operates on local objects. Additionally, in the process of duplicating the object on the
server the copy receives an extra retain, which ultimately results in a memory leak when you release the proxy.

Keeping Track of Clients

Often, it’s handy for a server process to keep track of its current clients. You typically use an NSMutableArray on the
server, storing proxies to the clients in the array. If a connection is then broken (due to the connection object being
released, for instance), you remove the proxy from the array. When doing so, however, avoid using NSMutableArray’s
removeObject: method; this method uses isEqual:, which causes the entire array to be transferred to each client for
comparison. Instead, use removeObjectIdenticalTo:.

