
1

NSScanner Class Cluster

Class Cluster Description

An NSScanner object interprets and converts the characters of an NSString into number and string values.
You assign the scanner’s string on creating it, and the scanner progresses through the characters of that
string from beginning to end as you request items. This cluster has a single public class, NSScanner.

The objects you create using this class are referred to as scanner objects (and when no confusion will result,
merely as scanners). Because of the nature of class clusters, scanner objects aren’t actual instances of the
NSScanner class but one of its private subclasses. Although a scanner object’s class is private, its interface
is public, as declared by this abstract superclass, NSScanner. (See “Class Clusters” in the introduction to
the Foundation Kit for more information on class clusters and on creating subclasses within a cluster.)

Scanning Behavior

Generally, you instantiate a scanner object by invoking the scannerWithString: or
localizedScannerWithString: class methods. Either method returns a scanner object initialized with the
string you pass to it. The newly created scanner starts at the beginning of its string, progressing through the
characters as you request values with scan... methods. You can change the implicit scan location with the
setScanLocation: method, to re-scan a portion of the string after an error or to skip ahead a certain number
of characters. Scan operations start at the scan location and advance the scanner to just past the last character
in the scanned value representation (if any). For example, after scanning an integer from the string “137
small cases of bananas”, a scanner’s location will be 3, indicating the space immediately after the number.

You can configure a scanner to skip a set of characters with the setCharactersToBeSkipped: method. A
scanner ignores characters to be skipped at the beginning of any scan operation. Once it finds a scannable
character, however, it includes all characters matching the request. Scanners skip whitespace and newline
characters by default. If you continue with the previous example’s string and use
scanUpToString:intoString: to find the substring before “of”, the scanner skips the space character before
the word “small” but includes the space before “of” in its result unless you include a space in the search
string:

Search String Result String

“of” (no space before) “small cases ” (includes the space following)
“ of” (space before) “small cases” (stops before the space)

You can also configure a scanner to consider or ignore case using the setCaseSensitive: method. By default
a scanner ignores case. Note that case is always considered with regard to characters to be skipped. To skip
all English vowels, for example, you must set the characters to be skipped to those in the string
“AEIOUaeiou”.

2

A scanner bases some of its scanning behavior on a locale, which specifies a language and conventions for
value representations. NSScanner uses only the locale’s definition for the decimal separator (given by the
key named NSDecimalSeparator). You can create a scanner with the user’s locale by using
localizedScannerWithString:, or set the locale explicitly using setLocale:. If you use a method that doesn’t
specify a locale, the scanner assumes the default locale values. See “Locales” in the “Other Features”
section of the Foundation Kit documentation for more information on locales.

For an example of using a scanner, suppose you have a string containing lines such as:

Product: Acme Potato Peeler; Cost: 0.98
Product: Chef Pierre Pasta Fork; Cost: 0.75
Product: Chef Pierre Colander; Cost: 1.27

This method scans such a string to extract the product information for each line:

- (BOOL)scanProductString:(NSString *)string

{

 NSCharacterSet *semicolonSet;

 NSScanner *theScanner;

 NSString *PRODUCT = @"Product:";

 NSString *COST = @"Cost:";

 NSString *productName;

 float productCost;

 semicolonSet = [NSCharacterSet

 characterSetWithCharactersInString:@";"];

 theScanner = [NSScanner scannerWithString:string];

 while ([theScanner isAtEnd] == NO) {

 if ([theScanner scanString:PRODUCT intoString:NULL] &&

 [theScanner scanUpToCharactersFromSet:semicolonSet

 intoString:&productName] &&

 [theScanner scanString:@";" intoString:NULL] &&

 [theScanner scanString:COST intoString:NULL] &&

 [theScanner scanFloat:&productCost]) {

 /* Do something with productName and productCost. */

 }

 else return NO;

 }

 return YES;

}

This method uses alternating scan operations to skip the expected substrings “Product:” and “Cost:”, as well
as the semicolon, and to read the values for the product name and cost (read as a float for simplicity’s sake).
It returns NO if an error occurs on any scan operation, and YES if it successfully scans and processes all

3

lines. Note that because a scanner skips whitespace and newlines by default, the loop does no special
processing for them.

4

 NSScanner

NSScanner

Inherits From: NSObject

Conforms To: NSCopying
NSObject (NSObject)

Declared In: Foundation/NSScanner.h
Foundation/NSDecimalNumber.h

Class Description

The NSScanner class declares the programmatic interface for an object that scans values from an NSString
object. NSScanner’s primitive methods are string and all of the methods listed below under “Configuring
an NSScanner.” Using an NSScanner is explained in the class cluster description.

Adopted Protocols

NSCopying – copyWithZone:

Method Types

Creating an NSScanner + scannerWithString:
+ localizedScannerWithString
– initWithString:

Getting an NSScanner’s string – string

Configuring an NSScanner – setScanLocation:
– scanLocation
– setCaseSensitive:
– caseSensitive
– setCharactersToBeSkipped:
– charactersToBeSkipped
– setLocale:
– locale

5

Scanning a string – scanCharactersFromSet:intoString:
– scanUpToCharactersFromSet:intoString:
– scanDecimal:
– scanDouble:
– scanFloat:
– scanInt:
– scanHexInt:
– scanLongLong:
– scanString:intoString:
– scanUpToString:intoString:
– isAtEnd

Class Methods

localizedScannerWithString:
+ (id)localizedScannerWithString:(NSString *)aString

Returns an NSScanner that scans aString according to the user’s default locale (set with setLocale:). Sets
the string to scan by invoking initWithString: with aString. See “Locales” in the “Other Features” section
of the Foundation Kit documentation for more information on locales.

scannerWithString:
+ (id)scannerWithString:(NSString *)aString

Returns an NSScanner that scans aString. Sets the string to scan by invoking initWithString: with aString.

Instance Methods

caseSensitive
– (BOOL)caseSensitive

Returns YES if the scanner distinguishes case in the characters it scans, NO otherwise. NSScanners are not
case sensitive by default. Note that case sensitivity doesn’t apply to the characters to be skipped.

See also: – setCaseSensitive:, –setCharactersToBeSkipped:

6

 NSScanner

charactersToBeSkipped
– (NSCharacterSet *)charactersToBeSkipped

Returns a character set containing the characters that the scanner ignores when looking for a scannable
element. For example, if a scanner ignores spaces and you send it a scanInt: message, it skips spaces until
it finds a decimal digit or other character. While an element is being scanned, however, no characters are
skipped. If you scan for something made of characters in the set to be skipped (for example, using scanInt:
when the set of characters to be skipped is the decimal digits), the result is undefined.

The default set to skip is the whitespace and newline character set.

See also: – setCharactersToBeSkipped:, + whitespaceAndNewlineCharacterSet(NSCharacterSet)

initWithString:
– (id)initWithString: (NSString *)aString

Initializes a newly allocated NSScanner to scan aString from the beginning. Returns self.

See also: + localizedScannerWithString:, + scannerWithString:

isAtEnd
– (BOOL)isAtEnd

Returns YES if the scanner has exhausted all significant characters in its string, NO if there are characters
left to scan. If only characters from the set to be skipped remain, this method returns YES.

See also: – charactersToBeSkipped

locale
– (NSDictionary *)locale

Returns the scanner’s locale, or nil if it has none. A scanner’s locale affects the way it interprets numeric
values from the string. In particular, a scanner uses the locale’s decimal separator to distinguish the integer
and fractional parts of floating-point representations. A scanner with no locale set uses the default locale
values.

See “Locales” in the “Other Features” section of the Foundation Kit documentation for more information
on locales.

See also: – setLocale:

7

scanCharactersFromSet:intoString:
– (BOOL)scanCharactersFromSet:(NSCharacterSet *)scanSet

intoString: (NSString **)stringValue

Scans the string as long as characters from scanSet are encountered, accumulating characters into a string
that’s returned by reference in stringValue. Returns YES if the scanner scans any characters; otherwise
returns NO.

Invoke this method with NULL as stringValue to simply scan past a given set of characters.

See also: – scanUpToCharactersFromSet:intoString:

scanDecimal:
– (BOOL)scanDecimal:(NSDecimal *)decimalValue

Scans an NSDecimal value if possible, returning it by reference in decimalValue. Returns YES if the scanner
finds a valid NSDecimal representation, NO otherwise. See the NSDecimalNumber class specification for
more information.

Invoke this method with NULL as decimalValue to simply scan past an NSDecimal representation.

scanDouble:
– (BOOL)scanDouble:(double *)doubleValue

Scans a double value if possible, returning it by reference in doubleValue. Returns YES if the scanner finds
a valid floating-point representation, NO otherwise. Returns HUGE_VAL or –HUGE_VAL by reference in
value on overflow, or 0.0 on underflow. Skips past excess digits in the case of overflow, so that the scanner’s
position is past the entire floating-point representation.

Invoke this method with NULL as doubleValue to simply scan past a double value representation.

Note: Floating-point representations are assumed to be IEEE compliant.

See also: – doubleValue(NSString)

scanFloat:
– (BOOL)scanFloat:(float *)floatValue

Scans a float value if possible, returning it by reference in floatValue. Returns YES if the scanner finds a
valid floating-point representation, NO otherwise. Returns HUGE_VAL or –HUGE_VAL by reference in
floatValue on overflow, or 0.0 on underflow. Skips past excess digits in the case of overflow, so that the
scanner’s position is past the entire floating-point representation.

8

 NSScanner

Invoke this method with NULL as floatValue to simply scan past a float value representation.

Note: Floating-point representations are assumed to be IEEE compliant.

See also: – floatValue (NSString)

scanHexInt:
– (BOOL)scanHexInt:(unsigned int *)intValue

Scans an int value from a hexadecimal representation if possible, returning it by reference in intValue. The
hexadecimal integer representation may optionally be preceded by “0x” or “0X”. Returns YES if the
scanner finds a valid hexadecimal integer representation, NO otherwise. Returns INT_MAX or INT_MIN
by reference in intValue on overflow. Skips past excess digits in the case of overflow, so that the scanner’s
position is past the entire hexadecimal representation.

Invoke this method with NULL as intValue to simply scan past a hexadecimal integer representation.

scanInt:
– (BOOL)scanInt:(int *) intValue

Scans an int value from a decimal representation if possible, returning it by reference in intValue. Returns
YES if the scanner finds a valid decimal integer representation, NO otherwise. Returns INT_MAX or
INT_MIN by reference in intValue on overflow. Skips past excess digits in the case of overflow, so that the
scanner’s position is past the entire decimal representation.

Invoke this method with NULL as intValue to simply scan past a decimal integer representation.

See also: – intValue (NSString)

scanLocation
– (unsigned int)scanLocation

Returns the character position at which the scanner begins its next scanning operation.

See also: – setScanLocation:

scanLongLong:
– (BOOL)scanLongLong:(long long *)longLongValue

Scans a long long int value from a decimal representation if possible, returning it by reference in value.
Returns YES if the scanner finds a valid decimal integer representation, NO otherwise. Returns

9

LONG_LONG_MAX or LONG_LONG_MIN by reference in longLongValue on overflow. All overflow
digits are skipped. Skips past excess digits in the case of overflow, so that the scanner’s position is past the
entire decimal representation.

Invoke this method with NULL as longLongValue to simply scan past a long decimal integer representation.

scanString:intoString:
– (BOOL)scanString:(NSString *)string

intoString: (NSString **)stringValue

Scans for string, and, if a match is found, returns an equivalent string object by reference in stringValue.
Returns YES if stringValue matches the characters at the scan location; otherwise returns NO.

Invoke this method with NULL as value to simply scan past a given string.

See also: – scanUpToString:intoString:

scanUpToCharactersFromSet:intoString:
– (BOOL)scanUpToCharactersFromSet:(NSCharacterSet *)stopSet

intoString: (NSString **)stringValue

Scans the string until a character from stopSet is encountered, accumulating characters into a string that’s
returned by reference in stringValue. Returns YES if the scanner scans any characters; otherwise returns
NO.

Invoke this method with NULL as stringValue to simply scan up to a given set of characters.

See also: – scanCharactersFromSet:intoString:

scanUpToString:intoString:
– (BOOL)scanUpToString:(NSString *)stopString

intoString: (NSString **)stringValue

Scans the string until stopString is encountered, accumulating characters into a string that’s returned by
reference in stringValue. Returns YES if the scanner scans any characters; otherwise returns NO.

Invoke this method with NULL as stringValue to simply scan up to a given string.

See also: – scanString:intoString:

10

 NSScanner

setCaseSensitive:
– (void)setCaseSensitive:(BOOL)flag

If flag is YES, the scanner will distinguish case when scanning characters. If flag is NO, it will ignore case
distinctions. NSScanners are by default not case sensitive. Note that case sensitivity doesn’t apply to the
characters to be skipped.

See also: – caseSensitive, –setCharactersToBeSkipped:

setCharactersToBeSkipped:
– (void)setCharactersToBeSkipped:(NSCharacterSet *)skipSet

Sets the scanner to ignore the characters in skipSet when scanning its string for a value representation. For
example, if a scanner ignores spaces and you send it a scanInt: message, it skips spaces until it finds a
decimal digit or other character. While an element is being scanned, however, no characters are skipped. If
you scan for something made of characters in the set to be skipped (for example, using scanInt: when the
set of characters to be skipped is the decimal digits), the result is undefined.

The characters to be skipped are treated literally as single values. A scanner doesn’t apply its case sensitivity
setting to these characters, and doesn’t attempt to match composed character sequences with anything in
the set of characters to be skipped (though it does match precomposed characters individually). If you want
to skip all vowels while scanning a string, for example, you can set the characters to be skipped to those in
the string “AEIOUaeiou” (plus any accented variants with precomposed characters).

The default set of characters to skip is the whitespace and newline character set.

See also: – charactersToBeSkipped, + whitespaceAndNewlineCharacterSet(NSCharacterSet)

setLocale:
– (void)setLocale:(NSDictionary *)aLocale

Sets the scanner’s locale to aLocale. A scanner’s locale affects the way it interprets values from the string.
In particular, a scanner uses the locale’s decimal separator to distinguish the integer and fractional parts of
floating-point representations. A new scanner’s locale is by default nil , which causes it to use the default
locale values.

See “Locales” in the “Other Features” section of the Foundation Kit documentation for more information
on locales.

See also: – locale

11

setScanLocation:
– (void)setScanLocation:(unsigned int)index

Sets the location at which the next scan operation begins to index. This method is useful for backing up to
re-scan after an error. Raises an NSRangeException if index is beyond the end of the string being scanned.

Rather than setting the scan location directly to skip known sequences of characters, use
scanString:intoString: or scanCharactersFromSet:intoString:, which allow you to verify that the
expected substring (or set of characters) is in fact present.

See also: – scanLocation

string
– (NSString *)string

Returns the string that the scanner was created or initialized with.

See also: – locale

