
Designing Enterprise ObjectsDesigning Enterprise Objects

Chapter 2

63

The Enterprise Objects Framework and the applications you build with it
revolve around the enterprise objects that you design. Designing these objects,
then, is in many ways the essence of creating an Enterprise Objects Framework
application. This chapter explains the mechanics of designing enterprise
objects, describes their structure and interaction with the Framework, and
explains how you can take advantage of features provided by the Framework.

Designing an enterprise object entails three major steps:

• Designing your schema

• Modeling the enterprise object

• Implementing the enterprise object

This chapter describes the activities that occur during each stage. It uses
selections from the Enterprise Objects Framework on-line examples to explain
the principles of designing an enterprise object. In particular, the chapter
focuses on the Member entity in the Rentals database. A member is a video
store customer who’s authorized to rent videos and whose guests may also rent
videos.

Figure 1 shows the Member entity, as constructed in EOModeler. The top part
of the window displays Member’s attributes, and the lower part of the window
displays its relationships. For more discussion of EOModeler, see the chapter
“Using EOModeler.”

Designing Enterprise Objects Designing Your Schema

64

Figure 1. The Member Entity in EOModeler

Designing Your Schema

If you’re working with an existing database, its schema will dictate many of the
decisions you make in designing your enterprise objects. If you’re designing
your database at the same time as your enterprise objects, however, you can let
each design influence the other as they’re developed and before you implement
them. Be sure to keep both designs in mind as you work; decisions you make
about the database design can affect your enterprise object design, and vice
versa. This chapter doesn’t address issues of database design itself, but the
information presented here can help you to create a design that will work
effectively with the Enterprise Objects Framework.

65

Designing Enterprise Objects Defining the Model

Defining the Model

The work of writing enterprise objects typically begins in EOModeler. You
make the following decisions for your enterprise object in EOModeler:

• Should your enterprise object be an EOGenericRecord or a custom class?

• What database attributes do you want to include as properties in your class?

• What data types should the class properties be?

• What relationships does your enterprise object have with other objects?

• What referential integrity rules should you specify for the relationships in
your enterprise object?

• Does your enterprise object class have inheritance relationships with other
enterprise object classes?

These issues are discussed in the following sections.

EOGenericRecord or Custom Class?
Enterprise Objects Framework provides a “default” enterprise object class,
EOGenericRecord. An EOGenericRecord can take on values for any properties
defined in your application’s model (see the section “Accessing an Enterprise
Object’s Data” on page 75 for more discussion of this), but implements no
custom behavior. EOGenericRecord objects can hold simple values as well as
refer to other enterprise objects through relationships defined in the model.

The criterion for deciding whether to make your enterprise objects custom
classes or to simply use the EOGenericRecord class is behavior. One of the main
reasons to use the Enterprise Objects Framework is to associate behavior with
your persistent data. Behavior is implemented as methods that “do something,”
as opposed to merely returning the value for a property. Since the Framework
itself handles most of the behavior related to persistent storage, you can focus
on the behavior specific to your application.

Because the Member class in the Rentals database has specialized behavior—
for example, it validates changes to objects, calculates the cost restrictions of a
member’s guests, and keeps track of a member’s rentals—it needs to be a
custom class.

Designing Enterprise Objects Defining the Model

66

Which Attributes Should Be Class Properties?
By default, EOModeler marks all of the attributes read in from the database as
class properties. When an attribute is marked as a class property, it means that
the attribute will be included in your class definition when you generate
template code for the class, and that it will be fetched and passed to your
enterprise object when you create instances from the database.

The attributes you mark as class properties should only be ones whose values
are meaningful in the object graph that’s created when you fetch objects from
the database. Attributes that are essentially database artifacts shouldn’t be
marked as class properties. For example:

• As a general rule, foreign and primary keys shouldn’t be included in your
enterprise object as class properties. The only exception to this rule is when
the key has meaning to the user (such as a credit card number) and therefore
must be displayed in the user interface.

• Relationships that are just used in EOModeler as a vehicle for flattening
attributes from another entity shouldn’t be included as class properties. The
Member class flattens two properties from Customer: firstName and lastName.
These flattened attributes are included in Member as class properties, but the
relationship to Customer that Member uses to flatten the attributes doesn’t
need to be a class property since it’s otherwise not needed. For more
discussion of this topic see “How Should Your Enterprise Object Manage
Relationships with Other Objects?” on page 68.

• Relationships that represent an entity’s relationship to an intermediate join
table shouldn’t be included in your enterprise objects as class properties
(unless they contain data that’s meaningful in your application).

For example, in the Movie database, the Director table acts as an
intermediate table between Movie and Talent and exists purely to define
that relationship. It has no data besides its foreign keys. Because of this, you
never need to fetch instances of Director into your application. However, it
makes sense to specify a relationship between Movie and Director and
between Director and Talent, and to flatten that second relationship to give
Movie access to the Talent table. The flattened relationship, possibly named
directors, can then be marked as a class property, because it contains objects
that should be included in the object graph.

Although Director contains no data besides its foreign keys, some
intermediate tables do. For example, the Role table acts as an intermediate
table between Movie and Talent, and it includes the attribute roleName.
Because of this, it’s likely that if your enterprise object had a relationship to

67

Designing Enterprise Objects Defining the Model

Role, you’d want to include that relationship as a class property to be able to
access the value of roleName.

What Data Types Should Your Properties Be?
When you create a new model, Enterprise Objects Framework maps external
database data types to the following classes:

• NSString
• NSCalendarDate
• NSDecimalNumber
• NSNumber
• NSData
• EONull (representing NULL values on the server only)
• Custom value classes defined by your application

When you’re working with custom data, you’ll typically want to convert binary
data into a meaningful form. However, since you define its form, you have to
convert it yourself. The Framework allows you to define a custom class whose
instances are initialized with binary or string data; this prevents your accessor
methods from having to explicitly convert the data, and allows other objects to
access your enterprise object’s property in its intended form rather than as an
NSData object.

Working with Numeric Values
There are basically two different choices for representing numeric values in
your model:

• Numbers that correspond to money values should be represented in your
model as NSDecimalNumbers. This is because in the Enterprise Objects
Framework, numeric database values are stored in one of two types of objects:
NSNumber or NSDecimalNumber. When you use NSNumber, values are
limited to double precision and operations are inexact. Using
NSDecimalNumber provides high precision (38 decimal digits) and smooth
conversions between strings, NSDecimalNumbers, and money.

• Numbers that represent integer or floating point values in your database
should be declared as NSNumbers in your model. You then use the Attribute
Inspector to specify the scalar type to which the NSNumber will be coerced.
For example, if you’re working with scientific data, you should represent it as
an NSNumber that will be coerced to a double.

Designing Enterprise Objects Defining the Model

68

Conversion of Numeric Values
When the Framework passes an NSNumber value to your object, the value is
converted to the C scalar (numeric) type required by your accessor method or
instance variable (for more information, see “Accessing an Enterprise Object’s
Data” on page 75). For example, suppose your enterprise object defines these
accessor methods:

– (void)setAge:(int)age
– (int)age

For the setAge: method, the NSNumber value for the “age” key is converted to
an int and passed as age. Similarly, the return value of the age method is converted
to an NSNumber.

How Should Your Enterprise Object Manage Relationships with
Other Objects?
In EOModeler you can specify relationships between entities. For example, in
the Rentals database in the on-line examples, the Member entity can have
several relationships to other entities, including:

• To-one relationship to Customer
• To-one relationship to CreditCard
• To-many relationship to Guest
• To-many relationship to Rental
• To-many relationship to Fee

You can use relationships to access data in the destination entity from the source
entity.

When you include relationships as class properties, to-one relationships are
represented as pointers in the object graph and to-many relationships are
represented as NSArrays. You can see this more clearly if you look at the way the
to-one relationship to CreditCard and the to-many relationship to Guest are
represented as instance variables in the Member class:

// Pointer to a CreditCard object in the object graph
id creditCard;

// Array of Guest objects
NSMutableArray *guests;

For the most part, you access the data in other objects by using relationship
properties to traverse the in-memory object graph in your running application.
For example, the following statement uses the member’s creditCard relationship
to access the authorizationDate property in the CreditCard object:

69

Designing Enterprise Objects Defining the Model

date = [[member creditCard] authorizationDate];

Likewise, the following statement uses the member’s guests relationship to
return an NSArray containing the member’s Guest objects:

guestArray = [member guests];

Referential Integrity
When your enterprise object has relationships with other objects, you can use
EOModeler to define rules to govern those relationships:

• Optionality

Optionality refers to whether a relationship is optional or mandatory. For
example, you can require all departments to have a location (mandatory), but
not require that every employee have a manager (optional).

• Delete Rules

This refers to the rules that should be applied to an entity that’s involved in a
relationship when the source object is deleted. For example, you might have
a department with multiple employees. When a user tries to delete the
department, you can:

• Delete the department and remove any back pointer the employee has to
the department (nullify)

• Delete the department and all of the employees it contains (cascade)

• Refuse the deletion if the department contains employees (deny)

In addition, you can set a source object as owning its destination objects.
When a source object owns its destination objects and you remove a
destination object from the source object’s relationship array, you’re also
deleting it from the database (alternatively, you can transfer it to a new
owner). This is because ownership implies that the owned object can’t exist
without an owner—for example, line items can’t exist outside of a purchase
order. By contrast, you might have a department object that doesn’t own its
employee objects. If you remove an employee from a department’s
employees array, the employee continues to exist in the database, but its
department pointer is set to nil. If you really intend to delete the employee
from the database, you’d have to do it explicitly.

You can also specify in EOModeler that the primary key of the source entity
should be propagated to newly inserted objects in the destination of the
relationship. This is used for a to-one owning relationship, where the owned

Designing Enterprise Objects Defining the Model

70

object has the same primary key as the source. For example, in the Movies
database the TalentPhoto entity has the same primary key as the entity that
owns it, Talent.

For more information on how to set these options, see the chapter “Using
EOModeler.”

Mapping an Entity Across Multiple Tables
In certain special cases you may decide to use EOModeler to “flatten” the
attributes of a destination entity. When you flatten an attribute, you effectively
add it from the destination entity to the source entity. In general you should only
flatten attributes across one-to-one relationships (like Employee to Address)
where the destination entity is never fetched directly. Otherwise, you run the
risk that the values of flattened attributes can get out of sync with the most
current view of data in your application.

Some examples of good uses of flattened attributes are as follows:

• Implementing vertical inheritance mapping.

For example, the Member class has two flattened attributes: firstName and
lastName. It flattens these attributes from the Customer entity. Customer is a
parent entity of Member and Guest that provides attributes common to
both. Because Customer is an abstract entity and is therefore never
instantiated in the object graph, the only way to access Customer’s data is to
flatten the appropriate attributes into its sub-entities. The relationship
between Member, Guest, and Customer is an example of vertical
inheritance mapping—for more discussion, see “Inheritance” on page 83.

• Combining multiple tables to form a logical unit.

For example, you might have employee data that’s spread across multiple
tables such as Address, Benefits, and so on. If you have no need to access
these tables individually (that is, if you’d never create an Address object
since the address data is always subsumed in Employee), then it makes
sense to flatten attributes from those entities into Employee.

• If your application (or the property in question) is read-only.

Note: When you use flattened attributes, you don’t need to include the
relationship as a class property—there’s no need to since the data it would be
used to access is already included in the source entity.

For more discussion of this topic, see the chapter “Using EOModeler.”

71

Designing Enterprise Objects Implementing an Enterprise Object

What about Inheritance?
You can use the Advanced Entity Inspector in EOModeler to specify an entity’s
parent entity. For example, the Customer entity is a parent to both Member and
Guest. For more discussion of the different approaches you can use for
inheritance, see “Inheritance” on page 83.

Implementing an Enterprise Object

As discussed in the section “EOGenericRecord or Custom Class?” on page 65,
one of the first decisions you need to make about an enterprise object is whether
you want it to be an EOGenericRecord or a custom class. EOGenericRecord is
the default enterprise object class provided in the Enterprise Objects
Framework. Unlike a custom class, it implements no custom behavior.

For both EOGenericRecords and custom classes, the Enterprise Objects
Framework provides mechanisms for the following:

• Accessing data

For accessing data in enterprise objects, the Enterprise Objects Framework
provides the informal protocols EOKeyValueCoding and
EOKeyRelationshipManipulation. For more discussion of these protocols,
see “Writing Accessor Methods” on page 73.

• Primary key generation

Enterprise objects don’t have to declare instance variables for primary key
and foreign key values. The Framework manages primary and foreign keys
automatically. The default mechanism for assigning unique primary keys is
provided with EOAdaptorChannel’s primaryKeyForNewRowWithEntity:. If you
need to provide a custom mechanism for assigning primary keys, you can
implement the EODatabaseContext delegate method
databaseContext:newPrimaryKeyForObject:entity:. Using these two techniques, you
don’t need to store the primary key in your enterprise object.

From this point on, the assumption is that you’re using custom enterprise object
classes. The following sections describe how to add behavior to your custom
classes.

Designing Enterprise Objects Implementing an Enterprise Object

72

Generating Template Source Code
When you use the Create Template command in EOModeler to generate
template source code for a custom class, the header (.h) and implementation (.m)
files that are created contain the default implementation for your enterprise
object class.

Looking at header file Member.h shows you the instance variables and accessor
methods that are automatically created for you when you generate template
source code for the Member class.

Member.h
#import <EOControl/EOControl.h>

@class Guest;

@class CreditCard;

@class Rental;

@interface Member : NSObject

{

 int customerID;

 NSString *city;

 NSCalendarDate *memberSince;

 NSString *phone;

 NSString *state;

 NSString *streetAddress;

 NSString *zip;

 NSString *firstName;

 NSString *lastName;

 CreditCard *creditCard;

 NSMutableArray *rentals;

 NSMutableArray *guests;

}

- (void)setCustomerID:(int) value;

- (int) customerID;

- (void)setCity:(NSString *)value;

- (NSString *)city;

- (void)setMemberSince:(NSCalendarDate *)value;

- (NSCalendarDate *)memberSince;

- (void)setPhone:(NSString *)value;

- (NSString *)phone;

- (void)setState:(NSString *)value;

- (NSString *)state;

73

Designing Enterprise Objects Implementing an Enterprise Object

- (void)setStreetAddress:(NSString *)value;

- (NSString *)streetAddress;

- (void)setZip:(NSString *)value;

- (NSString *)zip;

- (void)setFirstName:(NSString *)value;

- (NSString *)firstName;

- (void)setLastName:(NSString *)value;

- (NSString *)lastName;

- (void)setCreditCard:(CreditCard *)value;

- (CreditCard *)creditCard;

- (NSArray *)rentals;

- (void)addToRentals:(Rental *)object;

- (void)removeFromRentals:(Rental *)object;

- (NSArray *)guests;

- (void)addToGuests:(Guest *)object;

- (void)removeFromGuests:(Guest *)object;

@end

The template source code for Member illustrates some of the basic principles
involved in implementing an enterprise object. These principles are discussed
in the following sections.

Writing Accessor Methods
When you generate template source code for a custom class in EOModeler, the
resulting .m file includes default accessor methods. Accessor methods let you set
and return the values of your class properties (instance variables). For example,
here are some of the accessor methods in the Member.m file:

- (void)setMemberSince:(NSCalendarDate *)value

{

 [self willChange];

 [memberSince autorelease];

 memberSince = [value retain];

}

- (NSCalendarDate *)memberSince { return memberSince; }

- (void)setCreditCard:(CreditCard *)value

{

Designing Enterprise Objects Implementing an Enterprise Object

74

 // a to-one relationship

 [self willChange];

 [creditCard autorelease];

 creditCard = [value retain];

}

- (CreditCard *)creditCard { return creditCard; }

- (NSArray *)rentals { return rentals; }

- (void)addToGuests:(Guest *)object

{

 // a to-many relationship

 [self willChange];

 [guests addObject:object];

}

- (void)removeFromGuests:(Guest *)object

{

 // a to-many relationship

 [self willChange];

 [guests removeObject:object];

}

- (NSArray *)guests { return guests; }

Features introduced by this code excerpt are discussed in the following sections.

Change Notification
In the above code excerpt from Member.m, you can see that each of the “set”
methods includes the statement [self willChange] .

In Enterprise Objects Framework, objects that need to know about changes to
an enterprise object register as observers for change notifications. When an
enterprise object is about to change, it has the responsibility of posting a change
notification so that registered observers are notified. To do this, enterprise
objects should invoke the method willChange prior to altering their state. This is
invoked by default in template source code’s “set” methods, but whenever you
add your own methods that change the object’s state, you need to remember to
include [self willChange] .

Accessing Data through Relationships
In the Member class, note that relationships and flattened properties are treated
no differently than properties based on the entity’s original attributes.

For example, Member can use its creditCard relationship to traverse the object
graph and change values in the CreditCard object. If you want to access
information about a Member’s credit card, your code can do something like this:

75

Designing Enterprise Objects Implementing an Enterprise Object

[[member creditCard] limit];

Note that you can modify attributes in the object graph regardless of what table
they came from. Member’s setFirstName: method lets you modify the firstName
flattened attribute, even though it’s actually in the Customer table.

Accessing an Enterprise Object’s Data
In implementing your enterprise object classes, you want to focus on the code
that’s unique to your application, not on code that deals with fitting your objects
into the Framework. To this end, the Framework uses a standard interface for
accessing an enterprise object’s properties, with a default implementation that
takes advantage of methods you’re likely to write for your own use. This
interface is defined by the EOKeyValueCoding informal protocol, which
abstracts object access in terms of key-value pairs.

In accessing an object’s class properties, the default implementations of the key-
value coding methods use the class definition as follows:

1. The key-value coding method looks for an accessor method based on the
property name. For example, with a property named lastName, key-value
coding looks for a “set” method of the form setLastName: (note that the first
letter of the property name is made uppercase), and a “get” method of the
form lastName.

2. If the key-value coding method doesn’t find an accessor method, it looks for
an instance variable whose name is the same as the property’s and sets or
retrieves its value directly.

By using the accessor methods you normally define for your objects, the default
implementations of the key-value coding methods allow you to concentrate on
implementing custom behavior. They also preserve the encapsulation of data
enabled by object-oriented programming, allowing your objects to determine
how their properties are accessed. For example, your Employee class can define
a salary method that just returns an employee’s salary directly or calculates it
from another value.

Note: You shouldn’t use “set” methods to perform validation. Rather, you should
use the validation methods, described in “Performing Validation” on page 77.

You can also use an object’s relationship properties to access the data in other
objects. For example, the following statements access the value of a
departmentName property belonging to the Department object to which
Employee has a relationship:

// Get the name of the Employee’s department

Designing Enterprise Objects Implementing an Enterprise Object

76

[[employee department] departmentName];

// Set the name of the employee’s department
[[employee department] setDepartmentName:newName];

You can traverse multiple objects. For example, suppose the Department object
has a relationship to a Facility object. From Employee, you can access the
properties in Facility as follows:

// Get the location of the Employee’s department
[[[employee department] facility] location];

// Change the location of the employee’s department

[[[employee department] facility] setLocation:newLocation];

Writing Derived Methods
The template source code generated by EOModeler provides a basic
implementation that doesn’t go beyond the functionality provided by an
EOGenericRecord. But you can use the template as a basis for adding behavior
to your enterprise object.

One kind of behavior you might want to add to your enterprise object class is the
ability to perform computations based on the values of class properties. For
example, members have an overall credit limit, and their guests have a cost
restriction. To calculate the total cost restrictions of all of a member’s guests, you
can have a method in Member.m like the following:

- (NSDecimalNumber *)totalRestrictions {

 NSDecimal result = [[NSDecimalNumber zero] decimalValue];

 int i = [guests count];

 while(i--) {

 NSDecimalNumber *restriction = [[guests objectAtIndex:i]

 valueForKey:@"costRestriction"];

 if(restriction) {

 NSDecimal total;

 total = [restriction decimalValue];

 (void)NSDecimalAdd(&result, &result, &total, NSRoundBankers);

 }

 }

 return [NSDecimalNumber decimalNumberWithDecimal:result];
}

The instance variable guests is a property of the Member class. It represents a to-
many relationship to the Guest object. As the preceding code excerpt implies,
you can access data in Guests transparently. The Enterprise Objects Framework
simply traverses the object graph and performs a calculation on the costRestriction
class property of the Member’s Guest objects.

77

Designing Enterprise Objects Implementing an Enterprise Object

Performing Validation
As described in the previous section, members have a credit limit and their
guests have a cost restriction. The total cost restrictions of a member’s guests
can’t exceed the member’s total credit limit. When users of your application add
a new guest for a member, you probably want to make sure that adding the
guest’s cost restriction to those of other guests doesn’t push the total up over the
member’s credit limit. The following code excerpt shows one way this might be
achieved:

// Calculate how much is left in the member’s credit limit after

// subtracting the total cost restrictions of the member’s guests

- (NSDecimalNumber *)restrictionPool {

 return [[creditCard limit] decimalNumberBySubtracting:
[self totalRestrictions]];

}

// Perform validation before a guest is inserted or updated in

// the database.

// If adding or modifying the guest breaks the member’s credit limit,

// return an exception.

- (NSException *)validateForSave

{

if ([[self restrictionPool] doubleValue] < 0)

return [NSException validationExceptionWithFormat:@"The cost
restrictions on the guests exceed the credit limit"];

// pass the check on to the EOClassDescription

 return [super validateForSave];

}

The validateForSave method is part of a category of NSObject that uses the
EOClassDescription class to provide default implementations of validation
methods. These methods are invoked automatically by Framework
components such as EODisplayGroup and EOEditingContext. They are:

• validateForSave
• validateForDelete
• validateForInsert
• validateForUpdate
• validateValue:forKey:

The EOClassDescription class effectively extends the behavior of enterprise
objects. EOClassDescription usually derives validation rules (such as NULL
constraints and referential integrity rules) from an EOEntity in a model file.
When you perform a particular operation on an enterprise object (such as
attempting to delete it), the EOEditingContext sends these validation
messages to your enterprise object, which in turn (by default) forwards them to

Designing Enterprise Objects Implementing an Enterprise Object

78

EOClassDescription. Based on the result, the operation is either accepted or
refused. For example, referential integrity constraints in your model might state
that you can’t delete an department object that has employees. If a user
attempts to delete a department that has employees, an exception is returned
and the deletion is refused.

The advantage of using one of the validateFor... methods is that they allow you to
perform both “inter-” and “intra-” object validation before a particular operation
occurs. This is useful if you have an enterprise object whose properties have
interdependencies. For example, if you’re saving vacation data for an employee,
you might want to confirm that the start date precedes the end date before
committing the changes.

However, you can also implement validation methods for individual class
properties. Such methods take the form validateProperty. For example, the
Member class might have a validateStreetAddress method. If a user tries to assign a
value to streetAddress, the default implementation of validateValue:ForKey: invokes
the validateStreetAddress: method. Based on the result, the operation is either
accepted or refused.

Validating User Input
Besides putting validation in a model and in an enterprise object class, you can
also put validation in the user interface. The way that validation is normally
added to the user interface is through formatters, which perform data type and
formatting validation when users enter values.

You can design your application so that the validation in your enterprise objects
is performed as soon as a user attempts to leave an editable field in the user
interface. There are two steps to doing this:

1. In Interface Builder, display the Attributes view of the EODisplayGroup
Inspector and check “Validate immediately”.

2. In your enterprise object class, implement validateKey: to check the value of the
key for which the user is entering a value. For example, if the key is salary,
you’d implement the method validateSalary:.

If validateSalary: fails (that is, if the salary value isn’t within acceptable bounds),
the user is forced to correct the value before being allowed to leave the field.

Creating and Inserting Objects
In an Enterprise Objects Framework application, when new enterprise objects
are inserted into the database, it’s often through an EODisplayGroup (assuming
the application uses the interface layer). However, it’s also common to create

79

Designing Enterprise Objects Implementing an Enterprise Object

and insert an enterprise object programmatically—either because your
application isn’t using the interface layer, or because you’re creating and
inserting objects as the by-product of another operation.

You don’t have to do anything special to create an instance of an enterprise
object. You can create it using the alloc and init methods just like any other
object. Once you create the object, you insert it into an EOEditingContext
using EOEditingContext’s insertObject: method.

For example, the following code excerpt from Customer.m in the on-line examples
creates Fee and Rental enterprise objects as the by-product of a customer (a
Guest or a Member) renting a unit at a video store. Once the objects have been
created, they’re inserted into the current enterprise object’s EOEditingContext.

- (void)rentUnit:(Unit *)unit

{

 Rental *rental;

 Fee *fee;

 // Create Rental and Fee objects

 rental = [[[Rental alloc] init] autorelease];

 fee = [[[Fee alloc] init] autorelease];

 [rental addObject:fee toBothSidesOfRelationshipWithKey:@"fees"];

 [rental addObject:unit toBothSidesOfRelationshipWithKey:@"unit"];

 [self addObject:rental toBothSidesOfRelationshipWithKey:@"rentals"];

 // Insert the two objects into the current object’s editingContext.

 [[self editingContext] insertObject:rental];

 [[self editingContext] insertObject:fee];
}

Working with Relationships
In the code excerpt shown in the preceding section, notice that before the
objects are inserted into the EOEditingContext, the method
addObject:toBothSidesOfRelationshipWithKey: is used. This method is part of the
EOKeyRelationshipManipulation informal protocol.
EOKeyRelationshipManipulation provides methods for manipulating an
enterprise object’s relationship properties.

addObject:toBothSidesOfRelationshipWithKey: is used to manage reciprocal
relationships, in which the destination entity of a relationship has a back pointer
to the source. For example, Fee and Unit both have back pointers to Rental, and
Rental has a back pointer to Customer. In other words, not only does the model
define a relationship from Customer to Fee and Rental, it also defines a
relationship from Rental back to Customer and from Fee to Rental. When you

Designing Enterprise Objects Implementing an Enterprise Object

80

insert an object into a relationship (such as adding a new Rental object to
Customer’s rentals relationship property, which is an NSArray) and the inserted
object has a back pointer to the enterprise object, you need to be sure to add the
object to both sides of the relationship. Otherwise, your object graph will get out
of sync—your Customer object’s rentals array will contain the Rental object, but
the Rental object won’t know the Customer who rented it.

You can update object pointers explicitly—that is, you can directly update the
Rental object’s customer property, which represents its relationship to the
Customer object. But it’s simpler to just use
addObject:toBothSidesOfRelationshipWithKey:. This method is safe to use regardless of
whether the source relationship is to-one or to-many, or whether the reciprocal
relationship is to-one or to-many.

In addition to the addObject:toBothSidesOfRelationshipWithKey: method,
EOKeyRelationshipManipulation defines the following methods:

• addObject:toPropertyWithKey: adds a specified object to the relationship property
(NSArray) with the specified name (key). This method is the primitive used
by addObject:toBothSidesOfRelationshipWithKey:.

In accessing an object’s class property, the default implementation of
EOKeyRelationshipManipulation uses the class definition as follows:

1. If this method is passed the key projects, for example, the default
implementation looks for a method with the name addToProjects:.

2. If the addToProjects: method isn’t found, addObject:toPropertyWithKey: looks for a
property called projects. If it finds it, it adds it to the array (assuming the array
is mutable). If the array is immutable, it creates a new version of the array that
includes the new element.

3. If the property is nil, a new array is created and set on the object.

• removeObject:fromPropertyWithKey: removes a specified object from the
relationship property (NSArray) with the specified name (key).

This method follows the same pattern as addObject:toPropertyWithKey:. That is,
it looks for a selector of the form removeFromProjects:, then for a property called
projects. If neither of these conditions is met, it raises an exception. If it finds
the property but it doesn’t contain the specified object, this method simply
returns.

• removeObject:fromBothSidesOfRelationshipWithKey: removes a specified object from
both sides of a relationship property with the specified name (key). Like
addObject:toBothSidesOfRelationshipWithKey:, this method is safe to use regardless

81

Designing Enterprise Objects Implementing an Enterprise Object

of whether the source relationship is to-one or to-many, or whether the
reciprocal relationship is to-one or to-many.

Setting Defaults for New Enterprise Objects
When new objects are created in your application and inserted into the database,
it’s common to assign default values to some of their properties. For example,
the Member class has a memberSince property. It’s likely that you would assign
that property a value when you create and insert a new object instead of forcing
the user to supply a value for it.

To assign default values to newly created enterprise objects, you use the method
awakeFromInsertionInEditingContext:. This method is automatically invoked
immediately after your enterprise object class creates a new object and inserts it
into the EOEditingContext.

The following implementation of awakeFromInsertionInEditingContext: in the
Member class sets the current date as the value of the memberSince property:

- (void)awakeFromInsertionInEditingContext:(EOEditingContext *)ctx

{

[super awakeFromInsertionInEditingContext:ctx];

// Assign current date to memberSince

 if (!memberSince)

 memberSince = [[NSCalendarDate date] retain];
}

You use the awakeFromInsertionInEditingContext: method to set default values for
enterprise objects that represent new data. For enterprise objects that represent
existing data, the Enterprise Objects Framework provides the method
awakeFromFetchInEditingContext:, which is sent to an enterprise object that has just
been created from a database row and initialized with database values. Your
enterprise objects can implement this method to provide additional
initialization. Because the database channel is still busy fetching when an
enterprise object receives awakeFromFetchInEditingContext:, the object must be
careful about sending messages to other enterprise objects, since they may be
faults. For more information about faults, see the EOFault class specification in
the Enterprise Objects Framework Reference.

Initializing Enterprise Objects
An enterprise object is typically initialized with init; all of its class property values
are handled through the key-value coding methods, so no special initialization
is usually needed. You don’t generally use init to assign default values to your
enterprise objects since init is invoked to initialize instances of your class being
fetched from the database. Any values you assign in init will be overwritten by

Designing Enterprise Objects Implementing an Enterprise Object

82

the values fetched from the database. However you can take advantage of extra
information available at the time your enterprise object is initialized. If an
enterprise object responds to the initWithEditingContext:classDescription:globalID:
method, EODatabaseContext uses this method instead of init, allowing the
object to affect its creation based on the data provided.

Writing Business Logic
So far the examples in this chapter have focused on working with your
enterprise objects in fairly simple ways: creating them, accessing their data,
modifying them, and validating changes before you save them to the database.
But enterprise object classes can also implement more sophisticated business
logic. For example, suppose you want the ability to give all of a member’s guests
a boost in their rental limits. You could implement a method such as the
following in Member.m:

- (void)boostRestrictions

{

int i;

 NSDecimalNumber *rate = [NSDecimalNumber
 decimalNumberWithString:@"1.50"];

for (i = [guests count] - 1; i >= 0; i--) {

Guest *guest = [guests objectAtIndex:i];

 [guest setCostRestriction:[[guest costRestriction]
 decimalNumberByMultiplyingBy:rate]];

 }
}

Of course, when a user invokes this method and attempts to save the new values
to the database, the validateForSave method described in “Performing Validation”
on page 77 will be invoked. If the total amount of the guests’ cost restrictions
exceeds the member’s credit limit, the operation is refused.

When you implement a method such as this in your enterprise object class, you
don’t have to be concerned with registering the changes or updating the values
displayed in the user interface. An Enterprise Objects Framework application
revolves around the graph of enterprise objects managed by the
EOEditingContext, and the EOEditingContext assumes responsibility for
making sure that all parts of your application are notified when an object’s value
changes. Thus, all parts of your application have the same view of the data and
remain in sync.

83

Designing Enterprise Objects Inheritance

Inheritance

One of the issues that may arise in designing your enterprise objects—whether
you’re creating your schema from scratch or working with an existing database—
is the modeling of inheritance relationships.

Enterprise Objects Framework maps an object-oriented model to a relational
database model. While Enterprise Objects Framework largely protects the
programmer, and especially the user, from having to know a great deal about
relational databases, this knowledge becomes necessary when determining the
storage and retrieval of a class hierarchy.

In object-oriented programming, when a subclass inherits from a superclass, the
instantiation of the subclass implies that all the superclass’ data is available for
use by the subclass. When you instantiate objects of a subclass from database
data, all database tables that contain the data held in each class (whether
subclass or superclass) must be accessed so that the data can be retrieved and
put in the appropriate enterprise objects.

Even in the simplest scenario in which there is a one-to-one mapping between
a single database table and an enterprise object, the database and the enterprise
objects instantiated from its data have no knowledge of each other. Their
mapping is determined by an EOModel. Likewise, inheritance relationships
between enterprise objects and the mapping of those relationships onto a
database are also managed by an EOModel.

Types of Inheritance
Suppose you’re designing an application that includes Employee and Customer
objects. Employees and customers share certain characteristics, such as a name
and address, but they also have specialized characteristics. For example, an
employee has a salary and a department, and a customer has account
information.

Based on these data requirements, you might design a class hierarchy that has a
Person class, and Employee and Customer subclasses. As subclasses of Person,
Employee and Customer inherit Person’s attributes (name and address), but
they also implement attributes and behaviors that are specific to their classes.

Designing Enterprise Objects Inheritance

84

Figure 2. Object Hierarchy

In addition to designing your class hierarchy, you need to decide how to
structure your database so that when objects of the classes are instantiated, the
appropriate data is retrieved. Some of the issues you need to weigh in deciding
on an approach are:

• Are fetches usually directed at the leaves or the root of the hierarchy?

When an object hierarchy is mapped onto a relational database, data is
accessed in two different ways: By fetching just the leaves (for example, just
Employee or Customer), and by fetching at the root (Person) to get instances
of all levels of the hierarchy (Employees and Customers).

• How deep is the hierarchy?

• What is the database storage cost for NULL attributes?

• Will I need to modify my schema on an ongoing basis?

• Will other tools be accessing the database?

• Do I even need to use inheritance at all?

The primary consideration in deciding whether to use inheritance is if you’ll
ever need to perform a deep fetch against your object hierarchy. For
example, even if the Objective-C classes for Customer and Employee
inherit from Person, if your application never performs a fetch for “all people
including Customers and Employees,” then there is no need to tell
Enterprise Objects Framework about your object hierarchy.

Employee

Person

Customer

firstName
lastName

currentOrder
previousOrder

salary
manager
project

85

Designing Enterprise Objects Inheritance

Enterprise Objects Framework supports the three primary approaches for
mapping inheritance hierarchies to database tables:

• Vertical mapping
• Horizontal mapping
• One table mapping

These approaches are discussed in the following sections. None of them
represents a perfect solution—which one is appropriate depends on the needs
of your application.

Vertical Mapping
In this approach, each class has a separate table associated with it. There is a
Person table, an Employee table, and a Customer table; each table has the
attributes that are introduced by that class.

Figure 3. Vertical Inheritance Mapping

This method of storage directly reflects the class hierarchy. If an object of the
Employee class is retrieved, data for the Employee’s Person attributes must be
fetched along with Employee data. The relationship between Employee and
Person is resolved through a join to give Employee access to its Person data.
This is also true for Customer.

idd
saallaarryy

maannaaggeerr

EMMPPLLOOYYEEEESS

prroojjeecctt

iddidd
cuurrrreenntt__oorrddeerr

prreevviioouuss__oorrddeerr

CUUSSTTOOMMEERR

iddidd
laasstt__nnaammee

fiirrsstt__nnaammee

PEERRSSOONN

Employee

Person

Customer

Designing Enterprise Objects Inheritance

86

Creating an EOModel for Vertical Mapping
To implement vertical mapping in your EOModel, you do the following:

1. In EOModeler, create a child entity mapped to its own table.

2. Add a relationship between the child and the parent table.

3. If the parent entity is abstract, set it as such.

4. Flatten the parent attributes into the child.

5. Set the parent entity for each of the child entities.

Horizontal Mapping
In this approach, you have separate tables for Employee and Customer that each
contain columns for Person. The Employee and Customer tables contain not
only their own attributes, but all of the Person attributes as well. If instances of
Person exist that are not classified as Employees or Customers, a third table
would be required. In other words, with horizontal mapping every concrete class
has a self-contained database table that contains all of the attributes necessary
to instantiate objects of the class.

Figure 4. Horizontal Inheritance Mapping

This technique entails the same fetching pattern as vertical mapping, except
that no joins are performed.

idd
laasstt__nnaammee

maannaaggeerr

EMMPPLLOOYYEEEE

saallaarryy

fiirrsstt _nnaammee

prroojjeecctt

Employee

Person

Customer
idd

laasstt__nnaammee

prreevviioouuss__oorrddeerr

CUUSSTTOOMMEERR

cuurrrreenntt__oorrddeerr
fiirrsstt _nnaammee

87

Designing Enterprise Objects Inheritance

Creating an EOModel for Horizontal Mapping
To implement horizontal mapping, you do the following in your EOModel:

1. In EOModeler, set Person as the parent entity of Employee and Customer.

2. If Person is an abstract entity, set it as such in the Inspector. Under horizontal
mapping, if Person doesn’t have its own table (that is, if you never fetch
Person objects that aren’t Employees or Customers), then Person is an
abstract entity.

Unlike vertical mapping, you don’t need to flatten any of Person’s attributes
into Employee and Customer since they already include all of its attributes.

Single Table Mapping
In this approach, you put all of the data in one table that contains all superclass
and subclass attributes. Each row contains all of the columns for the superclass
as well as for all of the subclasses. The attributes that don’t apply for each object
have NULL values. You fetch an Employee or Customer by using a query that
just returns objects of the specified type (the table would probably include a
type column to distinguish records of one type from the other).

Designing Enterprise Objects Inheritance

88

Figure 5. Single Table Mapping

Single table mapping can consume an inordinate amount of space since every
row includes columns for every one of the other entities’ attributes. Whether
you decide to use this approach may depend on how your database stores
NULLs and other data types. Some databases condense NULL values, thereby
reducing the storage space needed, but some databases maintain the length of
the actual data type of the column regardless of the value stored. Most databases
also have limitations on how many columns a table can have (typically this is
around 250 columns), which can make it impossible to use single table mapping
for a deep class hierarchy that has lots of instance variables.

Creating an EOModel for Single Table Mapping
To implement one table mapping, you do the following in your EOModel:

1. In EOModeler, set Person as the parent entity of Employee and Customer.

2. If Person is an abstract entity, set it as such in the Inspector.

PEERRSSOONN
idd

peerrssoonn__ttyyppee

laasstt__nnaammee

fiirrsstt__nnaammee

saallaarryy

maannaaggeerr

prroojjeecctt

cuurrrreenntt__oorrddeerr

prreevviioouuss__oorrddeerr

Person

Employee Customer

89

Designing Enterprise Objects Inheritance

Unlike vertical mapping, you don’t need to flatten any of Person’s attributes
into Employee and Customer since these entities already have all of Person’s
attributes.

Each sub-entity maps to the same table and contains attributes only for the
properties that are relevant for that class.

Data Access Patterns for Inheritance
The following table summarizes how data is fetched in each of the approaches.

In the table, “n” represents the number of entities involved in a deep fetch. For
example, when you perform a deep fetch against Person in the Person,
Customer, Employee hierarchy, n equals 3.

Advantages and Disadvantages of Mapping Approaches
This section discusses the advantages and disadvantages of each of the
inheritance mapping approaches.

Vertical Mapping
Advantages. With vertical mapping, a subclass can be added at any time without
modifying the Person table. Existing subclasses can also be modified without
affecting the other classes in the hierarchy. The primary virtue of this approach,
however, is its clean, “normalized” design.

Disadvantages. Vertical mapping is the least efficient of all of the approaches.
Every layer of the hierarchy requires a join to resolve the relationships. For
example, if you want to do a deep fetch from Person, three fetches are
performed: a fetch from Employee (with a join to Person), a fetch from
Customer (with a join to Person), and a fetch from Person to retrieve all the
Person attributes. (If Person is an abstract superclass for which no objects are
ever instantiated, the last fetch is not performed.)

Fetches from Leaves Fetches from Root

Vertical Mapping 1 fetch using join n fetches using join

Horizontal Mapping 1 fetch n fetches

Single Table Mapping 1 fetch 1 fetch

Designing Enterprise Objects Inheritance

90

Horizontal Mapping
Advantages. A subclass can be added at any time without modifying other tables.
Existing subclasses can also be modified without affecting the other classes in
the hierarchy.

This approach works well for deep class hierarchies, as long as the fetch occurs
against the leaves of the hierarchy (Employee and Customer) rather than against
the root (Person). When a root fetch is used in this scenario, it’s more efficient
than vertical mapping (since no joins are performed) and less efficient than one
table mapping (since it requires more fetches). However, if you typically only
fetch one type of leaf class at a time, this approach can actually be more efficient
than single table mapping. This is because with single table mapping, you have
to look at all of the rows in the database to find the ones needed to instantiate
objects of a particular type.

Disadvantages. This technique is less effective if both Customers and Employees
have to be fetched at the same time, since both tables then need to be accessed.

Another problem occurs when attributes need to be added to the Person
superclass. The number of tables that need to be altered equals the number of
subclasses—the more subclasses you have, the more effort is required to
maintain the superclass. However, table maintenance happens far less often
than fetches, so it should be weighted in importance accordingly.

Single Table Mapping
Advantages. This approach is faster than the other two methods for deep fetches.
Unlike vertical or horizontal mapping, you can retrieve superclass objects with
a single fetch, without performing joins. Adding a subclass or modifying the
superclass requires changes to just one table.

Disadvantages. This approach can use an inordinate amount of storage space. Also,
if you have a lot of data, this approach can actually be less efficient than
horizontal mapping since with single table mapping you have to search the
entire table to find the rows needed to instantiate objects of a particular type.
(Horizontal mapping is only more efficient if your application typically just
fetches one type of leaf object at a time.)

General Guidelines
While deep hierarchies can be a useful technique in object-oriented
programming, you should try to avoid them for enterprise objects. When you
attempt to map a deep object hierarchy onto a relational database, the result is
likely to be poor performance and a database that’s difficult to maintain.

91

Designing Enterprise Objects Inheritance

Enterprise Objects Framework doesn’t support mapping inheritance
hierarchies across tables in separate databases. Instead, you can set up groups of
objects that cooperate across databases, in which related objects forward
messages to each other.

Fetching and Inheritance
Once you’ve designed your class hierarchy and set up your EOModel to support
that hierarchy, you can use this information to fetch objects of the desired type.
For example, you might want to just fetch Person objects, not Customer or
Employee objects—or you might want to fetch all Person objects, including
Customers and Employees.

In an inheritance hierarchy, fetching just objects of a particular class is a shallow
fetch, while fetching all instances of a class and its subclasses is a deep fetch. For
example, fetching Persons shallowly fetches only Persons matching the
specified qualifier, while fetching Persons deeply also fetches all Employees
and Customers matching the specified qualifier.

You can control this behavior by using EOFetchSpecification’s setIsDeep:
method. This method specifies whether a fetch should include sub-entities of
the fetch specification’s entity. If this method is set to YES, sub-entities are also
fetched; if it’s set to NO, they aren’t. EOFetchSpecifications are deep by
default.

When multiple entities are mapped to a single database table, you must set a
qualifier on each entity to distinguish its rows from the rows of other entities.
You can either do this programmatically by using EOEntity method
setRestrictingQualifier:, or you can directly specify the qualifier in the EOModeler
Advanced Entity Inspector. A restricting qualifier maps an entity to a subset of
rows in a table. If you’re using single table inheritance mapping, you can use a
restricting qualifier to fetch objects of the desired type.

Delegation Hooks for Optimizing Inheritance
EOModelGroup includes delegate methods that you can use to exercise more
fine-grained control over inheritance. These include:

entity:relationshipForRow:relationship:

This method is invoked when relationships are instantiated for a newly fetched
object. The delegate can use the information in the row to determine which
entity the target enterprise object should be associated with, and replace the
relationship appropriately.

Designing Enterprise Objects Gotchas

92

subEntityForEntity:primaryKey:isFinal:

This method allows the delegate to fine-tune inheritance by indicating from
which sub-entity an object should be fetched based on its primary key. The
entity returned must be a sub-entity of the specified entity. If the delegate
knows that the object should be fetched from the returned entity and not one
of its sub-entities, it should set the “isFinal” argument to YES.

entity:classForObjectWithGlobalID:

This method is also used to fine-tune inheritance. The delegate can use the
specified globalID to determine a subclass to be used in place of the one
specified in the entity argument.

Gotchas

This section discusses some of the more subtle issues you need to be aware of
in designing enterprise objects.

Numeric Values and NULL
An important issue to consider in using C scalar types is that relational databases
allow the use of a NULL value distinct from any numeric value. When a nil
value is encountered in takeValue:forKey:, your enterprise object will be passed nil.
Since the C scalar types can’t accommodate nil, the default implementations of
the key-value coding methods raise an exception when asked to assign nil to a
scalar property. You should either design your database not to use NULL values
for numeric columns, use NSNumber to represent scalar values in your
enterprise class, or implement the unableToSetNilForKey: method in your enterprise
object class.

unableToSetNilForKey: is part of the EOKeyValueCoding protocol, and you use it to
set policy for an attempt to assign nil to an instance variable that requires a C
scalar type. Classes can implement this method to determine the behavior when
nil is assigned to a property in an enterprise object that requires a C scalar type
(such as int or float). One possible implementation is to reinvoke takeValue:forKey:
with a special constant value (such as [NSNumber numberWithInt:0]).

Cautions in Implementing Accessor Methods
Whether you’re implementing accessor methods to be used by the key-value
coding methods or overriding the key-value coding methods themselves, you
need to be aware of a few issues. The first involves handling NULL values from

93

Designing Enterprise Objects Gotchas

the database; the second involves accessing property values while they’re being
set.

NULL values in a database come into the access layer as EONull objects, but
they’re converted to nil before they’re passed to your enterprise objects. The
preceding section described how this scheme can cause problems for properties
with numeric types, but they can cause problems for other property types as
well. If your database uses NULL values, your enterprise objects may want to
check any id value received through an accessor method to see whether it’s nil
before sending it a message.

You can encounter another kind of problem if your object’s accessor methods for
one property assume that another property has already been set and exists in
usable form. Enterprise Objects Framework doesn’t guarantee the order that
properties are set, so your object’s accessor methods can’t count on the values of
other properties being initialized or usable. Also, when an EODatabaseContext
creates an enterprise object, it creates fault objects for related objects, and these
fault objects can be passed to your enterprise objects in a key-value coding
message while the database channel is busy fetching. Your accessor methods (or
overridden key-value coding methods) should be doubly careful about sending
messages to objects fetched through relationships, because these messages can
cause a fault object to attempt a fetch with the busy database channel, resulting
in resource contention.

Don’t Override isEqual:
Your enterprise objects shouldn’t override the isEqual: method. This is because
Enterprise Objects Framework relies on the default NSObject implementation
to check instance (pointer) equality rather than value equality.

Designing Enterprise Objects Gotchas

94

