
1

NSUnarchiver

Inherits From: NSCoder : NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSArchiver.h

Class Description

NSUnarchiver, a concrete subclass of NSCoder, defines methods for decoding a set of Objective-C objects
from an archive. Such archives are produced by objects of the NSArchiver class. See the NSCoder and
NSArchiver specifications for an introduction to archiving.

General Exception Conditions

While unarchiving, NSUnarchiver performs a variety of consistency checks on the incoming data stream.
NSUnarchiver raises an NSInconsistentArchiveException when:

• A class name is missing where one is expected.
• A class name is found that refers to an unknown class.
• A type code is found that’s different from the one expected.
• An unknown type code is found.
• Excess characters are found in a type code, or characters are missing.

For a description of type codes, see the discussion of the @encode() compiler directive in Object-Oriented
Programming and the Objective-C Language.

Invoking inappropriate methods can also lead to errors. NSUnarchiver’s superclass, NSCoder, provides
methods for both encoding and decoding. However, only the decoding methods are applicable to
NSUnarchiver; don’t send an NSUnarchiver any encode... messages.

Method Types

Initializing an NSUnarchiver – initForReadingWithData:

Decoding objects + unarchiveObjectWithData:
+ unarchiveObjectWithFile:

2

 NSUnarchiver

Managing an NSUnarchiver – isAtEnd
– objectZone
– setObjectZone:
– systemVersion

Substituting classes or objects + classNameDecodedForArchiveClassName:
+ decodeClassName:asClassName:
– classNameDecodedForArchiveClassName:
– decodeClassName:asClassName:
– replaceObject:withObject:

Class Methods

classNameDecodedForArchiveClassName:
+ (NSString *)classNameDecodedForArchiveClassName:(NSString *)nameInArchive

Returns the name of the class used when instantiating objects whose ostensible class, according to the
archived data, is nameInArchive. This method returns nameInArchive if no substitute name has been
specified using the class method (not the instance method) decodeClassName:asClassName:.

Note that individual instances of NSUnarchiver can each be given their own class name mappings by
invoking the instance method decodeClassName:asClassName:. The NSUnarchiver class has no
information about these instance-specific mappings, however, so they don’t affect the return value of this
class method (that is, classNameDecodedForArchiveClassName:).

See also: – classNameDecodedForArchiveClassName:

decodeClassName:asClassName:
+ (void)decodeClassName:(NSString *)nameInArchive asClassName:(NSString *)trueName

Instructs instances of NSUnarchiver to use the class named trueName when instantiating objects whose
ostensible class, according to the archived data, is nameInArchive. This method enables easy conversion of
unarchived data when the name of a class has changed since the archive was created.

Note that there’s also an instance method of the same name. An instance of NSUnarchiver can maintain its
own mapping of class names. However, if both the class method and the instance method have been invoked
using an identical value for nameInArchive, the class method takes precedence.

See also: + classNameDecodedForArchiveClassName:, –decodeClassName:asClassName:

3

unarchiveObjectWithData:
+ (id)unarchiveObjectWithData: (NSData *)data

Decodes and returns the object archived in data. This method invokes initForReadingWithData: and
decodeObject to create a temporary NSUnarchiver that decodes the object. If the archived object is the root
of a graph of objects, the entire graph is unarchived.

See also: encodeRootObject: (NSArchiver)

unarchiveObjectWithFile:
+ (id)unarchiveObjectWithFile: (NSString *)path

Decodes and returns the object archived in the file path. This convenience method reads the file by invoking
NSData’s dataWithContentsOfFile: method, and then invokes unarchiveObjectWithData: .

Instance Methods

classNameDecodedForArchiveClassName:
– (NSString *)classNameDecodedForArchiveClassName:(NSString *)nameInArchive

Returns the name of the class that will be used when instantiating objects whose ostensible class, according
to the archived data, is nameInArchive. This method returns nameInArchive unless a substitute name has
been specified using the instance method (not the class method) decodeClassName:asClassName:.

See also: + classNameDecodedForArchiveClassName:

decodeClassName:asClassName:
– (void)decodeClassName:(NSString *)nameInArchive asClassName:(NSString *)trueName

Instructs the receiver to use the class named trueName when instantiating objects whose ostensible class,
according to the archived data, is nameInArchive. This method enables easy conversion of unarchived data
when the name of a class has changed since the archive was created.

Note that there’s also a class method of the same name. The class method has precedence in case of
conflicts.

See also: – classNameDecodedForArchiveClassName:, + decodeClassName:asClassName:

4

 NSUnarchiver

initForReadingWithData:
– (id)initForReadingWithData: (NSData *)data

Initializes an NSUnarchiver object from the data object data, decoding the system version number that was
archived in data and preparing the NSUnarchiver for a subsequent invocation of decodeObject. Raises an
NSInvalidArgumentException if data is nil.

See also: – systemVersion

isAtEnd
– (BOOL)isAtEnd

Returns YES if the NSUnarchiver has reached the end of the encoded data while decoding, NO if more data
follows. You can invoke this method after invoking decodeObject to discover whether the archive contains
extra data following the encoded object graph. If it does, you can either ignore this anomaly or consider it
an error.

objectZone
– (NSZone *)objectZone

Returns the memory zone used to allocate decoded objects.

See also: – setObjectZone:

replaceObject:withObject:
– (void)replaceObject:(id)object withObject: (id)newObject

Causes the NSUnarchiver to substitute newObject for object whenever object is extracted from the archive.
newObject can be of a different class from object, and the class mappings set by the two
decodeClassName:asClassName: methods are ignored.

setObjectZone:
– (void)setObjectZone:(NSZone *)zone

Set the memory zone used to allocate decoded objects. If zone is NULL, or if this method is never invoked,
the default zone will be used, as given by NSDefaultMallocZone().

See also: – objectZone

5

systemVersion
– (unsigned int)systemVersion

Returns the system version number that was in effect when the archive was created. This information is
available as soon as the NSUnarchiver has been initialized.

The version numbers aren’t the usual release designations (such as 2.0 or 3.1). By convention, version
numbers under 1000 refer to early versions of NEXTSTEP that didn’t conform to the OpenStep
specification.

