
Using EOModeler

Chapter 3

95

You use the EOModeler application to create models. A model defines, in
entity-relationship terms, the mapping between a relational database and
enterprise object classes.

You use EOModeler to:

• Read the data dictionary from a database to create a default model, which can
then be tailored to suit the needs of your application.

• Specify enterprise object classes for the entities in your model.

• Generate template source code files for the enterprise object classes you
specify.

• Generate SQL that can then be used to create database tables.

A model enables an enterprise object to remain synchronized with a
corresponding database row throughout the execution of your application.
Models are fully accessible to your application; at run time you can dynamically
generate new models or change the mapping in existing models.

Models

Although a model can be generated dynamically at run time, you typically create
models using EOModeler and then add them to your project as model files.

Models are designed to be loaded incrementally for improved performance. A
model actually consists of one global file, with a separate file for each entity.
Entity descriptions are loaded in to an application as needed. Models have an
.eomodeld file wrapper (which is actually a directory), and the individual entity
files within the model are in ASCII format. If you want to view the ASCII files
in a model, open the .eomodeld directory. This displays a window listing the
individual entity files in the model. Each of these files has a .plist extension,
indicating that the files’ contents are in ASCII property list format. You can view
the file for a particular entity in a text editor.

The global file has the name index.eomodeld. It contains the connection
dictionary, the adaptor name, and a list of all of the entities in the model.

Models describe the database-to-enterprise object mapping by using the
modeling classes EOModel, EOEntity, EOAttribute, and EORelationship
(EORelationships include additional information in the form of EOJoin
objects).

Using EOModeler Launching EOModeler

96

The following table describes the database-to-object mapping provided in a
model:

Database Element Model Object Object Mapping

Data Dictionary EOModel —

Table EOEntity Enterprise object class

Column EOAttribute Enterprise object class instance variable
 (class property)

Referential Constraint EORelationship Pointer to another object

Row — Enterprise object instance

While the modeling classes correspond to elements in a relational database, a
model represents a level of abstraction above the database. Consequently, the
mapping between modeling classes and database components doesn’t have to
be one-to-one. So, for example, while an EOEntity object described in a model
file corresponds to a database table, in reality it can contain references to
multiple tables. In that sense, a model is actually more analogous to a database
view. Similarly, an EOAttribute can either correspond directly to a column in the
root entity, or it can be derived or flattened. A derived attribute typically has no
corresponding database column, while a flattened attribute is added to one
entity from another entity. For more information, see “Adding Derived and
Flattened Attributes” on page 113.

You can store your model files anywhere, but to use a model in an application
you must copy it into your application’s project directory.

Launching EOModeler

The EOModeler application is located in the OPENSTEP Enterprise Software
program group on Windows NT (and in the /NextDeveloper/Apps directory on
Mach) and is represented by the icon shown in Figure 6.

97

Using EOModeler Creating a New Model

Figure 6. EOModeler’s Application Icon

Launch the application by double-clicking the icon, or by double-clicking an
existing model file.

Creating a New Model

To create a model:

In EOModeler, choose Model m New.

EOModeler displays a panel prompting you to select an adaptor, as shown in
Figure 7.

Figure 7. Selecting an Adaptor

Select the adaptor you want to use and click OK.

EOModeler displays the login panel for the database that corresponds to the
selected adaptor. The examples in this chapter use the Oracle version of the
Movie database included with the Enterprise Objects Framework; Figure 8
shows the Oracle login panel.

Using EOModeler Creating a New Model

98

Figure 8. Oracle Login Panel

Fill in the login panel and click OK.

Using the Model Editor in Table Mode
When you first log in to a database, EOModeler uses an adaptor to read the data
dictionary from the database and create the original model. This model is
displayed in the Model Editor, shown in Figure 9, which lists the entities
available for the database you specified in the login panel. EOModeler uses the
table mode of the Model Editor to display the new model. You can also use
browser mode in the Model Editor—for more information see “Using the
Model Editor in Browser Mode” on page 100.

Figure 9. The Model Editor in Table Mode

Icon Path

Click here to add columns.

Open Entity Icon

99

Using EOModeler Creating a New Model

Icon Path
The icon path changes to indicate your current location as you navigate around
a model. For example, in Figure 10, the icon path indicates that the current
selection is the lastName attribute in the Talent entity, which is part of the
Movies model.

Figure 10. Icon Path

You can click on any icon in an icon path to navigate to that part of the model.
You also use the icons in the icon path in drag and drop operations—for example,
to drag an entity into the Data Browser (described below) or Interface Builder
(described in the next chapter).

Open Entity Icon
When you double-click the icon to the left of an entity, it displays that
entity’s attributes.

 Menu
You use the menu to add columns for an entity. Each column represents a
different characteristic you can set for an entity. By default, when you first run
EOModeler the table mode has just four columns: Open Entity, Name, Table,
and Class Name. The menu provides these additional items: Open Entity,
Parent, and External Query. The following table describes the characteristics
you can set for an entity.

Using EOModeler Creating a New Model

100

Using the Model Editor in Browser Mode
To see the Model Editor in browser mode, choose Tools m Browser Mode.

Figure 11. Model Editor in Browser Mode

To display the attributes for a particular entity, such as Talent, select the entity.
The attributes appear in the column to the right of the entity.

Characteristic What it is

Open Entity Adds a column with the Open Entity icon, which you can dou-
ble-click on to display an entity’s attributes.

Name The name your application uses for the entity. By default,
EOModeler supplies names based on the name of the corre-
sponding table in the database.

Table The name of the database table that corresponds to the entity.

Class Name The name of the class that corresponds to the entity. If you
don’t define a custom enterprise object class for an entity, by
default its class is EOGenericRecord.

Parent Indicates an entity’s parent—used to model inheritance.

External Query Any SQL statement that will be executed as is—on Sybase, this
can be a stored procedure.

101

Using EOModeler Creating a New Model

What a Default Model Includes
When you create a new model, the information it includes depends on how
completely you’ve specified the underlying database. EOModeler can read all
of the following from a database and include it in a default model:

• Table and column names
• Column data types, including the width constraint of string data types
• Primary keys
• User constraints, such as null constraints and uniqueness
• Foreign key definitions (which are expressed in a model as relationships)
• Stored procedures

A model contains not only the information it reads from the database, but values
it derives from that information, including:

• Entity and attribute names
• A mapping between the data type of a database column and the

corresponding Objective-C type

EOModeler derives entity names by taking a database table name and making
all of it lowercase except for the first letter. It then removes underbar (_)
characters and capitalizes any characters following underbars. For example:

Database Table Entity Name

EMPLOYEE Employee

EMPLOYEE_PHOTO EmployeePhoto

TEST_OF_SEVERAL_WORDS TestOfSeveralWords

Attribute names are based on corresponding database columns. They’re derived
in the same way as entities, except that EOModeler doesn’t capitalize the first
character. For example:

Using EOModeler Creating a New Model

102

Database Column Attribute Name

NAME name

FIRST_NAME firstName

MOVIE_ID movieId

Using the Data Browser
You can use the Data Browser to display the database records associated with an
entity in the Model Editor.

To display an entity’s records in the Data Browser, select the entity and choose
Tools m Data Browser.

To browse the records associated with a different entity, select the entity icon in
the Model Editor and drag it into the Entity well of the Data Browser, as shown
in Figure 12. To view a subset of the attributes for an entity, select one or more
attributes and drag the associated icon into the Entity well.

Figure 12. Dragging an Entity into the Data Browser

103

Using EOModeler Creating a New Model

Figure 13. The Data Browser

You can rearrange the columns in the Browser by dragging their title tabs to new
positions. You can also resize columns by selecting their title tabs and dragging
the tab edges until the column is the desired size.

You can change the sorting order of the Browser by using the buttons in the
lower right corner. By default, the data is displayed according to how it was
returned from the database. However, you can sort on the first column in either
ascending or descending order by clicking the appropriate sort button. So, for
example, to sort the records alphabetically by the movie name in the Movie
database, drag the title column into the first column of the Browser and click the
ascending sort button. To restore the order of the data as it was returned from
the database, click the default order button.

Inspecting and Modifying Attributes
EOModeler provides two mechanisms for viewing and modifying your
attributes: the table mode of the Model Editor, and the Attribute Inspector.

You can use either mechanism to examine the characteristics of the attributes in
your model and make any necessary refinements. You can use the Model Editor
for most common operations, but for some more sophisticated changes you need
to use the Inspector.

Working with Attributes in Table Mode
To display an entity’s attributes in table mode, double-click the icon to the
left of an entity, as shown in Figure 14.

Default order button

Descending sort button

Ascending sort button

Using EOModeler Creating a New Model

104

Figure 14. Double-click an Open Entity Icon to Display Attributes

The display changes to show all of the entity’s attributes, as shown in Figure 15.

Figure 15. Displaying an Entity’s Attributes

You can use this view to modify an attribute’s characteristics (alternatively, you
can use the Attribute Inspector). Each column corresponds to a single
characteristic of the attribute, such as its name or its external type (that is, the
type by which it’s represented in the database). By default, the columns
included in this view only represent a subset of the possible characteristics you
can set for a given attribute. To add columns for additional characteristics, you
use the menu at the upper left corner of the table. The following table
describes all of the characteristics for which you can add columns.

Double-click
here

105

Using EOModeler Creating a New Model

Characteristic What it is How you modify it

Primary Key Declares whether a property is, or is part of, the primary key
for the entity.

Click in the column to toggle
primary key off and on.

Class Property Indicates a property that meets both of these criteria: you
want to include it in your class definition, and it can be
fetched from the database.

Click in the column to toggle
class property off and on.

Locking Indicates whether an attribute should be used for locking
when an update is performed.

Click in the column to toggle
locking off and on.

Name The name your application uses for the attribute. EOMod-
eler supplies default names derived from the name of the
corresponding column in the database. You can edit these
names if desired.

Edit the table cell.

Value Class The Objective-C type to which the attribute will be coerced
in your application. EOModeler supplies a default mapping
between an attribute’s type in the database and an Objec-
tive-C class.

Edit the table cell.

External Type The data type of the attribute as it’s understood by the data-
base.

Choose another value from
the pull-down list

Width The maximum width (applies to string and raw data only). Edit the table cell.

Column The database name of the column that corresponds to the
attribute.

Edit the table cell.

Definition The definition for a derived attribute. Edit the table cell.

Allows Null Indicates whether the attribute can have a NULL value. Click in the table cell to tog-
gle the check on and off.

Scale The number of digits to the right of the decimal point. Can be
negative.

Edit the table cell.

Precision The number of significant digits. Edit the table cell.

Read Format The format string that’s used to format the attribute’s value
for SELECT statements. In the string %P is replaced by the
attribute’s external name. This string is used whenever the
attribute is referenced in a select list or qualifier.

Edit the table cell.

Write Format The format string that’s used to format the attribute’s value
for INSERT or UPDATE expressions. In the string %P is
replaced by the attribute’s external name.

Edit the table cell.

Value Type The format type for custom value classes such as “TIFF” or
“RTF.” This type name is used with the EODatabaseCustom-
Values protocol to identify data formats for custom values.

Edit the table cell.

Using EOModeler Creating a New Model

106

Using Custom Data Types
Some attributes, such as TalentPhoto’s photo attribute, have custom data types.
When you use a custom data type, you are responsible for specifying how the
data is read from and written to the database.

To specify a custom data type:

1. Select the attribute for which you want to specify a custom data type and
choose Tools m Inspector.

Figure 16. Specifying Custom Data Types

2. Use the pop-up list at the top of the Internal Data Type group to set the data
type to Custom.

3. If relevant, specify an external width for your data type.

BLOB types such as images are usually stored in columns that don’t have
width constraints.

107

Using EOModeler Creating a New Model

4. In the Class field, specify the class of your custom data type.

5. In the Factory Method field, specify the class method that will be used to
create instances of your class from raw data.

The arguments for this method should match the type specified in the Init
Argument pop-up list.

6. In the Conversion Method field, specify the method that will be used to
convert your data into a form that can be stored in the database.

This method should return an NSData object if the Init Argument type is
NSData or Bytes, otherwise it should return an NSString.

7. Use the Init Argument pop-up list to indicate the data type (NSData,
NString) with which your custom objects will be initialized, or Bytes if your
objects are initialized from raw bytes.

Forming a Relationship
If the database on which your model is based includes definitions for foreign
keys, these definitions will automatically be expressed in your model as ready-
made relationships.

You can also explicitly form a relationship between entities if one doesn’t
already exist. This relationship must reflect an actual relationship between the
entities’ corresponding tables in the database.

Forming a relationship allows you to access data in a destination table that
relates to data in a source table (it’s also possible to have a reflexive relationship,
in which the source and destination tables are the same). For example, to find
all of the roles in a particular movie, you can form a relationship between the
Role and Movie entities.

To form a relationship:

1. Select a source entity in the Model Editor, such as Movie, and navigate to its
attributes by double-clicking its icon.

2. Choose Property m Add Relationship.

Using EOModeler Creating a New Model

108

Figure 17. Adding a Relationship

The text “Relationship” appears in the relationship table view at the bottom
of the window.

3. Choose Tools m Inspector to display the Relationship Inspector, as shown in
Figure 18.

109

Using EOModeler Creating a New Model

Figure 18. The Relationship Inspector

A relationship can be compound, meaning that it can consist of multiple
pairs of connected attributes.

You use the Relationship Inspector to specify information about the
relationship, such as whether it’s to-one or to-many, its semantics (that is, the
type of join represented by the relationship), and the name of the
destination model (if the destination isn’t in the current model).

Relationships are created as to-one relationships. You need to change this
setting if the two entities have a to-many relationship (for example, a movie
has many roles).

A to-one relationship from one primary key to another primary key must
always have exactly one row in the destination entity—if this isn’t
guaranteed to be the case, use a to-many relationship. This rule doesn’t
apply to a foreign key to primary key relationship, where a NULL value for
the foreign key in the source row indicates that no row exists in the
destination.

Select a destination entity here

then select a source attribute...

... and a destination attribute

When you’re done, click here

Using EOModeler Creating a New Model

110

When you use the Relationship Inspector, remember that the settings you
define must reflect the corresponding implementation in the database, as
well as the features supported by your adaptor. EOModeler doesn’t know,
for example, if a relationship is to-one or to-many, or if your adaptor supports
left outer joins. You need to know your database and your adaptor, and
specify relationships accordingly. In addition, to-one relationships must join
on the complete primary key of the destination entity as the join component.

4. In the Inspector, select the destination entity (Role) in the Destination
browser.

Typically, you form a relationship by connecting a primary key in one entity
and a corresponding foreign key in another entity. In a to-one relationship,
the source entity usually holds the foreign key, while the destination entity
holds the primary key. For example, movieId is a foreign key for Role, while
it’s the primary key for Movie.

5. Select the source attribute (movieId) in the Source Attributes browser.

6. Select the destination attribute (movieId) in the Destination Attributes
browser, and click Connect.

7. Make sure the relationship has the proper cardinality (in this example it
should be set to To Many since a movie has many roles).

8. By editing in either the Inspector or the relationship table view, give the
relationship a name, such as “roles.”

Figure 19 shows what the Model Editor and the Relationship Inspector look
like when you get done specifying the relationship.

111

Using EOModeler Creating a New Model

Figure 19. Specifying the Relationship

Adding Referential Integrity Rules
You can use the Advanced Relationship Inspector to add referential integrity
rules for a relationship.

To add referential integrity rules:

1. Select the relationship for which you want to add rules.

2. In the Relationship Inspector, click the Advanced Relationship Inspector
icon at the top of the Inspector.

This displays the Advanced Relationship Inspector.

Using EOModeler Creating a New Model

112

Figure 20. Advanced Relationship Inspector

You can use the fields in the Advanced Relationship Inspector to further specify
a relationship.

Batch Faulting

Normally when a fault is triggered, just that object (or array of objects for a to-
many relationship) is fetched from the database. You can take advantage of this
expensive round trip to the database by batching faults together. The value you
type in the Batch Size field indicates the number of faults for the same
relationship that should be triggered along with the first fault. For more
discussion of batch faulting, see the class specification for EODatabaseContext
in the Enterprise Objects Framework Reference.

Optionality

This field lets you specify whether a relationship is optional or mandatory. For
example, you could require all departments to have a location (mandatory), but
not require that every employee have a manager (optional).

113

Using EOModeler Adding Derived and Flattened Attributes

Delete Rule

This field lets you specify the delete rules that should be applied to an entity
that’s involved in a relationship. For example, you could have a department with
multiple employees. When a user tried to delete the department, you could:

• Delete the department and remove any back pointer the employee has to the
department (nullify)

• Delete the department and all of the employees it contains (cascade)

• Refuse the deletion if the department contains employees (deny)

Owns Destination

The Owns Destination checkbox lets you set a source object as owning its
destination objects. When a source object owns its destination objects and you
remove a destination object from the source object’s relationship array, this also
has the effect of deleting it from the database (alternatively, you can transfer it
to a new owner). This is because ownership implies that the owned object can’t
exist without an owner—for example, line items can’t exist outside of a purchase
order.

Propagate Primary Key

The Propagate Primary Key checkbox lets you specify that the primary key of
the source entity should be propagated to newly inserted objects in the
destination of the relationship. This is typically used for an owning relationship,
where the owned object has the same primary key as the source. For example,
in the Movies database the TalentPhoto entity has the same primary key as the
entity that owns it, Talent.

Adding Derived and Flattened Attributes

The Enterprise Objects Framework supports three different kinds of attributes:
simple, derived, and flattened. A simple attribute corresponds to a single
column in the root table of the entity, and may be read or updated directly from
or to the database.

A derived attribute doesn’t map directly to a single column in the root table of
the entity. For example, a derived attribute can be based on another attribute
that’s modified in some way, such as an bonus attribute that’s the result of a
calculation performed on a salary attribute. A derived attribute can also be an
aggregate consisting of more than one attribute; for example, you can create a
derived attribute fullName that is an aggregate of lastName and firstName.

Using EOModeler Adding Derived and Flattened Attributes

114

Derived attributes, since they don’t correspond to real values in the database,
are read-only; it makes no sense to write a derived value.

A flattened attribute is a special kind of derived attribute that you effectively
add from one entity to another by traversing a relationship. For example, when
you form a to-one relationship between two tables (such as Role and Talent),
you can add attributes from the destination entity to the source entity—for
example, you can add a lastName attribute to Role to identify the actor who
played a particular role. This is called “flattening” an attribute. Flattening an
attribute is equivalent to creating a joined column; it allows you to create objects
that extend across tables.

When Should You Use Flattened Attributes?
Flattening attributes is just one way to conceptually “add” an attribute from one
entity to another. Another approach is to define key paths in Interface Builder,
as described in the chapter “Creating an Enterprise Objects Framework
Project.” Key paths allow you to use pointers to traverse the object graph
directly, where the most current values of your enterprise objects are
maintained. You can also access the values in other objects programmatically, as
described in “Designing Enterprise Objects.”

The difference between flattening attributes and traversing the object graph
(either programmatically or by using key paths) is that the values of flattened
attributes are tied to the database rather than the object graph. If an enterprise
object in the object graph changes (for example, because a user changed a value
in another part of the application), a flattened attribute can quickly get out of
sync. For example, suppose that you flatten a deptName attribute into an
Employee object. If a user then changes the employee’s department pointer to
a different department or changes the name of the department itself, the
flattened attribute won’t reflect the change until the changes in the object graph
are committed to the database and the data is refetched. However, if you
directly manipulate the object graph in this scenario, a user of your application
sees changes to data as soon as they happen in the object graph. This ensures
that your application’s view of the data remains internally consistent.

Therefore, you should only use flattened attributes in the following cases:

• If you want to combine multiple tables to form a logical unit. For example,
you might have employee data that’s spread across multiple tables such as
Address, Benefits, and so on. If you have no need to access these tables
individually (that is, if you’d never need to create an Address object since the
address data is always subsumed in Employee), then it makes sense to flatten
attributes from those entities into Employee.

115

Using EOModeler Adding Derived and Flattened Attributes

• If your application is read-only.

• If you’re using vertical inheritance mapping (as described in the chapter
“Designing Enterprise Objects”).

To flatten an attribute, the relationship you traverse must be a to-one
relationship.

To flatten an attribute:

1. In the browser mode of the Model Editor, select the relationship that gives
you access to the attribute you want to add to your entity (you don’t have to
use the browser mode, it just makes it easier to see the results of the
operation).

For example, to add the name of an actor to Role, you can add and traverse a
talent relationship and add the actor’s last name (lastName) to Role as a
flattened attribute. Note that this is a contrived example, because in this case
it would be better to use a key path than to flatten an attribute.

2. Select the attribute you want to add (lastName), and choose Property m
Flatten Property.

Figure 21. Adding a Flattened Attribute

The derived attribute (in this example, talent_lastName) appears in the list
of properties for Role. The format of the name reflects the traversal path: the
attribute lastName is added to Role by traversing the talent relationship.

Using EOModeler Adding Derived and Flattened Attributes

116

3. Choose Tools m Inspector to examine the derived attribute
(talent_lastName) in the Inspector.

Figure 22. Examining a Flattened Attribute in the Attribute Inspector

In the Attribute Inspector, the pop-up list to the left of the Definition field
identifies the attribute as “Derived”.

4. Edit the Name text field to simplify the attribute name (for example, to
“lastName”).

The Definition field (the second text field from the top of the Attribute
Inspector) must accurately reflect the attribute’s external name and the table in
which it resides. For example, if you edit its text to be “Name” and change its
mode to “Column,” it no longer maps to an existing attribute. In other words,
only edit this field if you are sure you can predict the outcome.

To display the result of creating this flattened attribute, drag a selection of the
Role entity’s attributes into the Data Browser, as shown in Figure 23. Notice
that the Browser includes a column for the flattened attribute lastName.

117

Using EOModeler Adding Derived and Flattened Attributes

Figure 23. Using the Data Browser to Check Your Model

Note: To select multiple, non-contiguous attributes in the Model Editor, hold
down the Control key while you mouse-click on each attribute.

Displaying data associated with your model in the Data Browser is a good way
to check that the model is synchronized with the database. If your model is out
of sync with the database (for example, if you try to implement a relationship for
which there is no corresponding relationship in the database), attempting to
display data in the Browser will fail.

Adding a Derived Attribute
You can use the concept of derived attributes to add to an entity a new attribute
that doesn’t correspond to any database column. This attribute can contain a
computed value, for example, or an aggregate of multiple attributes.

To add a new attribute to your entity:

1. In the Model Editor, select the entity (such as Talent) to which you want to
add an attribute.

2. Choose Property m Add Attribute.

Using EOModeler Adding Derived and Flattened Attributes

118

A new attribute with the name “Attribute” appears in the entity’s list of
attributes.

3. In the Attribute Inspector, edit the Name field to supply a new name for the
attribute.

For example, you can create an attribute called fullName that combines the
firstName and lastName attributes. A safer way to achieve the same end would
be to implement a method on your enterprise object—this would ensure that
if the firstName or lastName attribute is modified, the derived attribute fullName
will immediately reflect the change. But this is just being used for the
purpose of an example.

4. Use the pop-up list to the left of the Definition field to change the attribute
type from Column to Derived.

5. Edit the Definition field to supply the SQL needed to specify the derived
attribute.

For example, to concatenate the firstName and lastName attributes in
Oracle, type the text FIRST_NAME||' '||LAST_NAME (the Sybase
equivalent is FirstName+' '+LastName).

6. In the External Type field, add the attribute’s data type (VARCHAR2). This
should be the data type as it is in the database.

7. In the External Width field, type the width constraint for the attribute (this
only applies to string values).

Figure 24 shows the Attribute Inspector with the new attribute fullName
specified.

119

Using EOModeler Adding Derived and Flattened Attributes

Figure 24. Adding an Attribute

The text you supply in the Definition field must be valid SQL for your database.
While you can use either the internal or external names for simple attributes in
this field, for derived and flattened attributes you have to use the internal names
(flattened and derived attributes have no external names). For consistency’s
sake, you may want to use only internal names in this field.

Adding Flattened Relationships
In addition to flattening attributes, you can also flatten relationships. Flattening
a relationship gives a source entity access to relationships that a destination
entity has with other entities. It’s equivalent to performing a multi-table join.
Note that flattening either an attribute or a relationship can result in degraded
performance when the destination objects are accessed, since traversing
multiple tables makes fetches slower.

When Should You Use Flattened Relationships?
As discussed in “When Should You Use Flattened Attributes?” on page 114,
flattening is a technique you should only use under certain conditions. Instead
of flattening an attribute or a relationship, you can instead directly traverse the

Using EOModeler Adding Derived and Flattened Attributes

120

object graph, either programmatically or by using key paths. This ensures that
your application has an internally consistent view of the data.

There is one scenario in which you might want to use a flattened relationship: if
you’re modeling a many-to-many relationship and you want to perform a multi-
table hop to access a table that lies on the other side of an intermediate table.
For example, in the Movie database, the Director table acts as an intermediate
table between Movie and Talent. It’s highly unlikely that you would ever need
to fetch instances of Director into your application. In this situation, it makes
sense to specify a relationship between Movie and Director, and flatten that
relationship to give Movie access to the Talent table.

To flatten a relationship:

1. Add a relationship from one entity (entity_1) to a second entity (entity_2).

For example, you can add a to-many relationship from Movie to Director
since a movie can have more than one director.

2. Add a relationship from entity_2 to a third entity (entity_3).

For example, you can add a to-one relationship from Director to Talent. For
each director a movie has, there is a corresponding single entry in the Talent
table.

3. From entity_1, select the relationship to entity_2 to display its properties.

In this example, from Movie select the relationship directors to display the
properties of Director.

4. In the list of properties for entity_2, select the relationship (directors) you want
to flatten and choose Property m Flatten Property.

The flattened relationship (in this example, directors_talent) appears in the list
of properties for Movie. The format of the name reflects the traversal path: The
relationship talent is added to Movie by traversing the directors relationship.

121

Using EOModeler Working With Entities

Figure 25. Flattening a Relationship

Working With Entities

Once you’ve refined your model, you’re ready to specify enterprise object
classes for the entities in the model. There are two stages to specifying an
enterprise object class in EOModeler:

• Using the Model Editor or the Entity Inspector to set the characteristics of an
entity and define the mapping between the entity and your enterprise object
class.

• Optionally, generating template source files for the enterprise object classes
you specify.

Inspecting an Entity
You use the Entity Inspector to set an entity’s characteristics and specify a
mapping between the entity and an enterprise object class. You can also
accomplish a lot of the same tasks using the table mode of the Model Editor, but
this section just focuses on the Entity Inspector.

To inspect an entity, select the entity and choose Tools m Inspector.

Figure 26 shows the Entity Inspector for the Movie entity.

Using EOModeler Working With Entities

122

Figure 26. The Entity Inspector

Name

The Name field lists the name your application uses for the entity. The Table
Name field contains the name of the root table in the database. You can change
the internal name (that is, the name as it appears in the application), but you
shouldn’t change the database table name unless you are sure you can predict
the result.

Class

The Class field initially contains the text “EOGenericRecord”. This is because
the default enterprise object class is an EOGenericRecord.

An EOGenericRecord:

• Knows the entity on which it is based.
• Carries its properties as an NSDictionary.
• Implements the EOKeyValueCoding protocol.

To specify a custom class, type the name of the class in this field. For more
information on EOKeyValueCoding and creating custom classes, see
“Specifying an Enterprise Object Class” on page 124.

123

Using EOModeler Working With Entities

Properties

The Properties area lets you specify the properties you want to include in your
enterprise object class and set characteristics for them.

There are three columns in this area. Each column displays the status of a
particular setting: Primary Key, Used For Locking, and Class Property. Icons are
used to indicate that a setting is enabled for a particular property; the dash icon
indicates that a setting is not applicable to a property. You add and delete icons
by clicking the appropriate column next to the property.

The Primary Key column is used to declare whether a property is, or is part
of, the primary key for the enterprise object class. To create a compound primary
key, you simply add a Primary Key icon to the column for each property you
want to include in the primary key.

Adding a primary key to your enterprise object class is mandatory; the primary
key is the means by which an enterprise object is uniquely identified within
your application and mapped to the appropriate database row.

The Used For Locking column indicates whether an attribute should be
checked for changes before an update is allowed. This setting applies when
you’re using Enterprise Object Framework’s default update strategy, optimistic
locking. Under optimistic locking, the state of a row is saved as a snapshot when
you fetch it from the database. When you perform an update, the snapshot is
checked against the row to make sure the row hasn’t changed. Note that if you
set Used For Locking for an attribute whose data is a BLOB type, it can have an
adverse effect on system performance. By default, the Entity Inspector sets all
of an entity’s attributes to be used for locking.

The Class Property column is used to indicate properties that meet both of
these criteria: You want to include them in your class definition, and they can be
fetched from the database. By default, the Entity Inspector sets all of an entity’s
properties as belonging to your class; you can remove a property by clicking its
Class Property icon. If you define an attribute that doesn’t exist in the database
but is used by your application (such as a status flag), you should remove its
Class Property icon; note that generated template source files won’t include
instance variable declarations for these attributes—you’ll have to type those in
by hand. You also should not include primary and foreign keys as class properties
unless you need to display their values in the user interface. If you don’t remove
the Class Property icon for an attribute that has no corresponding database
value, it will result in a server error when your application attempts to fetch the
property from the database.

Using EOModeler Working With Entities

124

Only properties you include in the class will be sent to the enterprise object
through key-value coding. Relationships you include as class properties will
have EOFaults created for them.

Specifying an Enterprise Object Class
Specifying an enterprise object class for an entity applies the mapping defined
in your model to your custom class, thereby enabling objects of the class to be
created from corresponding database rows.

To specify the enterprise object class for an entity:

1. Determine the properties from the entity that you want to include in your
enterprise object class; every property you want to include should have a
corresponding Class Property icon set for it.

2. If the entity does not already have a primary key specified, add a Primary Key
icon for the property or properties that constitute the entity’s primary key.

Remember that the primary key or keys you set for your enterprise object
class must mirror the primary key or keys defined for the corresponding table
in the database.

What you do after this point depends on how you plan to implement your
enterprise object class. Note that in all cases, an enterprise object class must
conform to the informal protocol EOKeyValueCoding, which specifies methods
for accessing values associated with keys (“keys” in this context relates to key-
value pairs, not to primary keys). But this can be accomplished very differently,
depending on the approach you use.

You can do any one of the following, depending on the needs of your application:

• Use EOGenericRecord.

If you don’t edit the Class field to specify a name for a custom class, the
Framework uses EOGenericRecord as an enterprise object class by default.
A generic record uses a dictionary to store key-value pairs that correspond to
an entity’s properties and the data associated with each property. Generic
records implement the key-value coding methods takeValue:ForKey: and
valueForKey:. Use EOGenericRecord when you don’t need to define special
behavior for your class.

To use EOGenericRecord, simply leave the text “EOGenericRecord” in the
Class field in the Entity Inspector.

125

Using EOModeler Working With Entities

• Create a custom class that uses the default implementation of key-value
coding. If you plan to create a custom class, you must type its name in the
Class field.

If you generate template source files for your class, the resulting header and
implementation files include definitions of instance variables and accessor
methods that can be used by key-value coding. See “Generating Template
Source Code Files” on page 126.

For more information on key-value coding and implementing enterprise object
classes, see the chapter “Designing Enterprise Objects.”

Figure 27 shows the Model Editor and the Entity Inspector after the primary
key and properties have been set.

Figure 27. Specifying a Class for an Entity

In Figure 27, note that:

• In the Inspector, the property movieID has been designated as the enterprise
object class’s primary key.

• For the relationship directors, the Inspector automatically displays the Not
applicable icons in the Primary Key and Used For Locking columns.

Using EOModeler Generating Template Source Code Files

126

Generating Template Source Code Files

Once you finish specifying an enterprise object class, you can generate template
source code files for it. However, at this stage of the development process, you
may want to first create your project and design your application’s user interface
in Interface Builder. Once you’ve created a project using Project Builder and
included a model file in it, you can generate your template source files and
include them directly into the project. For more information on using Project
Builder and Interface Builder, see the chapter “Creating an Enterprise Objects
Framework Project.”

Generating template files produces:

• A header (.h) file that declares instance variables for all of the class properties
you specified in the Inspector, and accessor methods for those instance
variables.

In the header file, instance variables that correspond to attributes are
declared with the type that was specified for them in the Attribute Inspector.
This can be an NSString, an NSCalendarDate, an NSNumber, an
NSDecimalNumber, or a custom data type. Instance variables that represent
to-one relationships are declared to be of type id, while instance variables
that represent to-many relationships are NSArrays.

• An implementation (.m) file that provides basic implementations for the
accessor methods.

To generate template source code files for your enterprise object class:

1. In the Model Editor, select the entity for which you have specified a class in
the Entity Inspector.

EOModeler only permits you to create template source files for entities for
which you have specified a custom enterprise object class. In other words,
you can’t generate template files for EOGenericRecord.

2. Choose Property m Create Template.

EOModeler displays a Choose Template Name panel. If you opened the
model file from Project Builder, the Choose Template Name panel displays
the project as the default destination.

3. Choose a destination, supply a name for the files if you want, and click Save.

127

Using EOModeler Generating Template Source Code Files

If you don’t supply a name, the template files are named after the enterprise
object class for which they are being generated and are given the appropriate
extensions.

If you opened the model file from a project, an additional panel appears,
confirming that you want to insert the files in your project.

The files are generated in the specified location.

For example, suppose you define an enterprise object class Movie. The header
file generated for this class would resemble the following:

// Movie.h
//

#import <EOControl/EOControl.h>

@class Studio;
@class Talent;

@interface Movie : NSObject
{
 int language;
 NSString *category;
 NSCalendarDate *dateReleased;
 NSString *rating;
 NSString *title;
 NSDecimalNumber *revenue;
 id plotSummary;
 Studio *studio;
 NSMutableArray *directors;
 NSMutableArray *roles;
}

- (void)setLanguage:(int) value;
- (int) language;

- (void)setCategory:(NSString *)value;
- (NSString *)category;

- (void)setDateReleased:(NSCalendarDate *)value;
- (NSCalendarDate *)dateReleased;

- (void)setRating:(NSString *)value;
- (NSString *)rating;

- (void)setTitle:(NSString *)value;
- (NSString *)title;

- (void)setRevenue:(NSDecimalNumber *)value;
- (NSDecimalNumber *)revenue;

Using EOModeler Generating Template Source Code Files

128

- (void)setPlotSummary:(id)value;
- (id)plotSummary;

- (void)setStudio:(Studio *)value;
- (Studio *)studio;

- (NSArray *)directors;
- (void)addToDirectors:(Talent *)object;
- (void)removeFromDirectors:(Talent *)object;

- (NSArray *)roles;
- (void)addToRoles:(id)object;
- (void)removeFromRoles:(id)object;

@end

Note that:

• Instance variables are declared to be of the type specified in the model. For
example, revenue is declared as an NSDecimalNumber and dateReleased is
declared as an NSCalendarDate. Instance variables that represent
relationships (such as directors) are NSMutableArrays.

• The implementation (.m) file includes an implementation for each of the
accessor methods. For example, the methods for setting and returning the
value of the instance variable title are:

- (void)setTitle:(NSString *)value
{
 [self willChange];
 [title autorelease];
 title = [value retain];

}
- (NSString *)title { return title; }

Customizing Template Generation
When you create a project with the type “EOF Application,” it inserts two files
into the project’s Supporting Files suitcase: EOInterfaceFile.template and
EOImplementationFile.template. You can use these files to customize your .h and .m file
output, respectively. In their unmodified form these files match the template
generation scheme used by EOModeler.

129

Using EOModeler Setting Other Information for an Entity

Setting Other Information for an Entity

From the Entity Inspector you can navigate to other Inspectors to specify
additional information for your entity.

Figure 28. Icons for Navigating to Other Inspectors

Advanced Entity Inspector
The Advanced Entity Inspector lets you set more complex behavior for your
entity, such as inheritance.

To display the Advanced Entity Inspector, select the Advanced Entity
Inspector icon at the top of the Entity Inspector.

Click here to display the Advanced Entity
Inspector.

Click here to display the Stored Procedure Inspector.

Click here to display the UserInfo Inspector.

Using EOModeler Setting Other Information for an Entity

130

Figure 29. Advanced Entity Inspector

Batch Faulting Size

The Batch Faulting Size field lets you set the number of EOFaults that should
be triggered when you first access an object of this type. By default, only one
object is fetched from the database when you trigger an EOFault. By providing
a number N in this field, you specify that N other EOFaults of the same entity
should be fetched from the database along with the first one.

External Query

The External Query field allows you to specify any SQL statement that will be
executed as is (that is, you can’t perform any substitutions). This can be a stored
procedure. The columns selected by this SQL statement must be in
alphabetical order by internal name, and must match in number and type with
the class properties specified for the entity.

Qualifier

This field is used to specify a restricting qualifier. A restricting qualifier maps an
entity to a subset of rows in a table. Restricting qualifiers are commonly used
when you’re using single table inheritance mapping, in which the data for a class
and its subclasses is all stored in a single table. When you add a restricting
qualifier to an entity, it causes a fetch for that entity to only retrieve objects of
the appropriate type. For example, the Rentals sample database has a

131

Using EOModeler Setting Other Information for an Entity

MOVIE_MEDIA table that includes rows for both the VideoTape and
LaserDisk entities. VideoTape has the restricting qualifier (media = ‘T’), and
LaserDisk has the restricting qualifier (media = ‘D’). When you fetch objects for
the entity VideoTape, only rows that have the value ‘T’ for the attribute media
are fetched. For more discussion of single table and other types of inheritance
mapping, see the chapter “Designing Enterprise Objects.”

Parent

You use this field to specify a parent entity for the current entity. This field is
used to model inheritance relationships. For example, in the Rentals database,
the Customer entity is the parent of the Member and Guest entities (since
Members and Guests are types of Customers).

Read Only

The Read Only checkbox indicates whether the data that’s represented by the
entity can be altered by your application.

Is Abstract Entity

The Is Abstract Entity checkbox indicates whether the entity is abstract. An
abstract entity is one for which no objects are ever instantiated in your
application. For example, in the Rentals example database, the Customer entity
is abstract since Customer objects are never instantiated (though objects of its
sub-entities, Member and Guest, are). Like the Parent field, this option is used
to model inheritance.

Most of the features in the Advanced Entity Inspector relate to inheritance.
EOModeler also lets you add a new entity as a subclass of the selected entity. To
do this, select the entity you want to use as the parent and choose Property m
Create Subclass. A new entity is created that maps to the same database table as
the parent entity.

Stored Procedures Inspector
You use the Stored Procedures Inspector to specify stored procedures that
should be executed when a particular database operation (such as insert or
delete) occurs. You type the name of the stored procedure in the field associated
with the database operation. Stored procedures are read from the database when
you create a new model and included in its .eomodeld file. You can also add
stored procedures through EOModeler, as described in “Working With Stored
Procedures” on page 132.

Using EOModeler Working With Stored Procedures

132

UserInfo Inspector
You use the UserInfo Inspector to add key-value pairs to the UserInfo
NSDictionary. The UserInfo dictionary provides a mechanism for extending
your model. You can use it to define custom behavior for an entity. For example,
you could put information in the UserInfo dictionary to be used by delegate
methods that perform operations on the entity.

Working With Stored Procedures

Stored procedures are read from the database when you create a new model and
included in its .eomodeld file. You can also add stored procedures in
EOModeler.

To add a stored procedure, select the model icon in the Model Editor and
choose Property m Add Stored Procedure. You can then edit the stored
procedure in the stored procedures view.

To display the stored procedures view, choose Tools m Stored Procedures.

To add arguments for a stored procedure, display the Stored Procedures view
and choose Property m Add Argument.

Once stored procedures have been added to your model, you can use the Stored
Procedures Inspector to specify stored procedures that should be executed for
an entity when a particular database operation (such as insert or delete) occurs
(as described in “Stored Procedures Inspector” on page 131).

Working with Multiple Models and Databases

The entities in one model can have relationships to the entities in another
model that maps to a different database.

When you add a model to a project, it becomes part of an EOModelGroup, even
if the model group only contains that one model (for more information on model
groups, see the EOModelGroup class specification). Each subsequent model
that you add to the project automatically becomes part of the EOModelGroup.
Entity names must be unique within a single EOModelGroup; you can’t use the
same entity name in two different models in the same group.

133

Using EOModeler Working with Multiple Models and Databases

You can form relationships from one model to other models in the same
EOModelGroup. You do this as follows:

1. Add a relationship to the entity you want to use as the source of the
relationship.

For example, you can form a to-one relationship between the VideoTape
entity in the Rentals sample database and the Movie entity in the Movies
sample database.

2. In the Relationship Inspector, use the Model pop-up list to choose the model
containing the entity you want to use as the destination of the relationship.

3. Specify the relationship as you normally would.

Note: You can’t flatten properties across databases, nor can you map inheritance
hierarchies across databases.

Use this pop-up list to choose the model that contains
the entity you want to use as the destination of the
relationship.

Using EOModeler Generating Schema

134

Generating Schema

You can use EOModeler to create a model from scratch (that is, to create a model
that’s not initialized from an existing database), and then use that model to
generate the SQL necessary to create a database. You can also edit a model for
an existing database and generate SQL statements from the model that can be
used to regenerate the database with the new settings.

To generate SQL for one or more entities, select the entities and choose
Property m Generate SQL. The SQL Generation panel appears, as shown in
Figure 30.

Figure 30. Generating SQL

Setting Adaptor Information

In addition to describing modeling objects, a model includes a connection
dictionary, which contains the information needed to connect to a database
server. The keys of the connection dictionary identify the information the server
expects, and the values associated with those keys are the values that the
adaptor tries when logging into the database.

Click these options to dynamically
change the contents of the generated
SQL.

135

Using EOModeler Checking for Consistency

When you initialize an adaptor from a model, any connection information stored
with the model is copied into the adaptor object.

The connection dictionary contains the last values you entered in the login
panel and saved as a part of your model (so long as you haven’t manually edited
the connection dictionary in your model file). You can change the connection
dictionary’s values from EOModeler; this is called setting adaptor information.

To set adaptor information:

1. Choose Model m Set Adaptor Info.

EOModeler displays a login panel that contains values taken from the
model’s connection dictionary.

2. In the login panel, make the edits you want reflected in your connection
dictionary, and click OK.

For example, if you specified a user name and password to log into a database
and create your model, you can remove that information from the connection
dictionary by clearing those fields in the login panel. Then, in your application,
you can prompt the user for a user name and password by sending a
runLoginPanelAndValidateConnectionDictionary message to your adaptor
object.

Switching Adaptors
You can also change the database your model is based on by choosing Model m
Switch Adaptor. This displays the New Model panel, where you can select a
different adaptor.

Checking for Consistency

EOModeler provides consistency checking to confirm that your model is valid.
A valid model is one in which there are no entities without primary keys, and no
relationships without join components. Further, consistency checking is
invoked when you attempt to make a change in one part of the model that
would invalidate another part of the model (for example, if you try to delete an
element that’s referenced elsewhere).

You can explicitly check your model at any point by choosing Model m Check
Consistency. Consistency checking is also invoked automatically whenever you

Using EOModeler Checking for Consistency

136

perform certain operations. These operations and the associated checks that
EOModeler performs are described in the following table:

When you attempt to... EOModeler checks for...

Save the model Entities without primary keys
Relationships without join components

Delete an entity References other entities may have to any aspect of this entity (for
 example, to its attributes)

Delete an attribute References to this attribute anywhere else in the model

Delete a relationship References to this relationship anywhere else in the model

Change relationship cardinality References to this relationship anywhere else in the model

When a consistency check occurs and inconsistencies are found, the
Consistency Check panel appears with a list of diagnostic messages, as shown in
Figure 31.

Figure 31. Checking for Consistency

By default, consistency checking is performed whenever you save a model file.
You can change this behavior with the Preferences panel.

137

Using EOModeler Saving the Model

Saving the Model

To save your model, choose Model m Save. If you’re planning to use your model
in application for which you’ve already created a project, save the model into
your project folder. You will be prompted to add it to the project; click OK.

Using EOModeler Saving the Model

138

