
1

NSFormatter

Inherits From: NSObject

Conforms To: NSObject (NSObject)
NSCoding
NSCopying

Declared In: Foundation/NSFormatter.h

Class Description

NSFormatter is an abstract class that declares an interface for objects that format the textual representation
of cell contents. The Foundation framework provides two concrete subclasses of NSFormatter to generate
these objects: NSNumberFormatter and NSDateFormatter.

Cells, which are instances of NSCell and its subclasses, can have any arbitrary object as their content.
However, when cells are to be displayed or edited, they must convert this object to an NSString. If no
formatting object is associated with a cell, the cell displays its content by invoking the localized description
method of the object it contains. But if the cell has a formatting object, the cell invokes this object’s
stringForObjectValue: method to obtain the correctly formatted string. Conversely, when the user enters
text into a cell, the cell needs to convert the text to the underlying object; formatting objects handle this
conversion as well.

To use a formatting object, you must create an instance of NSNumberFormatter, NSDateFormatter, or a
custom NSFormatter subclass and associate the object with a cell. The cell invokes the formatting behavior
of this instance every time it needs to display its object or have it edited, and every time it needs to convert
a textual representation to its object. See the class description of NSDateFormatter for the details of using
formatting objects.

Instances of NSFormatter subclasses are immutable. In addition, when a cell with a formatter object is
copied, the new cell retains the formatter object instead of copying it.

Note: NSCell provides two methods that operate almost the same as instances of NSNumberFormatter. One
method, setEntryType:, takes a constant that specifies a typical numeric format (integer, float,
positive float, double, and so on). With isEntryAcceptable:, you can ask a cell for the type of value
it expects. Another method, setFloatingPointFormat:left:right: , allows you to specify the digits
that appear to the left and right of the decimal point. See the NSCell specification for further details.

Delegation Methods for Error Handling

NSControl has delegation methods for handling errors returned in implementations of NSFormatter’s
objectValue:forString:errorDescription: and

2

 NSFormatter

isPartialStringValid:newEditingString:errorDescription:. These delegation methods are, respectively,
control:didFailToFormatString:errorDescription: and
control:didFailToValidatePartialString:errorDescription: .

Making a Subclass of NSFormatter

There are many possibilities for custom subclasses of NSFormatter. You might find use for a custom
formatter of telephone numbers, or a custom formatter of part numbers.

To subclass NSFormatter, you must, at the least, override the two primitive methods
stringForObjectValue: and getObjectValue:forString:errorDescription: . In the first method you
convert the cell’s object to a string representation; in the second method you convert the string to the object
associated with the cell.

Implement attributedStringForObjectValue:withDefaultAttributes: in addition to
stringForObjectValue: when the display string has attributes associated with it. For example, if you want
negative financial amounts to appear in red, you would return a string with an attribute of red text. In
attributedStringForObjectValue:withDefaultAttributes: get the non-attributed NSString by invoking
stringForObjectValue: and then apply the proper attributes to that NSString.

If the string for editing is different than the string for display—for example, the display version of a
currency field should show a dollar sign but the editing version shouldn’t—implement
editingStringForObjectValue: in addition to stringForObjectValue: .

The method isPartialStringValid:newEditingString:errorDescription: allows you to edit the textual
contents of a cell at each key press or to prevent entry of invalid characters. You might apply this on-the-fly
editing to things like telephone numbers or social security numbers; the person entering data only needs to
enter the number since the formatter automatically inserts the separator characters.

Method Types

Textual representation of cell content
– stringForObjectValue:
– attributedStringForObjectValue:withDefaultAttributes:
– editingStringForObjectValue:

Object equivalent to textual representation
– getObjectValue:forString:errorDescription:

Dynamic cell editing – isPartialStringValid:newEditingString:errorDescription:

3

Instance Methods

attributedStringForObjectValue:withDefaultAttributes:
– (NSAttributedString *)attributedStringForObjectValue: (id)anObject

withDefaultAttributes: (NSDictionary *)attributes

The default implementation returns nil to indicate that the formatter object does not provide an attributed
string. In a subclass implementation, return an NSAttributedString if the string for display should have
some attributes. For instance, you might want negative values in a financial application to appear in red text.
Invoke your implementation of stringForObjectValue: to get the non-attributed string. Then create an
NSAttributedString with it. The default attributes for text in the cell is passed in with attributes; use this
NSDictionary to reset the attributes of the string when a change in value warrants it (for example, a negative
value becomes positive). For information on creating attributed strings, see the specification for the
NSAttributedString class.

See also: – editingStringForObjectValue:

editingStringForObjectValue:
– (NSString *)editingStringForObjectValue: (id)anObject

The default implementation of this method invokes stringForObjectValue: . When implementing a
subclass, override this method only when the string that users see and the string that they edit are different.
In your implementation, return an NSString that is used for editing, following the logic recommended for
implementing stringForObjectValue: (see below). As an example, you would implement this method if
you want the dollar signs in displayed strings removed for editing.

See also: – attributedStringValueForObject:

getObjectValue:forString:errorDescription:
– (BOOL)getObjectValue:(id *)anObject

forString: (NSString *)string
errorDescription: (NSString **)error

The default implementation of this method raises an exception. In your subclass implementation, return by
reference the object anObject after creating it from the string passed in. Return YES if the conversion from
string to cell-content object was successful and NO if any error prevented the conversion. If you return NO,
also return by indirection a localized user-presentable NSString (in error) that explains the reason why the
conversion failed; the delegate (if any) of the NSControl managing the cell can then respond to the failure
in control:didFailToFormatString:errorDescription: .

The following implementation example (which is paired with the stringForObjectValue: example below)
converts an NSString representation of a dollar amount that includes the dollar sign; it uses an NSScanner
to convert this amount to a float after stripping out the initial dollar sign.

4

 NSFormatter

- (BOOL)getObjectValue:(id *)obj forString:(NSString *)string

errorDescription:(NSString **)error

{

 float floatResult;

 NSScanner *scanner;

 BOOL retval = NO;

 NSString *err = nil;

 scanner = [NSScanner scannerWithString:string];

 if ([string hasPrefix:@"$"]) [scanner setScanLocation:1];

 if ([scanner scanFloat:&floatResult]

&& ([scanner scanLocation] == [string length])) {

 if (obj) {

 *obj = [NSNumber numberWithFloat:floatResult];

 {

 retval = YES;

 }

 } else {

 err = NSLocalizedString(@"Couldn't convert to float");

 }

 }

 if (error) {

 *error = err;

 }

 return retval;

}

See also: – stringForObjectValue:

isPartialStringValid:newEditingString:errorDescription:
– (BOOL)isPartialStringValid: (NSString *)partialString

newEditingString: (NSString **)newString
errorDescription: (NSString **)error

Since this method is invoked at each key press in the cell, it permits editing or evaluation of cell text as it is
typed. The text as currently typed (partialString) is passed in. Evaluate this text according to the context,
edit the text if necessary, and return by reference any edited NSString in newString. Return YES if
partialString is acceptable and NO if partialString is unacceptable. If you return NO and newString is nil ,
partialString minus the last character typed is displayed. If you return NO, you can also return by
indirection an NSString (in error) that explains the reason why the validation failed; the delegate (if any)
of the NSControl managing the cell can then respond to the failure in
control:didFailToValidatePartialString:errorDescription: .

5

stringForObjectValue:
– (NSString *)stringForObjectValue: (id)anObject

The default implementation of this method raises an exception. When subclassing, return the NSString that
textually represents the cell’s object for display and—if editingStringForObjectValue: is
unimplemented—for editing. First test the passed-in object to see if it’s of the correct class. If it isn’t, return
nil ; but if it is of the right class return a properly formatted and, if necessary, localized string. (See the
specification of the NSString class for formatting and localizing details.)

The following implementation (which is paired with the getObjectValue: forString: errorDescription:
example above) prefixes a two-digit float representation with a dollar sign:

- (NSString *)stringForObjectValue:(id)anObject

{

 if (![anObject isKindOfClass:[NSNumber class]]) {

 return nil;

 }

 return [NSString stringWithFormat:@"$%.2f", [anObject

 floatValue]];

}

See also: – attributedStringForObjectValue:withDefaultAttributes: , –editingStringForObjectValue: ,
– getObjectValue:forString:errorDescription:

