SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

SEE ALSO

SUMMARY

DECLARED IN

SYNOPSIS

NXAllocErrorData(), NXResetErrorData()
Manage the error data buffer
objc/error.h

void NXAllocErrorData(int size void **data)
void NXResetErrorData(void)

These functions handle the error buffer, which is used to pass error data to an error handler.
When an error occurBlX_RAISE() is called with two arguments that point to an arbitrary
amount of data about the error. If an error handler can’t respond to the error, the error code
and associated data are passed to the next higher-level handler.

NXAllocErrorData() allocatesizeamount of space in the error buffer, increasing the size
of the buffer if necessary. Tligtaargument points to a pointer to the data in the buffer.
To empty and free the buffer, cAIXResetErrorData(). If you're using the Application

Kit, the buffer is freed for you upon each pass through the event loop.

NX_RAISE(), NXDefaultTopLevelErrorHandler() (Application Kit)

NXAtEOS() -~ See NXSeek()

NXChangeBuffer() -~ See NXStreamCreateFromZone()

NXClose()
Close a stream
streams/streams.h

void NXClose(NXStream *trean)

Functions: NXAllocErrorData() 1

DESCRIPTION

EXCEPTIONS

SEE ALSO

This function closes the stream given as its argument. If the stream had been opened for
writing, it's flushed first. (The NXStream structure is defined in the header file
stream/streams.h)

If the stream had been a file stream, the storage used by the stream is freed, but the file
descriptorisn't closed. See the UNIX manual pagdase()for information about closing

a file descriptor. If the stream had been opened in memory, the internal buffer is truncated
to the size of the data in it. (Calli?XClose() on a memory stream is equivalent to
NXCloseMemory() with the constant NX_TRUNCATEBUFFER.)

NXClose()raises an NX_illegalStream exception if the stream passed in is invalid.

NXCloseMemory()

NXCloseMemory() - See NXOpenMemory()
NXCloseTypedStream() — See NXOpenTypedStream()
NXCompareHashTables() - See NXCreateHashTable()
NXCopyHashTable() - See NXCreateHashTable()
NXCopyStringBuffer() —» See NXUniqueString()
NXCopyStringBufferFromZone() — See NXUniqueString()
NXCountHashTable() - See NXHashlnsert()

NXCreateChildZone() - See NXCreateZone()

NXCreateHashTable(), NXCreateHashTableFromZone(),
NXFreeHashTable(), NXEmptyHashTable(), NXResetHashTable(),
NXCopyHashTable(), NXCompareHashTables(), NXPtrHash(),
NXStrHash(), NXPtrisEqual(), NXStrisEqual(), NXNoEffectFree(),
NXReallyFree()

SUMMARY Create and free a hash table
DECLARED IN Objc/hashtable.h

synopsis NXHashTable NXCreateHashTablefNXHashTablePrototypprototype

unsignedcapacity const void fo)

NXHashTable NXCreateHashTableFromZone{NXHashTablePrototypprototype
unsigneccapacity const void info, NXZone *zong

void NXFreeHashTablefNXHashTable table)

void NXEmptyHashTable(NXHashTable table)

void NXResetHashTableNXHashTable table)

NXHashTable NXCopyHashTable(NXHashTable table)

BOOL NXCompareHashTablesNXHashTable tablel, NXHashTable table2?

unsigned\XPtrHash(const void fnfo, const void tlata)

unsigned\XStrHash(const void tnfo, const void tata)

int NXPtrisEqual(const void tnfo, const void tlatal, const void tlata?

int NXStrIsEqual(const void tnfo, const void tatal const void tlata?

void NXNoEffectFree(const void tnfo, void *data)

void NXReallyFree(const void fnfo, void *data)

DESCRIPTION These functions set up, copy, and free a hash table. A hash table provides an efficient means
of manipulating elements of an unordered set of data. A data element is stored by
computing a hash function—or hashing—on the element to be stored. The value of the
hashing function, sometimes called the key, is used to determine the location at which to
store the data. The functions described uhti@ashinsert() insert, remove, and search
for a data element; they also count the number of elements and iterate over all elements in
a hash table.

To create a hash table, ddiKCreateHashTable()or NXCreateHashTableFromZone()

These functions differ only in that the first one creates the hash table in the default zone, as
returned byNXDefaultMallocZone(), and the second lets you specify a zone. Only
NXCreateHashTable()will be discussed below.

Functions: NXCreateHashTable() 3

The first argument thlXCreateHashTable()is a NXHashTablePrototype structure, which

is defined irobjc/hashtable.hand shown below. This structure requires you to specify

three functions, a hashing function, a comparison function that determines whether two
data elements are equal, and a freeing function that frees a given data element in the table:

typedef struct {
unsigned (*hash)(const void *info, const void *data);
int (*isEqual)(const void *info, const void *datal,
const void *data2);
void (*free)(const void *info, void *data);
int style;
} NXHashTablePrototype;

The hashing function must be defined such that if two data elements are equal, as defined
by the comparison function, the values produced by hashing on these elements must also
be equal. Also, data elements must remain invariant if the value of the hashing function
depends on them; for example, if the hashing function operates directly on the characters
of a string, that string can't change. The comparison function must return true if and only
if the two data elements being compared are equal. The third function specifies how a data
element is to be freed. Tkeylefield is reserved for future use; currently, it should be
passed in as 0.

As shown, the third argument fhiXCreateHashTable() info, is passed as the first

argument to the hashing, comparison, and freeing functions. You ciawfcutsemodify or

add to the effects produced by these functions. For example, the comparison function can
be modified to return a certain value if the elements being compared are similar to each
other but not exactly equal.

For convenience, functions for hashing pointers, integers, and strings and for comparing
them have already been defined; two different freeing functions are also provided.
NXPtrHash() hashes the address bitddataand returns a key for storing the data.
NXPtrisEqual() returns nonzero iflatalis equal tadata2and O if they're not equal.

These functions can be used for pointers or for data ofitypeSimilarly, NXStrHash()
returns a key for the string passed irdat, andNXStriIsEqual() checks whether two
strings are equalNXReallyFree() frees thalataelement passed in, allowing its key to be
reused.NXNoEffectFree(), as its name implies, has no effect.

Theinfo argument for all six of these functions isn’'t used. If you want to hash data other
than pointers or strings, or if you want to useitifie argument, you need to write your own
hashing, comparison, and freeing functions.

In addition to the hashing, comparison, and freeing functions, four different prototypes
have been predefined. The prototype for pointers (which can also be used for data of type
int) and the one for strings both use the functions described above:

const NXHashTablePrototype NXPtrPrototype = {
NXPtrHash, NXPtrisEqual, NXNoEffectFree, 0

h

const NXHashTablePrototype NXStrPrototype = {
NXStrHash, NXStrisEqual, NXNoEffectFree, 0

h

The following example shows how to use NXPtrPrototype to create a hash table for storing
a set of pointers or data of tyje:

NXHashTable *myHashTable;
myHashTable = NXCreateHashTable(NXPtrPrototype, 0, NULL);

Note that you pass the NXPtrPrototype structure as an argument, not a pointer to it.
NXCreateHashTable()returns a pointer to an NXHashTable structure, which is defined in
the header filebjc/hashtable.h

The other two prototypes create a hash table for storing a set of structures; the first element
of each structure will be used as the key. NXPtrStructKeyPrototype expects the first
element to be a pointer, and NXStrStructKeyPrototype expects a string. The free function
for both these prototypesi$XReallyFree().

NXCreateHashTable(Js second argumentapacity is only a hint; you can just pass 0 to
create a minimally sized table. As more space is needed, it will be automatically and
efficiently allocated.

NXFreeHashTable()frees each element of the specified hash table and the table itself.
NXResetHashTable()frees each element but doesn't deallocate the table. This is useful
for retaining the table’s capacitiXEmptyHashTable() sets the number of elements in
the table to O but doesn't deallocate the table or the data in it.

NXCopyHashTable() returns a pointer to a copy of the hash table passed in.
NXCompareHashTables()returns YES if the two hash tables supplied as arguments are
equal. Thatis, each elementtalblelis intable2 and the two tables are the same size.

RETURN NXCreateHashTable() NXCreateHashTableFromZone() andNXCopyHashTable()
return pointers to the new hash tables they create.

NXCompareHashTables()returns YES if the two hash tables supplied as arguments
are equal.

NXPtrHash() returns a key for storing a pointer in a hash taéStrHash() returns a
key for storing a string.

Functions: NXCreateHashTable() 5

SEE ALSO

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

NXPtrisequal() andNXStrisEqual() return nonzero if the two data elements passed in
are equal, and 0 if they're not.

NXHashlnsert()

NXCreateHashTableFromZone() - See NXCreateHashTable()

NXCreateZone(), NXCreateChildZone(), NXMergeZone(),
NXDefaultMallocZone(), NXZoneFromPtr(), NXDestroyZone()

Manage memory zones
objc/zone.h

NXZone *NXCreateZone(ize_tstartSize size_tgranularity, int canFred

NXZone *NXCreateChildZone(NXZone *parentZonesize_tstartSize
size_tgranularity, int canFreg

void NXMergeZone(NXZone *zong

NXZone *NXDefaultMallocZone(void)

NXZone *NXZoneFromPtr(void *ptr)

void NXDestroyZone(NXZone *zong

These functions set up and manage the memory zones that are used to improve locality of
reference. A zone is a region of memory from which functiondNikéoneMalloc() can

allocate storage. A pointer to a zone is passed to the allocation function, which returns
memory from the specified zone. Keeping related data structures together in the same zone
reduces the amount of paging activity that otherwise would be required.

NXCreateZone() creates a new zone startSizebytes that will grow and shrink by
granularity bytes; it returns a pointer to the new zone. The zone will grow as needed as
memory is allocated from it, and will shrink as memory is freed. Each time the function is
called, it creates and returns a new zone.

Since the point of using zones is to keep data structures together on the same page, small
multiples ofvm_page_siz€declared irmach/mach_init.h) are a good choice for both

RETURN

SEE ALSO

startSizeandgranularity. If these parameters are too large, the benefits of zone allocation
can be defeated.

The parametertanFreedetermines whether memory, once allocated, can be freed within
the zone. ItanFreeis NO, memory can't be freed and allocation from the zone will be as
fast as possible; but you will need to destroy the zone to reclaim the memory.

NXCreateChildZone() creates a new zone that obtains memory from an existing zone,
parentZone It returns a pointer to the new zone, or NX_NOZONE if you attempt to create
a child zone from a zone which is itself a child. Typically, child zones are used to ensure
that a group of data structures are packed together within a larger zone; successive
allocations within the child zone are contiguous. The zone is created stithSize

sufficient for what it will contain; it can be smaller than a page size. After the allocations
are completeNXMergeZone() is called to merge the child zone back into its parent.

All memory that was allocated and initialized within the child then resides within the
parent zone.

NXDefaultMallocZone() returns the default zone, which is created automatically at
startup. This is the zone used by the standarchllbc() function.

NXZoneFromPtr() returns the zone for ther block of memory, or NX_NOZONE if the
block was not allocated from a zone. The pointer must be one that was returned by a prior
call to an allocation function.

The macrdNXDestroyZone()destroys a zone; all the memory from the zone is reclaimed.
NXCreateZone() andNXCreateChildZone() return a pointer to a new zone.
NXDefaultMallocZone() returns a pointer to the default zone, &XZoneFromPtr()

returns the zone for the ptr block of memory. A return of NX_NOZONE indicates that the
zone couldn’t be created or doesn’t exist.

NXZoneMalloc()

Functions: NXCreateZone() 7

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

SEE ALSO

NXDefaultExceptionRaiser(), NXSetExceptionRaiser(),
NXGetExceptionRaiser()

Set and return an exception raiser
objc/error.h

void NXDefaultExceptionRaiser({nt code const void tatal, const void tlata?
void NXSetExceptionRaiserNXExceptionRaiser firocedurg
NXExceptionRaiser NXGetExceptionRaiser{oid)

These functions set and return the procedure that's called when exceptions are raised
usingNX_RAISE(). By default, theNXDefaultExceptionRaiser()will be invoked

by NX_RAISE(); this function is also whaiXGetExceptionRaiser()returns unless
you've declared your own exception raiser by udifSetExceptionRaiser() as

described below.

NXDefaultExceptionRaiser()forwards the exception condition indicateddogleand any
information about the exception pointed todatalanddata2to the next error handler.

Error handlers exist in a nested hierarchy, which is created by using any number of nested
NX_DURING...NX_ENDHANDLER constructs and by defining a top-level error handler.

If the error has occurred outside of the domain of any handler,
NXDefaultExceptionRaiser() invokes an uncaught exception handling function. For
more information on the Application Kit's default uncaught exception handling function or
to define your own, see the descriptiomNdSetUncaughtExceptionHandler() If the
uncaught exception handling function can’t be foldDefaultExceptionRaiser() exits.

To override the default exception raiser, bBlISetExceptionRaiser(Jand give it a pointer
to the exception raising function you want to use. This function must be of type
NXExceptionRaiser (that is, the same typ&x®efaultExceptionRaiser(), which is
defined in the header fitgbjc/error.h as follows:

typedef void NXExceptionRaiser(int code, const void *datal,
const void *data?2);

In other words, the functigeroceduremust take three arguments of the types shown above,
and it must returmoid. Once you've calletiXSetExceptionRaiser() subsequent calls to
NXGetExceptionRaiser()will return a pointer tgrocedure also, subsequent calls to
NX_RAISE() will invoke procedure

NX_RAISE(), NXSetUncaughtExceptionRaiser()

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

RETURN

EXCEPTIONS

SEE ALSO

NXDefaultMallocZone() -» See NXCreateZone()
NXDefaultRead() —» See NXStreamCreateFromZone()
NXDefaultWrite() -» See NXStreamCreateFromZone()
NXDestroyZone() — See NXCreateZone()

NXEmptyHashTable() - See NXCreateHashTable()

NXEndOfTypedStream()

Determine whether there’s more data to be read
objc/typedstream.h

BOOL NXEndOfTypedStream(NXTypedStream &tream)

This function indicates whether more data is available to be read from the typed stream
passed in as an argument. It should be called only on a typed stream opened for reading.
(The NXTypedStream type is declared in the headeolje'typedstream.h The

structure itself is private since you never need access to its members.)

NXEndOfTypedStream() returns TRUE if the read operation has reached the end of the
stream and no more data is available to be read; returns FALSE otherwise.

NXEndOfTypedStream() raises a TYPEDSTREAM_CALLER_ERROR with the
message “expecting a reading stream” if the stream passed in wasn'’t opened for reading.

NXOpenTypedStream()

Functions: NXDefaultMallocZone() 9

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

RETURN

SUMMARY

DECLARED IN

SYNOPSIS

10

NXFilePathSearch()
Search for and read a file
defaults/defaults.h

int NXFilePathSearchonst char &nvVarNameconst char defaultPath int leftToRight
const char filename int (*funcPtr)(), void *funcArg

NXFilePathSearch()searches a colon-separated list of directories for one or more files
namedfilename The directory list is obtained from the environmental variable,
envVarNameif it's available. If notdefaultPathis used. HeftToRightis true, the list of
directories is searched from left to right; otherwise, it's searched right to left.

In each directory, if the filBlenamecan be accessed, the function specifietlibgPtris
called. The function is passed two arguments, the path to the fifaram#fdtg which can
contain arbitrary data for the function to use.

If the function specified bfuncPtris called and returns 0 or a negative value,
NXFilePathSearch()returns the same value. If the function returns a positive value,
NXFilePathSearch()continues searching through the directory list for other occurrences
of filename If it searches through the entire directory list, it returns 0. If it can’t find a list
of directories to search, it returns.

NXFill() - See NXStreamCreate()

NXFlush()
Flush a stream
streams/streams.h

int NXFlush(NXStream *trean)

DEScRIPTION This function flushes the buffer associated with the stream passed in as an argument.
NXFlush() is called byNXClose(), so you don'’t have to flush the buffer before closing a
stream witiNXClose(). In some cases, you might not want to close the stream but you
might want to ensure that data is actually written to the stream’s destination rather than
remaining in the buffer.

RETURN NXFlush() returns the number of characters flushed from the buffer and written to
the stream.

EXCEPTIONS This function raises an NX_illegalStream exception if the stream passed in is invalid.
In addition, it raises an NX_illegalWrite exception if an error occurs while flushing
the stream.

NXFlushTypedStream()
SUMMARY Flush a typed stream
DECLARED IN objc/typedstream.h
syNnopsis void NXFlushTypedStream(NXTypedStream FypedStreaimn

DESCRIPTION This function flushes the buffer associated with the typed stream passed in as an argument.
NXFlushTypedStream()is called byNXCloseTypedStream() so you don't have to flush
the buffer before closing a typed stream. (The NXTypedStream type is declared in the
header fileobjc/typedstream.h The structure itself is private since you never need to
access its members.)

EXCEPTIONS NXFlushTypedStream()raises a TYPEDSTREAM_CALLER_ERROR with the message
“expecting a writing stream” if the typed stream wasn'’t opened for writing.

see ALso NXOpenTypedStream()

NXFreeHashTable() - See NXCreateHashTable()

NXFreeObjectBuffer() - See NXReadObjectFromBuffer()

Functions: NXFlushTypedStream() 11

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

RETURN

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

12

NXGetc() - See NXPutc()
NXGetDefaultValue() -» See NXRegisterDefaults()

NXGetMemoryBuffer() -~ See NXOpenMemory()

NXGetTempFilename()

Create a temporary file name
defaults/defaults.h

char NXGetTempFilenameghar *name int pog

This function creates a unique file name by alteringhtlveeargument it is passed.
NXGetTempFilename()replaces the six characters starting afpitath position within
namewith digits it generates; it then checks whether the file name is unique. Ifitis, the file
name is returned; if not, different digits are tried until a unique name is found.
NXGetTempFilename()is similar to the standard C functiorktemp(), except that it can
leave suffixes intact since you specify the location of the characters that get replaced.

NXGetTempFilename()returns the unique file name it generates.

NXGetTypedStreamZone(), NXSetTypedStreamZone()
Set zones for streams
objc/typedstream.h

NXZone*NXGetTypedStreamZone(NXTypedStream &treamn)
void NXSetTypedStreamZonelNXTypedStream $tream NXZone *zong

These functions let you associate a zone with a typed stream. Zones improve application
performance by optimizing locality of reference. See the description under
NXCreateZone() for more on allocating and freeing zones.

If no zone is set for a typed stream, its zone is the default zone. Use these functions to
associate zones with the typed streams used to unarchive objects in your application. You
can, for example, use these functions to be sure that objects that interact are all unarchived
in the same zone.

UseNXSetTypedStreamZone(to set the zone used for unarchiving objects from a typed
stream. Us&XGetTypedStreamZone()to access the zone associated with a particular
typed stream.

RETURN NXGetTypedStreamZone()returns the zone set fetream.
NXSetTypedStreamZone()setszoneas the zone fastream.

NXGetUncaughtExceptionHandler() -
See NXSetUncaughtExceptionHandler()

NXHashGet() - See NXHashlInsert()

NXHashinsert(), NXHashlnsertifAbsent(), NXHashMember(),
NXHashGet(), NXHashRemove(), NXCountHashTable(),
NXInitHashState(), NXNextHashState()

SUMMARY Manipulate the elements of a hash table
DECLARED IN objc/hashtable.h

synopsis void *NXHashInsert(NXHashTable table, const void tata)
void *NXHashInsertifAbsent(NXHashTable table const void tlata)
int NXHashMember(NXHashTable table const void tata
void *NXHashGet(NXHashTable table const void tata)
void *NXHashRemove{NXHashTable table, const void tata)
unsigned\NXCountHashTable(NXHashTable table)
NXHashStateNXInitHashState(NXHashTable table)
int NXNextHashState(N\XHashTable table NXHashState $tate void **data)

DESCRIPTION These functions manipulate the elements of a hash table that was created using
NXCreateHashTable() NXCreateHashTable() which is described earlier in this

Functions: NXGetUncaughtExceptionHandler() 13

14

chapter, returns a pointer to the NXHashTable structure it creates. You pass a pointer to this
structure (which is defined in the header dibgc/hashtable.h for each of the functions
described here.

NXHashlnsert() insertsdatainto the hash table specifiedtaple It checks whethatata

is already in the table by using the function referred to bisttgualmember of the
NXHashTablePrototype; this prototype is defined when the table is created. (See the
description oNXCreateHashTable()for more information about defining tieEqual
function.) Ifdatais already in the table, the new data is inserted anyway and a pointer to
the old data is returned. dataisn’t already in the table, it's inserted and NULL is returned.

NXHashlInsertlifAbsent() insertsdataonly if it isn’t already in the table and then returns
a pointer tadata If datais already in the table, as determined using the function referred
to byisEqual a pointer to the existing data is returned.

NXHashMember() checks whethatatais in the hash table specified taple. If so, it

returns a nonzero value; if not, it returnsNIXHashGet() returns a pointer tdataif it's

in the table; if not, it returns NULL. You can use these functions if you have a pointer to
the data that might be stored in the table. You can also use them if data is stored in the table
as a structure containing the key for that data and if you have that key. (In a hash table, the
key determines where data is stored.) For example, suppose my hash table contains data of
type MyStruct and that you have a key:

typedef struct {
MyKey key;

} MyStruct;

MyStruct pseudo;
pseudo.key = yourKey;

You can then use your key on my hash table with either function:

int foundlt;
foundIt = NXHashMember(myTable, &pseudo);

MyStruct *storedData;
storedData = NXHashGet(myTable, &pseudo);

NXHashRemove()removes and returns a pointerditaunless it can't findlatain the
table, in which case it returns NULL.

NXCountHashTable() returns the number of elements in the hash table specifiatlby

NXInitHashState() andNXNextHashState()iterate through the elements of a hash table.
NXInitHashState() returns an NXHashState structure to start the iteration process; this

RETURN

SEE ALSO

structure is then passedNXNextHashState() which visits each element of the hash table
and finally returns 0. (NXHashState is defined in the headabiit¢hashtable.hy you
shouldn’t use members of this structure as they may change in the future.) The following
example counts the elements in the hash table:

unsigned count = 0;
MyData *data;
NXHashState state = NXInitHashState(table);

while (NXNextHashState(table, &state, &data))
count++;

As it progresses through the tabiNextHashState()reads each element of the table
into the location specified by its third argument.

NXHashlinsert() returns NULL if the given data isn’t already in the table. Otherwise, it
returns a pointer to the existing data.

NXHashlinsertlfAbsent() returns a pointer to the given data if it isn't already in the table.
Otherwise, a pointer to the existing data is returned.

NXHashMember() returns a nonzero value if it finds the given data in the hash table
specified; if not, it returns 0.

NXHashGet() returns a pointer to the given data if it's in the table; if not, it returns NULL.

NXHashRemove()returns a pointer to the data it removes unless it can'’t find the data, in
which case it returns NULL.

NXCountHashTable() returns the number of elements in the hash table.
NXInitHashState() returns an NXHashState for use witKNextHashState()

NXNextHashState()returns O when it has visited every element of the hash table.

NXCreateHashTable()

NXHashlnsertlfAbsent() — See NXHashlnsert()
NXHashMember() - See NXHashlInsert()

NXHashRemove() — See NXHashlInsert()

Functions: NXHashInsertlfAbsent() 15

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

16

NXInitHashState() — See NXHashlInsert()

NXIsAINum() — See NXIsAlpha()

NXIsAlpha(), NXIsAINum(), NXIsCntrl(), NXIsDigit(), NXIsGraph(),
NXIsLower(), NXIsPrint(), NXIsPunct(), NXIsSpace(), NXIsUpper(),
NXIsXDigit(), NXIsAscii()

Classify NEXTSTEP-encoded values
appkit/NXCType.h

int NXIsAlpha(unsigned int)
int NXIsAINum(unsigned int)
int NXIsUpper(unsigned int)
int NXlIsLower(unsigned int)
int NXIsDigit(unsigned int)
int NXIsXDigit(unsigned int)
int NXIsSpace(nsigned int)
int NXIsPunct(unsigned int)
int NXIsPrint(unsigned int)
int NXIsGraph(unsigned int)
int NXIsCntrl(unsigned int)
int NXIsAscii(unsigned int)

These functions classify NEXTSTEP-encoded integer values. They return a nonzero value
if the tested value belongs to the indicated class of characters or 0 if it does not.

These functions are similar to the standard C library routines for testing ASCII-encoded
integer values (see tlogype(3) UNIX manual page), except that they act on the extended
character set defined by NEXTSTEP encoding. For exampleidadpha() and

NXIsAlpha() classify the character “a” as a letter; however, ditysAlpha() classifies

“@” as a letter. The functions make these tests:

Function Tests whether c is:

NXIsAlpha(c) a letter

NXIsUpper¢) an uppercase letter

NXIsLower(c) a lowercase letter

NXIsDigit(c) a digit

NXIsXDigit(c) a hexadecimal digit

NXIsAINum(c) an alphanumeric character

NXIsSpaceg) a space, tab, carriage return, newline, vertical tab, or formfeed
NXIsPunct€) a punctuation character (neither control nor alphanumeric)
NXIsPrint(c) a printing character

NXIsGraph€) a printing character; likBIXIsPrint() except false for space
NXIsCntrl(c) a control character (0x00 through Ox1F, 0x7F, 0x80, OXFE, OxFF)
NXIsAscii(c) an ASCII character (code less than Ox7F)

RETURN Each of these functions returns a honzero value if the tested value belongs to the indicated
class of characters or O if it does not.

See ALSO NXToAscii()

NXIsAscii() - See NXIsAlpha()
NXIsCntrl() - See NXIsAlpha()
NXIsDigit() - See NXIsAlpha()
NXIsGraph() -» See NXIsAlpha()
NXlIsLower() - See NXIsAlpha()
NXIsPrint() - See NXIsAlpha()
NXIsPunct() - See NXIsAlpha()
NXlIsSpace() - See NXIsAlpha()
NXIsUpper() — See NXIsAlpha()
NXIsXDigit() - See NXIsAlpha()

NXLoadLocalizedStringFromTablelnBundle() -
See NXLocalizedString()

Functions: NXIsAscii() 17

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

18

NXLocalizedString(), NXLocalizedStringFromTable(),
NXLocalizedStringFromTablelnBundle(),
NXLoadLocalizedStringFromTableInBundle()

Get localized versions of strings
objc/NXBundle.h

const char KXLocalizedString(const char key const char ¥alug comment

const char NXLocalizedStringFromTable(const char table, const char key
const char value comment

const char NXLocalizedStringFromTablelnBundle(const char table
NXBundle *bundle const char key const char valug commenjt

const char NXLoadLocalizedStringFromTablelnBundle(const char table
NXBundle *bundle const char key const char ¥alue

These three macros and one function select a localized string to display to the user. They
each look up thkeystring in a table and return a matching string in a language of the user’s
preference. For example, if the key is “Cancel” and the user’s preferred language is French,
the string returned might be “Annuler”; if the user’s preferred language is German, the same
key might designate “Abbrechen”. Users choose their preferred languages in the
Preferences application.

To localize your application—to permit it to be run in more than one language—you must
(1) keep the compiled code free of any user-visible strings and (2) provide resource files
containing those strings in all the languages you're willing to support. Language-specific
resources are kept iranguagdproj subdirectories of hundledirectory that can be

managed by an NXBundle object. Most applications keep “.Iproj” subdirectories in the file
package that contains the application executable. This file package is a directory named
after the application and assigned a “.app” extension. When it contains resource files and
“.Iproj” subdirectories, it's also known as thin bundle An application can be organized

into additional bundle directories, each with its own set of subdirectories, inside the main
bundle. (See the description of the NXBundle class for more on bundle directories.)

Each “.Iproj” subdirectory of a bundle bears the name of a language—such as
English.lproj, French.lproj, or German.lproj—and stores resources specific to that
language. Every resource file is repeated (with the identical name) in every subdirectory of
the bundle. In addition to strings that are displayed to the user, localized resources include
images, sounds, and nib files produced by Interface Builder.

One kind of resource in a “.Iproj” subdirectory is a string table—identified by a “.strings”
extension on the file name. Entries in a string table look like this,

[/* comment */]
"key" [="value"];

where the square brackets indicate that the comment and value are optional. The key is a
string that's used to identify the entry; it must be unique within a file. The value is the
localized string that's matched to the key. If the key and value strings are identical, the
value string can be omitted. The comment is typically an explanation that would aid
translators preparing correct versions of the string in other languages.

For example, aknglish.lproj subdirectory might containray.strings file with this entry:

/* unable to open a file; %s is the file name */
"open failure"="Can’t open %s";

In French.lproj, themy.strings file might have this entry:

/* unable to open a file; %s is the file name */
"open failure"="Ouverture de %s impossible";

And in German.lproj, the entry could look like this:

/* unable to open a file; %s is the file name */
"open failure"="%s kann nicht getffnet werden";

TheNXLoadLocalizedStringFromTableInBundle() function searches for a localized
version of the string designated ksy It looks only in the bundle directory managed by
thebundleobject and in the string table namaflle which may or may not include the
“.strings” extension. Ibundleisnil, it looks in the main bundle;ifbleis NULL, it looks
for a file named_.ocalizable.strings

The search starts with the “.Iproj” subdirectory of the user’'s most preferred language and
continues down the ordered list of language preferences untflitedile is found. (If

table occurs in every subdirectory, it should be found for the user’s preferred language,
provided the application is localized for that languagetadfe can’'t be found in any

“.Iproj” subdirectory, the function looks for it in the bundle directory itself.

If a keyentry is found in the string table, the function returns the matching value string
(the string in the entry after the equal sign). If a value string is absent from the entry, it
returns the key string. If the string table can't be found, or if the table lacks an entry for
key it returns the defaultalue passed to the function as an argumentalfieis NULL,

it returnskey

Functions: NXLocalizedString() 19

20

RETURN

The three macros are defined onM¥lLoadLocalizedStringFromTableInBundle()

function and do just what it does. However, they're preferred to the function since, in
combination with thgenstringsutility, they can aid in constructing string tables.
genstringssearches for each occurrence of the macros in source code and constructs string
table entries from thkey valug andcommenarguments it finds. Thedommenargument

can simply be information for translators who might render localized versions of the entry;
it's discarded by the preprocessor and is not passed to the furgtiostringswrites the

entries into theéablefile, creating the file and adding the “.strings” extension if necessary.

In the case o XLocalizedString(), which doesn’t have able argument, it writes the

results to the standard output For example, from this code,

char *s;
s = NXLocalizedStringFromTable("my", "open failure", "Can’t open %s",
unable to open a file; %s is the file name);

genstringswould construct the string table entry illustrated earlier and put it in the
my.strings file. Thegenstringsutility is more fully documented on-line, in the file
Localization.rtfd under théNextLibrary/Documentation/NextDev/Conceptsdirectory.

TheNXLocalizedStringFromTableInBundle() macro works just like the
NXLoadLocalizedStringFromTableInBundle() function, except that it provides source
material forgenstrings TheNXLocalizedStringFromTable() macro looks for th&ey
string in thetablefile in the main bundle. ThéXLocalizedString() macro, the simplest
of the three to use, looks for tkeystring in the string table namédcalizable.string in
the main bundle.

The function and all three macros return a localized string designakeg byvalueif the
string can’t be found, dteyif the string can't be found anglueis NULL.

NXLocalizedStringFromTable() - See NXLocalizedString()

NXLocalizedStringFromTablelInBundle() - See NXLocalizedString()

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

SEE ALSO

NXMallocCheck(), NXNameZone(), NXZonePtrinfo()

Aid in debugging memory allocation
objc/zone.h

int NXMallocCheck(void)
void NXNameZone(NXZone *zone const char iam¢
void NXZonePtrinfo(void *ptr)

These functions assist in debugging memory allocation probléxdviallocCheck()

verifies all internal memory-allocation information, and returns 0 if there are no
inconsistencies or errors. This function is usedniajloc_debug() NXNameZone()
assignsiameto zone NXZonePtrinfo() prints various information about th& memory

block to the standard output. The information includes the name of the zone, if one was
assigned bjNXNameZone()

NXZoneMalloc(), NXCreateZone()

NXMapFile() - See NXOpenMemory ()
NXMergeZone() - See NXCreateZone()
NXNameZone() - See NXMallocCheck()
NXNextHashState() -~ See NXHashlInsert()

NXNoEffectFree() - See NXCreateHashTable()

Functions: NXMallocCheck() 21

NXOpenFile(), NXOpenPort()
SUMMARY Open a file stream or a Mach port stream
DECLARED IN Streams/streams.h

syNopsis NXStream NXOpenFile(int fd, int mode
NXStream NXOpenPort(port_tport, int mode

DESCRIPTION These functions connect a stream to a file or a Mach port. (The NXStream structure is
defined in the header figreams/streams.b)

NXOpenFile() opens a stream on the file specified by the file descriptor arguthent,
which can refer to a pipe or a socket. (If the file is stored on diskyXispFile();

this function is described below undéXOpenMemory().) Themodeargument should

be one of the three constants NX_READONLY, NX_WRITEONLY, or NX_READWRITE
to specify how the stream will be used. The mode should be the same as the one used
when obtaining the file descriptor. (The systemaadin(), which returns a file descriptor,
takes 0_RDONLY, 0_WRONLY, or 0_RDWR to indicate whether the file will be used

for reading, writing, or both. For more information on this function, see its UNIX
manual page.)

You can uséNXOpenFile() to connect tstdin, stdout, andstderr by obtaining their file
descriptors using the standard C library funcfitemo(). (For more information on this
function, see its UNIX manual page.)

NXOpenPort() opens a stream associated with the Mach port specifigorbyThemode
must be either NX_READONLY or NX_WRITEONLY. The port must already be
allocated using the Mach functiport_allocate(). See thélEXTSTEP Operating System
Softwaremanual for more information about using this function.

Once the file or Mach port stream is open, you can read from or write to it. See the
descriptions oNXRead() andNXPutc() for more information about the functions
available for reading or writing to a stream.

When you're finished with the stream, close it WitKClose(). If you've written to the
stream, the data will be automatically saved in the file. After calliXGlose()on a file
stream, you still need to close the file descriptor. To do this, use the systelnseg)l
giving it the file descriptor as an argument. (For more information ahuad() see its
UNIX manual page.)

22

RETURN

SEE ALSO

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

Both functions return a pointer to the stream they open or NULL if an error occurred while
trying to open the stream.

NXOpenMemory(), NXRead(), NXPutc(), NXClose()

NXOpenMemory(), NXMapFile(), NXSaveToFile(),
NXGetMemoryBuffer(), NXCloseMemory()

Manipulate a memory stream
streams/streams.h

NXStream NXOpenMemory(const char &ddressint size int mode

NXStream NXMapFile(const char pathNameint modg

int NXSaveToFile(NXStream *stream const char fiamg

void NXGetMemoryBuffer(NXStream stream char **streambufint *len, int *maxler)
void NXCloseMemory(NXStream *tream int option)

These functions open, save, and close streams on memory. (The NXStream structure is
defined in the header fitgreams/streams.h)

NXOpenMemory() returns a pointer to the memory stream it opens. Its argunuzig
specifies whether the stream will be used for reading or writing. If NX_WRITEONLY is
specified, the first two arguments should be NULL and 0 to allow the amount of memory
available to be automatically adjusted as more data is written. Any other vaduielfess

should be the starting address of memory allocatedwnithallocate() If

NX_READONLY is specified, a memory stream will be set up for reading the data
beginning at the location specified by the first argument; the second argument indicates how
much data will be read. To use the stream for both writing and reading, you can either use
NULL and 0 or specify the location and amount of data to be read; agdiessshould

be the starting address of memory allocated withallocate()

NXMapFile() maps a file into memory and then opens a memory stream. A related
function,NXOpenFile(), connects a stream to a file specified with a file descriptor. (This
function is described earlier in this chapter.) Memory mapping allows efficient random and
multiple access to the data in the fileNsdMapFile() should be used whenever the file is
stored on disk. When you cdlXMapFile(), give it the pathname for the file and indicate
whether you will be writing, reading, or both, by using one ofitbdeconstants described
above. If you use the stream only for reading, just close the memory stream when you're

Functions: NXOpenMemory() 23

EXCEPTIONS

24

RETURN

SEE ALSO

finished. If you write to the memory-mapped stream, you need tX8hveToFile() as
described below, to save the data. If you try to map a file that doesn’t exist, this function
returns a NULL stream.

Once the memory stream is open, you can read from or write to it. See the descriptions of
NXRead() andNXPutc() for more information about reading or writing to a stream.

Before you close a memory stream, you can save data written to the stream in a file. To do
this, callINXSaveToFile() giving it the stream and a pathname as arguments.
NXSaveToFile()writes the contents of the memory stream into the file, creating it if
necessary. After saving the data, close the stream N3i@dpseMemory().

NXGetMemoryBuffer() returns the memory buffestteambuf and its current and
maximum lengthslén andmaxler).

When you're finished with a memory stream, close it by caliX@loseMemory(). If

you've used the stream for writing, more memory may have been made available than was
actually used; the constant NX_TRUNCATEBUFFER indicates that any unused pages of
memory should be freed. (CallildgXClose() with a memory stream is equivalent to

calling NXCloseMemory() and specifying NX_TRUNCATEBUFFER.)

NX_SAVEBUFFER doesn’t free the memory that had been made available.
NXCloseMemory() doesn't free the internal buffer: UskXGetMemoryBuffer() to get

the internal buffer and usen_deallocate()to free it.

NXOpenMemory() andNXMapFile() return a pointer to the stream they open or NULL
if the stream couldn’t be opened.

NXSaveToFile()returns-1 if an error occurred while opening or writing to the file and 0
otherwise.

The functions in this group that take a stream as an argument raise an NX_illegalStream
exception if the stream is invalid. This exception is also raised if these functions are used
on a stream that isn’'t a memory stream.

NXRead(), NXPutc(), NXOpenFile()

NXOpenPort() - See NXOpenFile()

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

NXOpenTypedStream(), NXCloseTypedStream(),
NXOpenTypedStreamForFile()

Open or close a typed stream
objc/typedstream.h

NXTypedStream KXOpenTypedStreamNXStream *tream int modég
void NXCloseTypedStream\NXTypedStream &trean)
NXTypedStream KXOpenTypedStreamForFile(const char filename int modg

These functions open, save the contents of, and close a typed stream. A typed stream
should be used for archiving—that is, for saving Objective C objects for later use, typically
in afile. (The NXTypedStream type is declared in the headebfitétypedstream.h The
structure itself is private since you never need to access its members.)

The first argument fddXOpenTypedStream()is an already opened NXStream structure.
See the descriptions BXOpenMemory(), NXOpenFile(), andNXOpenPort() earlier in
this chapter for more information about opening a stream. The second argument to
NXOpenTypedStream()must be NX_READONLY or NX_WRITEONLY to specify how
the typed stream will be used.

Once the typed stream is open, you can write to or read from it. See the descriptions of
NXReadType() NXReadObject(), andNXReadPoint() later in this chapter for more
information about reading and writing. When you're finished with the typed stream, you
must first close the typed stream ushiigCloseTypedStream()and then close the
NXStream structure. See the descriptiondX€lose()andNXCloseMemory() for more
information about closing a stream.

To open a typed stream on a file, d6€OpenTypedStreamForFile() This function

opens a memory stream and an associated typed streanoddis NX_READONLY, the
typed stream is initialized with the contents of the file specifidddname if the named

file doesn't exist or doesn't contain a typed stream, the function returns NULL . A
subsequent call tdXCloseTypedStream()will close the NXTypedStream and NXStream
structures and free the buffer that had been usedodtis NX_WRITEONLY, a typed
stream on memory is opened, ready for writing. When you finish writing, calling
NXCloseTypedStream()will flush the typed stream, save its contents in the file specified
by filename close both the NXTypedStream and the NXStream structures, and free the
buffer used.

Functions: NXOpenTypedStream(25

EXCEPTIONS

26

RETURN

SEE ALSO

Note: Thefilenameargument ttNXOpenTypedStreamForFile()is stored as a pointer. If
the file is opened in NX_WRITEONLY mode, the referenced file isn’t actually opened for
writing until NXCloseTypedStream()is called. Thus if the string pointed to filgname
changes between these two function calls, the data will be written to the file of the new
name. NXCloseTypedStream()will raise an exception filenamecan’t be opened

for writing.

NXOpenTypedStream()andNXOpenTypedStreamForFile() return a pointer to the
typed stream they open or NULL if the stream couldn’t be opened.

NXOpenTypedStream()andNXOpenTypedStreamForFile() raise a
TYPEDSTREAM_CALLER_ERROR exception with the message
“NXOpenTypedStream: invalid mode” if the mode is anything other than
NX_READONLY or NX_WRITEONLY.

NXOpenTypedStream()raises a TYPEDSTREAM_CALLER_ERROR exception with
the message “NXOpenTypedStream: null stream” if an invalid NXStream structure is
passed.

NXOpenMemory(), NXOpenFile(), NXClose(), NXCloseMemory(), NXReadType()
NXReadObject(), NXReadPoint()

NXOpenTypedStreamForFile() - See NXOpenTypedStream()
NXPrintf() - See NXPutc()
NXPtrHash() - See NXCreateHashTable()

NXPtrisequal() — See NXCreateHashTable()

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

NXPutc(), NXGetc(), NXUngetc(), NXScanf(), NXPrintf(), NXVScanf(),
NXVPrintf()

Read or write formatted data to or from a stream
streams/streams.h

int NXPutc(NXStream stream charc)

int NXGetc(NXStream *treamn)

void NXUngetc(NXStream *trean)

int NXScanf(NXStream *stream const char format, ..)

void NXPrintf(NXStream *stream const char format, ...)

int NXVScanf(NXStream *stream const char format, va_listargList)
void NXVPrintf(NXStream *stream const char format, va_listargList)

These functions and macros read and write data to and from a stream that has already been
opened. (See the descriptiong\NdfOpenMemory() andNXOpenFile() for more

information about opening a stream.) After writing to a stream, you may need to call
NXFlush() to flush data from the buffer associated with the stream. (See the description of
NXFlush() earlier in this chapter.)

The macros for writing and reading single characters at a time are similar to the
corresponding standard C functiod$XPutc() andNXGetc() work like putc() andgetc()

NXPutc() appends a character to the stream. Its second argument specifies the character to
be written to the streanNXGetc() retrieves the next character from the stream. To reread

a character, calNlXUngetc(). This function puts the last character read back onto the
stream.NXUngetc() doesn’t take a character as an argumenhgstc() does.

NXUngetc() can only be called once between any two call$X&etc() (or any other

reading function).

The other four functions convert strings of data as they're written to or read from a stream.
NXPrintf() andNXScanf()take a character string that specifies the format of the data to

be written or read as an argumeNXPrintf() interprets its variables according to the

format string and writes them to the stream. Simil&tlyScanf() reads characters from

the stream, interprets them as specified in the format string, and stores them in the variables
indicated by the last set of arguments. The conversion characters in the format string for
both functions are the same as those used for the standard C library fupcindf{y, and

scanf() For detailed information on these characters and how conversions are performed,
see the UNIX manual pages faintf() andscanf()

Functions: NXPutc() 27

Two related function$\XVPrintf () andNXVScanf(), are exactly the samedXPrintf()
andNXScanf(), except that instead of being called with a variable number of arguments,
they are called with @a_list argument list, which is defined in the headerditiarg.h.

This header file also defines a set of macros for advancing throaghisd.

RETURN NXPutc() andNXGetc() return the character written or readiXScanf() andNXVScanf()
return EOF if all data was successfully read; otherwise, they return the number of
successfully read data items.

seeALso NXOpenMemory(), NXOpenFile(), NXFlush(), NXRead()

NXRead(), NXWrite()

SUMMARY Read from or write to a stream
DECLARED IN Streams/streams.h

synopsis int NXRead(NXStream stream void *buf, int coun)
int NXWrite(NXStream “stream const void buf, int coun)

DESCRIPTION These macros read and write multiple bytes of data to a stream that has already been
opened. (See the descriptiongNdfOpenMemory() andNXOpenFile() for more
information about opening a stream.) After writing to a stream, you may need to call
NXFlush() to flush data from the buffer associated with the stream. (See the description of
NXFlush() earlier in this chapter.)

To read data from a stream, ddkRead():

NXRect myRect;
NXRead(stream, &myRect, sizeof(NXRect));

NXRead() reads the number of bytes specified by its third argument from the given stream
and places the data in the location specified by the second argument.

In the following example, an NXRect structure is written to a stream.

NXRect myRect;

NXSetRect(&myRect, 0.0, 0.0, 100.0, 200.0);
NXWrite(stream, &myRect, sizeof(NXRect));

28

RETURN

SEE ALSO

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

The second and third arguments Ko{Write() give the location and amount of data
(measured in bytes) to be written to the stream.

These macros return the number of bytes written or read. If an error occurs while writing
or reading, not all the data will be written or read.

NXFlush()

NXReadArray(), NXWriteArray()
Read or write arrays from or to a typed stream
objc/typedstream.h

void NXReadArray(NXTypedStream &tream const char dataType int count
void *data)

void NXWriteArray(NXTypedStream &tream const char dataTypeint count
const void data)

These functions read and write arrays from and to a typed stream. They can be used within
read: orwrite: methods for archiving purposes. See the descriptibiX&feadObject()

in this chapter for more about these methods. Functions are also available for reading and
writing other data types; they’re listed below in the “See Also” section.

Before using a typed stream for reading and writing, it must be opened; see the description
of NXOpenTypedStream()for details on opening a typed stream. (The NXTypedStream
type is declared in the header filgjc/typedstream.h The structure itself is private since

you never need access to its members.)

NXReadArray() andNXWriteArray() read and write an array obuntelements of type
dataTypefrom or tostream NXReadArray() reads the array from the typed stream into
the location specified hyata, which must have been previously allocated.
NXWriteArray() writes the array specified lolatato the typed stream. Both functions
use the characters listed under the descriptidiwwdeadType() for dataType

The following is an example of an integer array being written. To read the same array,
NXReadArray() would be called with the same first three arguments@dsriteArray() ;
the fourth argument would be a pointer to memory for the array.

Functions: NXReadArray() 29

EXCEPTIONS

SEE ALSO

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

30

int aa[4];

aa[0] = 0; aa[1] = 11; aa[2] = 22; aa[3] = 33;
NXWriteArray(typedStream, "i", 4, aa);

Both functions check whether the typed stream has been opened for reading or for writing
and raise a TYPEDSTREAM_FILE_INCONSISTENCY exception if the mode isn’t
correct. For example, NXReadArray() is called and the stream was opened for writing,
the exception is raised.

NXReadArray() raises a TYPEDSTREAM_FILE_INCONSISTENCY exception if the
data to be read is not of the expected type.

NXOpenTypedStream() NXReadType(), NXReadObject(), andNXReadPoint()

NXReadDefault() - See NXRegisterDefaults()

NXReadObiject(), NXWriteObject(), NXWriteObjectReference(),
NXWriteRootObiject()

Read or write Objective C objects from or to a typed stream

objc/typedstream.h

id NXReadObject(NXTypedStream &trean)

void NXWriteObject(NXTypedStream &tream id objec)

void NXWriteObjectReference(NXTypedStream tream id objec)
void NXWriteRootObject(NXTypedStream &tream id rootObjec)

These functions initiate the archiving and unarchiving processes for Objective C objects.
They read and write the object passed in from stream When an object is archived with
these functions, its class is automatically written as well. In addition, the data type of each
of its instance variables is archived along with the value of the variable. These functions
also ensure that objects are written only once.

Before you use a typed stream for reading and writing, it must be opened; see the
description oNXOpenTypedStream()for details on opening a typed stream. (The

NXTypedStream type is declared in the headeofije/typedstream.h The structure
itself is private since you never need to access its members.)

NXReadObject() begins the unarchival process by allocating memory for a new object of
the correct class. It then sends the objeehd: message to initialize its instance variables
from the typed streanmread: messages should only be generated through
NXReadObject();, they shouldn't be sent directly to objects. Application Kit objects
already haveead: methods, but you need to implemesdd: methods for any classes you
create that add instance variables:

- read:(NXTypedStream *)typedStream
{

[super read:typedStream];
.. .I* code for reading instance variables declared in
this class */

}

The message wuper ensures that inherited instance variables will be unarchived. The
body of theread: method unarchives the object’s instance variables, using the appropriate
function for that data type. The functions available for unarchiving include
NXReadTypes() NXReadPoint(), andNXReadArray(), as well alNXReadObiject().

See the descriptions of these functions in this chapter for information about how to use
them. Aread: method can also check the version of the class being unarchived. See the
description oNXTypedStreamClassVersion(¥or more information about how to do this.

After NXReadObject() unarchives an object, it sends the obgreake and
finishUnarchiving messages. You can implemenaarakemethod to initialize the object
to a usable state. ThaishUnarchiving method allows you to replace the just-unarchived
object with another one. If you implemerfiraishUnarchiving method, it should free the
unarchived object and return the replacement object.

NXWriteObject() writesobjectto streamby sending the objectvarite: message. As is

the case witlhead: methodswrite: methods shouldn’t be sent directly to objects, and they
need to be implemented for classes that add instance variables. They also need to begin
with a message twuper. The functions available for archiving instance variables parallel
those for unarchiving; they includéXWriteTypes(), NXWritePoint() , and

NXWriteArray() , all of which are described elsewhere in this chapter. If the object being
archived ha#d instance variables (including those that are statically typed to a class),
they're archived as described below.

In some cases, an objedtkinstance variables contain inherent properties of the object to
which they belong, or they might be necessary for the object to be usable. For example, a
View’s subview list is an intrinsic part of that View, just as a ButtonCell is needed for a
Button to work properly. For these kinds of instance variables, the object—the View or the

Functions: NXReadObyect() 31

RETURN

EXCEPTIONS

32

Button in the examples mentioned—udB§WriteObject() within its write: method.
(Actually, Button objects inherit Controksrite: method, which archives tleell instance
variable.) The functioNXWriteTypes() can also be used to archidanstance variables,
by specifying thed data type format character.

In other cases, an objecikinstance variables refer to other objects that act at the
discretion of the object, such as its target or delegate, or that aren’t inherently part of the
object. A View’'ssuperviewandwindow instance variables aren’t considered intrinsic to
the View since you might want to hook up the View to another superview or to a different
Window. For these kinds of instance variables, the object calls
NXWriteObjectReference() within itswrite: method. When archiving a data structure
that includes objects that have callédWriteObjectReference(),

NXWriteRootObject() must be used instead MXWriteObject() .

NXWriteObjectReference() specifies that a pointer tdl should be written for the object
passed in, unless that object is an intrinsic part of some member of the data structure being
archived. If the objectis intrinsic, it will be archived and, after unarchiving, the pointer will
point to the objectNXWriteRootObject() makes two passes through the data structure
being written. The first time, it defines the limits of the data to be written by including
instance variables intrinsic to the data structure and by making a note of which objects have
been written witiNXWriteObjectReference(). On the second pass,

NXWriteRootObject() archives the data structure.

As an example, consider a View that has a Button as one subview and a TextField, which
is the target of the Button, as another subview. If you archive the Button, its ButtonCell will
be written. The archived ButtonCeltarget instance variable will point toil. If you

archive the View, however, the Button and the TextField will be archived since they're
subviews. The ButtonCell will be archived since it's needed by the Button. The
ButtonCell'starget instance variable will point to the TextField since it’'s an intrinsic part

of the View.

NXReadObject() returns théd of the object read.

All functions check whether the typed stream has been opened for reading or for writing
and raise a TYPEDSTREAM_CALLER_ERROR exception with an appropriate message
if it isn’t correct. For example, XXReadObiject() is called and the stream was opened

for writing, an exception is raised.

If an error occurs while creating an instance of the appropriate M#ReadObject()
raises a TYPEDSTREAM_CLASS ERROR. This function also raises a
TYPEDSTREAM_FILE_INCONSISTENCY exception if the data to be read is not of
typeid.

SEE ALSO

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

If NXWriteObject() is used to archive a data structure that includes objects with calls to
NXWriteObjectReference(), a TYPEDSTREAM_WRITE_REFERENCE_ERROR
exception is raised.

NXOpenTypedStream() NXReadArray(), NXReadType() NXReadPoint()
(Application Kit), andNXTypedStreamClassVersion()

NXReadObjectFromBuffer(), NXReadObjectFromBufferWithZone(),
NXWriteRootObjectToBuffer(), NXFreeObjectBuffer()

Read and write an object to a typed-stream memory buffer
objc/typedstream.h

id NXReadObjectFromBuffer(const char buffer, intlength

id NXReadObjectFromBufferWithZone(const char buffer, int length NXZone *zong
char NXWriteRootObjectToBuffer(id object int *length

void NXFreeObjectBuffer(char *buffer, intlength

These functions allow you to easily read and write an object to a typed stream on memory.
They're particularly useful for archiving an object, writing it to the pasteboard, and then
unarchiving it from the pasteboard.

NXWriteRootObjectToBuffer() opens a stream on memory (uski§OpenMemory())

and a corresponding typed stream. It then writes the object given as its argument by calling
NXWriteRootObject() and closes the typed stream. (See the description of
NXWriteRootObject() underNXReadObject() above for more information about how

the object is written. NXWriteRootObjectToBuffer() also closes the memory stream but
retains the buffer, which is truncated to the size of the object.
NXWriteRootObjectToBuffer() returns the size of the object (in the location specified by
length and a pointer to the buffer itself.

NXReadObjectFromBuffer() callsNXReadObjectFromBufferWithZone() with the
default zone as itsoneargument.

NXReadObjectFromBufferWithZone() opens a stream on memory and a corresponding
typed stream with its zone set by t¥SetTypedStreamZone(¥unction. Thebufferand
lengtharguments passed in should be taken from a previous call to
NXWriteRootObjectToBuffer() . NXReadObiject() is called to read the object from the

Functions: NXReadObjectFFromBuffer() 33

RETURN

EXCEPTIONS

SEE ALSO

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

34

buffer into the zone, after which the streams are closed.
NXReadObjectFromBufferWithZone() saves the memory buffer and returns the object

it reads in the zone specified. Unless you're going to reread the buffer, you should free it
using theNXFreeObjectBuffer() function.

NXFreeObjectBuffer() frees the buffer specified lyffer, which should béengthbytes
long. These arguments should be taken from a previous call to
NXWriteRootObjectToBuffer() .

NXReadObjectFromBuffer() returns the object it reads from the buffer.

NXWriteRootObjectToBuffer() returns a pointer to the buffer it creates.
NXReadObjectFromBuffer() andNXReadObjectFromBufferWithZone() raise a
TYPEDSTREAM _FILE_INCONSISTENCY exception if the data to be read from the
buffer is not of typéd.

NXOpenMemory(), NXReadObject(), andNXOpenTypedStream()

NXReadObjectFromBufferWithZone() -
See NXReadObjectFromBuffer()

NXReadType(), NXWriteType(), NXReadTypes(), NXWriteTypes()
Read or write arbitrary data to a typed stream

objc/typedstream.h

void NXReadType(NXTypedStream 4tream const char type void *data)

void NXWriteType(NXTypedStream dtream const char type const void tlata)

void NXReadTypes(NXTypedStream &tream const char types ..)
void NXWriteTypes(NXTypedStream &tream const char types ..)

These functions read and write strings of data from and to a typed stream. They can be used

within read: orwrite: methods for archiving purposes. See the description of
NXReadObject() in this chapter for more about these methods. Functions are also

available for reading and writing certain data types; they're listed below in the “See Also”
section.

These functions are similar to tNXPrintf() andNXScanf() functions for streams

(and to theprintf() andscanf()standard C functions). Before using a typed stream for
reading and writing, it must be opened; see the descriptiNX@penTypedStream()

for details on opening a typed stream. (The NXTypedStream type is declared in the header
file objc/typedstream.h The structure itself is private since you never need to access

its members.)

These four functions take as arguments a pointer to a typed stream, a character string
indicating the format of the data to be read or written, and the address of the data. The
data types and format string characters listed below are supported.

Type Code TypeCode

int [charc

unsigned int I unsigned chacC

short S char **

unsigned short S NXAtom%

long [id@

unsigned long L Class#

float f SEL:

double d structurektypes>}
ignored ! arrayfcount><types>

For example, “[15d]” means that each stored element is an array of tifiables and
“{csi*@}’ means that each stored element is a structure containthgr@ashort, anint,
a character pointer, and an object.

Most of these codes are identical to ones that would be returned@etiede(compiler
directive. However, there are some differences:

» A structure description can contain only encoded type information between the braces.
It can't include a full type name or structure name.

* The ‘%’ descriptor specifies a unigue string pointer. When the pointer is unarchived,
the NXUniqueString() function is called to make sure that it's also unique within the
new context.

» The ‘" descriptor marks data that won’t be archived. Each occurrence of ‘! instructs
the archiver to skip data the size ofian

» A few @encode()descriptors—such as the ones for pointers, bitfields, and undefined
types—should not be used. Use only the codes shown in the table above.

Functions: NXReadType() 35

EXCEPTIONS

36

NXReadType()andNXWriteType() read and write the data specifieddayaas the single
data type specified liype The function®dNXReadTypes()andNXWriteTypes() read and
write multiple types of data; the types should be listégpasusing the appropriate format
characters shown above, and matching data should be providaiinThis example
shows three different data types being written to an already open typed stream:

float aa=3.0;
int bb=5;
char *cc ="foo";

NXWriteTypes(typedStream, "fi*", &aa, &bb, &cc);

If NXWriteType() had been used, three lines of code would have been necessary, one for
each data type. Both functions take pointers to the data to be written,primiikg .

To read these three pieces of data from the NXTypedSti¢dRead Types()would be
called with the same arguments as shown abovdX®Write Types():

NXReadTypes(typedStream, "fi*", &aa, &bb, &cc);

Note: NXWriteType() /INXReadType() andNXWriteTypes()/NXReadTypes()must be
used symmetrically. That is, if you write data values using a seridX\Wfrite Type()
function calls, you must read those values using a corresponsing s&iReddType()
function calls. A similar stricture applies fXWriteTypes() andNXReadTypes()

Note: UseNXWriteType() andNXReadType()to archive structures; for example, use the
following code to write a structure of four floats:

NXWriteType(s, "{4f}", &data)
then use the corresponding code to read the structure:
NXReadType(s, "{4f}", &data)

Use theNXWriteArray() andNXReadArray() functions to write and read arrays. Avoid
using theNXWriteTypes() andNXReadTypes()functions for structures and arrays; these
functions can archive arrays and structures incorrectly and cause errors at runtime.

All four functions check whether the typed stream has been opened for reading or for
writing and raise a TYPEDSTREAM_FILE_INCONSISTENCY exception if the type isn’'t
correct. For example, NXReadType() or NXReadTypes()is called and the stream was
opened for writing, the exception is raised.

The functions for reading raise a TYPEDSTREAM_FILE_INCONSISTENCY exception
if the data to be read is not of the expected type.

see ALsO NXOpenTypedStream() NXReadObject(), andNXReadPoint()

NXReadTypes() - See NXReadType()

NXReallyFree() - See NXCreateHashTable()

NXRegisterDefaults(), NXGetDefaultValue(), NXReadDefault(),
NXSetDefault(), NXWriteDefault(), NXWriteDefaults(),
NXUpdateDefault(), NXUpdateDefaults(), NXRemoveDefault(),
NXSetDefaultsUser()

SUMMARY Set or read default values
DECLARED IN defaults/defaults.h

syNnopsis int NXRegisterDefaultsgonst char dwner const NXDefaultsVectorectol)
const char NXGetDefaultValue(const char wner const char iam@
const char NXReadDefaultconst char dwner const char fiamg
int NXSetDefault(const char dwner const char iame const char valug
int NXWriteDefault(const char dwner, const char fiame const char ¥alue
int NXWriteDefaults(const char dwner NXDefaultsVectowvectol)
const char NXUpdateDefault(const char dwnet const char fiame
void NXUpdateDefaultsfvoid)
int NXRemoveDefaultconst char dwner const char fiame
const char NXSetDefaultsUser€onst char hewUse)

DESCRIPTION These functions give you access to a systedefsult parameterthrough which you can
allow users to customize your application to meet their needs. For example, you can allow
users to determine what units of measurement your application will display or how often
documents will be automatically saved. The parameters get thedefamuétsince they're
commonly used to determine an application’s default state at startup or the way it will act
by default.

Functions: NXReadTypes() 37

38

Parameter values can be set from the command line or from adefardts database

Since values are stored specific to a particular user, you can use the parameters to record
user preferences or to capture the application’s state in one session so that it can be carried
over to the next session. You can invent whatever parameters your application needs. Some
parameters are defined in NEXTSTEP software—for example, many record choices the
user makes in the Preferences application. See Appendix B, “Default Parameters,” for a
listing of system-defined parameters that you can read or set.

Parameters are set on the command line by preceding the parameter name with a hyphen
and following it with a value. For example, the following instruction would launch the Edit
application on the host machine named “earth” and assign that name as the value of the
NXHost parameter:

localhost> INextApps/Edit.app/Edit -NXHost earth

Listing a parameter on the command line doesn’t put it in the defaults database. To put a
parameter in the defaults database, you must use the functions described below.

A defaults database is created automatically for each user. It's nide@idefaultsand
is located in theNeXT directory in the user's home directory. Each parameter in the
database is made up of three components:

» An owner, which is either the name of a specific application or “GLOBAL"
e The name of the parameter
» The value associated with the parameter

Each component is specified as a character string.

At run time, the parameters your application will use are placed in an internal cache. By
using this cache, you avoid having to open the user’s defaults database each time that you
need access to a parameter. The cache is a list of parameters containing the same three
components for each parameter as the database: the owner, the parameter name, and the
associated value.

To register parameters in the cache, MXIRegisterDefaults()and give it two arguments:

a character string specifying the owner and an NXDefaultsVector array. This array is a list
of structures, each containing a parameter name and a value. (NXDefaultsVector is defined
in the header filelefaults/defaults.h) Every application should register default

parameters early in the program, before any of the values are needed.

Note: You should use the full market name of your product as the owner of the parameters
you create. This will avoid conflicts with existing parameters. Noncommercial
applications might use the name of the program and the author or institution.

A good place to calNXRegisterDefaults()is in theinitialize method of the class
that will use the parameters. The following example registers the valAesDefaults
for the owner “Arboretum” (note that NULL is used to signal the end of the
NXDefaultsVector array):

+ initialize
{
static NXDefaultsVector ArbDefaults = {
{"NXMeasurementUnit", NULL},
{"AutoPropagate", "YES"},
{NULL}
h

NXRegisterDefaults("Arboretum"”, ArbDefaults);

return self;

}

If the defaults database doesn’t exist whitRegisterDefaults()is called, it's
automatically created and placed in tNeXT directory; the directory is created if
necessary.

NXRegisterDefaults()creates a cache that contains a value for each of the parameters
listed in the NXDefaultsVector array. For each parameter, a value is determined by first
looking to see if it was defined on the command line (if the application was launched that
way); if not, the user’s defaults databad¢eX Tdefaults) is searched. If
NXRegisterDefaults()finds a parameter and owner in the database that match those passed
to it as arguments, the corresponding value from the database is placed in the cache. If no
parameter-owner match is fourld)XRegisterDefaults()searches the database’s global
parameters—those owned by “GLOBAL"—for a matching parameter, and, if it finds one,
places the corresponding value in the cache. If a match still isn’t found, the parameter-value
pair listed in the NXDefaultsVector array is used. (A value can be specified in the array as
NULL.)

To summarize, this is the precedence ordering used to obtain a value for a given parameter
for the cache:

1. The command line

2. The user’s defaults databass€XTdefaults), with a matching owner
3. The user’s defaults database, with the owner listed as “GLOBAL”
4. The NXDefaultsVector array passed\MXRegisterDefaults()

To read a parameter value, you'll most often B{iGetDefaultValue(). This function
takes an owner and name of a parameter as arguments and returns a character pointer to the
value for that parameteNXGetDefaultValue() first looks in the cache for a matching

Functions: NXRegisterDefaults() 39

40

owner-parameter item. NXGetDefaultValue() doesn't find a match in the cache (which
would be the case only if the parameter wasn't in the NXDefaultsVector array passed to
NXRegisterDefaults(), it searches the user’s defaults databa$eXTdefaults) for the

owner and parameter. If still no match is found, it searches for a matching global parameter,
first in the cache and then in the database. If the value is found in the database rather than
the cacheNXGetDefaultValue() registers that value for subsequent use.

Occasionally, you may want to search only the database for a parameter value and ignore
the cache. For example, you might want to get a parameter value that another application
may have changed after the cache was created. In these rare casedRkeatDefault(),

which takes an owner and parameter name as arguments and looks in the database for an
exact match. It doesn’t look for a global parameter unless “GLOBAL” is specified as the
owner. If a match is found, a character pointer to the value is returned; if no value is found,
NULL is returned. After obtaining a value from the database MitReadDefault(), you

may want to write it into the cache wiXSetDefault().

NXSetDefault() takes as arguments an owner, the name of a parameter, and a value for that
parameter. The parameter and its value are placed in the cache, but they aren’t written into
the user’s defaults databasié€XTdefaults).

NXWriteDefault() writes the owner, parameter, and value specified as its arguments into
the user’s defaults database and places them in the cache. SiiKaklyiteDefaults()

writes a vector of parameters into the database and registers itN®athteDefault()
andNXWriteDefaults() return the number of successfully written values. To maximize
efficiency, you should use one callN&XWriteDefaults() rather than several calls to
NXWriteDefault() to write multiple values. This will save the time required to open and
close the database each time a value is written.

Since other applications (and the user) can write to the database, at various points the
database and the internal cache might not agree on the value of a given parameter. You can
update the cache with any changes that have been made to the database since the cache was
created by callingiXUpdateDefault() or NXUpdateDefaults() Both functions compare

the cache and the database. If a value is found in the database that is newer than the
corresponding value in the internal cache, the new value is written into the cache.

NXUpdateDefault() updates the value for the single parameter and owner given as its
arguments NXUpdateDefaults(), which takes no arguments, updates the entire cache. It
checks every parameter in the cache, determines whether a newer value exists in the
database, and puts any newer values it finds in the cache.

NXRemoveDefault()removes the specified owner-parameter pair from both the user
database and the internal cache.

RETURN

SUMMARY

DECLARED IN

SYNOPSIS

Ordinarily, the functions described above use the database belonging to the user who started
the application.NXSetDefaultsUser()changes which defaults database is used by
subsequent calls to these functiofbXSetDefaultsUser()accepts the name of a user

whose database you wish to use; it returns a pointer to the name of the user whose defaults
database was previously set for access by these functions. All entries in the internal cache
are purged; usiXGetDefaultValue() or NXRegisterDefaults()to get the new user’s

defaults for your application. WhéiXSetDefaultsUser()is called, the user who started

the application must have appropriate access (read, write, or both) to the defaults database
of the new user. This function is generally called in applications intended for use by a
superuser who needs to update defaults databases for a number of users.

NXRegisterDefaults()returns 0 if the database couldn’t be opened; otherwise it returns 1.

NXGetDefaultValue() returns a character pointer to the requested parameter value, or 0O if
the database couldn’t be opened.

NXReadDefault()returns a character pointer to the parameter value; if a value is not found,
NULL is returned.

NXSetDefault() returns 1 if it successfully set a parameter value, and 0 if not.

NXWriteDefault() returns 1 unless an error occurs while writing the parameter value, in
which case it returns 0.

NXWriteDefaults() returns the number of successfully written parameter values.

NXUpdateDefault() returns the new value, or NULL if the value did not need to
be updated.

NXRemoveDefault()returns 1, or O if the parameter couldn’t be removed.

NXSetDefaultsUser()returns the login name of the user whose defaults database was
being used before the function was called.

NXRegisterPrintfProc()

Register a procedure for formatting data written to a stream
streams/streams.h

void NXRegisterPrintfProc(charformatChar NXPrintfProc *roc, void *procDatg

Functions: NXRegisterPrintfProc() 41

DESCRIPTION

42

SEE ALSO

NXRegisterPrintfProc registerdormatChar a format character that corresponds to
*proc, which is a pointer to a function of type NXPrintfProc. The type definition for an
NXPrintfProc function is:

typedef void NXPrintfProc(NXStream *stream, void *item,
void *procData)

formatCharcan be any of the characters “vWwWyYzZ”; other characters are reserved
for use by NeXT.procDatarepresents client data that will be blindly passed along to
the function.

After calling NXRegisterPrintfProc(), formatCharcan be used in a format string for the
NXPrintf() or NXVPrintf() functions. When these functions encoufdematCharin a
format stringproc will be called to format the corresponding argument passed to
NXPrintf() . For example:

tabOver(NXStream stream, void *item, void *data)

{
}

NXRegisterPrintfProc('v’, &abOver, NULL);
NXPrintf(myStream, "%v", itemOne);
This code registers “v” as the formatting charactetdbOver(); with the NULL

argument, no client data will be passetbtoOver(). NXPrintf() then passes the variable
itemOne to tabOver() for formatting, which formats the item and places inyStream.

NXPutc()

NXRemoveDefault() - See NXRegisterDefaults()
NXResetErrorData() - See NXAllocErrorData()
NXResetHashTable() - See NXCreateHashTable()
NXSaveToFile() - See NXOpenMemory()

NXScanf() - See NXPutc()

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

RETURN

EXCEPTIONS

NXSeek(), NXTell(), NXAtEOS()

Set or report current position in a stream
streams/streams.h

void NXSeek(NXStream stream longoffset int ptrName
long NXTell(NXStream *trean)
BOOL NXAtEOS(NXStream *strean)

These functions set or report the current position in the stream given as an argument. This
position determines which data will be read next or where the next data will be written since
the functions for reading and writing to a stream start from the current position.

NXSeek()sets the positionffsetnumber of bytes from the place indicatedosName
which can be NX_FROMSTART, NX_FROMCURRENT, or NX_FROMEND.

NXTell() returns the current position of the buffer. This information can then be used in a
call toNXSeek()

The macrdNXAtEOS() evaluates to TRUE if the end of a stream has been reached. Since
streams opened for writing don’t have an end, this macro should only be used with streams
opened for reading.

Since position within a Mach port stream is undefinedSeek()andNXTell() shouldn’t

be called on a Mach port stream. These functions also shouldn’t be used on a typed stream.
The NX_CANSEEK flag (defined in the header siteeams/streams.l can be used to
determine if a given stream is seekable.

NXTell() returns the current position of the buffer.

NXAtEOS() evaluates to TRUE if the end of the stream has been detected and to
FALSE otherwise.

NXSeek()andNXTell() raise an NX_illegalStream exception if the stream passed in
is invalid.

NXSeek()raises an NX_illegalSeek exceptiomffsetis less than 0 or greater than the
length of a reading stream. This exception will also be raiggtdNameis anything other
than the three constants listed above.

Functions: NXSeek() 43

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

44

NXSetDefault() - See NXRegisterDefaults()
NXSetDefaultsUser() — See NXRegisterDefaults()
NXSetExceptionRaiser() -» See NXDefaultExceptionRaiser()

NXSetTypedStreamZone() - See NXGetTypedStreamZone()

NXSetUncaughtExceptionHandler(),
NXGetUncaughtExceptionHandler()

Handle uncaught exceptions
objc/error.h

void NXSetUncaughtExceptionHandlerfNXUncaughtExceptionHandleptoc)
NXUncaughtExceptionHandleNXGetUncaughtExceptionHandler{/oid)

These macros provides a means of handling exceptions that are raised outside of an
NX_DURING...NX_ENDHANDLER construct. You can use the Application object’s
default procedure, or you can define your own handler using
NXSetUncaughtExceptionHandler()

If procis NULL or if you never calNXSetUncaughtExceptionHandler() your program

will use the Application object’s default procedure. This function writes an uncaught
exception message stderr if the application was launched from a terminal. If the
application was launched by the Workspace Manager, the message is writteysisigQ

with the priority set to LOG_ERR; this message will normally appear in the Workspace
Manager’s console window. The default uncaught exception handler then calls the function
pointed to byNXTopLevelErrorHandler() and passes it any data about the exception
supplied byNX_ RAISE(), which was called when the exception occurred. (See the
description oNX_RAISE().) If you haven't defined your own top-level error handler, the
program exits.

To create your own handler, you define an exception handling function and give the name
of that function as an argumenNXSetUncaughtExceptionHandler() Subsequent calls

SEE ALSO

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

to NXGetUncaughtExceptionHandler() will return a pointer to the function. These two
macros are defined in the headerditgc/error.h.

NX_RAISE(), NXDefaultTopLevelErrorHandler()

NXStreamCreateFromZone(), NXStreamCreate(), NXStreamDestroy(),
NXDefaultRead(), NXDefaultWrite(), NXFill(), NXChangeBuffer()

Support a user-defined stream
streams/streamsimpl.h

NXStream NXStreamCreateFromZone{nt mode int createBuf NXZone*zone
NXStream NXStreamCreate(nt mode int createBuf

void NXStreamDestroy(NXStream *treamn)

int NXDefaultRead(NXStream *stream void *buf, int coun)

int NXDefaultWrite(NXStream “stream const void buf, int coun)

int NXFill(NXStream *strean)

void NXChangeBuffer(NXStream *treamn)

These functions need only be used if you implement your own version of a stream. |If
you're using a memory stream, a stream on a file, a stream on a Mach port, or a typed
stream, you don’t need the functions described here. Instead, you can just use the functions
already defined for these types of streams; seNERTSTEP Programming Interface
Summariesnanual for a list of these functions.

The first argument tblXStreamCreateFromZone() mode indicates whether the stream

to be created will be used for reading or writing or both. It should be one of the following
constants: NX_READONLY, NX_WRITEONLY, or NX_READWRITE. The argument
createBufpecifies whether the stream should be buffered. Ifitis TRUE, a buffer is created
of size NX_DEFAULTBUFSIZE, as defined in the headerdileams/streamsimpl.h

The argumentonespecifies the memory zone where you allocate memory for the new
stream; se®dlXCreateZone()for more on allocating zones of memory. When
implementing your own version of a stream, you may want to provide a function to open
such a stream; this function will probably ddKStreamCreateFromZone() as
NXOpenMemory(), NXOpenPort(), andNXOpenFile() do.

Functions: NXStreamCreateFromZone() 45

RETURN

EXCEPTIONS

46

NXStreamCreate() callsNXStreamCreateFromZone()with the default zone as its
zoneargument.

NXStreamDestroy() destroys the stream given as its argument, deallocating the space it
had used. If a buffer had been createdfiaram its storage is also freed. To avoid losing
data, a stream should be flushed u$ixdg-lush() before it's destroyed. When
implementing your own version of a stream, you may want to provide a function to close
such a stream; this function will probably dgdStreamDestroy() asNXClose() and
NXCloseMemory() do.

NXDefaultRead() andNXDefaultWrite() read and write multiple bytes of data on a
stream.NXDefaultRead() reads the nexdountnumber of bytes froratream starting at

the position specified by the buffer poinbef. NXDefaultWrite() writescountnumber of
bytes tostream starting at the position specifiedlmyf. These functions return the number

of bytes read or written. When implementing your own version of a stream, you can use
these functions with your stream unless you want to perform specialized buffer
management. If you implement your own versions of these functions for reading and
writing bytes, they should return the number of bytes read or written.

When reading from a buffered streddXFill() can be called to fill the buffer with the next
data to be read. Check whether left is equal to 0 to determine whether all the data
currently in the buffer has been read. (See the headstréilems/streams.Hor more
information aboubuf_left, which is part of an NXStream structure.)

NXChangeBuffer() switches the mode of a stream between reading and writing. If the
argumenstreamhad been defined for reading, this function changes it to a stream that
can be written to; istreamhad been defined for writing, it becomes a stream for reading.
In both cases, the pointer that points to either the next piece of data to be read from the
buffer or the next location to which data will be written is realigned appropriately.

Also, NX_READFLAG and NX_WRITEFLAG are updated to reflect the new mode of
the stream.

NXStreamCreate() returns a pointer to the stream it creates.
NXDefaultRead() andNXDefaultWrite() return the number of bytes read or written.

NXFill() returns the number of characters read into the buffer.

All functions that take a stream as an argument raise an NX_illegalStream exception if the
stream passed in is invalid.

NXFill() raises an NX_illegalRead exception if an error occurs while filling.

SEE ALSO

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

NXChangeBuffer() raises an NX_illegalStream exception if NX_READFLAG
and NX_WRITEFLAG have not been set to match the NX_CANREAD and
NX_CANWRITE flags.

NXOpenFile(), NXOpenMemory(), NXClose(), NXFlush(), NXRead()

NXStreamDestroy() — See NXStreamCreateFromZone()
NXStrHash() - See NXCreateHashTable()
NXStrisequal() - See NXCreateHashTable()

NXTell() - See NXSeek()

NXToAscii(), NXToLower(), NXToUpper()
Convert NEXTSTEP-encoded characters
NXCType.h

unsigned charNXToAscii(unsigned int)
int NXToLower(unsigned int)
int NXToUpper(unsigned int)

These functions convert characters encoded in the extended character set defined by
NEXTSTEP encoding. They are similar to the standard C library fundbassii(),
tolower(), andtoupper() (see thetype(3) UNIX manual page), which operate on
characters in the ASCII character set.

NXToLower() converts an uppercase letter to its lowercase equivalemtaralJpper()
converts a lowercase letter to its uppercase equivalent. If there’s no opposite case
equivalent—or if the character is already of the desired case—these functions return the
supplied argument unchanged.

NXToAscii() converts its argument to a value that lies within the standard ASCII character
set. The lower 128 positions in NEXTSTEP encoding constitute the ASCII character set,

Functions: NXStreamDestroy() 47

48

S0 no conversion is required for codes in this range. For the upper 128 character codes—

the extended characterddXToAscii() makes these conversions:

Extended Character Converts to
Agrave, Aacute, Acircumflex, Atilde, Adieresis, Aring A
Ccedilla C

Egrave, Eacute, Ecircumflex, Edieresis

Igrave, lacute, Icircumflex, Idieresis |
Ntilde N
Ograve, Oacute, Ocircumflex, Otilde, Odieresis, Oslash

Ugrave, Uacute, Ucircumflex, Udieresis U
Yacute Y
eth, Eth TH
Thorn, thorn th
fi fi

fl fl
agrave, aacute, acircumflex, atilde, adieresis, aring

ccedilla c
egrave, eacute, ecircumflex, edieresis

AE AE
igrave, iacute, icircumflex, idieresis [
ntilde n
Lslash L
OE OE
ograve, oacute, ocircumflex, otilde, odieresis, oslash

ae ae
ugrave, uacute, ucircumflex, udieresis

dotlessi [
yacute, ydieresis y
Islash I
oe oe
germandbls SS
multiply X
divide /
exclamdown !
quotesingle

guotedblleft, guillemotleft, quotedblright, guillemotright, quotedblbase
guotesinglbase ‘

guilsinglleft <
guilsinglright >
periodcentered

RETURN

SEE ALSO

SUMMARY

DECLARED IN

SYNOPSIS

Extended Character Converts to

brokenbar

bullet

ellipsis

guestiondown

onesuperior

twosuperior

threesuperior

emdash

plusminus

onequarter

onehalf

threequarters

ordfeminine

ordmasculine

mu, copyright, cent, sterling, fraction, yen, florin, section, currency,
registered, endash, dagger, daggerdbl, paragraph, perthousand,
logicalnot, grave, acute, circumflex, tilde, macron, breve, dotaccent,
dieresis, ring, cedilla, hungarumlaut, ogonek, caron

NXToAscii() returns by reference a valid ASCII charactdXToLower() or

NXToUpper() returns an integer value that represents the converted character.

NXIsAlpha()

NXToLower() - See NXToAscii()

NXToUpper() - See NXToAscii()

*

?

1
2

3
+-
1/4

1/2
3/4

NXTypedStreamClassVersion()
Get the class version number of an archived instance

objc/typedstream.h

int NXTypedStreamClassVersion(XTypedStream tream const char &ElassNamg

Functions: NXToLower()

49

DESCRIPTION

50

This function returns the class version number of an archived object. Class versioning is
useful if you create a class, archive an instance of it, then change the class—by adding
instance variables to it, for example. This function is used in a ctaasismethod to

select the appropriate code for initializing the instance being unarchived. This function
should be called only on a typed stream opened for reading\xi&eadObject().

NXTypedStreamClassVersion()can be called in youead: method after sending a

[super read:strean} message and before performing version-specific initialization.

Calling this function doesn’t change the position of the read poinstreiam If you need

to know the version of an object’s superclass (or any class in its inheritence hierarchy), call
this function using the name of that claselassName

For NXTypedStreamClassVersion()to return a nonzero value, you should change the
class version to a new value whenever you change the class definition. The Object class
provides two methods for handling class versioning. Objset¥ersion: class method

can be used in a subclasigigialize class method to set a new class version when you
change the instance variables. Objeatision class method returns the current version of
your class.

The NXWriteObject() function automatically archives the class version when it is

archiving an object. The default version number is 0. Thus if you have previously archived
instances of a class without setting the version, you can set the version of the altered class
to any integer value other than 0, then use this function to detect old and new instances of
the class.

In the following code example, MyClas#'stialize method sets the class version using
Object’ssetVersion: method:

@implementation MyClass:MySuperClass
+ initialize
{
if (self == [MyClass class]) {
[MyClass setVersion:MYCLASS_CURRENT_VERSION];

}

return self;

}

Note that this code tests to see that initialize is being invoked by the implementing class,
not a subclass. This is useful to assure that subclasses don't inherit the version number (or
other class-specific details).

In the next example, MyClasg'sad: method uses version numbers to unarchive old and
new instances differently:

SEE ALSO

SUMMARY

DECLARED IN

SYNOPSIS

- read:(NXTypedStream *)typedStream
{

[super read:typedStream];

if (NXTypedStreamClassVersion(typedStream, "MyClass") ==
[MyClass version] {
[* read code for current version */

}

else {
/* read code for old version */

}
}

See the description 6fXReadObject() earlier in this chapter for more information about
archiving. The NXTypedStream type is declared in the headebjitétypedstream.h
The structure itself is private since you never need access to its members.

NXReadObject()

NXUngetc() — See NXPutc()

NXUniqueString(), NXUniqueStringWithLength(),
NXUniqueStringNoCopy(), NXCopyStringBuffer(),
NXCopyStringBufferFromZone()

Manipulate a string buffer

objc/hashtable.h

NXAtom NXUniqueString(const char buffen

NXAtom NXUniqueStringWithLength(const char buffer, int length
NXAtom NXUniqueStringNoCopy(const char buffen

char "NXCopyStringBuffer(const char buffer)
char NXCopyStringBufferFromZone(const char buffer, NXZone *zong

Functions: NXUngetc() 51

DESCRIPTION

52

RETURN

The first three functions in this group create unique strings, which are allocated once and
then can be shared. The fourth and fifth functions allocate memory for and return a copy
of the given string.

Unique strings are identified by the type NXAtom, which indicates that they can be
compared using= rather tharstrcmp(). NXAtom strings shouldn’t be deallocated or
modified; the Mach functiomm_protect() is used to ensure that the strings are read-only.
(The type NXAtom is defined in thabjc/hashtable.hheader file.)

NXUniqueString(), NXUniqueStringWithLength() , andNXUniqueStringNoCopy()

maintain a hash table of unique strings. Each function checks if the string passed in is
already in the table and if so, returns it. Because a hash table is used, the average search
time is constant regardless of how many unique strings existifféfr doesn't exist in the

hash tableNXUniqueString() andNXUniqueStringWithLength() return a pointer to a

copy of it as an NXAtomNXUniqueStringNoCopy() inserts the string in the hash table

but doesn’t make a copy of it. For efficiency, all unique strings are stored in the same area
of virtual memory.

NXUniqueString() assumesufferis null-terminated; if it's NULLNXUniqueString()
returns NULL. NXUniqueStringWithLength() assumes th&iufferis a non-NULL string
of at leastengthnon-NULL characters.

NXCopyStringBuffer() allocates memory from the default memory zone for a copy of
buffer Thenbuffer, which should be null-terminated, is copied usitrgpy().
NXCopyStringBufferFromzZone() is identical tadNXCopyStringBuffer() except that
memory is allocated from the specified zone.

NXUniqueString() andNXUniqueStringWithLength() return a pointer to a copy of
bufferas an NXAtom.

NXUniqueStringNoCopy() returns a pointer to the string passed in.

NXCopyStringBuffer() andNXCopyStringBufferFromZone() return a pointer to a copy
of buffer.

NXUniqueStringNoCopy() - See NXUniqueString()
NXUniqueStringWithLength() — See NXUniqueString()
NXUpdateDefault() -~ See NXRegisterDefaults()

NXUpdateDefaults() - See NXRegisterDefaults()

SUMMARY

DECLARED IN

SYNOPSIS

NXVPrintf() - See NXPutc()

NXVScanf() - See NXPutc()

NXWrite() - See NXRead()

NXWriteArray() — See NXReadArray()
NXWriteDefault() - See NXRegisterDefaults()
NXWriteDefaults() — See NXRegisterDefaults()
NXWriteObject() - See NXReadObject()
NXWriteObjectReference() -~ See NXReadObject()
NXWriteRootObject() - See NXReadObject()
NXWriteRootObjectToBuffer() - See NXReadObjectFromBuffer()
NXWriteType() - See NXReadType()
NXWriteTypes() — See NXReadType()
NXZoneCalloc() - See NXZoneMalloc()
NXZoneFromPtr() —» See NXCreateZone()

NXZoneFree() - See NXZoneMalloc()

NXZoneMalloc(), NXZoneCalloc(), NXZoneRealloc(), NXZoneFree()
Allocate and free memory within a zone

objc/zone.h

void *NXZoneMalloc(NXZone *zone size_tsizg

void *NXZoneCalloc(NXZone *zong size_thumElemssize_thumBytep

void *NXZoneReallocfNXZone *zone void *ptr, size_tsiz
void NXZoneFree(NXZone *zone void *ptr)

Functions: NXVPrintf()

53

DESCRIPTION

54

RETURN

SEE ALSO

These functions allocate and free memory within a particular regiaoner They're

similar to the standard C library functiomslloc(), calloc(), realloc(), andfree(), but

allow more control over memory placement. By placing data structures that are likely to
be used in conjunction with each other in the same zone, you can ensure better locality of
reference. This can significantly improve performance on a paged virtual memory system.
When related data structures are grouped close together, consecutive references are less
likely to result in memory paging activity.

To use these functions, you must first obtain a pointer to a zone, generally by creating a new
zone usindNXCreateZone() The zone pointer is passed as the first argument to each of
these functions. Memory is allocated from the zone specified.

NXZoneMalloc() allocatessizebytes fromzone and returns a pointer to the allocated
memory. NXZoneCalloc() allocates enough memory fraonefor numElemslements,
each with a size afumBytedytes, and returns a pointer to the allocated memory. Both
allocate memory that’s aligned to accommodate any C data typecadlike(),
NXZoneCalloc() sets the allocated memory to 0 throughdlXZoneMalloc(), like
malloc(), does not.

NXZoneRealloc()changes the size of the block of memory pointed tatbip sizebytes.
It may allocate new memory to replace the old. If so, it moves the contents of the old
memory block to the new block, up to a maximunsiaébytes.

NXZoneFree()returns memory to the zone from which it was allocated. The standard C
functionfree() does the same, but spends time finding which zone the memory belongs to.

For bothNXZoneRealloc()andNXZoneFree(), ptr must be a pointer to a memory block
that was returned by{XZoneMalloc(), NXZoneCalloc(), NXZoneRealloc() or their
standard C counterparts. Thenemust be the one from which theg memory block was
allocated; if it's not, the results are unpredictable, and possibly disastrous.

NXZoneMalloc(), NXZoneRealloc() andNXZoneFree()are implemented as macros.

If successfulNXZoneMalloc(), NXZoneCalloc(), andNXZoneRealloc()return a pointer
to the memory allocated (or reallocated). If unsuccessful, they return NULL.

NXCreateZone(), —allocFromZone: (Object class)

NXZonePtrinfo() - See NXMallocCheck()

NXZoneRealloc() - See NXZoneMalloc()

NX_ADDRESS()
SUMMARY Get a pointer to the objects stored in a List
DECLARED IN Objc/List.h
synopsis id *NX_ADDRESS(List *aList)

DESCRIPTION This macro takes a List objeet.ist, as its argument and returns a pointer to theidirst
stored in the List. With this pointer, you get direct access to the contents of the List and can
avoid the overhead of messagingX_ADDRESS()therefore provides an alternative to
List’s objectAt: method for situations where somewhat greater performance is required. In
general, however, the method is the preferred way of accessing the List.

RETURN This macro returns a pointer to the contents of a List object.

SEE ALSO List class

NX_ENDHANDLER - See NX_DURING

NX_DURING, NX_HANDLER, NX_ENDHANDLER

SUMMARY Mark exception handling domains and handlers
DECLARED IN objc/error.h

synopsis NX_DURING
NX_HANDLER
NX_ENDHANDLER

DESCRIPTION These macros are used to delimit portions of code that are under the control of the
NEXTSTEP exception handling system. Code that lies between the NX_DURING and
NX_HANDLER macros is said to lie in an exception-handling domain. Code that lies
between NX_HANDLER and NX_ENDHANDLER is said to be within the exception

Functions: NX_ADDRESS() 55

SEE ALSO

SUMMARY

DECLARED IN

SYNOPSIS

DESCRIPTION

56

handler. A call totNX_RAISE() within the exception-handling domain transfers program
execution to the first line of code in the exception handler.ESeeptHandling.rtfd in
INextLibrary/Documentation/NextDev/Conceptsfor more information.

NX_RAISE()

NX_HANDLER - See NX_DURING

NX_RAISE(), NX_RERAISE(), NX_VALRETURN(), NX_VOIDRETURN

Raise an exception
objc/error.h

void NX_RAISE(int code const void tlatal, const void tata?
NX_RERAISE(void)

NX_VALRETURNY(val)

NX_VOIDRETURN

These macros initiate the error handling mechanism by alerting the appropriate error
handler that an error has occurred. Error handlers exist in a nested hierarchy, which is
created by using any number of nested NX_DURING...NX_ENDHANDLER constructs
and by defining a top-level error handler.

The three arguments fbiX_RAISE() provide information about the error condition. The
first argument is a constant that acts as a label for the error. (Error codes used by the
Application Kit are defined in the header filppkit/errors.h.) The next two arguments
point to arbitrary data about the error. Within an NX_DURING...NX ENDHANDLER
construct, this data is stored in a local variable c<docalHandler (which is of type
NXHandler, defined in the header filbjc/error.h). (See the description of
NXAllocErrorData() for more information about managing the storage of error data.)
NX_RAISE() calls the function pointed to byXGetExceptionRaiser(} see this
function’s description earlier in this chapter.

By default, an error handler should ddK_RERAISE() when it encounters an error that
it can't handle, as shown beloMX RERAISE() has the same functionality as
NX_RAISE(), but it's called with no arguments. SindX_RERAISE() implies a

SEE ALSO

previous call tdNX_RAISE(), the error data will already be stored in the local handler,
eliminating the need for arguments.

NX_DURING

/* code that may cause an error */
NX_HANDLER

switch (NXLocalHandler.code)

case

NX_someErrorCode:
/* code to execute for this type of error */

default: NX_RERAISE();

NX_ENDHANDLER

NX_VALRETURN() andNX_VOIDRETURN can be used to exit a method or function
from within the block of code between NX_DURING and NX_HANDLER labels. The
only legal ways of exiting this block are falling out the bottom or using one of these macros.
NX_VALRETURN() causes its method (or function) to retuat while

NX_VOIDRETURN can be used to return from a method (or function) that has no return
value. Use these macros only within an NX_DURING...NX_HANDLER construct.

NXAllocErrorData() , NXSetUncaughtExceptionHandler()
NXDefaultTopLevelErrorHandler() (Application Kit), NXRegisterErrorReporter()
(Application Kit), NXDefaultExceptionRaiser()

NX_RERAISE() — See NX_RAISE()
NX_VALRETURN() - See NX_RAISE()
NX_VOIDRETURN - See NX_RAISE()

Functions: NX_RFERAISE() 57

