
Introduction





11

Enterprise Objects Framework brings the benefits of object-oriented 
programming to database application development. You can use the Framework 
to build feature-rich, graphical database applications with reusable software 
components that tightly couple business information with the business 
processes managing that information. 

One of the most significant problems developers face when using object-
oriented programming languages with SQL databases is the difficulty of 
matching static, two-dimensional data structures with the extensive flexibility 
afforded by objects. The features of object-oriented programming—such as 
encapsulation and polymorphism—and their benefits—like fewer lines of code 
and greater code reusability—are often negated by the programming restrictions 
that come with accessing SQL databases within an object-oriented application.

Enterprise Objects Framework solves this problem by providing tools for 
defining an object model and mapping it to a data model. This allows you to 
create objects that encapsulate both data and the methods for operating on that 
data, while taking advantage of the data access services provided by the 
Framework that make it possible for these objects to persist in a relational 
database. 

The flexible, three-tier architecture provided by the Framework allows you to 
build robust, scalable, client/server applications. Objects at each of the three 
tiers (user interface, enterprise objects, and data store) can be deployed to take 
advantage of network resources. For example, data might be stored in a 
relational database running on a fault-tolerant database server with gigabytes of 
disk storage, while enterprise objects run on high-end compute servers. 
Partitioning the application to make best use of available resources allows 
complex applications to achieve maximum performance. 

The components of Enterprise Objects Framework fully embrace the three-tier 
architecture, which means that portions of the Framework can be used 
selectively to meet specific application requirements. For example, the 
components that provide users with the ability to interactively manipulate 
enterprise objects can be used independently to provide applications with an 
undo capability. You can use a custom data store (such as a flat-file system) in 
place of a relational database to store data for enterprise objects. Or you can 
make use of the database adaptors separate from the rest of the Framework 
components to provide direct access to relational databases for your applications.

Enterprise Objects Framework offers these additional benefits:

Flexibility. An enterprise object isn’t constrained by the physical location of data. 
Its mapping can extend across tables, and its data isn’t confined to the object’s 



Introduction Enterprise Objects Framework Documentation

12

mapping to a physical database. Further, the mapping of an enterprise object to 
the database can be dynamically controlled at run time.

Modularity. Depending on the needs of your application, you can create simple 
applications that require little or no code, program selected components while 
accepting the default behavior of other components, or use selected 
components independent of the rest of the Framework.

Extensibility. Enterprise Objects Framework’s classes are public and extensible. 
For example, you can provide your own data source, or add support for a new 
user interface object.

Enterprise Objects Framework Documentation

The Enterprise Objects Framework documentation set includes the Enterprise 
Objects Framework Reference and the Enterprise Objects Framework Developer’s 
Guide.

Entity-Relationship Modeling
Enterprise Objects Framework relies heavily on the concepts embodied in 
traditional Entity-Relationship modeling. Specifically, Entity-Relationship 
modeling terminology is used by the Enterprise Objects Framework classes to 
describe the mapping between stored data and enterprise objects.

For a discussion of these concepts and of relational databases, see the Appendix, 
“Entity-Relationship Modeling.”


