
Answers to Common Design Questions

Chapter 5

163

This chapter answers questions to common application and framework design
questions. For a discussion of design issues affecting enterprise objects, see the
chapter “Designing Enterprise Objects.”

The topics covered in this chapter are as follows:

• How Can I Improve Performance?
• How Do I Generate Primary Keys?
• How Do I Use My Database Server’s Integrity-Checking Features?
• How Do I Invoke a Stored Procedure?
• How Do I Order Database Operations?
• How Are Enterprise Objects Deallocated?
• Should I Make Foreign Key Attributes Class Properties?
• How Do I Share Models Across Applications?

How Can I Improve Performance?

In an Enterprise Objects Framework application, every trip to the database and
every object fetched is a potential drag on performance. Consequently, a large
part of designing for performance entails answering these questions:

• How can I minimize my application’s trips to the database?

• When I do have to make trips to the database, how can I best take advantage
of them?

• How can I avoid fetching objects I’ll never need, while still maintaining
access to objects I might need?

Enterprise Objects Framework has several built-in features for intelligently
managing your application’s interactions with the database. It also has hooks for
fine-tuning this behavior to get the best performance for your application.

Controlling the Number of Objects Fetched
A simple but effective technique for controlling the number of objects fetched
is to implement the EOAdaptorChannel delegate method
adaptorChannel:didFetchRow: method. In adaptorChannel:didFetchRow: you can maintain
a count of the objects fetched and take appropriate action when the count
reaches a specified limit—for example, you can display an alert panel asking if
the user wants to continue fetching, and based on the response you can either
fetch the next N objects or send the EOAdaptorChannel a cancelFetch message.

How Can I Improve Performance?

164

Faulting
When an EODatabaseContext fetches an object, it examines the relationships
defined in the model and creates objects representing the destinations of the
fetched object’s relationships. For example, if you fetch an employee object,
you can access its manager directly; you don’t have to get the manager’s
employee ID from the object you just fetched and fetch the manager yourself.

EODatabaseContext doesn’t immediately fetch data for the destination objects
of relationships, however, since the related object may never be accessed and
fetching is fairly expensive. To avoid this waste of time and resources,
destination objects of the class EOFault are created as placeholders. EOFaults
come in two varieties: single object faults for to-one relationships, and array
faults for to-many relationships.

When an EOFault is accessed (sent a message), it triggers its
EODatabaseContext to fetch its data and transform it into an instance of the
appropriate object class. This works well for limited numbers of objects.
However, suppose you fetch multiple employees and then want to retrieve each
employee’s department. You’d have to loop over all of the employees and fetch
each employee’s department fault individually, which means many trips to the
database.

To avoid these unnecessarily trips to the database, you can fine-tune faulting
behavior for additional performance gains by using two different mechanisms:
batch faulting, and prefetching relationships.

Batch Faulting
When you access an EOFault, its data is fetched from the database. However,
triggering one fault has no effect on other faults—it just fetches the object or
array of objects for the one fault. You can take advantage of this expensive round
trip to the database server by batching faults together. When you do this,
triggering one fault (such as an employee’s department) has the effect of
fetching multiple faults. This reduces the number of fetches—the next time
you access an employee’s department, it doesn’t require a trip to the database.

You can set batch faulting in an EOModel. With this approach, you specify the
number of faults for the same entity or relationship that should be triggered
along with the first fault. For more information on setting batch faulting in an
EOModel, see the chapter “Using EOModeler.”

To actually control which faults are triggered along with the first one, you can
use the EODatabaseContext method
batchFetchRelationship:forSourceObjects:editingContext:. For example, given an array of
Employee objects, this method can fetch all of their departments with one

165

How Can I Improve Performance?

round trip to the server, rather than asking the server for each of the employee’s
departments individually.

Prefetching Relationships
EODatabaseContext defines a hint for use with an EOFetchSpecification in the
objectsWithFetchSpecification:editingContext: method. Named by the key
EOPrefetchingRelationshipHintKey, the hint’s value is an NSArray of
relationship paths whose destinations should be fetched along with the objects
specified. For example, when fetching employees, you can provide a
prefetching hint for “department” (and any other relationships) to force these
objects to be fetched as well, as opposed to having faults created for them.
Although prefetching increases the initial fetch cost, it can improve overall
performance by reducing the number of round trips made to the database server.

Creating an EOModel for Optimal Performance
The way you design your EOModel has a direct effect on how your application
interacts with the database, and consequently, on performance. There are a few
general guidelines you should observe:

Avoid flattening attributes whenever possible.

Flattening attributes has two major drawbacks:

1. The values of flattened attributes can get out of sync with the with the object
graph (which represents the most current view of data in your application).
This limitation doesn’t apply if you’re flattening a one-to-one relationship in
order to map a class across multiple tables.

2. Fetching objects that span multiple database tables requires database joins,
which are expensive. If you find yourself designing an application that
requires flattened attributes, you should consider whether there’s a more
efficient approach.

Instead of flattening attributes, you can directly traverse relationships in the
object graph. For example, the following statements access the value of a
departmentName property belonging to the Department object to which
Employee has a relationship:

// Get the name of the Employee’s department
[[employee department] departmentName];

// Set the name of the employee’s department
[[employee department] setDepartmentName:newName];

How Can I Improve Performance?

166

For more discussion of this subject, see the chapter “Designing Enterprise
Objects.”

Use inheritance wisely.

As discussed in the chapter “Designing Enterprise Objects,” the way that you
map an object hierarchy onto a relational database in your EOModel can have a
significant effect on performance. You should observe the following guidelines:

• Avoid mapping a deep object hierarchy onto a relational database since it will
probably result in multiple fetches and joins.

• Try to avoid using vertical inheritance mapping, since it’s the least efficient of
the possible approaches.

Don’t set BLOB attributes to be used for locking.

In EOModeler the Used For Locking setting indicates whether an attribute
should be checked for changes before an update is allowed. This setting applies
when you’re using Enterprise Object Framework’s default update strategy,
optimistic locking. Under optimistic locking, the state of a row is saved as a
snapshot when you fetch it from the database. When you perform an update, the
snapshot is checked against the row to make sure the row hasn’t changed. If you
set Used For Locking for an attribute whose data is a BLOB type, it can increase
the cost of updating the row containing the BLOB.

Ideally, you should store BLOBs in their own table away from more commonly
accessed attributes.

Updating the User Interface Display
When objects change in the EOEditingContext for an EODisplayGroup, the
EODisplayGroup by default refreshes all of its EOAssociations, even if none of
the EODisplayGroup’s objects is in the EOEditingContext notification change
list.

This “universal” refresh is sometimes necessary because EOAssociations may
display derived values (through key paths or business methods) that depend on
objects other than the ones being displayed. However, if you know that your
user interface doesn’t display any such derived data, you can set your
EODisplayGroup to refresh its EOAssociations only if its (the
EODisplayGroup’s) objects were updated.

There are different ways to accomplish this:

• In Interface Builder, display the Attributes view of the EODisplayGroup
Inspector and uncheck “Refresh All”.

167

How Do I Generate Primary Keys?

• In your code, include a statement such as the following:

[myDisplayGroup setUsesOptimisticRefresh:YES];

This is equivalent to unchecking “Refresh All” in Interface Builder for
myDisplayGroup.

• Implement the EODisplayGroup delegate method
displayGroup:shouldRedisplayForChangesInEditingContext: to control when redisplay
occurs.

How Do I Generate Primary Keys?

Enterprise Objects Framework requires you to specify a primary key for each
entity in a model. In applications that create new enterprise objects to insert into
a database, you have to generate and assign unique values to an object’s primary
key.

Defining a Primary Key
When designing a database, keep the following tips in mind:

• Don’t use floating point values such as doubles and dates because they aren’t
precise in equality tests.

• Use integer primary keys when you want Enterprise Objects Framework to
generate primary key values automatically.

• Try to avoid using compound keys. A compound key incurs additional
overhead in not only its entity but also in related entities: the destination
entities of all to-one relationships must contain an attribute for each primary
key attribute in the source. In addition, you can’t use Enterprise Objects
Framework’s automatic primary key generation mechanism for compound
primary keys.

• You can improve the efficiency of enterprise object inheritance support by
encoding the class of an object in its primary key. When the class of an object
is encoded in its key and you implement the EOModelGroup delegate
method to tell the Framework the subentity and subclass for a key, Enterprise
Objects Framework creates a more efficient fault for the object than it would
otherwise. Try to encode the class of an object in a large integer or binary key
instead of using a compound key. For more information, see the section

How Do I Generate Primary Keys?

168

“Delegation Hooks for Optimizing Inheritance” in the “Designing
Enterprise Objects” chapter.

Generating Primary Key Values
There are four ways to provide primary key values for enterprise objects:

1. An enterprise object can provide its own primary key value. If the primary
key value of an object is nil when the Framework attempts to insert it, the
Framework falls back on one of the other mechanisms to provide the value.

2. An EODatabaseContext’s delegate provides a primary key value. If the
EODatabaseContext that’s inserting an enterprise object has a delegate, and
if the delegate has a method called databaseContext:newPrimaryKeyForObject:entity:
that returns a non-nil value, the Framework assigns the return value as the
object’s primary key.

3. A database stored procedure provides a primary key value. If an enterprise
object’s entity has a stored procedure assigned to the
EONextPrimaryKeyProcedureOperation, the Framework invokes the stored
procedure and assigns the result as the object’s primary key value.

4. Your adaptor provides a primary key value using a database-specific
mechanism. Each adaptor provides a database-specific implementation of the
method primaryKeyForNewRowWithEntity: that provides unique values for primary
key attributes.

Note: If the Framework can’t assign a primary key using one of the mechanisms
above, it raises an exception.

The following sections provide more information on when and how to use each
mechanism.

When the Enterprise Object Provides the Key
An enterprise object generally provides its own primary key value when the
primary key is meaningful to users—a social security number, account number,
or part number, for example. In some cases, the user provides the primary key
value by entering it in the user interface. In other cases, the enterprise object
generates its own unique primary key value. For example, a Part object’s
primary key could encode the part’s type, the plant from which it came, and the
batch in which it was made. Although generated, part numbers may still be
meaningful to users if they use them to identify parts.

To specify that an enterprise object provides its own key, you must set the
primary key attributes as class properties in the object’s entity. Your enterprise

169

How Do I Generate Primary Keys?

object class should provide an instance variable or accessor methods for each of
the primary key attributes. If you want to provide the primary key value for a
newly created enterprise object, be sure to assign it before the object is saved.

If the user interface provides a way for the user to enter primary key values, you
don’t need to handle them any differently than you handle the object’s other
properties. For example, if an application uses social security numbers as the
primary keys for employees, it must provide a way for users to enter them. The
interface layer of the Framework takes care of assigning the user-provided value
to the object. On the other hand, if an enterprise object generates its own
primary key value, you must generate and assign it in an appropriate method.
You could, for example, provide a primary key value when the object is first
instantiated by implementing the method awakeFromInsertionInEditingContext:.

When the EODatabaseContext Delegate Provides the Key
An EODatabaseContext’s delegate is given an opportunity to provide a primary
key value for enterprise objects that don’t already have one. This is the most
commonly used mechanism in applications that don’t use the adaptor’s
database-specific primary key generation mechanism. You might use the
delegate to provide primary key values when you want to avoid making a trip to
the database. For example, you might implement this method to generate
globally unique identifiers based on an IP address and a time stamp.

To allow your EODatabaseContext’s delegate to provide primary keys,
implement the method databaseContext:newPrimaryKeyForObject:entity:. An
EODatabaseContext sends this method to its delegate when a newly inserted
enterprise object doesn’t have a primary key value. If the delegate is not
implemented or returns nil, the EODatabaseContext gets a primary key by
invoking a stored procedure or using its adaptor’s database-specific mechanism.

When a Database Stored Procedure Provides the Key
You typically use a stored procedure to provide primary key values when you
need to override the adaptor’s database-specific mechanism but still need to
make a trip to the database to generate values.

To use a stored procedure to provide primary key values, you must define the
stored procedure in your model. Stored procedures are read from the database
when you create a new model and included in the model’s .eomodeld file. You can
also add stored procedures in EOModeler using the Stored Procedure view of
the Model Editor.

After defining the stored procedure, you assign it to an entity for the
EONextPrimaryKeyProcedureOperation using EOEntity’s

How Do I Generate Primary Keys?

170

setStoredProcedure:forOperation: method, or you can use EOModeler. In the Stored
Procedure Inspector, type the name of the stored procedure in the Get PK field.
For more information on defining stored procedures and assigning them to
entities, see the section “How Do I Invoke a Stored Procedure?”.

When the Adaptor Provides the Key
Each adaptor provides a database-specific mechanism for generating primary
keys. Unless you specify one of the other four mechanisms, Enterprise Objects
Framework automatically uses the adaptor’s mechanism.

Each adaptor provides an implementation of the method
primaryKeyForNewRowWithEntity:. When invoked, this method returns a unique
primary key value. For example, the Oracle adaptor uses Oracle sequences to
generate unique values.

To use the adaptor’s database-specific mechanism, you must be sure that your
database accommodates the adaptor’s scheme. The primary keys of the affected
tables must be simple (that is, they can’t be compound primary keys), and they
must be number types.

To modify your database so that it supports the adaptor’s mechanism for
generating primary keys:

1. In EOModeler’s Model Editor, select the entities for which you want the
adaptor to generate primary key values.

2. Choose Property m Generate SQL.

3. In the SQL Generation panel that appears, check the “Create Primary Key
Support” box as well as any of the others that you might need.

The following sections describe the support added to your database for each of
NeXT’s adaptors.

Informix and Sybase

The Informix and Sybase adaptor use the same approach to generating primary
key values. Both adaptors use a table named eo_sequence_table to keep track
of the next available primary key value for a given table. The table contains a
row for each table for which the adaptor provides primary key values.

171

How Do I Generate Primary Keys?

The statements used to create the eo_sequence_tables are:

Informix Sybase

create table eo_sequence_table (create table eo_sequence_table (
table_name varchar(32, 0), table_name varchar(32),
counter integer counter int null

))

The adaptors use a stored procedure called eo_pk_for_table to access and
maintain the primary key counters in eo_sequence_table. The stored
procedures are defined as follows:

Informix Sybase

create procedure create procedure
eo_pk_for_table (tname varchar(32)) eo_pk_for_table @tname varchar(32) as
returning int; begin

define cntr int; declare @max int

update EO_SEQUENCE_TABLE update eo_sequence_table
set COUNTER = COUNTER + 1 set counter = counter + 1
where TABLE_NAME = tname; where table_name = @tname

select COUNTER into cntr select counter
from EO_SEQUENCE_TABLE from eo_sequence_table
where TABLE_NAME = tname; where table_name = @tname

return cntr; end
end procedure;

The stored procedures increment the counter in the eo_sequence_table row for
the specified table, select the counter value, and return it. The Informix and
Sybase adaptor’s primaryKeyForNewRowWithEntity: methods execute the
eo_pk_for_table stored procedure and return the stored procedure’s return
value.

ODBC

The approach taken by the ODBC adaptor is very similar to that of the Informix
and Sybase adaptors. The ODBC adaptor uses a table named EO_PK_TABLE
to keep track of the next available primary key value for a table, but the ODBC
adaptor can create this table on demand. (The Informix and Sybase adaptors do

How Do I Generate Primary Keys?

172

not create the table and corresponding stored procedures. Rather, you create
them ahead of time using the SQL Generation panel in EOModeler.)

The ODBC adaptor’s primaryKeyForNewRowWithEntity: method attempts to select a
value from the EO_PK_TABLE for the new row’s table. If the attempt fails
because the table doesn’t exist, the adaptor creates the table using the following
SQL statement:

CREATE TABLE EO_PK_TABLE (

NAME TEXT_TYPE(40),

PK NUMBER_TYPE
)

where TEXT_TYPE is the external (database) type for characters and
NUMBER_TYPE is the external type for the table’s primary key attribute. The
ODBC adaptor sets the PK value for each row to the corresponding table’s
maximum primary key value plus one. After determining a primary key value
for the new row, the ODBC adaptor updates the counter in the corresponding
row in EO_PK_TABLE.

Oracle

The Oracle adaptor uses sequence objects to provide primary key values. It
creates a sequence using the following SQL statement:

create sequence table _SEQ

where table is the name of a table for which the adaptor provides primary key
values. The adaptor sets the sequence start value to the corresponding table’s
maximum primary key value plus one.

Why Can’t I Use Identity Columns?
Some databases provide mechanisms that automatically generate primary key
values. For example, Sybase allows you to specify identity columns that
automatically replace nulls with unique values. In databases that don’t provide
identity columns, you can define triggers to produce the same result. These
mechanisms are very useful when users interact directly with the database using
SQL. However, they are difficult to use in applications that mediate between
users and a database. You shouldn’t use them in applications built with
Enterprise Objects Framework.

Suppose that a database application allowed you to insert a row without
providing a primary key value. An identity column or database trigger could
generate an identifying value for the row, but the corresponding application
object wouldn’t have the value. The application could attempt to fetch the
object using the values provided by the user, but a query that doesn’t specify a

173

How Do I Use My Database Server’s Integrity-Checking Features?

primary key value might return more than one row. As a result, the application
can’t guarantee that it will be able to associate the current object with a row in
the database. For this reason, Enterprise Objects Framework requires that you
assign a primary key value to an object before it’s inserted in the database.

Summary
The following table summarizes the primary key generation options you have to
choose from.

Mechanism Primary Use

Object provides its own value When the primary key value is meaningful to users and is
displayed in the application’s user interface.

EODatabaseContext delegate method When you don’t want to use the adaptor’s mechanism.

Stored procedure When you want to use your own stored procedure to provide
primary key values.

Adaptor’s mechanism When the primary key is a simple (not compound), numeric value
that is not meaningful to users.

How Do I Use My Database Server’s Integrity-Checking Features?

Most database systems offer features to help you maintain the integrity of your
data. You can assign default values to columns, define rules that specify the
format or allowable range of a column’s values, and define constraints or triggers
to enforce relational integrity rules. Enterprise Objects Framework has its own
brand of solutions to the same issues. You have to decide whether to use the
database system’s solution, the Framework’s solution, or a combination of the
two. The decision involves answering the following questions:

• Can I avoid using the database’s integrity-checking features?

• Is it possible that non-Enterprise Objects Framework tools and applications
will access the database?

• Can I use the database system’s feature without interfering with the way
Enterprise Objects Framework works?

• How can I use both the database system’s and Enterprise Objects
Framework’s solutions?

How Do I Use My Database Server’s Integrity-Checking Features?

174

When you implement integrity checking in your Enterprise Objects
Framework applications, you can reject erroneous data or illegal operations as
soon as a user performs an invalid action. Enterprise Objects Framework relies
on application-side integrity checking to provide feedback to users and to
handle errors. Without it, it is much more difficult for you to develop the user
interfaces for your Enterprise Objects Framework applications.

Because client-side business logic is required to create a highly interactive user
interface and because duplication of business logic is inefficient and error-prone,
you should try to avoid using database integrity-checking features. Sometimes,
however, it’s unavoidable. You usually use database integrity checking when
users can access a database in many ways (using Enterprise Objects Framework
applications, non-Enterprise Objects Framework applications, and interactive
SQL sessions, for example). In this case, you may have to use the features of
your database server to assure your data’s integrity. As a result, you may choose
to implement integrity checking in both your Enterprise Objects Framework
applications and in the database.

The following sections discuss guidelines for using the integrity-checking
features of your database in concert with an Enterprise Objects Framework
application.

Defaults
Many databases allow you to specify a default value for a column. When a null
value is inserted (or updated) in a column with a default, the database
substitutes the default value for the null.

If you define defaults in your database, you should specify the defaults in your
Enterprise Objects Framework application as well. Generally, you assign default
values in your enterprise object’s awakeFromInsertionInEditingContext: method. For
example:

- (void)awakeFromInsertionInEditingContext:(EOEditingContext *)context

{

[super awakeFromInsertionInEditingContext:context];

// Assign current date to memberSince

 if (!memberSince)

 memberSince = [[NSCalendarDate date] retain];
}

An alternative is to fetch newly inserted objects immediately after you save
them to the database. If you don’t assign the default values before you save an
object and you don’t refetch the object from the database after you save, the
Framework’s object snapshots will not be in sync with the contents of the

175

How Do I Use My Database Server’s Integrity-Checking Features?

database. As a result, the Framework may prevent subsequent updates to the
object.

Rules That Validate Values
Many databases allow you to define a rule (or constraint) for a column. A rule can
verify that a value is in a proper format or is within an acceptable range.
Whenever a value is inserted or updated, the database server verifies that the
value conforms to the rule before it performs the operation.

You should implement data validation in your Enterprise Objects Framework
application whether or not you use database rules. Depending on the nature of
the validation, use a formatter or implement an appropriate validate... method in
your enterprise object class. For more information, see the chapter “Designing
Enterprise Objects.”

Constraints for Enforcing Relational Integrity Rules
Many databases provide mechanisms to enforce relational integrity rules. For
example, you can define a constraint (or trigger) that prevents the deletion of a
Department that still contains Employees. Enterprise Objects Framework also
provides mechanisms for enforcing these types of rules. For example, you can
specify delete rules for relationships in EOModeler.

If you use database triggers and constraints, you will have to duplicate the logic
in your Enterprise Objects Framework application. In some cases, the
duplication won’t hurt anything, but in other cases you have to provide special
handling to avoid run-time errors.

For example, suppose you have a constraint specifying that you can’t delete a
department if it still has employees. In addition, you specify the Deny delete
rule on the Department entity’s employees relationship. When a user attempts
to delete a department, Enterprise Objects Framework verifies that the
corresponding Department object has no employees. If the department has one
or more employees, the Framework doesn’t allow the delete. Further suppose
that a user moves all the employees from one department to another, deletes the
now empty department, then saves all changes. Enterprise Objects Framework
analyzes the object graph to determine what operations have taken place. It
generates and executes database operations to update the database accordingly.
Enterprise Objects Framework does not guarantee that the operations will be
ordered to observe relational integrity rules. In other words, it is possible for the
deletion of the Department object to occur before all the employees are
updated to reflect their new department. In this case, the database will not allow
the deletion of the department, and the whole set of operations fail as a result.

How Do I Invoke a Stored Procedure?

176

To avoid sequencing problems of this type, implement an EODatabaseChannel
delegate method to order database operations before they are sent to the
database. For more information, see the section “How Do I Order Database
Operations?”.

How Do I Invoke a Stored Procedure?

To invoke a stored procedure from your Enterprise Objects Framework
application, you must define the stored procedure in a model and decide how to
invoke it. Depending on what a stored procedure does, you can either invoke it
explicitly or specify that the Framework invoke it for common database
operations.

Defining a Stored Procedure
If your stored procedure is defined in the database at the time you create your
model, you don’t have to do anything to define it in your model. When you
create a new model with EOModeler, the application reads stored procedure
definitions from the database’s data dictionary and stores them in the model’s
.eomodeld file. You can also add a stored procedure definition to an existing model.

To add a stored procedure in EOModeler:

1. Choose Tools m Stored Procedures.

2. Select the model icon.

3. Choose Property m Add Stored Procedure.

4. Specify a name and external name for the stored procedure.

177

How Do I Invoke a Stored Procedure?

Figure 48. Adding a Stored Procedure

You must also define an argument for a stored procedure’s return value and for
each of its parameters. Add arguments to a stored procedure the same way you
add attributes to an entity. In fact, the arguments of a stored procedure are
represented with EOAttribute objects.

Note: The Advanced Attribute Inspector isn’t applicable to stored procedure
arguments. As a result, you can’t access it while editing an argument.

To define and display the attributes of a stored procedure:

1. Double-click the icon to the left of a stored procedure in the stored
procedures view of the Model Editor.

2. Choose Property m Add Argument.

3. Use the menu to add columns for the stored procedure. By default, the
table mode of the Model Editor has just four columns for stored procedure
arguments: Name, Value Class, External Type, and Width. The menu
provides these additional columns: Column, Direction, Precision, Scale,
Value Type.

Type the name of the stored
procedure as you want to refer
to it in your application

Type the name of the stored
procedure as it’s defined in the
database

Select the model icon

How Do I Invoke a Stored Procedure?

178

Figure 49. Adding a Column to the Stored Procedure Argument View

4. Specify the argument’s characteristics. Minimally, you must provide a name,
a column, a direction, an external type, and value class for each argument.
The following table describes the characteristics you can set for a stored
procedure argument.

Characteristic What it is

Column The name of a parameter as it is defined in the database (doesn’t apply
to a “returnValue” argument).

Direction In, InOut, Out, or Void. Don’t choose Void; it’s reserved for future use.

External Type The data type of the argument as it’s defined in the database.

Name The name your application uses for the argument.

Precision The number of significant digits (applies to number data only).

Scale The number of digits to the right of the decimal point (applies to number
data only).

Value Class The Objective-C type to which the argument value will be coerced in
your application.

Value Type The format type for custom value classes such as “TIFF” or “RTF”.

Width The maximum width (applies to string, raw, and binary data).

Click here to add a column

179

How Do I Invoke a Stored Procedure?

For example, to add arguments for the Sybase stored procedure defined as:

create proc movie_by_date (@begin datetime, @end datetime) as

begin

select

CATEGORY, DATE_RELEASED, LANGUAGE, MOVIE_ID, RATING,

REVENUE, STUDIO_ID, TITLE

from MOVIES

where DATE_RELEASED > @begin and DATE_RELEASED < @end
end

you would add an argument for @begin and @end with column names “begin” and
“end”, respectively.

Tip: If you’re using Oracle, you can define a stored procedure to represent a
function. Add an argument named “returnValue” and use the
EOAdaptorChannel method returnValuesForLastStoredProcedureInvocation to get the
function’s result.

If the Framework invokes your stored procedure automatically, the argument
names of a stored procedure must match the name of a corresponding
EOAttribute object. For example, if you want to invoke a stored procedure
whenever the Framework fetches a Movie object by its primary key, the stored
procedure’s argument names must correspond to the primary key attributes of
the Movie entity. The section “Invoking a Stored Procedure Automatically”
discusses this requirement more thoroughly.

Invoking a Stored Procedure Automatically
You can define stored procedures to perform the following operations:

• EOFetchAllProcedureOperation fetches all the objects for an entity.
• EOFetchWithPrimaryKeyProcedureOperation fetches an object by its primary key.
• EOInsertProcedureOperation inserts a new object.
• EODeleteProcedureOperation deletes an object.
• EONextPrimaryKeyProcedureOperation generates a new primary key value.

If you associate a stored procedure with an entity’s operation, the Framework
invokes it automatically when the operation occurs. For example, if you want to
use a stored procedure to insert new Customer objects:

1. Define the stored procedure in the database.

2. Define the stored procedure in the model as described above.

3. Associate the stored procedure with the Customer entity’s insert operation.

How Do I Invoke a Stored Procedure?

180

You can associate a stored procedure with an entity using EOModeler or you can
do it programmatically using EOEntity’s setStoredProcedure:forOperation: method.

In EOModeler:

1. Select the entity with which you want to associate a stored procedure.

2. Choose Tools m Inspector.

3. Click the Stored Procedures Inspector icon.

4. Type the name of the stored procedure in the field associated with the
appropriate database operation.

Figure 50. The Stored Procedure Inspector

Click here to display the Stored Procedure Inspector

181

How Do I Invoke a Stored Procedure?

Requirements for Framework-Invoked Stored Procedures
When Enterprise Objects Framework invokes a stored procedure for an
operation, the procedure must behave in an expected way. The Framework
specifies what a stored procedure’s arguments, results, and return values should
be. The following sections summarize the requirements for each operation:

EOFetchAllProcedureOperation

The EOFetchAllProcedureOperation fetches all the objects for a particular
entity. A stored procedure for this operation should have no arguments and
return a result set (or in the case of Oracle, a REFCURSOR argument) for all
the objects in the corresponding entity.

The rows in the result set must contain values for all the columns Enterprise
Objects Framework would fetch if it were not using the stored procedure, and
it must return them in the same order. In other words, the stored procedure
should return values for primary keys, foreign keys used in class property joins,
class properties, and attributes used for locking (generally, values for all the
entity’s attributes). Also, the stored procedure should return the values in
alphabetical order based on the names of their corresponding EOAttribute
objects. For example, a Studio entity has the attributes studioId, name, and budget.
A stored procedure that fetches all the Studio objects should return the value for
a studio’s budget value, then the studio’s name, and then its studioId.

If an EOFetchAllProcedureOperation stored procedure has a return value,
Enterprise Objects Framework ignores it.

EOFetchWithPrimaryKeyProcedureOperation

The EOFetchWithPrimaryKeyProcedureOperation fetches a single enterprise
object by its primary key value. A stored procedure for this operation should
take an “in” argument for each of the entity’s primary key attributes. The
argument names must match the names of the primary key attributes. For
example, a Studio entity has one primary key attribute named “studioId”. As
defined in a model, the stored procedure’s argument must also be named
“studioId”.

An EOFetchWithPrimaryKeyProcedureOperation stored procedure should
return a result set (or in the case of Oracle, a REFCURSOR argument)
containing the matching row. The row must be in the same form as those
returned by an EOFetchAllProcedureOperation stored procedure.

If an EOFetchWithPrimaryKeyProcedureOperation stored procedure has a
return value, Enterprise Objects Framework ignores it.

How Do I Invoke a Stored Procedure?

182

EOInsertProcedureOperation

The EOInsertProcedureOperation inserts a new enterprise object. A stored
procedure for this operation should take “in” arguments for each of the
corresponding entity’s attributes. The argument names must match the names
of the corresponding EOAttribute objects.

An EOInsertProcedureOperation stored procedure should not return a result
set. Also, if an EOInsertProcedureOperation stored procedure has a return
value, Enterprise Objects Framework ignores it.

EODeleteProcedureOperation

The EODeleteProcedureOperation deletes a single enterprise object by its
primary key value. A stored procedure for this operation should take an “in”
argument for each of the entity’s primary key attributes. The argument names
must match the names of the primary key attributes as in
EOFetchWithPrimaryKeyProcedureOperation stored procedures.

An EODeleteProcedureOperation stored procedure should not return a result
set. Also, if an EODeleteProcedureOperation stored procedure has a return
value, Enterprise Objects Framework ignores it.

EONextPrimaryKeyProcedureOperation

The EONextPrimaryKeyProcedureOperation generates a unique primary key
value for a new enterprise object. A stored procedure for this operation should
take an “out” argument for each of the entity’s primary key attributes. The
argument names must match the names of the primary key attributes as in
EOFetchWithPrimaryKeyProcedureOperation stored procedures.

An EONextPrimaryKeyProcedureOperation stored procedure should not
return a result set. Also, if an EONextPrimaryKeyProcedureOperation stored
procedure has a return value, Enterprise Objects Framework ignores it.

Invoking a Stored Procedure Explicitly
Some stored procedures can’t be associated with a specific database operation
that Enterprise Objects Framework invokes. For example, if you’ve defined a
stored procedure to return the sum of revenues for all the Movie objects, you’ll
have to invoke it explicitly. To invoke a stored procedure explicitly, you use an
EOAdaptorChannel object. The following code excerpt shows how to do it:

EOAdaptorChannel *adChannel; // Assume this exists.

EOStoredProcedure *sumOfRevenue;

NSDictionary *results;

sumOfRevenue = [model storedProcedureNamed:@"sumOfRevenue"];

183

How Do I Invoke a Stored Procedure?

[adChannel executeStoredProcedure:sumOfRevenue withValues:nil];
results = [adChannel returnValuesForLastStoredProcedureInvocation];

The method returnValuesForLastStoredProcedureInvocation returns stored procedure
parameter and return values. The dictionary returned by this method (results in
this example) has entries whose keys are the names of the stored procedure’s
out and in-out arguments. The dictionary may also contain an entry with the
key “returnValue” whose value is the return value of a stored procedure (if it
has one).

Tip: If you’re using Sybase, the return values dictionary always contains a
“SybaseStoredProcedureReturnStatus” key whose value is the return status of
the stored procedure.

If you want to invoke a stored procedure that returns rows, you use
fetchRowWithZone: as you would if you were fetching the results of a
selectAttributes:fetchSpecification:lock:entity: message. For example, the following
code excerpt fetches Movie objects using the fetchAllMovies stored procedure:

EOAdaptorChannel *adChannel; // Assume this exists.

EOStoredProcedure *fetchAllMovies;

NSDictionary *row;

fetchAllMovies = [model storedProcedureNamed:@"fetchAllMovies"];

[adChannel executeStoredProcedure:fetchAllMovies withValues:nil];

while ([adChannel isFetchInProgress]) {

while (row = [adChannel fetchRowWithZone:nil]) {

 /* Process theRow. */

}
}

Neither of the previous examples uses stored procedures that have arguments.
If you want to invoke a stored procedure that does, you provide the argument
values to the stored procedure in the executeStoredProcedure:withValues: message.
For example, the following code excerpt uses a stored procedure to insert a row
into the database:

EOAdaptorChannel *adChannel; // Assume this exists.

EOStoredProcedure *insert;

NSDictionary *row; // Assume this contains the values

 // for the row that’s being inserted.

insert = [model storedProcedureNamed:@"insertTest"];
[adChannel executeStoredProcedure:insert withValues:row];

For more information on invoking stored procedures explicitly, see the
EOAdaptorChannel class specification.

How Do I Order Database Operations?

184

How Do I Order Database Operations?

An Enterprise Objects Framework application typically queues up changes to
many enterprise objects before saving the changes to the database. It is then the
job of an EODatabaseContext to analyze an object graph to determine what has
changed, translate the changes to database operations, and perform the
operations using an EOAdaptorChannel.

By default, an EODatabaseContext sorts database operations alphabetically
based on entity name. For each entity, lock operations are ordered first, followed
by insert, update, delete, and stored procedure operations. If you use referential
integrity-checking features of your database, you might need to order the
operations differently.

For example, if your database requires that each foreign key in a newly inserted
row correspond to an existing row, you can’t insert a Guest row unless it
references a valid Member row. If a user creates a new member and a new guest
for that member, you have to order the database operations so the member is
inserted before the guest.

Another reason you might need to order database operations is to improve
concurrency. If a database implements page- or table-level locking, you are more
likely to encounter deadlocks when multiple, simultaneous transactions don’t
lock tables in the same order.

You can order database operations by implementing either or both of the
EODatabaseContext delegate methods

– databaseContext:willOrderAdaptorOperationsFromDatabaseOperations:
– databaseContext:willPerformAdaptorOperations:adaptorChannel:

The former method provides the delegate with more information than the
latter. The second argument to the “willOrder” method is an array of
EODatabaseOperation objects that reference the enterprise objects on which to
operate and also include the globalIDs of these objects. The “willPerform”
method, however, is more convenient to use. Its second argument is an array of
adaptor operations that are already prepared. The delegate only needs to
rearrange them. For more information on these delegate methods, see the
EODatabaseContext class specification.

185

How Are Enterprise Objects Deallocated?

How Are Enterprise Objects Deallocated?

If you use an EODisplayGroup to fetch enterprise objects into your application,
you might wonder:

• Who “owns” the objects?
• How do they get deallocated?
• How are their snapshots deallocated?
• What happens if you have retain cycles?

In applications that fetch a lot of enterprise objects or are long-running, these are
important questions. However, you don’t have to worry about answering most of
them. As long as you follow the object ownership conventions defined in the
Foundation framework, enterprise objects and their related resources are
automatically deallocated when they are no longer in use. For more information
on this automatic object disposal mechanism, see the introduction to the
Foundation Framework Reference.

Who Owns an Enterprise Object?
In design terms, one object might own another; but in OpenStep programming
terms, no object really “owns” another. Rather, one or more objects may
“retain” another object. If one object retains another, it has a responsibility to
release it when it no longer needs the other object. In Enterprise Objects
Framework applications, an enterprise object is retained by other enterprise
objects that have a relationship to it. An enterprise object is also retained by an
EODisplayGroup object that fetches and displays it.

How Does an Enterprise Object Get Deallocated?
In a Enterprise Objects Framework applications, an enterprise object is retained
by other enterprise objects that have a relationship to it and by any
EODisplayGroup objects that fetch and display it. Typically, enterprise objects
are deallocated automatically when they are no longer referenced by other
objects. You don’t ordinarily manage the deallocation of enterprise objects
explicitly.

Accessor methods that manage relationships to one or more enterprise objects
also release objects when they no longer need to reference them. For example,
the following method releases an employee’s old manager before assigning a
new one:

- (void)setManager:(Employee *)aManager

{

 [manager autorelease];

How Are Enterprise Objects Deallocated?

186

 manager = [aManager retain];
}

If an enterprise object class doesn’t implement accessor methods for a
relationship, the Framework automatically releases and retains the destination
objects. Similarly, an EODisplayGroup object releases its enterprise objects
immediately before it fetches a new set of objects or immediately before it is
deallocated itself. Unless you explicitly retain an enterprise object, it is
automatically deallocated when its display group stops displaying it.

If you do explicitly retain an enterprise object (either by sending it a retain
message or by adding it to a collection), the enterprise object is not deallocated
until you release it (either by sending it a release message or, if it’s in a collection,
by releasing its collection).

Methods for getting enterprise objects without using an EODisplayGroup don’t
automatically retain objects. For example, the objects returned from
EODataSource’s fetchObjects method and EOEditingContext’s
objectsWithFetchSpecification: method are not retained by any object. Unless you
retain them, they will be deallocated automatically.

How Are an Object’s Snapshots Deallocated?
Enterprise Objects Framework keeps two kinds of snapshots:

• Object snapshots that are maintained by EOEditingContexts
• Row snapshots that are maintained by EODatabaseContexts

An object snapshot is deallocated at the same time its enterprise object is
deallocated. A row snapshot, however, is only invalidated when its
EODatabaseContext is deallocated or when it receives an invalidateAllObjects
message or invalidateObjectWithGlobalID: message. Multiple EOEditingContexts
may use a single EODatabaseContext object and its row snapshots. As a result,
it isn’t practical to deallocate a row snapshot when a corresponding enterprise
object is deallocated. An enterprise object in another EOEditingContext may
still reference the snapshot. To deallocate row snapshots explicitly, use one of
the invalidate... methods.

What Happens If You Have Retain Cycles?
A retain cycle occurs when two objects retain one another. They may retain one
another directly, or indirectly through a collection or another object. Retain
cycles occur quite commonly in Enterprise Objects Framework applications.
For example, if an Employee object has a relationship to a Department object,
the Department object probably has a relationship to its employees as well.
Normally an object retains the objects to which it has a relationship, so the

187

Should I Make Foreign Key Attributes Class Properties?

reciprocal relationships between Employee and Department objects form a
retain cycle.

Objects in a cycle stay in memory until the cycle is broken. If the cycle is never
broken, the objects stay in memory until the process exits. Too many unbroken
retain cycles degrade an application’s performance.

One strategy for handling retain cycles is to ensure that none are created. If you
don’t need reciprocal relationships, don’t create them. Reciprocal relationships,
however, are very useful. You are more likely to use one of the following
approaches for handling retain cycles.

invalidateObjectsWhenFreed
Retain cycles between objects can be broken automatically when their
EOEditingContext is deallocated. To break retain cycles automatically, set the
EOEditingContext’s invalidatesObjectsWhenFreed attribute to YES, which is the
default. This approach works well in multi-document applications in which
EOEditingContexts are deallocated when their windows close.

invalidateAllObjects
In applications that aren’t multi-document, you can break cycles by sending an
invalidateAllObjects message to an EOEditingContext’s root EOObjectStore. You
typically invalidate enterprise objects after saving changes to the database or
after reverting.

invalidateAllObjects replaces all the associated enterprise objects with EOFault
objects, eliminating retain cycles in the process. It has the side-effect of
invalidating all the enterprise objects in a peer editing context as well.

Should I Make Foreign Key Attributes Class Properties?

No. You shouldn’t make foreign key attributes class properties. If you need to
access a foreign key value (because you want to display it in the user interface,
for example), you should access it through the corresponding destination object.

Class properties that are foreign keys can become out of sync with their
corresponding destination objects. For example, assume that an Employee class
defines a relationship, department, to its department and has a class property,
departmentID, for the corresponding foreign key. Assigning an employee to a new
department doesn’t update the departmentID property in the employee object
until the enterprise object is saved to the database. Thus, departmentID contains

How Do I Share Models Across Applications?

188

the primary key value for the old department while the department relationship
points to the new department.

Instead of making the foreign key a class property of an enterprise object, you
should implement a method that gets the value from the destination object. For
example:

- (id)departmentID

{

 return ValueForPrimaryKey(department, @"departmentID");

}

id ValueForPrimaryKey(id object, NSString *key)

{

 if ([EOFault isFault:object]) {

 EOKeyGlobalID *globalID;

 EOEntity *entity;

 globalID = [[object editingContext] globalIDForObject:object];

 entity = [[EOModelGroup defaultGroup]

 entityNamed:[globalID entityName]];

 return [[entity primaryKeyForGlobalID:globalID] valueForKey:key];

 } else {

 return [object valueForKey:key];

 }
}

The function ValueForPrimaryKey verifies that the destination object is not an
EOFault object before accessing its primary key value. If you don’t do this
verification, you may unnecessarily trigger a fetch of the destination object.

How Do I Share Models Across Applications?

You should put shared models in a shared framework. Enterprise Objects
Framework automatically looks for models in the frameworks used by your
application (both at run-time, and at design time in EOModeler and
InterfaceBuilder). When you use this approach, you should also put the
enterprise object classes that correspond to the model in the framework.

For Enterprise Objects Framework to find a model in a framework, that
framework must be built and installed. Further, even at design time Enterprise
Objects Framework looks at the model in the installed version of the
framework, not in the source version of the framework project. This can result
in InterfaceBuilder not seeing the changes in the source version of the model

189

How Do I Share Models Across Applications?

since it’s looking at the version in the installed framework, rather than at the one
in your source directory. You can tell Enterprise Objects Framework to look for
models in the source version of your framework projects by using the following
defaults command (executed in a shell):

defaults write NSGlobalDomain
EOProjectSourceSearchPath"($(HOME)/myProjectsDirectory1,
/myOtherProjectsDirectory)"

Then, when Interface Builder or EOModeler looks for models contained in one
of your frameworks, it first searches all project directories within
$(HOME)/myProjectsDirectory1 and /myOtherProjectsDirectory before searching for the
built versions.

How Do I Share Models Across Applications?

190

