
Classes: NXStringTable 1

NXStringTable

Inherits From: HashTable : Object

Declared In: objc/NXStringTable.h

Class Description

NXStringTable defines an object that associates a key with a value. Both the key and the
value must be character strings. For example, these keys and values might be associated in
a particular NXStringTable:

Key Value

"Yes" "Oui"
"No" "Non"

By using an NXStringTable object to store your application’s character strings, you can
reduce the effort required to adapt the application to different language markets. Interface
Builder give you direct access to NXStringTables, letting you create and initialize a string
table and connect it into your application.

A new NXStringTable instance can be created either through Interface Builder’s Classes
window or through the inherited alloc... and init... methods. Similarly, you can establish
the contents of an NXStringTable either directly through Interface Builder or
programmatically through NXStringTable methods that read keys and values that are stored
in a file (see readFromFile: and readFromStream:). Each assignment in the file can be
of either of these formats:

"key" = "value";

"key";

If only key is present for a particular assignment, the corresponding value is taken to be
identical to key.

 2 Common Classes and Functions

A valid key or value—a valid token—is composed of text enclosed in double quotes. The
text can’t include double quotes (except in an escape sequence; see table) or the null
character. It can include these escape sequences:

Escape Sequence Meaning

\a alert (bell)
\b backspace
\f formfeed
\n newline
\r carriage return
\t horizontal tab
\v vertical tab
\" double quote

The backslash is stripped from any other character; consequently, numeric escape codes
aren’t interpreted. White space between tokens is ignored. A key or value can’t exceed
MAX_NXSTRINGTABLE_LENGTH characters.

The file can also include standard C-language comments; the NXStringTable ignores them.
Comments can provide valuable information to a person who’s translating or documenting
the application.

To retrieve the value associated with a specific key, send a valueForStringKey: message
to the NXStringTable. For example, assuming myStringTable is an NXStringTable
containing the appropriate keys and values, this call would display an attention panel
announcing a problem opening a file:

NXRunAlertPanel([myStringTable valueForStringKey:"openTitle"],

 [myStringTable valueForStringKey:"openError"],

 "OK",

 NULL,

 NULL);

If you’re accessing NXStringTables through Interface Builder, please note the following.
For efficiency, use several NXStringTables—each in its own interface file—rather than one
large one. By using several NXStringTables, your application can load only those strings
that it needs at a particular time. For example, you might place all the strings associated
with a help system in an NXStringTable in one interface file and those associated with error
messages in another NXStringTable in another file. When the user accesses the help system
for the first time, the application can load the appropriate NXStringTable. Also, instantiate
only one copy of any individual NXStringTable. Don’t put an NXStringTable object in
an interface file that will be loaded more than once, since multiple copies of the same table
will result.

Classes: NXStringTable 3

Instance Variables

None declared in this class.

Method Types

Initializing and freeing an NXStringTable
– init
– free

Querying an NXStringTable – valueForStringKey:

Reading and writing elements – readFromFile:
– writeToFile:
– readFromStream:
– writeToStream:

Instance Methods

free

– free

Frees the string table and its strings. You should never send a freeObjects (HashTable)
message to an NXStringTable.

init

– init

Initializes a new NXStringTable. This is the designated initializer for the NXStringTable
class. Returns self.

readFromFile:

– readFromFile:(const char *)fileName

Reads an ASCII representation of the NXStringTable’s keys and values from fileName. The
NXStringTable opens a stream on the file and then sends itself a readFromStream:
message to load the data. See “Class Description” above for the format of the data. Returns
nil on error; otherwise, returns self.

See also: – readFromStream:

 4 Common Classes and Functions

readFromStream:

– readFromStream:(NXStream *)stream

Reads an ASCII representation of the NXStringTable’s keys and values from stream. See
“Class Description” above for the format of the data. Returns nil on error; otherwise,
returns self.

See also: – readFromFile:

valueForStringKey:

– (const char *)valueForStringKey:(const char *)aString

Searches the string table for the value that corresponds to the key aString. Returns NULL
if and only if no value is found for that key; otherwise, returns a pointer to the value.

writeToFile:

– writeToFile: (const char *)fileName

Writes an ASCII representation of the NXStringTable’s keys and values to fileName. The
NXStringTable opens a stream on the file and then sends itself a writeToStream: message.
See “Class Description” above for the format of the data. Returns nil if an error occurs;
otherwise, returns self.

See also: – writeToStream:

writeToStream:

– writeToStream:(NXStream *)stream

Writes an ASCII representation of the NXStringTable’s keys and values to stream. See
“Class Description” above for the format of the data. Returns self.

See also: – writeToFile:

