
 1 Distributed Objects

NXProxy

Inherits From: none (NXProxy is a root class.)

Conforms To: NXReference (Mach Kit)
NXTransport

Declared In: remote/NXProxy.h

Class Description

The NXProxy class defines objects that are used to stand in for real objects (descendants of
the Object class), where the real objects may exist within another process, even across a
network. To the application, the NXProxy appears to be the real object, though the real
object may not be directly accessible. The real object is known as the proxy’s
correspondent, indicating both that the objects are counterparts and that the real object is
required to respond to messages sent to the proxy.

The NXProxy class defines very few methods, because proxies respond to very few
messages directly. Instead, when an NXProxy receives a message that it doesn’t respond
to, it encodes the message, including the arguments, and forwards it to its remote
correspondent (the “real” object). The actual communication details involved in
forwarding the message are taken care of by an NXConnection object. The message is then
acted upon by the real object, and any return values and parameters are encoded and sent
back to the proxy.

An application never instantiates NXProxy objects directly; they are created for your
application when you are given a reference to an object that doesn’t exist in your address
space. The proxies vended to your application are reference-counted, so only a single
NXProxy per connection is instantiated for any real object. When you’re done with a
remote object, you should typically send it a free message to eliminate its remote proxy
locally and its local proxy remotely. This will decrement the reference-count on the proxy,
and free it if there are no outstanding references. The free message will also be forwarded
to the proxy’s correspondent, which will free it (or dereference it if the object conforms to
the NXReference protocol). An application alternatively might free the proxy’s
NXConnection, which will free all the connection’s resources, including all its proxies.

The methods defined in this class are the ones that the NXProxy class directly responds to.
Unless otherwise noted, none of these methods are forwarded to the proxy’s correspondent.

Classes: NXProxy 2

Instance Variables

None declared in this class.

Adopted Protocols

NXReference − addReference
− free
− references

NXTransport − encodeRemotelyFor: freeAfterEncoding:isBycopy:
− encodeUsing:
− decodeUsing:

Method Types

Returning the proxy’s connection
− connectionForProxy

Freeing an NXProxy instance− freeProxy

Determining if an object is a proxy
− isProxy

Specifying a protocol − setProtocolForProxy:

Instance Methods

connectionForProxy

− connectionForProxy

Returns the local NXConnection instance used by the receiving NXProxy. A client might
send messages to the returned NXConnection to be notified of invalidations (such as port
deaths), or to instruct it to begin receiving messages with a variant of the run message.

See also: − registerForInvalidationNotification (NXInvalidationNotifier in Mach Kit),
− runFromAppKit (NXConnection)

 3 Distributed Objects

free

− free

Decrements the reference count on the proxy. If there are remaining references to the proxy,
the free message isn’t forwarded across the connection and this method returns self. If there
are no remaining references, the proxy forwards the free message to its corresponding object,
invokes the freeProxy method to free the proxy locally, and returns nil .

freeProxy

− freeProxy

Frees the receiving NXProxy instance. You generally shouldn’t send this message; it isn’t
forwarded across the connection, so remote NXConnection objects may still have
references to the freed NXProxy and it won’t get removed from remote hashtables. If you
want to free the local proxy and eliminate outstanding references, the real object should
obey the NXReference protocol; then when you send the object a free message, the proper
dereferencing (and perhaps freeing) will occur both locally and remotely.

isProxy

− (BOOL)isProxy

Returns YES to indicate that the receiver is an NXProxy rather than a normal object. This
method is also implemented in a category of the Object class (where it returns NO), so you
can send this message to any object to determine whether it is a real object or a proxy.

setProtocolForProxy:

− setProtocolForProxy:(Protocol *)proto

Formally establishes the messages and arguments that the proxy will forward to its
corresponding object. It’s a good idea to send this message to an NXProxy immediately
after it is vended to your application.

If you don’t send this message to a proxy (and therefore a protocol isn’t established), at
run-time the proxy doesn’t know a message’s argument types, and can’t immediately
encode the arguments. It must then send a remote message to its corresponding object to
get the argument types. This round trip increases the cost of the message. You should
therefore send the setProtocolForProxy: message to the proxy to cache the argument
types, alleviating the need for the initial round trip.

Classes: NXProxy 4

If you send a message that isn’t in the established protocol, the round trip to establish the
argument types will still be performed. You must take care that the argument types in the
given protocol proto accurately reflect the argument types of the methods in the proxy’s
corresponding object; otherwise the arguments will not be correctly encoded. Returns self.

