
 1 Distributed Objects

NXConnection

Inherits From: NXInvalidationNotifier (Mach Kit) : Object

Conforms To: NXSenderIsInvalid
NXReference (NXInvalidationNotifier)

Declared In: remote/NXConnection.h

Class Description

The NXConnection class is used to establish a connection that allows objects in one process
to send messages to objects in another process, and it defines instances that manage the
local side of such a connection.

To establish a connection, some object must first be registered with the Network Name
Server using registerRoot:withName:. This creates an NXConnection and makes the
given root object available (through connectToName:) to any application that knows the
registered name.

NXConnection objects can also be automatically created by the system. When a proxy is
vended to an application, the application doesn’t receive a proxy to the proxy. Instead, a
new connection is formed if necessary, and the application receives a proxy to the original
object. The delegate method connection:didConnect: is used to inform the application of
the automatic creation of new connections.

An NXConnection maintains a table containing an NXProxy object for every local object
that has been vended. It also maintains a table of remote NXProxy objects; these proxies
are used to send messages to real objects that exist in other applications. A local NXProxy
is created automatically by an NXConnection when a local object is vended to another
application. Similarly, a remote NXProxy is created automatically when a remote object is
vended to the NXConnection; this remote proxy forwards the messages it receives to its
corresponding real object, with the effect that it generally appears to be the real object to
the local application.

Classes: NXConnection 2

Running a Connection

When a connection is created, it is able to originate messages, and it sends these messages
out to a port known as its out-port (available though the outPort method). Having sent a
message, the connection will generally need to receive a reply message, which comes in
over the connection’s in-port. While it awaits this reply, the connection may dispatch
messages in response to other messages that appeared on its in-port. However, once the
desired reply is found, the connection will return its thread of control back to the caller, and
the connection won’t be able to receive unsolicited messages. In order to wait on
unsolicited messages, a connection must be run, a process that involves waiting for
messages on its in-port. The connection’s thread is unavailable for other tasks while it runs.
For this reason, there are a variety of run methods that allow a connection to run
concurrently from the event loop, in its own thread, or for a limited period of time. The run
methods are:

− run
− runWithTimeout:
− runInNewThread
− runFromAppKit
− runFromAppKitWithPriority:

A connection can receive remote messages from connections running in other threads or
processes, and it will queue up these messages and dispatch them locally from its own
thread. However, you cannot run a connection in one thread and send outgoing two-way
messages over that connection from another thread; the process of running the connection
has the connection’s thread waiting on the in-port, so this port is not available for a return
message for the caller’s thread.

Instance Variables

id delegate

delegate The connection’s delegate

Adopted Protocols

NXSenderIsInvalid − senderIsInvalid:

 3 Distributed Objects

Method Types

Establishing a connection + connectToName:
+ connectToName:fromZone:
+ connectToName:onHost:
+ connectToName:onHost:fromZone:
+ connectToPort:
+ connectToPort:fromZone:
+ connectToPort:withInPort:
+ connectToPort:withInPort:fromZone:

Ascertaining connections + connections:

Registering an object + registerRoot:
+ registerRoot:fromZone:
+ registerRoot:withName:
+ registerRoot:withName:fromZone:

Eliminating references + removeObject:

Invalidation + unregisterForInvalidationNotification:

Statistics + messagesReceived

Timeouts + setDefaultTimeout:
+ defaultTimeout
− setInTimeout:
− setOutTimeout:
− inTimeout
− outTimeout

Zone usage + setDefaultZone:
− defaultZone

Assigning a delegate − setDelegate:
− delegate

Returning port objects − inPort
− outPort

Getting and setting the root object
− rootObject
− setRoot:

Imported and exported objects − remoteObjects
− localObjects

Returning a proxy − getLocal:
− newRemote:withProtocol:

Classes: NXConnection 4

Running a connection − run
− runWithTimeout:
− runInNewThread
− runFromAppKit
− runFromAppKitWithPriority:

Freeing an NXConnection instance
− free

Class Methods

connections:

+ connections:(List *) aList

Adds all the application’s NXConnections to the supplied list aList (but doesn’t delete its
prior contents). A reference is added to every connection in the list. Returns aList.

connectToName:

+ (NXProxy *)connectToName:(const char *)rootName

Returns an NXProxy to the object registered with the Network Name Server as rootName.
This method is a cover for connectToName:onHost:fromZone: with a null host-name and
using the NXConnection class’s default zone.

connectToName:fromZone:

+ (NXProxy *)connectToName:(const char *)rootName fromZone:(NXZone *)zone

Returns an NXProxy to the object registered with the Network Name Server as rootName.
This method is a cover for connectToName:onHost:fromZone: with a null host-name and
using the specified zone zone.

connectToName:onHost:

+ (NXProxy *)connectToName:(const char *)rootName
onHost:(const char *)hostName

Returns an NXProxy to the object registered with the Network Name Server as rootName.
This method is similar to connectToName:onHost:fromZone: using the NXConnection
class’s default zone.

 5 Distributed Objects

connectToName:onHost:fromZone:

+ (NXProxy *)connectToName:(const char *)rootName
onHost:(const char *)hostName
fromZone:(NXZone *)zone

Returns an NXProxy to the object registered with the Network Name Server as rootName,
or nil if no connection can be established. Functionally, this method can be thought to
return that root object. If hostName is explicitly specified, this method queries the Network
Name Server on hostName for the object registered under rootName. If hostName is
NULL, this method queries the Network Name Server on the local host. If hostName is
“*”, this method will query the Network Name Server on each machine on the subnet until
it finds an object registered under rootName. Note that querying each machine on a subnet
can take a bit of time, so if the host is known, it should be specified.

In addition to creating and returning an NXProxy, this method creates an NXConnection.
If this connection will be used to receive remote messages (as is the common case), you
will need to run it by sending it a variation of the run message. A connection that isn’t
run will dispatch incoming messages only while it awaits a callback in response to a locally
initiated message, so unsolicited remote messages will not be handled in a timely manner.
To get the connection of the returned proxy (in order to run it), use NXProxy’s
connectionForProxy method.

If zone is specified, the objects associated with the new connection will be allocated
from that zone; if zone is NULL they will be allocated from the NXConnection class’s
default zone.

See also: + registerRoot:withName:, − runFromAppKit ,
− connectionForProxy (NXProxy)

connectToPort:

+ (NXProxy *)connectToPort:(NXPort *)aPort

Returns an NXProxy to the root object for the connection identified with the port
aPort, or nil if no connection can be established. This method is a cover for
connectToPort:fromZone: using the NXConnection class’s default zone.

connectToPort:fromZone:

+ (NXProxy *)connectToPort:(NXPort *)aPort fromZone:(NXZone *) zone

Returns an NXProxy to the root object for the connection identified with the port aPort, or
nil if no connection can be established. You can use this method to establish a connection

Classes: NXConnection 6

based on a port you are vended. In other words, you can use this method to establish a
connection based on another connection’s out-port that is handed to your application.

If zone is specified, the objects associated with the new connection will be allocated from that
zone; if zone is NULL they will be allocated from the NXConnection class’s default zone.

See also: + connectToName:onHost:, − outPort, + connectToPort:withInPort:

connectToPort:withInPort:

+ (NXProxy *)connectToPort:(NXPort *)aPort withInPort: (NXPort *)inPort

Returns an NXProxy to the root object for the connection identified with the port aPort, or
nil if no connection can be established. This method is a cover for
connectToPort:withInPort:fromZone: using the NXConnection class’s default zone.

connectToPort:withInPort:fromZone:

+ (NXProxy *)connectToPort:(NXPort *)aPort
withInPort: (NXPort *)inPort
fromZone:(NXZone *)zone

Returns an NXProxy to the root object for the connection identified with the port aPort, or
nil if no connection can be established. The supplied port inPort will be used to receive
incoming messages.

If zone is specified, the objects associated with the new connection will be allocated from that
zone; if zone is NULL they will be allocated from the NXConnection class’s default zone.

See also: + connectToName:onHost:, + connectToPort:

defaultTimeout

+ (int)defaultTimeout

Returns the default connection timeout interval in milliseconds. The interval is 15000
milliseconds unless set to some other value by setDefaultTimeout:. A connection will
initially use the default timeout interval for both its input and output ports; however, these
values can be changed for any port using the setInTimeout: or setOutTimeout: method.

 7 Distributed Objects

defaultZone

+ (NXZone *)defaultZone

Returns the default zone for all connections. If a zone isn’t specified when a connection is
created, memory (and objects) associated with the connection will be allocated from this
zone. The default zone is initially set to NXDefaultMallocZone(), but can be set to another
zone using setDefaultZone:.

messagesReceived

+ (int)messagesReceived

Returns the number of messages received by all connections in the application. This value
can be helpful when you attempt to optimize an application’s performance by minimizing
remote messages.

registerRoot:

+ registerRoot:anObject

Establishes anObject as a root object, creating a new NXConnection if necessary.
This method is a cover for registerRoot:fromZone: using the NXConnection class’s
default zone.

registerRoot:fromZone:

+ registerRoot:anObject fromZone:(NXZone *)zone

Establishes anObject as a root object, creating a new NXConnection if necessary. anObject
isn’t advertised by the Network Name Server, though you can allow other objects to access
it by vending its in-port to private clients, who can then connect to that port using
connectToPort:. Returns anObject’s NXConnection, which must then receive a variant of
the run message to receive unsolicited remote messages and forward them to anObject.

If zone is specified, the objects associated with the new connection will be allocated
from that zone; if zone is NULL they will be allocated from the NXConnection class’s
default zone.

See also: + registerRoot:withName:, − runFromAppKit , − inPort

Classes: NXConnection 8

registerRoot:withName:

+ registerRoot:anObject withName:(const char *)name

Establishes anObject as a root object, creating a new NXConnection if necessary. This
method is a cover for registerRoot:withName:fromZone: using the NXConnection
class’s default zone.

registerRoot:withName:fromZone:

+ registerRoot:anObject
withName:(const char *)name
fromZone:(NXZone *)zone

Establishes anObject as a root object, creating a new NXConnection if necessary.
anObjectis advertised by the Network Name Server with the name name. Returns
anObject’s NXConnection, which must then receive a variant of the run message to
pass remote messages to anObject.

If zone is specified, the objects associated with anObject’s connection will be allocated
from that zone; if zone is NULL they will be allocated from the NXConnection class’s
default zone.

See also: − runFromAppKit

removeObject:

+ removeObject:anObject

Removes all proxies to anObject. If anObject has been vended to clients, the clients hold
proxies for it which ought to be removed before anObject is destroyed. You will therefore
probably need to invoke removeObject: in anObject’s free method to avoid dangling
references and memory leaks. Returns self.

setDefaultTimeout:

+ setDefaultTimeout:(int)interval

Sets the default connection time interval to interval. A connection initially uses this
interval for both its input and output ports; however, these values can be changed for any
port using the setInTimeout: or setOutTimeout: method.

See also: + defaultTimeout

 9 Distributed Objects

setDefaultZone:

+ setDefaultZone:(NXZone *)zone

Sets the default zone for all connections. If a zone isn’t specified when a connection is
created, memory (and objects) associated with the connection will be allocated from this
zone. The default zone is initially set to NXDefaultMallocZone().

See also: + defaultZone

unregisterForInvalidationNotification:

+ unregisterForInvalidationNotification: anObject

Unregisters anObject so it won’t be notified of the invalidation of any of its connections.

See also: − unregisterForInvalidationNotification: (NXInvalidationNotifier),
− registerForInvalidationNotification: (NXInvalidationNotifier)

Instance Methods

delegate

− delegate

Returns the connection’s delegate.

free

− free

Removes a reference to the connection. If outstanding references remain, the
NXConnection isn’t actually freed and this method returns self. If no references remain,
this method frees the NXConnection and the proxies it maintains and returns nil .

getLocal:

− getLocal:anObject

Returns the local NXProxy for anObject, or nil if anObject isn’t represented by a local
proxy on the receiving NXConnection. Vending anObject’s local proxy is essentially the
same as vending anObject itself except that by vending the local proxy you determine the
connection over which anObject is referenced.

Classes: NXConnection 10

inPort

− (NXPort *)inPort

Returns the connection’s in-port, the NXPort used by the connection to receive
incoming messages.

inTimeout

− (int)inTimeout

Returns the timeout interval (in milliseconds) for incoming messages. A value of −1
means the connection will wait forever for incoming messages.

See also: − setInTimeout:, − outTimeout

localObjects

− (List *) localObjects

Creates and returns a List of the proxies to local objects vended by the connection. The
proxies belong to the connection and should not be altered, but the returned List should be
freed by the sender of this message.

newRemote:withProtocol:

− newRemote:(unsigned int)anObject withProtocol: (Protocol *)proto

Creates and returns a remote proxy for the local object identified by anObject. This proxy
can then be given to other objects to vend anObject over the receiving connection.
anObject is the id of the local object, though you must cast it to an unsigned integer to
satisfy the implementation. proto, if non-NULL, is used to specify the protocol that
anObject responds to; performance is increased if the protocol is specified because a
round-trip message to fetch argument types (for encoding purposes) is obviated.

outPort

− (NXPort *)outPort

Returns the connection’s out-port, the NXPort object used to identify the remote port (and
connection) that the receiving connection communicates with. This NXPort can be used to
create a new connection by connectToPort:.

 11 Distributed Objects

outTimeout

− (int)outTimeout

Returns the timeout interval (in milliseconds) for outgoing messages. A value of −1 means
outgoing messages will never time out.

See also: − setOutTimeout:, − inTimeout

remoteObjects

− (List *)remoteObjects

Creates and returns a List of the proxies to remote objects maintained by the receiving
connection. The proxies belong to the connection and should not be altered, but the
returned List should be freed by the sender of this message. If the connection becomes
invalid, objects in the application will no longer be able to send remote messages to the
objects in this List.

See also: − localObjects

rootObject

− rootObject

Returns the connection’s root object, which is the object returned (by way of a proxy) to
other applications when they connect to the NXConnection.

See also: + registerRoot:withName:, − setRoot

run

− run

Runs the connection by waiting for messages and dispatching them. This method runs in
the same thread that it was invoked from, and it doesn’t return until the connection is
invalidated. If the connection becomes invalid, this method returns self. This method is a
cover for runWithTimeout: with an argument of −1.

See also: − runFromAppKit , − runInNewThread , − runWithTimeout:

Classes: NXConnection 12

runFromAppKit

− runFromAppKit

Runs the connection by waiting for messages and dispatching them. This method adds the
connection’s port to those that the DPS client library monitors for messages, at a priority of
NX_RUNMODALTHRESHOLD. When a message arrives over the connection, it will be
handled between events. The connection isn’t really run concurrent to the application, but
the effect is close enough to concurrency for most uses.

This method is typically the best way to run a connection that will dispatch messages to
objects that use the Application Kit or Window Server, since these objects cannot be
messaged from multiple threads. (Note, however, that the connection run from the DPS
client library can communicate with connections running in separate threads.)

This method immediately returns self.

See also: − run , − runFromAppKitWithPriority: , − runInNewThread ,
− runWithTimeout:

runFromAppKitWithPriority:

− runFromAppKitWithPriority: (int)priority

Runs the connection by waiting for messages and dispatching them. This method adds the
connection’s port to those that the DPS client library monitors for messages, at a priority of
priority. Otherwise this method is identical to runFromAppKit .

runInNewThread

− runInNewThread

Runs the connection by waiting for messages and dispatching them. This method forks a
new thread that invokes the run method; it then immediately returns self. All messages sent
to this connection are dispatched by the new thread. Because the Window Server and
Application Kit aren’t thread-safe, you shouldn’t send messages to a connection in a
separate thread that call upon them. If you need some concurrency in a connection that will
invoke the Window Server or Application Kit, you should use runFromAppKit .

See also: − runFromAppKit , − run , − runWithTimeout:

 13 Distributed Objects

runWithTimeout:

− runWithTimeout: (int)timeout

Runs the connection by waiting for messages and dispatching them. This method runs for
timeout milliseconds or until the connection is invalidated before returning self. If timeout
is (-1) the connection will run forever or until it is invalidated, whichever occurs first.

See also: − runFromAppKit , − runInNewThread , − run

senderIsInvalid:

− senderIsInvalid:sender

Responds to a message that the connection’s port has died. This method invalidates the
connection, invalidates the proxies to remote objects (which can no longer be accessed),
and sends a free message to all the local objects vended by the connection that conform to
the NXReference protocol, thereby giving up the connection’s references to these objects.
sender is an instance of a private port management class; your code shouldn’t send
messages to it.

setDelegate:

− setDelegate:anObject

Sets the connection’s delegate. Returns self.

setInTimeout:

− setInTimeout:(int)timeout

Sets the connection’s timeout for incoming messages to timeout milliseconds. This is the
amount of time the connection will wait for return parameters, return values, callbacks, and
the like. If a message isn’t received before the timeout, an exception will be raised. Setting
timeout to −1 results in an infinite timeout interval. Returns self.

See also: + setDefaultTimeout:, − setOutTimeout:

Classes: NXConnection 14

setOutTimeout:

− setOutTimeout:(int)timeout

Sets the connection’s timeout for outgoing messages to timeout milliseconds. This is the
amount of time the connection will wait for a message send to succeed. If an outgoing
message can’t be sent before the timeout, an exception will be raised. Setting timeout to
−1 results in an infinite timeout interval, and setting it to 0 has the effect that a message will
be delivered only if the receiver’s port has room. Returns self.

See also: + setDefaultTimeout, − setInTimeout

setRoot:

− setRoot:anObject

Sets the connection’s root object to anObject. This method should be invoked only for a
connection that doesn’t have a root object.

See also: − rootObject

Methods Implemented By The Delegate

connection:didConnect:

− connection:(NXConnection *)conn didConnect:(NXConnection *)newConn

Notifies conn’s delegate that a new connection has been established using conn’s input port.
newConn is the NXConnection object that was just created. This method must return the
NXConnection object that should be used, which is typically newConn; if another
connection is returned, the application is responsible for freeing newConn.

