
1

NSPPL

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSPPL.h

Class Description

The NSPPL (Persistent Property List) class allows you to incrementally store property lists to and retrieve
them from disk. A property list organizes data into named values and lists of values using four classes:
NSDictionary, NSString, NSData, and NSArray. A property list is an abstract concept whose
implementation can vary depending on context. For example, while NSPPL stores property lists in a binary
format, in other parts of NEXTSTEP (such as the defaults system) property lists are represented in an ASCII
format. NSPPL is only one mechanism for creating and storing property lists; for a discussion of other
approaches, see the section “Alternatives to NSPPL.”

The four classes used in property lists give you the means to produce data that is meaningfully structured,
transportable, storable, and accessible, but still as lightweight as possible. You represent basic data types
(such as integers and text) with NSString, and binary data with NSData. You use NSDictionary and
NSArray to build complex data structures. In an NSDictionary, data is structured as key-value pairs, where
the key is a string, and the value can be an NSString, an NSArray, an NSData, or another NSDictionary. In
an NSArray, data is structured as a collection of objects that can be accessed by index. An NSArray in an
NSPPL can contain NSStrings, NSDatas, NSDictionaries, and other NSArrays.

For example, this code excerpt creates an NSPPL, PersonalInfo.ppl, that stores a person’s name, address,
and children’s names. The example uses combinations of NSString, NSArray, and NSDictionary objects.
All data is accessed through a root NSDictionary in which the person’s name is an NSString, the children’s
names are stored in an NSArray, and the address is stored in an NSDictionary containing NSStrings.

NSPPL *ppl;

NSString *pplPath;

NSMutableDictionary *root;

NSString *name = @"Chris Smith";

NSArray *childArray;

NSMutableDictionary *addressDict;

childArray = [NSArray arrayWithObjects:@"Sam", @"Bettina",

 @"Eloise", nil];

addressDict = [NSMutableDictionary dictionaryWithCapacity:4];

/* Add data to addressDict. */

2

 NSPPL

[addressDict setObject:@"955 Elm Street" forKey:@"street"];

[addressDict setObject:@"Midland" forKey:@"city"];

[addressDict setObject:@"Kansas" forKey:@"state"];

[addressDict setObject:@"19067" forKey:@"zipcode"];

pplPath = @"PersonalInfo.ppl";

/* Read the NSPPL; if it doesn’t exist, create it. */

ppl = [NSPPL pplWithPath:pplPath create:YES readOnly:NO];

if (!ppl) {

 NSLog(@"Couldn't open or create %@", pplPath);

 exit(1);

 }

/* Get ppl’s root dictionary. */

root = [ppl rootDictionary];

/* Through the root dictionary, add data to ppl. */

[root setObject:name forKey:@"name"];

[root setObject:addressDict forKey:@"address"];

[root setObject:childArray forKey:@"children"];

/* Save ppl. */

[ppl save];

Structuring a Persistent Property List

As the above code excerpt illustrates, an NSPPL maintains a root dictionary that’s used as the point of
departure for whatever other objects or data structures you attach to it. How you structure your data within
that dictionary is a matter of personal preference. For example, you can set up an NSDictionary of
NSDictionaries, an NSDictionary containing NSArrays, and so on. The solution you choose is dependent
only on what works best for your data.

How Persistent Property Lists Work

When you instantiate an NSPPL object, a directory is created that has the name you specify. This directory
contains two files: store and log. store and log work in conjunction to ensure that any changes you make
to your NSPPL can be rolled back in the case of a failure. While you’re modifying a persistent property list,
the changes are recorded in store and added to log. log maintains the property list’s old state so that if a
failure occurs, the changes made in store can be rolled back.

Persistent property lists are atomic, meaning that if a save operation fails, the NSPPL reverts to its
previously saved state. An NSPPL is never left in an intermediate state. Changes to an NSPPL are applied
incrementally (in memory, but not to disk) as you make them and are reflected in the store and log files. A
save operation has the effect of committing the changes you’ve made to disk.

If an NSPPL becomes damaged (for example, if there’s a bad bit on the disk), attempting to access it raises
the exception NSInternalInconsistencyException. If this happens, you can retrieve the NSPPL by catching
the exception and using the NSException userInfo method to get the userInfo NSDictionary. The userInfo

3

NSDictionary usually has the NSPPL available under the key “NSPPL”, which you can use to rebuild your
persistent property list (when possible).

Alternatives to NSPPL

You can store a property list in three different ways: as an ASCII file, in a serialized binary format, and as
a persistent property list (NSPPL). Each of these approaches has its advantages. For example, an ASCII
property list is human-readable, but access is slow. Serialization, which stores property lists in a binary
format, offers faster access than an ASCII property list and it’s also lazy, meaning that you can read parts
of files without accessing the whole thing. But serialization doesn’t allow you to modify your data and then
only re-serialize the part that changed.

Like serialization, a persistent property list stores data in a binary format, provides fast access, and is lazy.
It also allows you to make incremental changes to an NSPPL (even one that contains tens of megabytes of
data), while still ensuring that your data is never corrupted. In this sense, an NSPPL is analogous to a
database. Because of their ability to incrementally store and retrieve data, NSPPLs are particularly
well-suited for working with large amounts of data (that is, data that has several elements, that occupies a
large number of bytes, or both).

Overview of Methods

The methods in NSPPL break down into three general categories:

• Basic methods
• PPLData methods
• Performance tuning methods

You use the basic methods to perform most NSPPL operations, such as creating an NSPPL, changing its
contents, and saving your changes. Basic methods include pplWithPath:create:readOnly: ,
initWithPath:create:readOnly: , rootDictionary , and save. These are the methods you use the majority
of the time.

The PPLData methods provide read-only snapshots of an entire NSPPL as an NSData object. This allows
you to pass NSPPLs across processes; passing NSPPLs as binary data is very fast. Wherever a method has
the keyword ...PPLData (for example, pplWithPath:fromPPLData:readOnly:), you use the
contentsAsData method to return the contents of an NSPPL as an NSData object. For example:

NSPPL *originalPPL; /* Assume this exists. */

NSString *aPath; /* Assume this exists. */

NSPPL *newPPL = [NSPPL pplWithPath:aPath

 fromPPLData:[originalPPL contentsAsData] readOnly:NO];

The PPLData methods include pplWithPath:fromPPLData:readOnly: ,
initWithPath:fromPPLData:readOnly: , and propertyListWithPPLData: . These methods provide a
fast mechanism for reading and passing read-only copies of an NSPPL. For example, you can have one

4

 NSPPL

process continually updating the contents of an NSPPL as multiple read-only copies of the NSPPL are
distributed.

The performance tuning methods, flush, pushChangesToDisk, detachFromFile and setCacheHalfLife:,
let you exercise finer-grained control over the behavior of an NSPPL. You can use flush and
pushChangesToDisk in conjunction with save to speed up save operations. detachFromFile ensures that
no more changes are written to disk; this is useful if certain error conditions occur such as running out of
disk space or if an NSPPL becomes damaged. setCacheHalfLife: lets you fine-tune the trade-offs between
memory usage and speed.

Method Types

Creating an NSPPL object + pplWithPath:create:readOnly:
+ pplWithPath:fromPPLData:readOnly:
– initWithPath:create:readOnly:
– initWithPath:fromPPLData:readOnly:

Passing and accessing data + propertyListWithPPLData:
– contentsAsData
– rootDictionary

Saving changes to an NSPPL – flush
– pushChangesToDisk
– save

Tuning NSPPL performance – detachFromFile
– setCacheHalfLife:

Class Methods

pplWithPath:create:readOnly:
+ (NSPPL *)pplWithPath: (NSString *)path

create:(BOOL)createFlag
readOnly:(BOOL)readOnlyFlag

Given a path, reads the NSPPL stored in it or creates a new one, where readOnlyFlag indicates whether the
NSPPL can be changed, and createFlag indicates whether the NSPPL should be created if it doesn’t already
exist. Returns the new NSPPL object or nil if the file can’t be read.

See also: + pplWithPath:fromPPLData:readOnly: , + propertyListWithPPLData:

5

pplWithPath:fromPPLData:readOnly:
+ (NSPPL *)pplWithPath: (NSString *)path

fromPPLData: (NSData *)pplData
readOnly:(BOOL)readOnlyFlag

Given a path, reads or creates an NSPPL that is identical in every way, except for mutability, to the NSPPL
represented by pplData. readOnlyFlag indicates whether the new NSPPL can be modified; the new NSPPL
doesn’t have to have the same mutability or immutability as the NSPPL specified in the pplData argument.
Returns the new NSPPL object or nil if the file can’t be read.

An NSPPL is saved when it’s created; you don’t need to explicitly save it. You can use this method to make
local back ups of a remote NSPPL.

When you use this method or any of the other NSPPL methods that take NSData arguments, you use
contentsAsData to return a read-only snapshot of an NSPPL as an NSData object, for example:

NSPPL *originalPPL; /* Assume this exists. */

NSString *aPath; /* Assume this exists. */

NSPPL *pplCopy = [NSPPL pplWithPath:aPath

 fromPPLData:[originalPPL contentsAsData] readOnly:NO];

See also: + pplWithPath:create:readOnly: , + propertyListWithPPLData:

propertyListWithPPLData:
+ (NSDictionary *)propertyListWithPPLData: (NSData *)pplData

Returns an immutable root dictionary that gives you access to a snapshot of the NSPPL specified in the
pplData argument.

This method is similar to rootDictionary , in that both methods return a root dictionary object that gives you
access to an NSPPL. However, while rootDictionary returns an NSMutableDictionary that allows you to
modify the associated NSPPL (so long as the NSPPL itself is mutable), propertyListWithPPLData:
always returns an immutable NSDictionary whose associated NSPPL can’t be modified. This method is a
very fast way of getting a read-only snapshot of an NSPPL.

See also: + pplWithPath:fromPPLData:readOnly: , + pplWithPath:create:readOnly: ,
– rootDictionary

6

 NSPPL

Instance Methods

contentsAsData
– (NSData *)contentsAsData

Returns an NSData object containing a read-only snapshot of an entire NSPPL, that can then be passed to
another process. Passing NSPPLs as binary data is very fast; see the section “Overview of Methods” in the
class description for more information.

See also: – rootDictionary , –propertyListWithPPLData: , – initWithPath:fromPPLData:readOnly:

detachFromFile
– (void)detachFromFile

Guarantees that no more changes will be written to disk. After this method is invoked, proxies can be
released but not accessed. This method is invoked by dealloc. You can use this method to intervene in
certain error conditions: For example, if your NSPPL becomes damaged, you can use this method to disable
writing to disk. You can then delete the damaged NSPPL and regenerate it (when possible). You should only
use this method if you’re sure where proxies are when the file is being detached.

flush
– (void)flush

Flushes changes to disk. You can use flush and save in combination to achieve maximum performance. save
is a costly operation that writes the current state of the NSPPL to disk and makes the necessary adjustments
to the log and store files; flush is faster and it accomplishes much of the work that would otherwise have
to be performed by save. If you use flush at regular intervals and save only as needed, your save operations
will be faster since flush does much of the work.

The primary difference between flush and save is that if your program fails, your NSPPL is guaranteed only
to revert to the previous save, not to the previous flush.

Like save, flush guarantees that nothing is done if no change was made to your NSPPL. All mutable
container objects from the NSPPL that you have not retained are invalid after this method is invoked.

See also: – pushChangesToDisk

7

initWithPath:create:readOnly:
– (id)initWithPath: (NSString *)path

create:(BOOL)createFlag
readOnly:(BOOL)readOnlyFlag

Given a path, reads the NSPPL stored in it or creates a new one, where readOnlyFlag indicates whether the
NSPPL can be changed, and createFlag indicates whether the NSPPL should be created if it doesn’t already
exist. Returns the new NSPPL or nil if the file can’t be read.

See also: – initWithPath:fromPPLData:readOnly:

initWithPath:fromPPLData:readOnly:
– (id)initWithPath: (NSString *)path

fromPPLData: (NSData *)pplData
readOnly:(BOOL)readOnlyFlag

Given a path, reads or creates an NSPPL that is identical in every way except for mutability to the NSPPL
represented by pplData. readOnlyFlag indicates whether the new NSPPL can be modified; the new NSPPL
doesn’t have to have the same mutability or immutability as the NSPPL specified in the pplData argument.
Returns nil if the file can’t be read. An NSPPL is saved when it’s created; you don’t need to explicitly save
it.

See also: – initWithPath:create:readOnly:

pushChangesToDisk
– (void)pushChangesToDisk

Ensures that the disk image reflects the current state of the NSPPL. Unlike flush and save this method has
no effect on non-retained objects, and no notification is posted.

rootDictionary
– (NSMutableDictionary *)rootDictionary

Returns an NSPPL’s root dictionary, through which you can modify the NSPPL (so long as the NSPPL itself
is mutable; if it isn’t, this method returns an immutable NSDictionary). You interact with an NSPPL through
its root dictionary, which provides access to all of the NSPPL’s other data structures.

Whenever the root dictionary is first modified after a flush or a save operation, this method posts the
NSPPLBecameDirty notification with the NSPPL that was modified to the default notification center.

8

 NSPPL

NSMutableDictionaries returned from this method have the same validity as if the dictionary were in
memory, except that they do not survive beyond a save or flush operation unless they have been retained or
copied.

If you store an NSMutableDictionary, release all references to it, and retrieve it, a proxy is returned rather
than the original dictionary. However, if an NSMutableDictionary is stored and retained, you don’t get a
proxy when you retrieve it—you get the actual object.

See also: – contentsAsData

save
– (void)save

Saves any changes you made to the NSPPL to disk and makes the necessary adjustments to the log and store
files. If save returns, it means that the changes have been reflected in the NSPPL. This method guarantees
that nothing is done if no change was made. If a save operation succeeds, this method posts the
NSPPLSaved notification with the NSPPL that was saved to the default notification center.

You can use save in combination with flush to achieve maximum performance. Use flush at regular
intervals and save as needed. flush is a faster and less comprehensive operation than save, and it also makes
subsequent save operations faster since flush does much of the work that would otherwise have to be
performed by save. The primary difference between flush and save is that if your program fails, your
NSPPL is guaranteed only to revert to the previous save, not to the previous flush.

As with flush, all mutable objects that you have not retained are invalid after this operation.

See also: – flush, –pushChangesToDisk

setCacheHalfLife:
– (void)setCacheHalfLife:(NSTimeInterval)halfLife

Sets the time interval after which cached items are written to disk. Cached items have a 50% chance of being
written out after halfLife seconds. If halfLife is zero, cached items are always flushed when the cache is
refreshed. If halfLife is less than zero, caching is disabled and can’t be re-enabled. This method allows you
to fine-tune the trade-offs between memory usage and speed.

