1%e Objectroe-C Compiler

The Objective-C compiler is based on version 2.7.2 of the GNU C compiler, an
ANSI-standard C compiler produced by the Free Software Foundation. The 2.7.2 compiler
has been modified and extended as a compiler for the Objective-C language by NeXT
Software, Inc. This document describes how to compile a C program using the Objective-C
compiler.

This chapter is a modified version of documentation provided by the Free Software
Foundation; see the section “Legal Considerations” at the end of this document for
important related information.

This chapter Copyrighil 1988, 1989, 1992, 1993, 1994, 1995 by Free Software
Foundation, Inc. and Copyright 1991-1996 by NeXT Software, Inc.

The following sections describe command options available when compiling a C program,
incompatibilities between C as interpreted by this compiler and non-ANSI versions of C,
GNU extensions to the C language, and implementation-specific details related to using C.

For a description of the Objective-C language,@bjct-Oriented Programming and the
Objective-C Language

Which Language?

The C, C++, Objective-C, and Objective-C++ versions of the compiler are integrated; the
GNU C compiler can compile programs written in C, C++, or Objective-C. Source code for
any of these languages can be ASCII text or Rich Text Format; the preprocessor strips out
all RTF directives, leaving only ASCII text for the compiler itself.

The Objective-C Compiler 1

“GCC"is acommon shorthand term for the GNU C compiler. This is both the most general
name for the compiler, and the name used when the emphasis is on compiling C programs.

When referring to C++ compilation, the compiler is occasionally referred to as “G++".
Since there is only one compiler, it is also accurate to call it “GCC” no matter what the
language context.

We use the name “GNU CC” to refer to the compilation system as a whole, and more
specifically to the language-independent part of the compiler. For example, we refer to the
optimization options as affecting the behavior of “GNU CC” or sometimes just “the
compiler”.

G++ is acompiler not merely a preprocessor. G++ builds object code directly from your
C++ program source. There is no intermediate C version of the program. (By contrast, for
example, some other implementations use a program that generates a C program from your
C++ source.) Avoiding an intermediate C representation of the program means that you get
better object code, and better debugging information. The GNU debugger, GDB, works
with this information in the object code to give you comprehensive C++ source-level
editing capabilities. SeEhe GNU Source-Level Debugder more information.

GNU CC Command Options

When you invoke GNU CC, it normally does preprocessing, compilation, assembly and
linking. The “overall options” allow you to stop this process at an intermediate stage. For
example, thec option says not to run the linker. Then the output consists of object files
output by the assembler.

Other options are passed on to one stage of processing. Some options control the
preprocessor and others the compiler itself. Yet other options control the assembler and
linker; most of these are not documented here, since you rarely need to use any of them.

Most of the command line options that you can use with GNU CC are useful for C
programs; when an option is only useful with another language (usually C++), the
explanation says so explicitly. If the description for a particular option does not mention a
source language, you can use that option with all supported languages.

See “Compiling C++ Programs” for a summary of special options for compiling C++
programs.

2 The Objective-C Compiler

Thegccprogram accepts options and file names as operands. Many options have
multiletter names; therefore multiple single-letter options maye grouped:dr is very
different from-d -r.

You can mix options and other arguments. For the most part, the order you use doesn't
matter. Order does matter when you use several options of the same kind; for example, if
you specify-L more than once, the directories are searched in the order specified.

Many options have long names starting wiftbr with -W—for example;fforce-mem,
-fstrength-reduce, -Wformat and so on. Most of these have both positive and negative
forms; the negative form effoo would be-fno-foo. This manual documents only one of
these two forms, whichever one is not the default.

Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly
and linking, always in that order. The first three stages apply to an individual source file,
and end by producing an object file; linking combines all the object files (those newly
compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:

file.c C source code which must be preprocessed.

file.i C source code which should not be preprocessed.

file.ii Objective-C++ or C++ source code which should not be preprocessed.
file.m Objective-C source code. Note that you must link with the lidilaopjc.a to

make an Objective-C program work.

file.mm
file.M Mixed Objective-C and C++ source code.

file.h C header file (not to be compiled or linked).

file.C

file.cc

file.cxx

file.cpp C++ source code which must be preprocessed. Note tlatxirthe last two
letters must both be literally Likewise,.C refers to a literal capital C.

file.s Assembler code.

GNU CC Command Options 3

4

file.S

other

Assembler code which must be preprocessed.

An object file to be fed straight into linking. Any file name with no recognized
suffix is treated this way.

You can specify the input language explicitly with tkeoption:

-X language

-X none

-ofile

The Objective-C Compiler

Specify explicitly thdanguagefor the following input files (rather than letting
the compiler choose a default based on the file name suffix). This option
applies to all following input files until the next option. Possible values for
languageare: ¢ objective-c c++ c-header cpp-output c++-cpp-output
assembler assembler-with-cpp

Turn off any specification of a language, so that subsequent files are handled
according to their file name suffixes (as they are ifas not been used at all).

If you only want some of the stages of compilation, you caru®e filename
suffixes) to teligccwhere to start, and one of the optieasS, or-E to say
wheregccis to stop. Note that some combinations (for examplepp-output
-E) instructgccto do nothing at all.

Compile or assemble the source files, but do not link. The linking stage simply
is not done. The ultimate output is in the form of an object file for each source
file.

By default, the object file name for a source file is made by replacing the suffix
.C, .i, .S, etc., with.o.

Unrecognized input files, not requiring compilation or assembly, are ignored.

Stop after the stage of compilation proper; do not assemble. The output is in
the form of an assembler code file for each non-assembler input file specified.

By default, the assembler file name for a source file is made by replacing the
suffix .c, .i, etc., with.s,

Input files that don’t require compilation are ignored.

Stop after the preprocessing stage; do not run the compiler proper. The output
is in the form of preprocessed source code, which is sent to the standard output.

Input files which don’t require preprocessing are ignored.

Place output in filéile. This applies regardless to whatever sort of output is
being produced, whether it be an executable file, an object file, an assembler
file or preprocessed C code.

Since only one output file can be specified, it does not make sensedo use
when compiling more than one input file, unless you are producing an
executable file as output.

If -0is not specified, the default is to put an executable faeomt, the object
file for sourcesuffixin sourceo, its assembler file isources, and all
preprocessed C source on standard output.

-V Print (on standard error output) the commands executed to run the stages of
compilation. Also print the version number of the compiler driver program and
of the preprocessor and the compiler proper.

-pipe (Not available on Windows NT) Use pipes rather than temporary files for
communication between the various stages of compilation. This fails to work
on some systems where the assembler is unable to read from a pipe; but the
GNU assembler has no trouble.

See “Hardware Models and Configurations” for information ondheh flag, which
allows you to specify the target platform when compiling on Mach.

Compiling C++ Programs

C++ source files conventionally use one of the suffi€escc, .cpp, or.cxx; preprocessed

C++ files use the suffixi. GNU CC recognizes files with these names and compiles them
as C++ programs even if you call the compiler the same way as for compiling C programs
(usually with the namgcc). Objective-C++ (mixed Objective-C and C++) source files use
a.M suffix by convention.

However, C++ programs often require class libraries as well as a compiler that understands
the C++ language—and under some circumstances, you might want to compile programs
from standard input, or otherwise without a suffix that flags them as C++ prograis.

a program that calls GNU CC with the default language set to C++, and automatically
specifies linking against the GNU class library libg++. On many systems (but not Windows
NT), the scripg++ is also installed with the nance+.

When you compile C++ programs, you may specify many of the same command-line
options that you use for compiling programs in any language; or command-line options
meaningful for C and related languages; or options that are meaningful only for C++
programs. See “Options Controlling C Dialect”, for explanations of options for languages
related to C. See “Options Controlling C++ Dialect”, for explanations of options that are
meaningful only for C++ programs.

GNU CC Command Options 5

Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++
and Objective-C) that the compiler accepts:

-ansi Support all ANSI standard C programs.

This turns off certain features of GNU C that are incompatible with ANSI C,
such as thasm inline andtypeof keywords, and predefined macros such as
unix andvax that identify the type of system you are using. It also enables the
undesirable and rarely used ANSI trigraph feature, disalfomsspart of
identifiers, and disables recognition of C++ styleomments.

The alternate keywords asm_, extension_, inline__and typeof _
continue to work despitansi. You would not want to use them in an ANSI C
program, of course, but it is useful to put them in header files that might be
included in compilations done witansi. Alternate predefined macros such as
__unix__and__vax__are also available, with or withotansi.

The-ansioption does not cause non-ANSI programs to be rejected
gratuitously. For thatpedanticis required in addition teansi. See “Options
to Request or Suppress Warnings” for more information.

The macro__ STRICT_ANSI__is predefined when thansi option is used.
Some header files may notice this macro and refrain from declaring certain
functions or defining certain macros that the ANSI standard doesn't call for;
this is to avoid interfering with any programs that might use these names for
other things.

The functionsalloca, abort, exit, and_exit are not builtin functions when
-ansiis used.

-ObjC (Not supported on PDO platforms) Compile a source file that contains
Objective-C language code (the file can have eithepaa.m extension).

-fno-asm Do not recognizesm inline ortypeof as a keyword, so that code can use
these words as identifiers. You can use the keywordsm_, inline__and
__typeof__instead-ansiimplies-fno-asm

In C++, this switch only affects thgpeof keyword, sinceasmandinline are
standard keywords. You may want to use-the-gnu-keywordsflag instead,
as it also disables the other, C++-specific, extension keywords shehdus

6 The Objective-C Compiler

-fno-builtin
Don't recognize builtin functions that do not begin with two leading
underscores. Currently, the functions affected inchlu®t, abs, alloca, cos
exit, fabs, ffs, labs, memcmp memcpy; sin, sqrt, strcmp, strcpy, andstrlen.

GCC normally generates special code to handle certain builtin functions more
efficiently; for instance, calls @mlloca may become single instructions that
adjust the stack directly, and callstt@mcpy may become inline copy loops.

The resulting code is often both smaller and faster, but since the function calls
no longer appear as such, you cannot set a breakpoint on those calls, nor can
you change the behavior of the functions by linking with a different library.

The-ansioption preventslloca andffs from being builtin functions, since
these functions do not have an ANSI standard meaning.

-trigraphs Support ANSI C trigraphs. You don’t want to know about this brain-damage.
The-ansioption implies-trigraphs.

-traditional Attempt to support some aspects of traditional C compilers. Specifically:

» All extern declarations take effect globally even if they are written inside
of a function definition. This includes implicit declarations of functions.

» The newer keywordtypeof, inline, signed constandvolatile are not
recognized. (You can still use the alternative keywords suchtgseof
__inline__, and so on.)

» Comparisons between pointers and integers are always allowed.
* Integer typesinsigned shortandunsigned charpromote tainsigned int
» Out-of-range floating point literals are not an error.

» Certain constructs which ANSI regards as a single invalid preprocessing
number, such a@xe-0xd are treated as expressions instead.

e String “constants” are not necessarily constant; they are stored in writable
space, and identical looking constants are allocated separately. (This is the
same as the effect efwritable-strings.)

» All automatic variables not declareefyister are preserved dgngjmp.
Ordinarily, GNU C follows ANSI C: automatic variables not declared
volatile may be clobbered.

GNU CC Command Options 7

» The character escape sequengemd\a evaluate as the literal characters
x anda respectively. Withoutraditional , \x is a prefix for the hexadecimal
representation of a character, dagroduces a bell.

* In C++ programs, assignmentttos is permitted withtraditional . (The
option-fthis-is-variable also has this effect.)

* You may wish to use&no-builtin as well astraditional if your program
uses names that are normally GNU C builtin functions for other purposes
of its own.

* You cannot usetraditional if you include any header files that rely on
ANSI C features. Some vendors are starting to ship systems with ANSI C
header files and you cannot usaditional on such systems to compile
files that include any system headers.

In the preprocessor, comments convert to nothing at all, rather than to a space.
This allows traditional token concatenation.

In preprocessing directive, tlfesymbol must appear as the first character of a
line.

In the preprocessor, macro arguments are recognized within string constants in
a macro definition (and their values are stringified, though without additional
guote marks, when they appear in such a context). The preprocessor always
considers a string constant to end at a newline.

The predefined macro STDC__is not defined when you usteaditional ,

but _ GNUC__is (since the GNU extensions whichGNUC__indicates are

not affected bytraditional). If you need to write header files that work
differently depending on whethdraditional is in use, by testing both of these
predefined macros you can distinguish four situations: GNU C, traditional
GNU C, other ANSI C compilers, and other old C compilers. The predefined
macro__ STDC_VERSION__is also not defined when you useditional .

See “Standard Predefined MacrosTime GNU C Preprocesséor more
discussion of these and other predefined macros.

The preprocessor considers a string constant to end at a newline (unless the
newline is escaped with (Without-traditional , string constants can contain
the newline character as typed.)

-traditional-cpp
Controls which preprocessor is used. The defagljis precomp if you
specify this flag, the standard GNigp will be used instead.

The Objective-C Compiler

-fcond-mismatch
Allow conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void.

-funsigned-char
Let the typechar be unsigned, likensigned char

Each kind of machine has a default for wtladr should be. It is either like
unsigned charby default or likesigned charby default.

Ideally, a portable program should always sigged charor unsigned char

when it depends on the signedness of an object. But many programs have been
written to use plaichar and expect it to be signed, or expect it to be unsigned,
depending on the machines they were written for. This option, and its inverse,
let you make such a program work with the opposite default.

The typechar is always a distinct type from eachsigned charor unsigned
char, even though its behavior is always just like one of those two.

-fsigned-char
Let the typechar be signed, likesigned char

Note that this is equivalent ttho-unsigned-char which is the negative form
of -funsigned-char Likewise, the optionfno-signed-charis equivalent to
-funsigned-char.

-fsigned-bitfields -funsigned-bitfields-fno-signed-bitfields-fno-unsigned-bitfields
These options control whether a bitfield is signed or unsigned, when the
declaration does not use eitlsggnedor unsigned By default, such a bitfield
is signed, because this is consistent: the basic integer types suchras
signed types.

However, whentraditional is used, bitfields are all unsigned no matter what.

-fwritable-strings
Store string constants in the writable data segment and don’t uniquize them.
This is for compatibility with old programs which assume they can write into
string constants. The optietraditional also has this effect.

GNU CC Command Options 9

10

Writing into string constants is a very bad idea; “constants” should be constant.

-fallow-single-precision
Do not promote single precision math operations to double precision, even
when compiling withtraditional .

Traditional K&R C promotes all floating point operations to double precision,
regardless of the sizes of the operands. On the architecture for which you are
compiling, single precision may be faster than double precision. If you must
use-traditional , but want to use single precision operations when the operands
are single precision, use this option. This option has no effect when compiling
with ANSI or GNU C conventions (the default).

Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++
programs; but you can also use most of the GNU compiler options regardless of what
language your program is in. For example, you might compile fir§it€lass.C like this:

g++ -g -felide-constructors -O -c firstClass.C

In this example, onlyfelide-constructorsis an option meant only for C++ programs; you
can use the other options with any language supported by GNU CC.

Here is a list of options that aoaly for compiling C++ programs:

-ObjC++ (Not supported on PDO platforms) Overrides the path extension so that file
contents are interpreted as C++ or Objective-C++ language code.

-fno-access-control
Turn off all access checking. This switch is mainly useful for working around
bugs in the access control code.

The Objective-C Compiler

-fall-virtual
Treat all possible member functions as virtual, implicitly. All member
functions (except for constructor functions arav or deletemember
operators) are treated as virtual functions of the class where they appear.

This does not mean that all calls to these member functions will be made
through the internal table of virtual functions. Under some circumstances, the
compiler can determine that a call to a given virtual function can be made
directly; in these cases the calls are direct in any case.

-fcheck-new
Check that the pointer returneddyyerator newis non-null before attempting
to modify the storage allocated. The current Working Paper requires that
operator new never return a null pointer, so this check is normally
unnecessary.

-fconserve-space
Put uninitialized or runtime-initialized global variables into the common
segment, as C does. This saves space in the executable at the cost of not
diagnosing duplicate definitions. If you compile with this flag and your
program mysteriously crashes afteain() has completed, you may have an
object that is being destroyed twice because two definitions were merged.

-fdollars-in-identifiers Accept$ in identifiers. You can also explicitly prohibit use$of
with the optionfno-dollars-in-identifiers. (GNU C++ allows$ by default on
some target systems but not others.) Traditional C allowed the ch&&ater
form part of identifiers. However, ANSI C and C++ forBith identifiers.

-fenum-int-equiv
Anachronistically permit implicit conversion oft to enumeration types.
Current C++ allows conversion ehumto int, but not the other way around.

-fexternal-templates
Cause template instantiations to oBpyagma interfaceand implementation;
template instances are emitted or not according to the location of the template
definition. See “Where's the Template?” for more information.

-falt-external-templates
Similar to -fexternal-templates, but template instances are emitted or not
according to the place where they are first instantiated. See “Where’s the
Template?” for more information.

GNU CC Command Options 11

-ffor-scope-fno-for-scope
If -ffor-scope is specified, the scope of variables declared in a
for-init-statement is limited to tHer loop itself, as specified by the draft C++
standard. If -fno-for-scope is specified, the scope of variables declared in a
for-init-statement extends to the end of the enclosing scope, as was the case in
old versions of gcc, and other (traditional) implementations of C++.

The default if neither flag is given to follow the standard, but to allow and give
a warning for old-style code that would otherwise be invalid, or have different
behavior.

-fno-gnu-keywords
Do not recognizelassof headof signature, sigofortypeof as a keyword, so
that code can use these words as identifiers. You can use the keywords
__classof , headof , signature_, sigof ,and typeof _instead.
-ansiimplies-fno-gnu-keywords.

-fno-implicit-templates
Never emit code for templates which are instantiated implicitly (that is, by
use); only emit code for explicit instantiations. See “Where’s the Template?”
for more information.

-fhandle-signatures
Recognize thsignature andsigofkeywords for specifying abstract types. The
default ¢(fno-handle-signatureg is not to recognize them. See “Type
Abstraction using Signatures”.

-fhuge-objects
Support virtual function calls for objects that exceed the size representable by
ashort int. Users should not use this flag by default; if you need to use it, the
compiler will tell you so. If you compile any of your code with this flag, you
must compileall of your code with this flag (including libg++, if you use it).

This flag is not useful when compiling wittvtable-thunks.

-fno-implement-inlines
To save space, do not emit out-of-line copies of inline functions controlled by
#pragma implementation This will cause linker errors if these functions are
not inlined everywhere they are called.

-fmemoize-lookups-fsave-memoized
Use heuristics to compile faster. These heuristics are not enabled by default,
since they are only effective for certain input files. Other input files compile
more slowly.

12 The Objective-C Compiler

The first time the compiler must build a call to a member function (or reference
to a data member), it must (1) determine whether the class implements member
functions of that name; (2) resolve which member function to call (which
involves figuring out what sorts of type conversions need to be made); and (3)
check the visibility of the member function to the caller. All of this adds up to
slower compilation. Normally, the second time a call is made to that member
function (or reference to that data member), it must go through the same
lengthy process again. This means that code like this:

cout << “This “ << p << “has “ << n << “legs.\n";

makes six passes through all three steps. By using a software cache, a “hit”
significantly reduces this cost. Unfortunately, using the cache introduces
another layer of mechanisms which must be implemented, and so incurs its
own overhead:fmemoize-lookupsenables the software cache.

Because access privileges (visibility) to members and member functions may
differ from one function context to the next, G++ may need to flush the cache.
With the-fmemoize-lookupsflag, the cache is flushed after every function that

is compiled. Thefsave-memoizedlag enables the same software cache, but
when the compiler determines that the context of the last function compiled
would yield the same access privileges of the next function to compile, it
preserves the cache. This is most helpful when defining many member
functions for the same class: with the exception of member functions which are
friends of other classes, each member function has exactly the same access
privileges as every other, and the cache need not be flushed.

The code that implements these flags has rotted; you should probably avoid
using them.

-fstrict-prototype
Within anextern “C” linkage specification, treat a function declaration with
no arguments, such ag foo ();, as declaring the function to take no
arguments. Normally, such a declaration means that the fuicti@an take
any combination of arguments, as in-@edantic implies-fstrict-prototype
unless overridden witifno-strict-prototype.

This flag no longer affects declarations with C++ linkage.

-fno-nonnull-objects
Don't assume that a reference is initialized to refer to a valid object. Although
the current C++ Working Paper prohibits null references, some old code may
rely on them, and you can ugeo-nonnull-objects to turn on checking.

GNU CC Command Options 13

At the moment, the compiler only does this checking for conversions to virtual
base classes.

-foperator-names
Recognize the operator name keywardd, bitand, bitor, compl, not, or and
xor as synonyms for the symbols they referémsi implies
-foperator-names

-fthis-is-variable
Permit assignment this. The incorporation of user-defined free store
management into C++ has made assignmethigcan anachronism.
Therefore, by default it is invalid to assigntiis within a class member
function; that is, GNU C++ treathis in a member function of clagsas a
non-lvalue of typeX *. However, for backwards compatibility, you can make
it valid with -fthis-is-variable.

-fvtable-thunks
Usethunks to implement the virtual function dispatch tableaple). The
traditional (cfront-style) approach to implementing vtables was to store a
pointer to the function and two offsets for adjustingthig pointer at the call
site. Newer implementations store a single pointerttmak function which
does any necessary adjustment and then calls the target function.

This option also enables a heuristic for controlling emission of vtables; if a
class has any non-inline virtual functions, the vtable will be emitted in the
translation unit containing the first one of those.

-nostdinc++
Do not search for header files in the standard directories specific to C++, but
do still search the other standard directories. (This option is used when building
libg++.)

-traditional
For C++ programs (in addition to the effects that apply to both C and C++), this
has the same effect dthis-is-variable. See “Options Controlling C Dialect”.

In addition, these optimization, warning, and code generation options have
meanings only for C++ programs:

-fno-default-inline
Do not assumaline for functions defined inside a class scope. See “Options
That Control Optimization”.

14 The Objective-C Compiler

-Wenum-clash-Woverloaded-virtual -Wtemplate-debugging
Warnings that apply only to C++ programs. See “Options to Request or
Suppress Warnings”.

+en Control how virtual function definitions are used, in a fashion compatible with
cfront 1.x. See “Options for Code Generation Conventions”.

Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently
erroneous but which are risky or suggest there may have been an error.

You can request many specific warnings with options beginihdor example

-Wimplicit to request warnings on implicit declarations. Each of these specific warning
options also has a negative form beginrémo- to turn off warnings; for example,
-Wno-implicit . This manual lists only one of the two forms, whichever is not the default.

These options control the amount and kinds of warnings produced by GNU CC:

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

-pedantic Issue all the warnings demanded by strict ANSI standard C; reject all programs
that use forbidden extensions.

Valid ANSI standard C programs should compile properly with or without this
option (though a rare few will requiransi). However, without this option,
certain GNU extensions and traditional C features are supported as well. With
this option, they are rejected.

-pedantic does not cause warning messages for use of the alternate keywords
whose names begin and end with Pedantic warnings are also disabled in the
expression that follows_extension_. However, only system header files

should use these escape routes; application programs should avoid them. See
“Alternate Keywords”.

This option is not intended to be useful; it exists only to satisfy pedants who
would otherwise claim that GNU CC fails to support the ANSI standard.

Some users try to uspedantic to check programs for strict ANSI C
conformance. They soon find that it does not do quite what they want: it finds
some non-ANSI practices, but not all—only those for which AN&dLiires

a diagnostic.

GNU CC Command Options 15

A feature to report any failure to conform to ANSI C might be useful in some
instances, but would require considerable additional work and would be quite
different from-pedantic. We recommend, rather, that users take advantage of
the extensions of GNU C and disregard the limitations of other compilers.
Aside from certain supercomputers and obsolete small machines, there is less
and less reason ever to use any other C compiler other than for bootstrapping
GNU CC.

-pedantic-errors
Like -pedantic, except that errors are produced rather than warnings.

-w Inhibit all warning messages.

-Wno-import
Inhibit warning messages about the us#iofport.

-Wno-precomp
Inhibit warning messages reltaing to not being able to use precompiled
headers.

-Wchar-subscripts
Warn if an array subscript has tyglear. This is a common cause of error, as
programmers often forget that this type is signed on some machines.

-Wcomment
Warn whenever a comment-start sequeéh@ppears in a comment.

-Wformat Check calls trintf andscanf, etc., to make sure that the arguments supplied
have types appropriate to the format string specified.

-Wimplicit
Warn whenever a function or parameter is implicitly declared.

16 The Objective-C Compiler

-Wparentheses
Warn if parentheses are omitted in certain contexts, such as when there is an
assignment in a context where a truth value is expected, or when operators are
nested whose precedence people often get confused about.

-Wreturn-type
Warn whenever a function is defined with a return-type that defadutts. to
Also warn about angeturn statement with no return-value in a function
whose return-type is nebid.

-Wstyle Warn when assignments are used as conditionlsfor, andwhile
statements. For example, consider the following line of code:

if (i = foo()) { ... }
The warning suggests an extra set of parenthesis around the assignment, like:
if (i =foo()) { ... }

The intent behind this warning is to catch situations where you really meant to
test for equivalence=€) and not assignment)

-Wswitch Warn whenever awitch statement has an index of enumeral type and lacks a
casefor one or more of the named codes of that enumeration. (The presence of
adefault label prevents this warningcaselabels outside the enumeration
range also provoke warnings when this option is used.

-Wtrigraphs
Warn if any trigraphs are encountered (assuming they are enabled).

-Wunused Warn whenever a variable is unused aside from its declaration, whenever a
function is declared static but never defined, whenever a label is declared but
not used, and whenever a statement computes a result that is explicitly not
used.

To suppress this warning for an expression, simply cast it to void. For unused
variables and parameters, useuhasedattribute (see “Specifying Attributes
of Variables”).

-Wuninitialized
An automatic variable is used without first being initialized.

GNU CC Command Options 17

These warnings are possible only in optimizing compilation, because they
require data flow information that is computed only when optimizing. If you
don’t specify -O, you simply won't get these warnings.

These warnings occur only for variables that are candidates for register
allocation. Therefore, they do not occur for a variable that is declared volatile,
or whose address is taken, or whose size is other than 1, 2, 4 or 8 bytes. Also,
they do not occur for structures, unions or arrays, even when they are in
registers.

Note that there may be no warning about a variable that is used only to compute
a value that itself is never used, because such computations may be deleted by
data flow analysis before the warnings are printed.

These warnings are made optional because GNU CC is not smart enough to see
all the reasons why the code might be correct despite appearing to have an
error. Here is one example of how this can happen:

{
int x;
switch (y) {
case 1:
x=1;
break;
case 2:
X = 4;
break;
case 3:
X =5;
}
foo (x);

}

If the value of y is always 1, 2 or 3, then x is always initialized, but GNU CC
doesn’t know this. Here is another common case:

{
int save_y;
if (change_y)
save_y =Y,y =new._y;

if (change_y)

y = save_y;

}

This has no bug because save_y is used only if it is set.

18 The Objective-C Compiler

Some spurious warnings can be avoided if you declare all the functions you use
that never return as noreturn. See “Declaring Attributes of Functions”.

-Wenum-clash
Warn about conversion between different enumeration types. (C++ only).

-Wreorder (C++ only)
Warn when the order of member initializers given in the code does not match
the order in which they must be executed. For instance:

struct A {
inti;
int j;
AQ:j(0),1(1){}
h

Here the compiler will warn that the member initializers for i and j will be
rearranged to match the declaration order of the members.

-Wtemplate-debugging
When using templates in a C++ program, warn if debugging is not yet fully
available (C++ only).

-Wall All of the aboveW options combined. These are all the options which pertain
to usage that we recommend avoiding and that we believe is easy to avoid, even
in conjunction with macros.

The remainingW... options are not implied byall because they warn about
constructions that we consider reasonable to use, on occasion, in clean
programs.

-Wmost
-W Print extra warning messages for these events:

* A nonvolatile automatic variable might be changed by a cé&dingjmp.
These warnings as well are possible only in optimizing compilation.

The compiler sees only the callssitjmp. It cannot know wherlngjmp

will be called; in fact, a signal handler could call it at any point in the code.
As a result, you may get a warning even when there is in fact no problem
becauséongjmp cannot in fact be called at the place which would cause a
problem.

» A function can return either with or without a value. (Falling off the end of
the function body is considered returning without a value.) For example,
this function would evoke such a warning:

GNU CC Command Options 19

foo (a) {
if (2> 0)
return a;

}

* An expression-statement or the left-hand side of a comma expression
contains no side effects. To suppress the warning, cast the unused
expression to void. For example, an expression sugh,jswill cause a
warning, butx[(void)i,j] will not.

» An unsigned value is compared against zero witin <=,

* A comparison likex<=y<=z appears; this is equivalent(fc<=y ? 1 : 0) <=
z, which is a different interpretation from that of ordinary mathematical
notation.

» Storage-class specifiers liktatic are not the first things in a declaration.
According to the C Standard, this usage is obsolescent.

« If -Wall or-Wunusedis also specified, warn about unused arguments.

» An aggregate has a partly bracketed initializer. For example, the following
code would evoke such a warning, because braces are missing around the
initializer for x.h:

struct s {
intf, g;
b
struct t {
struct s h;
inti;
b
structtx={1,2,3};

-Wtraditional
Warn about certain constructs that behave differently in traditional and ANSI
C.

» Macro arguments occurring within string constants in the macro body.
These would substitute the argument in traditional C, but are part of the
constant in ANSI C.

* A function declared external in one block and then used after the end of the
block.

» A switch statement has an operand of tiqrag.

20 The Objective-C Compiler

-Wshadow
Warn whenever a local variable shadows another local variable.

-Wid-clash-len
Warn whenever two distinct identifiers match in the fastcharacters. This
may help you prepare a program that will compile with certain obsolete,
brain-damaged compilers.

-Wlarger-than-len
Warn whenever an object of larger tHan bytes is defined.

-Wpointer-arith
Warn about anything that depends on the “size of” a function typevaicbf
GNU C assigns these types a size of 1, for convenience in calculations with
void * pointers and pointers to functions.

-Wbad-function-cast
Warn whenever a function call is cast to a non-matching type. For example,
warn ifint malloc() is cast tanything *.

-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if@nst char *is cast to an ordinamghar *.

-Wocast-align
Warn whenever a pointer is cast such that the required alignment of the target
is increased. For example, warn élzar * is cast to amt * on machines
where integers can only be accessed at two- or four-byte boundaries.

-Wwrite-strings
Give string constants the typenst char[LENGTH] so that copying the
address of one into a n@onstchar * pointer will get a warning. These
warnings will help you find at compile time code that can try to write into a
string constant, but only if you have been very careful about aseimgfin
declarations and prototypes. Otherwise, it will just be a nuisance; this is why
we did not makeWall request these warnings.

GNU CC Command Options 21

22

-Wconversion
Warn if a prototype causes a type conversion that is different from what would
happen to the same argument in the absence of a prototype. This includes
conversions of fixed point to floating and vice versa, and conversions changing
the width or signedness of a fixed point argument except when the same as the
default promotion.

Also, warn if a negative integer constant expression is implicitly converted to
an unsigned type. For example, warn about the assignmerttif x is
unsigned. But do not warn about explicit casts (ikasigned) -1

-Waggregate-return
Warn if any functions that return structures or unions are defined or called. (In
languages where you can return an array, this also elicits a warning.)

-Wstrict-prototypes
Warn if a function is declared or defined without specifying the argument
types. (An old-style function definition is permitted without a warning if
preceded by a declaration which specifies the argument types.)

-Wmissing-prototypes
Warn if a global function is defined without a previous prototype declaration.
This warning is issued even if the definition itself provides a prototype. The
aim is to detect global functions that fail to be declared in header files.

-Wmissing-declarations
Warn if a global function is defined without a previous declaration. Do so even
if the definition itself provides a prototype. Use this option to detect global
functions that are not declared in header files.

-Wredundant-decls
Warn if anything is declared more than once in the same scope, even in cases
where multiple declaration is valid and changes nothing.

-Wnested-externs
Warn if anextern declaration is encountered within an function.

-Winline
Warn if a function can not be inlined, and either it was declared as inline, or
else thefinline-functions option was given.

The Objective-C Compiler

-Woverloaded-virtual

-Wsynth

-Werror

Warn when a derived class function declaration may be an error in defining a
virtual function (C++ only). In a derived class, the definitions of virtual
functions must match the type signature of a virtual function declared in the
base class. With this option, the compiler warns when you define a function
with the same name as a virtual function, but with a type signature that does
not match any declarations from the base class.

Warn when g++'s synthesis behavior does not match that of cfront. For
instance:

struct A {

operator int ();

A& operator = (int);
h
main () {

Aab;

a=b;

}

In this example, g++ will synthesize a defaA®& operator = (const A&); ,
while cfront will use the user-definegerator =.

Make all warnings into errors.

Options for Debugging Your Program or GNU CC

GNU CC has various special options that are used for debugging either your program or

GCC:

-9

Produce debugging information in the operating system’s native format. GDB
can work with this debugging information.

On most systems that use stabs foragpgnables use of extra debugging
information that only GDB can use; this extra information makes debugging
work better in GDB but will probably make other debuggers crash or refuse to
read the program. If you want to control for certain whether to generate the
extra information, useystabs+; -gstabs or, on Windows NTsgcodeviewor
-gcodeview+(see below).

GNU CC Command Options 23

24

Unlike most other C compilers, GNU CC allows you to ypeith -O. The
shortcuts taken by optimized code may occasionally produce surprising
results: some variables you declared may not exist at all; flow of control may
briefly move where you did not expect it; some statements may not be executed
because they compute constant results or their values were already at hand;
some statements may execute in different places because they were moved out
of loops.

Nevertheless it proves possible to debug optimized output. This makes it
reasonable to use the optimizer for programs that might have bugs.

The following options are useful when GNU CC is generated with the
capability for more than one debugging format.

-gcodeviewProduce debugging information in the stabs format, including Codeview

-ggdb
-gstabs

-gstabs+

-glevel
-ggdblevel

extensions if at all possible.

Produce debugging information in the stabs format, including GDB extensions
if at all possible.

Produce debugging information in stabs format, without GDB extensions.

Produce debugging information in stabs format, using GNU extensions
understood only by the GNU debugger (GDB). The use of these extensions is
likely to make other debuggers crash or refuse to read the program.

-gstabdevel
-gcodevievlevel (on Windows NT only)

The Objective-C Compiler

Request debugging information and alsoleselto specify how much
information. The default level is 2.

Level 1 produces minimal information, enough for making backtraces in parts
of the program that you don't plan to debug. This includes descriptions of
functions and external variables, but no information about local variables and
no line numbers.

Level 3 includes extra information, such as all the macro definitions presentin
the program. Some debuggers support macro expansion when yg3.use

(Not available on Windows NT) Generate extra code to write profile
information suitable for the analysis programf. You must use this option
when compiling the source files you want data about, and you must also use it
when linking.

-Pg

-dletters

(Not available on Windows NT) Generate extra code to write profile
information suitable for the analysis progrgprof. You must use this option
when compiling the source files you want data about, and you must also use it
when linking.

Generate extra code to write profile information for basic blocks, which will
record the number of times each basic block is executed, the basic block start
address, and the function name containing the basic blegkslised, the line
number and filename of the start of the basic block will also be recorded. If not
overridden by the machine description, the default action is to append to the
text filebb.out.

This data could be analyzed by a program like tcov. Note, however, that the
format of the data is not what tcov expects. Eventually GNU gprof should be
extended to process this data.

Says to make debugging dumps during compilation at times specified by
letters This is used for debugging the compiler. The file names for most of the
dumps are made by appending a word to the source file namiedecgtl or
foo.c.jump). Here are the possible letters for usketters and their meanings:

» y Dump debugging information during parsing, to standard error.
* r Dump after RTL generation, fie.rtl .

* X Just generate RTL for a function instead of compiling it. Usually used
withr.

» j Dump after first jump optimization, fde.jump.

» sDump after CSE (including the jump optimization that sometimes follows
CSE), tdfile.cse

e L Dump after loop optimization, tde.loop.

» t Dump after the second CSE pass (including the jump optimization that
sometimes follows CSE), fide.cse2

« f Dump after flow analysis, file.flow.
» ¢ Dump after instruction combination, to the file.combine
» S Dump after the first instruction scheduling passilésched

» | Dump after local register allocation,fite.Ireg.

GNU CC Command Options 25

» g Dump after global register allocation,fiie.greg.

* R Dump after the second instruction scheduling pad8etsched2

» J Dump after last jump optimization, fite.jump2.

o d Dump after delayed branch schedulingfjleadbr.

* k Dump after conversion from registers to stacKiléostack

» aProduce all the dumps listed above.

* m Print statistics on memory usage, at the end of the run, to standard error.

* p Annotate the assembler output with a comment indicating which pattern
and alternative was used.

In addition, the following letters are preprocessor flags and can only be used
with -traditional-cpp:

» M Dump all macro definitions, at the end of preprocessing, and write no
output.

* N Dump all macro names, at the end of preprocessing.

» D Dump all macro definitions, at the end of preprocessing, in addition to
normal output.

-fpretend-float
When running a cross-compiler, pretend that the target machine uses the same
floating point format as the host machine. This causes incorrect output of the
actual floating constants, but the actual instruction sequence will probably be
the same as GNU CC would make when running on the target machine.

-save-temps
Store the usual “temporary” intermediate files permanently; place them in the
current directory and name them based on the source file. Thus, compiling
foo.cwith -c -save-tempswvould produce filefo.i andfoo.s as well agoo.o.

-print-file-name=library
Print the full absolute name of the library filerary that would be used when
linking—and don’t do anything else. With this option, GNU CC does not
compile or link anything; it just prints the file name.

-print-prog-name=program
Like -print-file-name, but searches for a program suclecgs.

26 The Objective-C Compiler

-print-libgcc-file-name

Same asprint-file-name=libgcc.a.

This is useful when you useostdlib or-nodefaultlibs but you do want to link
with libgcc.a You can do

gcc -nostdlib FILES... gcc -print-libgcc-file-name

-print-search-dirs

Print the name of the configured installation directory and a list of program and
library directories gcc will search—and don’t do anything else.

This is useful when gcc prints the error messasggallation problem, cannot

exec cpp: No such file or directoryTo resolve this you either need to ppp

and the other compiler components where gcc expects to find them, or you can
set the environment variabl®CC_EXEC_PREFIX to the directory where

you installed them. Don'’t forget the trailing /. See “Environment Variables
Affecting GNU CC".

Options That Control Optimization

These options control various sorts of optimizations:

-0-01

Optimize. Optimizing compilation takes somewhat more time, and a lot more
memory for a large function.

Without -O, the compiler’s goal is to reduce the cost of compilation and to
make debugging produce the expected results. Statements are independent: if
you stop the program with a breakpoint between statements, you can then
assign a new value to any variable or change the program counter to any other
statement in the function and get exactly the results you would expect from the
source code.

Without -O, the compiler only allocates variables declaegister in
registers. The resulting compiled code is a little worse than produced by PCC

without-O.

With -O, the compiler tries to reduce code size and execution time.

GNU CC Command Options 27

28

When you specifyO, the compiler turns otithread-jumps and-fdefer-pop

on all machines. The compiler turns -dtelayed-branch on machines that

have delay slots, antbmit-frame-pointer on machines that can support
debugging even without a frame pointer. On some machines the compiler also
turns on other flags.

Optimize even more. GNU CC performs nearly all supported optimizations
that do not involve a space-speed tradeoff. The compiler does not perform loop
unrolling or function inlining when you specif2. As compared teO, this

option increases both compilation time and the performance of the generated
code.

-O2 turns on all optional optimizations except for loop unrolling and function
inlining. It also turns on thdforce-mem option on all machines and frame
pointer elimination on machines where doing so does not interfere with
debugging.

Optimize yet more-O3 turns on all optimizations specified 892 and also
turns on thenline-functions option.

Do not optimize.

If you use multiple O options, with or without level numbers, the last such
option is the one that is effective.

Options of the formfflag specify machine-independent flags. Most flags have
both positive and negative forms; the negative forAffad would be-fno-foo.

In the table below, only one of the forms is listed—the one which is not the
default. You can figure out the other form by either remowmgor adding it.

-ffloat-store

The Objective-C Compiler

Do not store floating point variables in registers, and inhibit other options that
might change whether a floating point value is taken from a register or memory.

-ffppc

The floating-point hardware in thi&86 andm68k architectures is
IEEE-compliant. However, they normally deliver results to extended precision
(which the IEEE Standard allows), whereas on other platforms—sihgipas
andsparc—results can be delivered to any supported precision-fifpe

flag is used to make arithmetic behave more like that on other platforms.
-ffloat-store will achieve this purpose in many cases, but certainly not all, and
at a fairly high cost in terms of performancéppc will achieve this purpose
onm68k in most cases at a much lower cost in terms of performanc@8en
-ffppc will achieve this purpose more often th#ftoat-store, in most cases at

a much lower cost in terms of performandBoat-store is likely to achieve

this purpose in cases wheffppc doesn't.

(Not available on Windows NT) Ensures that generated code is fully IEEE
compliant. Use this option instead-fffoat-store. See the explanation of
-ffloat-store, above, for more information.

-fno-default-inline

Do not make member functions inline by default merely because they are
defined inside the class scope (C++ only). Otherwise, when you sgecify
member functions defined inside class scope are compiled inline by default;
that is, you don’t need to adhline in front of the member function name.

-fno-defer-pop

Always pop the arguments to each function call as soon as that function
returns. For machines which must pop arguments after a function call, the
compiler normally lets arguments accumulate on the stack for several function
calls and pops them all at once.

-fforce-mem

Force memory operands to be copied into registers before doing arithmetic on
them. This produces better code by making all memory references potential
common subexpressions. When they are not common subexpressions,
instruction combination should eliminate the separate register-loadOPhe
option turns on this option.

-fforce-addr

Force memory address constants to be copied into registers before doing
arithmetic on them. This may produce better code judfase-mem may.

GNU CC Command Options 29

30

-fomit-frame-pointer
Don't keep the frame pointer in a register for functions that don’t need one.
This avoids the instructions to save, set up and restore frame pointers; it also
makes an extra register available in many functitirsdso makes debugging
impossible on some machines.

On some machines, such as the Vax, this flag has no effect, because the
standard calling sequence automatically handles the frame pointer and nothing
is saved by pretending it doesn’t exist. The machine-description macro
FRAME_POINTER_REQUIRED controls whether a target machine

supports this flag.

-fno-inline
Don’t pay attention to thimline keyword. Normally this option is used to keep
the compiler from expanding any functions inline. Note that if you are not
optimizing, no functions can be expanded inline.

-finline-functions
Integrate all simple functions into their callers. The compiler heuristically
decides which functions are simple enough to be worth integrating in this way.

If all calls to a given function are integrated, and the function is dedtaid
then the function is normally not output as assembler code in its own right.

-fkeep-inline-functions
Even if all calls to a given function are integrated, and the function is declared
static, nevertheless output a separate run-time callable version of the function.

-fno-function-cse
Do not put function addresses in registers; make each instruction that calls a
constant function contain the function’s address explicitly.

This option results in less efficient code, but some strange hacks that alter the
assembler output may be confused by the optimizations performed when this
option is not used.

-ffast-math
This option allows GCC to violate some ANSI or IEEE rules and/or
specifications in the interest of optimizing code for speed. For example, it
allows the compiler to assume arguments tatrefunction are non-negative
numbers and that no floating-point values are NaNs.

This option should never be turned on by gdyoption since it can result in
incorrect output for programs which depend on an exact implementation of
IEEE or ANSI rules/specifications for math functions.

The Objective-C Compiler

The following options control specific optimizations. FR option turns on
all of these optimizations exceftinroll-loops and-funroll-all-loops. On
most machines, th€® option turns on thethread-jumps and
-fdelayed-branchoptions, but specific machines may handle it differently.

You can use the following flags in the rare cases when “fine-tuning” of
optimizations to be performed is desired.

-fstrength-reduce
Perform the optimizations of loop strength reduction and elimination of
iteration variables.

-fthread-jumps
Perform optimizations where the compiler checks to see if a jump branches to
a location where another comparison subsumed by the first is found. If so, the
first branch is redirected to either the destination of the second branch or a
point immediately following it, depending on whether the condition is known
to be true or false.

-fcse-follow-jumps
In common subexpression elimination, scan through jump instructions when
the target of the jump is not reached by any other path. For example, when CSE
encounters aifi statement with aalseclause, CSE will follow the jump when
the condition tested is false.

-fcse-skip-blocks
This is similar to-fcse-follow-jumps but causes CSE to follow jumps which
conditionally skip over blocks. When CSE encounters a sifhglatement
with no else clausefcse-skip-blockscauses CSE to follow the jump around
the body of thef.

-frerun-cse-after-loop
Re-run common subexpression elimination after loop optimizations has been
performed.

-fexpensive-optimizations
Perform a number of minor optimizations that are relatively expensive.

-fdelayed-branch
(Not available on Windows NT) If supported for the target machine, attempt to
reorder instructions to exploit instruction slots available after delayed branch
instructions.

GNU CC Command Options 31

32

-fschedule-insns
If supported for the target machine, attempt to reorder instructions to eliminate
execution stalls due to required data being unavailable. This helps machines
that have slow floating point or memory load instructions by allowing other
instructions to be issued until the result of the load or floating point instruction
is required.

-fschedule-insns2
Similar to-fschedule-insnsbut requests an additional pass of instruction
scheduling after register allocation has been done. This is especially useful on
machines with a relatively small number of registers and where memory load
instructions take more than one cycle.

-fcaller-saves
Enable values to be allocated in registers that will be clobbered by function
calls, by emitting extra instructions to save and restore the registers around
such calls. Such allocation is done only when it seems to result in better code
than would otherwise be produced.

This option is enabled by default on certain machines, usually those which
have no call-preserved registers to use instead.

-funroll-loops
Perform the optimization of loop unrolling. This is only done for loops whose
number of iterations can be determined at compile time or run time.
-funroll-loop implies both-fstrength-reduce and-frerun-cse-after-loop.

-funroll-all-loops
Perform the optimization of loop unrolling. This is done for all loops and
usually makes programs run more slowlynroll-all-loops implies
-fstrength-reduce as well asfrerun-cse-after-loop.

-fno-peephole
Disable any machine-specific peephole optimizations.

Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before actual
compilation.

The Objective-C Compiler

If you use theE option, nothing is done except preprocessing. Some of these options make
sense only together witk because they cause the preprocessor output to be unsuitable for
actual compilation.

-framework framework-name
Search the framework namdmework-naméor header files. The directories
searched includé-ocalLibrary/Frameworks and
INextLibrary/Frameworks (both are prefaced by $NEXT_ROOT on
Windows NT).

-include file
Procesdile as input before processing the regular input file. In effect, the
contents ofile are compiled first. AnyD and-U options on the command line
are always processed befeireclude file, regardless of the order in which they
are written. All theiinclude and-imacros options are processed in the order
in which they are written.

-imacrosfile
Procesdile as input, discarding the resulting output, before processing the
regular input file. Because the output generated fileris discarded, the only
effect of-imacrosfile is to make the macros definedile available for use in
the main input.

Any -D and-U options on the command line are always processed before
-imacrosfile, regardless of the order in which they are written. Altihdude
and-imacros options are processed in the order in which they are written.

-idirafter dir
Add the directoryir to the second include path. The directories on the second
include path are searched when a header file is not found in any of the
directories in the main include path (the one thaidds to).

-iprefix prefix
Specifyprefixas the prefix for subsequeiwithprefix options.

-iwithprefix dir
Add a directory to the second include path. The directory’s name is made by
concatenatingrefixanddir, whereprefixwas specified previously with
-iprefix. If you have not specified a prefix yet, the directory containing the
installed passes of the compiler is used as the default.

-iwithprefixbefore dir
Add a directory to the main include path. The directory’s name is made by
concatenatingrefixanddir, as in the case efwithprefix .

GNU CC Command Options 33

34

-isystemdir

-nostdinc

-MM

-MD

The Objective-C Compiler

Add a directory to the beginning of the second include path, marking it as a
system directory, so that it gets the same special treatment as is applied to the
standard system directories.

Do not search the standard system directories for header files. Only the
directories you have specified withoptions (and the current directory, if
appropriate) are searched. See “Options for Directory Search” for information
on-l.

By using bothnostdinc and-I-, you can limit the include-file search path to
only those directories you specify explicitly.

Do not predefine any nonstandard macros. (Including architecture flags).

Run only the C preprocessor. Preprocess all the C source files specified and
output the results to standard output or to the specified output file.

Tell the preprocessor not to discard comments. Used witliEtbption.
Tell the preprocessor not to generdire directives. Used with thd option.

Tell the preprocessor to output a rule suitablerfake describing the
dependencies of each object file. For each source file, the preprocessor outputs
onemake-rule whose target is the object file name for that source file and
whose dependencies are all fieclude header files it uses. This rule may be

a single line or may be continued withewline if it is long. The list of rules

is printed on standard output instead of the preprocessed C program.

-M implies-E.

Another way to specify output ofraake rule is by setting the environment
variableDEPENDENCIES_OUTPUT (see “Environment Variables
Affecting GNU CC").

Like -M but the output mentions only the user header files included with
#include “file”. System header files included witimclude <file> are omitted.

Like -M but the dependency information is written to a file made by replacing
“.c” with “.d” at the end of the input file names. This is in addition to compiling
the file as specified-MD does not inhibit ordinary compilation the wdy

does.

In Mach, you can use the utilitpgd to merge multiple dependency files into a
single dependency file suitable for using with iiteke command.

-MMD Like -MD except mention only user header files, not system header files.

-MG Treat missing header files as generated files and assume they live in the same
directory as the source file. If you specif§G, you must also specify either
-M or-MM . -MG is not supported wittMD or-MMD . This flag is not
supported on Mach.

-H Print the name of each header file used, in addition to other normal activities.
This flag is not supported on Mach.

-Aquestiorfanswe}
Assert the answeamswerfor questionin case it is tested with a preprocessing
conditional such a#if #questiorfanswe}. -A- disables the standard assertions
that normally describe the target machine. This flag is not supported on Mach.

-Dmacro
Define macranacrowith the stringl as its definition.

-Dmacroc=defn
Define macranacroasdefn All instances ofD on the command line are
processed before any options.

-Umacro
Undefine macreacra -U options are evaluated after-dl options, but before
any-include and-imacros options.

-dM Tell the preprocessor to output only a list of the macro definitions that are in
effect at the end of preprocessing. Used with-Eheption. This flag is not
supported on Mach.

-dD Tell the preprocessing to pass all macro definitions into the output, in their
proper sequence in the rest of the output. This flag is not supported on Mach.

-dN Like -dD except that the macro arguments and contents are omitted. Only
#definenameis included in the output. This flag is not supported on Mach.

-trigraphs
Support ANSI C trigraphs. Thansioption also has this effect.

-Wp,option

Passoptionas an option to the preprocessoogfioncontains commas, it is
split into multiple options at the commas.

GNU CC Command Options 35

36

Passing Options to the Assembler

You can pass options to the assembiler.

-Wa,option

Pasoptionas an option to the assemblepptioncontains commas, it is split
into multiple options at the commas.

Options for Linking

These options come into play when the compiler links object files into an executable output
file. They are meaningless if the compiler is not doing a link step.

object-file-name

-c-S-E

-llibrary

The Objective-C Compiler

A file name that does not end in a special recognized suffix is considered to
name an object file or library. (Object files are distinguished from libraries by
the linker according to the file contents.) If linking is done, these object files
are used as input to the linker.

If any of these options is used, then the linker is not run, and object file names
should not be used as arguments. See “Options Controlling the Kind of
Output”.

Search the library naméditirary when linking.

It makes a difference where in the command you write this option; the linker
searches processes libraries and object files in the order they are specified.
Thus,foo.o -1z bar.osearches library after filefoo.obut beforébar.o. If bar.o
refers to functions i, those functions may not be loaded.

The linker searches a standard list of directories for the library, which is
actually a file nameliblibrary.a. The linker then uses this file as if it had been
specified precisely by name.

The directories searched include several standard system directories plus any
that you specify withL.

Normally the files found this way are library files—archive files whose
members are object files. The linker handles an archive file by scanning
through it for members which define symbols that have so far been referenced
but not defined. But if the file that is found is an ordinary object file, it is linked
in the usual fashion. The only difference between using @ption and

specifying a file name is thdtsurrounddibrary with lib and.a and searches
several directories.

-framework framework-name

Search the framework nam&rdmework-namevhen linking.

The linker searches a standard list of directories for the framework. The linker
then uses this file as if it had been specified precisely by name.

The directories searched inclul®calLibrary/Frameworks and
/NextLibrary/Frameworks (both prefaced by $NEXT_ROOT on Windows
NT), plus any that you specify witl.

-nostartfiles

Do not use the standard system startup files when linking. The standard system
libraries are used normally, unlesmstdlib or -nodefaultlibs is used.

-nodefaultlibs

-nostdlib

Do not use the standard system libraries when linking. Only the libraries you
specify will be passed to the linker. The standard startup files are used
normally, unlessnostartfiles is used.

Do not use the standard system startup files or libraries when linking. No
startup files and only the libraries you specify will be passed to the linker.

One of the standard libraries bypassedrmstdlib and-nodefaultlibs is

libgcc.a a library of internal subroutines that GNU CC uses to overcome
shortcomings of particular machines, or special needs for some languages. In
most cases, you neélgcc.aeven when you want to avoid other standard
libraries. In other words, when you specifpstdlib or -nodefaultlibs you

should usually specifyigcc as well. This ensures that you have no unresolved
references to internal GNU CC library subroutines. (For exampteain,

used to ensure C++ constructors will be called)

GNU CC Command Options 37

38

-S

-static

-shared

-symbolic

Remove all symbol table and relocation information from the executable.

On systems that support dynamic linking, this prevents linking with the shared
libraries. On other systems, this option has no effect.

Produce a shared object which can then be linked with other objects to form an
executable. Only a few systems support this option.

Bind references to global symbols when building a shared object. Warn about
any unresolved references (unless overridden by the link editor option
-Xlinker -z -Xlinker defs). Only a few systems support this option.

-undefined error, -undefined warning, -undefined suppress

Controls the behavior of the linker when symbols are undefined and cannot be
resolved-undefined error stipulates the default behavior, which causes the
linker to generate an error message; no executable is producddfined

warning causes an executable to be generated, along with a warning indicating
the unresolved symbolsindefined suppressauses the executable to be
generated, with no warning about unresolved symbols.

On Windows NT;undefined warning and-undefined suppressare
synonymous.

-Xlinker option

-WI, option

-u symbol

The Objective-C Compiler

Passoptionas an option to the linker. You can use this to supply
system-specific linker options which GNU CC does not know how to
recognize.

If you want to pass an option that takes an argument, you musludesr
twice, once for the option and once for the argument. For example, to pass
-assert definitions you must write Xlinker -assert -Xlinker definitions. It
does not work to writeXlinker “-assert definitions” , because this passes the
entire string as a single argument, which is not what the linker expects.

Passptionas an option to the linker.dptioncontains commas, it is split into
multiple options at the commas.

Pretend the symbeslymbolis undefined, to force linking of library modules to
define it. You can us@ multiple times with different symbols to force loading
of additional library modules.

Options for Directory Search

These options specify directories to search for header files, for libraries and for parts of the
compiler:

-Idirectory
Add the directoryirectoryto the head of the list of directories to be searched
for header files. This can be used to override a system header file, substituting
your own version, since these directories are searched before the system header
file directories. If you use more than cih@ption, the directories are scanned
in left-to-right order; the standard system directories come after.

When compiling a C++ file (extensio@, .M, or.cc), the compiler adds
NextDeveloper/Headers/g++o its header search path. This alldivg++
classes to be used without having to specify additional command-line options.

-I- Any directories you specify with options before thd- option are searched
only for the case atinclude “file”; they are not searched féinclude <file>.

If additional directories are specified wihoptions after thel-, these
directories are searched for #ihclude directives. (Ordinarilyall -1
directories are used this way.)

In addition, thel- option inhibits the use of the current directory (where the
current input file came from) as the first search directorgtifariude “file”.
There is no way to override this effectbf With -1. you can specify searching
the directory which was current when the compiler was invoked. That is not
exactly the same as what the preprocessor does by default, but it is often
satisfactory.

-I- does not inhibit the use of the standard system directories for header files.
Thus,-I- and-nostdinc are independent.

-Ldir Add directorydir to the list of directories to be searched-for

-Fdir Add the directondir to the head of the list of directories to be searched for
frameworks. If you use more than offeoption, the directories are scanned in
left-to-right order; the standard framework directories
(LocalLibrary/Frameworks , followed byNextLibrary/Frameworks) come
after.

In your Objective-C code, include framework headers using the following
format:

#include < framework | include_file .h>

GNU CC Command Options 39

40

-Bprefix

Whereframeworkis the name of the framework (such as “AppKit” or
“Foundation"—don’t include the extension) aindlude_fileis the name of the
file to be included.

This option specifies where to find the executables, libraries, include files, and
data files of the compiler itself.

The compiler driver program runs one or more of the subproggpmecy,
asandld. It triesprefixas a prefix for each program it tries to run, both with
and withoutmachinéversiori (see “Specifying Target Machine and Compiler
Version”).

For each subprogram to be run, the compiler driver first trieBtpeefix, if

any. If that name is not found, or-B was not specified, the driver tries two
standard prefixes, which atesr/lib/gcc/ and/usr/local/lib/gece-lib/. If neither

of those results in a file name that is found, the unmodified program name is
searched for using the directories specified in YRAIrH environment

variable.

-B prefixes that effectively specify directory names also apply to libraries in the
linker, because the compiler translates these optionslinptions for the

linker. They also apply to includes files in the preprocessor, because the
compiler translates these options ifigystemoptions for the preprocessor. In
this case, the compiler appendslude to the prefix.

The run-time support filbgcc.acan also be searched for using-Berefix,
if needed. If it is not found there, the two standard prefixes above are tried, and
that is all. The file is left out of the link if it is not found by those means.

Another way to specify a prefix much like tig prefix is to use the
environment variabl&CC_EXEC_PREFIX. See “Environment Variables
Affecting GNU CC".

Hardware Models and Configurations

On OPENSTEP for Mach, you specify the target architecture you are compiling for with
-arch arch_type The list of acceptable values finch_typeincludes anything thatrch

can return (search(3) for more information), Typicallyarch_typewould be eithem68k,

i386 (1386 represents the processor family which includes4é andPentium

processors), aparc.

The Objective-C Compiler

The optionarch arch_typespecifies the target architectuaesh_type of the operations to

be performed. The operations affecteddrgh are: preprocessing, precompiling,
compiling, assembling, and linking. The specification of multiple architectures results in
the production of “fat” output files and the creation of multiple “thin™ intermediate files
from each stage. Itis an error to uBe-S, -M, and-MM with multiple architectures as

the output form is textual in these cases.

In addition, each of these target machine types can have its own special options, starting
with -m, to choose among various hardware models or configurations—for example, 68010
vs 68020, floating coprocessor or none. A single installed version of the compiler can
compile for any model or configuration, according to the options specified.

Some configurations of the compiler also support additional special options, usually for
compatibility with other compilers on the same platform.

These options are defined by the matAd&®GET_SWITCHES in the machine
description. The default for the options is also defined by that macro, which enables you to
change the defaults.

M680x0 Options

These are the -m options defined for the 68000 series. The default values for these options
depends on which style of 68000 was selected when the compiler was configured; the
defaults for the most common choices are given below.

-m68881 Generate output containing 68881 instructions for floating point. This is the
default for most 68020 systems unlesp was specified when the compiler
was configured.

-m68030 Generate output for a 68030. This is the default when the compiler is
configured for 68030-based systems.

-m68040 Generate output for a 68040. This is the default when the compiler is
configured for 68040-based systems.

This option inhibits the use of 68881/68882 instructions that have to be
emulated by software on the 68040. If your 68040 does not have code to
emulate those instructions, use6804Q

-m68020-40
Generate output for a 68040, without using any of the new instructions. This
results in code which can run relatively efficiently on either a 68020/68881 or
a 68030 or a 68040. The generated code does use the 68881 instructions that
are emulated on the 68040.

GNU CC Command Options 41

42

-msoft-float

Generate output containing library calls for floating point.

-mshort Consider typént to be 16 bits wide, likehort int.

-mnobitfield
Do not use the bit-field instructions.

-mbitfield Do use the bit-field instructions. This is the default if you use a configuration
designed for a 68020.

-mrtd Use a different function-calling convention, in which functions that take a fixed

number of arguments return with thd instruction, which pops their
arguments while returning. This saves one instruction in the caller since there
is no need to pop the arguments there.

This calling convention is incompatible with the one normally used on Unix,
S0 you cannot use it if you need to call libraries compiled with the Unix
compiler.

Also, you must provide function prototypes for all functions that take variable
numbers of arguments (includipgintf); otherwise incorrect code will be
generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too
many arguments. (Normally, extra arguments are harmlessly ignored.)

SPARC Options

These -m switches are supported on the SPARC:

-mno-app-regs-mapp-regs

Specify-mapp-regsto generate output using the global registers 2 through 4,
which the SPARC SVR4 ABI reserves for applications. This is the default.

To be fully SVR4 ABI compliant at the cost of some performance loss, specify
-mno-app-regs You should compile libraries and system software with this
option.

-mfpu -mhard-float

Generate output containing floating point instructions. This is the default.

-mno-fpu -msoft-float

The Objective-C Compiler

Generate output containing library calls for floating point.

Warning: The requisite libraries are not available for all SPARC targets. Normally the
facilities of the machine’s usual C compiler are used, but this cannot be done
directly in cross-compilation. You must make your own arrangements to
provide suitable library functions for cross-compilation. The embedded targets
sparc-*-aout andsparclite-*-* do provide software floating point support.

-msoft-float changes the calling convention in the output file; therefore, it is
only useful if you compilall of a program with this option. In particular, you
need to compiléibgcc.a, the library that comes with GNU CC, with
-msoft-float in order for this to work.

-mhard-quad-float
Generate output containing quad-word (long double) floating point
instructions.

-msoft-quad-float
Generate output containing library calls for quad-word (long double) floating
point instructions. The functions called are those specified in the SPARC ABI.
This is the default.

As of this writing, there are no sparc implementations that have hardware
support for the quad-word floating point instructions. They all invoke a trap
handler for one of these instructions, and then the trap handler emulates the
effect of the instruction. Because of the trap handler overhead, this is much
slower than calling the ABI library routines. Thus thesoft-quad-float

option is the default.

-mno-epilogue-mepilogue
With -mepilogue(the default), the compiler always emits code for function
exit at the end of each function. Any function exit in the middle of the function
(such as a return statement in C) will generate a jump to the exit code at the end
of the function.

With -mno-epilogue the compiler tries to emit exit code inline at every
function exit.

-mno-flat -mflat
With -mflat, the compiler does not generate save/restore instructions and will
use a “flat” or single register window calling convention. This model uses %i7
as the frame pointer and is compatible with the normal register window model.
Code from either may be intermixed although debugger support is still
incomplete. The local registers and the input registers (0-5) are still treated as
“call saved” registers and will be saved on the stack as necessary.

GNU CC Command Options 43

With -mno-flat (the default), the compiler emits save/restore instructions
(except for leaf functions) and is the normal mode of operation.

-mno-unaligned-doubles-munaligned-doubles
Assume that doubles have 8 byte alignment. This is the default.

With -munaligned-doubles GNU CC assumes that doubles have 8 byte
alignment only if they are contained in another type, or if they have an absolute
address. Otherwise, it assumes they have 4 byte alignment. Specifying this
option avoids some rare compatibility problems with code generated by other
compilers. It is not the default because it results in a performance loss,
especially for floating point code.

-mv8 -msparclite
These two options select variations on the SPARC architecture.

By default (unless specifically configured for the Fujitsu SPARCIite), GCC
generates code for the v7 variant of the SPARC architecture.

-mv8 will give you SPARC v8 code. The only difference from v7 code is that
the compiler emits the integer multiply and integer divide instructions which
exist in SPARC v8 but not in SPARC v7.

-msparclite will give you SPARCIite code. This adds the integer multiply,
integer divide step and scdfs] instructions which exist in SPARCIite but not
in SPARC v7.

-mcypress-msupersparc
These two options select the processor for which the code is optimised.

With -mcypress(the default), the compiler optimizes code for the Cypress
CY7C602 chip, as used in the SparcStation/SparcServer 3xx series. This is
also appropriate for the older SparcStation 1, 2, IPX etc.

With -msupersparcthe compiler optimizes code for the SuperSparc cpu, as
used in the SparcStation 10, 1000 and 2000 series. This flag also enables use
of the full SPARC v8 instruction set.

In a future version of GCC, these options will very likely be renamed to
-mcpu=cypressand-mcpu=supersparc

These-m switches are supported in addition to the above on SPARC V9 processors:

44 The Objective-C Compiler

-mmedlow
Generate code for the Medium/Low code model: assume a 32 bit address
space. Programs are statically linked, PIC is not supported. Pointers are still 64
bits.

It is very likely that a future version of GCC will rename this option.

-mmedany
Generate code for the Medium/Anywhere code model: assume a 32 bit text
segment starting at offset 0, and a 32 bit data segment starting anywhere
(determined at link time). Programs are statically linked, PIC is not supported.
Pointers are still 64 bits.

It is very likely that a future version of GCC will rename this option.
-mint64 Types long and int are 64 bits.
-mlong32 Types long and int are 32 bits.

-mlong64-mint32
Type long is 64 bits, and type int is 32 bits.

-mstack-bias-mno-stack-bias
With -mstack-bias GNU CC assumes that the stack pointer, and frame pointer
if present, are offset by -2047 which must be added back when making stack
frame references. Otherwise, assume no such offset is present.

Intel 386 Options

These -m options are defined for the i386 family of computers:

-m486-m386
Control whether or not code is optimized for a 486 instead of an 386. Code
generated for a 486 will run on a 386 and vice versa.

-mieee-fp-mno-ieee-fp
Control whether or not the compiler uses IEEE floating point comparisons.
These handle correctly the case where the result of a comparison is unordered.

-mno-fp-ret-in-387
Do not use the FPU registers for return values of functions.

GNU CC Command Options 45

46

The usual calling convention has functions return values of figasand
double in an FPU register, even if there is no FPU. The idea is that the
operating system should emulate an FPU.

The option-mno-fp-ret-in-387 causes such values to be returned in ordinary
CPU registers instead.

-mno-fancy-math-387

Some 387 emulators do not supportshre cosandsqrt instructions for the

387. Specify this option to avoid generating those instructions. This option is
the default on FreeBSD. As of revision 2.6.1, these instructions are not
generated unless you also use-ffest-math switch.

-malign-double -mno-align-double

Warning:

Control whether GNU CC aligmiouble, long double andlong longvariables
on a two word boundary or a one word boundary. Aligiogble variables

on a two word boundary will produce code that runs somewhat faster on a
Pentium at the expense of more memory.

If you use themalign-double switch, structures containing the above types
will be aligned differently than the published application binary interface
specifications for the 386.

-munaligned-text

(Not available on Windows NT) Turns off all alignment for instructions.
Occasionally this may be interesting if the code size is significant in low-level
stuff.

-msvr3-shlib -mno-svr3-shlib

Control whether GNU CC places uninitialized locals im¢sor data.
-msvr3-shlib places these locals inbss These options are meaningful only
on System V Release 3.

-mno-wide-multiply -mwide-multiply

-mrtd

The Objective-C Compiler

Control whether GNU CC uses timail andimul that produce 64 bit results in
eax:edxfrom 32 bit operands to dong longmultiplies and 32-bit division by
constants.

Use a different function-calling convention, in which functions that take a fixed
number of arguments return with tre¢ NUM instruction, which pops their
arguments while returning. This saves one instruction in the caller since there
is no need to pop the arguments there.

You can specify that an individual function is called with this calling sequence
with the function attributstdcall. You can also override thenrtd option by
using the function attributedecl See “Declaring Attributes of Functions”

Warning: This calling convention is incompatible with the one normally used on Unix,
S0 you cannot use it if you need to call libraries compiled with the Unix
compiler.

Also, you must provide function prototypes for all functions that take variable
numbers of arguments (includipgintf); otherwise incorrect code will be
generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too
many arguments. (Normally, extra arguments are harmlessly ignored.)

-mreg-alloc=regs
Control the default allocation order of integer registers. The seggjs a
series of letters specifying a register. The supported lettesallecate EAX;
b allocate EBXc allocate ECXd allocate EDX;S allocate ESID allocate
EDI; B allocate EBP.

-mregparm=num
Control how many registers are used to pass integer arguments. By default, no
registers are used to pass arguments, and at most 3 registers can be used. You
can control this behavior for a specific function by using the function attribute
regparm. See “Declaring Attributes of Functions”

Warning: If you use this switch, andumis nonzero, then you must build all modules
with the same value, including any libraries. This includes the system libraries
and startup modules.

-malign-loops=num
Align loops to a 2 raised tormimbyte boundary. Ifmalign-loopsis not
specified, the default is 2.

-malign-jumps=num
Align instructions that are only jumped to to a 2 raisedtorabyte boundary.
If -malign-jumps is not specified, the default is 2 if optimizing for a 386, and
4 if optimizing for a 486.

-malign-functions=num
Align the start of functions to a 2 raisedniombyte boundary. If
-malign-jumps is not specified, the default is 2 if optimizing for a 386, and 4
if optimizing for a 486.

GNU CC Command Options 47

48

HPPA Options

These-m options are defined for the HPPA family of computers:

-mpa-risc-1-0
Generate code for a PA 1.0 processor.

-mpa-risc-1-1
Generate code for a PA 1.1 processor.

-mjump-in-delay
Fill delay slots of function calls with unconditional jump instructions by
modifying the return pointer for the function call to be the target of the
conditional jump.

-mmillicode-long-calls
Generate code which assumes millicode routines can not be reached by the
standard millicode call sequence, linker-generated long-calls, or
linker-modified millicode calls. In practice this should only be needed for
dynamicly linked executables with extremely large SHLIB_INFO sections.

-mdisable-fpregs
Prevent floating point registers from being used in any manner. This is
necessary for compiling kernels which perform lazy context switching of
floating point registers. If you use this option and attempt to perform floating
point operations, the compiler will abort.

-mdisable-indexing
Prevent the compiler from using indexing address modes. This avoids some
rather obscure problems when compiling MIG generated code under MACH.

-mfast-indirect-calls
Generate code which performs faster indirect calls. Such code is suitable for
kernels and for static linking. The fast indirect call code will fail miserably if
it's part of a dynamically linked executable and in the presense of nested
functions.

-mportable-runtime
Use the portable calling conventions proposed by HP for ELF systems.

-mgas Enable the use of assembler directives only GAS understands.

The Objective-C Compiler

-mschedulexpu type

Schedule code according to the constraints for the machinepypgpe The
choices forcpu typeare700for 7NO machines/100for 7N5 machines, and
7100for 7N2 machines/00is the default focpu type

Note the7100LC scheduling information is incomplete and usii@OLC
often leads to bad schedules. For now it’s probably best t6l@€enstead of
7100LC for the 7N2 machines.

-msoft-float

Warning:

Generate output containing library calls for floating point.

The requisite libraries are not available for all HPPA targets. Normally the
facilities of the machine’s usual C compiler are used, but this cannot be done
directly in cross-compilation. You must make your own arrangements to
provide suitable library functions for cross-compilation. The embedded target
hppal.l-*-pro does provide software floating point support.

-msoft-float changes the calling convention in the output file; therefore, it is
only useful if you compilall of a program with this option. In particular, you
need to compiléibgcc.a the library that comes with GNU CC, with
-msoft-float in order for this to work.

Options for Code Generation Conventions

These machine-independent options control the interface conventions used in code
generation.

Most of them have both positive and negative forms; the negative foffomfvould be
-fno-foo. In the table below, only one of the forms is listed—the one which is not the
default. You can figure out the other form by either remorimgor adding it.

-dynamic, -

static

The compiler generates position-independent code by default when it builds
libraries, bundles, and executables. You can control the code generation style
using the-dynamic and-static compiler flags:dyamic specifies that
position-independent code generation is to be used, whstatis specifies
position-dependent code generation.

GNU CC Command Options 49

If you are building drivers and kernel servers, be sure to inefitdic on the
command line so that position-dependent code is generated. Compilation with
the-dynamic option assumes that the dynamic link editasi(/lib/dyld) is

present in the running program, and that is not the case for modules to be
loaded into the kernel.

-fpce-struct-return
Return “short’struct andunion values in memory like longer ones, rather than
in registers. This convention is less efficient, but it has the advantage of
allowing intercallability between GNU CC-compiled files and files compiled
with other compilers.

The precise convention for returning structures in memory depends on the
target configuration macros.

Short structures and unions are those whose size and alignment match that of
some integer type.

-freg-struct-return
Use the convention thatruct andunion values are returned in registers when
possible. This is more efficient for small structures tffacc-struct-return .

If you specify neitheffpcc-struct-return nor its contrary

-freg-struct-return , GNU CC defaults to whichever convention is standard for
the target. If there is no standard convention, GNU CC defaults to
-fpce-struct-return, except on targets where GNU CC is the principal

compiler. In those cases, it choses the more efficient register return alternative.

-fshort-enums
Allocate to arenumtype only as many bytes as it needs for the declared range
of possible values. Specifically, tkaum type will be equivalent to the
smallest integer type which has enough room.

-fshort-double
Use the same size fdpuble as forfloat.

-fshared-data
Requests that the data and rmamstvariables of this compilation be shared
data rather than private data. The distinction makes sense only on certain
operating systems, where shared data is shared between processes running the
same program, while private data exists in one copy per process.

50 The Objective-C Compiler

-fno-common
Allocate even uninitialized global variables in the bss section of the object file,
rather than generating them as common blocks. This has the effect that if the
same variable is declared (withaxtern) in two different compilations, you
will get an error when you link them. The only reason this might be useful is
if you wish to verify that the program will work on other systems which always
work this way.

-fno-ident
Ignore thetident directive.

-fno-gnu-linker
Do not output global initializations (such as C++ constructors and destructors)
in the form used by the GNU linker (on systems where the GNU linker is the
standard method of handling them). Use this option when you want to use a
non-GNU linker, which also requires using tiadlect2 program to make sure
the system linker includes constructors and destructmi¢e¢t2is included in
the GNU CC distribution.) For systems whitlustusecollect2, the compiler
drivergccis configured to do this automatically.

-finhibit-size-directive
Don't output asizeassembler directive, or anything else that would cause
trouble if the function is split in the middle, and the two halves are placed at
locations far apart in memory. This option is used when comptisguff.c;
you should not need to use it for anything else.

-fverbose-asm
Put extra commentary information in the generated assembly code to make it
more readable. This option is generally only of use to those who actually need
to read the generated assembly code (perhaps while debugging the compiler

itself).
-fvolatile

Consider all memory references through pointers to be volatile.
-fvolatile-global

Consider all memory references to extern and global data items to be volatile.
-fpic Generate position-independent code (PIC) suitable for use in a shared library.

Such code accesses all constant addresses through a global offset table (GOT).
If the GOT size for the linked executable exceeds a machine-specific maximum
size, you get an error message from the linker indicatingffiatdoes not

work; in that case, recompile witfPIC instead. (These maximums are 8k on

the Sparc and 32k on the m68k. The 386 has no such limit.)

GNU CC Command Options 51

-fPIC Emit position-independent code, suitable for dynamic linking and avoiding
any limit on the size of the global offset table.

-ffixed-reg
Treat the register nameeyg as a fixed register; generated code should never
refer to it (except perhaps as a stack pointer, frame pointer or in some other
fixed role).

reg must be the name of a register. The register names accepted are
machine-specific and are defined in RieEGISTER_NAMES macro in the
machine description macro file.

This flag does not have a negative form, because it specifies a three-way
choice.

-fcall-used+eg
Treat the register nameeg as an allocatable register that is clobbered by
function calls. It may be allocated for temporaries or variables that do not live
across a call. Functions compiled this way will not save and restore the register
reg.

Use of this flag for a register that has a fixed pervasive role in the machine’s
execution model, such as the stack pointer or frame pointer, will produce
disastrous results.

This flag does not have a negative form, because it specifies a three-way
choice.

-fcall-saved+eg
Treat the register nameeg as an allocatable register saved by functions. It
may be allocated even for temporaries or variables that live across a call.
Functions compiled this way will save and restore the regesiéfrthey use it.

Use of this flag for a register that has a fixed pervasive role in the machine’s
execution model, such as the stack pointer or frame pointer, will produce
disastrous results.

A different sort of disaster will result from the use of this flag for a register in
which function values may be returned.

This flag does not have a negative form, because it specifies a three-way
choice.

52 The Objective-C Compiler

-fpack-struct
Pack all structure members together without holes. Usually you would not
want to use this option, since it makes the code suboptimal, and the offsets of
structure members won't agree with system libraries.

+e0+el
Control whether virtual function definitions in classes are used to generate
code, or only to define interfaces for their callers. (C++ only).

These options are provided for compatibility wifnont 1.x usage; the
recommended alternative GNU C++ usage is in flux. See “Declarations and
Definitions in One Header".

With +e(Q, virtual function definitions in classes are declaetirn; the
declaration is used only as an interface specification, not to generate code for
the virtual functions (in this compilation).

With +el, G++ actually generates the code implementing virtual functions
defined in the code, and makes them publicly visible.

Environment Variables Affecting GNU CC

This section describes several environment variables that affect how GNU CC operates.
They work by specifying directories or prefixes to use when searching for various kinds of
files.

Note that you can also specify places to search using options sighlaand-L (see
“Options for Directory Search”). These take precedence over places specified using
environment variables, which in turn take precedence over those specified by the
configuration of GNU CC.

TMPDIR If TMPDIR is set, it specifies the directory to use for temporary files. GNU CC
uses temporary files to hold the output of one stage of compilation which is to
be used as input to the next stage: for example, the output of the preprocessor,
which is the input to the compiler proper.

GCC_EXEC_PREFIX
If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the names of the
subprograms executed by the compiler. No slash is added when this prefix is
combined with the name of a subprogram, but you can specify a prefix that
ends with a slash if you wish.

GNU CC Command Options 53

54

If GNU CC cannot find the subprogram using the specified prefix, it tries
looking in the usual places for the subprogram.

The default value dBCC_EXEC_PREFIX is prefixlib/gcc-lib/ whereprefix
is the value oprefix when you ran theonfigure script.

Other prefixes specified wit take precedence over this prefix.
This prefix is also used for finding files suctce®.o that are used for linking.

In addition, the prefix is used in an unusual way in finding the directories to
search for header files. For each of the standard directories whose name
normally begins withusr/local/lib/gcc-lib (more precisely, with the value of
GCC_INCLUDE_DIR), GNU CC tries replacing that beginning with the
specified prefix to produce an alternate directory name. Thus;Bi#db/,

GNU CC will searcHoo/bar where it would normally search

{/usr/local/lib/bar. These alternate directories are searched first; the standard
directories come next.

COMPILER_PATH

LIBRARY_

The value oCOMPILER_PATH is a colon-separated list of directories,
much likePATH. GNU CC tries the directories thus specified when searching
for subprograms, if it can’t find the subprograms using
GCC_EXEC_PREFIX.

PATH

The value oLIBRARY_PATH is a colon-separated list of directories, much
like PATH. When configured as a native compiler, GNU CC tries the
directories thus specified when searching for special linker files, if it can’t find
them usingGCC_EXEC_PREFIX. Linking using GNU CC also uses these
directories when searching for ordinary libraries for-thaption (but

directories specified with. come first).

C_INCLUDE_PATH CPLUS_INCLUDE_PATH OBJC_INCLUDE_PATH

The Objective-C Compiler

These environment variables pertain to particular languages. Each variable’s
value is a colon-separated list of directories, muchH&KEH . When GNU CC
searches for header files, it tries the directories listed in the variable for the
language you are using, after the directories specified-witht before the
standard header file directories.

DEPENDENCIES_OUTPUT
If this variable is set, its value specifies how to output dependencies for Make
based on the header files processed by the compiler. This output looks much
like the output from theM option (see “Options Controlling the
Preprocessor”), but it goes to a separate file, and is in addition to the usual
results of compilation.

The value oDEPENDENCIES_OUTPUT can be just a file name, in which
case the Make rules are written to that file, guessing the target name from the
source file name. Or the value can have the fdentarget in which case the

rules are written to filéile usingtargetas the target name.

C Programming Notes

This section contains miscellaneous notes about programming in C with NeXT’s version of
the GNU C compiler. It also describes some incompatibilities between GNU C and
traditional non-ANSI versions of C.

String Constants and Static Strings

GNU CC normally makes string constants read-only, and if several identical string
constants are used, GNU CC stores only one copy of the string.

Some C libraries incorrectly write into string constants. The best solution to this problem
is to use character array variables with initialization strings instead of string constants. |If
this isn't possible, use théwritable-strings flag, which directs GNU CC to handle string
constants the way most C compilers do.

Also note that initialized strings are normally put in the text segment by the GNU compiler,
and attempts to write to them cause segmentation faults. If your program depends on being
able to write initialized strings, there are two ways to get around this problem:

e Compile your program with thdwritable-strings compiler option.

» Declare your string as an unbounded arraghairs, which will force it to appear in the
data segment:

char *non_writable = "You can’t write this string";
char writable[] = "You can write this string"”;

C Programming Notes 55

56

Function Prototyping

Function prototypes are a new and important feature of the ANSI standard. You should use
function prototypes in your C programs, so the compiler can generate more efficient code
(because it knows what the called function is expecting). The compiler can also warn you
when you pass the wrong number or wrong type of arguments to a function.

Extra care must be taken in using function prototypes. Be sure to follow these rules:

» Each function must be declared explicitly (with a prototype) before calling the function.
Multiple declarations must agree exactly. Incorrect code can be generated by a call that
isn't prototyped if the function itself is declared as a prototype.

» The parameter declarations for the prototyped function must be in the same form as the
prototype declaration.

Here are a few points about prototyping that might cause you some trouble.
* You might think it's a bug when GNU CC reports an error for code like this:

int foo (short);

int foo (x)
short x;

{...}

The error message is correct. The code is wrong because the old-style nonprototype
definition passes subword integers in their promoted types. In other words, the argument
is really anint, not ashort. The correct prototype is this:

int foo (int)
* You might think it's a bug when GNU CC reports an error for code like this:

int foo (struct mumble *);
struct mumble {. . . };

int foo (struct mumble *x);

(...}

This code is also wrong. Because of the scogtrott mumble, the prototype is

limited to the argument list containing it. 1t doesn’t refer tostinect mumble defined

with file scope immediately below—they are two unrelated types with similar names in
different scopes. But in the definitionfob, the file-scope type is used because that is
available to be inherited. Thus, the definition and the prototype don’'t match and you get

The Objective-C Compiler

an error. You can make the code work by simply moving the definitismuaft
mumble above the prototype.

“Suggested Reading” lists several C books that provide detailed information about the use
(and abuse) of function prototypes.

Automatic Register Allocation

When you ussetjmp() andlongjmp(), the only automatic variables guaranteed to remain
valid are those declaredlatile. This is a consequence of automatic register allocation. If
you use theW option with the-O option, you'll get a warning when GNU CC thinks such
a problem is possible. For example:

jmp_buf j;

foo ()
{

int a, b;

a = funl ();
if (setimp (j))
return a;

a = fun2 ();
/* longjmp (j) may occur in fun3. */
return a + fun3 ();

}

Here,a may or may not be restored to its first value whetoihgimp() function is called.
If ais allocated in a register, its first value is restored; otherwise, it keeps the last value

stored in it.

Declarations of External Variables and Functions
Declarations of external variables and functions within a block apply only to the block

containing the declaration (in some C compilers, such declarations affect the whole file).
ANSI C states that external declarations should obey normal scoping rules. For example:

C Programming Notes 57

58

{
{
extern int a;
a=0;
}
a=1; [*lllegal */
}

You can use thdraditional option if you want alextern declarations to be treated
as global.

typedef and Type Modifiers

In traditional C, you can combinmsigned for example, with #ypedefname as
shown here:

typedef long int Int32;
unsigned Int32i; /* lllegal in ANSI C*/

In ANSI C this isn’t allowed:unsignedand other type modifiers require an explicit
Because this criterion is expressed by Bison grammar rules rather than C code, the
-traditional flag can't alter it.

The same difficulty applies tgpedef names used as function parameters.

Identifying the Compiler Version

The compiler has additional predefined macros that can be used to determine the release
version of the compiler (these macros are not available on WindowsBVE}y effort

should be made to minimize the use of these maEasach release of the compiler there

will be a macro defined such 8X_COMPILER_RELEASE_3 0 and
NX_COMPILER_RELEASE_3 1. There will also be a macro
NX_CURRENT_COMPILER_RELEASE . One can conditionally compile code by
numerically comparing these macros. For example:

#if NX_CURRENT_COMPILER_RELEASE > NX_COMPILER_RELEASE_3 0

#endif

The Objective-C Compiler

Writing Architecture-lndependent Code

This compiler predefines new macros to aid in writing architecture-independent code.

__ARCHITECTURE__
In addition to the existing predefines which identify specific target
architectures (for example68k, i386), the compiler also predefines the
macro__ ARCHITECTURE__ to be a string constant identifying the target
architecture (“m68k”, “i386"). This macro is used by system header files to
include the architecture-specific files without having to enumerate all
supported architectures.

_ BIG_ENDIAN__, _ LITTLE_ENDIAN__
The compiler predefines eitherBIG_ENDIAN__ or
__LITTLE_ENDIAN__ , as appropriate for the target architecture.

Objective-C Programming Notes

Accessing Instance Variables in Class Methods

It used to be common programming style in Objective-C to assggifio a class method
and then access instance variables. This is bad style beedfisghe context of a class
method stands for the class object—and shouldn't be redefined to stand for a particular
instance of the object.

Here is an example of thisd style

@implementation Oval : Object {
int x;

}

+new {
self = [super new];// Now self refers to a class instance

x = 4;/[Assigns an instance variable

}..
@end

Objective-C Programming Nofes 59

60

x = [Oval new];// Create an Oval object

To discourage this anachronistic use, the compiler issues a warning if an instance variable
is referenced in a class method.

Here’s a better way to instantiate an object:
x = [[Oval alloc] init];

SeeObject-Oriented Programming and the Objective C Langdagenore details.

Syntax Checking

The Objective-C compiler’s syntax checking disallows the nestit@ioferface and
@implementation blocks.

Sending Objective-C Messages to Converted C++
Objects

You can send an Objective-C message to a C++ object that has been converted by a
conversion operator (“a smart pointer”). In the following example, the fix&eguare
objectaSquareis implicitly converted to the Objective-C ty@euare* using the
conversion operat@quare*(). The converted object receives the messatmilateArea

@interface Square {
id a;

}
éend

class ptrSquare {
Square* value;
public:
operator Square*();

kh

square (ptrSquare aSquare) {
float z = [aSquare calculateArea]; // invokes operator Square*()

}

The Objective-C Compiler

Due to the conversion, the compiler acts aSijuareis statically typed t&quare* in the
message expression.

The above example uses only one conversion opeogterator Square*. You should

avoid having multiple conversion operators in the same class that produce different pointer
types—the compiler may choose the wrong conversion operator and not produce the
desired type. If you need more than one conversion type, you must ogerator id
conversion operator—the compiler chooses this over an operator converting to any other
Objective-C class pointer type. If the clagsSquare implemented other operator()
conversions besideperator Square*(), it would also have to implement aperator id
conversion so the compiler would know which conversion to look for.

Conversion operators allow you to implement so called “smart pointers” to Objective-C
objects. Smart pointers are objects that act like pointers and perform some other action in
addition whenever an object is accessed through them. For more information on smart
pointers, see Bjarne Stroustrupse C++ Programming Language, Second Edition
(Addison-Wesley, 1991).

Extensions to the C Language Family

GNU C provides several language features not found in ANSI standard CpéEflaamtic

option directs GNU CC to print a warning message if any of these features is used.) To test
for the availability of these features in conditional compilation, check for a predefined
macro__GNUC __, which is always defined under GNU CC.

These extensions are available in C and Objective-C. Most of them are also available in
C++. See “Extensions to the C++ Language” for extensions that apigijo C++.

Statements and Declarations in Expressions

A compound statement enclosed in parentheses may appear as an expression in GNU C.
This allows you to use loops, switches, and local variables within an expression.

Recall that a compound statement is a sequence of statements surrounded by braces; in this
construct, parentheses go around the braces. For example:

{inty=foo ();intz;if(y>0)z=y;elsez=-vy;z})

is a valid (though slightly more complex than necessary) expression for the absolute value
of foo ().

Extensions to the C Language Family 61

62

The last thing in the compound statement should be an expression followed by a semicolon;
the value of this subexpression serves as the value of the entire construct. (If you use some
other kind of statement last within the braces, the construct hasdighend thus

effectively no value.)

This feature is especially useful in making macro definitions “safe” (so that they evaluate
each operand exactly once). For example, the “maximum” function is commonly defined
as a macro in standard C as follows:

#define max(a,b) ((@) > (b) ? (a) : (b))

But this definition computes either A or B twice, with bad results if the operand has side
effects. In GNU C, if you know the type of the operands (here let's agatimgou can
define the macro safely as follows:

#define maxint(a,b) \ {int _a=(a), _b=(b); _a> _b?_a:_b;}

Embedded statements are not allowed in constant expressions, such as the value of an
enumeration constant, the width of a bit field, or the initial value of a static variable.

If you don’t know the type of the operand, you can still do this, but you musgpessf
(see “Referring to a Type with “typeof™) or type naming (see “Naming an Expression’s

Type”).

Locally Declared Labels

Each statement expression is a scope in which “local labels” can be declared. A local label
is simply an identifier; you can jump to it with an ordingoto statement, but only from
within the statement expression it belongs to.

A local label declaration looks like this:
__label _ LABEL;

or
__label__ LABEL1, LABEL2, ...;

Local label declarations must come at the beginning of the statement expression, right after
the({’, before any ordinary declarations.

The label declaration defines the labaime but does not define the label itself. You must
do this in the usual way, wilbABEL.: , within the statements of the statement expression.

The Objective-C Compiler

The local label feature is useful because statement expressions are often used in macros. If
the macro contains nested loopgoto can be useful for breaking out of them. However,

an ordinary label whose scope is the whole function cannot be used: if the macro can be
expanded several times in one function, the label will be multiply defined in that function.

A local label avoids this problem. For example:

#define SEARCH(array, target) \
d\
__label__ found; \
typeof (target) _SEARCH_target = (target); \
typeof (*(array)) *_SEARCH_array = (array); \
inti, j; \
int value; \
for (i=0; i < max; i++) \
for (j = 0; j < max; j++) \
if (_SEARCH_arrayl[il[jl == _SEARCH_target) \
{ value = i; goto found; } \
value = -1;\
found: \
value; \

)

Labels as Values

You can get the address of a label defined in the current function (or a containing function)
with the unary operat&& . The value has typsid *. This value is a constant and can be
used wherever a constant of that type is valid. For example:

void *ptr; ... ptr = &&foo;

To use these values, you need to be able to jump to one. This is done with the computed
goto statement(1yoto *EXP;. For example,

goto *ptr;
Any expression of typeoid * is allowed.

One way of using these constants is in initializing a static array that will serve as a jump
table:

static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:

Extensions to the C Language Family 63

64

goto *array[i];

Note that this does not check whether the subscript is in bounds—array indexing in C never
does that.

Such an array of label values serves a purpose much like thatsgfitble statement. The
switch statement is cleaner, so use that rather than an array unless the problem does not fit
aswitch statement very well.

Another use of label values is in an interpreter for threaded code. The labels within the
interpreter function can be stored in the threaded code for super-fast dispatching.

You can use this mechanism to jump to code in a different function. If you do that, totally
unpredictable things will happen. The best way to avoid this is to store the label address
only in automatic variables and never pass it as an argument.

Note: The analogous feature in Fortran is called an assigned goto, but that name seems
inappropriate in C, where one can do more than simply store label addresses in label
variables.

Nested Functions

A “nested function” is a function defined inside another function. (Nested functions are not
supported for GNU C++.) The nested function’s name is local to the block where it is
defined. For example, here we define a nested function requade, and call it twice:

foo (double a, double b) {
double square (double z) {
return z * z;

}

return square (a) + square (b);

}

The nested function can access all the variables of the containing function that are visible
at the point of its definition. This is called “lexical scoping”. For example, here we show a
nested function which uses an inherited variable nasffedt

bar (int *array, int offset, int size) {
int access (int *array, int index) {
return array[index + offset];

}

inti;

for (i=0; i < size; i++)

The Objective-C Compiler

access (array, i)

}

Nested function definitions are permitted within functions in the places where variable
definitions are allowed; that is, in any block, before the first statement in the block.

It is possible to call the nested function from outside the scope of its name by storing its
address or passing the address to another function:

hack (int *array, int size) {
void store (int index, int value) {
array[index] = value;

}

intermediate (store, size);

}

Here, the functiointermediate receives the addresssibre as an argument. If
intermediate callsstore, the arguments given $bore are used to store intoray. But this
technique works only so long as the containing functiack, in this example) does not
exit.

If you try to call the nested function through its address after the containing function has
exited, all hell will break loose. If you try to call it after a containing scope level has exited,
and if it refers to some of the variables that are no longer in scope, you may be lucky, but
it's not wise to take the risk. If, however, the nested function does not refer to anything that
has gone out of scope, you should be safe.

GNU CC implements taking the address of a nested function using a technique called
“trampolines”. A paper describing them is available froigya.idiap.chin directory
pub/tmb, file usenix88-lexic.ps.Z

A nested function can jump to a label inherited from a containing function, provided the
label was explicitly declared in the containing function (see “Locally Declared Labels”).
Such a jump returns instantly to the containing function, exiting the nested function which
did thegoto and any intermediate functions as well. Here is an example:

bar (int *array, int offset, int size) {
__label__ failure;
int access (int *array, int index) {
if (index > size)
goto failure;
return array[index + offset];

}

inti;

Extensions to the C Language Family 65

for (i=0; i < size; i++)

access (array, i)

return O; /* Control comes here from access */
[* if it detects an error. */
failure:
return -1;
}

A nested function always has internal linkage. Declaring oneextitiTn is erroneous. If
you need to declare the nested function before its definitiomuiséwhich is otherwise
meaningless for function declarations).

bar (int *array, int offset, int size) {
__label__ failure;
auto int access (int *, int);

int access (int *array, int index) {
if (index > size)
goto failure;
return array[index + offset];

Constructing Function Calls

Using the built-in functions described below, you can record the arguments a function
received, and call another function with the same arguments, without knowing the number
or types of the arguments.

You can also record the return value of that function call, and later return that value, without
knowing what data type the function tried to return (as long as your caller expects that data

type).
___builtin_apply_args ()

This built-in function returns a pointer of typeid * to data describing how to
perform a call with the same arguments as were passed to the current function.

66 The Objective-C Compiler

The function saves the arg pointer register, structure value address, and all
registers that might be used to pass arguments to a function into a block of
memory allocated on the stack. Then it returns the address of that block.

__builtin_apply (function argumentssizé This built-in function invoke$unction (type
void (*)()) with a copy of the parameters describedigumentgtypevoid *)
and SIZE (typent).

The value ofirgumentsshould be the value returned by
___builtin_apply_args. The argumergizespecifies the size of the stack
argument data, in bytes.

This function returns a pointer of typeid * to data describing how to return
whatever value was returned fayction The data is saved in a block of
memory allocated on the stack.

It is not always simple to compute the proper valuesize The value is used
by _ builtin_apply to compute the amount of data that should be pushed on
the stack and copied from the incoming argument area.

__builtin_return (resul)
This built-in function returns the value describeddsultfrom the containing
function. You should specify, foesult, a value returned by builtin_apply.

Naming an Expression’s Type

You can give a name to the type of an expression udiyygedef declaration with an
initializer. Here is how to define NAME as a type name for the type of EXP:

typedef NAME = EXP;

This is useful in conjunction with the statements-within-expressions feature. Here is how
the two together can be used to define a safe “maximum” macro that operates on any
arithmetic type:

#define max(a,b) \

({typedef _ta = (a), _th = (b);\
_ta_a=(a); _tb_b=(b);\
_a>_b? _a: bd

The reason for using names that start with underscores for the local variables is to avoid

conflicts with variable names that occur within the expressions that are substitataeddor
b.

Extensions to the C Language Family 67

Referring to a Type with “typeof”

Another way to refer to the type of an expression is tyfirof. The syntax of using of this
keyword looks likesizeof but the construct acts semantically like a type hame defined with
typedef.

There are two ways of writing the argumentyipeof: with an expression or with a type.
Here is an example with an expression:

typeof (x[0](1))

This assumes thatis an array of functions; the type described is that of the values of the
functions.

Here is an example with a typename as the argument:
typeof (int *)
Here the type described is that of pointermto

If you are writing a header file that must work when included in ANSI C programs, write
__typeof__instead otypeof. See “Alternate Keywords”.

A typeof-construct can be used anywhere a typedef name could be used. For example, you
can use it in a declaration, in a cast, or insidgzofor typeof.

» This declarey with the type of what points to.
typeof (*x) y;

» This declarey as an array of such values.
typeof (*x) y[4];

» This declarey as an array of pointers to characters:
typeof (typeof (char *)[4]) vy;

» Itis equivalent to the following traditional C declaration:
char *y[4];

» To see the meaning of the declaration usjpgof, and why it might be a useful way to
write, let's rewrite it with these macros:

#define pointer(T) typeof(T *) #define array(T, N) typeof(T [N])

68 The Objective-C Compiler

Now the declaration can be rewritten this way:

array (pointer (char), 4) y;

Thus,array (pointer (char), 4) is the type of arrays of 4 pointersdioar.

Generalized Lvalues

Compound expressions, conditional expressions and casts are allowed as Ivalues provided
their operands are Ivalues. This means that you can take their addresses or store values into
them.

Standard C++ allows compound expressions and conditional expressions as Ivalues, and
permits casts to reference type, so use of this extension is deprecated for C++ code.

For example, a compound expression can be assigned, provided the last expression in the
sequence is an Ivalue. These two expressions are equivalent:

(a, b)+=5a, (b += 5)

Similarly, the address of the compound expression can be taken. These two expressions are
equivalent:

&(a, b) a, &b

A conditional expression is a valid Ivalue if its type is not void and the true and false
branches are both valid Ivalues. For example, these two expressions are equivalent:

(@?b:c)=5@7?b=5:(c=5))

A castis a valid Ivalue if its operand is an Ivalue. A simple assignment whose left-hand side
is a cast works by converting the right-hand side first to the specified type, then to the type
of the inner left-hand side expression. After this is stored, the value is converted back to the
specified type to become the value of the assignment. Ttausa# typechar *, the

following two expressions are equivalent:

(int)a = 5 (int)(a = (char *)(int)5)

An assignment-with-arithmetic operation such+asapplied to a cast performs the
arithmetic using the type resulting from the cast, and then continues as in the previous case.
Therefore, these two expressions are equivalent:

(int)a += 5 (int)(a = (char *)(int) ((int)a + 5))

Extensions to the C Language Family 69

70

You cannot take the address of an Ivalue cast, because the use of its address would not work
out coherently. Suppose th&afint)f were permitted, wheifehas typdloat. Then the

following statement would try to store an integer bit-pattern where a floating point number
belongs:

*&(int)f = 1,

This is quite different from whdint)f = 1 would do—that would convert 1 to floating point
and store it. Rather than cause this inconsistency, we think it is better to prohibiguse of
on a cast.

If you really do want amt * pointer with the address ffyou can simply writéint *)&f .

Conditionals with Omitted Operands

The middle operand in a conditional expression may be omitted. Then if the first operand
is honzero, its value is the value of the conditional expression.

Therefore, the expression

X?:y
has the value of if that is nonzero; otherwise, the valueyof
This example is perfectly equivalent to

X?X:y

In this simple case, the ability to omit the middle operand is not especially useful. When it
becomes useful is when the first operand does, or may (if it is a macro argument), contain
a side effect. Then repeating the operand in the middle would perform the side effect twice.
Omitting the middle operand uses the value already computed without the undesirable
effects of recomputing it.

Double-Word Integers

GNU C supports data types for integers that are twice as looggisit. Simply writelong
long int for a signed integer, amsigned long long intfor an unsigned integer. To make
an integer constant of typeng long int, add the suffix L to the integer. To make an
integer constant of typensigned long long inf add the suffi’ULL to the integer.

The Objective-C Compiler

You can use these types in arithmetic like any other integer types. Addition, subtraction, and
bitwise boolean operations on these types are open-coded on all types of machines.
Multiplication is open-coded if the machine supports fullword-to-doubleword a widening
multiply instruction. Division and shifts are open-coded only on machines that provide
special support. The operations that are not open-coded use special library routines that
come with GNU CC.

There may be pitfalls when you usag long types for function arguments, unless you
declare function prototypes. If a function expects igpdor its argument, and you pass a
value of typdong long int, confusion will result because the caller and the subroutine will
disagree about the number of bytes for the argument. Likewise, if the function éapegcts
long int and you pasmt. The best way to avoid such problems is to use prototypes.

Complex Numbers

GNU C supports complex data types. You can declare both complex integer types and
complex floating types, using the keywordcomplex_ ..

For example, complex__ double xdeclarex as a variable whose real part and
imaginary part are both of typuble. _complex__ short int y;declarey to have real
and imaginary parts of typort int; this is not likely to be useful, but it shows that the set
of complex types is complete.

To write a constant with a complex data type, use the sudfik (either one; they are
equivalent). For exampl@,5fi has type _complex__ floatand3i has type _complex__

int. Such a constant always has a pure imaginary value, but you can form any complex
value you like by adding one to a real constant.

To extract the real part of a complex-valued expressiprwrite __real__exp Likewise,
use__imag__to extract the imaginary part.

The operator performs complex conjugation when used on a value with a complex type.

GNU CC can allocate complex automatic variables in a noncontiguous fashion; it's even
possible for the real part to be in a register while the imaginary part is on the stack (or
vice-versa). None of the supported debugging info formats has a way to represent
noncontiguous allocation like this, so GNU CC describes a noncontiguous complex
variable as if it were two separate variables of noncomplex type. If the variable’s actual
name ifoo, the two fictitious variables are nanfed$real andfoo$imag You can

examine and set these two fictitious variables with your debugger.

Extensions to the C Language Family 71

72

A future version of GDB will know how to recognize such pairs and treat them as a single
variable with a complex type.

Arrays of Length Zero

Zero-length arrays are allowed in GNU C. They are very useful as the last element of a
structure which is really a header for a variable-length object:

struct line {
int length;
char contents|[0];

struct line *thisline =
(struct line *) malloc (sizeof (struct line) + this_length);
thisline->length = this_length;
}

In standard C, you would have to ge@ntentsa length of 1, which means either you waste
space or complicate the argumenirtalloc.

Arrays of Variable Length

Variable-length automatic arrays are allowed in GNU C. These arrays are declared like any
other automatic arrays, but with a length that is not a constant expression. The storage is
allocated at the point of declaration and deallocated when the brace-level is exited. For
example:

FILE * concat_fopen (char *s1, char *s2, char *mode) {
char str[strlen (sl1) + strlen (s2) + 1];
strcpy (str, sl);
strcat (str, s2);
return fopen (str, mode);

}

Jumping or breaking out of the scope of the array name deallocates the storage. Jumping
into the scope is not allowed; you get an error message for it.

You can use the functiaallocato get an effect much like variable-length arrays. The
functionallocais available in many other C implementations (but not in all). On the other
hand, variable-length arrays are more elegant.

The Objective-C Compiler

There are other differences between these two methods. Space allocatdidbedatbxists

until the containindgunctionreturns. The space for a variable-length array is deallocated as
soon as the array name’s scope ends. (If you use both variable-length arralccand

the same function, deallocation of a variable-length array will also deallocate anything
more recently allocated withlloca.)

You can also use variable-length arrays as arguments to functions:

struct entry tester (int len, char data[len][len]) { ... }

The length of an array is computed once when the storage is allocated and is remembered
for the scope of the array in case you access itsidtof

If you want to pass the array first and the length afterward, you can use a forward
declaration in the parameter list—another GNU extension.

struct entry tester (int len; char data[len][len], intlen) { ... }

Theint len before the semicolon is a “parameter forward declaration”, and it serves the
purpose of making the nanten known when the declaration déta is parsed.

You can write any number of such parameter forward declarations in the parameter list.
They can be separated by commas or semicolons, but the last one must end with a
semicolon, which is followed by the “real” parameter declarations. Each forward
declaration must match a “real” declaration in parameter name and data type.

Macros with Variable Numbers of Arguments

In GNU C, a macro can accept a variable number of arguments, much as a function can.
The syntax for defining the macro looks much like that used for a function. Here is an
example:

#define eprintf(format, args...) \ fprintf (stderr, format , ## args)

Hereargsis a “rest argument”: it takes in zero or more arguments, as many as the call
contains. All of them plus the commas between them form the valrg®fwhich is
substituted into the macro body whargs is used. Thus, we have this expansion:

eprintf (“%s:%d: “, input_file_name, line_number) ==> fprintf
(stderr, “%s:%d: “, input_file_name, line_number)

Note that the comma after the string constant comes from the definigprrmf , whereas
the last comma comes from the valueugs.

Extensions to the C Language Family 73

74

The reason for usingfis to handle the case whargs matches no arguments at all. In this
caseargs has an empty value. In this case, the second comma in the definition becomes an
embarrassment; if it got through to the expansion of the macro, we would get something
like this:

fprintf (stderr, “success\n” ,)

which is invalid C syntax## gets rid of the comma, so we get the following instead:

fprintf (stderr, “success!\n”)

This is a special feature of the GNU C preproceggtsefore a rest argument that is empty
discards the preceding sequence of non-whitespace characters from the macro definition.
(If another macro argument precedes, none of it is discarded.)

It might be better to discard the last preprocessor token instead of the last preceding
sequence of non-whitespace characters. We advise you to write the macro definition so that
the preceding sequence of non-whitespace characters is just a single token, so that the
meaning will not change if GNU changes the definition of this feature.

Non-Lvalue Arrays May Have Subscripts

Subscripting is allowed on arrays that are not Ivalues, even though the&&uopgyator is
not. For example, this is valid in GNU C though not valid in other C dialects:

struct foo {
int a[4];
h

struct foo f();

bar (int index) {
return f().afindex];

}

Arithmetic on ““void”’- and Function-Pointers

In GNU C, addition and subtraction operations are supported on pointeig @nd on
pointers to functions. This is done by treating the sizevaidor of a function as 1.

A consequence of this is theizeofis also allowed omoid and on function types, and
returns 1.

The Objective-C Compiler

The option-Wpointer-arith requests a warning if these extensions are used.

Non-Constant Initializers

As in standard C++, the elements of an aggregate initializer for an automatic variable are
not required to be constant expressions in GNU C. Here is an example of an initializer with
run-time varying elements:

foo (float f, float g) {
float beat_freqs[2] ={f-g, f+g };

Constructor Expressions

GNU C supports constructor expressions. A constructor looks like a cast containing an
initializer. Its value is an object of the type specified in the cast, containing the elements
specified in the initializer.

Usually, the specified type is a structure. Assumesthatt foo andstructure are declared
as shown:

struct foo {int a; char b[2];} structure;

Here is an example of constructingteuct foo with a constructor:
structure = ((struct foo) {x +y, ‘a, 0});

This is equivalent to writing the following:
{ struct foo temp = {x +y, ‘a, 0}; structure = temp; }

You can also construct an array. If all the elements of the constructor are (made up of)
simple constant expressions, suitable for use in initializers, then the constructor is an Ivalue
and can be coerced to a pointer to its first element, as shown here:

char **foo = (char *[]) { “x", “y”", “2" };

Array constructors whose elements are not simple constants are not very useful, because
the constructor is not an Ivalue. There are only two valid ways to use it: to subscript it, or
initialize an array variable with it. The former is probably slower thewitch statement,

Extensions to the C Language Family 75

while the latter does the same thing an ordinary C initializer would do. Here is an example
of subscripting an array constructor:

output = ((int[]) { 2, x, 28 }) [input];

Constructor expressions for scalar types and union types are is also allowed, but then the
constructor expression is equivalent to a cast.

Labeled Elements in Initializers

Standard C requires the elements of an initializer to appear in a fixed order, the same as the
order of the elements in the array or structure being initialized. In GNU C you can give the
elements in any order, specifying the array indices or structure field names they apply to.

Note: This extension is not implemented in GNU C++, Objective-C, or Objective-C++.
To specify an array index, wrifendeX or[indeq = before the element value. For example,
int a[6] = { [4] 29, [2] =15 };
is equivalent to
inta[6] ={0,0,15,0,29,0};

The index values must be constant expressions, even if the array being initialized is
automatic.

To initialize a range of elements to the same value, Jiiige ... lasf] = value For example,
int widths[] ={[0 ... 9] =1, [10 ... 99] = 2, [100] = 3 };
Note that the length of the array is the highest value specified plus one.

In a structure initializer, specify the name of a field to initialize Wigldname before the
element value. For example, given the following structure,

struct point { int x, y; };
the following initialization

struct point p = { y: yvalue, x: xvalue }
is equivalent to

struct point p = { xvalue, yvalue };

76 The Objective-C Compiler

Another syntax which has the same meaninfjgklname=., as shown here:
struct point p = { .y = yvalue, .x = xvalue };

You can also use an element label (with either the colon syntax or the period-equal syntax)
when initializing a union, to specify which element of the union should be used. For
example,

union foo { int i; double d; };
unionfoof={d: 4}

will convert 4 to adouble to store it in the union using the second element. By contrast,
casting 4 to typanion foowould store it into the union as the integesince it is an integer.
(See “Cast to a Union Type”.)

You can combine this technique of naming elements with ordinary C initialization of
successive elements. Each initializer element that does not have a label applies to the next
consecutive element of the array or structure. For example,

inta[6] ={[1] =v1,v2,[4]=v4 };
is equivalent to
inta[6] ={0,v1,v2,0,v4,0};

Labeling the elements of an array initializer is especially useful when the indices are
characters or belong to anum type. For example:

int whitespace[256] = {
[1=1,
[\t] =1,
[\h]=1,
[\f]=1,
[\n]=1,
[w]=1

Case Ranges

You can specify a range of consecutive values in a soagielabel, like this:

case LOW ... HIGH:

This has the same effect as the proper number of individsalabels, one for each integer
value from LOW to HIGH, inclusive.

Extensions to the C Language Family 77

78

This feature is especially useful for ranges of ASCII character codes:
case ‘A..."'Z"

Be careful:Write spaces around the for otherwise it may be parsed wrong when you use
it with integer values. For example, write this:

casel..5:
rather than this:

case 1...5:

Cast to a Union Type

A cast to union type is similar to other casts, except that the type specified is a union type.
You can specify the type either witimion tag or with a typedef name. A cast to union is
actually a constructor though, not a cast, and hence does not yield an Ivalue like normal
casts. (See “Constructor Expressions”.)

The types that may be cast to the union type are those of the members of the union. Thus,
given the following union and variables:

union foo {int i; double d; };
int x;
double y;
bothx andy can be cast to typgeion foo.

Using the cast as the right-hand side of an assignment to a variable of union type is
equivalent to storing in a member of the union:

union foo u;
L.I.= (union foo) X == u.i = x u = (union foo) y == u.d =y

You can also use the union cast as a function argument:
void hack (union foo);

hack ((union foo) x);

The Objective-C Compiler

Declaring Attributes of Functions

In GNU C, you declare certain things about functions called in your program which help
the compiler optimize function calls and check your code more carefully.

The keyword__attribute___ allows you to specify special attributes when making a
declaration. This keyword is followed by an attribute specification inside double
parentheses. Eight attributesreturn, const format, section constructor, destructor,
unusedandweak are currently defined for functions. Other attributes, includewion

are supported for variables declarations (see “Specifying Attributes of Variables”) and for
types (see “Specifying Attributes of Types”).

You may also specify attributes with preceding and following each keyword. This allows
you to use them in header files without being concerned about a possible macro of the same
name. For example, you may usenoreturn___instead ohoreturn.

noreturn A few standard library functions, suchasort andexit, cannot return. GNU
CC knows this automatically. Some programs define their own functions that
never return. You can declare theoreturn to tell the compiler this fact. For
example,

void fatal () __attribute__ ((noreturn));
void fatal (...) {

/* Print error message. */

exit (1);
}
Thenoreturn keyword tells the compiler to assume thaal cannot return. It
can then optimize without regard to what would happ&iaf ever did return.

This makes slightly better code. More importantly, it helps avoid spurious
warnings of uninitialized variables.

Do not assume that registers saved by the calling function are restored before
calling thenoreturn function.

It does not make sense fonareturn function to have a return type other than
void.

The attributenoreturn is not implemented in GNU C versions earlier than 2.5.
An alternative way to declare that a function does not return, which works in
the current version and in some older versions, is as follows:

typedef void voidfn ();

Extensions to the C Language Family 79

80

const

volatile voidfn fatal;

Many functions do not examine any values except their arguments, and have
no effects except the return value. Such a function can be subject to common
subexpression elimination and loop optimization just as an arithmetic operator
would be. These functions should be declared with the attidonist For
example,

int square (int) __attribute__ ((const));

says that the hypothetical functisquareis safe to call fewer times than the
program says.

The attributeconstis not implemented in GNU C versions earlier than 2.5. An
alternative way to declare that a function has no side effects, which works in
the current version and in some older versions, is as follows:

typedef int intfn ();
extern const intfn square;

This approach does not work in GNU C++ from 2.6.0 on, since the language
specifies that theonstmust be attached to the return value.

Note that a function that has pointer arguments and examines the data pointed
to mustnot be declaredonst Likewise, a function that calls a neonst

function usually must not lmonst It does not make sense far@nstfunction

to returnvoid.

format (archetypestring-index first-to-check

The Objective-C Compiler

Theformat attribute specifies that a function takemtf or scanfstyle
arguments which should be type-checked against a format string. For example,
the declaration:

extern int my_printf (void *my_object, const char
*my_format, ...) __ attribute__ ((format (printf, 2, 3)));

causes the compiler to check the arguments in catig/tgrintf for
consistency with therintf style format string argumenty_format.

The parameteairchetypedetermines how the format string is interpreted, and
should be eitheprintf or scanf The parametestring-indexspecifies which
argument is the format string argument (starting from 1), viindeto-check

is the number of the first argument to check against the format string. For
functions where the arguments are not available to be checked (such as
vprintf), specify the third parameter as zero. In this case the compiler only
checks the format string for consistency.

In the example above, the format stringy(format) is the second argument
of the functionmy_print, and the arguments to check start with the third
argument, so the correct parameters for the format attribute are 2 and 3.

Theformat attribute allows you to identify your own functions which take
format strings as arguments, so that GNU CC can check the calls to these
functions for errors. The compiler always checks formats for the ANSI library
functionsprintf , fprintf , sprintf, scanf fscanf, sscanf vprintf , viprintf and
vsprintf whenever such warnings are requested (usiffgrmat), so there is

no need to modify the header filio.h.

section (“section-name”)

Normally, the compiler places the code it generates itetttesection.
Sometimes, however, you need additional sections, or you need certain
particular functions to appear in special sections.SBuionattribute
specifies that a function lives in a particular section. For example, the
declaration:

extern void foobar (void) __attribute__ ((section (“bar”)));
puts the functiorfioobar in thebar section.

Some file formats do not support arbitrary sections sedbgonattribute is
not available on all platforms. If you need to map the entire contents of a
module to a particular section, consider using the facilities of the linker instead.

constructor destructor

unused

weak

Theconstructor attribute causes the function to be called automatically before
execution entersain (). Similarly, thedestructor attribute causes the

function to be called automatically aft@ain () has completed @xit () has

been called. Functions with these attributes are useful for initializing data that
will be used implicitly during the execution of the program.

These attributes are not currently implemented for Objective-C.

This attribute, attached to a function, means that the function is meant to be
possibly unused. GNU CC will not produce a warning for this function.

Theweak attribute causes the declaration to be emitted as a weak symbol
rather than a global. This is primarily useful in defining library functions which
can be overridden in user code, though it can also be used with non-function
declarations. Weak symbols are supported for ELF targets, and also for a.out
targets when using the GNU assembler and linker.

Extensions to the C Language Family 81

82

alias (“target”)

Thealias attribute causes the declaration to be emitted as an alias for another
symbol, which must be specified. For instance,

void _ f(){
/* do something */;

}
void f () __attribute__ ((weak, alias (“__f"));

declared to be a weak alias for f. In C++, the mangled name for the target
must be used.

regparm (numbej

stdcall

stdcall

The Objective-C Compiler

On the Intel 386, theegparm attribute causes the compiler to pass up to
numberinteger arguments in registers EAX, EDX, and ECX instead of on the
stack. Functions that take a variable number of arguments will continue to be
passed all of their arguments on the stack.

On the Intel 386, thstdcall attribute causes the compiler to assume that the
called function will pop off the stack space used to pass arguments, unless it
takes a variable number of arguments.

On the Intel 386, thstdcall attribute causes the compiler to assume that the
called function will pop off the stack space used to pass arguments, unless it
takes a variable number of arguments. This is useful to override the effects of
the stdcall switch.

You can specify multiple attributes in a declaration by separating them by
commas within the double parentheses or by immediately following an
attribute declaration with another attribute declaration.

Some people object to teedcall feature, suggesting that ANSI Gfpragma
should be used instead. There are two reasons for not doing this.

1 Itis impossible to generatpragma commands from a macro.

2 There is no telling what the sargragma might mean in another
compiler.

These two reasons apply to almost any application that might be proposed for
#pragma. It is basically a mistake to ugpragma for anything

Prototypes and Old-Style Function Definitions

GNU C extends ANSI C to allow a function prototype to override a later old-style
non-prototype definition. Consider the following example:

[* Use prototypes unless the compiler is old-fashioned. */
#if __STDC__
#define P(x) x
#else
#define P(x) ()
#endif
[* Prototype function declaration. */
int isroot P((uid_t));
/* Old-style function definition. */
int isroot (x)
[* ??7? lossage here ??7? */
uid_t x; {
return x == 0;

}

Suppose the typgid_t happens to bghort. ANSI C does not allow this example, because
subword arguments in old-style non-prototype definitions are promoted. Therefore in this
example the function definition’s argument is reallyranwhich does not match the
prototype argument type ehort.

This restriction of ANSI C makes it hard to write code that is portable to traditional C
compilers, because the programmer does not know whethgdthdype isshort, int, or

long. Therefore, in cases like these GNU C allows a prototype to override a later old-style
definition. More precisely, in GNU C, a function prototype argument type overrides the
argument type specified by a later old-style definition if the former type is the same as the
latter type before promotion. Thus in GNU C the above example is equivalent to the
following:

int isroot (uid_t);
int isroot (uid_t x) {

return x == 0;

}

GNU C++ does not support old-style function definitions, so this extension is irrelevant.

Extensions to the C Language Family 83

84

C++ Style Comments

In GNU C, you may use C++ style comments, which startMvithd continue until the end

of the line. Many other C implementations allow such comments, and they are likely to be
in a future C standard. However, C++ style comments are not recognized if you specify
-ansi or -traditional , since they are incompatible with traditional constructs like
dividend//*comment*/divisor.

Dollar Signs in Identifier Names

In GNU C, you may use dollar signs in identifier names. This is because many traditional
C implementations allow such identifiers.

On some machines, dollar signs are allowed in identifiers if you speeiditional . On a
few systems they are allowed by default, even if you do notasktional . But they are
never allowed if you specifjansi.

There are certain ANSI C programs (obscure, to be sure) that would compile incorrectly if
dollar signs were permitted in identifiers. For example:

#define foo(a) #a
#define lose(b) foo (b)
#define test$ lose (test)

The Character ESC in Constants

You can use the sequenedn a string or character constant to stand for the ASCII
character ESC.

Inquiring on Alignment of Types or Variables

The keyword __alignof___allows you to inquire about how an object is aligned, or the
minimum alignment usually required by a type. Its syntax is jusslidenf

For example, if the target machine require®mable value to be aligned on an 8-byte
boundary, then alignof _ (double)is 8. This is true on many RISC machines. On more
traditional machine designs, alignof __ (double)is 4 or even 2.

The Objective-C Compiler

Some machines never actually require alignment; they allow reference to any data type
even at an odd addresses. For these machinakgnof _ reports the@ecommended
alignment of a type.

When the operand of alignof _is an Ivalue rather than a type, the value is the largest
alignment that the Ivalue is known to have. It may have this alignment as a result of its data
type, or because it is part of a structure and inherits alignment from that structure. For
example, after this declaration:

struct foo {
int x;
chary;
} fool;

the value of _alignof _ (fool.y)is probably 2 or 4, the same asalignof __ (int), even
though the data type &fol.y does not itself demand any alignment.

A related feature which lets you specify the alignment of an objectiribute
((aligned (@lignmeny)); see the following section.

Specifying Attributes of Variables

The keyword _attribute__ allows you to specify special attributes of variables or
structure fields. This keyword is followed by an attribute specification inside double
parentheses. Eight attributes are currently defined for varialiigised, mode,
nocommon packed, section transparent_union, unused andweak. Other attributes are
available for functions (see “Declaring Attributes of Functions”) and for types (see
“Specifying Attributes of Types”).

You may also specify attributes with preceding and following each keyword. This allows
you to use them in header files without being concerned about a possible macro of the same
name. For example, you may usealigned__instead ofiligned.

aligned (@lignmenj
This attribute specifies a minimum alignment for the variable or structure field,
measured in bytes. For example, the declaration:

intx __attribute___ ((aligned (16))) = 0;

causes the compiler to allocate the global variabie a 16-byte boundary. On
a 68040, this could be used in conjunction wittagm expression to access
themovel6instruction which requires 16-byte aligned operands.

Extensions to the C Language Family 85

86

The Objective-C Compiler

You can also specify the alignment of structure fields. For example, to create a
double-word aligneéht pair, you could write:

struct foo {
int x[2] __attribute___ ((aligned (8)));

h

This is an alternative to creating a union withoaible member that forces the
union to be double-word aligned.

It is not possible to specify the alignment of functions; the alignment of
functions is determined by the machine’s requirements and cannot be changed.
You cannot specify alignment for a typedef name because such a name is just
an alias, not a distinct type.

As in the preceding examples, you can explicitly specify the alignment (in
bytes) that you wish the compiler to use for a given variable or structure field.
Alternatively, you can leave out the alignment factor and just ask the compiler
to align a variable or field to the maximum useful alignment for the target
machine you are compiling for. For example, you could write:

short array[3] __attribute__ ((aligned));

Whenever you leave out the alignment factor imlégmed attribute

specification, the compiler automatically sets the alignment for the declared
variable or field to the largest alignment which is ever used for any data type
on the target machine you are compiling for. Doing this can often make copy
operations more efficient, because the compiler can use whatever instructions
copy the biggest chunks of memory when performing copies to or from the
variables or fields that you have aligned this way.

Thealigned attribute can only increase the alignment; but you can decrease it
by specifyingpackedas well. See below.

Note that the effectiveness aligned attributes may be limited by inherent
limitations in your linker. On many systems, the linker is only able to arrange
for variables to be aligned up to a certain maximum alignment. (For some
linkers, the maximum supported alignment may be very very small.) If your
linker is only able to align variables up to a maximum of 8 byte alignment, then
specifyingaligned(16)in an__ attribute___ will still only provide you with 8

byte alignment. See your linker documentation for further information.

mode (nodg
This attribute specifies the data type for the declaration—whichever type
corresponds to the mode MODE. This in effect lets you request an integer or
floating point type according to its width.

You may also specify a mode lojte or __byte to indicate the mode
corresponding to a one-byte integeord or __word__for the mode of a
one-word integer, angointer or___pointer__ for the mode used to represent
pointers.

nocommon
This attribute specifies requests GNU CC not to place a variable “common” but
instead to allocate space for it directly. If you specify-the-commonflag,
GNU CC will do this for all variables.

Specifying thenocommonattribute for a variable provides an initialization of
zeros. A variable may only be initialized in one source file.

packed Thepackedattribute specifies that a variable or structure field should have the
smallest possible alignment—one byte for a variable, and one bit for a field,
unless you specify a larger value with #igned attribute.

Here is a structure in which the fiedds packed, so that it immediately follows
a

struct foo {
char a;
int x[2] __attribute__ ((packed));

h

section (“section-name”)
Normally, the compiler places the objects it generates in sectiomatkand
bss Sometimes, however, you need additional sections, or you need certain
particular variables to appear in special sections, for example to map to special
hardware. Theectionattribute specifies that a variable (or function) lives in a
particular section. For example, this small program uses several specific
section names:

struct duart a __attribute__ ((section (‘DUART_A")) ={0
3

struct duart b __attribute__ ((section (‘DUART_B"))) ={0
3
har stack[10000] __attribute__ ((section (“STACK"))) ={0
b

Extensions to the C Language Family 87

88

int init_data_copy __attribute__ ((section
(“INITDATACOPY?™))) = 0;

main() {
/* Initialize stack pointer */
init_sp (stack + sizeof (stack));

/* Initialize initialized data */
memcpy (&init_data_copy, &data, &edata - &data);

/* Turn on the serial ports */
init_duart (&a);
init_duart (&b);

}

Use thesectionattribute with annitialized definition of aglobal variable, as
shown in the example. GNU CC issues a warning and otherwise ignores the
sectionattribute in uninitialized variable declarations.

You may only use thgectionattribute with a fully initialized global definition
because of the way linkers work. The linker requires each object be defined
once, with the exception that uninitialized variables tentatively go in the
common (or bsg section and can be multiply “defined”. You can force a
variable to be initialized with théno-commonflag or thenocommon

attribute.

Some file formats do not support arbitrary sections segbgonattribute is
not available on all platforms. If you need to map the entire contents of a
module to a particular section, consider using the facilities of the linker instead.

transparent_union

unused

weak

This attribute, attached to a function argument variable which is a union, means
to pass the argument in the same way that the first union member would be
passed. You can also use this attribute typedeffor a union data type; then

it applies to all function arguments with that type.

This attribute, attached to a variable, means that the variable is meant to be
possibly unused. GNU CC will not produce a warning for this variable.

Theweak attribute is described in “Declaring Attributes of Functions”.

To specify multiple attributes, separate them by commas within the double parentheses: for
example, attribute_ ((aligned (16), packed))

The Objective-C Compiler

Specifying Attributes of Types

The keyword __attribute___ allows you to specify special attributesstfuct andunion

types when you define such types. This keyword is followed by an attribute specification
inside double parentheses. Three attributes are currently defined foratygresd,

packed andtransparent_union. Other attributes are defined for functions (see “Declaring
Attributes of Functions”) and for variables (see “Specifying Attributes of Variables”).

You may also specify any one of these attributes withreceding and following its
keyword. This allows you to use these attributes in header files without being concerned
about a possible macro of the same name. For example, you mayaligaed__instead

of aligned.

You may specify thaligned andtransparent_union attributes either in gypedef
declaration or just past the closing curly brace of a complete enum, struct or union type
definitionand thepacked attribute only past the closing brace of a definition.

aligned (@alignmenj
This attribute specifies a minimum alignment (in bytes) for variables of the
specified type. For example, the declarations:

struct S {
short f[3];
} __ attribute__ ((aligned (8));

typedef int more_aligned_int __ attribute__ ((aligned (8));

force the compiler to insure (as fas as it can) that each variable whose type is
struct Sormore_aligned_intwill be allocated and alignead leaston a 8-byte
boundary. On a Sparc, having all variables of fpect S aligned to 8-byte
boundaries allows the compiler to use Idte andstd (doubleword load and
store) instructions when copying one variable of tsfpect S to another, thus
improving run-time efficiency.

Note that the alignment of any givetruct or union type is required by the

ANSI C standard to be at least a perfect multiple of the lowest common
multiple of the alignments of all of the members ofgtrect or union in

guestion. This means that yoan effectively adjust the alignment os#ruct

or union type by attaching aaligned attribute to any one of the members of
such a type, but the notation illustrated in the example above is a more obvious,
intuitive, and readable way to request the compiler to adjust the alignment of
an entirestruct or union type.

Extensions to the C Language Family 89

90

The Objective-C Compiler

As in the preceding example, you can explicitly specify the alignment (in
bytes) that you wish the compiler to use for a gistnct or union type.
Alternatively, you can leave out the alignment factor and just ask the compiler
to align a type to the maximum useful alignment for the target machine you are
compiling for. For example, you could write:

struct S {
short f[3];
} __ attribute__ ((aligned));

Whenever you leave out the alignment factor imlégned attribute

specification, the compiler automatically sets the alignment for the type to the
largest alignment which is ever used for any data type on the target machine
you are compiling for. Doing this can often make copy operations more
efficient, because the compiler can use whatever instructions copy the biggest
chunks of memory when performing copies to or from the variables which
have types that you have aligned this way.

In the example above, if the size of eablort is 2 bytes, then the size of the
entirestruct Stype is 6 bytes. The smallest power of two which is greater than
or equal to that is 8, so the compiler sets the alignment for the stntice S

type to 8 bytes.

Note that although you can ask the compiler to select a time-efficient alignment
for a given type and then declare only individual stand-alone objects of that
type, the compiler’s ability to select a time-efficient alignment is primarily
useful only when you plan to create arrays of variables having the relevant
(efficiently aligned) type. If you declare or use arrays of variables of an
efficiently-aligned type, then it is likely that your program will also be doing
pointer arithmetic (or subscripting, which amounts to the same thing) on
pointers to the relevant type, and the code that the compiler generates for these
pointer arithmetic operations will often be more efficient for efficiently-aligned
types than for other types.

Thealigned attribute can only increase the alignment; but you can decrease it
by specifyingpackedas well. See below.

Note that the effectiveness afigned attributes may be limited by inherent
limitations in your linker. On many systems, the linker is only able to arrange
for variables to be aligned up to a certain maximum alignment. (For some
linkers, the maximum supported alignment may be very very small.) If your
linker is only able to align variables up to a maximum of 8 byte alignment, then
specifyingaligned(16)in an__ attribute___ will still only provide you with 8

byte alignment. See your linker documentation for further information.

packed This attribute, attached to anum, struct, orunion type definition, specified
that the minimum required memory be used to represent the type.

Specifying this attribute fatruct andunion types is equivalent to specifying
thepackedattribute on each of the structure or union members. Specifying the
-fshort-enumsflag on the line is equivalent to specifying gaekedattribute

on allenum definitions.

You may only specify this attribute after a closing curly brace cgnam
definition, not in aypedefdeclaration.

transparent_union
This attribute, attached toumion type definition, indicates that any variable
having that union type should, if passed to a function, be passed in the same
way that the first union member would be passed. For example:

union foo {
char a;
int x[2];
} __ attribute__ ((transparent_union));

To specify multiple attributes, separate them by commas within the double
parentheses: for example,attribute___ ((aligned (16), packed))

An Inline Function is As Fast As a Macro

By declaring a functioimline, you can direct GNU CC to integrate that function’s code into
the code for its callers. This makes execution faster by eliminating the function-call
overhead; in addition, if any of the actual argument values are constant, their known values
may permit simplifications at compile time so that not all of the inline function’s code needs
to be included. The effect on code size is less predictable; object code may be larger or
smaller with function inlining, depending on the particular case. Inlining of functions is an
optimization and it really “works” only in optimizing compilation. If you don’t & no
function is really inline.

To declare a function inline, use timine keyword in its declaration, like this:
inline int inc (int *a) { (*a)++; }

(If you are writing a header file to be included in ANSI C programs, writeline__
instead oinline. See “Alternate Keywords”)

Extensions to the C Language Family 91

92

You can also make all “simple enough” functions inline with the opfioline-functions.
Note that certain usages in a function definition can make it unsuitable for inline
substitution.

Note that in C and Objective-C, unlike C++, thiine keyword does not affect the linkage
of the function.

GNU CC automatically inlines member functions defined within the class body of C++
programs even if they are not explicitly declaiddhe. (You can override this with
-fno-default-inline; See “Options Controlling C++ Dialect”)

When a function is both inline arstiatic, if all calls to the function are integrated into the
caller, and the function’s address is never used, then the function’s own assembler code is
never referenced. In this case, GNU CC does not actually output assembler code for the
function, unless you specify the optidkeep-inline-functions. Some calls cannot be
integrated for various reasons (in particular, calls that precede the function’s definition
cannot be integrated, and neither can recursive calls within the definition). If there is a
nonintegrated call, then the function is compiled to assembler code as usual. The function
must also be compiled as usual if the program refers to its address, because that can’t be
inlined.

When an inline function is netatic, then the compiler must assume that there may be calls
from other source files; since a global symbol can be defined only once in any program, the
function must not be defined in the other source files, so the calls therein cannot be
integrated. Therefore, a natatic inline function is always compiled on its own in the

usual fashion.

If you specify bothinline andextern in the function definition, then the definition is used
only for inlining. In no case is the function compiled on its own, not even if you refer to its
address explicitly. Such an address becomes an external reference, as if you had only
declared the function, and had not defined it.

This combination oinline andextern has almost the effect of a macro. The way to use it

is to put a function definition in a header file with these keywords, and put another copy of
the definition (lackingnline andextern) in a library file. The definition in the header file

will cause most calls to the function to be inlined. If any uses of the function remain, they
will refer to the single copy in the library.

GNU C does not inline any functions when not optimizing. It is not clear whether it is better
to inline or not, in this case, but GNU found that a correct implementation when not
optimizing was difficult. So they turned it off.

The Objective-C Compiler

Assembler Instructions with C Expression Operands

In an assembler instruction usiagm, you can now specify the operands of the instruction
using C expressions. This means no more guessing which registers or memory locations
will contain the data you want to use.

You must specify an assembler instruction template much like what appears in a machine
description, plus an operand constraint string for each operand.

For example, here is how to use the 6888&iis instruction:
asm (“fsinx %1,%0" : “=f" (result) : “f" (angle));

Hereangleis the C expression for the input operand wiakault is that of the output
operand. Each hdf’ as its operand constraint, saying that a floating point register is
required. Thes in =f indicates that the operand is an output; all output operands constraints
must use=. The constraints use the same language used in the machine description.

Each operand is described by an operand-constraint string followed by the C expression in
parentheses. A colon separates the assembler template from the first output operand, and
another separates the last output operand from the first input, if any. Commas separate
output operands and separate inputs. The total number of operands is limited to ten or to
the maximum number of operands in any instruction pattern in the machine description,
whichever is greater.

If there are no output operands, and there are input operands, then there must be two
consecutive colons surrounding the place where the output operands would go.

Output operand expressions must be Ivalues; the compiler can check this. The input
operands need not be Ivalues. The compiler cannot check whether the operands have data
types that are reasonable for the instruction being executed. It does not parse the assembler
instruction template and does not know what it means, or whether it is valid assembler
input. The extendedsmfeature is most often used for machine instructions that the

compiler itself does not know exist. If the output expression cannot be directly addressed
(for example, it is a bit field), your constraint must allow a register. In that case, GNU CC
will use the register as the output of #sm, and then store that register into the output.

The output operands must be write-only; GNU CC will assume that the values in these
operands before the instruction are dead and need not be generated. Extended asm does not
support input-output or read-write operands. For this reason, the constraint chgracter

which indicates such an operand, may not be used.

When the assembler instruction has a read-write operand, or an operand in which only some
of the bits are to be changed, you must logically split its function into two separate
operands, one input operand and one write-only output operand. The connection between

Extensions to the C Language Family 93

94

them is expressed by constraints which say they need to be in the same location when the
instruction executes. You can use the same C expression for both operands, or different
expressions. For example, here we write the (fictitioas)bineinstruction withbar as its
read-only source operand aflod as its read-write destination:

asm (“combine %2,%0" : “=r" (foo) : “0” (foo), “g” (bar));

The constraint0” for operand 1 says that it must occupy the same location as operand 0.
A digit in constraint is allowed only in an input operand, and it must refer to an output
operand.

Only a digit in the constraint can guarantee that one operand will be in the same place as
another. The mere fact thfab is the value of both operands is not enough to guarantee that
they will be in the same place in the generated assembler code. The following would not
work:

asm (“combine %2,%0" : “=r" (foo) : “r" (foo), “g” (bar));

Various optimizations or reloading could cause operands 0 and 1 to be in different registers;
GNU CC knows no reason not to do so. For example, the compiler might find a copy of the
value offoo in one register and use it for operand 1, but generate the output operand 0 in a
different register (copying it afterward f@o’s own address). Of course, since the register

for operand 1 is not even mentioned in the assembler code, the result will not work, but
GNU CC can't tell that.

Some instructions clobber specific hard registers. To describe this, write a third colon after
the input operands, followed by the names of the clobbered hard registers (given as strings).
Here is a realistic example for the Vax:

asm volatile (“movc3 %0,%1,%2" : /* no outputs */ : “g” (from), “g”
(tO), llgH (COUnt) : “ro”, Hrlﬂ’ “I’Z", “r3”, llr41|’ ”r5”);

If you refer to a particular hardware register from the assembler code, then you will
probably have to list the register after the third colon to tell the compiler that the register’s
value is modified. In many assemblers, the register names beghkbwithproduce onéo

in the assembler code, you must weitgo in the input.

If your assembler instruction can alter the condition code registeccaddhe list of
clobbered registers. GNU CC on some machines represents the condition codes as a
specific hardware registeg serves to name this register. On other machines, the condition
code is handled differently, and specifyitighas no effect. But it is valid no matter what
the machine.

The Objective-C Compiler

If your assembler instruction modifies memory in an unpredictable fashiomedry
to the list of clobbered registers. This will cause GNU CC to not keep memory values
cached in registers across the assembler instruction.

You can put multiple assembler instructions together in a sasgidemplate, separated

either with newlines (written as) or with semicolons if the assembler allows such
semicolons. The GNU assembler allows semicolons and all Unix assemblers seem to do so.
The input operands are guaranteed not to use any of the clobbered registers, and neither will
the output operands addresses, so you can read and write the clobbered registers as many
times as you like. Here is an example of multiple instructions in a template; it assumes that
the subroutine foo accepts arguments in registers 9 and 10:

asm (“movl %0,r9;movl %1,r10;call _foo” : /* no outputs */ : “g”
(from), “g” (to) : “r9”, “r10");

Unless an output operand has &heonstraint modifier, GNU CC may allocate it in the

same register as an unrelated input operand, on the assumption that the inputs are consumed
before the outputs are produced. This assumption may be false if the assembler code
actually consists of more than one instruction. In such a cas®,foseach output operand

that may not overlap an input.

If you want to test the condition code produced by an assembler instruction, you must
include a branch and a label in #em construct, as follows:

asm (“clr %0;frob %1;beq Of;mov #1,%0;0:" : “g” (result) : “g”
(input));

This assumes your assembler supports local labels, as the GNU assembler and most Unix
assemblers do.

Speaking of labels, jumps from oasmto another are not supported. The compiler’s
optimizers do not know about these jumps, and therefore they cannot take account of them
when deciding how to optimize.

Usually the most convenient way to use thesm instructions is to encapsulate them in
macros that look like functions. For example,

#define sin(x) \

({ double _ value, _arg = (x); \
asm (“fsinx %1,%0": “=f* (__value): *" (__arg)); \
__value;

)

Here the variable argis used to make sure that the instruction operates on a proper
double value, and to accept only those argume&ntdich can convert automatically to a
double.

Extensions to the C Language Family 95

96

Another way to make sure the instruction operates on the correct data type is to use a cast
in theasm This is different from using a variable arg in that it converts more different

types. For example, if the desired type wiate casting the argument ot would accept

a pointer with no complaint, while assigning the argument totavariable named arg

would warn about using a pointer unless the caller explicitly casts it.

If anasmhas output operands, GNU CC assumes for optimization purposes that the
instruction has no side effects except to change the output operands. This does not mean
that instructions with a side effect cannot be used, but you must be careful, because the
compiler may eliminate them if the output operands aren’t used, or move them out of loops,
or replace two with one if they constitute a common subexpression. Also, if your instruction
does have a side effect on a variable that otherwise appears not to change, the old value of
the variable may be reused later if it happens to be found in a register.

You can prevent aasminstruction from being deleted, moved significantly, or combined,
by writing the keywordrolatile after theasm For example:

#define set_priority(x) \
asm volatile (“set_priority %0”: /* no outputs */ : “g” (X))

An instruction without output operands will not be deleted or moved significantly,
regardless, unless it is unreachable.

Note that even a volatilsminstruction can be moved in ways that appear insignificant to
the compiler, such as across jump instructions. You can't expect a sequence ofagniatile
instructions to remain perfectly consecutive. If you want consecutive output, use a single
asm

Itis a natural idea to look for a way to give access to the condition code left by the assembler
instruction. However, when GNU attempted to implement this, they found no way to make
it work reliably. The problem is that output operands might need reloading, which would
result in additional following “store” instructions. On most machines, these instructions
would alter the condition code before there was time to test it. This problem doesn't arise
for ordinary “test” and “compare” instructions because they don’t have any output
operands.

If you are writing a header file that should be includable in ANSI C programs, write
__asm__instead olism See “Alternate Keywords”.

Controlling Names Used in Assembler Code

You can specify the name to be used in the assembler code for a C function or variable by
writing theasm(or __asm_) keyword after the declarator as follows:

The Objective-C Compiler

int foo asm (“myfoo”) = 2;

This specifies that the name to be used for the varfiabla the assembler code should be
myfoo rather than the usuafoo.

On systems where an underscore is normally prepended to the name of a C function or
variable, this feature allows you to define names for the linker that do not start with an
underscore.

You cannot usasmin this way in a functionefinitiory but you can get the same effect by
writing a declaration for the function before its definition and putisg there, like this:

extern func () asm (“FUNC”);
func (x, y) int x, y;

It is up to you to make sure that the assembler names you choose do not conflict with any
other assembler symbols. Also, you must not use a register name; that would produce
completely invalid assembler code. GNU CC does not as yet have the ability to store static
variables in registers. Perhaps that will be added.

Variables in Specified Registers

GNU C allows you to put a few global variables into specified hardware registers. You can
also specify the register in which an ordinary register variable should be allocated.

» Global register variables reserve registers throughout the program. This may be useful
in programs such as programming language interpreters which have a couple of global
variables that are accessed very often.

» Local register variables in specific registers do not reserve the registers. The compiler’s
data flow analysis is capable of determining where the specified registers contain live
values, and where they are available for other uses.

» These local variables are sometimes convenient for use with the exésmilézhture
See “Assembler Instructions with C Expression Operands” if you want to write one
output of the assembler instruction directly into a particular register. (This will work
provided the register you specify fits the constraints specified for that operand in the
asm)

Extensions to the C Language Family 97

98

Defining Global Register Variables

You can define a global register variable in GNU C like this:
register int *foo asm (“a5");

Herea5 is the name of the register which should be used. Choose a register which is
normally saved and restored by function calls on your machine, so that library routines will
not clobber it.

Naturally the register name is cpu-dependent, so you would need to conditionalize your
program according to cpu type. The registewould be a good choice on a 68000 for a
variable of pointer type. On machines with register windows, be sure to choose a “global”
register that is not affected magically by the function call mechanism.

In addition, operating systems on one type of cpu may differ in how they name the registers;
then you would need additional conditionals. For example, some 68000 operating systems
call this registefoab.

Defining a global register variable in a certain register reserves that register entirely for this
use, at least within the current compilation. The register will not be allocated for any other
purpose in the functions in the current compilation. The register will not be saved and
restored by these functions. Stores into this register are never deleted even if they would
appear to be dead, but references may be deleted or moved or simplified.

It is not safe to access the global register variables from signal handlers, or from more than
one thread of control, because the system library routines may temporarily use the register
for other things (unless you recompile them specially for the task at hand).

It is not safe for one function that uses a global register variable to call another such
functionfoo by way of a third functiotosethat was compiled without knowledge of this
variable (that is, in a different source file in which the variable wasn’t declared). This is
becauséosemight save the register and put some other value there. For example, you can’t
expect a global register variable to be available in the comparison-function that you pass to
gsort, sincegsort might have put something else in that register. (If you are prepared to
recompilegsort with the same global register variable, you can solve this problem.)

If you want to recompilgsort or other source files which do not actually use your global
register variable, so that they will not use that register for any other purpose, then it suffices
to specify the compiler optiofffixed-REG. You need not actually add a global register
declaration to their source code.

A function which can alter the value of a global register variable cannot safely be called
from a function compiled without this variable, because it could clobber the value the caller
expects to find there on return. Therefore, the function which is the entry point into the part

The Objective-C Compiler

of the program that uses the global register variable must explicitly save and restore the
value which belongs to its caller.

On most machineggngjmp will restore to each global register variable the value it had at
the time of thesetjmp. On some machines, howevengjmp will not change the value of
global register variables. To be portable, the function that calgahp should make other
arrangements to save the values of the global register variables, and to restore them in a
longjmp. This way, the same thing will happen regardless of \eingjmp does.

All global register variable declarations must precede all function definitions. If such a
declaration could appear after function definitions, the declaration would be too late to
prevent the register from being used for other purposes in the preceding functions.

Global register variables may not have initial values, because an executable file has no
means to supply initial contents for a register.

On the Sparc, there are reports that g3 ... g7 are suitable registers, but certain library
functions, such agetwd, as well as the subroutines for division and remainder, modify g3
and g4. g1 and g2 are local temporaries.

On the 68000, a2 ... a5 should be suitable, as should d2 ... d7. Of course, it will not do to
use more than a few of those.

Specifying Registers for Local Variables

You can define a local register variable with a specified register like this:
register int *foo asm (“a5");

Herea5is the name of the register which should be used. Note that this is the same syntax
used for defining global register variables, but for a local variable it would appear within a
function.

Naturally the register name is cpu-dependent, but this is not a problem, since specific
registers are most often useful with explicit assembler instructions (see “Assembler
Instructions with C Expression Operands”). Both of these things generally require that you
conditionalize your program according to cpu type.

In addition, operating systems on one type of cpu may differ in how they name the registers;
then you would need additional conditionals. For example, some 68000 operating systems
call this registefoab.

Defining such a register variable does not reserve the register; it remains available for other
uses in places where flow control determines the variable’s value is not live. However, these

Extensions to the C Language Family 99

100

registers are made unavailable for use in the reload pass. Excessive use of this feature may
leave the compiler too few available registers to compile certain functions.

Alternate Keywords

The option-traditional disables certain keywordsgnsi disables certain others. This
causes trouble when you want to use GNU C extensions, or ANSI C features, in a
general-purpose header file that should be usable by all programs, including ANSI C
programs and traditional ones. The keywasis\, typeof andinline cannot be used since
they won'’t work in a program compiled withnsi, while the keywordsonst, volatile,
signed typeof andinline won’'t work in a program compiled witlraditional .

The way to solve these problems is to puat the beginning and end of each problematical
keyword. For example, use asm__instead oism, __const__instead otonst and
__inline__instead oinline.

Other C compilers won't accept these alternative keywords; if you want to compile with
another compiler, you can define the alternate keywords as macros to replace them with the
customary keywords. It looks like this:

#ifndef _ GNUC__
#define _asm__asm
#endif

-pedantic causes warnings for many GNU C extensions. You can prevent such warnings
within one expression by writing extension__before the expression. extension__has
no effect aside from this.

Incomplete enum Types

You can define aenum tag without specifying its possible values. This results in an
incomplete type, much like what you get if you wstauct foo without describing the
elements. A later declaration which does specify the possible values completes the type.

You can't allocate variables or storage using the type while it is incomplete. However, you
can work with pointers to that type.

This extension may not be very useful, but it makes the handleguof more consistent
with the waystruct andunion are handled.

This extension is not supported by GNU C++.

The Objective-C Compiler

Function Names as Strings

GNU CC predefines two string variables to be the name of the current function. The
variable__FUNCTION__ is the name of the function as it appears in the source. The
variable_ PRETTY_FUNCTION__ is the name of the function pretty printed in a
language specific fashion.

These names are always the same in a C function, but in a C++ function they may be
different. For example, this program:

extern “C” {
extern int printf (char *, ...);

}

class a{
public: sub (int i) {
printf (“__FUNCTION__ = %s\n”, __ FUNCTION_);
printf (“_PRETTY_FUNCTION__ = %s\n”, _ PRETTY_FUNCTION_);

h

int main (void) {
a ax;
ax.sub (0);
return 0O;

}
gives this output:

_ FUNCTION__ =sub__ PRETTY_FUNCTION__ =inta::sub (int)

These names are not macros: they are predefined string variables. For eiifaeble,
__FUNCTION__ does not have any special meaning inside a function, since the
preprocessor does not do anything special with the identiflfldNCTION__.

C++ Programming Notes

This section contains miscellaneous notes about programming in C++ with NeXT’s version
of the GNU C++ compiler.

C++ Programming Notes 101

Multiple Virtual Inheritance

The C++ compiler invokes virtual functions correctly—except when a non-virtual function
is redeclared as virtual in a subclass. The compiler issues a warning in this case, however.

In this example, the functidif) in classAnimal is redeclared virtual in the subclass
Mammal:

class Animal{ void f(); }

class Mammal : public virtual Animal{ virtual void f(); }

class Quadruped : public virtual Animal{ virtual void f(); }

class Dog : public Mammal, public Quadruped{ virtual void f(); }
class Terrier : public Dog{ virtual void f(); }

Invoking the method() gives the wrong result in the following case:

void zoo(void) {
Terrier* terrier = new Terrier;
Mammal* mammal = terrier;
Quadruped* quadruped = terrier;
Dog* dog = terrier;

quadruped->f();// Wrong - invokes Dog::f()
mammal->f();// Right - invokes Terrier::f()
dog->f();// Right - invokes Terrier::f()

}

The compiler warns that wrong code may be generated:

warning: method “Animal::f()' redeclared as “virtual Mammal::f()'

If you modify the above hierarchy by making the funcfi@rin Animal virtual, the
invocation works correctly. The workaround is therefore to mM@kertual throughout the
hierarchy:

class Animal{ virtual void f(); }

class Mammal : public virtual Animal{ virtual void f(); }

class Quadruped : public virtual Animal{ virtual void f(); }

class Dog : public Mammal, public Quadruped{ virtual void f(); }
class Terrier : public Dog{ virtual void f(); }

102 The Objective-C Compiler

Pointers to Member Functions

The C++ compiler flags as an error the use of member function pointers with objects that
might not recognize the pointer or its contents. Here's an example of such errors:

class Mammal { public: void f(int); };
class Cat : public Mammal { public: void f(int); };

void g (Cat* aCat, Mammal* aMammal) {
void (Mammal::*mammal_f_ptr)(int) = &Mammal::f;
void (Cat::*cat_f_ptr)(int) = &Cat::f;

(aCat->*mammal_f_ptr)(4); // OK

(@Mammal->*cat_f_ptr)(5); // Error (1)

cat_f _ptr=&Cat::f; // OK

mammal_f_ptr = &Cat::f; // Error (2)
}

The local variablemmammal_f _ptr andcat_f_ptr are pointers to member functions, and

the functiong initializes them to point to thedass Catmember functio. It then attempts

to invoke this function through these pointers. Statement (1) is an error because you can't
be sure that Mammal object,aMammal, “responds to” &at member pointer,

cat_f ptr—especially sinceat_f _ptr points to &Cat member function thdlammal

would know nothing about. Evendht_f ptr were initialized to Mammal member
function,cat_f_ptr cannot safely be applied tdammal object. The assignmentin (2) is

an error because you cannot be sure that some member function of a derived class (in this
caseCat::f) is available in any of its base classes (in this témamal).

Implicit Cast From void* to C++ Object Pointer

The ANSI C++ standard doesn't allow implicit casts fremid* to any C++ object pointer
type. When such a cast is detected, the C++ compiler issues a warning. For example, if
aClassis some arbitrary class, the following implicit cast produces a warning:

void *vpl;

aClass *obj1, *obj2;

vpl = &obj1;

obj2 = vp1;// Warning: implicitly casts void pointer

You can still explictly cast with:

obj2 = (aClass *)vpl;

C++ Programming Notes 103

Extensions to the C++ Language

The GNU compiler provides these extensions to the C++ language (and you can also use
most of the C language extensions in your C++ programs). If you want to write code that
checks whether these features are available, you can test for the GNU compiler the same
way as for C programs: check for a predefined mac@NUC __. You can also use
__GNUG__to test specifically for GNU C++ (sdde GNU C Preprocessdor more
information).

Named Return Values in C++

GNU C++ extends the function-definition syntax to allow you to specify a name for the
result of a function outside the body of the definition, in C++ programs:

TYPE FUNCTIONNAME (ARGS) return RESULTNAME; { ... BODY ...}

You can use this feature to avoid an extra constructor call when a function result has a class
type. For example, consider a functimndeclared aX v = m ();, whose result is of class

X:
Xm(){
X b;
b.a=23;
return b;

}

Althoughm appears to have no arguments, in fact it has one implicit argument: the address
of the return value. At invocation, the address of enough space te isadént in as the

implicit argument. Theb is constructed and itsfield is set to the value 23. Finally, a copy
constructor (a constructor of the foX@X&)) is applied td, with the (implicit) return

value location as the target, so thia now bound to the return value.

But this is wasteful. The lochlis declared just to hold something that will be copied right
out. While a compiler that combined an “elision” algorithm with interprocedural data flow
analysis could conceivably eliminate all of this, it is much more practical to allow you to
assist the compiler in generating efficient code by manipulating the return value explicitly,
thus avoiding the local variable and copy constructor altogether.

Using the extended GNU C++ function-definition syntax, you can avoid the temporary
allocation and copying by namimgas your return value at the outset, and assigning to its
afield directly:

104 The Objective-C Compiler

Xm()returnr;

{
ra=23;

}

The declaration af is a standard, proper declaration, whose effects are exbaiteeany
of the body oimn.

Functions of this type impose no additional restrictions; in particular, you can execute
return statements, or return implicitly by reaching the end of the function body (“falling
off the edge”). Cases like

X 'm () return r (23);
{

return;

}

(or evenX m () return r (23); { }) are unambiguous, since the return vallas been
initialized in either case. The following code may be hard to read, but also works
predictably:

X'm () returnr;

{
X b;
return b;

}

The return value slot denoted bys initialized at the outset, but the statenrentrn b;
overrides this value. The compiler deals with this by destray{eglling the destructor if
there is one, or doing nothing if there is not), and then reinitializimgh b.

This extension is provided primarily to help people who use overloaded operators, where
there is a great need to control not just the arguments, but the return values of functions. For
classes where the copy constructor incurs a heavy performance penalty (especially in the
common case where there is a quick default constructor), this is a major savings. The
disadvantage of this extension is that you do not control when the default constructor for
the return value is called: it is always called at the beginning.

Minimum and Maximum Operators in C++

It is very convenient to have operators which return the “minimum” or the “maximum” of
two arguments. In GNU C++ (but not in GNU C),

A <? Bis the “minimum”, returning the smaller of the numeric values A and B;

Extensions to the C++ Language 105

106

A >? Bis the “maximum”, returning the larger of the numeric values A and B.

These operations are not primitive in ordinary C++, since you can use a macro to return the
minimum of two things in C++, as in the following example.

#define MINCX,Y) ((X) < (Y) ?: (X) : (Y))

You might then usent min = MIN (i, j); to set MIN to the minimum value of variables |
and J.

However, side effects iX or Y may cause unintended behavior. For exanmIdl (i++,

j++) will fail, incrementing the smaller counter twice. A GNU C extension allows you to
write safe macros that avoid this kind of problem (see “Naming an Expression’s Type”).
However, writingMIN andMAX as macros also forces you to use function-call notation
notation for a fundamental arithmetic operation. Using GNU C++ extensions, you can write
int min =i <?j; instead.

Since<? and>? are built into the compiler, they properly handle expressions with
side-effectsint min = i++ <? j++; works correctly.

““goto’” and Destructors in GNU C++

In C++ programs, you can safely use goto statement. When you use it to exit a block
which contains aggregates requiring destructors, the destructors will run befgoéathe
transfers control. (In ANSI C+4gotois restricted to targets within the current block.)

The compiler still forbids usingoto to entera scope that requires constructors.

Declarations and Definitions in One Header

C++ object definitions can be quite complex. In principle, your source code will need two
kinds of things for each object that you use across more than one source file. First, you need
an “interface” specification, describing its structure with type declarations and function
prototypes. Second, you need the “implementation” itself. It can be tedious to maintain a
separate interface description in a header file, in parallel to the actual implementation. It is
also dangerous, since separate interface and implementation definitions may not remain
parallel.

With GNU C++, you can use a single header file for both purposes.

The Objective-C Compiler

Warning: The mechanism to specify this is in transition. For now, you must use one#tagma
commands; in a future release of GNU C++, an alternative mechanism will make these
#pragma commands unnecessary.

The header file contains the full definitions, but is marked #gtiagma interfacein the
source code. This allows the compiler to use the header file only as an interface
specification when ordinary source files incorporate it iticlude. In the single source
file where the full implementation belongs, you can use either a naming convention or
#pragma implementationto indicate this alternate use of the header file.

#pragma interface

#pragma interface “subdir/objecth”
Use this directive imeader fileghat define object classes, to save space in
most of the object files that use those classes. Normally, local copies of certain
information (backup copies of inline member functions, debugging
information, and the internal tables that implement virtual functions) must be
kept in each object file that includes class definitions. You can use this pragma
to avoid such duplication. When a header file contai#tprggma interface
is included in a compilation, this auxiliary information will not be generated
(unless the main input source file itself uspsagma implementation).
Instead, the object files will contain references to be resolved at link time.

The second form of this directive is useful for the case where you have multiple
headers with the same name in different directories. If you use this form, you
must specify the same string#pragma implementation

#pragma implementation

#pragma implementation “objectsh”
Use this pragma inmain input file when you want full output from included
header files to be generated (and made globally visible). The included header
file, in turn, should us#pragma interface Backup copies of inline member
functions, debugging information, and the internal tables used to implement
virtual functions are all generated in implementation files.

If you use#tpragma implementationwith no argument, it applies to an

include file with the same basename as your source file. (A file’s “basename”
was the name stripped of all leading path information and of trailing suffixes,
such ash or.C or.cc) For example, imllclass.c¢#pragma implementation

by itself is equivalent t¢pragma implementation “allclass.h”

In versions of GNU C++ prior to 2.6dlclass.hwas treated as an
implementation file whenever you would include it frallelass.cceven if you
never specifiedgpragma implementation This was deemed to be more
trouble than it was worth, however, and disabled.

Extensions to the C++ Language 107

108

If you use an explici#pragma implementation it must appear in your source
file beforeyou include the affected header files.

Use the string argument if you want a single implementation file to include
code from multiple header files. (You must also#iselude to include the
header file##pragma implementationonly specifies how to use the file—it
doesn’t actually include it.)

There is no way to split up the contents of a single header file into multiple
implementation files.

#pragma implementationand#pragma interfacealso have an effect on
function inlining.

If you define a class in a header file marked #jitagma interface the effect
on a function defined in that class is similar to an exm@idiern declaration—
the compiler emits no code at all to define an independent version of the
function. Its definition is used only for inlining with its callers.

Conversely, when you include the same header file in a main source file that
declares it agpragma implementation the compiler emits code for the
function itself; this defines a version of the function that can be found via
pointers (or by callers compiled without inlining). If all calls to the function
can be inlined, you can avoid emitting the function by compiling with
-fno-implement-inlines. If any calls were not inlined, you will get linker

errors.

#pragma cplusplus
This pragma can be used to resolve the problem of having C++ system header
files. All system header files are by default included in impidigrn "C" .
When#pragma cplusplusappears in a header file, the rest of that file is
embedded in an implicéxtern "C++" block.

An error is reported if this pragma appears insidexqicit extern "C" {...} .

Type Abstraction using Signatures

In GNU C++, you can use the keywaiginature to define a completely abstract class
interface as a datatype. You can connect this abstraction with actual classes using signature
pointers. If you want to use signatures, run the GNU compiler witftthedle-signatures
command-line option. (With this option, the compiler reserves a second kegigofds

well, for a future extension.)

The Objective-C Compiler

Roughly, signatures are type abstractions or interfaces of classes, and are similar to
Objective-C’s protocols. Some other languages have similar facilities. C++ signatures are
related to ML’s signatures, Haskell's type classes, definition modules in Modula-2,
interface modules in Modula-3, abstract types in Emerald, type modules in Trellis/Owl,
categories in Scratchpad Il, and types in POOL-I. For a more detailed discussion of
signatures, seBignatures: A Language Extension for Improving Type Abstraction and
Subtype Polymorphism in C+3y Gerald Baumgartner and Vincent F. Russo (Tech report
CSD-TR-95-051, Dept. of Computer Sciences, Purdue University, August 1995, a slightly
improved version appeared Software—Practice & Experienc25(8), pp. 863-889,

August 1995). You can get the tech report by anonymous FTPftjpare.purdue.eduin
pub/gb/Signature-design.ps.gz

Syntactically, a signature declaration is a collection of member function declarations and
nested type declarations. For example, this signature declaration defines a new abstract type
S with member functiongt foo () andint bar (int) :

signature S {
int foo ();
int bar (int);
b

Since signature types do not include implementation definitions, you cannot write an
instance of a signature directly. Instead, you can define a pointer to any class that contains
the required interfaces as a “signature pointer”. Such a class “implements” the signature

type.

To use a class as an implementatio8,gfou must ensure that the class has public member
functionsint foo () andint bar (int) . The class can have other member functions as well,
public or not; as long as it offers what's declared in the signature, it is suitable as an
implementation of that signature type.

For example, suppose thatis a class that meets the requirements of sign&t(Ce
“conforms to”S). Then

C obj;
S * p = &obj;

defines a signature pointerand initializes it to point to an object of ty@e The member
function callint i = p->foo (); execute®bj.foo ().

Abstract virtual classes provide somewhat similar facilities in standard C++. There are two
main advantages to using signatures instead:

1. Subtyping becomes independent from inheritance. A class or signatuie ig/pe
subtype of a signature tygndependent of any inheritance hierarchy as long as all the

Extensions to the C++ Language 109

member functions declared $are also found if. So you can define a subtype
hierarchy that is completely independent from any inheritance (implementation)
hierarchy, instead of being forced to use types that mirror the class inheritance hierarchy.

2. Signatures allow you to work with existing class hierarchies as implementations of a
signature type. If those class hierarchies are only available in compiled form, you're out
of luck with abstract virtual classes, since an abstract virtual class cannot be retrofitted
on top of existing class hierarchies. So you would be required to write interface classes
as subtypes of the abstract virtual class.

There is one more detail about signatures. A signature declaration can contain member
functiondefinitionsas well as member function declarations. A signature member function
with a full definition is called default implementatigrclasses need not contain that
particular interface in order to conform. For example, a €lasmn conform to the signature

signature T {
int f (int);
int fO () {
return f (0);
I8
h

whether or noC implements the member functiont fO (). If you defineC::f0, that
definition takes precedence; otherwise, the default implemengti@napplies.

Known Causes of Trouble with GNU CC

110

This section describes known problems that affect users of GNU CC. Most of these are not
GNU CC bugs per se—if they were, GNU would fix them. But the result for a user may be
like the result of a bug.

Some of these problems are due to bugs in other software, some are missing features that
are too much work to add, and some are places where people’s opinions differ as to what is
best.

Problems in the Compiler

» There are several obscure cases of mis-using struct, union, and enum tags that are not
detected as errors by the compiler.

The Objective-C Compiler

* When-pedantic-errors is specified, GNU C will incorrectly give an error message
when a function name is specified in an expression involving the comma operator.

» Loop unrolling doesn’t work properly for certain C++ programs. This is a bug in the
C++ front end. It sometimes emits incorrect debug info, and the loop unrolling code is
unable to recover from this error.

Interoperation

This section lists various difficulties encountered in using GNU C or GNU C++ together
with other compilers or with the assemblers, linkers, libraries and debuggers on certain
systems.

GNU C++ does not do name mangling in the same way as other C++ compilers. This means
that object files compiled with one compiler cannot be used with another.

This effect is intentional, to protect you from more subtle problems. Compilers differ as to
many internal details of C++ implementation, including: how class instances are laid out,
how multiple inheritance is implemented, and how virtual function calls are handled. If the
name encoding were made the same, your programs would link against libraries provided
from other compilers—but the programs would then crash when run. Incompatible libraries
are then detected at link time, rather than at run time.

» Older GDB versions sometimes fail to read the output of GNU CC version 2. If you have
trouble, get GDB version 4.4 or later.

» Use of-l/usr/include may cause trouble.

» On a Sparc, GNU CC aligns all values of tylmeible on an 8-byte boundary, and it
expects evergouble to be so aligned. The Sun compiler usually gil@sble values
8-byte alignment, with one exception: function arguments of dgoble may not be
aligned.

As aresult, if a function compiled with Sun CC takes the address of an argument of type
double and passes this pointer of tyg@uble * to a function compiled with GNU CC,
dereferencing the pointer may cause a fatal signal.

One way to solve this problem is to compile your entire program with GNU CC. Another
solution is to modify the function that is compiled with Sun CC to copy the argument
into a local variable; local variables are always properly aligned. A third solution is to
modify the function that uses the pointer to dereference it via the following function
access_doublénstead of directly with:

Known Causes of Trouble with GNU CC 111

112

inline double access_double (double *unaligned_ptr) {
union d2i {
double d;
int i[2];
I8
union d2i *p = (union d2i *) unaligned_ptr;
union d2i u;
u.i[0] = p->i[0];
u.i[1] = p->i[1];
return u.d;

}
Storing into the pointer can be done likewise with the same union.

On Solaris, thenalloc function in thdibmalloc.a library may allocate memory that is

only 4 byte aligned. Since GNU CC on the Sparc assumes that doubles are 8 byte
aligned, this may result in a fatal signal if doubles are stored in memory allocated by the
libmalloc.a library.

The solution is to not use thibmalloc.a library. Use insteachalloc and related
functions fromlibc.a; they do not have this problem.

The 128-bit long double format that the Sparc port supports currently works by using
the architecturally defined quad-word floating point instructions. Since there is no
hardware that supports these instructions they must be emulated by the operating
system. Long doubles do not work in Sun OS versions 4.0.3 and earlier, because the
kernel emulator uses an obsolete and incompatible format. Long doubles do not work in
Sun OS version 4.1.1 due to a problem in a Sun library. Long doubles do work on Sun
OS versions 4.1.2 and higher, but GNU CC does not enable them by default. Long
doubles appear to work in Sun OS 5.x (Solaris 2.x).

On HP-UX version 9.01 on the HP PA, the HP compitedioes not compile GNU CC
correctly. We do not yet know why. However, GNU CC compiled on earlier HP-UX
versions works properly on HP-UX 9.01 and can compile itself properly on 9.01.

On the HP PA machine, ADB sometimes fails to work on functions compiled with GNU
CC. Specifically, it fails to work on functions that adlecaor variable-size arrays. This

is because GNU CC doesn’t generate HP-UX unwind descriptors for such functions. It
may even be impossible to generate them.

Taking the address of a label may generate errors from the HP-UX PA assembler. GAS
for the PA does not have this problem.

Using floating point parameters for indirect calls to static functions will not work when
using the HP assembler. There simply is no way for GCC to specify what registers hold

The Objective-C Compiler

arguments for static functions when using the HP assembler. GAS for the PA does not
have this problem.

In extremely rare cases involving some very large functions you may receive errors from
the HP linker complaining about an out of bounds unconditional branch offset. This used
to occur more often in previous versions of GNU CC, but is now exceptionally rare. If
you should run into it, you can work around by making your function smaller.

GNU CC compiled code sometimes emits warnings from the HP-UX assembler of the
form:

(warning) Use of GR3 when frame >= 8192 may cause conflict.

These warnings are harmless and can be safely ignored.

Incompatibilities of GNU CC

There are several noteworthy incompatibilities between GNU C and most existing
(non-ANSI) versions of C. Thdraditional option eliminates many of these
incompatibilities,but not all by telling GNU C to behave like the other C compilers.

GNU CC normally makes string constants read-only. If several identical-looking string
constants are used, GNU CC stores only one copy of the string.

One consequence is that you cannotro&lemp with a string constant argument. The
functionmktemp always alters the string its argument points to.

Another consequence is thesicanfdoes not work on some systems when passed a
string constant as its format control string or input. This is becmesafincorrectly
tries to write into the string constant. Likewfseanfandscanf

The best solution to these problems is to change the programctoanissrray variables

with initialization strings for these purposes instead of string constants. But if this is not
possible, you can use tHevritable-strings flag, which directs GNU CC to handle

string constants the same way most C compilerstidalitional also has this effect,
among others.

-2147483648s positive.

This is because 2147483648 cannot fit in the igpeso (following the ANSI C rules)
its data type isinsigned long int Negating this value yields 2147483648 again.

Known Causes of Trouble with GNU CC 113

114

GNU CC does not substitute macro arguments when they appear inside of string
constants. For example, the following macro in GNU CC

#define foo(a) “a”
will produce outputa” regardless of what the argument A is.

The-traditional option directs GNU CC to handle such cases (among others) in the
old-fashioned (non-ANSI) fashion.

When you ussetjmp andlongjmp, the only automatic variables guaranteed to remain
valid are those declaremlatile. This is a consequence of automatic register allocation.
Consider this function:

jmp_buf j;

foo () {
inta, b;
a=funl ();
if (setimp (j))
return a;
a =fun2 ();

/* longjmp (j) may occur in fun3 . */
return a + fun3 ();

}

Herea may or may not be restored to its first value whernahgimp occurs. Ifais
allocated in a register, then its first value is restored; otherwise, it keeps the last value
stored in it.

If you use theW option with the-O option, you will get a warning when GNU CC
thinks such a problem might be possible.

The-traditional option directs GNU C to put variables in the stack by default, rather
than in registers, in functions that csditjmp. This results in the behavior found in
traditional C compilers.

Programs that use preprocessing directives in the middle of macro arguments do not
work with GNU CC. For example, a program like this will not work:

foobar (#define luser hack)

ANSI C does not permit such a construct, and neither does GNU CC—even with
-traditional .

The Objective-C Compiler

Declarations of external variables and functions within a block apply only to the block
containing the declaration. In other words, they have the same scope as any other
declaration in the same place.

In some other C compilers gxtern declaration affects all the rest of the file even if it
happens within a block.

The-traditional option directs GNU C to treat adktern declarations as global, like
traditional compilers.

In traditional C, you can combireng, etc., with a typedef name, as shown here:

typedef int foo;
typedef long foo bar;

In ANSI C, this is not allowedong and other type modifiers require an expiicit
Because this criterion is expressed by Bison grammar rules rather than C code, the
-traditional flag cannot alter it.

PCC allows typedef names to be used as function parameters. The difficulty described
immediately above applies here too.

PCC allows whitespace in the middle of compound assignment operators sech as
GNU CC, following the ANSI standard, does not allow this. The difficulty described
immediately above applies here too.

GNU CC complains about unterminated character constants inside of preprocessing
conditionals that fail. Some programs have English comments enclosed in conditionals
that are guaranteed to fail; if these comments contain apostrophes, GNU CC will
probably report an error. For example, this code would produce an error:

#if O
You can't expect this to work.
#endif

The best solution to such a problem is to put the text into an actual C comment delimited
by /*...*/. However traditional suppresses these error messages.

Many user programs contain the declarakimg time ();. In the past, the system header
files on many systems did not actually dectane, so it did not matter what type your
program declared it to return. But in systems with ANSI C heatil@es js declared to
returntime_t, and if that is not the samelasg, thenlong time (); is erroneous.

The solution is to change your program to tise_t as the return type dime.

Known Causes of Trouble with GNU CC 115

116

* When compiling functions that retufioat, PCC converts it to a double. GNU CC

actually returns Hoat. If you are concerned with PCC compatibility, you should declare
your functions to returdouble; you might as well say what you mean.

When compiling functions that return structures or unions, GNU CC output code
normally uses a method different from that used on most versions of Unix. As a result,
code compiled with GNU CC cannot call a structure-returning function compiled with
PCC, and vice versa.

The method used by GNU CC is as follows: a structure or union whichis 1, 2, 4 or 8
bytes long is returned like a scalar. A structure or union with any other size is stored into
an address supplied by the caller (usually in a special, fixed register, but on some
machines it is passed on the stack). The machine-description macros
STRUCT_VALUE andSTRUCT_INCOMING_VALUE tell GNU CC where to pass

this address.

By contrast, PCC on most target machines returns structures and unions of any size by
copying the data into an area of static storage, and then returning the address of that
storage as if it were a pointer value. The caller must copy the data from that memory
area to the place where the value is wanted. GNU CC does not use this method because
it is slower and nonreentrant.

On some newer machines, PCC uses a reentrant convention for all structure and union
returning. GNU CC on most of these machines uses a compatible convention when
returning structures and unions in memory, but still returns small structures and unions
in registers.

You can tell GNU CC to use a compatible convention for all structure and union
returning with the optiorfpcc-struct-return.

GNU C complains about program fragments sudx@gdae-0x4000vhich appear to be

two hexadecimal constants separated by the minus operator. Actually, this string is a
single “preprocessing token”. Each such token must correspond to one token in C. Since
this does not, GNU C prints an error message. Although it may appear obvious that what
is meant is an operator and two values, the ANSI C standard specifically requires that
this be treated as erroneous.

A “preprocessing token” is a “preprocessing number” if it begins with a digit and is
followed by letters, underscores, digits, periods ena-, E+, or E- character
sequences.

To make the above program fragment valid, place whitespace in front of the minus sign.
This whitespace will end the preprocessing number.

The Objective-C Compiler

Disappointments and Misunderstandings

These problems are perhaps regrettable, but we don’t know any practical way around them.

» Certain local variables aren't recognized by debuggers when you compile with
optimization.

This occurs because sometimes GNU CC optimizes the variable out of existence. There
is no way to tell the debugger how to compute the value such a variable “would have
had”, and it is not clear that would be desirable anyway. So GNU CC simply does not
mention the eliminated variable when it writes debugging information.

You have to expect a certain amount of disagreement between the executable and your
source code, when you use optimization.

» Users often think it is a bug when GNU CC reports an error for code like this:

int foo (struct mumble *);
struct mumble {

h

int foo (struct mumble *x) {

}

This code really is erroneous, because the scogieust mumble in the prototype is
limited to the argument list containing it. It does not refer testhect mumble defined

with file scope immediately below—they are two unrelated types with similar names in
different scopes.

But in the definition ofoo, the file-scope type is used because that is available to be
inherited. Thus, the definition and the prototype do not match, and you get an error.

This behavior may seem silly, but it's what the ANSI standard specifies. It is easy
enough for you to make your code work by moving the definitigtratt mumble
above the prototype. It's not worth being incompatible with ANSI C just to avoid an
error for the example shown above.

» Accesses to bitfields even in volatile objects works by accessing larger objects, such as
a byte or a word. You cannot rely on what size of object is accessed in order to read or
write the bitfield; it may even vary for a given bitfield according to the precise usage.

If you care about controlling the amount of memory that is accessed, use volatile but do
not use bitfields.

Known Causes of Trouble with GNU CC 117

118

» On 68000 anB86 systems, you can get paradoxical results if you test the precise values
of floating point numbers. For example, you can find that a floating point value which is
not a NaN is not equal to itself. This results from the fact that the floating point registers
hold a few more bits of precision than fit ideuble in memory. Compiled code moves
values between memory and floating point registers at its convenience, and moving them
into memory truncates them.

You can partially avoid this problem by using tfféoat-store or -ffppc options (see
“Options That Control Optimization” earlier in this document).

Common Misunderstandings with GNU C++

C++is a complex language and an evolving one, and its standard definition (the ANSI C++
draft standard) is also evolving. As a result, your C++ compiler may occasionally surprise
you, even when its behavior is correct. This section discusses some areas that frequently
give rise to questions of this sort.

Declare and Define Static Members

When a class has static data members, it is not enoutgicterethe static member; you
must alsadefineit. For example:

class Foo {

void method();
static int bar;

h

This declaration only establishes that the ckmshas arint named~oo::bar, and a

member function namdebo::method. But you still need to defineothmethod andbar
elsewhere. According to the draft ANSI standard, you must supply an initializer in one (and
only one) source file, such as:

int Foo::bar = 0;

Other C++ compilers may not correctly implement the standard behavior. As a result, when
you switch tog++ from one of these compilers, you may discover that a program that
appeared to work correctly in fact does not conform to the stargteraeports as

undefined symbols any static data members that lack definitions.

The Objective-C Compiler

Temporaries May Vanish Before You Expect

It is dangerous to use pointers or referencesttonsof a temporary object. The compiler

may very well delete the object before you expect it to, leaving a pointer to garbage. The
most common place where this problem crops up is in classes like the libg++ String class,
that define a conversion function to type char * or const char *. However, any class that
returns a pointer to some internal structure is potentially subject to this problem.

For example, a program may use a funcsimfunc that return$tring objects, and another
functioncharfunc that operates on pointersdbar:

String strfunc ();
void charfunc (const char *);

In this situation, it may seem natural to wigtearfunc (strfunc ()); based on the

knowledge that clasString has an explicit conversion téhar pointers. However, what

really happens is akin tharfunc (strfunc ().convert ());, where theconvert method is a
function to do the same data conversion normally performed by a cast. Since the last use of
the temporanstring object is the call to the conversion function, the compiler may delete
that object before actually callirdparfunc. The compiler has no way of knowing that
deleting theString object will invalidate the pointer. The pointer then points to garbage, so
that by the timeharfunc is called, it gets an invalid argument.

Code like this may run successfully under some other compilers, especially those that
delete temporaries relatively late. However, the GNU C++ behavior is also
standard-conforming, so if your program depends on late destruction of temporaries it is
not portable.

If you think this is surprising, you should be aware that the ANSI C++ committee continues
to debate the lifetime-of-temporaries problem.

For now, at least, the safe way to write such code is to give the temporary a name, which
forces it to remain until the end of the scope of the name. For example:

String& tmp = strfunc ();
charfunc (tmp);

Warning Messages and Error Messages

The GNU compiler can produce two kinds of diagnostics: errors and warnings. Each kind
has a different purpose:

Known Causes of Trouble with GNU CC 119

Errors report problems that make it impossible to compile your program. GNU CC reports
errors with the source file name and line number where the problem is apparent.

Warningsreport other unusual conditions in your code thayindicate a problem,

although compilation can (and does) proceed. Warning messages also report the source file
name and line number, but include the teatning: to distinguish them from error

messages.

Warnings may indicate danger points where you should check to make sure that your
program really does what you intend; or the use of obsolete features; or the use of
nonstandard features of GNU C or C++. Many warnings are issued only if you ask for them,
with one of theW options (for instanceWall requests a variety of useful warnings).

GNU CC always tries to compile your program if possible; it never gratuitously rejects a
program whose meaning is clear merely because (for instance) it fails to conform to a
standard. In some cases, however, the C and C++ standards specify that certain extensions
are forbidden, and a diagnostimistbe issued by a conforming compiler. Tpedantic

option tells GNU CC to issue warnings in such cagesgjantic-errors says to make them

errors instead. This does not mean #ilahon-ANSI constructs get warnings or errors.

See “Options to Request or Suppress Warnings” for more detail on these and related
command-line options.

Legal Considerations

120

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the sections entitled “GNU General
Public License,” “Funding for Free Software,” and “Protect Your Freedom—Embk

And Feel are included exactly as in the original, and provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another
language, under the above conditions for modified versions, except that the sections entitled
“GNU General Public License,” “Funding for Free Software,” and “Protect Your
Freedom—Fight.ook And Feel’, and this permission notice, may be included in
translations approved by the Free Software Foundation instead of in the original English.

The Objective-C Compiler

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to
share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs;
and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors
reputations.

Legal Considerations 121

122

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

1. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public
License. The “Program”, below, refers to any such program or work, and a “work based
on the Program” means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is
included without limitation in the term “modification”.) Each licensee is addressed as

you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted, and
the output from the Program is covered only if its contents constitute a work based on
the Program (independent of having been made by running the Program). Whether that
is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on
each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty; and give any other
recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus forming
a work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

The Objective-C Compiler

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole at
no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print
or display an announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself is interactive but does not normally
print such an announcement, your work based on the Program is not required to print
an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided that
you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a
complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

Legal Considerations 123

124

c. Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all the source
code for all modules it contains, plus any associated interface definition files, plus the
scripts used to control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

. You may not copy, modify, sublicense, or distribute the Program except as expressly

provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

. Each time you redistribute the Program (or any work based on the Program), the

recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose any
further restrictions on the recipients exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties to this License.

. If, as a consequence of a court judgment or allegation of patent infringement or for any

other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as to
satisfy simultaneously your obligations under this License and any other pertinent

The Objective-C Compiler

obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the
Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a whole
is intended to apply in other circumstances.

Itis not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose
of protecting the integrity of the free software distribution system, which is implemented
by public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application
of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written in
the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option
of following the terms and conditions either of that version or of any later version
published by the Free Software Foundation. If the Program does not specify a version
number of this License, you may choose any version ever published by the Free
Software Foundation.

10.If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be

Legal Considerations 125

126

guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11.BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12.IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

13.END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the
public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start
of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

The Objective-C Compiler

ONE LINE TO GIVE THE PROGRAM’S NAME AND A BRIEF IDEA OF WHAT IT
DOES.

Copyright (C) 1¥Y NAME OF AUTHOR

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version. This program is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;

without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details. You
should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite
330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 19YY NAME OF AUTHOR Gnomovision
comes with ABSOLUTELY NO WARRANTY; for details tymhow w This is free
software, and you are welcome to redistribute it under certain conditionshgyec
for detalils.

The hypothetical commandsow wandshow cshould show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other
thanshow wandshow ¢ they could even be mouse-clicks or menu items—whatever suits
your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the pro@aomovision
(which makes passes at compilers) written by James Hacker.

SIGNATURE OF TY COQN April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU
Library General Public License instead of this License.

Legal Considerations 127

128 The Objective-C Compiler

