
1

NSCalendarDate

Inherits From: NSDate : NSObject

Conforms To: NSCoding, NSCopying (NSDate)
NSObject (NSObject)

Declared In: Foundation/NSDate.h

Class Description

NSCalendarDate is a public subclass of NSDate that creates concrete date objects for western calendars.
These objects have time zones and calendar formats as attributes and are especially suited for representing
and manipulating dates according to western calendrical systems.

NSCalendarDate objects use NSTimeZone objects to adjust their visible representations to reflect their
associated time zones. Because of this, you can track an NSCalendarDate object across different time
zones; that is, as you can change the NSTimeZone object to see how the particular date is represented in
that time zone. You can also present date information from time-zone viewpoints other than the one for the
current locale.

NSCalendarDate provides both class and instance methods for creating objects. Some of these methods
allow you to initialize NSCalendarDate objects from strings while others create objects from sets of integers
corresponding the standard time values (months, hours, seconds, and so on).

To retrieve conventional elements of an NSCalendarDate object, use the ...Of... methods. For example,
dayOfWeek returns a number that indicates the day of the week (0 is Sunday). The monthOfYear method
returns a number between 1 and 12 that indicates the month.

NSCalendarDate performs date computations based on western calendrical systems, primarily the
Gregorian. (The algorithms are derived from public domain software described in “Calendrical
Calculations,” a two-part series by Nachum Dershowitz and Edward M Reingold in Software — Practice
and Experience).

The Calendar Format

Each NSCalendarDate object has a calendar format associated with it. This format is a string that contains
date-conversion specifiers that are very similar to those used in the standard C library function strftime() .
NSCalendarDate interprets dates that are represented as strings conforming to this format. You can set the
default format for an NSCalendarDate object at initialization time or using the setCalendarFormat:
method. Several methods allow you to specify formats other than the one bound to the object.

2

 NSCalendarDate

The date conversion specifiers cover a range of date conventions:

%% a '%' character
%a abbreviated weekday name
%A full weekday name
%b abbreviated month name
%B full month name
%c shorthand for %X %x, the locale format for date and time
%d day of the month as a decimal number (01-31)
%F milliseconds as a decimal number (000-999)
%H hour based on a 24-hour clock as a decimal number

(00-23)
%I hour based on a 12-hour clock as a decimal number

(01-12)
%j day of the year as a decimal number (001-366)
%m month as a decimal number (01-12)
%M minute as a decimal number (00-59)
%p AM/PM designation for the locale
%S second as a decimal number (00-59)
%w weekday as a decimal number (0-6), where Sunday is 0
%x date using the date representation for the locale
%X time using the time representation for the locale
%y year without century (00-99)
%Y year with century (such as 1990)
%Z time zone abbreviation (such as PDT)
%z time zone offset in hours and minutes from GMT

(HHMM)

NSString Representations for NSCalendarDates

NSCalendarDate provides several description... methods for representing dates as strings. These
methods—description, descriptionWithLocale:, descriptionWithCalendarFormat: , and
descriptionWithCalendarFormat:locale:—take an implicit or explicit calendar format. The user’s locale
information affects the returned string. NSCalendarDate accesses the locale information as an

3

NSDictionary. If you use descriptionWithLocale: or descriptionWithCalendarFormat:locale:, you can
specify a different locale dictionary. The following keys in the locale dictionary affect NSCalendarDates:

NSTimeDateFormatString Specifies how dates with times are printed, affecting strings that
use the format specifiers %c, %X, or %x. The default is to use abbreviated months and days with a 24
hour clock, as in “Sun Jan 01 23:00:00 +6 2001”.

NSAMPMDesignation Specifies how the morning and afternoon designations are
printed, affecting strings that use the %p format specifier. The default is AM and PM.

NSMonthNameArray Specifies the names for the months, affecting strings that use the
%B format specifier.

NSShortMonthNameArray Specifies the abbreviations for the months, affecting strings that
use the %b format specifier.

NSWeekDayNameArray Specifies the names for the days of the week, affecting strings
that use the %A format specifier.

NSShortWeekDayNameArray Specifies the abbreviations for the days of the week, affecting
strings that use the %a format specifier.

For more information on the locale dictionary, see the file Locales.rtf in the Foundation Framework
Reference.

Method Types

Creating an NSCalendarDate instance
+ calendarDate
+ dateWithString:calendarFormat:
+ dateWithString:calendarFormat:locale:
+ dateWithYear:month:day:hour:minute:second:timeZone:
– initWithString:calendarFormat:
– initWithString:calendarFormat:locale:
– initWithYear:month:day:hour:minute:second:timeZone:

Retrieving date elements – dayOfMonth
– dayOfWeek
– dayOfYear
– hourOfDay
– minuteOfHour
– monthOfYear
– secondOfMinute
– yearOfCommonEra
– dayOfCommonEra

4

 NSCalendarDate

Adjusting a date – dateByAddingYears:month:day:hour:minute:second:

Computing date intervals – years:months:days:hours:minutes:sinceDate:

Representing dates as NSStrings – description
– descriptionWithCalendarFormat:
– descriptionWithCalendarFormat:locale:
– descriptionWithLocale:

Getting and setting calendar formats – setCalendarFormat:
– calendarFormat

Getting and setting time zones – timeZoneDetail
– setTimeZone:

Class Methods

calendarDate
+ (NSCalendarDate *)calendarDate

Creates and returns an NSCalendarDate initialized to the current date and time.

See also: + date (NSDate)

dateWithString:calendarFormat:
+ (NSCalendarDate *)dateWithString: (NSString *)description calendarFormat:(NSString *)format

Creates and returns an NSCalendarDate initialized with the date specified in the string description.
NSCalendarDate uses format both to interpret the description string and as the default calendar format for
this new object. format consists of conversion specifiers similar to those used in strftime() . See the class
description for a discussion of date conversion specifiers. If description does not match format exactly, this
method returns nil .

For example, let’s say your company’s convention for dates on correspondence takes the form “Friday, 1
July 1994, 11:45 AM.” To get an NSCalendarDate object with a temporal value corresponding to this string,
you would use this statement:

NSCalendarDate *today = [NSCalendarDate

dateWithString:@"Friday, 1 July 1994, 11:45 AM"

calendarFormat:@"%A, %d %B %Y, %I:%M %p"];

If you include a time zone in the description argument, this method verifies it and can substitute an
alternative time zone. If the method does supply a new time zone, it applies the difference in

5

offsets-from-GMT values between the substituted and the original time zone to the NSCalendarDate being
created.

See also: + dateWithString:calendarFormat:locale:, –calendarFormat,
– initWithString:calendarFormat:

dateWithString:calendarFormat:locale:
+ (NSCalendarDate *)dateWithString: (NSString *)description

calendarFormat:(NSString *)format
locale:(NSDictionary *)locale

Creates and returns an NSCalendarDate initialized with the date specified in the string description.
NSCalendarDate uses format both to interpret the description string and as the default calendar format for
this new object. format consists of conversion specifiers similar to those used in strftime() . The keys and
values that represent the locale data in locale are used when parsing the string. See the class description for
a list of the date conversion specifiers and appropriate locale dictionary keys. If description does not match
format exactly, this method returns nil .

If you include a time zone in the description argument, this method verifies it and can substitute an
alternative time zone. If the method does supply a new time zone, it applies the difference in
offsets-from-GMT values between the substituted and the original time zone to the NSCalendarDate being
created.

See also: + dateWithString:calendarFormat: , –calendarFormat,
– initWithString:calendarFormat:locale:

dateWithYear:month:day:hour:minute:second:timeZone:
+ (NSCalendarDate *)dateWithYear:(int)year

month:(unsigned)month
day:(unsigned)day
hour:(unsigned)hour
minute:(unsigned)minute
second:(unsigned)second
timeZone:(NSTimeZone *)aTimeZone

Creates and returns an NSCalendarDate initialized with the specified values for year, month, day, hour,
minute, and second and the NSTimeZone object. The year value must include the century (for example,
1995 instead of 95). The other values are the standard ones: 1 through 12 for months, 1 through 31 for days,
0 through 23 for hours and 0 through 59 for both minutes and seconds.

The method verifies the time zone aTimeZone and can substitute an alternative time zone. If the method does
supply a new time zone, it applies the difference in offsets-from-GMT values between the substituted and
the original time zone to the NSCalendarDate being created.

6

 NSCalendarDate

The following code fragment shows an NSCalendarDate created with a date on the fourth of July, 9 PM,
Eastern Standard Time (timeZoneWithName: returns the NSTimeZone object that represents the time zone
with the specified name).

NSCalendarDate *fireworks = [NSCalendarDate dateWithYear:1994 month:7

day:4 hour:21 minute:0 second:0

timeZone:[NSTimeZone timeZoneWithName:@"EST"]];

See also: – initWithYear:month:day:hour:minute:second:timeZone:

Instance Methods

dateByAddingYears:month:day:hour:minute:second:
– (NSCalendarDate *)dateByAddingYears:(int)year

month:(int)month
day:(int)day
hour:(int)hour
minute:(int)minute
second:(int)second

Returns an NSCalendarDate that is updated with the year, month, day, hour, minute, and second offsets
specified as arguments. The offsets can be positive (future) or negative (past). This method preserves “clock
time” across changes in Daylight Savings Time zones and leap years. For example, adding one month to an
NSCalendarDate with a time of 12 noon correctly maintains time at 12 noon.

The following code fragment shows an NSCalendarDate created with a date a week later than an existing
NSCalendarDate.

NSCalendarDate *now = [NSCalendarDate calendarDate];

NSCalendarDate *nextWeek = [now dateByAddingYears:0 month:0 day:7 hour:0

minute:0 second:0];

See also: – years:months:days:hours:minutes:seconds:sinceDate:

calendarFormat
– (NSString *)calendarFormat

Returns the receiver’s default calendar format (used when the format is unspecified). You can set this format
when you create the NSCalendarDate using one of the class methods dateWithString:calendarFormat: or
dateWithString:calendarFormat:locale:, or you can change the format using the instance method
setCalendarFormat:. If you do not specify a default calendar format, NSCalendarDate substitutes its own

7

default: an international format of “%Y-%m-%d %H:%M:%S %z” (for example, 1994-01-14 16:45:12
+0900). See the class description for a discussion of date conversion specifiers.

See also: – description, –descriptionWithLocale:

dayOfCommonEra
– (int)dayOfCommonEra

Returns the number of days since the beginning of the Common Era. The base year of the Common Era is
1 A.C.E. (which is the same as 1 A.D.).

See also: – dayOfMonth , –dayOfWeek, –dayOfYear, –hourOfDay, –minuteOfHour ,
– monthOfYear, –secondOfMinute, – yearOfCommonEra

dayOfMonth
– (int)dayOfMonth

Returns a number that indicates the day of the month (1 through 31) of the receiver.

See also: – dayOfCommonEra, –dayOfWeek, –dayOfYear, –hourOfDay, –minuteOfHour ,
– monthOfYear, – secondOfMinute, – yearOfCommonEra

dayOfWeek
– (int)dayOfWeek

Returns a number that indicates the day of the week (0 through 6) of the receiver; 0 indicates Sunday.

See also: – dayOfCommonEra, –dayOfMonth , –dayOfYear, –hourOfDay, –minuteOfHour ,
– monthOfYear, –secondOfMinute, –yearOfCommonEra

dayOfYear
– (int)dayOfYear

Returns a number that indicates the day of the year (1 through 366) of the receiver.

See also: – dayOfCommonEra, –dayOfMonth , –dayOfWeek, –hourOfDay, –minuteOfHour ,
– monthOfYear, –secondOfMinute, – yearOfCommonEra

8

 NSCalendarDate

description
– (NSString *)description

Returns a string representation of the receiver. The string is formatted as specified by the receiver’s default
calendar format. You can find out what the default calendar format is using the method calendarFormat.

See also: – descriptionWithCalendarFormat: , –descriptionWithCalendarFormat:locale:,
– descriptionWithLocale:, –setCalendarFormat:

descriptionWithCalendarFormat:
– (NSString *)descriptionWithCalendarFormat: (NSString *)format

Returns a string representation of the receiver. The string is formatted as specified by the conversion
specifiers in the calendar format string format. The conversion specifiers cover a range of date conventions.
See the class description for a listing of these specifiers.

This example displays the current date formatted as “Tues 3/1/94 3:30 PM” in a text field:

NSCalendarDate *now = [NSCalendarDate calendarDate];

NSString *datestr =

[now descriptionWithCalendarFormat:@"%a %m/%d/%y %I:%M %p"];

[dateField setStringValue:datestr];

See also: – description, –descriptionWithCalendarFormat:locale:, –descriptionWithLocale:

descriptionWithCalendarFormat:locale:
– (NSString *)descriptionWithCalendarFormat: (NSString *)format locale:(NSDictionary *)locale

Returns a string representation of the receiver. The string is formatted according to the conversion specifiers
in format and represented according to the locale information in locale. See the class description for a list
of the date conversion specifiers and appropriate locale dictionary keys.

See also: – description, –descriptionWithCalendarFormat: , –descriptionWithLocale:

descriptionWithLocale:
– (NSString *)descriptionWithLocale:(NSDictionary *)locale

Returns a string representation of the receiver. The string is formatted as specified by the receiver’s default
calendar format and represented according to the locale information in locale. You can find out what the

9

default calendar format is using the method calendarFormat. See the class description for a list of the
locale dictionary keys that affect calendar formats.

See also: – description, –descriptionWithCalendarFormat: ,
– descriptionWithCalendarFormat:locale:, –setCalendarFormat:

hourOfDay
– (int)hourOfDay

Returns the hour value (0 through 23) of the receiver. On Daylight Savings “fall back” days, a value of 1 is
returned for two consecutive hours, but with a different time zone (the first in daylight savings time and the
second in standard time).

See also: – dayOfCommonEra, –dayOfMonth , –dayOfWeek, –dayOfYear, –minuteOfHour ,
– monthOfYear, –secondOfMinute, –yearOfCommonEra

initWithString:calendarFormat:
– (id)initWithString: (NSString *)description calendarFormat:(NSString *)format

Returns an NSCalendarDate initialized with the date specified as a string in description. This method uses
format both to interpret the description string and as the default calendar format for this object. format
consists of conversion specifiers similar to those used in strftime() . See the class description for a listing of
these specifiers. If description does not match format exactly, this method returns nil .

If you include a time zone in the description argument, this method verifies it and can substitute an
alternative time zone. If the method does supply a new time zone, it applies the difference in
offsets-from-GMT values between the substituted and the original time zone to the NSCalendarDate being
created.

For example, let’s assume you want to initialize an NSCalendarDate object with a string obtained from a
text field. This date string takes the form “03.21.94 22:00 PST”:

NSCalendarDate *newDate = [[[NSCalendarDate alloc]

initWithString:[dateField stringValue]

calendarFormat:@"%m.%d.%y %H:%M %Z"] autorelease];

See also: + dateWithString:calendarFormat:, – calendarFormat

10

 NSCalendarDate

initWithString:calendarFormat:locale:
– (id)initWithString: (NSString *)description

calendarFormat:(NSString *)format
locale:(NSDictionary *)locale

Returns an NSCalendarDate initialized with the date specified in the string description. NSCalendarDate
uses format both to interpret the description string and as the default calendar format for this object. format
consists of conversion specifiers similar to those used in strftime() . The keys and values that represent the
locale data from locale are used when parsing the string. See the class description for a list of the date
conversion specifiers and appropriate locale dictionary keys.

If you include a time zone in the description argument, this method verifies it and can substitute an
alternative time zone. If the method does supply a new time zone, it applies the difference in
offsets-from-GMT values between the substituted and the original time zone to the NSCalendarDate being
created.

If you specify a locale dictionary that has a month name array with more than 12 elements or a day name
array with more than 7 arguments, initWithString:calendarFormat:locale: returns nil .

See also: + dateWithString:calendarFormat:locale:, – calendarFormat

initWithYear:month:day:hour:minute:second:timeZone:
– (id)initWithYear: (int)year

month:(unsigned)month
day:(unsigned)day
hour:(unsigned)hour
minute:(unsigned)minute
second:(unsigned)second
timeZone:(NSTimeZone *)aTimeZone

Returns an NSCalendarDate initialized with the specified values for year, month, day, hour, minute, and
second and the NSTimeZone object. The year value must include the century (for example, 1995 instead of
95). The other values are the standard ones: 1 through 12 for months, 1 through 31 for days, 0 through 23
for hours and 0 through 59 for both minutes and seconds.

The method verifies the time zone supplied as an argument and can substitute an alternative time zone. If
the method does supply a new time zone, it applies the difference in offsets-from-GMT values between the
substituted and the original time zone to the NSCalendarDate being created.

The following code fragment shows an NSCalendarDate created with a date on the fourth of July, 9 PM,
Eastern Standard Time (timeZoneWithName: returns the NSTimeZone object that represents the time zone
with the specified name).

11

NSCalendarDate *fireworks = [[[NSCalendarDate alloc] initWithYear:1994

month:7 day:4 hour:21 minute:0 second:0

timeZone:[NSTimeZone timeZoneWithName:@"EST"]] autorelease];

See also: – dateWithYear:month:day:hour:minute:second:timeZone:

minuteOfHour
– (int)minuteOfHour

Returns the minutes value (0 through 59) of the receiver.

See also: – dayOfCommonEra, –dayOfMonth , –dayOfWeek, –dayOfYear, –hourOfDay,
– monthOfYear, –secondOfMinute, –yearOfCommonEra

monthOfYear
– (int)monthOfYear

Returns a number that indicates the month of the year (1 through 12) of the receiver.

See also: – dayOfCommonEra, –dayOfMonth , –dayOfWeek, –dayOfYear, –hourOfDay,
– minuteOfHour , –secondOfMinute, –yearOfCommonEra

secondOfMinute
– (int)secondOfMinute

Returns the seconds value (0 through 59) of the receiver.

See also: – dayOfCommonEra, –dayOfMonth , –dayOfWeek, –dayOfYear, –hourOfDay,
– minuteOfHour , –monthOfYear, –yearOfCommonEra

setCalendarFormat:
– (void)setCalendarFormat:(NSString *)format

Sets the default calendar format for the receiver. A calendar format is a string formatted with
date-conversion specifiers listed in the class description. If you do not specify a calendar format for an
object, NSCalendarDate substitutes its own default. This is the international format of “%Y-%m-%d
%H:%M:%S %z” (for example, 1994-01-14 16:45:12 +0900).

See also: – calendarFormat, –description, –descriptionWithLocale:

12

 NSCalendarDate

setTimeZone:
– (void)setTimeZone:(NSTimeZone *)aTimeZone

Sets the time zone for the receiver. If you do not specify a time zone for an object at initialization time,
NSCalendarDate uses the default time zone for the locale. Use this method to set it to another time zone.

See also: – timeZoneDetail

timeZoneDetail
– (NSTimeZoneDetail *)timeZoneDetail

Returns the time-zone detail object that is associated with the receiver. You can set the time zone when you
create the NSCalendarDate using the class methods dateWithString:calendarFormat: or
dateWithString:calendarFormat:locale: by including the time zone in the description and format
arguments. Or you can explicitly set the time zone to an NSTimeZone object using
dateWithYear:month:day:hour:minute:second:timeZone:. If you do not specify a time zone for an
object at initialization time, NSCalendarDate uses the default time zone for the locale.

See also: – setTimeZone:

yearOfCommonEra
– (int)yearOfCommonEra

Returns a number that indicates the year, including the century, of the receiver (for example, 1995).
The base year of the Common Era is 1 A.C.E. (which is the same as 1 A.D).

See also: – dayOfCommonEra, –dayOfMonth , –dayOfWeek, –dayOfYear, –hourOfDay,
– minuteOfHour , –monthOfYear, –secondOfMinute

years:months:days:hours:minutes:seconds:sinceDate:
– (void)years:(int *)yearsPointer

months:(int *)monthsPointer
days:(int *)daysPointer
hours:(int *)hoursPointer
minutes:(int *)minutesPointer
seconds:(int *)secondsPointer
sinceDate:(NSDate *)date

Computes the calendrical time difference between the receiver and date and returns it in yearsPointer,
monthsPointer, daysPointer, hoursPointer, minutesPointer, and secondsPointer. You can choose any
representation you wish for the time difference by passing NULL for the arguments you want to ignore. For

13

example, the following code fragment computes the difference in months, days, and years between two
dates:

NSCalendarDate *momsBDay = [NSCalendarDate dateWithYear:1936

month:1 day:8 hour:7 minute:30 second:0

timeZone:[NSTimeZone timeZoneWithName:@"EST"]];

NSCalendarDate *dateOfBirth = [NSCalendarDate dateWithYear:1965

month:12 day:7 hour:17 minute:25 second:0

timeZone:[NSTimeZone timeZoneWithName:@"EST"]];

int years, months, days;

[dateOfBirth years:&years months:&months days:&days hours:NULL

minutes:NULL seconds:NULL sinceDate:momsBDay];

This message returns 29 years, 10 months, and 29 days. If you want to express the years in terms of months,
you pass NULL for the years argument:

[dateOfBirth years:NULL months:&months days:&days hours:NULL

minutes:NULL seconds:NULL sinceDate:momsBDay];

This message returns 358 months and 29 days.

See also: – dateByAddingYears:month:day:hour:minute:second:

