NSNumber

Inherits From: NSValue : NSObject

Conforms To: NSCoding (NSValue)
NSCopying (NSValue)
NSObject (NSObject)

Declared In: Foundation/NSValue.h

Class at a Glance

Purpose
An NSNumber object serves as an object wrapper for C numeric data items, allowing them to be stored in

collections such as NSArray and NSDictionary objects.

Creation

+ numberWitiype Returns an initialized NSNumber of the specified type.
Commonly Used Methods

—typévalue Returns the value of an NSNumber as a specific numeric type.
—compare: Compares two NSNumbers.

Class Description

NSNumber is a subclass of NSValue that offers a value as any C scalar (numeric) type. It defines a set of
methods specifically for setting and accessing the value as a signed or uokamnskort, int, long int,

long long int, float, ordouble, or as a BOOL. It also definesampare: method to determine the ordering

of two NSNumber objects.

An NSNumber records the numeric type it's created with, and uses the C rules for numeric conversion when
comparing NSNumbers of different numeric types and when returning values as C numeric types. See any
standard C reference for information on type conversion.



NSNumber

Method Types

Creating an NSNumber + numberWithBool:
+ numberWithChar:
+ numberWithDouble:
+ numberWithFloat:
+ numberWithint:
+ numberWithLong:
+ numberWithLongLong:
+ numberWithShort:
+ numberWithUnsignedChar:
+ numberWithUnsignedInt:
+ numberWithUnsignedLong:
+ numberWithUnsignedLongLong:
+ numberWithUnsignedShort:
— initWithBool:
— initWithChar:
— initWithDouble:
— initWithFloat:
— initWithint:
— initWithLong:
— initWithLongLong:
— initWithShort:
— initWithUnsignedChar:
— initWithUnsignedint:
— initWithUnsignedLong:
— initWithUnsignedLongLong:
— initWithUnsignedShort:

Accessing numeric values — boolValue
—charValue
— descriptionWithLocale:
— doubleValue
— floatValue
—intValue
— longLongValue
— longValue
— shortValue
— stringValue
— unsignedCharValue
— unsignedintValue
— unsignedLonglLongValue
— unsignedLongValue
— unsignedShortValue



Comparing NSNumbers — compare:

Class Methods

numberWithBool:
+ (NSNumber *humberWithBool: (BOOL)value

Creates and returns an NSNumber contaimalge treating it as a BOOL.

numberWithChar:
+ (NSNumber *humberWithChar: (charyalue

Creates and returns an NSNumber contaimaige treating it as a signeghar.

numberWithDouble:
+ (NSNumber *humberWithDouble: (doubleyalue

Creates and returns an NSNumber contaimaige treating it as aouble.

numberWithFloat:
+ (NSNumber *humberWithFloat: (float)value

Creates and returns an NSNumber contaimaige treating it as #oat.

numberWithint:
+ (NSNumber *humberWithint: (int)value

Creates and returns an NSNumber contaimalge treating it as a signeuit.

numberWithLong:
+ (NSNumber *humberWithLong: (long int)value

Creates and returns an NSNumber contaimalge treating it as a signddng int.



NSNumber

numberWithLongLong:
+ (NSNumber *humberWithLongLong: (long long intyalue

Creates and returns an NSNumber contaimalge treating it as a signddng long int.

numberWithShort:
+ (NSNumber *humberWithShort: (short intyalue

Creates and returns an NSNumber contaimalge treating it as a signeshort int.

numberWithUnsignedChar:
+ (NSNumber *humberWithUnsignedChar: (unsigned chavalue

Creates and returns an NSNumber contaimalge treating it as annsigned char

numberWithUnsignedint:
+ (NSNumber *humberWithUnsignedInt: (unsigned intyalue

Creates and returns an NSNumber contairaige treating it as annsigned int

numberWithUnsignedLong:
+ (NSNumber *humberWithUnsignedLong:(unsigned long int)alue

Creates and returns an NSNumber contaimalge treating it as annsigned long int

numberWithUnsignedLongLong:
+ (NSNumber *humberWithUnsignedLongLong:(unsigned long long intalue

Creates and returns an NSNumber contaimaige treating it as annsigned long long int

numberWithUnsignedShort:
+ (NSNumber *humberWithUnsignedShort:(unsigned short intalue

Creates and returns an NSNumber contaimalge treating it as annsigned short int



Instance Methods
boolValue
— (BOOL)boolValue
Returns the receiver’s value as a BOOL, converting it as necessary.

Note: The value returned by this method isn’t guaranteed to be one of YES or NO. A zero value always
means NO or false, but any nonzero value should be interpreted as YES or true.

charValue
— (chartharValue

Returns the receiver’s value as a char, converting it as necessary.

compare:
— (NSComparisonResuttpmpare(NSNumber *aNumber

Returns NSOrderedAscending ifaNumbeis value is greater than the receiver's, NSOrderedSame if
they're equal, and NSOrderedDescendireNfimbeis value is less than the receiver’s.

compare: follows the standard C rules for type conversion. For example, if you compare an
NSNumber that has an integer value with an NSNumber that has a floating point value, the integer
value is converted to a float for comparison.

descriptionWithLocale:
— (NSString *fescriptionWithLocale:(NSDictionary *JaLocale

Returns an NSString that represents the contents of the reativealespecifies options used for
formatting the description; usel if you don’t want the description formatted.

To obtain the string representation, this method invokes NSStiity\thFormat:locale: method,
supplying the format based on the type the NSNumber was created with:



NSNumber

Data Type Format Specification
char %i
double %0.169g
float %0.79g
int %i
long %li
long long %li
short %hi
unsigned char %u
unsigned int %u
unsigned long %lu
unsigned long long %lu
unsigned short %hu

See also: —stringValue

doubleValue
— (doubleyloubleValue

Returns the receiver’s value as a double, converting it as necessary.

floatValue
— (float¥loatValue

Returns the receiver’s value as a float, converting it as necessary.

initWithBool:
— (id)initwithBool: (BOOL)value

Initializes a newly allocated NSNumber to conte@tue treated as a BOOL.

initWithChar:
— (id)initWithChar: (charyalue

Initializes a newly allocated NSNumber to contadtug treated as a signethar.



initWithDouble:
— (id)initWithDouble: (doubleyalue

Initializes a newly allocated NSNumber to conteétue treated as double.

initWithFloat:
— (id)initwithFloat: (floatvalue

Initializes a newly allocated NSNumber to conteafue treated as #oat.

initWithint:
— (id)initwithint; (int)value

Initializes a newly allocated NSNumber to conteétue treated as a signémt.

initWithLong:
— (id)initwithLong: (long int)value

Initializes a newly allocated NSNumber to conte@tue treated as a signédehg int.

initWithLongLong:
— (id)initwithLongLong: (long long intyalue

Initializes a newly allocated NSNumber to contediiue treated as a signdéahg long int.

initWithShort:
— (id)initWithShort: (short intyalue

Initializes a newly allocated NSNumber to conte@tue treated as a signeatiort int.

initWithUnsignedChar:
— (id)initWithUnsignedChar: (unsigned chavalue

Initializes a newly allocated NSNumber to conteatue treated as annsigned char



NSNumber

initWithUnsignedint:
— (id)initWithUnsignedint: (unsigned intyalue

Initializes a newly allocated NSNumber to conteétue treated as annsigned int

initWithUnsignedLong:
— (id)initwithUnsignedLong: (unsigned long intjalue

Initializes a newly allocated NSNumber to contedfug treated as amnsigned long int

initWithUnsignedLongLong:
— (id)initwithUnsignedLongLong: (unsigned long long intalue

Initializes a newly allocated NSNumber to contedtue treated as annsigned long long int

initWithUnsignedShort:
— (id)initWithUnsignedShort: (unsigned short intalue

Initializes a newly allocated NSNumber to conte@tue treated as annsigned short int

intValue
— (int)intValue

Returns the receiver’s value as an int, converting it as necessary.

iIsSEqual:
@protocol NSObject
— (BOOL)isequal:(id)anObject

Returns YES if the receiver aatiObjectare equal, otherwise returns NO. An NSNumber is equal to
anObjectif they have the samds or if they’re both NSNumbers with equivalent values (as determined
using thecompare: method).



longLongValue
— (long long intjongLongValue

Returns the receiver’s value as a long long int, converting it as necessary.

longValue
— (long intjongValue

Returns the receiver’s value as a long int, converting it as necessary.

shortValue
— (short intshortValue

Returns the receiver’s value as a short int, converting it as necessary.

stringValue
— (NSString *ptringValue

Returns the receiver’s value as a human-readable NSString, by indasiagptionWithLocale: where
locale isnil.

unsignedCharValue
— (unsigned chadnsignedCharValue

Returns the receiver’s value as an unsigned char, converting it as necessary.

unsignedintValue
— (unsigned int)nsignedintValue

Returns the receiver’s value as an unsigned int, converting it as necessary.

unsignedLongLongValue
— (unsigned long long intinsignedLongLongValue

Returns the receiver’s value as an unsigned long long int, converting it as necessary.



NSNumber

10

unsignedLongValue
— (unsigned long int)nsignedLongValue

Returns the receiver’s value as an unsigned long int, converting it as necessary.

unsignedShortValue
— (unsigned short intinsignedShortValue

Returns the receiver’s value as an unsigned short int, converting it as necessary.



