
1

NSException

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSObject (NSObject)

Declared In: Foundation/NSException.h

Class Description

NSException is used to implement exception handling and contains information about an exception. An
exception is a special condition that interrupts the normal flow of program execution. Each application can
interrupt the program for different reasons. For example, one application might interpret saving a file in a
directory that’s write-protected as an exception. In this sense, the exception is equivalent to an error.
Another application might interpret the user’s keypress (i.e., Control-C) as an exception: an indication that
a long-running process should be aborted.

Raising an Exception

Once an exception is detected, it must be propagated to code that will handle it, called the exception handler.
This entire process of handling an exception is referred to as “raising an exception.” Exceptions are raised
by instantiating an NSException object and sending it a raise message.

NSException objects provide:

• a name - a short string that is used to uniquely identify the exception.

• a reason - a longer string that contains a “human-readable” reason for the exception.

• userInfo - a dictionary used to supply application-specific data to the exception handler. For example, if
the return value of a method causes an exception to be raised, you could pass the return value to the
exception handler through userInfo.

Handling an Exception

Where and how an exception is handled depends on the context where the exception was raised. In general,
a raise message is sent to an NSException object within the domain of an exception handler. An exception
handler is contained within a control structure created by the macros NS_DURING, NS_HANDLER, and
NS_ENDHANDLER, as shown in the following illustration.

2

 NSException

The section of code between NS_DURING and NS_HANDLER is the exception handling domain; the
section between NS_HANDLER and NS_ENDHANDLER is the local exception handler. The normal flow
of program execution is marked by the gray arrow; the code within the local exception handler is executed
only if an exception is raised. Sending a raise message to an exception object causes program control to
jump to the first executable line following NS_HANDLER.

Although you can raise an exception directly within the exception handling domain, raise is more often
invoked indirectly from a method invoked from the domain. No matter how deep in a call sequence the
exception is raised, execution jumps to the local exception handler (assuming there are no intervening
exception handlers, as discussed in the next section). In this way, exceptions raised at a low level can be
caught at a high level.

For example, in the following program excerpt, the local exception handler displays an attention panel after
detecting an exception having the name MyAppException. The local exception handler has access to the
raised exception object through a local variable localException.

if (/*error*/) {

NS_HANDLER

NS_ENDHANDLER

NS_DURING

[... raise];
}

return;

Function()

. . .

. . .

. . .

. . .

. . .

exception handling
domain

local exception
handler

3

NS_DURING

 ...

 if (someError)

 [anException raise];

 ...

NS_HANDLER

if ([[localException name] isEqualToString:MyAppException]) {

NSRunAlertPanel(@"Error Panel", @"%@", @"OK", nil, nil,

localException);

 }

[localException raise];/* Re-raise the exception. */

NS_ENDHANDLER

You may leave the exception handling domain (the section of code between NS_DURING and
NS_HANDLER) by:

• Raising an exception.

• Calling NS_VALUERETURN()

• Calling NS_VOIDRETURN

• “Falling off the end”

The above example raises an exception when someError is YES. Alternatively, you can return control to
the caller from within the exception handling domain by calling either NS_VALUERETURN() or
NS_VOIDRETURN. "Falling off the end” is simply the normal path of execution—after all statements in
the exception handling domain are executed, execution continues on the line following
NS_ENDHANDLER.

Note: You can’t use goto or return to exit an exception handling domain—errors will result. Nor can you
use setjmp() and longjmp() if the jump entails crossing an NS_DURING statement. Since the
NEXTSTEP code that your program calls may have exception handling domains within it, avoid
using setjmp() and longjmp() in your application.

Similarly, you can leave the local exception handler (the section of code between NS_HANDLER and
NS_ENDHANDLER) by raising an exception or simply "falling off the end".

Nested Exception Handlers

In the code example above, the same exception, localException, is raised again at the end of the local
handler, allowing an encompassing exception handler to take some additional action. Exception handlers
can be nested so that an exception raised in an inner domain can be treated by the local exception handler
and any number of encompassing exception handlers. The following diagram illustrates the use of nested
exception handlers, and is discussed in the text that follows.

4

 NSException

An exception raised within Method3’s domain causes execution to jump to its local exception handler. In a
typical application, this exception handler checks the object localException to determine the nature of the
exception. For exception types that it recognizes, the local handler responds and then may send raise to
localException to pass notification of the exception to the handler above, the handler in Method2. (An
exception that’s re-raised appears to the next higher handler just as if the initial exception had been raised
within its own exception handling domain.) Method2’s exception handler does the same and then re-raises
the exception to Method1’s handler. Finally, Method1’s handler re-raises the exception. Since there’s no
exception handling domain above Method1, the exception is transferred to the uncaught exception handler
as described below.

Uncaught Exceptions

If an exception is not caught by any handler, it’s intercepted by the uncaught exception handler, a function
set by NSSetUncaughtExceptionHandler() and returned by NSGetUncaughtExceptionHandler().

The default uncaught exception handler logs a message in the console and exits the program. However, for
Application Kit programs, the message is logged with the Workspace Manager's console window (if the
application was launched by the Workspace Manager) or to a Terminal window (if the application was
launched from the shell).

NS_HANDLERÿ

NS_ENDHANDLERÿ

NS_DURINGÿ

Function2();ÿ

[localException raise];ÿ

. . . ÿ

. . . ÿ

. . . ÿ

. . . ÿ

Function1()ÿ

Uncaught Exception Handlerÿ

return;ÿ

. . . ÿ

NS_HANDLERÿ

NS_ENDHANDLERÿ

NS_DURINGÿ

[... raise];ÿ

[localException raise];ÿ

. . . ÿ

. . . ÿ

. . . ÿ

. . . ÿ

Function3()ÿ

return;ÿ

. . . ÿ

NS_HANDLERÿ

NS_ENDHANDLERÿ

NS_DURINGÿ

Function3();ÿ

[localException raise];ÿ

. . . ÿ

. . . ÿ

. . . ÿ

. . . ÿ

Function2()ÿ

return;ÿ

. . . ÿ

NS_HANDLERÿ

NS_ENDHANDLERÿ

NS_DURINGÿ

Function2();ÿ

[localException raise];ÿ

. . . ÿ

. . . ÿ

. . . ÿ

. . . ÿ

Method1

Uncaught Exception Handlerÿ

return;ÿ

. . . ÿ

NS_HANDLERÿ

NS_ENDHANDLERÿ

NS_DURINGÿ

[... raise];ÿ

[localException raise];ÿ

. . . ÿ

. . . ÿ

. . . ÿ

. . . ÿ

Method3ÿ

return;ÿ

. . . ÿ

NS_HANDLERÿ

NS_ENDHANDLERÿ

NS_DURINGÿ

Function3();ÿ

[localException raise];ÿ

. . . ÿ

. . . ÿ

. . . ÿ

. . . ÿ

Method2

return;ÿ

. . . ÿ

5

You can change the default behavior by changing the uncaught exception handler using
NSSetUncaughtExceptionHandler().

Predefined Exceptions

NEXTSTEP predefines a number of exception names. These exception names are defined in
NSException.h. For example:

NSGenericException

NSRangeException

NSInvalidArgumentException

NSMallocException

You can catch any of these exceptions from within your exception handler by comparing the exception’s
name with these predefined names. Note that all predefined exceptions begin with the prefix "NS", so you
should avoid using the same prefix when creating new exception names.

Adopted Protocols

NSCoding – encodeWithCoder:
– initWithCoder:

NSCopying – copyWithZone:

Method Types

Creating and raising an NSException+ exceptionWithName:reason:userInfo:
+ raise:format:
+ raise:format:arguments:
- initWithName:reason:userInfo:
- raise

Querying an NSException - name
- reason
- userInfo

6

 NSException

exceptionWithName:reason:userInfo:
+ (NSException *)exceptionWithName:(NSString *)name reason:(NSString *)reason

userInfo:(NSDictionary *)userInfo

Creates and returns an exception object using a predefined name, a human-readable reason, and arbitrary
userInfo.

See also: – initWithName:reason:userInfo:, – name, – reason, – userInfo

raise:format:
+ (void)raise:(NSString *)name format: (NSString *)format,...

A convenience method that creates and raises an exception with name name and a reason constructed from
format and the arguments that follow in the manner of printf() . The user-defined information is nil .

See also: + raise:format:arguments:, – raise

raise:format:arguments:
+ (void)raise:(NSString *)name format: (NSString *)format arguments:(va_list)argList

Creates and raises an exception with name name and a reason constructed from format and the arguments
in argList, in the manner of vprintf() . The user-defined information is nil .

See also: + raise:format:, – raise

Instance Methods

description
– (NSString *)description

Overridden to return the receiver’s reason, so that "%@" used in formatted strings produces a meaningful
description of the exception.

See also: – reason

7

initWithName:reason:userInfo:
– (id)initWithName: (NSString *)name reason:(NSString *)reason

userInfo:(NSDictionary *)userInfo

Initializes a newly allocated exception object using the predefined name, human-readable reason, and
user-defined userInfo. This is the designated initializer.

See also: + exceptionWithName:reason:userInfo:, – name, – reason, – userInfo

name
– (NSString *)name

Returns an NSString used to uniquely identify the exception.

See also: + exceptionWithName:reason:userInfo:, – initWithName:reason:userInfo:

raise
– (void)raise

Raises the exception, causing program flow to jump to the local exception handler. All other methods that
raise an exception call this method, so set a breakpoint here if you are debugging exceptions.

See also: + raise:format:, + raise:format:arguments:

reason
– (NSString *)reason

Returns an NSString containing a “human-readable” reason for the exception.

See also: – description, + exceptionWithName:reason:userInfo:, – initWithName:reason:userInfo:

userInfo
– (NSDictionary *)userInfo

Returns an NSDictionary that contains application-specific data pertaining to the receiver. Returns nil if no
application-specific data exists. As an example, if a method’s return value caused the exception to be raised,
the return value might be available to the exception handler through this method.

See also: + exceptionWithName:reason:userInfo:, – initWithName:reason:userInfo:

