
1

NSValue

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSObject (NSObject)

Declared In: Foundation/NSValue.h
Foundation/NSGeometry.h

Class at a Glance

Purpose
An NSValue object serves as an object wrapper for a standard C or Objective-C data item, allowing it to be stored
in a collection object such as an NSArray or NSDictionary.

Creation
+ value:withObjCType: Returns an NSValue containing any C or Objective-C data item.
+ valueWithBytes:objCType: Returns an NSValue containing any Objective-C data item, which

is interpreted as being of the specified Objective-C type.
+ valueWithNonretainedObject: Returns an NSValue containing an Objective-C object, without

retaining the Objective-C object.
+ valueWithPointer: Returns an NSValue that contains a pointer.

Commonly Used Methods
– objCType Returns the Objective-C type for the data contained in an NSValue.
– getValue: Copies an NSValue’s contents into a buffer.
– nonretainedObjectValue Returns an NSValue’s contents as an id.
– pointerValue Returns an NSValue’s contents as a pointer to void.

Primitive Methods
– getValue:
– objCType

2

 NSValue

Class Description

An NSValue object is a simple container for a single C or Objective-C data item. It can hold any of the scalar
types such as int , float, and char, as well as pointers, structures, and object ids. The purpose of this class is
to allow items of such data types to be added to collection objects such as NSArrays and NSSets, which
require their elements to be objects.

To create an NSValue object with a particular data item, you provide a pointer to the item along with a C
string describing the item’s type in Objective-C type encoding. You get this string using the @encode()
compiler directive, which returns the platform-specific encoding for the given type. Fore example, this code
excerpt creates theValue containing an NSRange:

NSRange myRange = {4, 10};

NSValue *theValue = [NSValue valueWithBytes:&myRange

 objCType:@encode(NSRange)];

Note that the type you specify must be of constant length. C strings, variable-length arrays and structures,
and other data types of indeterminate length can’t be stored in an NSValue. You should use NSString or
NSData objects for these. If you must store a variable-length item in an NSValue, you have to store a pointer
to the item, not the item itself. This code excerpt incorrectly attempts to place a C string directly into an
NSValue object:

/* INCORRECT! */

char *myCString = "This is a string.";

NSValue *theValue = [NSValue value:myCString

 withObjCType:@encode(char *)];

In this code excerpt the contents of myCString are interpreted as a pointer to a char, so that the first four
bytes contained in the string are treated as a pointer (the actual number of bytes used may vary with the
hardware architecture). That is, the sequence “This” is interpreted as a pointer value, which is unlikely to
be a legal address. The correct way to store such a data item, short of using an NSString object, is to pass
the address of its pointer, not the pointer itself:

/* Correct. */

char *myCString = "This is a string.";

NSValue *theValue = [NSValue value:&myCString

 withObjCType:@encode(char *)];

Here the address of myCString is passed, so that the address of the first character of the string is stored in
theValue. Note that the NSValue doesn’t copy the contents of the string, but the pointer itself. If you create
an NSValue with an allocated data item, don’t deallocate its memory while the NSValue object exists.

Adopted Protocols

NSCoding – encodeWithCoder:
– initWithCoder:

3

NSCopying – copyWithZone:

Method Types

Creating an NSValue – initWithBytes:objCType:
+ valueWithBytes:objCType:
+ value:withObjCType:
+ valueWithNonretainedObject:
+ valueWithPointer:
+ valueWithPoint:
+ valueWithRect:
+ valueWithSize:

Accessing data – getValue:
– nonretainedObjectValue
– objCType
– pointValue
– pointerValue
– rectValue
– sizeValue

Comparing objects – isEqual:

Class Methods

valueWithBytes:objCType:
+ (NSValue *)valueWithBytes:(const void *)value objCType:(const char *)type

Creates and returns an NSValue containing value, which is interpreted as being of the Objective-C type type.
type should be created with the Objective-C @encode() compiler directive; it shouldn’t be hard-coded as a
C string. This method is equivalent to value:withObjCType: , which is part of OpenStep. See the class
description for other considerations in creating an NSValue object and code examples.

See also: – initWithBytes:objCType:

value:withObjCType:
+ (NSValue *)value:(const void *)value withObjCType: (const char *)type

Creates and returns an NSValue containing value, which is interpreted as being of the Objective-C type type.
type should be created with the Objective-C @encode() compiler directive; it shouldn’t be hard-coded as a

4

 NSValue

C string. See the class description for other considerations in creating an NSValue object and code
examples.

See also: + valueWithBytes:objCType:

valueWithNonretainedObject:
+ (NSValue *)valueWithNonretainedObject:(id)anObject

Creates and returns an NSValue containing anObject, but doesn’t retain it. This method is equivalent to
invoking value:withObjCType: in this manner:

NSValue *theValue = [NSValue value:&anObject

 withObjCType:@encode(void *)];

This method is useful for preventing an object from being retained when it’s added to a collection object
(such as an NSArray or NSDictionary).

See also: – nonretainedObjectValue

valueWithPoint:
+ (NSValue *)valueWithPoint:(NSPoint)Point

Creates and returns a value object that contains the specified NSPoint structure (which represents a
geometrical point in two dimensions).

See also: – pointValue

valueWithPointer:
+ (NSValue *)valueWithPointer:(const void *)aPointer

Creates and returns an NSValue object that contains aPointer. This method is equivalent to invoking
value:withObjCType: in this manner:

NSValue *theValue = [NSValue value:&aPointer

 withObjCType:@encode(void *)];

This method doesn’t copy the contents of aPointer, so you should be sure not to deallocate that memory
while the NSValue object exists. NSData objects may be more suited for arbitrary pointers than NSValue
objects.

See also: – pointerValue

5

valueWithRect:
+ (NSValue *)valueWithRect:(NSRect)rect

Creates and returns a value object that contains the specified NSRect structure (which represents the
coordinates of the rectangle’s origin).

See also: – rectValue

valueWithSize:
+ (NSValue *)valueWithPointer:(NSSize)size

Creates and returns an NSValue that contains the specified NSSize structure (which represents the width
and height of a rectangle).

See also: – sizeValue

Instance Methods

getValue:
– (void)getValue:(void *)buffer

Copies the NSValue’s contents into buffer. buffer should be large enough to hold the value.

initWithBytes:objCType:
– (id)initWithBytes: (const void *)value objCType:(const char *)type

Initializes a newly created NSValue to contain value, which is interpreted as being of the Objective-C type
type. type should be created with the Objective-C @encode() compiler directive; it shouldn’t be hard-coded
as a C string. See the class description for other considerations in creating an NSValue object.

This is the designated initializer for the NSValue class. Returns self.

isEqual:
@protocol NSObject
– (BOOL)isEqual:(id)anObject

Returns YES if the receiver is equal to anObject, otherwise returns NO. For an NSValue, the class, type,
and contents are compared to determine equality.

6

 NSValue

nonretainedObjectValue
– (id)nonretainedObjectValue

For an NSValue object created to hold a pointer-sized data item, returns that item as an id. For any other
NSValue the result is undefined.

See also: – getValue:

objCType
– (const char *)objCType

Returns a C string containing the Objective-C type of the data contained in the NSValue object, as encoded
by the @encode() compiler directive.

pointValue:
– (NSPoint)pointValue

Returns an NSPoint structure (which represents a geometrical point in two dimensions).

See also: – rectValue, – sizeValue

pointerValue
– (void *)pointerValue

For an NSValue object created to hold a pointer-sized data item, returns that item as a pointer to void. For
any other NSValue the result is undefined.

See also: – getValue:

rectValue
– (NSRect)rectValue

Returns an NSRect structure (which represents the coordinates of the rectangle’s origin).

See also: – pointValue, – sizeValue

7

valueWithSize:
+ (NSValue *)valueWithPointer:(NSSize)size

Returns an NSSize structure (which represents the width and height of a rectangle).

See also: – pointValue, – rectValue

