
Classes: Storage 1

Storage

Inherits From: Object

Declared In: objc/Storage.h

Class Description

The Storage class implements a general storage allocator. Each Storage object manages an
array containing data elements of an arbitrary type. All the elements must be of the same
type. When an element is added to the Storage object, it’s copied into the array. The array
grows dynamically when necessary; its capacity doesn’t need to be explicitly adjusted.

Because a Storage object holds elements of an arbitrary type, you don’t have to define a
special class for each type of data you want to store. When setting up a new instance of the
class, you specify the size of the elements and a description of their type. The type
description is needed for archiving the object and must agree with the specified element
size. It’s encoded in a string using the descriptor codes listed in the table below:

Type Code Type Code

int i char c
unsigned int I unsigned char C
short s char * *
unsigned short S NXAtom %
long l id @
unsigned long L Class #
float f SEL :
double d structure {<types>}
ignored ! array [<count><types>]

For example, “[15d]” means that each stored element is an array of fifteen doubles, and
“{csi*@}” means that each stored element is a structure containing a char, a short, an int ,
a character pointer, and an object.

 2 Common Classes and Functions

Most of these codes are identical to ones that would be returned by the @encode() compiler
directive. However, there are some differences:

• A structure description can contain only encoded type information between the braces.
It can’t include a full type name or structure name.

• The ‘%’ descriptor specifies a unique string pointer. When the pointer is unarchived, the
NXUniqueString() function is called to make sure that it’s also unique within the new
context.

• The ‘!’ descriptor marks data that won’t be archived. Each occurrence of ‘!’ instructs
the archiver to skip data the size of an int .

• A few @encode() descriptors—such as the ones for pointers, bitfields, and undefined
types—should not be used. Use only the codes shown in the table above.

Instance Variables

void *dataPtr;
const char *description;
unsigned int numElements;
unsigned int maxElements;
unsigned int elementSize;

dataPtr A pointer to the data stored by the object.

description A string encoding the type of data stored.

numElements The number of elements actually in the Storage array.

maxElements The total number of elements that can fit within currently
allocated memory.

elementSize The size of each element in the array.

Classes: Storage 3

Method Types

Initializing a new Storage instance
– init
– initCount:elementSize:description:

Copying and freeing Storage objects
– copyFromZone:
– free

Getting, adding, and removing elements
– addElement:
– insertElement:at:
– removeElementAt:
– removeLastElement
– replaceElementAt:with:
– empty
– elementAt:

Comparing Storage objects – isEqual:

Managing the storage capacity and type
– count
– description
– setAvailableCapacity:
– setNumSlots:

Archiving – read:
– write:

Instance Methods

addElement:

– addElement:(void *)anElement

Adds anElement at the end of the Storage array and returns self. The size of the array is
increased if necessary.

See also: – insertElement:at:

 4 Common Classes and Functions

copyFromZone:

– copyFromZone:(NXZone *)zone

Returns a new Storage object containing the same data as the receiver. The data and the
object are both copied, and memory for both is taken from zone. However, the description
string is not copied; the two objects share the same string.

See also: – copy (Object)

count

– (unsigned int)count

Returns the number of elements currently in the Storage array.

See also: – setNumSlots:

description

– (const char *)description

Returns the string encoding the data type of elements in the Storage array.

See also: – initCount:elementSize:description:

elementAt:

– (void *)elementAt:(unsigned int)index

Returns a pointer to the element at index in the Storage array. If no element is stored at
index (index is beyond the end of the array), a NULL pointer is returned.

Before using the pointer that’s returned, you must convert it into the appropriate type by a
cast. The pointer can be used either to read the element at index or to alter it.

See also: – replaceElementAt:with:, – insertElement:at:

Classes: Storage 5

empty

– empty

Empties the Storage array of all its elements and returns self. The current capacity of the
array remains unchanged; nothing is deallocated.

See also: – free

free

– free

Frees the Storage object and all the elements it contains. Pointers stored in the object will
be freed, but the data they point to won’t be (unless the data is also stored in the object).
You might want to free the data before freeing the Storage object. The description string
isn’t freed.

See also: – empty

init

– init

Initializes the Storage object so that it’s ready to store object ids. The initial capacity of the
array isn’t set. In general, it’s better to store object ids in a List object. Returns self.

See also: – initCount:elementSize:description:, – initCount: (List)

initCount:elementSize:description:

– initCount: (unsigned int)count
elementSize:(unsigned int)sizeInBytes
description:(const char *)string

Initializes the Storage object so that it has count elements. Each element is of size
sizeInBytes and of the type described by string. Memory for all the elements is set to 0.
Returns self.

If string is NULL, the object won’t be archivable. Once set, the description string should
never be modified.

This method is the designated initializer for the class. It’s used to initialize Storage objects
immediately after they have been allocated; it should never be used to reinitialize a Storage
object that’s already been placed in use.

 6 Common Classes and Functions

insertElement:at:

– insertElement:(void *)anElement at:(unsigned int)index

Puts anElement in the Storage array at index. All elements between index and the last
element are shifted to make room. The size of the array is increased if necessary.
Returnsself.

See also: – addElement:, – setNumSlots:

isEqual:

– (BOOL)isEqual:anObject

Compares the receiver with anObject, and returns YES if they’re the same and NO if they’re
not. Two Storage objects are considered to be the same if they have the same number of
elements and the elements at each position in the array match.

read:

– read:(NXTypedStream *)stream

Reads the Storage object and the data it stores from the typed stream stream. Where an
archived string is represented by a ‘%’ descriptor, the NXUniqueString() function is called
to make sure that the string is unique within the new context.

See also: – write:

removeElementAt:

– removeElementAt:(unsigned int)index

Removes the element located at index from the Storage array and returns self. All elements
between index and the last element are shifted to close the gap.

See also: – removeLastElement

removeLastElement

– removeLastElement

Removes the last element from the Storage array and returns self.

See also: – removeElementAt:

Classes: Storage 7

replaceElementAt:with:

– replaceElementAt:(unsigned int)index with: (void *)anElement

Replaces the data at index with the data pointed to by anElement. However, if no element
is stored at index (index is beyond the end of the array), nothing is replaced. Returns self.

See also: – elementAt:, – insertElement:at:

setAvailableCapacity:

– setAvailableCapacity:(unsigned int)numSlots

Sets the storage capacity of the array to at least numSlots elements and returns self. If the
array already contains more than numSlots elements, its capacity is left unchanged and nil
is returned.

See also: – setNumSlots:, – count

setNumSlots:

– setNumSlots:(unsigned int)numSlots

Sets the number of elements in the Storage array to numSlots and returns self. If numSlots
is greater than the current number of elements in the array (the value returned by count),
the new slots will be filled with zeros. If numSlots is less than the current number of
elements in the array, access to all elements with indices equal to or greater than numSlots
will be lost.

If necessary, this method increases the capacity of the storage array so there’s room for at
least numSlots elements.

See also: – setAvailableCapacity:, – count

write:

– write: (NXTypedStream *)stream

Writes the Storage object and its data to the typed stream stream.

See also: – read:

8

