
OPENSTEP Enterprise Release 4.1 Copyright 1996 by NeXT Software, Inc. All Rights Reserved.

OPENSTEP 4.1 Release Notes:
Compiler

This file contains developer release notes for the Windows and PDO compilers
shipped with OPENSTEP Enterprise Release 4.1.

In this release, the compilers are based on the GNU C compiler version 2.7.2.

New Features

• If the name of your source file ends in .cc, .cxx, .cpp, or .C, gcc will attempt to
compile your program with the C++ compiler. Similarly, if the name of your
source file ends in .mm or .M, gcc will attempt to compile your program with
the Objective-C++ compiler.

• The Objective-C++ compiler is now much more useable than the one that was
included with PDO 4.0.

The -Wmost Compiler Flag

The -Wmost compiler flag is equivalent to FSF’s -Wall , except that it doesn’t
turn on -Wparenthesis. -Wmost also suppresses warning messages about inline
functions and static constants that are not actually used. This flag is for internal
use and is not officially supported. It’s definition may change in a future release.

Known Bugs and Limitations

The following bugs or limitations are worth noting for the GNU C and C++
compilers for this prerelease.

• Constant strings (both char * and NSString) should be 7-bit only. Unless
constant strings are 7-bit, your code will be non-portable as compilers will

deal with 8-bit strings in a machine-dependent encoding.

• Objective-C++ global constructors. The Objective-C++ compiler
sometimes ignores global constructors; they don’t always get called.

• Random name given to executable by default (66861). If you create an
executable and don’t use the -o flag to explicitly tell gcc what to name it, gcc
will most likely give it a random name.

• Using pipes to communicate between compiler passes (61306). The -pipe
flag does not work.

• -ObjC++ requires -lstdc++ when using C++ streams on PDO (69156).
When compiling C++ programs that use C++ streams with gcc on PDO
platforms, if you specify the -ObjC++ flag you must also specify the -lstdc++
flag. So, for example, a program "foo" that uses cout (and therefore includes
iostream.h) would be compiled using gcc as follows:

gcc -ObjC++ foo.cc -lstdc++

• __declspec(dllexport) __stdcall doesn’t work (69194). On Windows NT,
functions that are declared as __declspec(dllexport)__stdcall aren’t handled
properly. This may affect some Windows header files that you include in your
programs.

• The compiler sometimes tries to create a library instead of an executable
(69087). This happens on Windows NT when a function is declared as
__declspec(dllimport) (perhaps in a header file), but the function is actually
defined in the file being compiled. The workaround is to remove the offending
__declspec(dllimport).

• -Wno-precomp flag isn’t supported (63746). On Windows NT and on PDO
platforms, gcc refuses to do anything when the -Wno-precomp flag is
specified. Currently, the precomp option isn’t supported.

• Reporting bugs (68122). In some cases, when the compiler detects an
internal error, it prints a message requesting that you send a bug report to some
electronic mail address. Please disregard this message. All compiler bugs
should be reported to the appropriate channels at NeXT Software.

• cc -MM Foo.mm produces Foo.mm.o (40491). Compiling a file that has
either a .M or .mm extension with -M or -MM will produce a file whose name
is the same as the source file with the addition of .o. The original extension is
not stripped off before constructing the name of the .o file.

• -traditional-cpp acts differently on Mach than on NT or PDO (60175). On

Windows NT and on PDO, -traditional-cpp changes the behavior of the
preprocessor in the same way that -traditional does. This can result in
compilation errors when recompiling an existing NEXTSTEP project on
Windows NT or on PDO.

• Inconsistent function declarations involving stdcall produce unexpected
results (69506). On Windows NT, if a function is forward-declared to be
stdcall but not declared to be stdcall in the actual function definition, the
compiler will emit code to pop the arguments off the stack, but won’t adjust the
function name.

• The linker complains about objects exported as CONSTANT (70212). On
Windows NT, if you’re building a framework and you create your own DEF
file for it, defining exported objects as CONSTANT will produce a warning
from the linker advising you to use the word DATA instead. If you substitute
the word DATA for CONSTANT in your DEF file, some or all of your objects
won’t be exported correctly; the linker will be unable to find them. As a
workaround, simply leave the declarations CONSTANT and ignore the linker
warnings.

• -static option causes linking to fail (70326). The -static and -dynamic
compiler flags are meaningless on Windows NT, and shouldn’t be used.

• Programs that use posing sometimes crash (72283). If a program compiled
with the Objective-C compiler contains an object that accesses its superclass
while posing on a category, it will crash. To workaround this problem, either
rewrite your code so that it doesn’t do this, or compile the program with the
Objective-C++ compiler (to do this, use the -x objective-c++ switch).

• Objective-C++ is broken in PDO4.0 on Solaris (69089). In this release of
PDO, gcc doesn’t compile Objective-C++ code correctly on Solaris machines.
However, you can compile both Objective-C and C++ code—providing that
they are in separate source files—with gcc.

• Static constructors can’t be used for run-time class initialization (54831).
The PDO compiler can’t apply a user-defined constructor to a global or static
C++ object and send an Objective-C message in the same file. To work around
this problem, eliminate the constructor, the global, or the Objective-C code.

