
1

Chapter

p NSPipe

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSFileHandle.h

Class Description

An NSPipe represents both ends of a pipe and enables communication through the pipe. A pipe is a one-way
communications channel between related processes; one process writes data while the other process reads
that data. The data that passes through the pipe is buffered; the size of the buffer is determined by the
underlying operating system.

Each end point of the pipe is a file descriptor, represented by an NSFileHandle. You thus use NSFileHandle
messages to read and write pipe data. A “parent” process creates the NSPipe and holds one end of it. It
creates an NSTask for the other process and, before launching it, passes the other end of the pipe to that
process; it does this by setting the NSTask’s standard input, standard output, or standard error device to be
the other NSFileHandle or the NSPipe itself (in the latter case, the type of NSFileHandle—reading or
writing—is determined by the NSTask “set” method).

The following example illustrates the above procedure:

- (void)readTaskData:(id)sender

{

 NSTask *pipeTask = [[NSTask alloc] init];

 NSPipe *newPipe = [NSPipe pipe];

 NSFileHandle *readHandle = [newPipe fileHandleForReading];

 NSData *inData = nil;

 [pipeTask setStandardOutput:newPipe]; // write handle is closed to this process

 [pipeTask setLaunchPath:[NSHomeDirectory()

stringByAppendingPathComponent:@"PipeTask.app/PipeTask"]];

 [pipeTask launch];

 while ((inData = [readHandle availableData]) && [inData length]) {

 [inData processData];

}

}

The launched process in this example must get data and write that data, using NSFileHandle’s writeData: ,
to its standard output device (obtained NSFileHandle’s fileHandleWithStandardOutput).

2

Chapter Classes:

When the processes have no more data to communicate across the pipe, the writing process should simply
send closeFile to its NSFileHandle end point. This causes the process with the “read” NSFileHandle to
receive an empty NSData, signalling end of data. If the “parent” process created the NSPipe with the init
method, it should then release it.

Method Types

Creating an NSPipe - init
+ pipe

GettingNSFileHandles for pipe – fileHandleForReading
– fileHandleForWriting

Class Methods

p pipe
+ (id)pipe

Returns an NSPipe that’s been sent autorelease. Because the returned object will be deallocated at the end
of the current loop, retain the object or, better yet, use the init method if you intend to keep the object
beyond that point. Returns nil if the method encounters errors while attempting to create the pipe or the
NSFileHandle end points.

Instance Methods

p fileHandleForReading
– (NSFileHandle *)fileHandleForReading

Returns an NSFileHandle that accepts messages that read pipe data: availableData,
readDataToEndOfFile, readDataOfLength:. You don’t need to send closeFile to this object or explicitly
release after you’re finished using it. This descriptor represented by this object is deleted and the object
itself is automatically deallocated when the NSPipe is deallocated.

p fileHandleForWriting
– (NSFileHandle *)fileHandleForWriting

Returns an NSFileHandle for writing to the pipe using NSFileHandle’s writeData: . When you are finished
writing data to this object, send it closeFile to delete the descriptor, which causes the reading process to

3

Chapter

receive an end-of-data signal (an empty NSData). This object is automatically deallocated when the NSPipe
is deallocated.

p init
– (id)init

Returns an NSPipe. Returns nil if the method encounters errors while attempting to create the pipe or the
NSFileHandles that serve as end points of the pipe.

See also: + pipe

