
Differences Between Enterprise Objects
Framework 1x and 2.0

A New Control Layer

3

A New Control Layer

The basic architecture of Enterprise Objects Framework 1x includes the
interface layer, the access layer, and an underlying database. Enterprise Objects
Framework 2.0 keeps these layers, but it also introduces a new control layer
between the access and interface layers. In 1x, data flowed from the access layer
to the interface layer on its way from the database to a user interface. In 2.0, data
follows the same path through the Framework, but also flows through the new
control layer on its way from the access layer to the interface layer. Figure 1
shows the difference in data flow between the versions.

Figure 1. Control Layer

Motivation for the Control Layer
In Enterprise Objects Framework 1x, it is the responsibility of the
EOController class to keep enterprise objects in sync with the user interface. To
do so, EOControllers require you to make changes to enterprise objects by
editing values in the user interface (using EOAssociations) or using the
EOController method setValues:forObject:. If you change an enterprise object by
sending it a message, the EOController won’t update the user interface or save
the change in the database.

To simplify changing enterprise object values programmatically, the control
layer of Enterprise Objects Framework 2.0 incorporates the concept of change

Interface Layer

Access Layer

Oracle Sybase Other

Interface Layer

Access Layer

Oracle Sybase Other

Control Layer

EOF 1.X EOF 2.0

Differences Between Enterprise Objects Framework 1x and 2.0

4

notification. In 2.0, objects that need to know about changes to an enterprise
object register as observers for change notifications. When an enterprise object
changes, it posts a change notification, and registered observers are notified.

In addition, the EOController of Enterprise Objects Framework 1x is not
available on PDO platforms. Because the controller is so tightly coupled with
user interface, it can’t be used in non-UI applications. Because operation
buffering and undo are implemented in EOController, these features are
unavailable on server platforms.

Enterprise Objects Framework 2.0 divides the functionality of the Enterprise
Objects Framework 1x EOController between the interface layer and the
control layer. While UI-related functionality remains the responsibility of the
interface layer, non-UI functionality is provided by the control layer. As a result,
server platforms have access to the non-UI functionality.

EOController does not exist in Enterprise Objects Framework 2.0. The
interface layer class EODisplayGroup provides UI-related EOController
functionality (such as transporting values between enterprise objects and the
user interface), and the control layer class EOEditingContext provides the non-
UI functionality (such as undo).

See Figures 11 and 12 at the end of this document to see how changes in
Enterprise Objects Framework 2.0 have altered the architecture of database
applications.

Change Notification
The change notification introduced by the control layer has the following effects
on code you write.

• Enterprise objects should invoke the method willChange prior to altering their
state. For example, set methods should invoke willChange before assigning
new values.

- (void)setColor:(NSString *)aColor

{

 [self willChange];

 [color autorelease];

 color = [aColor copy];

}

• You can make changes to enterprise objects by sending messages to them
directly.

A New Control Layer

5

For more information on change notification, see the chapter “Architectural
Overview” in the Enterprise Objects Framework Developer’s Guide, the class
specification for EOEditingContext, and the protocol description for
EOObserving.

EOEditingContext and EOObjectStore Classes
An EOEditingContext object manages a graph of objects fetched from an
external store. EOEditingContexts watch for changes to their objects using
change notification, and they record snapshots for object-based undo.

EOObjectStore is an abstract class whose subclasses act as a stores of objects for
EOEditingContexts. Object stores are responsible for constructing and
registering objects, servicing object faults, and committing changes made in an
editing context. The basic relationship between the classes is depicted in
Figure 2.

Figure 2. Relationship Between EOEditingContexts and EOObjectStores

In database applications, the relationship between the classes is a little more
complex. The following scenarios are often combined:

• One or more “peer” EOEditingContexts can share a single object store.
• EOEditingContexts can be nested such that one EOEditingContext acts as

an object store for another.
• Using an EOObjectStoreCoordinator, an EOEditingContext can maintain a

single object graph consisting of objects from more than one database.

Figure 3 illustrates the general case.

EOObjectStore

EOEditing
Context

Object uniquing and
change tracking

Fetching and saving
objects

Differences Between Enterprise Objects Framework 1x and 2.0

6

Figure 3. Combined EOEditingContext Scenarios

Note: EOObjectStoreCoordinator and EOCooperatingObjectStore are
subclasses of EOObjectStore. EODatabaseContext, an access layer class, is a
subclass of EOCooperatingObjectStore. As such, instances of all three classes
can perform as object stores for EOEditingContexts.

EOEditing
Context

EODatabase
Context

EODatabase
Context

Control

Access

EOEditing
Context

EOEditing
Context

EOObjectStore
Coordinator

A New Control Layer

7

EOQualifier
In Enterprise Objects Framework 1.1, qualifiers were based on SQL. As a result,
qualifiers frequently introduced database dependence into application code and
their use was restricted to fetching records from an SQL database. In Enterprise
Objects Framework 2.0, qualifiers aren’t based on SQL and they don’t rely upon
an EOModel. Thus, a single qualifier can be used to perform in-memory
searches and to qualify database fetches.

There are several EOQualifier classes, each representing a different semantic.
What you think of as a logical qualifier (for example, “name = ‘fred’ and age <
20”) is represented by a tree of EOQualifier nodes. These trees can be
combined using EOAndQualifiers and EOOrQualifiers as illustrated in Figure
4. EOQualifier has a method to parse a textual representation of a qualifier into
a tree of EOQualifier nodes.

Figure 4. EOQualifier tree for salary > 300 and firstName = “Angela” and manager.name = “Fred”

All qualifier classes are public and can be extended with categories and
subclasses. For more information on qualifiers, see the EOQualifier class
specification and the class specifications for its subclasses:

• EOAndQualifier
• EOKeyComparisonQualifier
• EOKeyValueQualifier
• EONotQualifier
• EOOrQualifier
• EOSQLQualifier

Note: All the qualifier classes but EOSQLQualifier are declared in the
EOControl framework. Because of its dependence on SQL, EOSQLQualifier is
declared in the EOAccess framework.

EOAndQualifier

EOKeyValueQualifier

key salary
selector >
value 3000

EOKeyValueQualifier

key firstName
selector =
value "Angela"

EOKeyValueQualifier

key manager.name
selector =
value "Fred"

Differences Between Enterprise Objects Framework 1x and 2.0

8

Summary of Control Layer Classes

Classes from the 1x Access Layer

• EOFault
• EONull
• EOQualifier Redesigned in 2.0. The 1x EOQualifier is

functionally equivalent to the 2.0
EOSQLQualifier.

New Classes in the Control Layer

• EOAndQualifier
• EOClassDescription
• EOCooperatingObjectStore
• EODataSource
• EODelayedObserver
• EODelayedObserverQueue
• EODetailDataSource Replaces the 1x

EODetailDatabaseDataSource
• EOEditingContext
• EOFaultHandler
• EOFetchSpecification
• EOGlobalID
• EOKeyComparisonQualifier
• EOKeyValueQualifier
• EONotQualifier
• EOObjectStore
• EOObjectStoreCoordinator
• EOObserverCenter
• EOObserverProxy
• EOOrQualifier
• EOSortOrdering Replaces the 1x EOAttributeOrdering and

EOKeySortOrdering
• EOTemporaryGlobalID
• EOUndoManager

Access Layer Enhancements

9

Access Layer Enhancements

Database Level
The Enterprise Objects Framework 2.0 database level architecture has the
same basic design as it does in version 1x. As illustrated in Figure 5, the database
level is comprised of three classes: EODatabase, EODatabaseContext, and
EODatabaseChannel. However, each of these classes has somewhat different
responsibilities and behavior than it does in Enterprise Objects Framework 1x.

Figure 5. Database Level Architecture

EODatabase plays a role very similar to the one it plays in 1x. The most
significant difference is that EODatabase objects now manage a list of models.
In Enterprise Objects Framework 2.0, you access models through EODatabase
objects instead of through EOAdaptors.

On the other hand, EODatabaseContext plays a much more significant role in
2.0 than it does in 1x. EODatabaseContext objects are responsible for analyzing
graphs of enterprise objects and recording changes in the database.
EODatabaseContext objects save changes by translating changes in the object
graph to database operations. It then uses an EOAdaptorChannel to perform the
operations.

Accordingly, the role of EODatabaseChannel is smaller in Enterprise Objects
Framework 2.0. It no longer provides methods such as insertObject:, updateObject:,
and deleteObject:. Rather, EODatabaseChannel objects are primarily used by an
EODatabaseContext for fetching enterprise objects. In fact,
EODatabaseContexts maintain a list of EODatabaseChannels for fetching.
Consequently, fetching conflicts due to “busy channels” are more easily avoided
in Enterprise Objects Framework 2.0.

The following sections describe the impact database level enhancements have
on development tasks.

EODatabase
EODatabase

Context
EODatabase

Channel

Plays more important
role in EOF 2.0.

Simplified in EOF
2.0. Primarily used
for fetching.

Manages a list of
models in EOF 2.0.

Differences Between Enterprise Objects Framework 1x and 2.0

10

Relationship Updating
In Enterprise Objects Framework 1x, relationships are essentially read only. To
update a relationship between two rows in the database, developers must write
code to track and update foreign keys. In Enterprise Objects Framework 2.0,
EODatabaseContext objects recognize changes to relationships and
automatically update foreign keys.

For example, assume that a new employee—Jane—is added to the engineering
department. As illustrated in Figure 6, an Employee object for Jane is added to
the employees array in the Department object representing engineering.
Similarly, Jane’s department variable is assigned to the engineering Department
object. When an EODatabaseContext analyzes the Department-Employees
object graph, it detects the new relationships, translates the changes to database
operations, and performs the database operations using an EOAdaptorChannel.
As a result, the DeptID foreign key in the Employee row for Jane is updated with
the DeptID value for the engineering department.

Figure 6. Pointer-Based Relationship Manipulation.

Department

deptID 501
name "Eng"
building 2
employees

empID 1028
name "Jane"
department

Employee

DeptID Name Building

501 Eng 2

703 Mktg 1

EmpID Name DeptID

1028 Jane 501

1132 Mike 501

DEPARTMENT EMPLOYEE

NSArray

Access Layer Enhancements

11

Because Enterprise Objects Framework 2.0 automatically updates foreign key
values when relationships change, you don’t need to make primary and foreign
key attributes class properties of enterprise objects. Usually, the only time you
make a primary or foreign key attribute a class property is when the value is
meaningful to the user and must be displayed in the user interface.

Updating Flattened Attributes
Using flattened attributes, an enterprise object can contain values from more
than one table in a database. In Enterprise Objects Framework 1x, flattened
attributes are read only. In Enterprise Objects Framework 2.0, flattened
attributes can be modified, and changes to them are automatically updated in
the database.

For example, the aCustomer object in Figure 7 contains flattened attributes from
the Address table. Changing aCustomer’s street attribute has the effect of
updating the corresponding database row in the Address table.

Figure 7. Updating Flattened Attributes.

aCustomer

custID 1028
name "Jane"
street "15 Main St"
city "Fresno"
state "CA"

AddrID Street City

501 15 Main St Fresno

703 101 Cora Ct San Jose

CustID Name AddrID

1028 Jane 501

1132 Mike 703

Address Customer
State

CA

CA

Differences Between Enterprise Objects Framework 1x and 2.0

12

Enterprise Object Inheritance
To improve support for inheritance, Enterprise Objects Framework 2.0 allows
you to capture the object hierarchy in a model. Developers can specify how class
hierarchies are mapped to entities and how entities are mapped to tables in the
database. Enterprise Objects Framework 2.0 automatically manages the
selection, insertion, updating, and deletion of objects. For more information, see
the chapter “Answers to Common Design Questions” in the Enterprise Objects
Framework Developer’s Guide.

Accessing Multiple Databases
In Enterprise Objects Framework 2.0, you can create relationships that span
multiple databases. For example, you can define a relationship from an entity in
a Sybase database to an entity in an Oracle database. The database level in
Enterprise Objects Framework 2.0 automatically assembles an object graph
with enterprise objects fetched from multiple databases. In addition, the
database level saves subsequent changes to the appropriate databases.

Note: You can’t flatten attributes, map inheritance hierarchies, or define flattened
many-to-many relationships across databases.

The ability to mix objects from multiple databases in a single object graph is
enabled by the control layer architecture. The EOObjectStoreCoordinator and
EOCooperatingObjectStore classes in the control layer specify the way objects
from different object stores can be mixed in the same object graph. As a subclass
of EOCooperatingObjectStore, EODatabaseContext provides the ability to mix
objects from multiple databases.

Access Layer Enhancements

13

Figure 8. Accessing Multiple Databases

EOModeler and the modeling classes have also been updated to support
multiple database access. See the chapter “Using EOModeler” in the
Enterprise Objects Framework Developer’s Guide for more information about
creating relationships between entities in different databases.

Referential Integrity
Enterprise Objects Framework 2.0 extends support for relational integrity rules
from the database to the object graph. In EOModeler, you can specify
optionality and delete rules for relationships. Optionality rules can be enforced
when an object graph is validated and/or saved. See the chapter “Using
EOModeler” in the Enterprise Objects Framework Developer’s Guide for
more information.

Stored Procedures
Enterprise Objects Framework 2.0 includes a new EOStoredProcedure class
that defines a general API for encapsulating vendor specific stored procedures.
It provides a mechanism for mapping keys to input and output parameters. In
EOModeler, you can assign stored procedures to entities for the following
operations:

EOObjectStore
Coordinator

EOEditing
Context

EODatabase
Context

EODatabase
Context

SybaseOracle

... ...

Employee Dependent

Control

Access

Differences Between Enterprise Objects Framework 1x and 2.0

14

• Fetching all the objects for the entity
• Fetching a single object by its primary key
• Inserting a new object
• Deleting an object
• Generating a new primary key

Number Conversion
In Enterprise Objects Framework 1x, numeric database values are stored in
NSNumber objects. As a result, values are limited to double precision and
operations are inexact. With Enterprise Objects Framework 2.0, you can use the
Foundation class NSDecimalNumber to avoid the problem illustrated in Figure
9.

Figure 9. Using NSNumber

Adaptor Level
Enterprise Objects Framework 2.0 provides four adaptors: updated Oracle and
Sybase adaptors, a new Informix adaptor, and on Windows NT, a new adaptor
for ODBC-compliant databases.

The Oracle adaptor includes the following enhancements:

• Based on the most recent production version of the Oracle client libraries.
• Provides shared SQL pool support by using bind variables in generated SQL.
• Constructs relationships from metadata in the database server.
• Supports stored procedure result sets and parameters.

Client Library

EOF

Application Kit

NSString:
12.5299999999999994

NSNumber (Double):
12.5299999999999994

Money:
12.53

Formatted NSString:
12.53

NSNumber (Double):
12.5299999999999994

Money:
12.5299999999999994

Access Layer Enhancements

15

The Sybase adaptor includes the following enhancements:

• Based on CT-Lib client libraries for System 10 servers.
• Uses array fetching for faster access times.
• Supports RPC-based stored procedure invocations.

In addition to improved support for specific database servers, Enterprise
Objects Framework 2.0 makes significant improvements to the adaptor level by
enhancing the abstract classes that implement the bulk of adaptor functionality.
The Enterprise Objects Framework 2.0 adaptor architecture has the same basic
design as it does in version 1x. As illustrated in Figure 10, an adaptor is
comprised of three classes: EOAdaptor, EOAdaptorContext, and
EOAdaptorChannel. Each of these classes has essentially the same
responsibilities and behavior as it does in Enterprise Objects Framework 1x.

Figure 10. Adaptor Architecture

The following sections describe the impact adaptor level enhancements have
on development tasks.

Writing Custom Adaptors
Although the adaptor architecture is relatively unchanged, the adaptor level
classes take advantage of enhancements in other areas of the framework that
make writing custom adaptors easier in Enterprise Objects Framework 2.0.

• The adaptor API uses the new EOQualifier class (now in the Control layer).
As a result, it is much easier to write adaptors for non-SQL data sources.

• The EOSQLExpression class has been simplified: it’s more heavily based on
SQL syntax and the responsibilities of subclasses are more straightforward.

• Abstract adaptor classes use new API in the EOAttribute class for specifying
custom values so it’s easier to support custom values in custom adaptors.

EOAdaptor
EOAdaptor

Context
EOAdaptor

Channel

Maintains a database
connection

Manages
transactions

Performs database
operations: select,
insert, update, delete

Differences Between Enterprise Objects Framework 1x and 2.0

16

Accessing Database Metadata
Enterprise Objects Framework 2.0 provides the following enhancements for
accessing database metadata:

• The EOSQLExpression class contains new API that supports schema
generation.

• The EOAdaptor class provides API for mapping internal (Objective-C)
names and types to external (database) names and types, facilitating
translation of models from one adaptor to another.

• The EOAdaptorChannel class provides API for constructing stored
procedure objects from metadata in the database server.

These enhancements are particularly useful for extending EOModeler. See the
EOModeler Enhancements section for more information.

Modeling Classes
Enterprise Objects Framework 2.0 provides the following enhancements to the
modeling classes:

• The custom value support in EOAttribute has been extended so you can
specify a factory (creation) method, a conversion method, and an
intermediate type (NSData, NSString, or bytes). For more information, see
the chapter “Using EOModeler” in the Enterprise Objects Framework
Developer’s Guide and the class specification for EOAttribute.

• The new EOStoredProcedure class extends model support for stored
procedures.

• Model files are incrementally loaded.

• The new EOModelGroup class manages all the models used by an
application or framework to support cross-database relationships.

Access Layer Enhancements

17

Access Layer Gotchas
If you are used to developing applications with Enterprise Objects Framework
1x, watch out for the following gotchas when you begin developing in
Enterprise Objects Framework 2.0.

• EOGenericRecord no longer provides the methods objectForKey: and
setObject:forKey:. Use valueForKey: and takeValue:forKey: instead.

• Model lookup is now project and framework-based. The search path
~/Library/Models, /LocalLibrary/Models, /NextLibrary/Models is no longer used.
Instead, add all relevant model files to application and framework projects.

• EOAdaptor no longer provides the method model for accessing an EOModel.
Instead, use the EODatabase method models to return a list EOModel objects.

• Many of the 1x methods that return BOOL values have been modified to
return void. Instead of indicating failure by returning NO, 2.0 methods often
raise exceptions to communicate information about the type of failure.

Differences Between Enterprise Objects Framework 1x and 2.0

18

Summary of Access Layer Additions and Deletions

Updated Access Layer Classes

• EOAdaptor
• EOAdaptorChannel
• EOAdaptorContext
• EOAttribute
• EODatabase
• EODatabaseChannel
• EODatabaseContext
• EODatabaseDataSource
• EOEntity
• EOGenericRecord
• EOJoin
• EOModel
• EORelationship
• EOSQLExpression

Removed Access Layer Classes

• EOAttributeOrdering Replaced with control layer’s
EOSortOrdering

• EODetailDatabaseDataSource
Replaced with control layer's
EODetailDataSource.

• EOFault Moved to control layer.
• EOFormatExpression Removed from 2.0. Superseded by

EOSQLExpression.
• EOKeySortOrdering Replaced with control layer's

EOSortOrdering.
• EONull Moved to control layer.
• EOQualifier Moved to control layer.
• EOQuotedExpression Removed from 2.0. Superseded by

EOSQLExpression.

New Access Layer Classes

• EOAdaptorOperation
• EODatabaseOperation
• EOEntityClassDescription
• EOModelGroup
• EOSQLQualifier Functionally equivalent to the 1x

EOQualifier.
• EOStoredProcedure

Interface Layer Enhancements

19

Interface Layer Enhancements

In Enterprise Objects Framework 2.0, the interface layer plays a reduced role.
The control layer provides much of the functionality formerly provided by
EOController. To reflect its new role, the EOController class has been renamed
to EODisplayGroup.

EODisplayGroup
EODisplayGroup provides the following UI-related functionality:

• Maintain a collection of enterprise objects and a selection of zero, one, or
more of those objects.

• Notify associations of changes to enterprise objects.
• Invoke validation methods.
• Perform object sorting using the new EOSortOrdering class.
• Perform object filtering using the new EOQualifier class.

EOAssociation
In Enterprise Objects Framework 2.0, EOAssociations incorporate the
following enhancements:

• Support for validation. An association has the ability to notify its
EODisplayGroup when a user begins editing, permit a user to leave an edited
field only if its EODisplayGroup approves the change, and pass formatter
validation errors to its EODisplayGroup so the EODisplayGroup can handle
the error.

• Support for multi-aspect associations. For example, EOPopUpAssociation has a
values aspect and a selectedObject aspect. You can bind the titles aspect to one
enterprise object key and the selectedObject aspect to a different enterprise
object key.

Differences Between Enterprise Objects Framework 1x and 2.0

20

For more information on associations, see the chapters “Creating an Enterprise
Objects Framework Project” and “Overview of the Examples” in the
Enterprise Objects Framework Developer’s Guide. You can also refer to the
class specifications for the following association classes:

• EOAssociation
• EOActionAssociation
• EOActionCellAssociation
• EOActionInsertionAssociation
• EOColumnAssociation
• EOControlAssociation
• EODetailSelectionAssociation
• EOGenericControlAssociation
• EOMasterDetailAssociation
• EOMasterPeerAssociation
• EOPickTextAssociation
• EOPopUpAssociation
• EORadioMatrixAssociation
• EOTableViewAssociation
• EOTextAssociation

Formatters
The interface layer of Enterprise Objects Framework 2.0 takes advantage of
formatter objects provided by the Application Kit. You can assign formatters to
any NSCell. Cells use formatters to do the following:

• Format object values for display.
• Parse strings into object values.

NSTableView
The interface layer of Enterprise Objects Framework 2.0 also takes advantage
of a redesigned table view. The table view class, renamed NSTableView, is now
provided by the Application Kit.

• It is implemented in four public classes: NSTableView, NSTableColumn,
NSTableHeaderView, and NSTableHeaderCell.

• NSTableView uses cells to perform drawing. You can use any cell class—
NSTextCell, NSImageCell, and so on—in a table view.

• The interface between NSTableView and its data source has been simplified.

Interface Layer Enhancements

21

Interface Layer Gotchas
If you are used to developing applications with Enterprise Objects Framework
1x, watch out for the following gotchas when you begin developing in
Enterprise Objects Framework 2.0.

• The saveToObjects: and saveToDataSource methods provided by EOController
aren’t provided by EODisplayGroup. The EODisplayGroup class doesn’t
provide buffering of edits or operations. You can use nested
EOEditingContexts to get the effect of buffering edits, and operation
buffering is handled automatically by an EOEditingContext.

• When you create an association in Interface Builder in Enterprise Objects
Framework 2.0, you drag a connection from the user interface control to the
EODisplayGroup.

• The EOAssociation API has changed considerably. Communication between
an EODisplayGroup and its EOAssociations is much different than that
between an EOController and its EOAssociations. EOAssociations observe
their EODisplayGroups using the EOObserver protocol. As a result,
associations are updated asynchronously.

Differences Between Enterprise Objects Framework 1x and 2.0

22

Summary of Interface Layer Additions and Deletions

Updated Interface Layer Classes

• EOAssociation
• EOActionCellAssociation
• EOColumnAssociation
• EOControlAssociation
• EOPopUpAssociation
• EOTextAssociation

Removed Interface Layer Classes

• EOBrowserAssociation See the EOBrowserAssociation example in
NextDeveloper/Examples/EnterpriseObjects.

• EOButtonAssociation Replaced with EOActionAssociation.
• EOImageAssociation Use the EOControlAssociation instead.
• EOMatrixAssociation
• EOQualifiedAssociation Replaced with EOMasterDetailAssociation

and EOMasterPeerAssociation.
• EOController Replaced with EODisplayGroup and

EOEditingContext.

New Interface Classes

• EOActionAssociation
• EOActionInsertionAssociation
• EODetailSelectionAssociation
• EOGenericControlAssociation
• EOMasterDetailAssociation
• EOMasterPeerAssociation
• EOPickTextAssociation
• EORadioMatrixAssociation
• EOTableViewAssociation
• EODisplayGroup

Enterprise Object Enhancements

23

Enterprise Object Enhancements

Key-Value Coding and Relationship Accessor Methods
Enterprise Objects Framework 2.0 includes the following enhancements to the
key-value coding methods:

• The primitive methods—valueForKey: and takeValue:forKey:—are single-key.
The multi-key versions, valuesForKeys: and takeValues:fromDictionary:, still exist,
but their default implementation invokes the single-key methods.

• When enterprise object values are null in the database, nil is passed as an
argument to set methods instead of EONull.

• Two new methods, valueForKeyPath: and takeValue:forKeyPath:, have been added
for accessing variables using a key path. For example, suppose an employee
entity has a relationship to its department. Assuming employees have a
department instance variable that points to a department object and department
objects have a departmentName instance variable, you can get and set the name
of the employee’s department using the following statements:

[employee valueForKeyPath:@"department.departmentName"];

[employee takeValue:newDepartmentName
 forKeyPath:@"department.departmentName"];

However, you rarely invoke the key path methods directly. Instead of the
statements above, you are more likely to write the following lines of code:

[[emp department] deptName];

[[emp department] setDeptName:newName];

• The default implementations of valueForKey: and takeValue:forKey: raise
exceptions when you provide a key that doesn’t correspond to a method or
instance variable in the receiver. To implement a more permissive policy, you
can override the methods handleQueryWithUnboundKey: and handleTakeValue:
forUnboundKey:.

• The method unableToSetNilForKey: is provided to set policy for an attempt to
assign nil to an instance variable that requires a C scalar type.

In addition to the key-value coding methods, new relationship accessor
methods have been introduced in Enterprise Objects Framework 2.0. As with
key-value coding methods, a category of NSObject defines default
implementations of the relationship accessor methods for manipulating
relationship values:

• addObject:toPropertyWithKey:

Differences Between Enterprise Objects Framework 1x and 2.0

24

• removeObject:fromPropertyWithKey:
• addObject: toBothSidesOfRelationshipWithKey:
• removeObject: fromBothSidesOfRelationshipWithKey:

For more information on key-value coding and relationship accessor methods,
see the NSObject Additions specification as well as the class specification for
EOClassDescription.

Validation
EOF 2.0 incorporates a validation mechanism for enterprise objects. A category
of NSObject uses the EOClassDescription class to provide default
implementations of the following validation methods:

• validateValue:forKey:
• validateForSave
• validateForDelete
• validateForInsert
• validateForUpdate

The above enterprise object methods are invoked automatically by framework
components such as EODisplayGroup and EOEditingContext. For more
information, see the NSObject Additions specification and the class
specification for EOClassDescription. For more information on the process of
validating enterprise objects, see the chapter “Overview Of The Examples” in
the Enterprise Objects Framework Developer’s Guide.

Enterprise Object Initialization
Enterprise Objects Framework 2.0 replaces the optional initialization methods
defined in Enterprise Objects Framework 1x

• Enterprise Objects Framework 2.0 replaces initWithPrimaryKey:entity: with
initWithEditingContext:classDescription:globalID:. Like initWithPrimaryKey:entity:,
initWithEditingContext:classDescription:globalID: is used to initialize enterprise
objects created by the framework. If the enterprise object class doesn't
implement this method, init is used instead.

• Enterprise Objects Framework 2.0 replaces awakeFromDatabaseChannel: with
awakeFromFetchInEditingContext:. This method is sent to an enterprise object
immediately after the object has been created from a database row.

Enterprise Objects Framework 2.0 includes a new initialization method as well.

• awakeFromInsertionInEditingContext: is an optional method sent to newly created
enterprise objects. This method is invoked in objects that aren’t being

Enterprise Object Enhancements

25

initialized with data from an object store. This method provides an
opportunity to assign default values.

For more information about these methods, see the class specification for
EOClassDescription and the NSObject Additions specification.

Enterprise Object Gotchas
If you are used to developing applications with Enterprise Objects Framework
1x, watch out for the following gotchas when you begin developing in
Enterprise Objects Framework 2.0.

• The optional enterprise object method prepareForDataSource is not supported in
Enterprise Objects Framework 2.0. It’s replaced by the validation mechanism
described above.

• Enterprise objects should invoke their willChange method in set methods
before making changes.

• When enterprise object values are null in the database, nil is passed as an
argument to set methods instead of EONull.

• Enterprise objects don’t have to declare instance variables for primary key
and foreign key values. The framework manages primary and foreign keys
automatically. The default mechanism for assigning unique primary keys is
provided with the EOAdaptorChannel’s primaryKeyForNewRowWithEntity:. If you
need to provide a custom mechanism for assigning primary keys, you can
implement the EODatabaseContext delegate method
databaseContext:newPrimaryKeyForObject:entity:. If you use either of these two
mechanisms, you don’t need to store the primary key in your enterprise
object.

• The optional enterprise object method classForEntity:values: has been replaced
with the EOModelGroup’s delegate method entity:classForObjectWithGlobalID:. If
you implemented classForEntity:values: in any of your enterprise object classes,
you’ll need to reimplement it.

Differences Between Enterprise Objects Framework 1x and 2.0

26

EOModeler Enhancements

The new version of EOModeler features several user interface improvements.

• New table mode. In addition to the browser mode, EOModeler 2.0 provides a
table mode for displaying models. The table mode is capable of displaying
more information than the browser mode, and it is editable. For more
information, see the chapter “Using EOModeler” in the Enterprise Objects
Framework Developer’s Guide.

• Multi-pane inspectors. The inspectors in EOModeler 2.0 have multiple panes.
For example, the Entity Inspector has four panes in which to display entity
characteristics: Entity, Advanced Entity, Stored Procedure, and UserInfo.

• UserInfo inspectors. EOModeler 2.0 provides user info inspectors for models,
entities, attributes, and relationships.

In addition, EOModeler incorporates the following extensions to support
Enterprise Objects Framework 2.0 features:

• Simple database creation
• Support for inheritance
• Specification of stored procedures for accessing entities

Extensibility
EOModeler is extensible in Enterprise Objects Framework 2.0. You can add
custom inspectors, consistency checking, and menu items.

27

Figure 11. Architecture of an Enterprise Objects Framework 1x Application

EODatabase
Context

EODatabase
EODatabase

Channel

EOModelEOAdaptor
EOAdaptor

Context
EOAdaptor

Channel

EODatabase
DataSource

EODetailDatabase
DataSource

EOController EOController
Operation buffering,
edit buffering, and
undo

EOQualified
Association

EOColumn
Association

EOControl
Association

Object uniquing
and snapshotting

Interface Layer

Access Layer

Differences Between Enterprise Objects Framework 1x and 2.0

28

Figure 12. Architecture of an Enterprise Objects Framework 2.0 Application

EOModelGroup

EOObjectStore
Coordinator

EOEditing
Context

EODatabase
Context

EODatabase
EODatabase

Channel
EOModel

EOAdaptor
EOAdaptor

Context
EOAdaptor

Channel

EODatabase
DataSource

EODetail
DataSource

EOUndo
Manager

Object uniquing, and
change tracking

Snapshotting and
batch updating

EODisplayGroup EODisplayGroup

EOQualified
Association

EOColumn
Association

EOControl
Association

Interface Layer

Control Layer

Access Layer

