
1

NSDecimalNumberBehaviors

Adopted By: NSDecimalNumberHandler

Declared In: Foundation/NSDecimalNumber.h

Protocol Description

The NSDecimalBehaviors protocol declares three methods that control the discretionary aspects of working
with NSDecimalNumbers. The scale and roundingMode methods determine the precision of
NSDecimalNumber’s return values, and the way in which those values should be rounded to fit that
precision. The exceptionDuringOperation:error:leftOperand:rightOperand: determines the way in
which an NSDecimalNumber should handle different calculation errors.

For an example of a class that adopts the NSDecimalBehaviors protocol, see the specification for
NSDecimalNumberHandler.

Method Types

Rounding – roundingMode
– scale

Handling errors – exceptionDuringOperation:error:leftOperand:rightOperand:

Instance Methods

exceptionDuringOperation:error:leftOperand:rightOperand:
– (NSDecimalNumber *)exceptionDuringOperation:(SEL)method error: (NSCalculationError)error

leftOperand:(NSDecimalNumber *)leftOperand
rightOperand: (NSDecimalNumber *)rightOperand

Specifies what an NSDecimalNumber will do when, in the course of applying method to leftOperand and
rightOperand, it encounters error.

There are four possible values for error. The first three have to do with limits on NSDecimalNumber’s
ability to represent decimal numbers. An NSDecimalNumber can represent any number that can be
expressed as mantissax 10exponent , where mantissa is a decimal integer up to 38 digits long, and exponent
is between -256 and 256. If these limits are exceeded, the NSDecimalNumber returns one of the following
errors.

2

• NSCalculationLossOfPrecision. The number can’t be represented in 38 significant digits.

• NSCalculationOverflow. The number is too large to represent.

• NSCalculationUnderflow. The number is too small to represent.

The last error is simpler:

• NSCalculationDivideByZero. The caller tried to divide by zero.

In implementing exceptionDuringOperation:error:leftOperand:rightOperand , you can handle each of
these errors in several ways:

• Raise an exception. For an explantion of exceptions, see the NSException class description in the
Foundation Framework Reference.

• Return nil . The calling method will return its value as though no error had occurred. If error is
NSCalculationLossOfPrecision, method will return an imprecise value—that is, one constrained to 38
significant digits. If error is NSCalculationUnderflow or NSCalculationOverflow, method will return
NSDecimalNumber’s notANumber. You shouldn’t return nil if error is NSDivideByZero.

• Correct the error and return a valid NSDecimalNumber. The calling method will use this as its own return
value.

roundingMode
– (NSRoundingMode)roundingMode

Returns the way that NSDecimalNumber’s decimalNumberBy... methods round their return values. There
are four possible NSRoundingModes:

• NSRoundDown. The methods round their return values down.
• NSRoundUp. The methods round their return values up.
• NSRoundPlain. The methods round to the closest possible return value. When they are caught halfway

between two positive numbers, they round up; when caught between two negative numbers, they round
down.

• NSRoundBankers. The methods round to the closest possible return value. When they are caught halfway
between two possibilities, they return the possibility whose last digit is even. In practice, this means that,
over the long run, numbers will be rounded up as often as they are rounded down; there will be no
systematic bias.

The rounding mode only matters if the scale method sets a limit on the precision of NSDecimalNumber
return values. It has no effect if scale returns NSDecimalNoScale.

Assuming that scale returns 1, the NSRoundingMode has the following effects on various original values:

3

Original value NSRoundDown NSRoundUp NSRoundPlain NSRoundBankers

1.24 1.2 1.3 1.2 1.2

1.26 1.2 1.3 1.3 1.3

1.25 1.2 1.3 1.3 1.2

1.35 1.3 1.4 1.4 1.4

-1.35 -1.4 -1.3 -1.4 -1.4

scale
– (short)scale

Limits the precision of the values returned by NSDecimalNumber’s decimalNumberBy... methods.

Specifically, scale returns the number of digits allowed after the decimal separator. If scale returns a
negative value, it affects the digits before the decimal separator as well. If scale returns NSDecimalNoScale,
the number of digits is unlimited.

Assuming that roundingMode returns NSRoundPlain, different values of scale have the following effects
on the number 123.456:

Scale Return value

NSDecimalNoScale 123.456

2 123.45

0 123

-2 100

