
 1 Common Classes and Functions

HashTable

Inherits From: Object

Declared In: objc/HashTable.h

Class Description

The HashTable class defines objects that store associations of keys and values. You use a
HashTable object when you need a convenient and efficient way to retrieve the data
associated with an arbitrary key. Internally, a hash table locates the key and associated
object according to the value returned by applying a hashing function to the key. However,
the hashing operation is provided automatically by the HashTable’s methods, so that the
methods that add an association to a HashTable (or return an association, given its key)
accept and return the key values directly, not their hashed forms.

In a HashTable object, keys must be of the same type (so that the same hashing function
can be applied to each of them), and associated values must be of the same type. The types
of the keys and the values are established when the HashTable is initialized. The
initKeyDesc:valueDesc:… methods take arguments that let you specify key type and value
type independently. The initKeyDesc: method specifies the type of the keys but assumes
that the associated values are ids. The init method assumes that both keys and associated
values are of type id (object pointers). The following characters are used as HashTable
descriptions (that is, as arguments to the initKeyDesc: or initKeyDesc:valueDesc:
methods):

Character Type

@ id
* char *
% NXAtom
i int
! other

Classes: HashTable 2

Hashing Algorithm and Tests for Equality

The class uses three different algorithms, selected according to the description of the keys.
For keys that are of type “object”, the HashTable sends itself a hash message (inherited
from Object). For keys that are strings, it uses a string hashing function. For all other cases,
it uses a generic integer hashing function.

To test whether a proposed key is equal to a key already included in the HashTable, keys
that are objects are compared using an isEqual: message. If two keys are equal in the sense
of isEqual:, then their hashed values must be equal.

Keys that are strings are compared using a string comparison. Note that the HashTable
object keeps only a pointer to the string used as a key (without making a copy of the string),
so the string to which it points must never change as long as the association remains in
the table.

If you’re creating a HashTable whose keys are List or Storage objects, note that these
classes have an isEqual: method but no hash method; you can either subclass or define a
hash method.

When freeing a HashTable, only object keys or object values are freed.

When a HashTable is archived, data is archived according to its type description. For keys
or values whose description is “% ”, upon reading to reconstitute an archived HashTable,
each such string is reconstructed by again calling the NXUniqueString() function to assure
that it is unique in the new context.

Function Interface to Hash Tables

When even greater efficiency of storage and access is required, consider using the C
function interface to hash tables rather than the HashTable class (see
NXCreateHashTable()).

Related Classes

Two other classes for storage and retrieval are NXStringTable and List. An NXStringTable
object is a hash table specialized for the situation in which both keys and values are
character strings. A List stores a sequential collection of objects; however, it stores the
objects (that is, the pointers to them) without keys, so the time required to find a particular
element in a List grows linearly with the number of elements.)

 3 Common Classes and Functions

Instance Variables

unsigned int count;
const char *keyDesc;
const char *valueDesc;

count Current number of associations

keyDesc Description (character representing the type) of keys

valueDesc Description (character representing the type) of values

Method Types

Initializing and freeing a HashTable
– init
– initKeyDesc:
– initKeyDesc:valueDesc:
– initKeyDesc:valueDesc:capacity:
– free
– freeObjects
– freeKeys:values:
– empty

Copying a HashTable – copyFromZone:

Manipulating table associations – count
– isKey:
– valueForKey:
– insertKey:value:
– removeKey:

Iterating over all associations – initState
– nextState:key:value:

Archiving – read:
– write:

Classes: HashTable 4

Instance Methods

copyFromZone:

– copyFromZone:(NXZone *)zone

Returns a new HashTable of the same size as the receiving object. Memory for the new
HashTable is allocated from zone. Keys and values are copied.

count

– (unsigned int)count

Returns the number of objects in the table.

empty

– empty

Empties the HashTable but retains its capacity.

free

– free

Deallocates the HashTable (but not the objects that its associations point to).

freeKeys:values:

– freeKeys:(void (*)(void *))keyFunc values:(void (*)(void *))valueFunc

Conditionally deallocates the HashTable’s associations but does not deallocate the
table itself.

freeObjects

– freeObjects

Deallocates every object in the HashTable, but not the HashTable itself. Strings are not
recovered.

 5 Common Classes and Functions

init

– init

Initializes a new HashTable to map keys of type “object” to values of type “object.”
Returnsself.

See also: – initKeyDesc:key:value:capacity:

initKeyDesc:

– initKeyDesc:(const char *)aKeyDesc

Initializes a new HashTable to map keys as described by aKeyDesc to object values.
Returns self.

See also: – initKeyDesc:key:value:capacity:

initKeyDesc:valueDesc:

– initKeyDesc:(const char *)aKeyDesc valueDesc:(const char *)aValueDesc

Initializes a new HashTable to map keys and values as described by aKeyDesc and
aValueDesc. Returns self.

See also: – initKeyDesc:key:value:capacity:

initKeyDesc:valueDesc:capacity:

– initKeyDesc:(const char *)aKeyDesc
valueDesc:(const char *)aValueDesc
capacity:(unsigned int)aCapacity

Initializes a new HashTable. This is the designated initializer for HashTable objects: If you
subclass HashTable, your subclass’s designated initializer must maintain the initializer
chain by sending a message to super to invoke this method. See the introduction to the
class specifications for more information.

A HashTable initialized by this method maps keys and values as described by aKeyDesc
and aValueDesc. The argument aCapacity is given only as a hint; you can use 0 to create a
table of minimal size. As more space is needed, it will be allocated automatically, each time
doubling the table’s capacity. Returns self.

See also: – initKeyDesc:key:value:capacity:

Classes: HashTable 6

initState

– (NXHashState)initState

Returns an NXHashState structure that’s required when iterating through the HashTable.
Iterating through all of a HashTable’s associations involves setting up an iteration state,
conceptually private to HashTable, and then progressing until all entries have been visited.
Here’s an example of visiting all the associations in a HashTable called table (and just
counting them):

unsigned int count = 0;

const void *key;

 void *value;

NXHashState state = [table initState];

while ([table nextState: &state key: &key value: &value])

 count++;

See also: – nextState:key:value:

insertKey:value:

– (void *)insertKey:(const void *)aKey value:(void *)aValue

Adds or updates a key and value pair, as specified by aKey and aValue. If aKey is already
in the hash table, it’s associated with aValue and its previously associated value is returned.
Otherwise, insertKey:value: returns nil .

See also: – removeKey:

isKey:

– (BOOL)isKey:(const void *)aKey

Returns YES if aKey is in the table, otherwise NO.

See also: – valueForKey:

 7 Common Classes and Functions

nextState:key:value:

– (BOOL)nextState:(NXHashState *)aState
key:(const void **)aKey
value:(void **)aValue

Moves to the next entry in the HashTable and provides the addresses of pointers to its
key/value pair. No insertKey: or removeKey: should be done while iterating through the
table. Returns NO when there are no more entries in the table; otherwise, returns YES. If
there are no more entries, aKey and aValue are set to NULL.

See also: – initState

read:

– read:(NXTypedStream *)stream

Reads the HashTable from the typed stream stream. Returns self.

See also: – write:

removeKey:

– (void *)removeKey:(const void *)aKey

Removes the hash table entry identified by aKey. Always returns nil .

See also: – insertKey:value:

valueForKey:

– (void *)valueForKey:(const void *)aKey

Returns the value mapped to aKey. Returns nil if aKey is not in the table.

See also: – isKey:

write:

– write: (NXTypedStream *)stream

Writes the HashTable to the typed stream stream. Returns self.

See also: – read:

