Object

Inherits From: none (Object is the root class)

Declared In: objc/Object.h

Class Description

Object is the root class of all ordinary Objective C inheritance hierarchies; it's the one class
that has no superclass. From Object, other classes inherit a basic interface to the run-time
system for the Objective C language. It's through Object that instances of all classes obtain
their ability to behave as objects.

Among other things, the Object class provides inheriting classes with a framework for
creating, initializing, freeing, copying, comparing, and archiving objects, for performing
methods selected at run-time, for querying an object about its methods and its position in
the inheritance hierarchy, and for forwarding messages to other objects. For example, to
ask an object what class it belongs to, you'd sendlassmessage. To find out whether

it implements a particular method, you'd sendrigéspondsTo: message.

The Object class is an abstract class; programs use instances of classes that inherit from
Object, but never of Object itself.

Initializing an Object to Its Class

Every object is connected to the run-time system througgaitsstance variable, inherited

from the Object classisa identifies the object’s class; it points to a structure that’s

compiled from the class definition. Throuigh, an object can find whatever information

it needs at run time—such as its place in the inheritance hierarchy, the size and structure of
its instance variables, and the location of the method implementations it can perform in
response to messages.

Because all objects directly or indirectly inherit from the Object class, they all have this
variable. The defining characteristic of an “object” is that its first instance variablisas an
pointer to a class structure.

The installation of the class structure—the initializatiorsaf—is one of the
responsibilities of thalloc, allocFromZone:, andnew methods, the same methods that

Roor Class

create (allocate memory for) new instances of a class. In other words, class initialization is
part of the process of creating an object; it's not left to the methods, simity #sat
initialize individual objects with their particular characteristics.

Instance and Class Methods

Every object requires an interface to the run-time system, whether it's an instance object or
a class object. For example, it should be possible to ask either an instance or a class about
its position in the inheritance hierarchy or whether it can respond to a particular message.

So that this won’t mean implementing every Object method twice, once as an instance
method and again as a class method, the run-time system treats methods defined in the root
class in a special way:

Instance methods defined in the root class can be performed both by instances
and by class objects.

A class object has access to class methods—those defined in the class and those inherited
from the classes above it in the inheritance hierarchy—but generally not to instance
methods. However, the run-time system gives all class objects access to the instance
methods defined in the root class. Any class object can perform any root instance method,
provided it doesn’t have a class method with the same name.

For example, a class object could be sent messages to perform QbgilsdsTo:and
perform:with: instance methods:

SEL method = @selector(riskAll:);

if ([MyClass respondsTo:method])
[MyClass perform:method with:self];

When a class object receives a message, the run-time system looks first at the receiver’s
repertoire of class methods. If it fails to find a class method that can respond to the
message, it looks at the set of instance methods defined in the root class. If the root class
has an instance method that can respond (as Object doesgondsTo:and

perform:with:), the run-time system uses that implementation and the message succeeds.

Note that the only instance methods available to a class object are those defined in the root
class. If MyClass in the example above had reimplemented mtdmndsTo:or

perform:with: , those new versions of the methods would be available only to instances.
The class object for MyClass could perform only the versions defined in the Object class.
(Of course, if MyClass had implementexs$pondsTo:or perform:with: as class methods

rather than instance methods, the class would perform those new versions.)

Classes: Object 2

Interface Conventions

The Object class defines a number of methods that other classes are expected to override.
Often, Object’s default implementation simply retusal. Putting these “empty” methods
in the Object class serves two purposes:

» |t means that every object can readily respond to certain standard messages, such as
awakeorinit, even if the response is to do nothing It's not necessary to check (using
respondsTo) before sending the message.

» It establishes conventions that, when followed by all classes, make object interactions
more reliable. These conventions are explained in full under the method descriptions.

Sometimes a method is merely declared in the Object class; it has no implementation, not
even the empty one of returnieglf. These “unimplemented” methods serve the same
purpose—defining an interface convention—as Object’s “empty” methods. When
implemented, they enable objects to respond to system-generated messages.

Instance Variables

Classisa;

isa A pointer to the instance’s class structure.

Method Types

Roor Class

Initializing the class + initialize

Creating, copying, and freeing instances

+ alloc

+ allocFromZone:
+ new

— copy

— copyFromZone:
—zone

— free

+ free

Initializing a new instance —init

Identifying classes + name
+ class
—class
+ superclass
— superclass

Identifying and comparing instances
—isEqual:
— hash
— self
— name
— printForDebugger:

Testing inheritance relationships
— isKindOf:
—isKindOfClassNamed:
— isMemberOf:
— isMemberOfClassNamed:

Testing class functionality —respondsTo:
+ instancesRespondTo:

Testing for protocol conformance
+ conformsTo:
— conformsTo:

Sending messages determined at run time
— perform:
— perform:with:
— perform:with:with:

Forwarding messages — forward::
— performv::

Obtaining method information — methodFor:
+ instanceMethodFor:
— descriptionForMethod:
+ descriptionForinstanceMethod:

Posing + poseAs:
Enforcing intentions — notimplemented:
— subclassResponsibility:
Error handling — doesNotRecognize:
— error;
Dynamic loading + finishLoading:

+ startUnloading

Classes: Object

Archiving —read:
— write:
— startArchiving:
— awake
— finishUnarchiving
+ setVersion:
+ version

Class Methods

Roor Class

alloc
+ alloc

Returns a new instance of the receiving class. iSd@stance variable of the new object
is initialized to a data structure that describes the class; memory for all other instance
variables is set to 0. A version of timi¢ method should be used to complete the
initialization process. For example:

id newObject = [[TheClass alloc] init];

Other classes shouldn’t overridiboc to add code that initializes the new instance. Instead,
class-specific versions of thmet method should be implemented for that purpose. Versions
of thenew method can also be implemented to combine allocation and initialization.

Note: Thealloc method doesn’t invokallocFromZone:. The two methods work
independently.

See also: + allocFromZone:, —init, + new

allocFromZone:
+ allocFromZone:(NXZone *)zone

Returns a new instance of the receiving class. Memory for the new object is allocated from
zone

Theisainstance variable of the new object is initialized to a data structure that describes
the class; memory for its other instance variables is setfov@rsion of thanit method
should be used to complete the initialization process. For example:

id newObject = [[TheClass allocFromZone:someZone] init];

TheallocFromZone: method shouldn’t be overridden to include any initialization code.
Instead, class-specific versions of ihie method should be implemented for that purpose.

When one object creates another, it's often a good idea to make sure they're both allocated
from the same region of memory. Tienemethod can be used for this purpose; it returns
the zone where the receiver is located. For example:

id myCompanion = [[TheClass allocFromZone:[self zone]] init];

See also: + alloc, —zone —init

class
+ class

Returnsself. Since this is a class method, it returns the class object.

When a class is the receiver of a message, it can be referred to by name. In all other cases,
the class object must be obtained through this, or a similar method. For example, here
SomecClass is passed as an argument tisktiedOf: method:

BOOL test = [self isKindOf:[SomeClass class]];

See also: —name, —class

conformsTo:
+ (BOOL)conformsTo:(Protocol *aProtocol

Returns YES if the receiving class conformaRryotocol and NO if it doesn't.

A class is said to “conform to” a protocol if it adopts the protocol or inherits from another
class that adopts it. Protocols are adopted by listing them within angle brackets after the
interface declaration. Here, for example, MyClass adopts the imaginary
AffiliationRequests and Normalization protocols:

@interface MyClass : Object <AffiliationRequests, Normalization>

A class also conforms to any protocols that are incorporated in the protocols it adopts or
inherits. Protocols incorporate other protocols in the same way that classes adopt them.
For example, here the AffiliationRequests protocol incorporates the Joining protocol:

@protocol AffiliationRequests <Joining>

When a class adopts a protocol, it must implement all the methods the protocol declares. If
it adopts a protocol that incorporates another protocol, it must also implement all the
methods in the incorporated protocol or inherit those methods from a class that adopts it.
In the example above, MyClass must implement the methods in the AffiliationRequests and

Classes: Object 6

Roor Class

Normalization protocols and, in addition, either inherit from a class that adopts the Joining
protocol or implement the Joining methods itself.

When these conventions are followed and all the methods in adopted and incorporated
protocols are in fact implemented, tt@nformsTo: test for a set of methods becomes
roughly equivalent to theespondsTo:test for a single method.

However,conformsTo: judges conformance solely on the basis of the formal declarations

in source code, as illustrated above. It doesn't check to see whether the methods declared
in the protocol are actually implemented. It's the programmer’s responsibility to see that
they are.

The Protocol object required as this method’s argument can be specified using the
@protocol() directive:

BOOL canJoin = [MyClass conformsTo:@protocol(Joining)];
The Protocol class is documented in Chapter 15, “Run-Time System.”

See also: —conformsTo:

descriptionForinstanceMethod:

+ (struct objc_method_description *)
descriptionForinstanceMethod(SEL)aSelector

Returns a pointer to a structure that describea@wtectoiinstance method, or NULL if
theaSelectomethod can't be found. To ask the class for a description of a class method,
or an instance for the description of an instance method, udegsbaptionForMethod:
instance method.

See also: —descriptionForMethod:

finishLoading:
+ finishLoading: (struct mach_headerhgader

Implemented by subclasses to integrate the class, or a category of the class, into a running
program. AfinishLoading: message is sent immediately after the class or category has
been dynamically loaded into memory, but only if the newly loaded class or category
implements a method that can respohdaderis a pointer to the structure that describes

the modules that were just loaded.

Once a dynamically loaded class is used, it will also receivsitalize message.
However, because tli@ishLoading: message is sentimmediately after the class is loaded,

it always precedes tliitialize message, which is sent only when the class receives its first
message from within the program.

A finishLoading: method is specific to the class or category where it's defined; it's not
inherited by subclasses or shared with the rest of the class. Thus a class that has four
categories can define a total of fi@shLoading: methods, one in each category and one

in the main class definition. The method that's performed is the one defined in the class or
category just loaded.

There’s no defaufinishLoading: method. The Object class declares a prototype for this
method, but doesn’t implement it.

See also: + startUnloading

free
+ free

Returnsnil. This method is implemented to prevent class objects, which are “owned” by
the run-time system, from being accidentally freed. To free an instance, use the instance
methodfree.

See also: —free

initialize

+ initialize
Initializes the class before it's used (before it receives its first message). The run-time
system generates #ritialize message to each class just before the class, or any class that

inherits from it, is sent its first message from within the program. Each class object receives
theinitialize message just once. Superclasses receive it before subclasses do.

For example, if the first message your program sends is this,
[Application new]
the run-time system will generate these thing@lize messages,

[Object initialize];
[Responder initialize];
[Application initialize];

since Application is a subclass of Responder and Responder is a subclass of Object. All
theinitialize messages precede thew message and are sent in the order of inheritance,
as shown.

Classes: Object 8

Roor Class

If your program later begins to use the Text class,

[Text instancesRespondTo:someSelector]

the run-time system will generate these additiamtblize messages,

[View initialize];
[Text initialize];

since the Text class inherits from Object, Responder, and ViewngtahacesRespondTo:
message is sent only after all these classes are initialized. Note ihétaliee messages
to Object and Responder aren’t repeated; each class is initialized only once.

You can implement your own versionsiwoitialize to provide class-specific initialization
as needed.

Becausaenitialize methods are inherited, it's possible for the same method to be invoked
many times, once for the class that defines it and once for each inheriting class. To prevent
code from being repeated each time the method is invoked, it can be bracketed as shown in
the example below:

+ initialize
{
if (self == [MyClass class]) {
I* put initialization code here */
}
return self;

}

Since the run-time system sends a class jusinitiedize message, the test shown in the
example above should prevent code from being invoked more than once. However, if for
some reason an application also geneiiatialize messages, a more explicit test may be
needed:
+ initialize
{
static BOOL tooLate = NO;
if (ItooLate) {
* put initialization code here */
tooLate = YES;

}

return self;

}

See also: —init, —class

instanceMethodFor:
+ (IMP)instanceMethodFor(SEL)aSelector

Locates and returns the address of the implementation aStlectoiinstance method.
An error is generated if instances of the receiver can’t respafeiectomessages.

This method is used to ask the class object for the implementation of an instance method.
To ask the class for the implementation of a class method, use the instance method
methodFor: instead of this one.

instanceMethodFor:;, and the function pointer it returns, are subject to the same
constraints as those describedrf@thodFor:.

See also: —methodFor:

instancesRespondTo:
+ (BOOL)instancesRespondTdSEL)aSelector

Returns YES if instances of the class are capable of respondiSglectomessages, and

NO if they're not. To ask the class whether it, rather than its instances, can respond to a
particular message, use tl@spondsTo:instance method instead of

instancesRespondTa:

If aSelectomessages are forwarded to other objects, instances of the class will be able to
receive those messages without error even though this method returns NO.

See also: —respondsTo; —forward::

name
+ (const char #ame

Returns a null-terminated string containing the name of the class. This information is often
used in error messages or debugging statements.

See also: —name, + class

new
+ new

Creates a new instance of the receiving class, send@it anessage, and returns the
initialized object returned binit .

Classes: Object 10

11

Roor Class

As defined in the Object clagsew is essentially a combination afloc andinit. Like
alloc, it initializes theisa instance variable of the new object so that it points to the class
data structure. It then invokes tinég method to complete the initialization process.

Unlike alloc, new is sometimes reimplemented in subclasses to have it invoke a class-
specific initialization method. If thieit method includes arguments, they're typically
reflected in theew method as well. For example:

+ newArg:(int)tag arg:(struct info *)data
{
return [[self alloc] initArg:tag arg:data];

}

However, there’s little point in implementinghaw...method if it's simply a shorthand for

alloc andinit..., like the one shown above. Ofteew...methods will do more than just
allocation and initialization. In some classes, they manage a set of instances, returning the
one with the requested properties if it already exists, allocating and initializing a new one
only if necessary. For example:

+ newArg:(int)tag arg:(struct info *)data

{

id thelnstance;

if (thelnstance = findTheObjectWithTheTag(tag))
return thelnstance;
return [[self alloc] initArg:tag arg:data];

}

Although it's appropriate to define newew... methods in this way, tredloc and
allocFromZone: methods should never be augmented to include initialization code.

See also: —init, +alloc, + allocFromZone:

poseAs:
+ poseAsaClassObject

Causes the receiving class to “pose as” its superclas;thesObjectlass. The receiver
takes the place @ClassObjecin the inheritance hierarchy; all messages sent to
aClassObjectwill actually be delivered to the receiver. The receiver must be defined as a
subclass o&ClassObject It can't declare any new instance variables of its own, but it can
define new methods and override methods defined in the superclagms&As:message
should be sent before any messages are safiassObjecand before any instances of
aClassObjecare created.

This facility allows you to add methods to an existing class by defining them in a subclass
and having the subclass substitute for the existing class. The new method definitions will
be inherited by all subclasses of the superclass. Care should be taken to ensure that this
doesn’t generate errors.

A subclass that poses as its superclass still inherits from the superclass. Therefore, none of
the functionality of the superclass is lost in the substitution. Posing doesn't alter the
definition of either class.

Posing is useful as a debugging tool, but category definitions are a less complicated and
more efficient way of augmenting existing classes. Posing admits only two possibilities
that are absent for categories:

» A method defined by a posing class can override any method defined by its superclass.
Methods defined in categories can replace methods defined in the class proper, but they
cannot reliably replace methods defined in other categories. If two categories define the
same method, one of the definitions will prevail, but there’s no guarantee which one.

* A method defined by a posing class can, through a messsggeincorporate the
superclass method it overrides. A method defined in a category can replace a method
defined elsewhere by the class, but it can’t incorporate the method it replaces.

If successful, this method retursslf. If not, it generates an error message and aborts.

setVersion:
+ setVersion{int)aVersion

Sets the class version numbea¥tersion and returnself. The version number is helpful
when instances of the class are to be archived and reused later. The default version is O.

See also: + version

startUnloading
+ startUnloading

Implemented by subclasses to prepare for the class, or a category of the class, being
unloaded from a running program.skartUnloading message is sent immediately before
the class or category is unloaded, but only if the class or category about to be unloaded
implements a method that can respond.

A startUnloading method is specific to the class or category where it's defined; it isn’t
inherited by subclasses or shared with the rest of the class. Thus a class that has four
categories can define a total of fstartUnloading methods, one in each category and one

Classes: Object 12

13

in the main class definition. The method that's performed is the one defined in the class or
category that will be unloaded.

There’s no defaulitartUnloading method. The object class declares a prototype for this
method but doesn’t implement it.

See also: + finishLoading:

superclass
+ superclass

Returns the class object for the receiver’s superclass.

See also: + class —superclass

version
+ (int)version
Returns the version number assigned to the class. If no version has been set, this will be 0.

See also: + setVersion:

Instance Methods

Roor Class

awake
—awake

Implemented by subclasses to reinitialize the receiving object after it has been unarchived
(by read:). Anawake message is automatically sent to every object after it has been
unarchived and after all the objects it refers to are in a usable state.

The default version of the method defined here merely reseifis

A class can implement @awakemethod to provide for more initialization than can be done
in theread: method. Each implementationafrake should limit the work it does to the
scope of the class definition, and incorporate the initialization of classes farther up the
inheritance hierarchy through a messagsufper. For example:

- awake

{

[super awake];
I* class-specific initialization goes here */
return self;

}
All implementations ohwake should returrself.
Note: Not all objects loaded from a nib file (created by Interface Builder) are unarchived;
some are newly instantiated. Those that are unarchived receivealia message, but

those that are instantiated do not. See the Interface Builder document&EXTSTEP
Development Tool®r more information.

See also: —read:, —finishUnarchiving, —awakeFromNib (NXNibNotification protocol
in the Application Kit), HoadNibFile:owner: (Application class in the Application Kit)

class
—class

Returns the class object for the receiver’s class.

See also: + class

conformsTo:

— (BOOL)onformsTo:(Protocol *aProtocol
Returns YES if the class of the receiver conformsRmtocol and NO if it doesn’t. This
method invokes theonformsTo: class method to do its work. It's provided as a

convenience so that you don't need to get the class object to find out whether an instance
can respond to a given set of messages.

See also: + conformsTo:

copy
—Ccopy

Returns a new instance that's an exact copy of the receiver. This method creates only one
new object. If the receiver has instance variables that point to other objects, the instance
variables in the copy will point to the same objects. The values of the instance variables
are copied, but the objects they point to are not.

Classes: Object 14

15

Roor Class

This method does its work by invoking tb@pyFromZone: method and specifying that

the copy should be allocated from the same memory zone as the receiver. If a subclass
implements its owigopyFromZone: method, thisopy method will use it to copy

instances of the subclass. Therefore, a class can support copying from both methods just
by implementing a class-specific versiorcopyFromZone..

See also: —copyFromZone:

copyFromZone:
— copyFromZone(NXZone *)zone

Returns a new instance that’s an exact copy of the receiver. Memory for the new instance
is allocated fronzone

This method creates only one new object. If the receiver has instance variables that point
to other objects, the instance variables in the copy will point to the same objects. The values
of the instance variables are copied, but the objects they point to are not.

Subclasses should implement their own versior®pyFromZone:, notcopy, to define
class-specific copying.

See also: —copy, —zone

descriptionForMethod:
— (struct objc_method_descriptiondgscriptionForMethod: (SEL)aSelector

Returns a pointer to a structure that describea@wtectormethod, or NULL if the
aSelectomethod can't be found. When the receiver is an instassectoshould be an
instance method; when the receiver is a class, it should be a class method.

Theobjc_method_descriptionstructure is declared wbjc/Protocol.h, and is mostly

used in the implementation of protocols. Itincludes two fields—the selector for the method
(which will be the same asSelectoy and a character string encoding the method’s return
and argument types:

struct objc_method_description {
SEL name;
char *types;

h

Type information is encoded according to the conventions a@decode()directive, but
the string also includes information about total argument size and individual argument
offsets. For example, ifescriptionForMethod: were asked for a description of itself, it
would return this string in thiypesfield:

Mobjc_method_description=:*}12@8:12:16

This records the fact thdescriptionForMethod: returns a pointer (‘V) to a structure
(*{...})) and that it pushes a total of 12 bytes on the stack. The structure is called
“objc_method_description” and it consists of a selector (‘") and a character pointer (‘*").
The first argumenself, is an object (‘'@’) at an offset of 8 bytes from the stack pointer, the
second argumentcmd, is a selector (‘') at an offset of 12 bytes, and the third argument,
aSelectoris also a selector but at an offset of 16 bytes. The first two argunsaifer

the message receiver ancnd for the method selector—are passed to every method
implementation but are hidden by the Objective C language.

The type codes used for methods declared in a class or category are:

Meaning Code
id ‘@’
Class ‘#
SEL v
void v’
char ‘c’
unsigned char ‘C’
short ‘s’
unsigned short ‘S’
int T
unsigned int T
long i)
unsigned long L
float ‘f
double ‘d’
char * o
any other pointer n
an undefined type e
a bitfield ‘b’
begin an array T
end an array T
begin a union ‘¢
end a union)

begin a structure
end a structure

Classes: Object 16

17

Roor Class

The same codes are used for methods declared in a protocol, but with these additions for
type modifiers:

const r

in ‘n’
inout ‘N’
out ‘0’
bycopy ‘0’
oneway A

See also: + descriptionForinstanceMethod:, —descriptionForClassMethod: (Protocol
class in the Run-Time System)descriptionForinstanceMethod (Protocol class in the
Run-Time System)

doesNotRecognize:
—doesNotRecogniz€SEL)aSelector

HandlesaSelectormessages that the receiver doesn't recognize. The run-time system
invokes this method whenever an object receivesSatectomessage that it can’t respond
to or forward. This method, in turn, invokes #meor: method to generate an error message
and abort the current process.

doesNotRecognizemessages should be sent only by the run-time system. Although
they’re sometimes used in program code to prevent a method from being inherited, it’s
better to use therror: method directly. For example, an Object subclass might renounce
thecopy method by reimplementing it to include amor: message as follows:

- copy
{

[self error:" %s objects should not be sent '%s’ messages\n”,
[[self class] name], sel_getName(_cmd)];

}

This code prevents instances of the subclass from recognizing or forwemging
messages—although thespondsTo:method will still report that the receiver has access
to acopy method.

(The_cmd variable identifies the current selector; in the example above, it identifies the
selector for theopy method. Theel _getName(¥unction returns the method name
corresponding to a selector code; in the example, it returns the name “copy”.)

See also: —error: , —subclassResponsibility; + name

error:
—error: (const char *String,...

Generates a formatted error message, in the manpentf) , from aStringfollowed by
a variable number of arguments. For example:

[self error:"index %d exceeds limit %d\n", index, limit];

The message specified 88tringis preceded by this standard prefix (wheessis the
name of the receiver’s class):

"error: class "

This method doesn't return. It calls the run-tinegror function, which first generates the
error message and then callsort() to create a core file and terminate the process.

See also: — subclassResponsibility, —notimplemented:, —doesNotRecognize:

finishUnarchiving
—finishUnarchiving

Implemented by subclasses to replace an unarchived object with a new object if necessary.
A finishUnarchiving message is sent to every object after it has been unarchived (using
read:) and initialized (byawake), but only if a method has been implemented that can
respond to the message.

ThefinishUnarchiving message gives the application an opportunity to test an unarchived
and initialized object to see whether it's usable, and, if not, to replace it with another object
that is. This method should returit if the unarchived instancedlf) is OK; otherwise, it
should free the receiver and return another object to take its place.

There’s no default implementation of thieishUnarchiving method. The Object class
declares this method, but doesn't define it.

See also: —read:, —awake —startArchiving:

Classes: Object 18

19

Roor Class

forward::
—forward: (SEL)aSelector. (marg_listargFrame

Implemented by subclasses to forward messages to other objects. When an object is sent
anaSelectomessage, and the run-time system can’t find an implementation of the method
for the receiving object, it sends the objefbravard:: message to give it an opportunity

to delegate the message to another receiver. (If the delegated receiver can't respond to the
message either, it too will be given a chance to forward it.)

Theforward:: message thus allows an object to establish relationships with other objects
that will, for certain messages, act on its behalf. The forwarding object is, in a sense, able
to “inherit” some of the characteristics of the object it forwards the message to.

A forward:: message is generated only if Hfgelectormethod isn’t implemented by the
receiving object’s class or by any of the classes it inherits from.

An implementation of théorward:: method has two tasks:

» Tolocate an object that can respond taiBelectomessage. This need not be the same
object for all messages.

» To send the message to that object, usingénrmv:: method.

In the simple case, in which an object forwards messages to just one destination (such as
the hypotheticdiriend instance variable in the example belowfpravard:: method could
be as simple as this:

- forward:(SEL)aSelector :(marg_list)argFrame

{

if ([friend respondsTo:aSelector])
return [friend performv:aSelector :argFrame];
[self doesNotRecognize:aSelector];

}

argFrameis a pointer to the arguments included in the orighsslectormessage. It's

passed directly tperformv:: without change. (HowevesygFramedoes not correctly

capture variable arguments. Messages that include a variable argument list—for example,
messages to perform Objeatgor : method—cannot be forwarded.)

TheaSelectomessage will return the value returneddoyvard:: . (Note in the example
thatforward:: returns unchanged the value returnegérsformv::.) Sinceforward::

returns a pointer, specifically &h theaSelectomethod must also be one that returns a
pointer (orvoid). Methods that return other types cannot be reliably forwarded.

Implementations of thearward:: method can do more than just forward messages.
forward:: can, for example, be used to consolidate code that responds to a variety of
different messages, thus avoiding the necessity of having to write a separate method for
each selector. forward:: method might also involve several other objects in the response
to a given message, rather than forward it to just one.

The default version dbrward:: implemented in the Object class simply invokes the
doesNotRecognizemethod; it doesn’t forward messages. Thus, if you choose not to
implementforward:: , unrecognized messages will generate an error and cause the task to
abort.

Note: If it's necessary for orward:: method to reason about the arguments passed in
argFrame it can get information about what kinds of arguments they are by calling the
method_getNumberOfArguments() method_getSizeOfArguments()and
method_getArgumentinfo() run-time functions. It can then examine and alter argument
values with thenarg_getValue() marg_getRef() andmarg_setValue()macros. These
functions and macros are documented in Chapter 15, “Run-Time System.”.

See also: —performv::, —doesNotRecognize:

free
—free

Frees the memory occupied by the receiver and retiirnSubsequent messages to the
object will generate an error indicating that a message was sent to a freed object (provided
that the freed memory hasn’t been reused yet).

Subclasses must implement their own versioriieefto deallocate any additional memory
consumed by the object—such as dynamically allocated storage for data, or other objects
that are tightly coupled to the freed object and are of no use without it. After performing
the class-specific deallocation, the subclass method should incorporate superclass versions
of free through a message soper.

- free {
[companion free];
free(privateMemory);
vm_deallocate(task_self(), sharedMemory, memorySize);
return [super free];

Classes: Object 20

21

Roor Class

If, under special circumstances, a subclass versitm@fefuses to free the receiver, it
should returrselfinstead ofil. Object’s default version of this method always frees the
receiver and always returngd. It callsobject_dispose(to accomplish the deallocation.

hash
— (unsigned int)ash

Returns an unsigned integer that's derived fronmidhaf the receiver. The integer is
guaranteed to always be the same for the sdme

See also: —isEqual:

init
—init
Implemented by subclasses to initialize a new object (the receiver) immediately after

memory for it has been allocated. it message is generally coupled withadlioc or
allocFromZone: message in the same line of code:

id newObiject = [[TheClass alloc] init];

An object isn’t ready to be used until it has been initialized. The versioniofttmeethod
defined in the Object class does no initialization; it simply retsetfs

Subclass versions of this method should return the new ob@fita(fter it has been
successfully initialized. If it can’t be initialized, they should free the object and return

In some cases, anit method might free the new object and return a substitute. Programs
should therefore always use the object returnedibyand not necessarily the one returned
by alloc or allocFromZone:, in subsequent code.

Every class must guarantee thatitlie method returns a fully functional instance of the
class. Typically this means overriding the method to add class-specific initialization code.
Subclass versions @fit need to incorporate the initialization code for the classes they
inherit from, through a messagestaper.
- init
{
[super init];
I* class-specific initialization goes here */
return self;

}

Note that the messagedoper precedes the initialization code added in the method. This
ensures that initialization proceeds in the order of inheritance.

Subclasses often add arguments tarfiemethod to allow specific values to be set. The
more arguments a method has, the more freedom it gives you to determine the character of
initialized objects. Classes often have a setibf. methods, each with a different number
of arguments. For example:

- init;

- initArg:(int)tag;

- initArg:(int)tag arg:(struct info *)data;

The convention is that at least one of these methods, usually the one with the most
arguments, includes a messagsuper to incorporate the initialization of classes higher
up the hierarchy. This method is tthesignated initializefor the class. The otharit...
methods defined in the class directly or indirectly invoke the designated initializer through
messages teelf. In this way, alinit... methods are chained together. For example:

- init

{

return [self initArg:-1];

}

- initArg:(int)tag
{

return [self initArg:tag arg:NULL];
}

- initArg:(int)tag arg:(struct info *)data
{
[super init. . .];
I* class-specific initialization goes here */

}
In this example, thanitArg:arg: method is the designated initializer for the class.

If a subclass does any initialization of its own, it must define its own designated initializer.
This method should begin by sending a messageer to perform the designated
initializer of its superclass. Suppose, for example, that the three methods illustrated above
are defined in the B class. The C class, a subclass of B, might have this designated
initializer:
- initArg:(int)tag arg:(struct info *)data arg:anObject
{
[super initArg:tag arg:data];
I* class-specific initialization goes here */

}

Classes: Object 22

23

Roor Class

If inheritedinit... methods are to successfully initialize instances of the subclass, they must
all be made to (directly or indirectly) invoke the new designated initializer. To accomplish
this, the subclass is obliged to cover (override) only the designated initializer of the
superclass. For example, in addition to its designated initializer, the C class would also
implement this method:

- initArg:(int)tag arg:(struct info *)data
{
return [self initArg:tag arg:data arg:nil];

}

This ensures that all three methods inherited from the B class also work for instances of the
C class.

Often the designated initializer of the subclass overrides the designated initializer of the
superclass. If so, the subclass need only implement thieibnemethod.

These conventions maintain a direct chaimif.. links, and ensure that timew method
and all inheritednit... methods return usable, initialized objects. They also prevent the
possibility of an infinite loop wherein a subclass method sends a messsgeefiao
perform a superclass method, which in turn sends a messagdf)(to perform the
subclass method.

Thisinit method is the designated initializer for the Object class. Subclasses that do their
own initialization should override it, as described above.

See also: + new, + alloc, + allocFromZone:

isequal:
— (BOOL)isequal:anObject

Returns YES if the receiver is the sama@a®bject and NO if it isn't. This is determined
by comparing théd of the receiver to thiel of anObject

Subclasses may need to override this method to provide a different test of equivalence. For
example, in some contexts, two objects might be said to be the same if they’re both the same
kind of object and they both contain the same data:

- (BOOL)isequal:anObject
{
if (anObject == self)
return YES;
if ([anObiject isKindOf:[self class]]) {
if (Istrcmp(stringData, [anObject stringData]))
return YES;

}
return NO;

isKindOf:
— (BOOL)isKindOf: aClassObject

Returns YES if the receiver is an instance@fassObjecbr an instance of any class that
inherits fromaClassObject Otherwise, it returns NO. For example, in this deendOf:
would return YES because, in the Application Kit, the Menu class inherits from Window:

id aMenu = [[Menu alloc] init];
if ([aMenu isKindOf:[Window class]])

When the receiver is a class object, this method returns Y&E3a6sObjects the Object
class, and NO otherwise.

See also: —isMemberOf:

isKindOfClassNamed:
— (BOOL)isKindOfClassNamedjconst char *3aClassName

Returns YES if the receiver is an instanca@GfassNamer an instance of any class that
inherits fromaClassName This method is the sameigKindOf: , except it takes the class
name, rather than the clads as its argument.

See also: —isMemberOfClassNamed:

Classes: Object 24

isMemberOf:
— (BOOL)isMemberOf:aClassObject

Returns YES if the receiver is an instanca@fassObject Otherwise, it returns NO. For
example, in this codésMemberOf: would return NO:

id aMenu = [[Menu alloc] init];
if ((aMenu isMemberOf:[Window class]])

When the receiver is a class object, this method returns NO. Class objects are not
“members of” any class.

See also: —isKindOf:

isMemberOfClassNamed:
— (BOOL)isMemberOfClassNamed(const char *3ClassName

Returns YES if the receiver is an instancaGfassNamgand NO if it isn't. This
method is the same &MemberOf:, except it takes the class name, rather than the class
id, as its argument.

See also: —isKindOfClassNamed:

methodFor:
— (IMP)methodFor:(SEL)aSelector

Locates and returns the address of the receiver’s implementationaSdteetomethod,
so that it can be called as a function. If the receiver is an ins&®ekectorshould refer
to an instance method; if the receiver is a class, it should refer to a class method.

aSelectomust be a valid, nonNULL selector. If in doubt, userédspondsTo:method to
check before passing the selectomtethodFor:.

IMP is defined (in th@bjc/objc.h header file) as a pointer to a function that returnd an
and takes a variable number of arguments (in addition to the two “hidden” argunseffts—
and_cmd—that are passed to every method implementation):

typedef id (*IMP)(id, SEL, ...);

25 Roor Class

This definition serves as a prototype for the function pointente#tiodFor: returns. It's
sufficient for methods that return an object and take object arguments. However, if the
aSelectomethod takes different argument types or returns anything bdif i function
counterpart will be inadequately prototyped. Lacking a prototype, the compiler will
promotefloats todoubles andchars toints, which the implementation won’t expect. It
will therefore behave differently (and erroneously) when called as a function than when
performed as a method.

To remedy this situation, it's necessary to provide your own prototype. In the example
below, the declaration of thiest variable serves to prototype the implementation of the
isEqual: method.testis defined as pointer to a function that returns a BOOL and takes an
id argument (in addition to the two “hidden” arguments). The value returned by
methodFor: is then similarly cast to be a pointer to this same function type:

BOOL (*test)(id, SEL, id);
test = (BOOL (*)(id, SEL, id))[target methodFor:@selector(isEqual:)];

while (test(target, @selector(isEqual:), someObiject)) {

}

In some cases, it might be clearer to define a type (similar to IMP) that can be used both for
declaring the variable and for casting the function poimiethodFor: returns. The
example below defines tiguallMP type for just this purpose:

typedef BOOL (*EquallMP)(id, SEL, id);
EquallMP test;
test = (EquallMP)[target methodFor:@selector(isEqual:)];

while ('test(target, @selector(isEqual:), someObject)) {

}

Either way, it's important to castethodFor:’s return value to the appropriate function
type. It's not sufficient to simply call the function returnedisthodFor: and cast the
result of that call to the desired type. This can result in errors.

Note that turning a method into a function by obtaining the address of its implementation
“unhides” theself and_cmd arguments.

See also: + instanceMethodFor:

name
— (const char Hlame

Implemented by subclasses to return a name associated with the receiver.

Classes: Object 26

27

Roor Class

By default, the string returned contains the name of the receiver’s class. However, this
method is commonly overridden to return a more object-specific name. You should
therefore not rely on it to return the name of the class. To get the name of the class, use the
classname method instead:

const char *classname = [[self class] name];

See also: + name, +class

notimplemented:
—notimplemented:(SEL)aSelector

Used in the body of a method definition to indicate that the programmer intended to
implement the method, but left it as a stub for the time beasglectoiis the selector for
the unimplemented methodotimplemented: messages are sentslf. For example:

- methodNeeded
{

[self notimplemented:_cmd];

}

When amethodNeedednessage is receiveatimplemented: will invoke theerror:
method to generate an appropriate error message and abort the process. (In this example,
_cmd refers to thenethodNeededselector.)

See also: —subclassResponsibility: —error:

perform:
— perform: (SEL)aSelector

Sends amSelectormessage to the receiver and returns the result of the message. This is
equivalent to sending aBelectormessage directly to the receiver. For example, all three
of the following messages do the same thing:

id myClone = [anObject copy];
id myClone = [anObject perform:@selector(copy)];
id myClone = [anObject perform:sel_getUid("copy")];

However, thegperform: method allows you to send messages that aren’t determined until
run time. A variable selector can be passed as the argument:

SEL myMethod = findTheAppropriateSelectorForTheCurrentSituation();
[anObject perform:myMethod];

aSelectoshould identify a method that takes no arguments. If the method returns anything
but an object, the return must be cast to the correct type. For example:

char *myClass;
myClass = (char *)[anObject perform:@selector(name)];

Casting generally works for pointers and for integral types that are the same size as pointers
(such asnt andenum). Whether it works for other integral types (suclelzar, short, or

long) is machine dependent. Casting doesn’t work if the return is a floatinglbygteof

double) or a structure or union. This is because the C language doesn’t permit a pointer
(like id) to be cast to these types.

Thereforeperform: shouldn't be asked to perform any method that returns a floating type,
structure, or union, and should be used very cautiously with methods that return integral
types. An alternative is to get the address of the method implementation (using
methodFor:) and call it as a function. For example:

SEL aSelector = @selector(backgroundGray);
float aGray = ((float (*)(id, SEL))
[anObject methodFor:aSelector])(anObject, aSelector);

See also: — perform:with: , —perform:with:with: , —methodFor:

perform:with:
— perform: (SEL)aSelectowith: anObject
Sends amaSelectomessage to the receiver wihObjectas an argument. This method is

the same agerform:, except that you can supply an argument foabelectomessage.
aSelectoishould identify a method that takes a single argument ofidype

See also: — perform:, —perform:with:afterDelay:cancelPrevious: (Application Kit
Object Additions)

perform:with:with:

— perform: (SEL)aSelector
with: anObject
with: anotherObject

Sends the receiver a$electomessage witAnObjectandanotherObjechs arguments.
This method is the same psrform:, except that you can supply two arguments for the
aSelectormessageaSelectorshould identify a method that can take two arguments of
typeid.

See also: — perform:

Classes: Object 28

performv::
—performv: (SEL)aSelector.(marg_listargFrame

Sends the receiver @%electomessage with the argumentsangFrame performv::
messages are used within implementations ofativeard:: method. Both arguments,
aSelectorandargFrame are identical to the arguments the run-time system passes to
forward:: . They can be taken directly from that method and passed through without
change t@erformv:: .

performv:: should be restricted to implementations offdrevard:: method. Because it
doesn’t restrict the number of arguments indBelectomessage or their type, it may seem
like a more flexible way of sending messages peform: , perform:with: , or
perform:with:with: . However, it's not an appropriate substitute for those methods. First,
it's more expensive than they are. The run-time system must parse the arguments in
argFramebased on information stored faBelector Second, in future releases,

performv:: may not work in contexts other than foewvard:: method.

See also: —forward:: , —perform:

printForDebugger:
— (void)printForDebugger: (NXStream *stream

Implemented by subclasses to write a useful description of the recesteraim Object’s
default version of this method provides the class name and the hexadecimal address of the
receiver, formatted as follows:

<classnameOxaddress

Debuggers can use this method to ask objects to identify themselves.

read:
—read:(NXTypedStream *jtream
Implemented by subclasses to read the receiver’s instance variables from the typed stream

stream You need to implementraad: method for any class you create, if you want its
instances (or instance of classes that inherit from it) to be archivable.

The method you implement should unarchive the instance variables defined in the class in
a manner that matches they way they were archivediby. . In each class, thead:
method should begin with a messagsuper.

29 Roor Class

- read:(NXTypedStream *)stream
{

[super read:stream];
I* class-specific code goes here */
return self;

}
This ensures that all inherited instance variables will also be unarchived.

All implementations of theead: method should returself. Also, don't reassign the value
of selfwithin aread: method.

After an object has been read, it's senaamke message so that it can reinitialize itself,
and may also be senfinishUnarchiving message.

See also: —awake, —finishUnarchiving, —write:

respondsTo:
— (BOOL)espondsTo(SEL)aSelector

Returns YES if the receiver implements or inherits a method that can res@8®ld@otor
messages, and NO if it doesn’t. The application is responsible for determining whether a
NO response should be considered an error.

Note that if the receiver is able to forwa8electomessages to another object, it will be
able to respond to the message, albeit indirectly, even though this method returns NO.

See also: —forward:: , +instancesRespondTo:

self
—self

Returns the receiver.

See also: + class

startArchiving:
— startArchiving: (NXTypedStream *§tream

Implemented by subclasses to prepare an object for being archived—that is, for being
written to the typed streastream A startArchiving: message is sent to an object just
before it's archived—nbut only if it implements a method that can respond. The message

Classes: Object 30

31

Roor Class

gives the object an opportunity to do anything necessary to get itself, or the stream, ready
before awrite: message begins the archiving process.

There’s no default implementation of thiartArchiving: method. The Object class
declares the method, but doesn’t define it.

See also: —awake, —finishUnarchiving, —write:

subclassResponsibility:

—subclassResponsibility'SEL)aSelector
Used in an abstract class to indicate that its subclasses are expected to ing$eheetdr
methods. If a subclass fails to implement the method, it will inherit it from the abstract

superclass. That version of the method generates an error when it's invoked. To avoid the
error, subclasses must override the superclass method.

For example, if subclasses are expected to implede$aomethingmethods, the
superclass would define the method this way:

- doSomething
{

[self subclassResponsibility:_cmd];

}

When this version aloSomethingis invoked,subclassResponsibilitywill—by in turn
invoking Object'serror: method—abort the process and generate an appropriate error
message.

(The_cmdvariable identifies the current method selector, jusedgdentifies the current
receiver. In the example above, it identifies the selector faldBemethingmethod.)

Subclass implementations of th8electomethod shouldn’t include messagesuperto
incorporate the superclass version. If they do, they’ll also generate an error.

See also: —doesNotRecognize:—notimplemented:, —error:

superclass
—superclass

Returns the class object for the receiver’s superclass.

See also: + superclass

write:
—write: (NXTypedStream *3tream
Implemented by subclasses to write the receiver’s instance variables to the typed stream

stream You need to implementverite: method for any class you create, if you want to be
able to archive its instances (or instances of classes that inherit from it).

The method you implement should archive only the instance variables defined in the class,
but should begin with a messagestger so that all inherited instance variables will also
be archived:

- write:(NXTypedStream *)stream
{

[super write:stream];
I* class-specific archiving code goes here */
return self;

}
All implementations of thevrite: method should returself.

During the archiving procesarite: methods may be performed twice, so they shouldn’t
do anything other than write instance variables to a typed stream.

See also: —read:, —startArchiving:

zone
— (NXZone *rzone

Returns a pointer to the zone from which the receiver was allocated. Objects created
without specifying a zone are allocated from the default zone, which is returned by
NXDefaultMallocZone().

See also: + allocFromZone:, +alloc, + copyFromZone:

Classes: Object 32

33

