1he GNU Source-Level Debugger

This chapter describes how to debug a C program using the GNU debugger from the Free
Software Foundation (the GNU debugger has been extended in OPENSTEP to support the
use of Objective-C).

This chapter provides an overview of the GDB debugger and how to use it. The
chapter ends with a discussion of OPENSTEP-specific extensions to GDB. These
OPENSTEP extensions provide full compatibility with standard GDB, while offering the
following additional features useful for developing programs within the OPENSTEP
software environment:

» Additional debugger commands
» Extensions to existing debugger commands
» Support for debugging Objective-C code

This chapter is a modified version of documentation provided by the Free Software
Foundation; see the section “Legal Considerations” at the end of the chapter for important
related information.

This chapter Copyrighil 1988, 1989, 1990, 1991, 1992, 1993, 1994, and 1995 by Free
Software Foundation, Inc. and Copyrighttl990, 1991, 1992, 1993, 1994, 1995, and 1996
by NeXT Software, Inc.

The GNU Source-Level Debugger 1

Summary of GDB

The purpose of a debugger such as GDB is to allow you to execute another program while
examining what's going on inside it. We call the other program “your program” or “the
program being debugged.”

GDB can do four kinds of things (plus other things in support of these):
» Start the program, specifying anything that might affect its behavior.
* Make the program stop on specified conditions.

» Examine what has happened—when the program has stopped—so you can see
bugs happen.

» Change things in the program, so you can correct the effects of one bug and go on to
learn about another without having to recompile first.

Compiling Your Program for Debugging

To debug a program effectively, you need to ask for debugging information when you
compile it. This information in the object file describes the data type of each variable or
function and the correspondence between source line numbers and addresses in the
executable code.

To request debugging information, specify th®ption when you run the compiler. We
recommend that you always uspwhen you compile a program. You may think the
program is correct, but there’s no sense in pushing your luck.

The GNU C compiler supports debugging with optimization (by usingQneompiler
option). Although GDB provides the capability to debug programs compiled with
optimization, the debugger may provide confusing or misleading information when
debugging optimized programs. The intention is to provide some recourse in those
situations where debugging optimized programs is necessary. However, debugging
optimized programs should not be done routinely on some processors.

With these warnings in mind, it can still be useful to debug optimized programs, provided
that you're aware of the limitations of the debugger in these circumstances. Most
importantly, the debugger should be able to provide correct backtraces of your program’s
function call stack. This is often all that is needed to find the problem. Printing the values
of variables, however, may give incorrect results, since the debugger has insufficient

2 The GNU Source-Level Debugger

information to be sure where a variable resides at any given time. Variables declared
volatile will always have correct values, and global variables will almost always be correct;
local variables, however, are likely to be incorrectly reported.

Variables declaretkgister are optimized by the compiler even when optimizing is not
requested with théD compiler option—these may also give misleading results. To ensure
a completely predictable debugging environment, it's best to compile withoud tittesg

and with the compiler optionDregister=". This option causes the C preprocessor to
effectively delete allegister declarations from your program for this compilation. (In fact,
with the GNU C compiler, there’s no need to declare any variablegégister variables.
When optimizing, the GNU C compiler may place any variable in a register whether it's
declaredegister or not. On the other hand, declaring variables tegister variables may
make it more difficult to debug your program when not optimizing. Therefore, the use of
theregister declaration is discouraged.)

Running GDB

In the OPENSTEP development environment, you're likely to use GDB by running it in the
Project Builder Launch panel. In this panel, you enter commands at the GDB prompt, and
debugger output appears on subsequent lines. (You can also run GDB as a subprocess in the
GNU Emacs editor, as described later in this chapter.) Although Project Builder provides

an interface and shortcuts to many common GDB commands, this chapter describes only
the GDB command-line interface. For more information on Project Builder’s interface for

the debugger, see the bdbORENSTEP Development: Tools and Technigques

To start GDB from within a shell window, enter the following command:
gdb name[core| processID

nameis the name of your executable prograore, if specified, is the name of the core

dump file to be examinegrocesslDis the ID of an already running process that you want

to debug. See the rest of this section for information about optional command-line
arguments and switches. Once started, GDB reads commands from the terminal until you
quit by giving thequit command.

A GDB command is a single line of input. There’s no limit to how long it can be. It
starts with a command name, optionally followed by arguments (some commands don’t
allow arguments).

GDB command names may always be abbreviated if the abbreviation is unambiguous.
Sometimes even ambiguous abbreviations are allowed. For examsmguivalent tstep

Running GDB 3

even though there are other commands whose names stast Ratssible command
abbreviations are stated in the documentation of the individual commands.

A blank line as input to GDB means to repeat the previous command verbatim. Certain
commands don't allow themselves to be repeated this way; these are commands for which
unintentional repetition might cause trouble and which you're unlikely to want to repeat.
Certain otherslist andx) act differently when repeated because that's more useful.

A line of input starting with# is a comment; it does nothing. This is useful mainly in
command files (see the section “Command Files”).

GDB prompts for commands by displaying {aelb) prompt. You can change the prompt
with theset prompt command (this is most useful when debugging GDB itself):

set prompt newprompt

To exit GDB, use thguit command (abbreviateg) or type Control-D. Control-C won't

exit from GDB, but rather will terminate the action of any GDB command that is in
progress and return to GDB command level. It's safe to type Control-C at any time because
GDB doesn't allow it to take effect until it's safe. If your program is running, typing
Control-C will interrupt the program and return you to the GDB prompt.

Specifying Files to Debug

GDB needs to know the file name of the program to be debugged. To debug a core dump
of a previous run, GDB must be told the file name of the core dump.

The simplest way to specify the executable and core dump file names is with two command
arguments given when you start GDB. The first argument is used as the file for execution
and symbols, and the second argument (if any) is used as the core dump file name. Thus,

gdb progm core

specifiegprogm as the executable program ame as a core dump file to examine. (You
don’t need to have a core dump file if you plan to debug the program interactively.)

If you need to specify more precisely the files to debugged, you can do so with the following
command-line options:

-symbolfile
-sfile Read symbol table frofile.

The GNU Source-Level Debugger

-execfile
-efile Usefile as the executable file to execute when appropriate, and for examining
pure data in conjunction with a core dump.

-sefile Read symbol table frofiile and use it as the executable file.
-corefile
-cfile Usefile as a core dump file to examine.

-c number Connect to process IBumberas with theattach command (unless there is a
file in core-dump format nameaimber in which casec specifies that file as
a core dump to read.

-commandfile
-x file Execute GDB commands frofife.

-directory directory
-d directory
Add directoryto the path to search for source files.

-readnow

-r Read each symbol file’s entire symbol table immediately, rather than the
default, which is to read it incrementally as it's needed. This makes startup
slower, but makes future operations faster.

All the options and command line arguments given are processed in sequential order. The
order makes a difference when tikecommand is used.

Specifying GDB Modes

The following additional command-line options can be used to affect certain aspects of the
behavior of GDB:

-nx | -n Don’t execute commands from tlgglbinit init files. Normally, the commands
in these files are executed after all the command options and arguments have
been processed. (See the section “Command Files” for more information.)

-q Quiet. Don't print the usual introductory messages. These messages are also
suppressed in batch mode.

-batch Run in batch mode. Exit with status O after processing all the command files
specified with-x (and.gdbinit, if not inhibited). Exit with nonzero status if an
error occurs in executing the GDB commands in the command files.

Running GDB 5

Batch mode may be useful for running GDB as a filter, for example to
download and run a program on another computer; to make this more useful,
the message “Program exited normally” is not issued when running in batch
mode.

-cd directory
Run GDB usingdlirectoryas its working directory instead of the current
directory.

-fullname | -f
This option is used when Emacs runs GDB as a subprocess. It tells GDB to
produce the full file name and line number each time a stack frame is displayed
(which includes each time the program stops).

-tty device Run usingdevicefor your program’s standard input and output.

Editing GDB Commands

GDB provides a history buffer that stores previously executed commands. You can call any
of these commands back to the command line for editing and reexecution. For example, by
pressing the up-arrow key repeatedly, you can step back through each of the commands that
were issued since the beginning of the session; the down-arrow key steps forward through
the history buffer.

Expansion of Variable, Function, and Method Names

GDB supports command-line expansion of variable, function and method names. Type
Esc-Esc or Tab to expand the current word on the command line to a matching name. If
there is more than one match, the unique part is expanded and a beep occurs. To display all
possible completions, type Tab again or type Esc-l.

Sometimes the string you need, while logically a “word,” may contain parentheses or other
characters that GDB normally excludes from its notion of a word. To allow word
completion in this situation, you may enclose words in single quote marks in GDB
commands. Single quotes are commonly needed in typing the name of a C++ function.

History Substitution in Commands

GDB supports theshhistory substitution mechanism. For examfte retrieves the last
command you typed that begins witlo. History substitution is supported acrgstb

The GNU Source-Level Debugger

sessions by writing the command history tga@b_history file in the current directory.
Automatic creation of this history file can be disabled with the command:

set history save off

History substitution can be controlled with et history filename, set history size set
history save andset history expansionrcommands. Also see the section on history
substitution in thesh(1) UNIX manual page for more information.

Emacs Command-Line Editing

You can use standard Emacs editing commands to edit the contents of the command line.
All the basic Emacs command sequences work, as well as the arrow keys. The left and right
arrow keys move the cursor along the command line, and the up and down arrow keys take
you backward and forward through the command history.

The following list of Emacs commands shows the default key combination associated with
each command and a description of what that command does.

Insertion-Point Motion Commands

Control-B Move back one character
Control-F Move forward one character
Escb Move back one word

Esc f Move forward one word
Control-A Move to beginning of line
Control-E Move to end of line

Deletion and Restoration Commands

Control-D Delete current character

Delete or Control-H Delete previous character

Escd Delete current word

Esc Delete Delete previous word

Control-K Kill forward to end of line

Control-W Kill region

Control-Y Restore previous Kill from buffer

EscY Rotate the kill ring and yank the new top

Search Commands

Control-S Search forward
Control-R Search backward
Esc Exit search mode

Running GDB 7

History Commands

Esc < Move to beginning of history file
Esc > Move to end of history file
Control-N Go to next history file entry
Control-P Go to previous history file entry

Miscellaneous Commands

Control-_ Undo the last edit.

Control-C Interrupt a program or cancel command
Control-L Clear screen

Control-Q Insert a literal character

Esc Tab Insert a Tab

Control-T Transpose characters

EscT Transpose words

Control-Z Suspend debugger, return to shell
Control-@ Set mark

Most of these commands are self-explanatory; the ones requiring more discussion are
presented below.

Both delete commands and kill commands erase characters from the command line. Text
that’s erased by a kill key (Control-K or Control-W) is placed in the “kill buffer.” If you
want to restore this text, use the “yank” command, Control-Y. The yank command inserts
the restored text at the current insertion point. In contrast, text that's erased by one of the
delete commands (Control-D, Control-H, Esc d, and Esc h) isn’t placed in the Kkill buffer,
so it can’t be restored by the yank command.

To enter a character that would otherwise be interpreted as an editing command, you must
precede it with Control-Q. For example, to enter Control-D and have it interpreted as a
literal rather than as the command to delete the current character, type:

Control-Q Control-D

Editing commands can be repeated by typing Control-U followed by a humber and then the
command to be repeated. For example, to delete the last 15 characters typed, enter:

Control-U 15 Control-H

The GNU Source-Level Debugger

If you want to suspend the operation of GDB temporarily and return to the UNIX prompt,
type Control-Z. To return to GDB, ty@égdb (a variant of the shelj command; for more
information, see the UNIX manual page ésh(1)).

Running GDB in a GNU Emacs Buffer

You can use GNU Emacs to run GDB, as well as to view (and edit) the source files for the
program you're debugging with GDB.

To use the Emacs GDB interface, give the comniswix gdbin Emacs. Specify the
executable file you want to debug as an argument. This command starts a GDB process as
a subprocess of Emacs, with input and output through a newly created Emacs buffer. You
can run more than one GDB subprocess by giving the comBsrxigdbmore than once.

Note: If your program resides in a directory other than the current directory, it can be easy
to confuse Emacs about the location of the source files, in which case the auxiliary display
buffer does not appear to show your source. To avoid this problem, either start GDB from
the directory where your program resides or specify an absolute file name when prompted
for theEsc x gdbargument.

Running GDB as an Emacs subprocess is just like using GDB in a Shell or Terminal
window, except for two things:

» All terminal input and output goes through the Emacs buffer. This applies both to GDB
commands and their output, and to the input and output done by the program you're
debugging. You can copy the text of previous commands and use them again; you can
even use parts of the output in this way (all the facilities of Emacs’s Shell mode are
available for this purpose).

» GDB displays source code through Emacs. Each time GDB displays a stack frame,
Emacs automatically finds the source file for that frame and puts an afrpat the
left margin of the current line.

Explicit GDB list or search commands still produce output as usual, but you'll probably
have no reason to use them.

You can use these special Emacs commands in the GDB buffer:
Escs Execute to another source line, like the GE8y command.

Escn Execute to the next source line in this function, skipping all function calls, like
the GDBnext command.

Running GDB 9

10

Esci Execute one instruction, like the GBBepi command.

Esc x gdb-nexti
Execute to next instruction, like the GDBxti command.

Escu Move up one stack frame (and display that frame’s source file in Emacs), like
the GDBup command.

Escd Move down one stack frame (and display that frame’s source file in Emacs),
like the GDBdown command. (You can't udesc dto delete words in the
usual fashion in the GDB buffer.)

Control-C Control-F
Execute until exit from the selected stack frame, like the Gbigh

command.
Escc Continue execution of program, like the Gb@&ntinue command.
Control-h m

Describe the features of Emacs’s GDB mode.

Control-x &
Insert the number in which the cursor is positioned at the end of the GDB 1/0O
buffer. For example, if you wish to disassemble code around and address that
was displayed earlier, tymbsassemblethen move the cursor to the address
display and pick up the argument ftisassembléeoy typing this command.

You can customize further by defining elements of the list
gdb-print-command: once it is defined, you can format or otherwise process
numbers picked up b@ontrol-x & before they are inserted. A number
argument taControl-x & indicates that you wish special formatting and also
acts as an index to pick an element of the list. If the list element isa string, the
number to be inserted is formatted using the Emacs furfotionat : otherwise

the number is passed as an argument to the corresponding list element.

In any source file, the Emacs command Control-X spgdie-break) tells GDB to set a
breakpoint at the source line the point is on.

The GNU Source-Level Debugger

If you accidentally delete the source-display buffer, an easy way to get it back is to type the
command in the GDB buffer, to request a frame display; when you run under Emacs, this
recreates the source buffer if necessary to show you the context of the current frame.

The source files displayed in Emacs are in ordinary Emacs buffers which are visiting the
source files in the usual way. You can edit the files in these buffers if you wish; but keep in
mind that GDB communicates with Emacs in terms of the line numbers as they were at
compile time. If you add or delete lines from the text, the line numbers that GDB knows
will no longer correspond properly to the code.

Startup Files

At startup, GDB reads configuration information from startup files in the following order:

1. /usr/lib/.gdbinit (a NeXT-provided startup file)
2. ~/.gdbinit (your home directory startup file)
3. ./.gdbinit (the current directory’s startup file)

To make your own customizations to GDB, put GDB commands in your home directory’s
.gdbinit startup file. To make further customizations required for any specific project, put
commands in agdbinit startup file within that project’s directory. The startup files aren’t
executed if you use thax option.

For more information about making customizations to GDB, see the section “Defining and
Executing Sequences of Commands” later in this chapter.

GDB Commands for Specifying and Examining Files

Usually you specify the files for GDB to work with by giving arguments when you invoke
GDB. But occasionally it's necessary to change to a different file during a GDB session. Or
you may run GDB and forget to specify the files you want to use. In these situations the
GDB commands to specify new files are useful.

Startup Files 11

12

add-file [file] [addres$

Adds symbols from executable ffite to the symbol table.

add-moduleaddress

Add the object file at addreasddress

core-file[file]

info files

kill

load file

path path

Specify a core dump file to be used as the contents of memory. Note that the
core dump contains only the writable parts of memory; the read-only parts
must come from the executable fib@re-file with no argument specifies that

no core file is to be used.

This command has been superseded btatiget core anddetachcommands.

Print the names of the executable and core dump files currently in use by GDB,
and the file from which symbols were loaded.

Cancel running the program under GDB. This could be used if you want to
debug a core dump instead. GDB ignores any core dump file if it's actually
running the program, so thkdl command is the only sure way to go back to
using the core dump file.

Dynamically loadile into the running program, and record its symbols for
access from GDB.

Add one or more directories to the beginning of the search path for executable
files. $cwd in the path means the current working directory. This path is like
the$PATH shell variable; it is a list of directories, separated by colons. These
directories are searched to find fully linked executable files and separately
compiled object files as needed.

update-files|file]

Rereads symbols from fifde. Use this if a symbol file has change since you
started executing your program.

While file-specifying commands allow both absolute and relative file names as arguments,
GDB always converts the file name to an absolute one and remembers it that way.

The GNU Source-Level Debugger

Running Your Program under GDB

To start your program under GDB, use the command. The program must already have
been specified with an argument to ¢jaky command (see the section “Specifying Files to

Debug”); whatrun does is create an inferior process, load the program into it, and set it in
motion.

The execution of a program is affected by certain types of information it receives from its
superior. GDB provides ways to specify these, which you must do before starting the
program. (You can change them after starting the program, but such changes don't affect
the program unless you start it over again.) The types of information are:

The arguments You specify the arguments to give the program by passing
them as arguments to then command. You can also use
theset argscommand.

The environment The program normally inherits its environment from
GDB, but you can use the GDB commasds
environment andunset environmentto change parts of
the environment that will be given to the program.

The working directory The program inherits its working directory from GDB.
You can set GDB'’s working directory with tled
command in GDB.

The standard input and output
Your program normally uses the same device for standard
input and standard output as GDB is using. You can
redirect input and output in the run command line, or you
can use théy command to set a different device for your
program.

After therun command, the debugger does nothing but wait for your program to stop. See
the section “Stopping and Continuing” for more information.

If the modification time of your symbol file has changed since the last time GDB read its
symbols, GDB discards its symbol table and reads it again. When it does this, GDB tries to
retain your current breakpoints.

Running Your Program under GDB 13

14

Your Program’s Arguments

You specify the arguments to give the program by passing them as argumentsitio the
command. They're first passed to a shell, which expands wildcard characters and performs
redirection of 1/0, and then passed to the program.

Therun command with no arguments uses the same arguments used by the puevious

With theset argscommand you can specify the arguments to be used the next time the
program is run. Iet argshas no arguments, it means to use no arguments the next time
the program is run. If you've run your program with arguments and want to run it again with
no arguments, this is the only way to do so.

Your Program’s Environment

Your program’s environment consists of a set of environment variables and their values.
Environment variables conventionally record such things as your user name, your home
directory, your terminal type, and your search path for programs to run. Usually you set up
environment variables with the shell and they're inherited by all the other programs you
run. When debugging, it can be useful to try running the program with different
environments without having to start the debugger over again.

set environmentvarname value
Set the environment variablarnameto value(for your program only, not for
GDB itself).valuemay be any string; any interpretation is supplied by your
program itself.

unset environmentvarname
Cancel the variablearnamefrom the environment passed to your program
(thereby making the variable not be defined at all, which is different from
giving the variable an empty value). This doesn't affect the program until the
nextrun command.

Your Program’s Working Directory

Each time you start your program witin, the program inherits its working directory from
the current working directory of GDB. GDB’s working directory is initially whatever it
inherited from its superior, but you can specify the working directory for GDB wittcthe
command.

The GNU Source-Level Debugger

The GDB working directory also serves as a default for the commands that specify files for
GDB to operate on. See the section “Specifying Files to Debug.”

cd dir Set the working directory for GDB and the program being debuggtad The
change doesn't take effect for the program being debugged until the next time
it is started.

pwd Print GDB’s working directory.

Your Program’s Input and Output

By default, the program you run under GDB uses as its source of input and output the same
terminal that GDB uses. GDB switches to its own terminal modes to interact with you, but

it records the terminal modes your program was using and switches back to them when you
continue running your program.

info terminal
Displays information recorded by GDB about the terminal modes your
program is using.

You can redirect the program’s input and/or output using standard redirection commands
with therun command. For example,

run > outfile
starts the program, diverting its output to thedilgfile.

Another way to specify what the program should use as its source of input and output is
with thetty command. This command accepts a file name as its argument, and causes that
file to be the default for futunein commands. For example,

tty /dev/ttyb

causes processes started with subsequantommands to default to using the terminal
/devittyb as their source of input and output. An explicit redirectiomimoverrides the
tty command.

When you use thigy command or redirect input in then command, the input for your
program comes from the specified file, but the input for GDB still comes from your

Running Your Program under GDB 15

terminal. The program’s controlling terminal is your terminal, not the terminal that the
program is reading from; so if you want to type Control-C to stop the program, you must
type it on your (GDB’s) terminal. Control-C typed on the program’s terminal is available
to the program as ordinary input.

Debugging an Already Running Process

The Mach operating system allows GDB to begin debugging an already running process
that was started outside GDB. To do this you must usattheh command instead of the
run command.

Theattach command requires one argument, which is the process ID of the process you
want to debug.

attach [arg]
Attach to a process or file outside of GDB. This command attaches to another
target, of the same type as your tastjet commandigfo files will show your
target stack). The command may take as argument a process id or a device file.
(The usual way to find out the process ID of the process is withsthtdity.)
For a process ID, you must have permission to send the process a signal, and it
must have the same effective uid as the debugger. Whenattinol, you
should use thiéle command to specify the program running in the process, and
to load its symbol table.

The first thing GDB does after arranging to debug the process is to stop it. You can examine
and modify an attached process with all the GDB commands that are ordinarily available
when you start processes witin. You can insert breakpoints; you can step and continue;
you can modify storage. If you would rather the process continue running, wssmthe
(continue) command after attaching.

When you're finished debugging the attached process, you can dst¢abiecommand to

detach the debugger from the attached process and resume execution of the process (or you
can use Control-C to interrupt the process). After you giveletech command, that

process and GDB become completely independent, and you're regtiycto another

process or start one withn.

detach Detach a process or file previously attached. If a process, it is ho longer traced,
and it continues its execution. If you were debugging a file, the file is closed
and GDB no longer accesses it.

If you exit GDB or use theun command while you have an attached process, you kill that
process. You'll be asked for confirmation if you try to do either of these things.

16 The GNU Source-Level Debugger

The following commands are for connecting to a target machine or process.

target [args]
Connect to a target machine or process. The first argument is the type or
protocol of the target machine. Remaining arguments are interpreted by the
target protocol. For more information on the arguments for a particular
protocol, typenelp target followed by the protocol name.

target child
Unix child process (started by then command).

target corefile
Use a core file as a target. Specify the file name of the core file.

The following commands are for kernel debugging.

kattach hostname
Attach to a kernel on a remote host.

kreboot args
Reboot an attached kernel.

Stopping and Continuing

When you run a program normally, it runs until exiting. The purpose of using a debugger
is so that you can stop it before that point, or so that if the program runs into trouble you
can find out why.

Signals

A signal is an asynchronous event that can happen in a program. The operating system
defines the possible kinds of signals, and gives each kind a name and a number. For
example, SIGINT is the signal a program gets when you type Control-C; SIGSEGV is the
signal a program gets from referencing a place in memory far away from all the areas in
use; SIGALRM occurs when the alarm clock timer goes off (which happens only if the
program has requested an alarm).

Some signals, including SIGALRM, are a normal part of the functioning of the program.
Others, such as SIGSEGYV, indicate errors; these signals are fatal (that is, they kill the
program immediately) if the program hasn’t specified in advance some other way to handle

Stopping and Continuing 17

18

the signal. SIGINT doesn’tindicate an error in the program, but it's normally fatal, so it can
carry out the purpose of Control-C: to kill the program.

GDB can detect any occurrence of a signal in the program running under GDB'’s control.
You can tell GDB in advance what to do for each kind of signal.

Normally, GDB is set up to ignore non-erroneous signals like SIGALRM (so as not to
interfere with their role in the functioning of the program) but to stop the program
immediately whenever an error signal happens. You can change these settings with the
handle command. You must specify which signal you're talking about with its number.

info signals[signalnum]
Print a table of all the kinds of signals and how GDB has been told to handle
each one. You can use this to see the signal numbers of all the defined types
of signals. Specify a signal number in order to print information about that
signal only.

handle signalnum keywords
Change the way GDB handles siga@nalnum Thekeywordssay what
change to make.

The keywords allowed by theandle command can be abbreviated. Their full names are:

stop GDB should stop the program when this signal happens. This impliggrihe
keyword as well.

print GDB should print a message when this signal happens.

nostop GDB shouldn't stop the program when this signal happens. It may still print a
message telling you that the signal has come in.

noprint ~ GDB shouldn’t mention the occurrence of the signal at all. This implies the
nostop keyword as well.

pass GDB should allow the program to see this signal; the program will be able to
handle the signal, or may be terminated if the signal is fatal and not handled.

nopass GDB shouldn't allow the program to see this signal.

When a signal has been set to stop the program, the program can't see the signal until
you continue. It will see the signal thenpdssis in effect for the signal in question at that

The GNU Source-Level Debugger

time. In other words, after GDB reports a signal, you can udeatidie command with
passor nopassto control whether that signal will be seen by the program when you later
continue it.

You can also use tlgggnalcommand to prevent the program from seeing a signal, to cause
it to see a signal it normally wouldn't see, or to give it any signal at any time. See the section
“Continuing” below.

Breakpoints

A breakpoint makes your program stop whenever a certain point in the program is reached.
You set breakpoints explicitly with GDB commands, specifying the place where the
program should stop by line number, function name, or exact address in the program. You
can add various other conditions to control whether the program will stop.

You can arrange to have values from your program displayed automatically whenever GDB
stops at a breakpoint.

Each breakpoint is assigned a number when it’s created; these numbers are successive
integers starting with 1. In many of the commands for controlling various features of
breakpoints, you use the breakpoint number to say which breakpoint you want to change.
Each breakpoint may be “enabled” or “disabled;” if disabled, it has no effect on the
program until you enable it again.

Theinfo breakpoints command prints a list of all breakpoints set and not cleared, showing
their numbers, their location in the program, and any special features in use for them.
Disabled breakpoints are included in the list, but marked as disatiteblreakpoints with

a breakpoint number as its argument lists only that breakpoint. The convenience variable
$_and the default address for theommand are set to the address of the last breakpoint
listed (see the section “Examining Memory”). Tih® breakpoints command can be
abbreviated amfo break.

Breakpoints can’'t be used in a program if any other process is running that program.
Attempting to run or continue the program with a breakpoint in this case will cause GDB
to stop it. When this happens, you must remove or disable the breakpoints, and then
continue.

Setting Breakpoints

Breakpoints are set with theeak command (abbreviatdn). There are several ways to
specify where the breakpoint should go:

Stopping and Continuing 19

20

break function
Set a breakpoint at entryfianction You can also set a breakpoint at the entry
to a method, as described in the section “Method Names in Commands.”

break linenum
Set a breakpoint éihenumin the current source file (the last file whose source
text was printed). This breakpoint will stop the program just before it executes
any of the code from that line.

break +offset

break -offset
Set a breakpoint some number of lines forward or back from the position at
which execution stopped in the currently selected frame.

break file:linenum
Set a breakpoint dinenumin file.

break file:function
Set a breakpoint at entryfinctionfound infile. Specifying a file name as well
as a function name is superfluous except when multiple files contain identically
named functions. This doesn’t work for Objective-C methods; see the section
“Method Names in Commands” for information on setting breakpoints for
methods.

break *address
Set a breakpoint @ddress You can use this to set breakpoints in parts of the
program that don’t have debugging information or source files.

break Set a breakpoint at the next instruction to be executed in the selected stack
frame (see the section “Examining the Stack”). In any selected frame but the
innermost, this makes your program stop as soon as control returns to that
frame. This is similar to the effect of thirish command in the frame inside
of the selected frame—except tfiaish does not leave an active breakpoint.
If you use break without an argument in the innermost frame, GDB stops the
next time it reaches the current location; this may be useful inside loops.

GDB normally ignores breakpoints when it resumes execution, until at least
one instruction has been executed. If it did not do this, you would be unable to
proceed past a breakpoint without first disabling the breakpoint. This rule
applies whether or not the breakpoint already existed when your program
stopped.

The GNU Source-Level Debugger

break [argg if cond
Set a breakpoint with conditiamond evaluate the expressieondeach time
the breakpoint is reached, and stop only if the value is horazggstands for
one of the possible arguments described above (or no argument) specifying
where to break. See the section “Break Conditions” for more information.

tbreak [argg
Set a breakpoint enabled only for one stogsare the same as in theeak
command, and the breakpoint is set in the same way, but the breakpoint is
automatically deleted the first time it’s hit.

rbreak regex
Set breakpoints on all functions matching the regular expressjer This
command sets an unconditional breakpoint on all matches, printing a list of all
breakpoints it set. Once these breakpoints are set, they are treated just like the
breakpoints set with the break command. You can delete them, disable them,
or make them conditional the same way as any other breakpoint.

When debugging C++ programreak is useful for setting breakpoints on
overloaded functions that are not members of any special classes.

future-break function
Set a breakpoint &tinction and defer the breakpoinfifnctioris address can'’t
be resolved. Use this command to set breakpoints in code that has not been
loaded yet (for example, code in a bundle or dynamically shared library). As
files are loaded, GDB checks their symbols to see if any deferred breakpoints
can be resolved. If a breakpoint can be resolved, it becomes enabled. If a future
breakpoint can never be resolved, it stays in the breakpoint list until you
explicitly delete it. Note that if you spell the function name wrong, the
breakpoint will never be resolved and you will receive no error message. This
command only applies to the Mach version of GDB.

GDB allows you to set any number of breakpoints at the same place in the program. This
can be useful when the breakpoints are conditional (see the section “Break Conditions”).

Watchpoints

A watchpoint is a special breakpoint that stops your program when the value of an
expression changes. You must use a different command to set watchpoints but aside from
that, you can manage a watchpoint like any other breakpoint: you enable, disable, and
delete both breakpoints and watchpoints using the same commands.

Stopping and Continuing 21

22

Warning:

You can use a watchpoint to stop execution whenever the value of an expression changes,
without having to predict a particular place where this may happen.

Watchpoints currently execute two orders of magnitude more slowly that other breakpoints,
but this can be well worth it to catch errors where you have no clue what part of your
program is the culprit.

watch expr
Set a watchpoint for this expression.

info watchpoints
Print a list of watchpoints and breakpoints; it is the saniefadreak.

In multithreaded programs, watchpoints have only limited usefulness. With the current
watchpoint implementation, GDB can only watch the value of an expression in a single
thread. If you are confident that the expression can only change due to the current thread’s
activity (and if you are also confident that no other thread can become current), then you
can use watchpoints as usual. However, GDB may not notice when a non-current thread’s
activity changes the expression.

Clearing Breakpoints

It's often necessary to eliminate a breakpoint once it has done its job and you no longer
want the program to stop there. This is called clearing (or deleting) the breakpoint. A
breakpoint that has been cleared no longer exists in any sense.

With theclear command you can clear breakpoints according to where they are in the
program. With theleletecommand you can clear individual breakpoints by specifying
their breakpoint numbers.

Itisn’t necessary to clear a breakpoint to proceed past it. GDB automatically ignores
breakpoints in the first instruction to be executed when you continue execution at the same
address where the program stopped.

clear Clear any breakpoints at the next instruction to be executed in the selected
stack frame (see the section “Selecting a Frame”). When the innermost frame
is selected, this is a good way to clear a breakpoint that the program just
stopped at.

clear function
clear file:function
Clear any breakpoints set at entry tofilngction

The GNU Source-Level Debugger

clear linenum
clear file:linenum
Clear any breakpoints set at or within the code of the specified line.

delete[breakpoints] [bnum...]
Clear the breakpoints whose numbers are specified as arguments. If no
argument is specified, delete all breakpoints (GDB asks confirmation unless
you haveset confirm off). A deleted breakpoint is forgotten completely.

Disabling Breakpoints

Rather than clearing a breakpoint, you might prefer to disable it. This makes the breakpoint
inoperative as if it had been cleared, but remembers the information about the breakpoint
so that you can enable it again later.

You enable and disable breakpoints withéhableanddisablecommands, specifying one
or more breakpoint numbers as arguments.ikfeebreakpoints to print a list of
breakpoints if you don’'t know which breakpoint numbers to use.

A breakpoint can have any of four states of enablement:
» Disabled. The breakpoint has no effect on the program.

» Enabled. The breakpoint will stop the program. A breakpoint made withrelak
command starts out in this state.

« Enabled once. The breakpoint will stop the program, but when it does so it will become
disabled.

» Enabled for deletion. The breakpoint will stop the program, but immediately afterward
itis deleted permanently. A breakpoint made withitineak command starts out in this
state.

You can enable and disable breakpoints with the following commands:

enable[breakpoints] bnum...
Enable the specified breakpoints (or all defined breakpoints). They become
effective once again in stopping the program, until you specify otherwise.

enable [breakpoints] oncebnum...
Enable the specified breakpoints temporarily. Each will remain enabled only
until the next time it stops the program (unless you use one of these commands
to specify a different state before that time comes). Also sdbriak
command, which sets a breakpoint and enables it once.

Stopping and Continuing 23

24

enable [breakpoints] deletebnum...
Enable the specified breakpoints to work once and then die. Each of the
breakpoints will be deleted the next time it stops the program (unless you use
one of these commands to specify a different state before that time comes).

disable [breakpoints] bnum...
Disable the specified breakpoints. A disabled breakpoint has no effect but isn’t
forgotten. All options such as ignore counts, conditions, and commands are
remembered in case the breakpoint is enabled again later.

Aside from the automatic disablement or deletion of a breakpoint when it stops the
program, which happens only in certain states, the state of enablement of a breakpoint
changes only when one of the above commands is used (except if the breakpoint is set with
tbreak).

Break Conditions

The simplest sort of breakpoint breaks every time the program reaches a specified place.
You can also specify a condition for a breakpoint. A condition is simply a Boolean
expression. A breakpoint with a condition evaluates the expression each time the program
reaches it, and the program stops only if the condition is true.

This is the converse of using assertions for program validation; in that situation, you want
to stop when the assertion is violated—that is, when the condition is false. In C, if you want
to test an assertion expressed by the condisseri you should set the conditidassert

on the appropriate breakpoint.

Break conditions may have side effects, and may even call functions in your program. This
can be useful, for example, to activate functions that log program process or to use your
own print functions to format special data structure. The effects are completely predictable
unless there’s another enabled breakpoint at the same address. (In that case, GDB might see
the other breakpoint first and stop the program without checking the condition of this one.)
Note that breakpoint commands are usually more convenient and flexible than break
conditions for the purpose of performing side effects when a breakpoint is reached (see the
section “Executing Commands at a Breakpoint”).

Break conditions can be specified when a breakpoint is set, byilugirtge arguments to
thebreak command (see the section “Setting Breakpoints”). They can also be changed at
any time with thecondition command:

The GNU Source-Level Debugger

condition bnum expression
Specifyexpressioras the break condition for breakpoint numitvenm From
now on, this breakpoint will stop the program only if the valuexpfessions
true (nonzero, in C). GDB checks expression immediately for syntactic
correctness and to determine whether symbols in it have referents in the
context of your breakpoint. GDB does not actually evaluate expression at the
time thecondition command is given, however.

condition bnum
Remove the condition from breakpoint numbeum It becomes an ordinary
unconditional breakpoint.

A special feature is provided for one kind of condition: to prevent the breakpoint from
doing anything until it has been reached a certain number of times. This is done with
the “ignore count” of the breakpoint. When the program reaches a breakpoint whose
ignore count is positive, then instead of stopping, it just decrements the ignore count
by 1 and continues.

ignore bnum count
Set the ignore count of breakpoint numbeumto count The nextounttimes
the breakpoint is reached, it won't stop.

To make the breakpoint stop the next time it's reached, specify a count of 0.

continuen
Continue execution of the program, setting the ignore count of the breakpoint
that the program stopped atrtoninus 1. Continuing through the breakpoint
doesn'titself count as onewfThus, the program won't stop at this breakpoint
until thenth time it’s hit.

This command is allowed only when the program stopped due to a breakpoint.
At other times, the argument ¢ont is ignored.

If a breakpoint has a positive ignore count and a condition, the condition isn’t checked.
Once the ignore count reaches 0, the condition will start to be checked.

You could achieve the effect of the ignore count with a condition sufo@as<= Ousing
a debugger convenience variable that's decremented each time. That's why the ignore count
is considered a special case of a condition. See the section “Convenience Variables.”

Stopping and Continuing 25

26

Executing Commands at a Breakpoint

You can give any breakpoint a series of commands to execute when the program stops due
to that breakpoint. For example, you might want to print the values of certain expressions,
or enable other breakpoints.

commandsbnum
Specify commands for breakpoint numbeum The commands themselves
appear on the following lined. andwhile statements are allowed inside the
commands list. Type a line containing jesd to terminate the commands.

To remove all commands from a breakpoint, use the comomnohandsand
follow it immediately byend, that is, give no commands.

Breakpoint commands can be used to start up the program again. Simplyamsdithe
command, ostep, or any other command that resumes execution. However, any remaining
breakpoint commands are ignored. When the program stops again, GDB will act according
to why that stop took place.

If the first command specified slent, the usual message about stopping at a breakpoint
isn't printed. This may be desirable for breakpoints that are to print a specific message and
then continue. If the remaining commands also print nothing, you'll see no sign that the
breakpoint was reached at allent isn’t really a command; it's meaningful only at the
beginning of the commands for a breakpoint.

The commandschq output, andprintf , which allow you to print precisely controlled
output, are often useful in silent breakpoints. See the section “Commands for Controlled
Output.”

Here’s how you could use breakpoint commands to print the vakiatantry tdoo
whenever it’s positive. We assume that the newly created breakpoint is nurbbeald;
will print the number that’s assigned.

break foo if x>0
commands 4
silent

printf "X is %d\n",x
cont

end

The GNU Source-Level Debugger

or

break foo

commands 4

silent

if (x > 0)
printf "X is %d\n",x
end

cont

end

One application for breakpoint commands is to correct one bug so you can test another. Put
a breakpoint just after the erroneous line of code, give it a condition to detect the case in
which something erroneous has been done, and give it commands to assign correct values
to any variables that need them. End withdbet command so that the program doesn’t

stop, and start with th&lent command so that no output is produced. Here’s an example:

break 403
commands 5
silent
setx=y+4
cont

end

One deficiency in the operation of breakpoints that continue automatically appears when
your program uses raw mode for the terminal. GDB reverts to its own terminal modes (not
raw) before executing commands, and then must switch back to raw mode when your
program is continued. This causes any pending terminal input to be lost.

You could get around this problem by putting the actions in the breakpoint condition
instead of in commands. For example,

condition5 (x=y +4),0

is a condition expression that will changas needed, then always have the value 0 so the
program won't stop. Loss of input is avoided here because break conditions are evaluated
without changing the terminal modes. When you want to have nontrivial conditions for
performing the side effects, the operai&é&s, ||, and?: may be useful.

Stopping and Continuing 27

28

Breakpoint Menus

In Objective-C and C++, classes can use the same names for their methods or member
functions. This is called overloading. When a function name or method name is overloaded,
break functionis not enough to tell GDB where you want a breakpoint. In this instance,
GDB offers you a menu of numbered choices for different possible breakpoints and waits
for your selection.

Continuing

After your program stops, most likely you’ll want it to run some more if the bug you're
looking for hasn’t happened yet. You can do this withcth&inue command:

continue Continue running the program at the place where it stopped.

If the program stopped at a breakpoint, the place to continue running is the address of the
breakpoint. You might expect that continuing would just stop at the same breakpoint
immediately. In factgontinue takes special care to prevent that from happening. You don’t
need to clear the breakpoint to proceed through it after stopping at it.

You can, however, specify an ignore count for the breakpoint that the program stopped
at, by means of an argument to tdmmntinue command. See the section “Break
Conditions” above.

If the program stopped because of a signal other than SIGINT or SIGTRAP, continuing will
cause the program to see that signal. You may not want this to happen. For example, if the
program stopped due to some sort of memory reference error, you might store correct
values into the erroneous variables and continue, hoping to see more execution; but the
program would probably terminate immediately as a result of the fatal signal once it sees
the signal. To prevent this, you can continue wignal Q You can also act in advance to
prevent the program from seeing certain kinds of signals, usiratithe command (see

the section “Signals”).

You can usdg as a synonym farontinue.

Stepping

Stepping means setting your program in motion for a limited time, so that control will
return automatically to the debugger after one line of code or one machine instruction.

The GNU Source-Level Debugger

Breakpoints are active during stepping and the program will stop for them even if it hasn’t
gone as far as the stepping command specifies.

step[couni

Continue running the program until control reaches a different line, then stop
it and return to the debugger. If an argument is specified, proceedtap, in

but do sacounttimes. If a breakpoint or a signal not related to stepping is
reached beforeountsteps, stepping stops right away. You can abbreviate this
command as.

next [couni

finish

until

Similar tostep, but any function calls appearing within the line of code are
executed without stopping. Execution stops when control reaches a different
line of code at the stack level which was executing whendRecommand

was given. An argument is a repeat count, asdp You can abbreviate this
command as.

Continue running until just after the selected stack frame returns (or until
there’s some other reason to stop, such as a fatal signal or a breakpoint).
Upon return, the value returned is printed and put in the value history.
Contrast this with theeturn command, described in the section “Returning
from a Function.”

Continue running until a source line past the current line in the current stack
frame is reached. This command is used to avoid single stepping through a loop
more than once. ltis like text command, except that whantil encounters

a jump, it automatically continues execution until the program counter is
greater than the address of the jump. This means that when you reach the end
of a loop after single stepping throughuitii makes your program continue
execution until it exits the loop. In contrashext command at the end of a

loop simply steps back to the beginning of the loop.

until linenum

Continue running until line numbé&nenumis reached or the current stack
frame returns. This is equivalent to setting a breakpoiirteatum executing
afinish command, and deleting the breakpoint. This form of the command uses
breakpoints and hence is quicker thamil without an argument.

stepi[couni

Execute one machine instruction, then stop and return to the debugger. It's
often useful to ddlisplay/i $pcwhen stepping by machine instructions. This
will cause the next instruction to be executed to be displayed automatically at
each stop (see the section “Automatic Display”). An argument is a repeat
count, as irstep. You can abbreviate this commandsas

Stopping and Continuing 29

nexti [couni
Proceed one machine instruction, but if it's a subroutine call, proceed until the
subroutine returns. An argument is a repeat count, @exin You can
abbreviate this command as

A typical technique for using stepping is to put a breakpoint at the beginning of the function
or the section of the program in which a problem is believed to lie, and then step through
the suspect area examining interesting variables until the problem happens.

Thecontcommand can be used after stepping to resume execution until the next breakpoint
or signal.

Examining the Stack

30

When your program has stopped, the first thing you need to know is where it stopped and
how it got there.

Each time your program performs a function call, the information about where in the
program the call was made from is saved in a block of data caltadkaframeThe frame

also contains the arguments of the call and the local variables of the function that was
called. All the stack frames are allocated in a region of memory called the call stack.
When your program stops, the GDB commands for examining the stack allow you to see
all this information.

Stack Frames

The call stack is divided into contiguous pieces called frames; each frame is the data
associated with one call to one function. The frame contains the arguments given to the
function, the function’s local variables, and the address at which the function is executing.

When your program is started, the stack has only one frame, that of the funatngh

This is called the initial frame, or the outermost frame. Each time a function is called, a new
frame is made. Each time a function returns, the frame for that function invocation is
eliminated. If a function is recursive, there can be many frames for the same function. The
frame for the function in which execution is actually occurring is called the innermost
frame. This is the most recently created of all the stack frames that still exist.

Inside your program, stack frames are identified by their addresses. A stack frame consists
of many bytes, each of which has its own address; each kind of computer has a convention

The GNU Source-Level Debugger

for choosing the address of one of those bytes to serve as the address of the frame. Usually
this address is kept in a register called the frame pointer register while execution is going
on in that frame.

GDB assigns numbers to all existing stack frames, starting with 0 for the innermost frame,
1 for the frame that called it, and so on upward. These numbers don't really exist in your
program; they simply give you a way of talking about stack frames in GDB commands.

At any given time, one of the stack frames is selected by GDB; many GDB commands refer
implicitly to this selected frame. In particular, whenever you ask GDB for the value of a
variable in the program, the value is found in the selected frame. You can select any
frame using thérame, up, anddown commands; subsequent commands will operate

on that frame.

When the program stops, GDB automatically selects the currently executing frame
and describes it briefly, as thame command does (see the section “Information about
a Frame”).

Some compilers provide a way to compile functions so that they operate without stack
frames. (For example, the GCC optidomit-frame-pointer generates functions without

a frame.) This is occasionally done with heavily used library functions to save the frame
setup time. GDB has limited facilities for dealing with these function invocations. If the
innermost function invocation has no stack frame, GDB nevertheless regards it as though it
had a separate frame, which is numbered zero as usual, allowing correct tracing of the
function call chain. However, GDB has no provision for frameless functions elsewhere in
the stack.

Backtraces

A backtrace is a summary of how the program got where it is. It shows one line per frame,
for many frames, starting with the currently executing frame (frame 0) followed by its caller
(frame 1), and on up the stack.

Each line in a backtrace shows the frame number, the program counter, the function and its
arguments, and the source file name and line number (if known). For example:

(gdb) backtrace

#0 0x3eb6 in fflush ()

#1 0x24b0 in _fwalk ()
#2 0x2500 in _cleanup ()
#3 0x2312 in exit ()

Examining the Stack 31

32

backtrace [n]
Print a backtrace of the entire stack: one line per frame for all frames in the
stack. You can stop the backtrace at any time by typing the system interrupt
character, normally Control-C. With a positive argument, the command prints
the innermosh frames; with a negative argument, it prints the outermost
frames. You can abbreviate this commanbtagwo aliases for this command
arewhere andinfo stack.

Selecting a Frame

Most commands for examining the stack and other data in the program work on whichever
stack frame is selected at the moment. Below are the commands for selecting a stack frame.

framen Selectand print frame numberRecall that frame 0 is the innermost (currently
executing) frame, frame 1 is the frame that called the innermost one, and so on.
The highest-numbered framenmin’s frame.

frame addr
Select and print the frame at addraddr. This is useful mainly if the chaining
of stack frames has been damaged by a bug, making it impossible for GDB to
assign numbers properly to all frames. In addition, this can be useful if the
program has multiple stacks and switches between them.

upn Select and print the franmeframes up from the frame previously selected. For
positive numbers, this advances toward the outermost frame, to higher frame
numbers, to frames that have existed longeéefaults to 1.

up-silently n
Same as thep command, but doesn’t print anything (this is useful in
command scripts).

downn Select and print the frammeframes down from the frame previously selected.
For positive numbers, this advances toward the innermost frame, to lower
frame numbers, to frames that were created more recexidfaults to 1.

down-silently n
Same as thdown command, but doesn’t print anything (this is useful in
command scripts).

All these commands (excepp-silently anddown-silently) end by printing some
information about the frame that has been selected: the frame number, the function name,

The GNU Source-Level Debugger

the arguments, the source file and line number of execution in that frame, and the text of
that source line. For example:

#3 main (argc=3, argv=?7?, env=??) at main.c, line 67
67 read_input_file (argv[i]);

After such a printout, thisst command with no arguments will print ten lines centered on
the point of execution in the frame. See the section “Printing Source Lines.”

Information about a Frame

There are several other commands to print information about the selected stack frame.

frame [n] This command prints a brief description of the selected stack frame. With an
argument, this command is used to select a stack frame (the argument can be a
stack frame number or the address of a frame); with no argument, it doesn’t
change which frame is selected, but still prints the same information. You can
abbreviate this command fs

info frame
This command prints a verbose description of the selected stack frame,
including the address of the frame, the addresses of the next frame down
(called by this frame) and the next frame up (caller of this frame), the address
of the frame’s arguments, the program counter saved in it (the address of
execution in the caller frame), and which registers were saved in the frame. The
verbose description is useful when something has gone wrong that has made
the stack format fail to fit the usual conventions.

info frame addr
Print a verbose description of the frame at addadds without selecting that
frame. The selected frame remains unchanged by this command.

info args Print the arguments of the selected frame, each on a separate line.

info locals Print the local variables of the selected frame, each on a separate line.

Examining Source Files

GDB knows which source files your program was compiled from, and can print parts of
their text. When your program stops, GDB spontaneously prints the line it stopped in.

FExamining Source Files 33

Likewise, when you select a stack frame (see the section “Selecting a Frame”), GDB prints
the line in which execution in that frame has stopped. You can also print parts of source files
by explicit command.

Viewing Files in Project Builder

To be able to dynamically open and view source files in Project Builder, ugeuhe
command.

view [host]
Cause source files to be viewed in Project Builder, either on the local machine
or on a remotéost

unview Cause source files not to be viewed in Project Builder.

Printing Source Lines

To print lines from a source file, use i command (abbreviatdyl There are several
ways to specify what part of the file you want to print.

Here are the most commonly used formgheflist command:

list inenum
Print lines centered aroutidenumin the current source file.

list function
Print lines centered around the beginninduoiction

list Print more lines. If the last lines printed were printed witktacommand, this
prints lines following the last lines printed; however, if the last line printed was
a solitary line printed as part of displaying a stack frame (see the section
“Examining the Stack”), this prints lines centered around that line.

list - Print lines just before the lines last printed.

By default, GDB prints ten source lines with any of these forms distheommand. You
can change this usirggt listsize

set listsizecount
Make thelist command display count source lines (unless the list argument
explicitly specifies some other number).

34 The GNU Source-Level Debugger

show listsize
Display the number of lines thidt prints.

You can repeatlést command by pressing the Return key; however, any argument that was
used is discarded, so this is equivalent to typing sifigilyAn exception is made for an
argument of; that argument is preserved in repetition so that each repetition moves up in
the file.

In general, théist command expects you to supply zero, one, or two linespecs. Linespecs
specify source lines; there are several ways of writing them but the effect is always to
specify some source line. The possible argumentgstare as follows:

list Jast Print lines ending wittast

list first, Print lines starting witHirst.

list + Print lines just after the lines last printed.
list - Print lines just before the lines last printed.
list linespec

Print lines centered around the line specifiedingspec(described below).

list first,last
Print lines fronfirst to last. Both arguments atmespes.

Here are the possible ways to specify a valudifiespec

linenum Specifies lindinenumof the current source file. Whetfist command has two
linespes, this refers to the same source file as thelifiestpec

+offset Specifies the lineffsetlines after the last line printed. When used as the second
linespecn alist command, this specifies the lioffisetlines down from the
first linespec

—offset Specifies the lineffsetlines before the last line printed.

file:linenum
Specifies lindinenumin the source fildile.

function Specifies the line of the left brace ({) that begins the bodyradtion

file:function
Specifies the line of the left brace ({) that begins the bodyradtionin file.
The file name is needed with a function name only for disambiguating
identically named functions in different source files.

FExamining Source Files 35

*addr Specifies the line containing the program addaglsk addr may be any
expression.

Theinfo line command is used to map source lines to program addresses:

info line [line]
Print the starting and ending addresses of the compiled code for source line
line, which can be specified as:

linenum to list around that line in current file,

file:linenum to list around that line in that file,

function to list around beginning of that function, or
file:function to distinguish among like-named static functions.

With no argument, the command describes the last source line that was listed.

The default address for tReommand is changed to the starting address of the
line, so thak/i is sufficient to begin examining the machine code (see the
section “Examining Memory"). Also, this address is saved as the value of the
convenience variab®_(see the section “Convenience Variables”).

Searching Source Files

Theforward-search command (or its aliasearch and thaeverse-searchcommand are
useful when you want to locate text within the current source file.

forward-search regexp

searchregexp
This command checks each line, starting with the one following the last line
listed, for a match foregexp which must be a UNIX regular expression (see
the UNIX manual page fad). It lists the line that’s found. You can abbreviate
this command al®.

reverse-searchregexp
The command checks each line, starting with the one before the last line listed
and going backward, for a match fegexp It lists the line that's found. You
can abbreviate this commandras.

36 The GNU Source-Level Debugger

Specifying Source Directories

Executable programs sometimes don’t record the directories of the source files they were
compiled from, just the names. Even when they do, the directories could be moved between
the compilation and your debugging session. GDB remembers a list of pathnames of
directories in which it will search for source files; this list is called the source path (note
that GDB doesn'’t use the environment variable PATH to search for source files). Each time
GDB wants a source file, it tries each directory in the list, starting from the beginning, until

it finds a file with the desired name.

When you start GDB, its source path is sekddir:$cwd (the current working directory,
and the directory in which the source file was compiled into object code). To add other
directories, use thdirectory command:

directory dirname
Add directory with the pathnanuérnameto the beginning of the source path.
Several directory names may be given to this command separated by a colon
or whitespace. You may specify a directory that is already in the source path;
this move it forward so GDB searches it sooner.

directory Reset the source pathodir:$cwd, the default. This requires confirmation.

Examining Data

The most common way to examine data in your program is witbrithie command
(abbreviateg) or its synonymnspect

print exp This command evaluates and prints the value of any valid expression of the
language the program is written in (currently, C, C++, and Obijective-C).
Variables accessible are those of the lexical environment of the selected stack
frame, plus all those whose scope is global or an entire file.

expis any valid expression, and the valuexpis printed in a format
appropriate to its data type. To print data in another format, you caaxp#st
the desired type or use tkeommand.

Examining Data 37

$numgets previous value numbarm $ and$$ are the last two values$num

refers to thenunith value back from the last one. Names starting Witbfer

to registers (with the values they would have if the program were to return to
the stack frame now selected, restoring all registers saved by frames farther in)
or else to debugger convenience variables (any such name that isn’t a known
register). Use assignment expressions to give values to convenience variables.

{typgadrexprefers to a datum of data tyfype located at addressirexp @

is a binary operator for treating consecutive data objects anywhere in memory
as an arrayfoo@numgives an array whose first elemenfioig, whose second
element is stored in the space following wheueis stored, etdoo must be

an expression whose value resides in memory.

expmay be preceded withmt, wherefmtis a format letter but no count or size
letter (see the description of tkeommand).

print-object object
Printobjectby sendinglescription to it. objectmust be an Objective-C object.
You can abbreviate this commandpas

setexp Thesetcommand works like therint command, except that the expression’s
value isn’t displayed. This is useful for modifying the state of your program.
For example:

set x=3
set close_all_files()

Another way to examine data is with theommand (see “Examining Memory” below). It
examines data in memory at a specified address and prints it in a specified format.

If you are interested in information about types or about how the fields of a struct or class
are declared, use tiptdype command rather thaorint .

Expressions

Many different GDB commands accept an expression and compute its value. Any kind of
constant, variable, or operator defined by the programming language you're using is legal
in an expression in GDB. This includes conditional expressions, function calls, casts, and
string constants. It unfortunately does not include symbols defined by preprdickfaoer
constants.

GDB supports three kinds of operators in addition to those of programming languages:

38 The GNU Source-Level Debugger

file-or-function: variable-name
.. allows you to specify a variable in terms of the file or function it's defined in.

@ @ s a binary operator for treating parts of memory as arrays. See the section
“Artificial Arrays” below for more information.

{typg addr
Refers to an object of typigpestored at addressldrin memoryaddr may be

any expression whose value is an integer or pointer (but parentheses are
required around nonunary operators, just as in a cast). This construct is allowed
no matter what kind of data is officially supposed to resice dit

Program Variables

The most common kind of expression to use is the name of a variable in your program.

Variables in expressions are understood in the selected stack frame (see the section
“Selecting a Frame”); they must be either global (or static) or visible according to the scope
rules of the programming language from the point of execution in that frame. This means
that in the function

foo (a)
int a;
{
bar (a);
{
int b =test ();
bar (b);
}
}

the variablea is usable whenever the program is executing within the funfctagly but
the variabléb is usable only while the program is executing inside the block in vihich
is declared.

There is an exception: you can refer to a variable or function whose scope is a single source
file even if the current execution point is not in this file. But it is possible to have more than
one such variable or function with the same name (in different source files). If that happens,
referring to that name has unpredictable effects. If you wish, you can specify a static
variable in a particular function or file, using the colon-colon notation:

file:: variable
function: variable

Examining Data 39

40

Warning:

Herefile or functionis the name of the context for the static variable. In the case of file
names, you can use quotes to make sure GDB parses the file name as a single word—for
example, to print a global value flefined inf2.c:

(gdb) p 'f2.c":x

This use of colon-colon is very rarely in conflict with the very similar use of the same
notation in C++. GDB also supports use of the C++ scope resolution operator in GDB
expressions.

Occasionally, a local variable may appear to have the wrong value at certain points in a
function—just after entry to a new scope, and just before exit. You may see this problem
when you are stepping by machine instructions. This is because on most machines it takes
more than one instruction to set up a stack frame (including local variable definitions); if
you are stepping by machine instructions, variables may appear to have the wrong values
until the stack frame is completely built. On exit, it usually also takes more than one
machine instruction to destroy a stack frame; after you begin stepping through that group
of instructions, local variable definitions may be gone.

Artificial Arrays

It's often useful to print out several successive objects of the same type in memory (for
example, a section of an array, or an array of dynamically determined size for which only
a pointer exists in the program).

This can be done by constructing an “artificial array” with the binary ope@tdhe left
operand of@ should be the first element of the desired array, as an individual object. The
right operand should be the length of the array. The result is an array value whose elements
are all of the type of the left argument. The first element is actually the left argument; the
second element comes from bytes of memory immediately following those that hold the
first element, and so on. For example, if a program says

int *array = (int *) malloc (len * sizeof (int));
you can print the contents afray with
p *array@len

The left operand of® must reside in memory. Array values made v@tlin this way
behave just like other arrays in terms of subscripting, and are coerced to pointers when used
in expressions.

The GNU Source-Level Debugger

Sometimes the artificial array mechanism is not quite enough; in moderately complex data
structure, the elements of interest may not actually be adjacent—for example, if you are
interested in the values of pointers in an array. One useful work-around in this situation is
to use a convenience variable as a counter in an expression that prints the first interesting
value and then repeat that expression using a carriage return. For instance, suppose you
have an arragtab of pointers to structures, and you are interested in the values of a field
fv in each structure. Here is an example of what you might type:

set $i=0

p dtab[$i++]->fv
<CR>

<CR>

Output Formats

GDB normally prints all values according to their data types. Sometimes this isn’t what you
want. For example, you might want to print a number in hexadecimal, or a pointer in
decimal. Or you might want to view data in memory at a certain address as a character
string or an instruction. These things can be done with output formats.

The simplest use of output formats is to specify how to print a value already computed. This
is done by starting the arguments of piimt command with a slash and a format letter.
The format letters supported are:

X Regard the bits of the value as an integer, and print the integer in hexadecimal.
d Print as integer in signed decimal.

u Print as integer in unsigned decimal.

o] Print as integer in octal.

t Print as integer in binary.

a Print as an address, both absolute in hexadecimal and then relative to a symbol

defined at an address below it.

c Regard as an integer and print as a character constant.

Examining Data 41

42

f Regard the bits of the value as a floating-point number and print using typical
floating-point syntax.

For example, to print the program counter in hexadecimal (see the section “Registers”),
type

p/x $pc

No space is required before the slash because command names in GDB can’t contain
a slash.

To reprint the last value in the value history with a different format, you can uggrthe
command with just a format and no expression. For examleeprints the last value in
hexadecimal.

Examining Memory

The commana (for “examine”) can be used to examine memory under explicit control of
formats, without reference to the program’s data types.

x is followed by a slash and an output format specification, followed by an expression for
an address:

x/nfu addr

The expressioaddr doesn't need to have a pointer value (though it may); it's used as an
integer, as the address of a byte of memory.

n, f, andu are all optional parameters that specify how much memory to display and how
to format it;addr is an expression giving the address where you want to start displaying
memory. If you use the defaults faiu, you need not type the slash. Several commands set
convenient defaults faddr.

n, the repeat count
The repeat count is a decimal integer; the default is 1. It specifies how much
memory (counting by unitg) to display.

f, the display format
The display format is one of the formats used by pring,(oull-terminated
string) ori (machine instruction). The defaulbighexadecimal) initially, or
the format from the last time you usgdnt or x.

The GNU Source-Level Debugger

u, the unit size
These letters specify the size of unit to examine:

b Examine individual bytes.

h Examine halfwords (two bytes each).
w Examine words (four bytes each).

g Examine giant words (eight bytes).

If neither the manner of printing nor the size of unit is specified, the default is the same
as was used last. If you don’t want to use any letters after the slash, you can omit the slash
as well.

You can also omit the address to examine. Then the address used is just after the last unit
examined. This is why string and instruction formats actually compute a unit-size based on
the data: so that the next string or instruction examined will start in the right place. The
print command sometimes sets the default address farabmmand; when the value

printed resides in memory, the default is set to examine the same locdtidime also

sets the default for to the address of the start of the machine code for the specified line
andinfo breakpoints sets it to the address of the last breakpoint listed.

When you repeat ancommand by pressing the Return key, the address specified
previously (if any) is ignored; instead, the command examines successive locations in
memory rather than the same one.

You can examine several consecutive units of memory with one command by writing a
repeat count after the slash (before the format letters, if any). The repeat count must be a
decimal integer. It has the same effect as repeatingdbemand that many times except

that the output may be more compact with several units per line.

x/10i $pc

Prints ten instructions starting with the one to be executed next in the selected frame. After
doing this, you could print another ten following instructions with

x/10
in which the format and address are allowed to default.

The addresses and contents printed b tbemmand aren't put in the value history

because there’s often too much of them and they would get in the way. Instead, GDB makes
these values available for subsequent use in expressions as values of the convenience
variables$_and$__ (that is,$ followed by one or two underscores).

Examining Data 43

After anx command, the last address examined is available for use in expressions in the
convenience variab® . The contents of that address, as examined, are available in the
convenience variabl® .

If the x command has a repeat count, the address and contents saved are from the last
memory unit printed; this isn’t the same as the last address printed if several units were
printed on the last line of output.

Automatic Display

If you find that you want to print the value of an expression frequently (to see how it
changes), you might want to add it to the “automatic display list” so that GDB will print its
value each time the program stops. Each expression added to the list is given a number to
identify it; to remove an expression from the list, you specify that number. The automatic
display looks like this:

2: foo =38
3: bar[5] = (struct hack *) 0x3804

showing item numbers, expressions, and their current values.

display exp
Add the expressioaxpto the list of expressions to display each time the
program stops.

display/fmt exp
Add the expressioexpto the automatic display list, and display it in the format
fmt fmt should specify only a display format, not a size or count.

display/fmt addr
Add the expressioaddr as a memory address to be examined each time the
program stopgmt should be eitherors, or it should include a unit size or a
number of units. See the section “Examining Memory.”

undisplay [n ...]

delete display[arg ...]
Remove item number from the list of expressions to display. With no
argument, cancels all automatic-display expressions.

44 The GNU Source-Level Debugger

display Display the current values of the expressions on the list, just as is done when
the program stops.

info display
Print the list of expressions to display automatically, each one with its item
number, but without showing the values.

enable display[arg ...]
Enable some expressions to be displayed when the program stops. Arguments
are the code numbers of the expressions to resume displaying. No argument
means enable all automatic-display expressions.

disable display[arg ...]
Disable some expressions to be displayed when the program stops. Arguments
are the code numbers of the expressions to stop displaying. No argument
means disable all automatic-display expressions.

Value History

Every value printed by therint command is saved for the entire session in GDB'’s “value
history” so that you can refer to it in other expressions.

The values printed are given “history numbers” for you to refer to them by. These are
successive integers starting withptint shows you the history number assigned to a value
by printing$n = before the value, whereis the history number.

To refer to any previous value, ubéollowed by the value’s history number. The output
printed byprint is designed to remind you of thisalone refers to the most recent value
in the history, an®$ refers to the value before that.

For example, suppose you have just printed a pointer to a structure and want to see the
contents of the structure. It's enough to type

p*$

If you have a chain of structures where the compamexttpoints to the next one, you can
print the contents of the next one with

p *$.next

It might be useful to repeat this command many times by pressing the Return key.

Examining Data 45

46

Note that the history records values, not expressions. If the vakie dfand you type

print x
set x=5

then the value recorded in the value history bypit® command remains 4 even though
x's value has changed.

Convenience Variables

GDB provides “convenience variables” that you can use within GDB to hold a value for
future reference. These variables exist entirely within GDB; they aren't part of your
program, and setting a convenience variable has no effect on further execution of your
program. That's why you can use them freely.

Convenience variables have names starting $itkny name starting wit can be used
for a convenience variable, unless it's one of the predefined set of register names (see the
section “Registers”).

You can save a value in a convenience variable with an assignment expression, just as you
would set a variable in your program. For example:

set $foo = *object_ptr
would save irsfoo the value contained in the object pointed tambject_ptr.

Convenience variables don't need to be explicitly declared; using a convenience variable
for the first time creates it. However, its valugagd until you assign it a value. You can
alter the value with another assignment at any time.

Convenience variables have no fixed types. You can assign a convenience variable any type
of value, even if it already has a value of a different type. The convenience variable as an
expression has whatever type its current value has.

One way to use a convenience variable is as a counter to be incremented or a pointer to be
advanced. For example:

set$i=0
print bar[$i++]->contents
repeat that command by typing RET.

Some convenience variables are created automatically by GDB and given values likely to
be useful.

The GNU Source-Level Debugger

$ The variableb_ (single underscore) is automatically set byxfm®mmand to
the last address examined (see the section “Examining Memory”). Other
commands which provide a default addresxfiorexamine also sét to that
address; these commands include line andinfo breakpoint.

$ The variableb__ (two underscores) is automatically set byxtmmmand to
the value found in the last address examined.

Registers

Machine register contents can be referred to in expressions as variables with names starting
with $.

The name$pc and$spare used for the program counter register and the stack p8fpter.
is used for a register that contains a pointer to the current stack frame. To see a list of all the
registers, use the commaindo registers.

Some registers have distinct “raw” and “virtual” data formats. This means that the data
format in which the register contents are saved by the operating system isn’t the same one
that your program normally sees. For example, the registers of the 68882 floating-point
coprocessor are always saved in “extended” format, but all C programs expect to work with
“double” format. In such cases, GDB normally works with the virtual format only (the
format that makes sense for your program), buirtfeeregisters command prints the data

in both formats.

Register values are relative to the selected stack frame (see the section “Selecting a
Frame”). This means that you get the value that the register would contain if all stack
frames farther in were exited and their saved registers restored. In order to see the real
contents of all registers, you must select the innermost framef(auitie 0).

Some registers are never saved (typically those numbered O or 1) because they're used for
returning function values; for these registers, relativization makes no difference.

info registers [regnamé¢
With no argument, print the names and relativized values of all registers except
floating-point registers. With an argument, print the relativized value of
registerregnameregnamemay be any register name valid on the machine
you're using, with or without the initia.

info all-registers
Print the names and values of all registers, including floating-point registers.

For example, you could print the program counter in hexadecimal with

Examining Data 47

p/x $pc

or print the instruction to be executed next with
x/i $pc

or add 4 to the stack pointer with
set $sp +=4

The last is a way of removing one word from the stack. This assumes that the innermost
stack frame is selected. Settipgpisn’t allowed when other stack frames are selected.

Miscellaneous Commands

call arg Call a function in the inferior process. The argument is the function name and
arguments, in standard C notation. The result is printed and saved in the value
history, if it isn’t void.

disassembld arg [arg]]
Disassemble a specified section of memory. The default is the function
surrounding th@c of the selected frame. With a single argument, the function
surrounding that address is dumped. Two arguments are taken as a range of
memory to dump.

Examining the Symbol Table

48

The commands described in this section allow you to make inquiries for information about
the symbols (names of variables, functions, and types) defined in your program. GDB finds
this information in the symbol table contained in the executable file; it's inherent in the text

of your program and doesn't change as the program executes.

Occasionally, you may need to refer to symbols that contain unusual characters, which
GDB ordinarily treats as word delimiters. The most frequent case is in referring to static
variables in other source files. File names are recorded in object files as debugging symbols,
but GDB would ordinarily parse a typical file name, li#e.cas three wordg6o”, “ ", and

“c”. To allow GDB to recognize foo.c as a single symbol, enclose it in single quotes; for
examplep 'foo.c"::x looks up the value of in the scope of the fill®o.c.

The GNU Source-Level Debugger

whatis [exd
With no argument, print the data type$the last value in the value history.
With an argument, print the data type of expreseimexpisn’t actually
evaluated, and any operations inside it that have side effects (such as
assignments or function calls) don't take place.

info addresssymbol
Describe where the data feymbolis stored. For register variables, this says
which register. For other automatic variables, this prints the stack-frame offset
at which the variable is always stored. Note the contrastpniith & symbo)
which doesn’t work at all for register variables, and which for automatic
variables prints the exact address of the current instantiation of the variable.

info functions [regexp
With no argument, print the names and data types of all defined functions. With
an argument, print the names and data types of all defined functions whose
names contain a match for regular expressgexp(for information about
regular expressions, see the UNIX manual pagedp~or exampleinfo fun
stepfinds all functions whose names incluglep; info fun ~step finds those
whose names start witttep.

info source
Show the name of the current source file—that is, the source file for the
function containing the current point of execution—and the language it was
written in.

info sources
Print the names of all source files in the program for which there is debugging
information, organized into two lists: files whose symbols have already been
read, and files whose symbols will be read when needed.

info types [regexp
With no argument, print all data types that are defined in the program. With an
argument, print all data types that are defined in the program whose names
contain a match for regular expressiegexp

This command differs fromptype in two ways: first, likavhatis, it does not

print a detailed description; second, it lists all source files where a type is
defined.

Examining the Symbol Table 49

50

info variables [regexp
With no argument, print the names and data types of all top-level variables that
are declared outside functions. With an argument, print the names and data
types of all variables declared outside functions, whose names contain a match
for regular expressioregexp

ptype typename
Print a description of data tyygpenametypenamenmay be the name of a
type, or for C code it may have the fooassclass-namestruct struct-tag
union union-tagorenumenum-tag The selected stack frame'’s lexical context
is used to look up the name.

ptype [exd
Print a description of the type of expresse ptype differs fromwhatis by
printing a detailed description, instead of just the name of the type.

Setting Variables

set Perform an assignmewar = exp You must type the. var may be a debugger
convenience variable (a name starting \8jtha register (one of a few standard
names starting with), or an actual variable in the program being debugged.
expis any expression. Uset variablefor variables with names identical to
setsubcommands.

With a subcommand listed below, thetcommand modifies parts of the GDB
environment (you can see these environment settingshativand its
subcommands). In general, use(or no argument) to enable a feature, and
off to disable it.

set argsarg ...
Set arguments to give the program being debugged when it is started. Follow
this command with any number of arguments to be passed to the program.

set autoload-breakpointson/off
Set automatic resetting of breakpoints in dynamic code.

set autoload-symbolson/off
Set automatic loading of symbols of dynamic code.

set catch-user-commands-erroren/off
Set whether to ignore errors in user commands.

The GNU Source-Level Debugger

set complaintsnum
Set the maximum number of complaints about incorrect symbols.

set confirm on/off
Set whether to confirm potentially dangerous operations.

set demangle-stylen/off
Set the current C++ demangling style.

set editingon/off
Set command-line editing.

set environmentvar value
Set environment variable and value to give the program. Argumentarare
valuewherevar is the variable name andlueis the value. Values of
environment variables are uninterpreted strings. This command does not affect
the program until the nextin command.

set force_cplupluson/off
Set if you know better than debugger about C++.

set history expansioron/off
Set history expansion on command input.

set history filenamefile
Set the filename in which to record the command history (the list of previous
commands of which a record is kept).

set history ignoredupson/off
Set whether history condenses sequences of identical commands.

set history saveon/off
Set whether the history record is saved when yougekkit

set history sizesize
Set the size of the command history (the number of previous commands to
keep a record of).

set input-radix num
Set the default input radix for entering values.

set languagdang
Set the language to be used in debugging.

set lazy-readon/off
Set whether inferior's memory is read lazily.

Examining the Symbol Table 51

52

set listsizenum
Set the number of source lines GDB will print by default Wwith

set output-radix num
Set the default output radix for print values.

set print addresson/off
Set printing of addresses.

set print array on/off
Set pretty printing of arrays.

set print asm-demangleon/off
Set demangling of C++ names in disassembly listings.

set print demangleon/off
Set demangling of encoded C++ names when displaying symbols.

set print elementssize
Set limit on string chars or array elements to print. The atsises there to
be no limit.

set print max-symbolic-offsetmax-offset
Set the largest offset that will be printedsymbot1234 form.

set print null-stop on/off
Set printing of character arrays to stop at first null character.

set print object on/off
Set printing of object’s derived type based on vtable info.

set print pretty on/off
Set pretty printing of structures.

set print repeatssize
Set threshold for repeated print elements.

set print sevenbit-stringson/off
Set printing of 8-bit characters in strings\aisn

set print symbol-filenameon/off
Set printing of file name and line number with symbols.

set print union on/off
Set printing of unions interior to structures.

The GNU Source-Level Debugger

set print vtbl on/off
Set printing of C++ virtual function tables.

set prompt string
Set GDB's prompt. The argument is an unquoted string.

set radix on/off
Set the default input and output number radix.

set symbol-reloadingon/off
Set dynamic symbol table reloading multiple times in one run.

set verboseon/off
Set whether verbose printing of informational messages is enabled or disabled.

set view-hosthost
Set the host to connect to when viewing.

set view-programname
Set the name of the program to connect to when viewing.

set variablevar = exp
Same aset useset variablein cases wherear is identical to one of theet
subcommands.

Status Inquiries

info addressvar
Describe where the specified variable is stored.

info all-registers
List of all registers, including floating-point registers, and their contents.

info args Provide information about the argument variables of the current stack frame.

info breakpoints [num]
Provide information about the status of all breakpoints, or of breakpoint
numbemum The second column displaydgor enabled breakpoints,for
disabledo for enabled once (disable when hit) doior enabled but delete
when hit. The address and the file/line number are also displayed.

Examining the Symbol Table 53

54

The convenience variab$ and the default examine addressXarre set to
the address of the last breakpoint listed. The convenience vaiabiem
contains the number of the last breakpoint set.

info classes
Show all Objective-C classes (Mach only).

info copying
Show conditions for redistributing copies of GDB.

info display
Show expressions to display when program stops, with code numbers.

info files Show the names of targets and files being debugged. Shows the entire stack of
targets currently in use (including the exec-file, core-file, and process, if any),
as well as the symbol file name.

info float Show the status of the floating point unit.

info frame [addr]
Provide information about the selected stack frame, or the fraatkelat

info handle
Show what debugger does when program gets various signals.

info functions [regexp]
Show all function names, or those matchiegexp

info line [line_sped
Core addresses of the code for a source lime. speacan be specified as

linenum to list around that line in current file,

file:linenum to list around that line in that file,

function to list around beginning of that function, or
file:function to distinguish among like-named static functions.

The default is to describe the last source line that was listed.

This sets the default address xao the line’s first instruction so thaf
suffices to start examining the machine code. The address is also stored as the
value of$.

info locals
Provide information about the local variables of the current stack frame.

The GNU Source-Level Debugger

info program
Show the execution status of the program.

info registers|[register_namé
Show a list of registers and their contents for the selected stack frame. A
register name as argument means describe only that register.

info selectors
Show all Objective-C selectors (Mach only).

info set Show all GDB settings.

info signals[sig_num|
Show what GDB does when the program gets various signals. Specify a signal
number to print information about that signal only.

info sources
Show the names of source files in the program.

info source
Provide information about the current source file.

info stack [count]
Provide a backtrace of the stack, or of the innermashtframes.

info target
Same amfo files.

info terminal
Print inferior's saved terminal status.

info types| regexp]
Show all type names, or those matchiegexp

info variables [regexp]
Show all global and static variable names, or those matotgegp

info warranty
Show information pertaining to warranty.

info watchpoints [num]
Provide information about the status of all watchpoints, or of watchpoint
numbemum The second column displaygor enabled watchpoints arfor
disabled ones.

Examining the Symbol Table 55

56

show autoload-breakpoints
Show automatic resetting of breakpoints in dynamic code.

show autoload-symbols
Show automatic loading of symbols of dynamic code.

show args Show arguments to give program being debugged when it is started.

show catch-user-commands-errors
Show whether to ignore errors in user commands.

show commands
Show the status of the command editor.

show complaints
Show the maximum number of complaints about incorrect symbols.

show copying
Show conditions for redistributing copies of GDB.

show confirm
Show whether to confirm potentially dangerous operations.

show convenience

Show the debugger convenience variables. These variables are created when
you assign them values; thusinp $foo=1 gives$foo the value 1. Values may
be of any type.

A few convenience variables are given values automaticéllyiolds the last
address examined withor info lines, and$__holds the contents of the last
address examined with

show demangle-stylen/off

Show the current C++ demangling style.

show directories

Current search path for finding source fif=ndin the path means the current
working directory$cdir in the path means the compilation directory of the
source file.

show editing

Show command-line editing.

The GNU Source-Level Debugger

show environment[var]
Show the environment to give the program, or one variable’s value. With an
argumentar, prints the value of environment varialhe to give the program
being debugged. With no arguments, prints the entire environment to be given
to the program.

show force_cplusplus
Show if you know better than the debugger about C++.

show history expansion
Show history expansion on command input.

show history filename
Show the filename in which to record the command history (the list of previous
commands of which a record is kept).

show history ignoredups
Show whether history condenses sequences of identical commands.

show history save
Show saving of the history record on exit.

show history size
Show the size of the command history (that is, the number of previous
commands to keep a record of).

show input-radix
Show the default input radix for entering values.

show language
Show the programming language being used in debugging.

show lazy-read
Show if inferior’'s memory is read lazily.

show listsize
Show the number of lines printed list with no argument.

show output-radix num
Show the default output radix for print values.

Examining the Symbol Table 57

58

show paths
Show the current search path for finding object fifesd in the path
means the current working directory. This path is likeRRATH shell
variable; that is, a list of directories separated by colons. These directories are
searched to find fully linked executable files and separately compiled object
files as needed.

show print address
Show printing of addresses.

show print array
Show prettyprinting of arrays.

show print asm-demangle
Show demangling of C++ names in disassembly listings.

show print demangle
Show demangling of encoded C++ names when displaying symbols.

show print elements
Show limit on string chars or array elements to print.

show print max-symbolic-offset
Show the largest offset that will be printedsimbot1234 form.

show print null-stop
Show printing of character arrays to stop at first null character.

show print object
Show printing of object’s derived type based on vtable info.

show print pretty
Show pretty printing of structures.

show print repeats
Show threshold for repeated print elements.

show print sevenbit-strings
Show printing of 8-bit characters in stringsiasn

show print symbol-filename
Show printing of file name and line number with symbols.

show print union
Show printing of unions interior to structures.

show print vtbl
Show printing of C++ virtual function tables.

show prompt
Show GDB'’s prompt.

show radix
Show the default input and output number radix.

show symbol-reloading
Show if dynamic symbol table reloads multiple times in one run.

show valueq idx]
Elements of value history around item numiokr(or last ten).

show verbose
Show whether verbosity is on or off.

show version
Report what version of GDB this is.

show view-host
Show host to connect to when viewing.

show view-program
Show name of program to connect to when viewing.

show user
Show definitions of user-defined commands.

show warranty
Show information pertaining to warranty.

Debugging PostScript Code

This section describes three commands that are useful when debugging PostScript
source files.

These commands aren’t built-in commands; rather, the OPENSTEP environment defines
them in a systengdbinit file located in the directorfusr/lib. This file is read when you
start running GDB (the contents of this file are shown later in this chapter).

Debugging PostScript Code 59

showps shownops
Theshowpsandshownopscommands turn on and off (respectively) the
display of PostScript code being sent from your application to the Window
Server. Your application must be running before you can issue either of these
commands.

flushps Theflushpscommand sends pending PostScript code to the Window Server.
This command lets you flush the application’s output buffer, causing any
PostScript code waiting there to be interpreted immediately. Your application
must be running before you can issue this command.

traceevents
Trace PostScript events. When an event is queued, it is logged to standard error.

tracenoevents
Turn off tracing of PostScript events.

waitps Wait until the DPS context’s destination is ready to receive more input.

Debugging Objective-C Code

60

This section provides information about some commands and command options that are
useful for debugging Objective-C code.

Setting the Language

The syntax accepted by certain GDB commands, subteag, is determined by the
programming lanugage being debugged. By default, the language is set to C, so you can
always use C syntax in GDB commands. On Mach, when the language is set to C, GDB
also accepts Objective-C syntax (for example, the use of colons in method names and the
message-sending syntax) . In the PDO version of GDB, the language must be set to
Objective-C for the debugger to be able to accept Objective-C syntax in commands.

GDB tries to set the language it accepts in its commands according to the language that the
program being debugged uses. If the program’s source files have the extansiow

then GDB assumes that the program is written in Objective-C and sets the language it
accepts accordingly. Thelmow languagecommand displays what the language is currently

set to. You can use tlset languagecommand to override the value. To set the language to
Objective-C, enter this command:

The GNU Source-Level Debugger

set language objective ¢

Theset languagecommand is particularly useful if you're debugging a mixed-language
program. For example, if you're stopped in a C module and you want to send a message to
an Objective-C object, you won't be able to because GDB won't recognize the square
bracket syntax as an Objective-C message. You must first set the language to Objective-C,
then send the message.

Method Names in Commands

The following commands have been extended to accept Objective-C method names as line
specifications:

clear
break
info line
jump
list

For example, to set a breakpoint at¢heateinstance method of class Fruit in the program
currently being debugged, enter:

break —[Fruit create]
To list ten program lines around the initialize class method, enter:
list +[NSText initialize]

In the PDO version of GDB, the plus or minus sign is required. On Mach, the plus or minus
sign is optional, but you can use it to narrow the search. On Mach, it's also possible to
specify just a method name:

break create

You must specify the complete method name, including any colons. If your program’s
source files contain more than ameate method, you'll be presented with a numbered list

of classes that implement that method. Indicate your choice by number, or type O to exit if
none apply.

As another example, to clear a breakpoint established atakeKeyAndOrderFront:
method of the NSWindow class, enter:

Debugging Objective-C Code 61

62

clear -[NSWindow makeKeyAndOrderFront:]

If you're using the PDO version of GDB and you don’t know the exact method name or you
don’t know the name of the class to which it belongs, you can ussgfdHenctions

command to find out. (On Mach, you can useitifie selectorscommand instead.) Use

info functions followed by a regular expression to narrow the search. For example, to find
out all the methods and functions that contain the string “set,” enter:

info functions set

To find just the methods that contain “set,” include the bracket in the regular expression.
(You must escape the braket with a backslash because it is part of the regular expression
syntax.)

info functions \[.*set

To find just the methods that begin with the string “set,” include the space as part of the
name:

info functions \[.* set

Command Descriptions

This section describes commands and options that are useful in debugging Objective-C
code. Some of these are new commands that have been implemented in OPENSTEP, and
some are previously existing GDB commands that have been extended in OPENSTEP.

The info Command
Theinfo command takes two additional options on Mach:

info classeqregexp
Display all Objective-C classes in your application, or those matching the
regular expressioregexp

info selectors[regexp
Display all Objective-C selector names (or those matching the regular
expressiomegexp, and also each selector’s unique number.

The GNU Source-Level Debugger

If you don’t limit the command’s scope by entering a regular expression, the resulting
listing can be quite long. To terminate a listing at any point and return to the GDB prompt,
type Control-C.

Two standardnfo command options have been extended.iffeetypes command
recognizes and lists the Objectivadtype. Thenfo line command recognizes
Objective-C method names as line specifications.

The print Command

Theprint command has been extended to allow the evaluation of Objective-C objects and
message expressions. Consider, for example, this program excerpt:

@implementation Fruit : NSObject
{

char *color;
int diameter;

}

+ create {
id newlnstance;
newlnstance = [super new]; /I creates instance of Fruit
[newlInstance color:"green"]; // set the color
[newInstance diameter:1]; /I set the diameter
return newlnstance; // return the new instance

}
@énd

Once this code has been executed, you can use GDB to exsmwilmstanceby entering:
print newlnstance

The output looks something like this (of course, the address wouldn’t be the same):
$1 = (id) 0x1a020

As declarednewlInstanceis a pointer to an Objective-C object. To see the structure this
variable points to, enter:

print *newlnstance

Debugging Objective-C Code 63

GDB displays:

$3={
isa = 0x120b4;
color = 0x26bf "green";
diameter = 1;

}

This structure contains the instance variables defined above for objects of the Fruit class. It
also contains a pointer, callesh, that points to its class object. To see the identity of this
class, enter:

print *newlnstance->isa
GDB displays:

$4={
isa = 0x12090;
super_class = 0x124a4;
name = 0x125a2 "Fruit";
version = 0;
info=17;
instance_size = 12;
ivars = 0x1203c;
methods = 0x120ec;
cache = 0x22080;

}

The instance variableame verifies that this is an instance of the Fruit class.

You can also evaluate a message expression witrititecommand. As a by-product of
the evaluation, the message is sent to the receiving object. For example, the following
command sets the color of the Fruit object to red:

print [newlnstance color: "red"]

The set Command

Thesetcommand can be used to evaluate and send a message expression. For example, the
following command sets the color of the Fruit object to red:

set [newlInstance color: "red"]

64 The GNU Source-Level Debugger

The step Command

Thestepcommand has been extended to let you step through the execution of an
Objective-C message. By repeatedly executingtit|gcommand, you can watch the chain
of events that make up the execution of a message.

If you step into a message and don’t want to follow the details of its execution, enter:
finish

This command completes the execution of the message and stops the program at the next
statement. To avoid stepping into the message in the first place, nexthemmand

rather tharstep. Thenext command instructs GDB to execute the current command and
stop only when control returns to the current stack frame.

Debugging Mach Threads

The following commands have been provided in the Mach version of GDB to support the
debugging of Mach threads.

thread-list thread
List all threads that exist in the program being debugged (abbretliated

thread-selectthread
Select a thread (abbreviates)l. For examplets 2 selects thread 2.

Debugging Mach Core Files

OPENSTEP GDB has been extended to allow debugging of core files in the Mach-O file
format. Core files are generated in tberesdirectory, if it exists; otherwise, they're
generated in the current working directory.

Theinfo files command lists information about the contents of the core file. This tells you
what segments of address space exist in the core file, how many threads exist in the core
image, and what the program counter is for each thread. Thread 0 is selected by default, so
if you do abt it will apply to thread 0. Ththread-list andthread-selectcommands,
documented in the section “Debugging Mach Threads” above, work with core files. All the
normal debugger commands can also be used while debugging the core image.

Debugging Mach Threads 65

Altering Execution

66

There are several ways to alter the execution of your program with GDB commands.

Assignment to Variables

To alter the value of a variable, evaluate an assignment expression. For example:
print x=4

would store the value 4 into the variakleand then print the value of the assignment
expression (which is 4).

If you aren’t interested in seeing the value of the assignment, usettoenmand instead
of theprint commandsetis the same gxint except that the expression’s value isn't
printed and isn't put in the value history. The expression is evaluated only for side effects.

GDB allows more implicit conversions in assignments than C does; you can freely store an
integer value into a pointer variable or vice versa, and any structure can be converted to any
other structure that's the same length or shorter.

All the other C assignment operators such=aand++ are supported as well.

To store into arbitrary places in memory, use{thgconstruct to generate a value of
specified type at a specified address. For example:

set {int}0x83040 = 4

Continuing at a Different Address

jump linenum
Resume execution at line numtiaenum Execution may stop immediately if
there’s a breakpoint there.

Thejump command doesn’t change the current stack frame, or the stack
pointer, or the contents of any memory location or any register other than
the program counter. lihenumis in a different function from the one currently
executing, the results may be wild if the two functions expect different patterns
of arguments or of local variables. For this reasorjuting command requests
confirmation if the specified line isn’t in the function currently executing.

The GNU Source-Level Debugger

jump *address
Resume execution at the instruction at addadssess

A somewhat similar effect can be obtained by storing a new value into the répister
For example:

set $pc = 0x485

specifies the address at which execution will resume, but doesn’t resume execution. That
doesn’t happen until you use tbent command or a stepping command.

Giving Your Program a Signal

signal signal
Resume execution where your program stopped, but immediately give it the
signalsignal signalcan be the name or the number of a signal. For example,
on many systemsignal 2andsignal SIGINT are both ways of sending an
interrupt signal. Alternatively, gignalis 0, continue execution without giving
a signal. This is useful when your program stopped on account of a signal and
would ordinarily see the signal when resumed with the continue command;
signal Ocauses it to resume without a signal.

Invoking thesignal command is not the same as invokingkttieutility from the shell.
Sending a signal witkill causes GDB to decide what to do with the signal depending on
the signal handling tables. The signal command passes the signal directly to your program.

Altering Execution 67

Returning from a Function

return [exgd
You can make any function call return immediately by usingehen
command.

First select the stack frame that you want to return from (see the section
“Selecting a Frame”). Then type theturn command. If you want to specify
the value to be returned, give that as an argument.

The selected stack frame (and any other frames inside it) is popped, leaving its
caller as the innermost remaining frame. That frame becomes selected. The
specified value is stored in the registers used for returning values of functions.

Thereturn command doesn’t resume execution; it leaves the program stopped
in the state that would exist if the function had just returned. Contrast this with
thefinish command, which resumes execution until the selected stack frame
returns naturally.

Defining and Executing Sequences of Commands

68

GDB provides two ways to store sequences of commands for execution as a unit:
user-defined commands and command files.

User-Defined Commands

A “user-defined command” is a sequence of GDB commands to which you assign a new
name as a command. This is done withdéfne command.

The GNU Source-Level Debugger

definecommandname
Define a command namedmmandnamdf there’s already a command by
that name, you're asked to confirm that you want to redefine it.

The definition of the command is made up of other GDB command lines,
which are given following thdefine commandif andwhile statements are
allowed within the definition. The end of the command definition is marked by
a line containing just the commaadd. For example:

define w
where
end

documentcommandname
Create documentation for the user-defined comncantmandnamerlhe
commanccommandnammust already be defined. This command reads lines
of documentation just atefine reads the lines of the command definition.
After thedocumentcommand is finishedhelp on comman@ommandname
will print the documentation you have specified.

You may use thdocumentcommand again to change the documentation of a
command. Redefining the command wdfine doesn’t change the
documentation, so be sure to keep the documentation up to date.

User-defined commands may take up to 10 arguments. Within the definition of the
command, you refer to the argument$ag0, $argl, and so on up tharg9. For example,

if you defined a command that took two arguments, you refer to the first one specified on
the command line ekarg0 and the second one $argl.

When they're executed, the commands of the definition aren’t printed. An error in any
command stops execution of the user-defined command.

Commands that would ask for confirmation if used interactively proceed without asking
when used inside a user-defined command. Many GDB commands that normally print
messages to say what they're doing omit the messages when used in a user-defined
command.

Command Files
A command file for GDB is a file of lines that are GDB commands. Comments (lines

starting with#) may also be included. An empty line in a command file does nothing; it
doesn’t cause the last command to be repeated, as it would from the terminal.

Defining and Executing Sequences of Commands 69

70

When GDB starts, it automatically executes its “init files” (command files naydbahit).
GDB first reads the init file (if any) in your home directory and then the init file (if any) in
the current working directory. (The init files aren’t executed ifixeoption is given.) You
can also request the execution of a command file witedbeee command:

sourcefile
Execute the command fifee.

The lines in a command file are executed sequentially. They aren’t printed as they're
executed. An error in any command terminates execution of the command file.

Commands that would ask for confirmation if used interactively proceed without asking
when used in a command file. Many GDB commands that normally print messages to say
what they're doing omit the messages when used in a command file.

Commands for Controlled Output

During the execution of a command file or a user-defined command, the only output that
appears is what'’s explicitly printed by the commands of the definition. This section
describes three additional commands useful for generating exactly the output you want.

echotext Printtext Nonprinting characters can be includedeixt using C escape
sequences, suchasto print a newline. No newline will be printed unless you
specify one. In addition to the standard C escape sequences, a backslash
followed by a space stands for a space. This is useful for display a string with
space at the beginning or the end, since leading and trailing space are otherwise
trimmed from all arguments.

A backslash at the end wxtis ignored. It's useful for producing a string

ending in spaces, since trailing spaces are trimmed from all arguments. A
backslash at the beginning preserves leading spaces in the same way, because
the escape sequence backslash-space stands for a space. Thus, to print
“variable foo =", do

echo \ variable foo =\

output expression
Print just the value aéxpressionA newline character isn't printed, and the
value isn't entered in the value history.

output/fmt expression
Print the value oéxpressiorin formatfmt See “Output Formats” in the section
“Examining Data” for more information.

printf format-string arg [, arg] ...
Print the values of the arguments, under the contrarofat-string This
command is identical in its operation to its C library equivalent (see the UNIX
manual page foprintf() for format codes). The only backslash-escape
sequences that you can use in the format string are the simple ones that consist
of the backslash followed by a letter.

Miscellaneous Commands

make [args]
Run themake program using the rest of the line as arguments.

select-frame
Select the frame dp, pc.

shell[command
Execute the rest of the line as a shell command. With no arguments, run an
inferior shell.

Legal Considerations

Permission is granted to make and distribute verbatim copies of this chapter provided its
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this chapter under the
conditions for verbatim copying, provided also that the section entitled “GDB General
Public License” (below) is included exactly as in the original, and provided that the entire
resulting derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this chapter into another
language, under the above conditions for modified versions, except that the section entitled
“GDB General Public License” may be included in a translation approved by the author
instead of in the original English.

Miscellaneous Commands 71

72

Distribution

GNU software idree this means that everyone is free to use it and free to redistribute it on
a free basis. GNU software is not in the public domain; it is copyrighted and there are
restrictions on its distribution, but these restrictions are designed to permit everything that
a good cooperating citizen would want to do. What is not allowed is to try to prevent others
from further sharing any version of GNU software that they might get from you. The
precise conditions are found in the GNU General Public License that appears following
this section.

You may obtain a complete machine-readable copy of any OPENSTEP-modified source
code for Free Software Foundation software under the terms of Free Software Foundation’s
general public licenses, without charge except for the cost of media, shipping and handling,
upon written request to Technical Services at NeXT Software, Inc.

When making a request, please specify which GNU software programs you're interested in
receiving. GNU programs released by NeXT currently include:

gcc GNU compiler

gdb GNU debugger
gas GNU assembler
emacs GNU text editor

If you want an unmodified, verbatim copy of any GNU software (including GNU software
that's not part of the OPENSTEP software release), you can order it from the Free Software
Foundation. Though GNU software itself is free, the distribution service is not. For further
information, write to:

Free Software Foundation
675 Mass. Ave.
Cambridge, MA 02139

Income that Free Software Foundation derives from distribution fees goes to support the
Foundation’s purpose: the development of more free software to distribute.

GDB General Public License

The license agreements of most software companies keep you at the mercy of those
companies. By contrast, our general public license is intended to give everyone the right to
share GDB. To make sure that you get the rights we want you to have, we need to make
restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights.
Hence this license agreement.

The GNU Source-Level Debugger

Specifically, we want to make sure that you have the right to give away copies of GDB, that
you receive source code or else can get it if you want it, that you can change GDB or use
pieces of it in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else
of these rights. For example, if you distribute copies of GDB, you must give the recipients
all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is no
warranty for GDB. If GDB is modified by someone else and passed on, we want its
recipients to know that what they have is not what we distributed, so that any problems
introduced by others will not reflect on our reputation.

Therefore we (Richard Stallman and the Free Software Foundation, Inc.) make the
following terms which say what you must do to be allowed to distribute or change GDB.

Copying Policies

1. You may copy and distribute verbatim copies of GDB source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy
a valid copyright notice “Copyright (c) 1988 Free Software Foundation, Inc.” (or with
whatever year is appropriate); keep intact the notices on all files that refer to this License
Agreement and to the absence of any warranty; and give any other recipients of the GDB
program a copy of this License Agreement along with the program. You may charge a
distribution fee for the physical act of transferring a copy.

2. You may modify your copy or copies of GDB or any portion of it, and copy and
distribute such modifications under the terms of Paragraph 1 above, provided that you
also do the following:

» cause the modified files to carry prominent notices stating that you changed the files
and the date of any change; and

» cause the whole of any work that you distribute or publish, that in whole or in part
contains or is a derivative of GDB or any part thereof, to be licensed at no charge to
all third parties on terms identical to those contained in this License Agreement
(except that you may choose to grant more extensive warranty protection to some or
all third parties, at your option).

* You may charge a distribution fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

Legal Considerations 73

74

Mere aggregation of another unrelated program with this program (or its derivative) on
a volume of a storage or distribution medium does not bring the other program under the
scope of these terms.

3. You may copy and distribute GDB (or a portion or derivative of it, under Paragraph 2)
in object code or executable form under the terms of Paragraphs 1 and 2 above provided
that you also do one of the following:

e accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Paragraphs 1 and 2 above; or,

e accompany it with a written offer, valid for at least three years, to give any third party
free (except for a nominal shipping charge) a complete machine-readable copy of the
corresponding source code, to be distributed under the terms of Paragraphs 1 and 2
above; or,

e accompany it with the information you received as to where the corresponding
source code may be obtained. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable
form alone.)

For an executable file, complete source code means all the source code for all modules
it contains; but, as a special exception, it need not include source code for modules
which are standard libraries that accompany the operating system on which the
executable file runs.

4. You may not copy, sublicense, distribute or transfer GDB except as expressly provided
under this License Agreement. Any attempt otherwise to copy, sublicense, distribute or
transfer GDB is void and your rights to use the program under this License agreement
shall be automatically terminated. However, parties who have received computer
software programs from you with this License Agreement will not have their licenses
terminated so long as such parties remain in full compliance.

5. If you wish to incorporate parts of GDB into other free programs whose distribution
conditions are different, write to the Free Software Foundation at 675 Mass. Ave.,
Cambridge, MA 02139. We have not yet worked out a simple rule that can be stated
here, but we will often permit this. We will be guided by the two goals of preserving the
free status of all derivatives of our free software and of promoting the sharing and reuse
of software.

Your comments and suggestions about our licensing policies and our software are
welcome! Please contact the Free Software Foundation, Inc., 675 Mass. Ave., Cambridge,
MA 02139, or call (617)876-3296.

The GNU Source-Level Debugger

No Warranty

BECAUSE GDB IS LICENSED FREE OF CHARGE, WE PROVIDE ABSOLUTELY NO
WARRANTY, TO THE EXTENT PERMITTED BY APPLICABLE STATE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING, FREE SOFTWARE
FOUNDATION, INC, RICHARD M. STALLMAN AND/OR OTHER PARTIES
PROVIDE GDB “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF
GDB IS WITH YOU. SHOULD GDB PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW WILL RICHARD M.
STALLMAN, THE FREE SOFTWARE FOUNDATION, INC., AND/OR ANY OTHER
PARTY WHO MAY MODIFY AND REDISTRIBUTE GDB AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY LOST PROFITS, LOST
MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS) GDB, EVEN IF YOU HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY
ANY OTHER PARTY.

Legal Considerations 75

76 The GNU Source-Level Debugger

