
1

NSCopying

Adopted By: Various OpenStep classes

Declared In: Foundation/NSObject.h

Protocol Description

The NSCopying protocol declares a method for providing functional copies of an object. The exact meaning
of “copy” can vary from class to class, but a copy must be a functionally independent object with values
identical to the original at the time the copy was made. A copy produced with NSCopying is implicitly
retained by the sender, who is responsible for releasing it.

NSCopying declares one method, copyWithZone:, but copying is commonly invoked with the convenience
method copy. The copy method is defined for all NSObjects and simply invokes copyWithZone: with the
default zone.

Using NSCopying

NSCopying is frequently used to copy value objects—objects that represent attributes. C-type variables can
usually be substituted for value objects, but value objects have the advantage of encapsulating convenient
utilities for common manipulations. For example, NSString objects are used instead of character pointers
because they encapsulate encoding and storage. Despite NSString functionality, the role played by
NSStrings parallels the role played by character pointers.

When value objects are passed as method arguments or returned from a method, it is common to use a copy
instead of the object itself. For example, consider the following method for assigning a string to an object’s
name instance variable.

- (void)setName:(NSString *)aName

{

 [name autorelease];

 name = [aName copy];

}

Storing a copy of aName has the effect of producing an object that’s independent of the original, but has
the same contents. Subsequent changes to the copy don’t affect the original, and changes to the original
don’t affect the copy. Similarly, it is common to return a copy of an instance variable instead of the instance
variable itself. For example, this method returns a copy of the name instance variable:

- (NSString *)name

{

 return [[name copy] autorelease];

}

2

Implementing NSCopying

There are two basic approaches to creating copies. You can use alloc and init..., or you can use
NSCopyObject(). To choose the one that’s right for your class, you need to consider the following
questions:

• What kind of copying—deep or shallow—does your class need?
• Does your class’s superclass implement NSCopying?
• Are you familiar with the implementations of your class’s superclasses?

These areas are described in the following sections.

What kind of copying—deep or shallow—does your class need?

Generally, copying an object involves creating a new instance and initializing it with the values in the
original object. Copying the values for non-pointer instance variables, such as booleans, integers, and
floating points, is straightforward. When copying pointer instance variables there are two approaches. One
approach, called a shallow copy, copies the pointer value from the original object into the copy. Thus, the
original and the copy share referenced data. The other approach, called a deep copy, duplicates the data
referenced by the pointer and assigns it to the copy’s instance variable.

The implementation of an instance variable’s set method should reflect the kind of copying you need to use.
You should deeply copy the instance variable if the corresponding set method copies the new value as in
this method:

- (void)setMyVariable:(id)newValue

{

 [myVariable autorelease];

 myVariable = [newValue copy];

}

You should shallowly copy the instance variable if the corresponding set method retains the new value as
in this method:

- (void)setMyVariable:(id)newValue

{

 [myVariable autorelease];

 myVariable = [newValue retain];

}

Similarly, you should shallowly copy the instance variable if its set method simply assigns the new value to
the instance variable without copying or retaining it as in this method:

3

- (void)setMyVariable:(id)newValue

{

 myVariable = newValue;

}

To produce a copy of an object that’s truly independent of the original, the entire object must be deeply
copied. Every instance variable must be duplicated. If the instance variables themselves have instance
variables, those too must be duplicated, and so on. In many cases, a mixed approach is more useful. Pointer
instance variables that can be thought of as data containers are generally deeply copied, while more
sophisticated instance variables like delegates are shallowly copied.

For example, a Product class adopts NSCopying. Product instances have a name, a price, and a delegate as
declared in this interface.

@interface Product : NSObject <NSCopying>

{

 NSString *productName;

 float price;

 id delegate;

}

@end

Copying a Product instance produces a deep copy of productName because it represents a flat data value.
On the other hand, the delegate instance variable is a more complex object capable of functioning properly
for both Products. The copy and the original should therefore share the delegate. The following figure
represents the images of a Product instance and a copy in memory.

The different pointer values for productName illustrate that the original and the copy each have their own
productName string object. The pointer values for delegate are the same, indicating that the two product
objects share the same object as their delegate.

Does your class’s superclass implement NSCopying?

If the superclass does not implement NSCopying, your class’s implementation will have to copy the
instance variables it inherits as well as those declared in your class. Generally, the safest way to do this is
by using alloc, init..., and set methods. On the other hand, if your class inherits NSCopying behavior, its
implementation only has to copy instance variables declared in your class. It invokes the superclass’s
implementation to copy inherited instance variables.

original 0xf2ae4

isa 0x8028
productName 0xf2bd8
price 0.00
delegate 0xe83c8

copy 0x104074

isa 0x8028
productName 0xe81f4
price 0.00
delegate 0xe83c8

4

Are you familiar with the implementations of your class’s superclasses?

If your class inherits NSCopying behavior, how you handle the new instance variables in copyWithZone:
depends on your familiarity with the superclass’s implementation. There are essentially two ways to make
a copy of an object, using alloc and init... or using the function NSCopyObject(). If the superclass used or
might have used NSCopyObject(), you must handle instance variables differently than you would
otherwise.

Using the alloc, init... Approach

If a class does not inherit NSCopying behavior, you should implement copyWithZone: using alloc, init...,
and set methods. For example, an implementation of copyWithZone: for the Product class described above
might be implemented in the following way:

- (id)copyWithZone:(NSZone *)zone

{

 Product *copy = [[Product alloc]

 initWithProductName:[self productName]

 price:[self price]];

 [copy setDelegate:[self delegate]];

 return copy;

}

Because implementation details associated with inherited instance variables are encapsulated in the
superclass, it is generally better to implement NSCopying with the alloc, init... approach. Doing so uses
policy implemented in set methods to determine the kind of copying needed of instance variables.

Using NSCopyObject()

When a class inherits NSCopying behavior, you must consider the possibility that the superclass’s
implementation uses NSCopyObject(). NSCopyObject() creates an exact shallow copy of an object by
copying instance variable values but not the data they point to. For example, NSCell’s implementation of
copyWithZone: could be defined in the following way.

- (id)copyWithZone:(NSZone *)zone

{

 NSCell *cellCopy = NSCopyObject(self, 0, zone);

 /* Assume that other initialization takes place here. */

 cellCopy->image = nil;

 [cellCopy setImage:[self image]];

 return cellCopy;

}

5

In the implementation above, NSCopyObject() creates an exact shallow copy of the original cell. This
behavior is desirable for copying instance variables that aren’t pointers or are pointers to non-retained data
that is shallowly copied. Pointer instance variables for retained objects need additional treatment.

In the copyWithZone: example above, image is a pointer to a retained object. The policy to retain the image
is reflected in the following implementation of the setImage: accessor method.

- (void)setImage:(NSImage *)anImage

{

 [image autorelease];

 image = [anImage retain];

}

Notice that setImage: autoreleases image before it reassigns it. If the above implementation of
copyWithZone: hadn’t explicitly set the copy’s image instance variable to nil before invoking setImage:,
the image referenced by the copy and the original would be released without a corresponding retain.

Even though image points to the right object, it is conceptually uninitialized. Unlike the instance variables
that are created with alloc and init..., these uninitialized variables aren’t nil-valued. You should explicitly
assign initial values to these variables before using them. In this case, cellCopy’s image instance variable is
set to nil , then it is set using the setImage: method.

The effects of NSCopyObject() extend to a subclass’s implementation. For example, an implementation of
NSSliderCell could copy a new titleCell instance variable in the following way.

- (id)copyWithZone:(NSZone *)zone

{

 NSSliderCell *cellCopy = [super copyWithZone:zone];

 /* Assume that other initialization takes place here. */

 cellCopy->titleCell = nil;

 [cellCopy setTitleCell:[self titleCell]];

 return cellCopy;

}

The superclass’s copyWithZone: method is invoked to copy inherited instance variables. When you invoke
a superclass’s copyWithZone: method, assume that new object instance variables are uninitialized if there’s
any chance that the superclass implementation uses NSCopyObject(). Explicitly assign a value to them
before using them. In this example, titleCell is explicitly set to nil before setTitleCell: is invoked.

The implementation of an object’s retain count is another consideration when using NSCopyObject(). If an
object stores its retain count in an instance variable, the implementation of copyWithZone: must correctly
initialize the copy’s retain count. The following figure illustrates the process.

6

The first object represents a Product instance in memory. The value in refCount indicates that the instance
has been retained three times. The second object is a copy of the Product instance produced with
NSCopyObject(). Its refCount value matches the original. The third object represents the copy returned
from copyWithZone: after refCount is correctly initialized. After copyWithZone: creates the copy with
NSCopyObject(), it assigns the value 1 to the refCount instance variable. The sender of copyWithZone:
implicitly retains the copy and is responsible for releasing it.

NSCopying and Immutable Classes

Where the concept “immutable vs. mutable” applies to an object, NSCopying produces immutable copies
whether the original is immutable or not. See the NSMutableCopying protocol for details on making
mutable copies.

Immutable classes can implement NSCopying very efficiently. Since immutable objects don’t change, there
is no need to duplicate them. Instead, NSCopying can be implemented to retain the original. For example,
copyWithZone: for an immutable string class can be implemented in the following way.

- (id)copyWithZone:(NSZone *)zone

{

 return [self retain];

}

Summary

• Implement NSCopying using alloc and init... in classes that don’t inherit copyWithZone:.

• Implement NSCopying by invoking the superclass’s copyWithZone: when NSCopying behavior is
inherited. If the superclass implementation might use NSCopyObject(), make explicit assignments to
pointer instance variables for retained objects.

• Implement NSCopying by retaining the original instead of creating a new copy when the class and its
contents are immutable.

original 0xf2ae4

isa 0x8028
refCount 3
productName 0xf2bd8
price 0.00
delegate 0xe83c8

copy 0x104074

isa 0x8028
refCount 3
productName 0xf2bd8
price 0.00
delegate 0xe83c8

copy 0x104074

isa 0x8028
refCount 1
productName 0xe81f4
price 0.00
delegate 0xe83c8

The copy produced by
NSCopyObject

The copy after unitialized
instance variables are assigned
in copyWithZone:

7

Instance Methods

copyWithZone:
– (id)copyWithZone:(NSZone *)zone

Returns a new instance that’s a copy of the receiver. Memory for the new instance is allocated from zone,
which may be NULL. If zone is NULL, the new instance is allocated from the default zone, which is
returned from NSDefaultMallocZone(). The returned object is implicitly retained by the sender, who is
responsible for releasing it. The copy returned is immutable if the consideration “immutable vs. mutable”
applies to the receiving object; otherwise the exact nature of the copy is determined by the class.

See also: – mutableCopyWithZone: (NSMutableCopying protocol), – copy (NSObject)

