
Classes: NXData 1

NXData

Inherits From: Object

Conforms To: NXTransport (Distributed Objects)

Declared In: machkit/NXData.h

Class Description

NXData is an object-oriented wrapper for data. It’s especially useful in Distributed Objects
applications because of its conformance to the NXTransport protocol, allowing NXData
objects to be copied or moved between applications. NXData can be used to wrap data of
any size; it allocates small amounts of memory from its own zone using a malloc-related
function, and allocates page-aligned data from the virtual memory system for requests of a
page or larger. NXData can also be used to wrap preexisting data, regardless of how the
data was allocated.

If data is to be moved between applications (rather than copied), you may find it necessary
to override the encodeRemotelyFor:... method in a subclass of NXData to ensure that data
is properly deallocated after it is passed across a connection; see the Distributed Objects
introduction for more information on moving objects between applications.

Instance Variables

None declared in this class.

Adopted Protocols

NXTransport – encodeRemotelyFor:freeAfterEncoding:isBycopy:
– encodeUsing:
– decodeUsing:

 2 Mach Kit

Method Types

Initializing and freeing instances
– initWithSize:
– initWithData:size:dealloc:
– free

Getting the object’s data – data

Getting the data’s size – size

Copying the object – copyFromZone:

Instance Methods

copyFromZone:

– copyFromZone:(NXZone *)zone

Returns a newly allocated NXData instance containing a copy of the receiver’s data.
The new object’s data will be deallocated when the new object gets freed.

data

– (void *)data

Returns a pointer to the data contained in the object.

encodeRemotelyFor: freeAfterEncoding:isBycopy:

– encodeRemotelyFor: (NXConnection *)conn
freeAfterEncoding:(BOOL *)flagPointer
isBycopy:(BOOL)isBycopy

Returns self to indicate that a copy of the NXData object (and not a proxy to it) is to be
copied across a connection any time the object is vended to a remote object. The data for
the remote copy will be freed when the copy is freed. If you want the local NXData to be
freed after being sent across the connection, you will need to override this method to set the
boolean indicated by flagPointer to YES.

Classes: NXData 3

free

– free

Deallocates the receiver’s storage, including the data if it was initialized to do so, and
returns nil .

See also: – initWithData:size:dealloc:, – initWithSize:

initWithData:size:dealloc:

– initWithData: (void *)data
size:(unsigned int)size
dealloc:(BOOL)flag

Initializes the receiver, a new NXData object, with data, which must be at most size bytes
long. If flag is YES, then data will be deallocated when the NXData object is freed. data
could have been allocated with vm_allocate() or a malloc() variant. Returns self.

See also: – initWithSize: , – free

initWithSize:

– initWithSize: (unsigned int)size

Initializes the receiver, a new NXData object, so that it can contain at most size bytes of
data. The memory will be allocated directly from the virtual memory system if it is one
page or greater in size (though applications shouldn’t care where the memory came from);
otherwise the data will be allocated from the object’s zone. The data will be freed when the
NXData object is freed. Returns self.

See also: – initWithData:size:dealloc:, – free

size

– (unsigned int)size

Returns the size of the data that the object holds.

