
1

Chapter

p NSFileHandle

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSFileHandle.h

Class Description

An NSFileHandle is an object that represents an open file or a communications channel. It enables programs
to read data from or write data to the represented file or channel. You can use other OpenStep methods for
reading from and writing to files—NSFileManager’s contentsAtPath: and NSData’s
writeToFile:atomically: are but a couple of examples. Why would you use NSFileHandle then? What are
its advantages?

• NSFileHandle gives you greater control over input/output operations on files. It allows more manipulatve
operations on and within open files, such as seeking, truncating. and reading and writing at an exact
position within a file (the file pointer). Other OpenStep methods read or write a file in its entirety; with
NSFileHandle, you can range over an open file and insert, extract, and delete data.

• The scope of NSFileHandle is not limited to files. It provides the only OpenStep object that can read and
write to communications channels such as those implemented by sockets, pipes, and devices.

• NSFileHandle makes possible asynchronous background communication. With it a program can connect
to, and read from, a socket in a separate thread. (See Background Inter-Process Communication Using
Sockets below for details on how this is done.)

• NSFileHandle enhances application portability. Its API supports I/O operations on UNIX file systems as
well as on certain non-UNIX file sysrems such as Windows NT. Because this API is closer in semantics
to traditional UNIX file I/O, it makes it easier for UNIX programmers to port applications.

Note: Instances of NSPipe, a class closely related to NSFileHandle, represent pipes: unidirectional
interprocess communication channels that are found on both UNIX systems and on Windows NT.
See the NSPipe specification for details.

As a convenience, NSFileHandle provides class methods that create objects representing files and devices
in the file system and that return objects representing the standard input, standard output, and standard error
devices. You can also create NSFileHandles from UNIX file descriptors or non-UNIX file handles
(particularly Windows HANDLEs) using the initWithFileDescriptor: and initWithNativeHandle:
methods. If you create NSFileHandles with these last two methods, you "own" the represented descriptor
or handle and are responsible for removing it from system tables, usually by sending the object a closeFile
message.

2

Chapter Classes:

Background Inter-Process Communication Using Sockets

Sockets are full-duplex communication channels between processes either local to the same host machine
or where one process is on a remote host. Unlike pipes, in which data goes in one direction only, sockets
allow processes both to send and receive data. NSFileHandle facilitates communciation over stream-type
sockets by providing mechanisms run in background threads that accept socket connections and read from
sockets.

Note: NSFileHandle currently handles only communciation through stream-type sockets. If you want to
use datagrams or other types of sockets, you must create and manage the connection using native
system routines.

The process on one end of the communication channel (the server) starts by creating and preparing a socket
using system routines. These routines vary slightly between UNIX and non-UNIX systems (such as
Windows), but consist of the same sequence of steps:

1. Create a stream-type socket of a certain protocol.

2. Bind a name to the socket.

3. Listen for incoming connections to the socket.

Typically the other process (the client) then locates the named socket created by the first process. Instead
of accepting a connection to the socket by calling the appropriate system routine, the client performs the
following sequence of steps:

1. It creates an NSFileHandle using the socket identifier as argument to initWithFileDescriptor: or
initWithNativeHandle: , whichever is appropriate to the system on which the socket was created.

2. It adds itself as an observer of NSFileHandleConnectionAcceptedNotification.

3. It sends acceptConnectionInBackgroundAndNotify to this NSFileHandle. This method accepts the
connection in the background, creates a new NSFileHandle from the new socket descriptor, and posts
a NSFileHandleConnectionAcceptedNotification.

4. In a method implemented to respond to this notification, the client extracts the NSFileHandle
representing the "near" socket of the connection from the notification’s userInfo dictionary; it uses
the NSFileHandleNotificationFileHandleItem key to do this.

The client can now send data to the other process over the communications channel by sending writeData:
to the NSFileHandle. (Note that writeData: can block.) The client can also read data directly from the
NSFileHandle, but this would cause the process to block until the socket connection was closed, so it is
usually better to read in the background. To do this, the process must:

5. Add itself as an observer of NSFileHandleReadCompletionNotification or
NSFileHandleReadToEndOfFileCompletionNotification.

6. Send readInBackgroundAndNotify or readToEndOfFileInBackgroundAndNotify to this
NSFileHandle. The former method sends a notification after each transmission of data; the latter

3

Chapter

method accumulates data and sends a notification only after the sending process shuts down its end
of the connection.

7. In a method implemented to respond to either of these notifications, the process extracts the
transmitted or accumulated data from the notification’s userInfo dictionary by using the
NSFileHandleNotificationDataItem key.

You close the communications channel in both directions by sending closeFile to the NSFileHandle; either
process can partially or totally close communication across the socket connection with a system-specific
shutdown command.

Method Types

Getting an NSFileHandle + fileHandleForReadingAtPath:
+ fileHandleForWritingAtPath:
+ fileHandleForUpdatingAtPath:
+ fileHandleWithStandardError
+ fileHandleWithStandardInput
+ fileHandleWithStandardOutput
+ fileHandleWithNullDevice

Creating an NSFileHandle – initWithFileDescriptor:
– initWithFileDescriptor:closeOnDealloc:
– initWithNativeHandle:
– initWithNativeHandle:closeOnDealloc:

Getting a file descriptor – fileDescriptor

Getting a native file handle – nativeHandle

Reading from an NSFileHandle – availableData
– readDataToEndOfFile
– readDataOfLength:

Writing to an NSFileHandle – writeData:

Communicating asynchronously in the background
– acceptConnectionInBackgroundAndNotifyForModes:
– acceptConnectionInBackgroundAndNotify
– readInBackgroundAndNotifyForModes:
– readInBackgroundAndNotify
– readToEndOfFileInBackgroundAndNotifyForModes:
– readToEndOfFileInBackgroundAndNotify

Seeking within a file – offsetInFile
– seekToEndOfFile
– seekToFileOffset:

4

Chapter Classes:

Operating on a file – closeFile
– synchronizeFile
– truncateFileAtOffset:

Class Methods

p fileHandleForReadingAtPath:
+ fileHandleForReadingAtPath:(NSString *)path

Returns an NSFileHandle initialized for reading the file, device, or named socket at path. The file pointer
is set to the beginning of the file. The returned object responds only to NSFileHandle read messages. If no
file exists at path the method returns nil .

See also: – availableData, – initWithFileDescriptor: , – initWithNativeHandle:, – readDataOfLength:,
– readDataToEndOfFile

p fileHandleForUpdatingAtPath:
+ fileHandleForUpdatingAtPath:(NSString *)path

Returns an NSFileHandle initialized for reading and writing to the file, device, or named socket at path. The
file pointer is set to the beginning of the file. The returned object responds to both NSFileHandle read
messages and writeData: . If no file exists at path the method returns nil .

See also: – availableData, – initWithFileDescriptor: , – initWithNativeHandle:, – readDataOfLength:,
– readDataToEndOfFile

p fileHandleForWritingAtPath:
+ fileHandleForWritingAtPath: (NSString *)path

Returns an NSFileHandle initialized for writing to the file, device, or named socket at path. The file pointer
is set to the beginning of the file. The returned object responds only to writeData: . If no file exists at path
the method returns nil .

See also: – initWithFileDescriptor: , – initWithNativeHandle:

p fileHandleWithNullDevice
+ fileHandleWithNullDevice

Returns an NSFileHandle assoicated with a null device. You can use null-device NSFileHandles as
"placeholders" for standard-device NSFileHandles or in collection objects to avoid exceptions and other

5

Chapter

errors resulting from messages being sent to invalid NSFileHandles. Read messages sent to a null-device
NSFileHandle return an end-of-file indicator (an empty NSData) rather than raise an exception. Write
messages are no-ops whereas nativeHandle and fileDescriptor return an illegal value (as defined by the
underlying operating system). Other methods are no-ops or return "sensible" values.

See also: – initWithFileDescriptor: , – initWithNativeHandle:

p fileHandleWithStandardError
+ fileHandleWithStandardError

Returns the NSFileHandle associated with the standard error file, conventionally a terminal device to which
error messages are sent. There is one such NSFileHandle per process; it is a shared instance.

See also: + fileHandleWithNullDevice, – initWithFileDescriptor:

p fileHandleWithStandardInput
+ fileHandleWithStandardInput

Returns an NSFileHandle associated with the standard input file, conventionally a terminal device on which
the user enters a stream of data. There is one such NSFileHandle per process; it is a shared instance.

See also: + fileHandleWithNullDevice, – initWithFileDescriptor:

p fileHandleWithStandardOutput
+ fileHandleWithStandardOutput

Returns an NSFileHandle associated with the standard output file, conventionally a terminal device which
receives a stream of data from a program. There is one such NSFileHandle per process; it is a shared
instance.

See also: + fileHandleWithNullDevice, – initWithFileDescriptor:

Instance Methods

p acceptConnectionInBackgroundAndNotify
– (void)acceptConnectionInBackgroundAndNotify

Accepts a socket connection (for stream-type sockets only) in the background and creates a NSFileHandle
for the "near" (client) end of the communcations channel. This method is asynchronous. In a separate "safe"
thread it accepts a connection, creates an NSFileHandle for the other end of the connection, and returns that

6

Chapter Classes:

object to the client by posting a NSFileHandleConnectionAcceptedNotification in the run loop of the client.
The notification includes as data a userInfo dictionary containing the created NSFileHandle; access this
object using the NSFileHandleNotificationFileHandleItem key.

The receiver must be created by an initWithFileDescriptor: or initWithNativeHandle: message that takes
as an argument a stream-type socket created by the appropriate system routine. The object that will write
data to the returned NSFileHandle must add itself as an observer of
NSFileHandleConnectionAcceptedNotification.

See also: – enqueueNotification:postingStyle:coalesceMask:forModes: (NSNotificationQueue),
– readInBackgroundAndNotify , – readToEndOfFileInBackgroundAndNotify

p acceptConnectionInBackgroundAndNotifyForModes:
– (void)acceptConnectionInBackgroundAndNotifyForModes:(NSArray *)modes

Asynchronously accepts a connection with a stream-type socket in the background and returns (in an
NSFileHandleConnectionAcceptedNotification) an NSFileHandle representing the client side of the
connection. See acceptConnectionInBackgroundAndNotify for details. The method differs from
acceptConnectionInBackgroundAndNotify in that modes specifies the run-loop mode (or modes) in
which NSFileHandleConnectionAcceptedNotification can be posted.

See also: – enqueueNotification:postingStyle:coalesceMask:forModes: (NSNotificationQueue),
– readInBackgroundAndNotifyForModes: ,
– readToEndOfFileInBackgroundAndNotifyForModes:

p availableData
– (NSData *)availableData

If the receiver is a file, returns the data obtained by reading the file from the file pointer to the end of the
file. If the receiver is a communications channel, reads up to a buffer of data and returns it (the size of the
buffer depends on the operating system); if no data is available, the method blocks. Returns an empty
NSData if the end of file is reached. Raises NSFileHandleOperationException if attempts to determine
file-handle type fail or if attempts to read from the file or channel fail.

See also: – readDataOfLength:, – readDataToEndOfFile:

p closeFile
– (void)closeFile

Disallows further access to the represented file or communications channel and signals end of file on
communications channels that permit writing. The file or communications channel, however, is available

7

Chapter

for other uses. Further read and write messages sent to an NSFileHandle to which closeFile has been sent
will raise an exception.

Note: Sending closeFile to an NSFileHandle does not cause its deallocation; for that, you must send it
release. Deallocation of an NSFileHandle, on the other hand, deletes its descriptor and closes the
represented file or channel. Use closeFile when you want to close a file immediately and reclaim the
descriptor; use release when it’s acceptable to defer this.

p fileDescriptor
– (int)fileDescriptor

Returns the file descriptor associated with the receiver. You can send this message to NSFileHandles of both
UNIX and non-UNIX origin and receive a valid file descriptor (unless closeFile has been sent to the object,
in which case an exception is raised).

See also: – initWithFileDescriptor:

p initWithFileDescriptor:
– (id)initWithFileDescriptor: (int)fileDescriptor

Returns an NSFileHandle initialized with the file descriptor. If the operating system is Windows, the
method converts the file descriptor to a file handle (WIN32 type HANDLE) and initializes the returned
object with that as well. You can create an NSFileHandle for a socket on a UNIX system by using the result
of a socket call as descriptor. The object creating an NSFileHandle using this method owns fileDescriptor
and is responsible for its disposition.

See also: – closeFile

p initWithFileDescriptor:closeOnDealloc:
– (id)initWithFileDescriptor: (int)fileDescriptor closeOnDealloc:(BOOL)flag

Same as initWithFileDescriptor: , but flag, if YES, causes the file descriptor to be closed when the receiver
is deallocated.

See also: – closeFile

8

Chapter Classes:

p initWithNativeHandle:
– (id)initWithNativeHandle: (void *)handle

Returns an NSFileHandle initialized with a file handle from a non-UNIX system (currently only a handle
of WIN32’s HANDLE type). The method converts the handle to a Windows C run-time file descriptor and
initializes the returned NSFileHandle with that as well. If a problem occurs converting the handle to a
descriptor, the method returns nil . The object creating an NSFileHandle using this method owns
fileDescriptor and is responsible for its disposition.

See also: – closeFile

p initWithNativeHandle:closeOnDealloc
– (id)initWithNativeHandle: (void *)handle closeOnDealloc:(BOOL)flag

Same as initWithNativeHandle: , but flag, if YES, causes the handle to be closed when the receiver is
deallocated.

See also: – closeFile

p nativeHandle
– (void *)nativeHandle

On non-UNIX operating systems (particularly Windows), returns the file handle associated with the
receiver. On UNIX systems, returns a NULL void * pointer.

See also: – initWithNativeHandle:

p offsetInFile
– (unsigned long long)offsetInFile

Returns the position of the file pointer within the file represented by the receiver. Raises an exception if the
message is sent to an NSFileHandle representing a pipe or socket or if the file descriptor is closed.

See also: – seekToEndOfFile, –seekToFileOffset:

p readDataOfLength:
– (NSData *)readDataOfLength:(unsigned int)length

If the receiver is a file, returns the data obtained by reading from the file pointer to length or to the end of
the file, whichever comes first. If the receiver is a communications channel, the method reads data from the
channel up to length. Returns an empty NSData if the file is positioned at the end of the file or if an

9

Chapter

end-of-file indicator is returned on a communications channel. Raises NSFileHandleOperationException if
attempts to determine file-handle type fail or if attempts to read from the file or channel fail.

See also: – availableData, – readDataToEndOfFile:

p readDataToEndOfFile
– (NSData *)readDataToEndFile

Invokes readDataOfLength:, reading up to UNIT_MAX bytes (the maximum value for unsigned integers)
or, if a communications channel, until an end-of-file indicator is returned.

See also: – availableData

p readInBackgroundAndNotify
– (void)readInBackgroundAndNotify

Performs an asynchronous availableData operation on a file or communications channel and posts an
NSFileHandleReadCompletionNotification to the client process’ run loop. The length of the data is limited
to the buffer size of the underlying operating system. The notification includes a userInfo dictionary which
contains the data read; access this object using the NSFileHandleNotificationDataItem key.

Any object interested in receiving this data asynchronously must add itself as an observer of
NSFileHandleReadCompletionNotification. In communication via stream-type sockets, the receiver is
often the object returned in the userInfo dictionary of NSFileHandleConnectionAcceptedNotification.

See also: – acceptConnectionInBackgroundAndNotify,
– enqueueNotification:postingStyle:coalesceMask:forModes: (NSNotificationQueue),

p readInBackgroundAndNotifyForModes:
– (void)readInBackgroundAndNotifyForModes: (NSArray *)modes

Performs an asynchronous availableData operation on a file or communications channel and posts an
NSFileHandleReadCompletionNotification to the client process’ run loop. See
readInBackgroundAndNotify for details. The method differs from readInBackgroundAndNotify in that
modes specifies the run-loop mode (or modes) in which NSFileHandleReadCompletionNotification can be
posted.

See also: – acceptConnectionInBackgroundAndNotifyforModes:,
– enqueueNotification:postingStyle:coalesceMask:forModes: (NSNotificationQueue),

10

Chapter Classes:

p readToEndOfFileInBackgroundAndNotify
– (void)readToEndOfFileInBackgroundAndNotify

Performs an asynchronous readToEndOfFile operation on a file or communications channel and posts an
NSFileHandleReadToEndOfFileCompletionNotification to the client process’ run loop. The notification
includes a userInfo dictionary which contains the data read; access this object using the
NSFileHandleNotificationDataItem key.

Any object interested in receiving this data asynchronously must add itself as an observer of
NSFileHandleReadToEndOfFileCompletionNotification. In communication via stream-type sockets, the
receiver is often the object returned in the userInfo dictionary of
NSFileHandleConnectionAcceptedNotification.

See also: – acceptConnectionInBackgroundAndNotify,
– enqueueNotification:postingStyle:coalesceMask:forModes: (NSNotificationQueue)

p readToEndOfFileInBackgroundAndNotifyForModes:
– (void)readToEndOfFileInBackgroundAndNotifyForModes: (NSArray *)modes

In a detached "safe" thread, continuously reads data made available across a socket connection and
accumulates it until the connection is closed; it then notifies observers. See
readToEndOfFileInBackgroundAndNotify for details. The method differs from
readToEndOfFileInBackgroundAndNotify in that modes specifies the run-loop mode (or modes) in which
NSFileHandleReadToEndOfFileCompletionNotification can be posted.

See also: – acceptConnectionInBackgroundAndNotifyforModes:,
– enqueueNotification:postingStyle:coalesceMask:forModes: (NSNotificationQueue)

p seekToEndOfFile
– (unsigned long long)seekToEndOfFile

Puts the file pointer at the end of the file referenced by the receiver and returns the new file offset (thus
yielding the size of the file). Raises an exception if the message is sent to an NSFileHandle representing a
pipe or socket or if the file descriptor is closed.

See also: – offsetInFile

11

Chapter

p seekToFileOffset:
– (void)seekToFileOffset:(unsigned long long)offset

Moves the file pointer to the specified offset within the file represented by the receiver. Raises an exception
if the message is sent to an NSFileHandle representing a pipe or socket, if the file descriptor is closed, or if
any other error occurs in seeking.

See also: – offsetInFile

p synchronizeFile
– (void)synchronizeFile

Causes all in-memory data and attributes of the file represented by the receiver to be written to permanent
storage. This method should be invoked by programs that require the file to always be in a known state. An
invocation of this method does not return until memory is flushed; because the way memory is flushed is
platform-specific, consult the documentation for your operating system.

p truncateFileAtOffset:
– (void)truncateFileAtOffset: (unsigned long long)offset

Truncates or extends the file represented by the receiver to offset within the file and puts the file pointer at
that position. It the file is extended, the added characters are null bytes.

p writeData:
– (void)writeData: (NSData *)data

Synchronously writes data to the file, device, pipe, or socket represented by the receiver. If the receiver is
a file, writing takes place at the file pointer’s current position. After it writes the data, the method advances
the file pointer by the number of bytes written. Raises an exception if the file descriptor is closed or is not
valid, if the receiver represents an unconnected pipe or socket end point, if no free space is left on the file
system, or if any other writing error occurs.

See also: – availableData, – readDataOfLength:, – readDataToEndOfFile

Notifications

NSFileHandle posts several notifications related to asynchronous background I/O operations. They are set
to post when the run loop of the thread that started the asynchronous operation is idle and for a specified set
of run-loop modes (see userInfo dictionary).

12

Chapter Classes:

p NSFileHandleConnectionAcceptedNotification

Notification Object The posting NSFileHandle

userInfo

Key Value

NSFileHandleNotificationFileHandleItem
The NSFileHandle representing the "near" end of a socket
connection.

NSFileHandleNotificationMonitorModes
An NSArray containing the run-loop modes in which the
notification can be posted.

To cause the posting of this notification, you must send either acceptConnectionInBackgroundAndNotify
or acceptConnectionInBackgroundAndNotifyForModes: to an NSFileHandle representing a server
stream-type socket. This notification is posted when NSFileHandle establishes a socket connection between
two processes, creates an NSFileHandle for one end of the connection, and makes this object available to
observers by putting it in the userInfo dictionary.

p NSFileHandleReadCompletionNotification

Notification Object The posting NSFileHandle

userInfo

Key Value

NSFileHandleNotificationDataItem An NSData containing the available data read from a socket
connection.

NSFileHandleNotificationMonitorModes
An NSArray containing the run-loop modes in which the
notification can be posted.

To cause the posting of this notification, you must send either readInBackgroundAndNotify or
readInBackgroundAndNotifyForModes: to an appropriate NSFileHandle. This notification is posted
when the background thread reads the data currently available in a file or at a communications channel. It
makes the data available to observers by putting it in the userInfo dictionary.

p NSFileHandleReadToEndOfFileCompletionNotification

Notification Object The posting NSFileHandle

userInfo

13

Chapter

Key Value

NSFileHandleNotificationDataItem An NSData containing the available data read from a socket
connection.

NSFileHandleNotificationMonitorModes
An NSArray containing the run-loop modes in which the
notification can be posted.

To cause the posting of this notification, you must send either readToEndOfFileInBackgroundAndNotify
or readToEndOfFileInBackgroundAndNotifyForModes: to an appropriate NSFileHandle. This
notification is posted when the background thread reads all data in the file or, if a communications channel,
until the other process signals end of data. It makes the data available to observers by putting it in the
userInfo dictionary.

