
1

NSFileManager

Inherits From: NSObject

Conforms To: NSObject (NSObject)
NSCopying

Declared In: Foundation/NSFileManager.h

Class Description

NSFileManager enables you to perform many generic file-system operations. With it you can:

• Create directories and files.
• Extract the contents of files (as NSData objects).
• Change your current working location in the file system.
• Copy, move, and link files and directories.
• Remove files, links, and directories.
• Determine the attributes of a file, a directory, or the file system.
• Set the attributes of a file or directory.
• Make and evaluate symbolic links.
• Determine the contents of directories.
• Compare files and directories for equality.

Besides offering a useful range of generic functionality, the NSFileManager API insulates an application
from the underlying file system. An important part of this insulation is the encoding of file names (in, for
example, Unicode, ISO Latin1, and ASCII). This insulating layer makes it easier to port the application
between operating systems with different file systems. There is a default NSFileManager object for the file
system; this object responds to all messages that request a operation on the associated file system.

The pathnames specified as arguments to NSFileManager methods can be absolute or relative to the current
directory (which you can determine with currentDirectoryPath and set with
changeCurrentDirectoryPath:). However, pathnames cannot include wildcard characters.

Note: On UNIX file systems (such as NEXTSTEP) an absolute pathname starts with the root directory of
the file system, represented by a slash (/), and ends with the file or directory that the pathname
identifies. A relative pathname is relative to the current directory, the directory in which you are
working and in which saved files are currently stored (if no pathname is specified). Relative
pathnames start with a subdirectory of the current directory—without an initial slash—and end with
the name of the file or directory that the pathname identifies.

2

 NSFileManager

Method Types

Getting the default manager + defaultManager

Directory operations – changeCurrentDirectoryPath:
– createDirectoryAtPath:attributes:
– currentDirectoryPath

File operations – copyPath:toPath:handler:
– createFileAtPath:contents:attributes:
– movePath:toPath:handler:
– linkPath:toPath:handler:
– removeFileAtPath:handler:

Getting and comparing file contents – contentsAtPath:
– contentsEqualAtPath:andPath:

Detemining access to files – fileExistsAtPath:
– fileExistsAtPath:isDirectory:
– isReadableFileAtPath:
– isWritableFileAtPath:
– isExecutableFileAtPath:
– isDeletableFileAtPath:

Getting and setting attributes – fileAttributesAtPath:traverseLink:
– fileSystemAttributesAtPath:
– changeFileAttributes:atPath:

Discovering directory contents – directoryContentsAtPath:
– enumeratorAtPath:
– subpathsAtPath:

Symbolic-link operations – createSymbolicLinkAtPath:pathContent:
– pathContentOfSymbolicLinkAtPath:

Converting file-system representations
– fileSystemRepresentationWithPath:
– stringWithFileSystemRepresentation:length:

Class Methods

defaultManager
+ (NSFileManager *)defaultManager

Returns the default NSFileManager object for the file system. You invoke all NSFileManager instance
methods with this object as the receiver.

3

Instance Methods

changeCurrentDirectoryPath:
– (BOOL)changeCurrentDirectoryPath:(NSString *)path

Changes the path of the current directory to path and returns YES if successful, NO if not successful. All
relative pathnames refer implicitly to the current working directory. The current working directory is stored
per task.

See also: – currentDirectoryPath , –fileExistsAtPath:isDirectory: , –directoryContentsAtPath:,
– createDirectoryAtPath:attributes:

changeFileAttributes:atPath:
– (BOOL)changeFileAttributes:(NSDictionary *)attributes atPath:(NSString *)path

Changes the attributes of the file or directory specified by path. Attributes that you can change are the
owner, the group, file permissions, and the modification date. As in the POSIX standard, the application
must either own the file or directory or must be running as superuser for attribute changes to take effect.
The method attempts to make all changes specified in attributes and ignores any rejection of an attempted
modification. If all changes succeed, it returns YES. If any change fails, the method returns NO, but it is
undefined whether any changes actually occured.

Some useful global keys for identifying object values in the attributes dictionary are:

Key Value Type

NSFileModificationDate NSDate
NSFilePosixPermissions NSNumber

The NSFilePosixPermissions value must be initialized with the code representing the POSIX
file-permissions bit pattern.

You can change single attributes or any combination of attributes; you need not specify keys for all four
attributes.

See also: – fileAttributesAtPath:traverseLink:

contentsAtPath:
– (NSData *)contentsAtPath:(NSString *)path

Returns the contents of the file specified in path as an NSData object. If path specifies a directory, or if some
other error occurs, this method returns nil .

See also: – contentsEqualAtPath:andPath:, –createFileAtPath:contents:attributes:

4

 NSFileManager

contentsEqualAtPath:andPath:
– (BOOL)contentsEqualAtPath:(NSString *)path1 andPath:(NSString *)path2

Compares the file or directory specified in path1 with that specified in path2 and returns YES if they have
the same contents. If path1 and path2 are directories, the contents are the list of files and subdirectories each
contain; contents of subdirectories are compared. If the contents differ in any way, this method returns NO.
It does not traverse symbolic links but compares the links themselves.

See also: – contentsAtPath:

copyPath:toPath:handler:
– (BOOL)copyPath:(NSString *)source

toPath:(NSString *)destination
handler:handler

Copies the directory or file specified in path source to a different location in the file system identified by
pathname destination. If source is a file, the method creates a file at destination that holds the exact contents
of the original file (this includes UNIX special files). If source is a directory, the method creates a new
directory at destination and recursively populates it with duplicates of the files and directories contained in
source, preserving all links. The file specified in source must exist, while destination must not exist prior to
the operation. When a file is being copied, the destination path must end in a file name; there is no implicit
adoption of the source file name. Symbolic links are not traversed but are themselves copied.

If the copy operation is successful, the method returns YES. If the operation is not successful, but the
callback handler of fileManager:shouldProceedAfterError: returns YES (see below),
copyPath:toPath:handler: also returns YES. Otherwise this copy method returns NO. The method also
attempts to make the attributes of the directory or file at destination identical to source, but ignores any
failure at this attempt.

The argument handler identifies an object that responds to the callback messages
fileManager:willProcessPath: or fileManager:shouldProceedAfterError: . This callback mechanism is
similar to delegation. NSFileManager sends the first message when it begins a copy, move, remove, or link
operation. It sends the second message when it encounters any error in processing. You can specify nil for
handler if no object responds to the callback messages. (See the descriptions of
fileManager:willProcessPath: or fileManager:shouldProceedAfterError: at the end of this
specification for details on these methods.)

This code fragment verifies that the file to be copied exists and then copies that file to the user’s
~/Library/Reports directory:

NSString *source = @"/tmp/quarterly_report.rtf";

NSString *destination = [[NSHomeDirectory()

stringByAppendingPathComponent:@"Library"]

stringByAppendingPathComponent:@"Reports"];

NSFileManager *manager = [NSFileManager defaultManager];

5

if ([manager fileExistsAtPath:source])

 [manager copyPath:source toPath:destination handler:nil];

See also: – linkPath:toPath:handler: , –movePath:toPath:handler:,
– fileManager:shouldProceedAfterError: , – removeFileAtPath:handler:,
– fileManager:willProcessPath:

createDirectoryAtPath:attributes:
– (BOOL)createDirectoryAtPath:(NSString *)path

attributes: (NSDictionary *)attributes

Creates a directory (without contents) at path that has the specified attributes. Returns YES upon success
or NO upon failure. The directory to be created must not exist yet at path. The file attributes that you can
set are owner and group numbers, file permissions, and modification date. If you specify nil for attributes,
default values for these attributes are set (particularly write access for creator and read access for others).
The following table lists the global constants used as keys in the attributes NSDictionary and the types of
the associated values:

Key Value Type

NSFileModificationDate NSDate
NSFileOwnerAccount Number NSNumber
NSFileGroupOwnerAccountNumber NSNumber
NSPosixPermissions NSNumber

See also: – changeCurrentDirectoryPath:, –changeFileAttributes:atPath:,
– createFileAtPath:contents:attributes:, – currentDirectoryPath

createFileAtPath:contents:attributes:
– (BOOL)createFileAtPath:(NSString *)path

contents:(NSData *)contents
attributes: (NSDictionary *)attributes

Creates a file at path that contains contents and has the specified file attributes. Returns YES upon success
or NO upon failure. The file attributes that you can set are owner and group numbers, file permissions, and
modification date. If you specify nil for attributes, the file is given a default set of attributes. The following
table summarizes the the keys and types to associate with values in the NSDictionary attributes.

6

 NSFileManager

Key Value Type

NSFileModificationDate NSDate
NSFileOwnerAccount Number NSNumber
NSFileGroupOwnerAccountNumber NSNumber
NSPosixPermissions NSNumber

See also: – contentsAtPath:, –changeFileAttributes:atPath:, –fileAttributesAtPath:traverseLink:

createSymbolicLinkAtPath:pathContent:
– (BOOL)createSymbolicLinkAtPath:(NSString *)path

pathContent:(NSString *)otherPath

Creates a symbolic link identified by path that refers to the location otherPath in the file system. Returns
YES if the operation is successful and NO if it is not successful. The method returns NO if a file, directory,
or symbolic link identical to path already exists.

See also: – pathContentOfSymbolicLinkAtPath:, – linkPath:toPath:handler:

currentDirectoryPath
– (NSString *)currentDirectoryPath

Returns the path of the program’s current directory. Relative pathnames refer implictly to this directory; for
example, if the current directory is /tmp, and the relative pathname is reports/info.txt , the full pathname is
constructed as /tmp/reports/info.txt . This path is initialized to the current working directory, and can be
thereafter reset with changeCurrentDirectoryPath:. If the application’s current working directory isn’t
accessible, this method returns nil .

See also: – createDirectoryAtPath:attributes:

directoryContentsAtPath:
– (NSArray *)directoryContentsAtPath:(NSString *)path

Returns an array containing the filenames (including directories and symbolic links) immediately below the
directory specified in path. The results are shallow, going no further than the next level below the specified
directory. Here is sample output, generated by NSArray’s description method, when this method is invoked
with /NextDeveloper as path.

 Demos,

 Apps,

 Makefiles,

 OpenStepConversion,

 Examples,

7

 Headers,

 2.0CompatibleHeaders,

 Palettes

As the example shows, the results omit the path preceeding the subdirectory. This method skips “.” and “..”
and does not traverse symbolic links in the specified directory. It returns nil if the directory specified at path
does not exist or if there is some other error in accessing it.

See also: – currentDirectoryPath , –fileExistsAtPath:isDirectory: , –enumeratorAtPath:,
– subpathsAtPath:

enumeratorAtPath:
– (NSDirectoryEnumerator *)enumeratorAtPath:(NSString *)path

Returns an NSDirectoryEnumerator with which to enumerate the contents of the directory specified at path.
This enumeration, which returns NSString objects, goes very deep and hence is very useful for large
file-system subtrees. If the method discovers a new mount point, it traverses the mount point. It also reports
any symbolic links it discovers. It returns nil if it cannot get the device of the linked-to file.

This code fragment enumerates the subdirectories and files under /MyAccount/Documents and processes
all files with an extension of .doc:

NSString *file;

NSDirectoryEnumerator *enumerator = [[NSFileManager defaultManager]

enumeratorAtPath:@"/MyAccount/Documents"];

while (file = [enumerator nextObject]) {

if ([[file pathExtension] isEqualToString:@"doc"])

[self scanDocument:file];

}

The NSDirectoryEnumerator class has methods for obtaining the attributes of the existing path and of the
parent directory, and for skipping descendents of the existing path.

See also: – currentDirectoryPath , –fileExistsAtPath:isDirectory: , –directoryContentsAtPath:,
– subpathsAtPath:

fileAttributesAtPath:traverseLink:
– (NSDictionary *)fileAttributesAtPath: (NSString *)path traverseLink: (BOOL)flag

Returns an NSDictionary containing various objects that represent the POSIX attributes of the file specified
at path. You access these objects using these global constants as keys:

8

 NSFileManager

Key Value Type

NSFileSize (in bytes) NSNumber
NSFileModificationDate NSDate
NSFileOwnerAccount Number NSNumber
NSFileGroupOwnerAccountNumber NSNumber
NSFileReferenceCount (number of hard links) NSNumber
NSFileIdentifier NSNumber
NSFileDeviceIdentifier NSNumber
NSPosixPermissions NSNumber
NSFileType NSString

NSFileType’s global strings are defined as:

• NSFileTypeDirectory
• NSFileTypeRegular
• NSFileTypeSymbolicLink
• NSFileTypeSocket
• NSFileTypeCharacterSpecial
• NSFileTypeBlockSpecial
• NSFileTypeUnknown

If flag is YES and path is a symbolic link, the attributes of the linked-to file are returned; if flag is NO, the
attributes of the symbolic link are returned.

This piece of code gets several attributes of a file and logs them.

NSNumber *fsize, *refs, *owner;

NSDate *moddate;

NSDictonary *fattrs =

 [manager fileAttributesAtPath:@"/tmp/List" traverseLink:YES];

if (!fattrs) {

NSLog(@"Path is incorrect!");

return;

}

if (fsize = [fattrs objectForKey:NSFileSize])

NSLog(@"File size: %d\n", [fsize intValue]);

if (refs = [fattrs objectForKey:NSFileReferenceCount])

 NSLog(@"Ref Count: %d\n", [refs intValue]);

if (moddate = [fattrs objectForKey:NSFileModificationDate])

 NSLog(@"Modif Date: %@\n", [moddate description]);

9

As a convenience, NSDictionary provides a set of methods (declared as a category in NSFileManager.h)
for quickly and efficiently obtaining attribute information from the returned NSDictionary: fileSize,
fileType, fileModificationDate, and filePosixPermissions. For example, you could rewrite the last
statement in the code example above as:

if (moddate = [fattrs fileModificationDate])

 NSLog(@"Modif Date: %@\n", [moddate description]);

See also: –changeFileAttributes:atPath:

fileExistsAtPath:
– (BOOL)fileExistsAtPath:(NSString *)path

Returns YES if the file specified in path exists, or NO if it does not. The method traverses final symbolic
links.

See also: – fileExistsAtPath:isDirectory:

fileExistsAtPath:isDirectory:
– (BOOL)fileExistsAtPath:(NSString *)path isDirectory: (BOOL *)isDirectory

Returns YES if the file specified in path exists, or NO if it does not. If you want to determine if path is a
directory, supply the address of a Boolean (intialized to NO) in isDirectory; the method indirectly returns
YES if path is a directory. The method traverses final symbolic links.

This example gets an NSArray that identifies the fonts in /NextLibrary/Fonts :

NSArray *subpaths;

BOOL isDir=NO;

NSString *fontPath = @"/NextLibrary/Fonts";

NSFileManager *manager = [NSFileManager fileManager];

if ([manager fileExistsAtPath:fontPath isDirectory:&isDir]

&& isDir)

 subpaths = [manager subpathsAtPath:fontPath];

See also: – fileExistsAtPath:

fileSystemAttributesAtPath:
– (NSDictionary *)fileSystemAttributesAtPath:(NSString *)path

Returns an NSDictionary containing objects that represent attributes of the mounted file system; path is any
pathname within the mounted file system. You access the attribute objects in the NSDictionary using these
global constants as keys:

10

 NSFileManager

Key Value Type

NSFileSystemSize (in an appropriate unit, usually bytes) NSNumber
NSFileSystemFreeSize (in an appropriate unit, usually bytes) NSNumber
NSFileSystemNodes NSNumber
NSFileSystemFreeNodes NSNumber
NSFileSystemNumber NSNumber

The following code example checks to see if there’s sufficient space on the file system before adding a new
file to it:

const char *data = [[customerRec description] cString];

NSData *contents = [NSData dataWithBytes:data length:sizeof(data)];

NSFileManager *manager = [NSFileManager defaultManager];

NSDictionary *fsattrs =

[manager fileSystemAttributesAtPath:@"/Net/sales/misc"];

if ([[fsattrs objectForKey:NSFileSystemFreeSize] unsignedIntValue]

 > [contents length])

[manager createFileAtPath:@"/Net/sales/misc/custrec.rtf"

contents:contents attributes:nil];

See also: – fileAttributesAtPath:traverseLink: , –changeFileAttributes:atPath:

fileSystemRepresentationWithPath:
– (const char *)fileSystemRepresentationWithPath:(NSString *)path

Returns a C-string representation of path that properly encodes Unicode strings for use by the file system.
If you need the C string beyond the scope of your autorelease pool, you should copy it. This method raises
an exception upon error. Use this method if your code calls system routines that expect C-string path
arguments.

See also: – stringWithFileSystemRepresentation:length:

isDeletableFileAtPath:
– (BOOL)isDeletableFileAtPath:(NSString *)path

Returns YES if the invoking object appears to be able to delete the directory or file specified in path and
NO if it cannot. To be deletable, either the parent directory of path must be writable and its owner must be
the application; if path is a directory, it must have no undeletable items in it. This method does not traverse
symbolic links.

11

isExecutableFileAtPath:
– (BOOL)isExecutableFileAtPath:(NSString *)path

Returns YES if the underlying operating system appears able to execute the file specified in path and NO if
it cannot. This method traverses symbolic links.

isReadableFileAtPath:
– (BOOL)isReadableFileAtPath:(NSString *)path

Returns YES if the invoking object appears able to read the file specified in path and NO if it cannot. This
method traverses symbolic links.

isWritableFileAtPath:
– (BOOL)isWritableFileAtPath: (NSString *)path

Returns YES if the invoking object appears able to write to the file specified in path and NO if it cannot.
This method traverses symbolic links.

linkPath:toPath:handler:
– (BOOL)linkPath: (NSString *)source

toPath:(NSString *)destination
handler:handler

If pathname source identifies a file, this method hard-links the directory or file specified in destination to it.
If source is a directory or a symbolic link, this method copies it to destination instead of creating a hard
link. The file, link, or directory specified in source must exist, while destination must not yet exist. The
destination path must end in a file name; there is no implicit adoption of the source file name. Symbolic
links in source are not traversed.

If the link operation is successful, linkPath:toPath:handler: returns YES. If the operation is not
successful, but the handler method fileManager:shouldProceedAfterError: returns YES, the method
also returns YES. Otherwise it returns NO.

The argument handler identifies an object that responds to the callback messages
fileManager:willProcessPath: and fileManager:shouldProceedAfterError: (see “Methods
Implemented by the Callback Handler,” below). This callback mechanism is similar to delegation.
NSFileManager sends the first message when it begins a copy, move, remove, or link operation. It sends the
second message when it encounters any error in processing. You can specify nil for handler if no object
responds to the callback messages.

12

 NSFileManager

This code fragment verifies the pathname typed in a text field (imageFileField) and then links the file to
the user’s ~/Library/Images directory:

NSString *imageFile = [imageFileField stringValue];

NSString *destination = [[NSHomeDirectory()

stringByAppendingPathComponent:@"Library"]

stringByAppendingPathComponent:@"Images"];

NSFileManager *manager = [NSFileManager defaultManager];

if ([manager fileExistsAtPath:source])

 [manager linkPath:source toPath:destination handler:self];

See also: – copyPath:toPath:handler:, –createSymbolicLinkAtPath:pathContent:,
– movePath:toPath:handler:, –fileManager:shouldProceedAfterError:,
– removeFileAtPath:handler:, –fileManager:willProcessPath:,

movePath:toPath:handler:
– (BOOL)movePath:(NSString *)source

toPath:(NSString *)destination
handler:handler

Moves the directory or file specified in path source to a different location in the file system identified by the
pathname destination. If source is a file, the method creates a file at destination that holds the exact contents
of the original file (including UNIX special files) and then deletes the original file. If source is a directory,
movePath:toPath:handler: creates a new directory at destination and recursively populates it with
duplicates of the files and directories contained in source; it then deletes the old directory and its contents.
The file specified in source must exist, while destination must not yet exist. The destination path must end
in a file name; there is no implicit adoption of the source file name. Symbolic links are not traversed;
however, links are preserved.

If the move operation is successful, the method returns YES. If the operation is not successful, but the
handler method fileManager:shouldProceedAfterError: returns YES, movePath:toPath:handler: also
returns YES; otherwise it returns NO. If a failure in a move operation occurs, the pre-existing path or the
new path remains intact, but not both.

The argument handler identifies an object that responds to the callback messages
fileManager:willProcessPath: and fileManager:shouldProceedAfterError: (see “Methods
Implemented by the Callback Handler,” below). This callback mechanism is similar to delegation.
NSFileManager sends the first message when it begins a copy, move, remove, or link operation. It sends the
second message when it encounters any error in processing. You can specify nil for handler if no object
responds to the callback messages.

See also: – copyPath:toPath:handler:, – linkPath:toPath:handler: , – removeFileAtPath:handler:,
– fileManager:shouldProceedAfterError: , –fileManager:willProcessPath:

13

pathContentOfSymbolicLinkAtPath:
– (NSString *)pathContentOfSymbolicLinkAtPath: (NSString *)cStringPath

Returns the actual path of the directory or file that the symbolic link cStringPath refers to. Returns nil upon
failure.

See also: – createSymbolicLinkAtPath:pathContent:

removeFileAtPath:handler:
– (BOOL)removeFileAtPath:(NSString *)path handler:handler

Deletes the file, link, or directory (including, recusively, all subdirectories, files and links in the directory)
identified by path. If the removal operation is successful, removeFileAtPath:handler: returns YES. If the
operation is not successful, but the handler method fileManager:shouldProceedAfterError: returns
YES, removeFileAtPath:handler: also returns YES; otherwise it returns NO.

The argument handler identifies an object that responds to the callback messages
fileManager:willProcessPath: and fileManager:shouldProceedAfterError: (see “Methods
Implemented by the Callback Handler,” below). This callback mechanism is similar to delegation.
NSFileManager sends the first message when it begins a copy, move, remove, or link operation. It sends the
second message when it encounters any error in processing. You can specify nil for handler if no object
responds to the callback messages.

Since the removal of directory contents is so thorough and final, be careful when using this method. Do not
specify “.” or “..” for path; this will raise the exception NSInvalidArgumentException. This method does
not traverse symbolic links.

See also: copyPath:toPath:handler:, – linkPath:toPath:handler: , –movePath:toPath:handler:,
– fileManager:shouldProceedAfterError: , –fileManager:willProcessPath:

stringWithFileSystemRepresentation:length:
– (NSString *)stringWithFileSystemRepresentation:(const char *)string

length:(unsigned int)len

Returns an NSString object converted from a C-string representation of a path name in the current file
system (string). Use this method if your code receives paths as C-strings from system routines.

See also: – fileSystemRepresentationWithPath:

14

 NSFileManager

subpathsAtPath:
– (NSArray *)subpathsAtPath:(NSString *)path

Returns an NSArray that lists (as NSStrings) the contents of the directory identified by path. This list of
directory contents goes very deep and hence is very useful for large file-system subtrees. The method skips
“.” and “..”. If path is a symbolic link, subpathsAtPath: traverses the link. The method returns nil if it
cannot get the device of the linked-to file.

Here is a sample fragment of what subpathsAtPath: returns (as the output of NSArray’s description
method) when path is /NextDeveloper:

Demos/AppInspector.app/Voyeur.nib/PauseH.tiff,

Demos/AppInspector.app/Voyeur.nib/data.classes,

Demos/AppInspector.app/Voyeur.nib/data.nib,

Demos/AppInspector.app/check.tiff,

Demos/AppInspector.app/checkH.tiff,

Demos/AppInspector.app/AppInspector,

Headers,

Headers/architecture,

Headers/architecture/ARCH_INCLUDE.h,

Headers/architecture/adb_bus.h,

Headers/architecture/adb_kb_codes.h,

Headers/architecture/adb_kb_map.h,

Headers/architecture/alignment.h,

Notice that this method reveals every element of the subtree at path, including the contents of file packages
(such as applications, nib files, and RTFD files). This code fragment gets the contents of
/NextLibrary/Fonts after verifying that the directory exists:

BOOL isDir=NO;

NSArray *subpaths;

NSString *fontPath = @"/NextLibrary/Fonts";

NSFileManager *manager = [NSFileManager fileManager];

if ([manager fileExistsAtPath:fontPath isDirectory:&isDir] && isDir)

 subpaths = [manager subpathsAtPath:fontPath];

See also: – directoryContentsAtPath:, –enumeratorAtPath:

Methods Implemented by the Callback Handler (Notification)

fileManager:shouldProceedAfterError:
– (BOOL)fileManager:(NSFileManager *)manager

shouldProceedAfterError:(NSDictionary *)errorInfo

NSFileManager sends this message for each error it encounters when copying, moving, removing, or
linking files or directories. The NSDictionary object errorInfo contains two or three pieces of information
(all NSStrings) related to the error:

15

Key Value

@"Path" The path related to the error (usually the source path)
@"Error" A description of the error
@"ToPath" The destination path (not all errors)

Return YES if the operation (which is often continuous within a loop) should proceed and NO if it should
not; the Boolean value is passed back to the invoker of copyPath:toPath:handler:,
movePath:toPath:handler:, removeFileAtPath:handler: or linkPath:toPath:handler: .

The following implementation of fileManager:shouldProceedAfterError: displays the error string in an
attention panel and leaves it to the user whether to proceed or stop:

-(BOOL)fileManager:(NSFileManager *)manager

 shouldProceedAfterError:(NSDictionary *)errorDict

{

 int result;

 result = NSRunAlertPanel(@"Gumby App", @"File operation error:

%@ with file: %@", @"Proceed", @"Stop", NULL,

[errorDict objectForKey:@"Error"],

[errorDict objectForKey:@"Path"]);

 if (result == NSAlertDefaultReturn)

 return YES;

 else

 return NO;

}

See also: – fileManager:willProcessPath:

fileManager:willProcessPath:
– (void)fileManager:(NSFileManager *)manager willProcessPath:(NSString *)path

NSFileManager sends this message to the designated handler for each file or directory (identified by path)
that it is about to copy, link, remove, or move. This notification gives you the opportunity to update your
user interface or to do anything similar where the knowledge of path is important.

See also: – fileManager:shouldProceedAfterError:

