
1

NSObjCTypeSerializationCallBack

Adopted By: No OpenStep classes

Declared In: Foundation/NSSerialization.h

Protocol Description

An object conforms to the NSObjCTypeSerializationCallBack protocol so that it can intervene in the
serialization and deserialization process. The primary purpose of this protocol is to allow for the
serialization of objects and other data types that aren’t directly supported by OpenStep’s serialization
facility. (See the NSSerializer class specification for information on serialization.)

NSMutableData declares the method that’s used to begin the serialization process:

- (void)serializeDataAt:(const void *)data

 ofObjCType:(const char *)type

 context:(id <NSObjCTypeSerializationCallBack>)callback

This method can serialize all standard Objective C types (int , float, character strings, and so on) except for
objects, union, and void *. If, during the serialization process, an object is encountered, the object passed
as the callback argument above is asked to provide the serialization.

Suppose that the type being serialized is a structure of this description:

struct stockRecord {

 NSString *stockName;

 float value;

};

The Objective C type code for this structure is {@f}, so the serialization process begins with this message:
(Assume that theData is the NSMutableData object that’s doing the serialization and helper is an object
that conforms to the NSObjCTypeSerializationCallBack protocol.)

struct stockRecord aRecord = {@ "aCompany", 34.7};

[theData serializeDataAt:&aRecord ofObjCType: "{@f}" context:helper];

Since the first field of the structure is an unsupported type, the helper object is sent a
serializeObjectAt:ofObjCType:intoData: message, letting it serialize the object. helper might implement
the method in this way:

2

- (void)serializeObjectAt:(id *)objectPtr

 ofObjCType:(const char *)type

 intoData:(NSMutableData *)theMutableData

{

 NSString *nameObject;

 char *companyName

 nameObject = *objectPtr;

 companyName = [nameObject cString];

 [theData serializeDataAt:&companyName ofObjCType:@encode(typeof(companyName))

 context:nil];

}

The callback object is free to serialize the target object as it wishes. In this case, helper simply extracts the
company name from the NSString object and then has that character string serialized. Once this callback
method finishes executing, the original method (serializeDataAt:ofObjCType:context:) resumes execution
and serializes the second field of the structure. Since this second field contains a supported type (float), the
callback method is not invoked again.

Deserialization follows a similar pattern, except in this case NSData declares the central method
deserializeDataAt:ofObjCType:atCursor:context:. The deserialization of the example structure starts with
a message to the NSData object that contains the serialized data:

(unsigned *)cursor = 0;

[theData deserializeDataAt:&aRecord ofObjCType:"{@f}" cursor:&cursor

 context:helper];

(The cursor argument is a pointer to zero since we’re starting at the beginning of the data in the NSData
object.)

When this method is invoked, the callback object receives a
deserializeObjectAt:ofObjCType:fromData:atCursor: message, as declared in this protocol. The callback
object can then reestablish the first field of the structure. For example, helper might implement the method
in this way:

- (void) deserializeObjectAt:(id *)objectPtr

 ofObjCType:(const char *)type

 fromData:(NSData *)data

 atCursor:(unsigned *)cursor

{

 char *companyName;

 [theData deserializeDataAt:&companyName ofObjCType:"*" atCursor:cursor

 context:nil];

 *objectPtr = [[NSString stringWithCString:companyName] retain];

}

3

Instance Methods

deserializeObjectAt:ofObjCType:fromData:atCursor:
– (void)deserializeObjectAt:(id *)object

ofObjCType:(const char *)type
fromData:(NSData *)data
atCursor:(unsigned *)cursor

The implementor of this method decodes the referenced object (which should always be of type "@")
located at the cursor position in the data object. The decoded object is not autoreleased.

See also: deserializeDataAt:ofObjCType:context: (NSData)

serializeObjectAt:ofObjCType:intoData:
– (void)serializeObjectAt:(id *)object

ofObjCType:(const char *)type
intoData:(NSMutableData *)data

The implementor of this method encodes the referenced object (which should always be of type "@") in the
data object.

See also: serializeDataAt:ofObjCType:context: (NSMutableData)

