
FlatFile Adaptor

The FlatFileAdaptor provides EOF with access to ASCII text files. Its purpose is not to 
take the place of a real SQL database, but to to elucidate the issues you might 
encounter when implementing your own custom adaptor. These include:

· Connecting to your database via a connection dictionary and a login panel.
· Mapping external data types like DATETIME and VARCHAR2 to object values such 

as NSCalendarDate and NSString.
· Supporting your database's transactional features (e.g. nesting and rollback).
· Generating a schema from a given EOModel and configuring an EOModel from an 

existing database.
· Generating and executing SQL statements for operations like insert, update, delete 

and select.

While this adaptor addresses these problems, it handles some of them differently than a 
normal SQL adaptor would. FlatFileAdaptor defines a database as a collection of files 
within a directory. Rather than connecting to a server, it reads these files and parses 
them according to the row and column separators specified in its connection dictionary. 
It only supports a few simple external data types: Number, String, Data and Date, 
whose default internal mappings are NSDecimalNumber, NSString, NSData, and 
NSCalendarDate, respectively. Within the scope of a transaction, all files are cached in 
memory as NSDatas. Modified files are saved when the transaction is committed ± if it's 
aborted, their cached editions are released and reread the next time they are needed. 
Nested transactions are not supported. Generating a Flat File schema consists of 
writing simple column headers to a set of files. These headers are later used to map 
EOAttributes to their corresponding columns. 

Because there is no SQL server behind the scenes, FlatFileChannel has to perform 
basic database operations itself ± it evaluates EOQualifiers in memory via 
evaluateWithObject: and sorts its results using EOF's extensions to NSArray. A normal 
adaptor would simply pass SQL strings generated by its EOSQLExpression subclass to 
a server via evaluateExpression: and process the results. Its EOAdaptorChannel 
subclass's deleteRowsDescribedByQualifier: might look like:

- (void)deleteRowsDescribedByQualifier:(EOQualifier *)qualifier entity:(EOEntity *)entity
{
        EOSQLExpression *sqlExpression;
        NSDictionary *pkDict = nil;

        if (_delegateRespondsTo.willDeleteRows) {
                EODelegateResponse response;
                response = [_delegate adaptorChannel:self willDeleteRowsDescribedByQualifier:qualifier 
entity:entity];
                if (response != EODelegateApproves)
                        return;



        }

        sqlExpression = [[[_context adaptor] expressionClass] deleteStatementWithQualifier:qualifier 
entity:entity];
        [self evaluateExpression:sqlExpression];

        if (_cda.rpc == 0) {    // check database error return code
                [NSException raise:EOGeneralAdaptorException format:@"%@ -- %@ 0x%x: Attempted to 
delete a row that is not in the database", NSStringFromSelector(_cmd), NSStringFromClass([self class]), 
self];
        }

        if (_delegateRespondsTo.didDeleteRows)
                [_delegate adaptorChannel:self didDeleteRowsDescribedByQualifier:qualifier entity:entity];
}

Despite such implementation differences, FlatFileAdaptor is structured the same way a 
SQL adaptor would be.

Classes

FlatFileAdaptor Manages connection information and type mappings.
FlatFileContext Maintains files' state within a transaction scope.
FlatFileChannel Manipulates the NSData representations of the files.
FlatFileColumn Facilitates conversion of ASCII strings to object values.
FlatFileSQLExpression Provides support for creating and removing files via 

FlatFileChannel's evaluateExpression: which parses 
simple (non±SQL) statements. Don't be fooled by the 
class name.

Other Components

FlatFileDescription Adds a category on FlatFileChannel to configure an 
EOModel to reflect the structure of an existing database.

FileScanning Contains a simple function (FFNextTokenIn) for parsing 
ASCII text (read: char *) into a stream of tokens.

FlatFileLoginPanel Provides a simple UI for connecting to a "database," 
which is really just a set of files.

Open Issues

nested transactions
string values with the row or column separator as a substring
flattened attributes
flattened relationships (many-to-many support)
file timestamps
locking


