
Porting Guide

Building Your Project on Windows
1. Copy the project files from the Mach system to the Windows system.
2. Build the project on the Windows system.
3. Run, test, and debug the application.

Once that you've ensured that the code in your OPENSTEP project is portable to Windows, you're
ready to build it on your Windows NT system.

Copying the Project
OPENSTEP for Windows includes an installable package containing Samba, a file server that
exports the UNIX file system to other systems, such as Windows NT. With Samba, an OPENSTEP
computer can share directories and printers with computers running Microsoft Windows. Once
Samba is installed and configured, you can use Window's Explorer or File Manager programs to
copy your application project from your OPENSTEP for Mach system to your OPENSTEP for
Windows system. The Samba package contains configuration instructions.

You can also use rcp, ftp, or a similar file-transfer tool to copy your project from your OPENSTEP
for Mach system to your OPENSTEP for Windows system. Issue the command from the Windows
system, preferably from the directory in which you want the project directory to be.

1. Double-click the Bourne shell icon (located in the NeXT Software program group) to start up a
shell.

2. Connect to the directory where you want the project to go. Create the directory if that's
necessary (by choosing, in the File Manager, Create Directory from the File menu) and set the
necessary permissions.

3. Copy the project from your OPENSTEP for Mach system.

The following rcp example copies the project Invoicer from host machine workhorse:

$ rcp -rb workhorse:/Projects/Invoicer .

The -b (binary) flag is necessary to prevent binary data files (such as nib files) from being
corrupted by the CR/LF substitution that is performed otherwise.

Building the Project
Once you've copied the project to your OPENSTEP for Windows system, you can build it using
Project Builder:

1. Launch Project Builder: Locate ProjectBuilder.exe in
$(NEXT_ROOT)/NextDeveloper/Apps/ProjectBuilder.app and double-click it to launch it.

2. Open the project: From Project Builder's Loaded Projects window, choose the Open command
from the Project menu:

In the Open dialog, navigate to your project directory, select the PB.project file, and click OK.

3. Build the project: Click the Build icon (the hammer) on Project Builder's main window. Click the
same iconic button again on the Project Build panel. Project Builder will commence building your
application.

You can also build your project from a Bourne shell:

1. Connect to the project directory.

2. Issue the make command against the target all, specifying the OBJROOT and SYMROOT
directories (temporary directories to hold files generated by the build). Here's an example:

$ make all OBJROOT=c:/temp/obj SYMROOT=c:/temp/sym

When you issue this command, the make utility proceeds to build your project, and emits compiler
and linker messages as it proceeds.

Interpreting Compiler Output
When your application compiles, you may see messages like this:

Controller.m: In function _i_Controller__openFile_withFlags_

Controller.m(153): warning: suggest parentheses around assignment
used as truth value

The compiler transforms Objective-C methods into functions with the following structure:

_i_Controller_DataSource_openFile_withFlags_

The first element indicates whether this is an instance method (i) or    a class method (c). Following
this indicator is the class name, the category (if any),    and the method name. If there is no category,
you'll just see two underscore characters. Underscores also replace the colons in method keywords.

Knowledge of this structure will aid you in debugging your code, as you'll see later.

Testing and Debugging the Application
Once your application compiles and links, run it and see how it behaves. Locate the application
executable in the .app directory, which itself is either in the project directory or, if you issued the
make command from the command line, in the SYMROOT directory that you specified. Double-click

the .exe file to launch the application. Give the application a test drive. See what works and what
doesn't, if anything.

Debugging the Application
You can debug your application using NeXT's version of gdb, the GNU debugger. Currently, you
must run gdb from a Bourne shell:

1. Open a shell by double-clicking sh.exe in $(NEXT_ROOT)/NextLibrary/Executables.

2. Change your working directory to your project directory, for example:

cd /Projects/MyAppProject

3. At the command prompt, enter "gdb" followed by the application's "app" directory and the
executable (which, of course, will contain more symbolic information if the build target is debug).

gdb MyApp.app/MyApp.exe

4. Run the debugger and debug the program. See the GNU Debugger Reference for details of
usage.

Note: If your executable contains CodeView symbols, you can also debug your Objective-C
application using Visual C++. For details, see Using Visual C++ to Debug Objective C.

Command Line Debugging Flags
When you start up an application from the command line you can specify flags that will help you
debug the application.These flags, described in the table below, make available details of behavior
related to the Window Server and PostScript generation.

You can specify the debugging flags from the command line or in Visual C++. This example shows
an application run from the command line with two debugging flags:

$ MyApp -NSSyncPS YES -NSShowPS YES

To specify the flags in Visual C++:

1. Choose Settings from the Project menu.
2. Click the Debug display.
3. Type the debugging flag or flags in the Program Arguments field.

Flag Effect
NSSyncPS If set to any non-zero value, makes the application wait for the

Window Server. Whenever the application sends PostScript code
to the Window Server, it will wait for the code to be executed
before proceeding. This results in error messages being more
closely associated with the code that produced them.

NSShowPS If set to any non-zero value, causes all PostScript code sent to
the Window Server to be also written to /tmp/console.log. The
/tmp directory must already exist.

NSPSDebug If set to YES, causes an alternate PostScript error-handling

routine to be installed. This routine produces more detailed
debugging information, including the contents of the operand
stack.

NSShowAllWindows If set to a non-zero value, forces all windows to be always on-
screen. Windows that are normally hidden, such as windows that
store images that are composited to other windows, will be
visible as your program runs.

NSAllWindowsRetained If set to a non-zero value, forces all buffered windows to be
retained windows. Since drawing is done directly on an on-
screen retained window, youll be able to see PostScript code
being rendered. (In a buffered window, drawing is rendered in a
buffer and then is flushed to the window.)

Some Common Problems
If your application fails to launch, crashes, or behaves unexpectedly when you first try to run it, you
can often quickly determine the reason. Follow these steps to isolate and resolve the problem:

1. Look in the application log in the Event Viewer.

From the Program Manager open the Administrative Tools program group and double-click the
Event Viewer application. Choose Application from the Log menu and double-click the first item
in the log.

2. If the problem is related to Display PostScript, make sure WindowServer.exe is running.

3. If the problem is one of the following, make sure that pbs.exe is running and that
NEXT_ROOT/NextLibrary/Fonts and NEXT_ROOT/NextLibrary/Rulebooks contain the
proper files.

The application cannot connect to pbs.
The application cannot get font information.
The application takes a long time to run.
The application has no text when it appears.

4. Make sure that the necessary DLLs are in the proper directories: nextpdo.dll, Foundation.dll,
AppKit.dll, and other DLL's related to installed frameworks go in
NEXT_ROOT/NextLibrary/Executables.

From the Program Manager, check the System control panel to verify that these directories are
defined for the user environment variable Path.

5. An application can fail to launch because its main nib file was created with an earlier version of
Interface Builder. To resolve this problem, open your applications nib files on your OPENSTEP
for Mach system, make some trivial change to mark the files as dirty, re-save the files, and copy
them to the appropriate source .lproj directory on your OPENSTEP for Windows system.

Copyright 1996 by NeXT Computer, Inc.    All Rights Reserved.

OPENSTEP 4.0 for Windows

Porting Guide
This guide contains instructions for porting OpenStep for Mach 4.0 (NEXTSTEP 4.0) applications to
OpenStep for Windows 4.0.

Contents
Introduction
 Overview of OPENSTEP 4.0 for Windows
 NEXT_ROOT
 Major Components

Ensuring Portablility
Converting NEXTSTEP 3. x Applications
Removing UNIX Dependencies

Converting to Windows Run-Time Functions
Converting to Objective-C Messages

Conforming to Windows Conventions
Preparing to Build the Project on Mach

Building Your Project on Windows
Copying the Project
Building the Project

Interpreting Compiler Output
Testing and Debugging the Application

Appendix: Using Visual C++ to Debug Objective-Code

Porting Guide

Using Visual C++ to Debug Objective-C

In addition to using gdb, the GNU debugger, you can use the Microsoft Visual C++ debugger to
debug your Objective-C code on NT. The gcc compiler on Windows, if given the -gcodeview flag,
generates CodeView debugging information that can be used by the Microsoft Visual C++ debugger
or by any other Windows debugger that supports CodeView symbols.

The Visual C++ debugger is not programmable or otherwise extensible and thus there is no way to
provide the same level of debugging support that gdb provides. Here are some of the limitations
that you will experience when you use Visual C++ to debug Objective-C code:

* You can't invoke functions from the command line.

* You can't set breakpoints by method name. However, you can set breakpoints on methods using
the equivalent function name generated by the compiler.

* You can't directly inspect an Objective-C object. However, there are ways to indirectly inspect
objects.

* When you view an object (whether global or local) you can only look at a snapshot of the object.
You don't get its superclass information by default. You can only see the scope of the one class
unless you explicitly cast it.

* If something is typed as id, you have to explicitly cast it to display information about it. Because
of this, you may want to use static typing whenever possible.

* You can't use the debugger to debug NSThreads.

You can step into message expressions by stepping into objc_msgSend calls in the Disassembly
panel. Although this technique (explained below) is not simple, it is effective. Otherwise, you can
only single-step and set break points on a method (though once you set a break point on a method
you can step through it).

To debug your Objective-C code in Visual C++:

1. Build a version of your program that includes debugging information by including -g on the gcc
command line (this is the makefile default).

2. Open the resulting .exe file in Visual C++, either by dragging it onto the Visual C++ icon or by
explicitly opening it from within Visual C++ by choosing Open from the File menu. If you have
problems with this step, simply restart the debugger from within Visual C++.

3. Open your source file in Visual C++.

4. Set any breakpoints.

5. Choose Go from the Debug menu.

The display changes to include the Locals and Watch windows. The Locals window lets you
examine local variables, while the Watch window lets you examine specific variables and
expressions.

Inspecting Objective-C Objects
You use the text field in the Watch window to examine and change variable values. Using this field,
you can inspect an Objective-C object by first casting the object to a C structure and then examining
the structure's members. Similarly, by typing the appropriate information in the QuickWatch field,
you can retrieve an objects value, its class, and its data members.

For example, suppose you have following simple application:

#import <Foundation/Foundation.h>

int main (){
int num = 33;
char name[256] = "Lois Lane";
id firstString;
NSString *secondString = @Clark Kent;
id nsnum;

firstString = [NSString stringWithCString:name];
nsnum = [NSNumber numberWithInt:num];
NSLog(@"The string is %@\n", firstString);
NSLog(@"The number is %@\n", nsnum);
return 0;

}

Typing the following sample statements in the Watch text field would have these effects:

Watch Statement Effect

nsnum Returns the location in memory where the object was
allocated.

(NSString*)firstString Returns the statement +(NSString*)string = <hex address>.
The plus sign indicates that the statement can be expanded to
display additional information. To expand a statement, double-
click it.

(NSString)firstString Has the same effect as the previous statement, except that
Watch represents the objects contents as a structure ({...}). As
with the above, you can expand it to display more detail about
structure members.

(char*)(NSString*)firstString+8 Casts the variable firstString to a C string and displays its
value, Lois Lane. This works for NSInlineCStrings, but is not
guaranteed to work for other string types such as
NXConstantStrings (which is what secondString is).

(char*)((struct objc class*)firstString)->isa->name
Returns an ASCII representation of the variable strings class.
Note that this works for local variables only; instance variables
must be accessed through self.

(char*)(NSString*)secondString->isa->name
Same as the above. This works for secondString but not for
firstString because secondString was statically declared to be
an NSString. Because secondString is an NXConstantString,

you cant use a statement such as (char*)(NSString*)string+8 to
display its contentsthat only works for NSInlineCStrings.

*(char **)(secondString+4) If you have an NSCString or an NXConstantString (like
secondString) you can retrieve its string value by making the
casts illustrated here (after the isa pointer is a pointer to the raw
bytes).

To display information about instance variables, you must access those variables through self. For
example, if you have an instance variable length, you can display information for it in the Watch
window by typing the following:

(char*)((struct objc_class*)self->length)->isa->name

Setting Breakpoints by Name
You can set breakpoints on methods by name, but not by the Objective-C name that identifies them
in your source code. You must use the function name that the compiler assigns to the method. As
explained in Interpreting Compiler Output, above, these function equivalents have the form:

_i_MyClass_MyCategory_method_name_

The initial "i" means instance method ("c" indicates class method). When theres no category, two
underscores are between the class and the method. Underscores are substituted for the colons
terminating method keywords.

To set a breakpoint on a method by name, type it with the appropriate function format into the
Location field of the Breakpoints panel and click Add. The application must be compiled with the -g
flag specified (the make default).

Stepping into objc_msgSend
Using the Visual C++ Disassembly panel, you can step into an invoked method via the
objc_msgSend call and exit into the source code implementing that method. The methods
susceptible to this technique can only be your own, not methods in libraries for which you dont have
source code, such as the Foundation framework. To step into methods:

1. Set a breakpoint on or near the invocation of the method you want to step into.

2. Run the program to that breakpoint.

3. Choose Step Over from the Debug menu (or click the associated icon) until the cursor is on the
line containing the method you want to step into.

4. Choose Disassembly from the Debug menu.

5. In the Disassembly panel, step over lines until you get to the first objc_msgSend.

6. If you want to verify the associated selector at this point, follow the instructions in Identifying
Selectors, below.

7. Choose Debug->Step Into (or click the associated icon) to step into the objc_msgSend call.

8 Step over lines until you come to jmp        eax; step into it. This assembly directive actually
switches the thread of execution to the invoked method.

9. You're now in the portion of assembly code related to the invoked method's first line of source
code. Choose Debug->Disassembly to toggle off the Disassembly panel and pop up the source
code file.

Identifying Selectors
To identify the method selector associated with an objc_msgSend in the Disassembly panel, do the
following:

1. In the Disassembly panel, before you step into objc_msgSend, locate the selector stack just
before it. Selector stacks hold the selector for the next objc_msgSend call or for a series of
objc_msgSend calls if messages are nested.

2. Double-click the address in the parentheses to the right of the selector stack to select it, then
drop it to the Memory panel

3. Since the address you drop onto the Memory panel is a pointer pointer, you must dereference
the result to find the selector. For convenience, the Memory panel should be set to display long
hexadecimal; if its not, choose Options from the Tools menu, select the Debug display, and set
the format to be Long Hex. Select the first hex address associated with the selector stack
address, drag it slightly within the Memory panel, and drop it. This deferences the pointer and
displays the selector name.

Porting Guide

Ensuring Portablility
1. Convert NEXTSTEP 3.x applications to NEXTSTEP 4.0 (OPENSTEP 4.0 for Mach)
2. Locate and convert UNIX dependencies in your application code.
3. If necessary, make your application conform to Windows conventions.
4. Build the project on Mach.

OPENSTEP applications that are free of UNIX dependencies and that compile without error on
OPENSTEP for Mach should also compile without error on OPENSTEP for Windows. This section
describes what you must do to ensure that your OPENSTEP applications are completely portable to
Windows.

Converting NEXTSTEP 3.x Applications
Before you can port your NEXTSTEP 3.x applications to Windows, you must convert them to
OPENSTEP for Mach (NEXTSTEP 4.0). NeXT provides some TOPS conversion scripts to help you
make these conversions. (TOPS is a tool that performs in-place substitutions on code.) You must
run these scripts in the proper sequence, and complete the necessary post-processing alterations.

The OPENSTEP Conversion Guide describes the conversion process and gives detailed
instructions for completing it. This guide is located on-line on your OPENSTEP for Mach system at
/NextLibrary/Documentation/NextDev/Conversion/ConversionGuide. You can access the
Conversion Guide on-line through Digital Librarian.

Removing UNIX Dependencies
When you successfully convert your application to 4.0, you are far along in the process, but you are
not quite finished. Even if your application compiles without error and runs without problems as a
OPENSTEP for Mach application, you still might have to complete a deep conversion before your
application can compile and run problem-free on Windows. This deep conversion requires you to
locate calls of UNIX library routines in your code and replace them with equivalent Windows
functions or Objective-C messages.

The general procedure to follow is:

1. Identify those source code files that #import or #include UNIX header files, particularly bsd. To
assist you, use Project Builder’s Project Find panel (textual find mode), or grep or a similar tool.

2. Examine the files to locate where routines in these libraries are being called.

3. Replace the UNIX routine with something more portable. There are two kinds of conversions you
can make:

* Converting UNIX routines to their underscore-prefixed counterparts on Windows

* Converting UNIX routines to Objective-C (Foundation) messages

Converting UNIX routines to the corresponding Windows routines is an easier and hence faster kind
of change to make. However the implementation of these routines may differ somewhat from their
UNIX counterparts. Your application will probably run fine on Windows if it calls these functions but
then again, it might not. Conversion to Objective-C messages ensures greater portability, and
eliminates the need to convert data to types required by arguments (for instance, NSStrings to C

strings).

Converting to Windows Run-Time Functions
Windows supports a run-time library of functions, many of which are analogous to ANSI and other
common C library routines. The Windows versions of these functions usually have an underscore
character prepended to their names.

To see if a UNIX function has a counterpart in a Windows library:

1. Run Visual C++.

2. Choose Help->Run-Time Routines.

3. Search the index in the Help Topics: Run-Time Routines Quick Reference panel.

4. If there is an equivalent routine, enclose the lines containing the UNIX and the Windows routines
in preprocessor conditionals (for example, #ifndef WIN32...#else...#endif).

Converting to Objective-C Messages
The following tables cover some of the more common UNIX-to-Objective-C conversions. The
OPENSTEP classes related to the suggested methods appear both before the table and in
parentheses. There may be other conversions to make that you can discover for yourself by
examining the documentation of these and other classes in the OpenStep specification
(/NextLibrary/Documentation/OpenStepSpec) and in the reference documentation for the
Application Kit and Foundation frameworks. You can access this documentation on Mach using
Digital Librarian or through Project Builder's Project Find panel.

String and Character Manipulation
Related classes: NSString (including methods in NSPathUtilities.h), NSScanner, NSCharacterSet.

Header File Function Suggestions for Replacement
ansi/string.h strcpy(), strncpy() copy, mutableCopy
bsd/strings.h strcat(), strncat(), stringByAppendingString: (NSString)

strcmp(), strncmp() isEqualToString:, compare: (NSString)
strlen() length (NSString)

ansi/stdio.h sprintf(), fprintf() stringWithFormat: (NSString)
sscanf(), fscanf() see NSScanner.h or related documentation

ansi/ctype.h isXXX(), toXXX() see NSCharacterSet.h or related documentation

Logging and Exceptions
Related classes: NSString (including methods in NSPathUtilities.h), NSScanner, NSCharacterSet.

Header Files Functions Suggestions for Replacement
ansi/stdio.h printf(), fprintf() NSLog()
bsd/sys/printf.h printf(), log(), panic() NSLog(), see NSException
bsd/sys/syslog.h openlog(), syslog() NSLog()

File System and I/O Operations

Related classes: NSString    (including methods in NSPathUtilities.h), NSFileManager

Header Files Function/Type Suggestions for Replacement
bsd/sys/param.h MAXPATHLEN Unnecessary with NSString path utilities

(NSPathUtilities.h). Can be converted to
FILENAME_MAX (ansi/stdio.h).

ansi/string.h
bsd/strings.h

strcat(), strncat() stringByAppendingPathComponent:,
stringByAppendingPathExtension:, and others
(NSString, as defined in NSPathUtilities.h)

ansi/string.h index(), rindex() pathExtension, stringByDeletingPathExtension:,
bsd/strings.h (NSPathUtilities.h) rangeOfString:options (NSString).

Also index() can be converted to strchr() and rindex()
to    strrchr() (ansi/string.h).

bsd/libc.h getwd() currentDirectoryPath (NSFileManager)
chmod() changeFileAttributes:atPath (NSFileManager)
stat(), lstat() fileAttributesAtPath:traverseLink:(NSFileManager). If

you keep stat() calls, be advised theres no S_IFLNK or
S_ISVTX flags.

statfs() fileSystemAttributesAtPath: (NSFileManager)
symlink() Windows does not have symbolic links or
readlink() hard links; you must devise your own replacement

code.
mkdir(), umask() createDirectoryAtPath:attributes:
rmdir() removeFileAtPath:handler: (NSFileManager)
creat(), open() createFileAtPath:contents:attributes:
read(), write() contentsAtPath: , movePath:toPath:handler:,
move/copy
operations

copyPath:toPath:handler: (NSFileManager).
If you keep open(), specify the O_BINARY flag.

using above
functions

bsd/unistd.h getcwd() currentDirectoryPath,
chdir() changeCurrentDirectoryPath: (NSFileManager)
chown(), chmod() changeFileAttributes:atPath (NSFileManager)
access() fileExistsAtPath:, isReadableFileAtPath:,

isWritableFileAtPath:, isExecutableFileAtPath:
isDeletableFileAtPath: (NSFileManager)

bsd/sys/dir.h
bsd/sys/dirent.h

opendir(),
readdir()

directoryContentsAtPath:, subPathAtPath:
enumeratorAtPath: (NSFileManager)

ansi/i386/limits.h MININT, MAXINT, INT_MIN, INT_MAX
MINFLOAT,
MAXFLOAT

FLT_MIN, FLT_MAX

Date and Time
Related classes: NSDate, NSCalendarDate, NSTimeZone, NSTimeZoneDetail. These classes are
defined in NSDate.h.

Header Files Functions Suggestions for Replacement
ansi/time.h time() date and date... variants (NSDate)

ctime(), asctime() description:, descriptionWithCalendarFormat:locale:
(NSDate)

localtime(),
gmtime()

calendarDate, dateWithCalendarFormat:locale:
Access time elements with dayOfMonth, hourOfDay, etc.
(NSCalendarDate)

mktime() dateWithYear:month:day:hour:minute:second:timeZone:
strftime() descriptionWithCalendarFormat:locale: (NSDate and

NSCalendarDate)
tzset() See documentation on the NSTimeZone class.

Dynamic Memory
Related classes: Use NSData and NSMutableData as a replacement for buffered data (unstructured
memory). For allocation of string objects, use the string... class methods of NSString.

Header Files Functions Suggestions for Replacement
ansi/stdlib.h malloc() dataWith... methods (NSData)
bsd/sys/malloc.h calloc() dataWithLength: (NSMutableData)

realloc() setLength: (NSMutableData)

ansi/string.h memcpy(),
memset(),

getBytes:, subdataWithRange: (NSData)

bsd/memory.h memcmp() isEqualToData: (NSData)
ansi/string.h bcopy(), bcmp(),

bzero()
getBytes:, subdataWithRange: (NSData)
isEqualToData: (NSData)
Also memcpy(), memcmp(), memset()

Miscellaneous

Header Files Functions Suggestions for Replacement
bsd/unistd.h sleep(), alarm(), wait() See NSTimer
bsd/lib.h environ (global type) See NSProcessInfo
mach/cthreads.h cthread_fork(), etc. NSThread

Conforming to Windows Conventions
In Windows applications, menus are laid out horizontally under the title bar of a window; there is no
such thing in Windows as a menu separate from a standard window, as there is in OpenStep for
Mach. The Windows operating system also has different conventions for the menus that appear in
this menu bar and what those menus contain.    Because of these differences, you might want to
make your applications' menus conform to Windows conventions for menus.

Menu Guidelines
Here are a few simple guidelines to follow to make sure you're creating an application that follows
conventions Windows users have come to expect:

* Usually, an application should have at least five menus:
File
Edit

Window
Services
Help

      If the application doesn't create, open, or save files, the File menu can be given a more
appropriate name. However, it must still exist because it contains the Exit command.

 
* If the application doesn't support having multiple documents open, remove the Window menu.

 
* The File menu should be the first menu unless there's a really good reason not to. (For example,

for Project Builder, it's much more appropriate to have Project be the first menu.)

* The first menu, whatever it is, should always contain the Exit command.

* The Preferences command, if it exists, belongs on the Tools menu. If there is no Tools menu,

place it on the first menu, directly above Exit, and put a separator line above the Preferences
command.

This list summarizes standard OPENSTEP menus and menu commands and suggests where they
should go on the Windows version of your application.

Main menu What to do
Info menu Delete (see below)
File menu As-is (see below)
Edit menu As-is
Format menu See below
Window See below
Print... Move to File menu
Services menu Keep
Hide Delete
Quit Change to Exit, move to first menu.
custom menus Probably OK as-is

Info menu What to do
Don't use this menu on Windows applications. Put its commands elsewhere:
Info Panel... Move to last command in Help menu. Change name to 'About
application_name'
Preferences Move to Tools menu, if one exists, or to the next-to-last command in first
menu.
Help Put Help items (Windows Help) in the Help menu.

File menu
Since this is usually the first menu, add Preferences and Exit to it. Also, add the Print and Page
Setup commands to this menu.

Format menu
Rename the Page Layout command to "Page Setup" and move it to the File menu.

Windows menu
Rename the menu "Window" and remove the Miniaturize and Close commands.

For for information on the conventions for Windows menus, see The Windows Interface Guidelines
for Sofware Design, by Microsoft Press.

Multiple document applications
Follow the Windows guidelines for multiple document applications that don't use the MDI paradigm.
Basically, this means that when the application starts up, it should display a window with a menu bar
(an "untitled" document). The application should quit if there is no window with a menu bar visible
(as happens when users close the last window in the application.) See the Draw project in
/NextDeveloper/Examples/AppKit for an example.

Preparing to Build the Project on Mach
Before you build your application on OPENSTEP for Mach, you have to set up the development
environment so that its compatible with OPENSTEP for Windows. First, make sure that gnumake
(version 3.74) is specified as the make utility (it is the default). To do this, you need only open your
project in Project Builder on OpenStep for Mach and save it. This substitutes gnumake for make for
builds thereafter. To verify this change has take place:

1. In Project Builder, click the Project Inspector.
2. Bring up the Build Options display.
3. The path in the Build Tool field should be /bin/gnumake.

When you build the application, fix all reported problems until the application builds error- and
(preferably) warning-free.

Porting Makefile Customizations
The templates for files Makefile.preamble and Makefile.postamble for OPENSTEP 4.0 (both
Windows and Mach) differ significantly from their NEXTSTEP 3.x predecessors. The procedure for
porting makefiles on your OPENSTEP for Mach system is:

1. Rename your current Makefile.preamble and Makefile.postamble files (for example, to
Makefile.preamble.old).

2. Copy Makefile.preamble.template and Makefile.postamble.template in
/NextDeveloper/Makefiles/project to your project directory; remove the .template suffix.

3. Copy customizations in the old makefiles to the appropriate variables in the new makefiles.
Carefully read the comments in the new makefiles to identify the corresponding variable. When
you are finished, save the makefiles.

Be careful when making these customizations because they must now work on two operating
systems. The locations and names of tools will be different. And remember, when you specify path
in makefiles prepend "$(NEXT_ROOT)" to the pathname.    However, don't use NEXT_ROOT when
specifying install directories.

Conditional Makefile Commands
In Makefile.preamble and Makefile.postamble you can conditionally specify options or macros for
building projects on Windows. Enclose the commands in an ifeq...endif statement in which you use
the PLATFORM_OS macro to test for the underlying operating system. For example, if you are
building a bundle on Windows, you'd want to ensure that the Microsoft linker is invoked with the

-force option; thus, in Makefile.preamble, you type:

ifeq ("$(PLATFORM_OS)", "winnt")
OTHER_LDFLAGS += "-Xlinker -force"

endif

Porting Guide

Introduction

This document explains how to port OPENSTEP applications built for the Mach operating system to
Windows. This procedure has three phases:

1. Build your application on an OPENSTEP 4.0 for Mach system, ensuring that it thoroughly
conforms to the implementation of OPENSTEP on Mach and is free of UNIX dependencies.

2. Copy the project files to Windows.

3. Build the application on Windows. If there are problems, debug the application using the GNU
debugger (gdb) or, for some situations, the Visual C++ debugger.

You also might find it necessary to modify the user interface and launch behavior of ported
applications because of the different conventions for menus and documents on OPENSTEP for
Mach and Windows. See "Conforming to Windows Conventions" for summaries of these
conversions.

Note: OPENSTEP 4.0 for Mach is sometimes informally referred to as NEXTSTEP 4.0.

Overview of OPENSTEP 4.0 for Windows
OPENSTEP 4.0 for Windows is an object-oriented graphical user and development environment for
Windows NT and Windows 95. It is an implementation of the OPENSTEP standard which is based
on NeXT's open object layer but with extensions that mirror the implementation of OPENSTEP for
Mach

With OPENSTEP for Windows you'll be able to develop object-oriented, three-tier client-server
applications in a fraction of the time it takes with current Windows development tools. These
applications look and behave like any other Windows application because they are displayed inside
Windows windows and use Windows-style menus. Yet they retain much of the distinctive look and
feel they would have under OPENSTEP 4.0 for Mach.

You can deploy OPENSTEP for Windows applications on Intel-based PCs running the OPENSTEP
for Windows run-time system and easily port them across all OPENSTEP implementations,
including those announced from Sun, Hewlett Packard, and NeXT. Your applications will seamlessly
communicate with objects running on servers from Sun, Hewlett Packard and Digital; they will also
automatically communicate with OLE objects and services, enabling OPENSTEP applications to
interoperate with native Windows applications such as Excel and Word.

NEXT_ROOT
When you install OPENSTEP for Windows, you identify the root directory for the software through
the user environment variable NEXT_ROOT. References to paths (in makefiles, for instance) are
thus often prefixed with "$(NEXT_ROOT)".

Major Components
Before you begin porting your application, you might find it useful to know what the major
components of OPENSTEP are and where they're located on your NT system.    This section

describes those components.

Development Applications
Both Interface Builder and Project Builder have been ported to Windows, so you can use both in
application development. Interface Builder and Project Builder are located in
NEXT_ROOT/NextDeveloper/Apps.

The following tables describe the other important components.

Run Time
The following processes provide the run-time support needed for OpenStep for Windows. In the
installation procedure you can request Windows to start up these processes when the system is
booted. These processes are located in NEXT_ROOT/NextLibrary/System.

Process Description
machd.exe Mach emulator
nmserver.exe Mach network server
WindowServer.exe Display PostScript window server
pbs.exe pasteboard server

Tools
The compiler and the make utitlity are in NEXT_ROOT/NextDeveloper/Executables. The Bourne
shell and the shell utilities are in NEXT_ROOT/NextLibrary Executables.

Tool Description
gcc.exe Gnu C/C++ compiler driver. Executable files called by gcc (including as, the

assembler)    are in
NEXT_ROOT/NextDeveloper/Libraries/gcc-lib/winnt3.5/2.6.1.

as.exe Gnu assembler
make.exe Gnu make utility (3.74)
sh.exe Bourne shell 4.4 BSD
shell utilities UNIX-style command line utilities (grep, ls, chmod, vi, less, etc.)

Note: The link editor, ld, has not been ported.    For the current release, the compiler driver gcc
automatically uses link.exe, the Visual C++ linker.

Frameworks
Frameworks are located in NEXT_ROOT/NextLibrary/Frameworks. Related DLLs are in
NEXT_ROOT/NextLibrary/Executables.

Framework Description
AppKit.framework Contains a library of Application Kit classes, protocols, functions, and types

along with associated header files, documentation, and resources.

Foundation.framework Contains a library of Foundation Kit classes, protocols, functions, and types,
along with associated header files, documentation, and resources

EOInterface.framework
EOAccess.framework
EOControl.framework
Oracle.framework

Frameworks related to the Enterprise Objects Framework (EOF) version 2.0.
They contain libraries of classes, protocols, functions, and types, along with
associated header files, documentation, and resources. Included are
frameworks for the access layer, the interface layer, the control layer and for

Sybase.framework
Informix.framework

various database adaptors. The “1x” frameworks (for example,
EOInterface1x.framework) are version 1.2 frameworks.

