
A Composite Object
By embedding a private cluster object in an object of your own design, you create a
composite object. This composite object can rely on the cluster object for its basic
functionality, only intercepting messages that it wants to handle in some particular
way. Using this approach reduces the amount of code you must write and lets you
take advantage of the tested code provided by the Foundation Framework.

A composite object can be viewed in this way:

The composite object must declare itself to be a subclass of the cluster’s abstract
node. As a subclass, it must override the superclass’s primitive methods. It can also
override derived methods, but this isn’t necessary since the derived methods work
through the primitive ones.

Using NSArray’s count method as an example, the intervening object’s
implementation of a method it overrides can be as simple as:

- (unsigned)count
{
 return [embeddedObject count];
}

However, your object could put code for its own purposes in the implementation of
any method it overrides.

A Composite Object: An Example
To illustrate the use of a composite object, imagine you want a mutable array object
that tests changes against some validation criteria before allowing any modification to
the array’s contents. The example that follows describes a class called
ValidatingArray, which contains a standard mutable array object. ValidatingArray
overrides all of the primitive methods declared in its superclasses, NSArray and
NSMutableArray. It also declares the array, validatingArray, and init methods,
which can be used to create and initialize an instance:

#import <foundation/foundation.h>

@interface ValidatingArray : NSMutableArray
{
 NSMutableArray *embeddedArray;
}

+ validatingArray;
- init;
- (unsigned)count;
- objectAtIndex:(unsigned)index;
- (void)addObject:object;
- (void)replaceObjectAtIndex:(unsigned)index withObject:object;
- (void)removeLastObject;
- (void)insertObject:object atIndex:(unsigned)index;
- (void)removeObjectAtIndex:(unsigned)index;

@end

The implementation file shows how, in a ValidatingArray’s init method, the
embedded object is created and assigned to the embeddedArray variable. Messages
that simply access the array but don’t modify its contents are relayed to the embedded
object. Messages that could change the contents are scrutinized (here in pseudo-code)
and relayed only if they pass the hypothetical validation test.

#import "ValidatingArray.h"

@implementation ValidatingArray

- init
{
 embeddedArray = [[NSMutableArray allocWithZone:[self zone]] init];
 return self;
}

+ validatingArray
{
 return [[[self alloc] init] autorelease];
}

- (unsigned)count
{
 return [embeddedArray count];
}

- objectAtIndex:(unsigned)index
{
 return [embeddedArray objectAtIndex:index];

}

- (void)addObject:object
{
 if (/* modification is valid */) {
 [embeddedArray addObject:object];
 }
}

- (void)replaceObjectAtIndex:(unsigned)index withObject:object;
{
 if (/* modification is valid */) {
 [embeddedArray replaceObjectAtIndex:index withObject:object];
 }
}

- (void)removeLastObject;
{
 if (/* modification is valid */) {
 [embeddedArray removeLastObject];
 }
}
- (void)insertObject:object atIndex:(unsigned)index;
{
 if (/* modification is valid */) {
 [embeddedArray insertObject:object atIndex:index];
 }
}
- (void)removeObjectAtIndex:(unsigned)index;
{
 if (/* modification is valid */) {
 [embeddedArray removeObjectAtIndex:index];
 }
}

A True Subclass
A new class that you create within a class cluster must:

• Be a subclass of the cluster’s abstract superclass
• Declare its own storage
• Override the superclass’s primitive methods (described below)

Since the cluster’s abstract superclass is the only publicly visible node in the
cluster’s hierarchy, the first point is obvious. This implies that the new subclass will
inherit the cluster’s interface but no instance variables, since the abstract superclass
declares none. Thus the second point: The subclass must declare any instance
variables it needs. Finally, the subclass must override any method it inherits that
directly accesses an object’s instance variables. Such methods are called primitive
methods.

A class’s primitive methods form the basis for its interface. For example, take the
NSArray class, which declares the interface to objects that manage arrays of objects.
In concept, an array stores a number of data items, each of which is accessible by
index. NSArray expresses this abstract notion through its two primitive methods,
count and objectAtIndex:. With these methods as a base, other methods—derived
methods—can be implemented, for example:

Derived Method Possible Implementation

lastObject Find the last object by sending the array object this message: [self
objectAtIndex:[self count] -1].

containsObject: Find an object by repeatedly sending the array object an
objectAtIndex: message, each time incrementing the index until
all objects in the array have been tested.

The division of an interface between primitive and derived methods makes creating
subclasses easier. Your subclass must override inherited primitives, but having done
so can be sure that all derived methods that it inherits will operate properly.

The primitive-derived distinction applies to the interface of a fully initialized object.
The question of how init... methods should be handled in a subclass also needs to be
addressed.

In general, a cluster’s abstract superclass declares a number of init... and + className
methods. As described in “Creating Instances” above, the abstract class decides which
concrete subclass to instantiate based your choice of init... or + className method.
You can consider that the abstract class declares these methods for the convenience of
the subclass. Since the abstract class has no instance variables, it has no need of
initialization methods.

Your subclass should declare its own init... (if it needs to initialize its instance
variables) and possibly + className methods. It should not rely on any of those that
it inherits. To maintain its link in the initialization chain, it should invoke its
superclass’s designated initializer within its own designated initializer method.      (See
the NEXTSTEP Object-Oriented Programming and the Objective C Language manual
for a discussion of the designated initializers.) Within a class cluster, the designated
initializer of the abstract superclass is always init.

Add-on Services
You typically define services when you create your application and advertise them in the
Info.plist file of the application’s bundle. The services facility also allows you to advertise
services outside of the application bundle, enabling you to create “add-on” services after the
fact. This is where the NSUserData entry becomes truly useful: You can define a single message
in your application that performs actions based on the user data provided, such as running the
user data string as a UNIX command (which the Terminal application does) or treating it as a
special argument in addition to the selected data that gets sent through the pasteboard.

To define an add-on service, you create a bundle with a .service extension that contains an
Info.plist file, which in turn contains the add-on service specification. You then put this bundle
into a Services directory in the library search path (~/Library, /LocalLibrary, /NextLibrary). The
services facility scans these directories when the user logs in and takes note of which services
are defined; you can force this scanning by running the make_services UNIX command. If your
application creates a service at run time and needs it to be available immediately, it calls this
function to force scanning:

void NSUpdateDynamicServices(void)

Architectural Overview
You can think of the text-handling system as having three distinct layers of API. For most
typical uses, the general-purpose programmatic interface of the NSTextView class is all you
need to learn. If you need more flexible programmatic access to the text, you’ll need to learn
about the storage layer and the NSTextStorage class. And, of course, to access all the available
features, you can learn about and interact with any of the classes that support the text-handling
system. The following discussion presents these three layers.

Assembling the Text System by Hand
You build the network of objects that make up the text-handling system from the bottom up,
starting with the NSTextStorage object. Here’s the process:

1. Set up an NSTextStorage object.

You create an NSTextStorage object in the normal way, using the alloc and init... messages.
In the simplest case, where there’s no initial contents for the NSTextStorage, the
initialization looks like this

textStorage = [[NSTextStorage alloc] init];

If, on the other hand, you want to initialize an NSTextStorage object with rich text data
from a file, the initialization looks like this (assume fileName is defined):

NSAttributedString *attrString = [NSAttributedString
 attributedStringFromRTF:[NSData dataWithContentsOfFile:fileName]];

textStorage = [[NSTextStorage alloc]
 initWithAttributedString:attrString];

We’ve assumed that textStorage is an instance variable of the object that contains this
method. When you create the text-handling system by hand, you need to keep a reference
only to the NSTextStorage object as we’ve done here. The other objects of the system are
owned either directly or indirectly by this NSTextStorage object, as you’ll see in the next
steps.

2. Set up an NSLayoutManager object:

Next, create an NSLayoutManager object:

NSLayoutManager *layoutManager;

layoutManager = [[NSLayoutManager alloc] init];
[textStorage addLayoutManager:layoutManager];
[layoutManager release];

Note that layoutManager is released after being added to textStorage. This is because the
NSTextStorage object retains each NSLayoutManager that’s added to it—that is, the
NSTextStorage object owns its NSLayoutManagers.

The NSLayoutManager needs a number of supporting objects—such as those that help it
generate glyphs or position text within a text container—for its operation. It automatically
creates these objects (or connects to existing ones) upon initialization. You only need to
connect the NSLayoutManager to the NSTextStorage object and to the NSTextContainer
object, as seen in the next step.

3. Set up an NSTextContainer object.

Next, create an NSTextContainer and initialize it with a size. Assume that theWindow is
defined and represents the window that displays the text view.

NSRect cFrame = [[theWindow contentView] frame];

NSTextContainer *container;

container = [[NSTextContainer alloc]
 initWithContainerSize:cFrame.size];
[layoutManager addTextContainer:container];
[container release];

Once you’ve created the NSTextContainer, you add it to the list of containers that the
NSLayoutManager owns, and then you release it. The NSLayoutManager now owns the
NSTextContainer and is responsible for releasing it when it’s no longer needed. If your
application has multiple NSTextContainers, you can create them and add them at this time.

4. Set up an NSTextView object.

Finally, create the NSTextView (or NSTextViews) that displays the text:

NSTextView *textView = [[NSTextView alloc]
 initWithFrame:cFrame textContainer:container];

[theWindow setContentView:textView];
[theWindow makeKeyAndOrderFront:nil];

[textView release];

Note that we use initWithFrame:textContainer: to initialize the NSTextView. This
initialization method does nothing more than what it says: initialize the receiver and set its
text container. This is in contrast to initWithFrame:, as discussed in “Creating an
NSTextView Programmatically,” which not only initializes the receiver, but creates and
interconnects the network of objects that make up the text-handling system. Once the
NSTextView has been initialized, it’s added to the window, which is then displayed. Finally,
you release the NSTextView.

Note that in creating the text-handling network by hand, we created four objects but then
released three as they were added to the network. We are left with a reference only to the
NSTextStorage object. The NSTextView is retained by both its NSTextContainer and its
superview, though; to fully destroy this group of text objects you must send
removeFromSuperview to the NSTextView object and then release the NSTextStorage object.

An NSTextStorage object is conceptually the owner of any network of text-handling objects, no
matter how complex. When you release the NSTextStorage object, it releases its
NSLayoutManagers, which release their NSTextContainers, which in turn release their
NSTextViews.

However, recall that the text system implements a simplified ownership policy for those whose
only interaction with the system is through the NSTextView class. See “Creating an
NSTextView Programmatically” for more information.

The code in the four steps above overlooks an important issue: resizing. As the window is
resized, does the text rewrap within the new boundaries? What happens when there’s more text
than fits within the content view of the NSWindow? For information on these subjects, see   
“Putting an NSTextView Object in an NSScrollView.”

Changing Character Attributes
Interface Builder’s Font and Text menus offer many standard commands for altering text
attributes: Bold, Superscript, Center, and so on. These work by invoking standard action
methods, such as changeFont:, superscript:, and alignCenter:, that effect a specific change in
one step. But how do you define and implement new commands?

Let’s say that you want to define a command that emphasizes the selected text in some way. For
example, using Interface Builder, you wish to add a menu command that sends an
emphasizeText: message, perhaps to a custom object that owns an NSTextView. The custom
object then sets the font in the NSTextView.

In doing so, the custom object can invoke any NSTextView method that changes attributes, but
it must first ask for permission to do so and inform the NSTextView that changes are occurring
so that the NSTextView can batch them together and send out the appropriate notifications to
observers. Given this, and assuming the custom object has an instance variable (named
theTextView) that identifies the NSTextView containing the selection, you can implement the
emphasizeText: method like this:

- (void)emphasizeText:(id)sender
{
 NSRange changeCharRange = [theTextView
 rangeForUserCharacterAttributeChange];

 if ([theTextView shouldChangeTextInRange:changeCharRange
 replacementString:nil]) {
 [theTextStore beginEditing];

 [myTextView setFont:[NSFont fontWithName:@"Helvetica-Oblique"
 size:12.0] range:changeCharRange];

 [theTextStore endEditing];
 [theTextView didChangeText];
 }

 return;
}

The custom object gets the range of the selected text and then applies a new font to that range. It
then determines the range of characters that should be changed, and proceeds to attempt the
change. To do so it invokes shouldChangeTextInRange:replacementString:, which gives the
NSTextView’s delegate a chance to reject the change. If the change is approved, this method
sets the font of the characters being changed, bracketing the change with beginEditing and
endEditing messages that allow the NSTextView to optimize multiple changes (though only
one change is made here). Finally, this method invokes didChangeText to send out the
appropriate delegate message and notifications.

This implementation sent a setFont:range: message to the NSTextView to effect its change.
NSTextView defines other, similar, methods to set some common attributes (such as font, text
color, and alignment). These are “cover” methods that hide the work of invoking the
NSTextStorage methods that actually modify the attributed string. If you want to set attributes
other than those accessible through the NSTextView API, you have to interact more intimately
with the NSTextStorage object.

Fortunately, working with NSTextStorage is quite straightforward. For example, a
reimplemented emphasizeText: method that acts on the underlying NSTextStorage object looks
like this:

- (void)emphasizeText:(id)sender
{
 NSTextStorage *theTextStore = [theTextView textStorage];
 NSRange changeCharRange = [theTextView
 rangeForUserCharacterAttributeChange];

 if (changeCharRange.location == NSNotFound) return;

 if ([theTextView shouldChangeTextInRange:changeCharRange
 replacementString:nil]) {
 [theTextStore beginEditing];

 [theTextStore addAttribute:NSFontAttributeName
 value:[NSFont fontWithName:@"Helvetica-Oblique" size:12.0]
 range:changeCharRange];

 [theTextStore endEditing];
 [theTextView didChangeText];
 }

 return;
}

Except for interacting with the NSTextStorage instead of the NSTextView, this implementation
is identical to the first one, asking for permission to make the change, and informing the
NSTextView as things proceed.

Regarding the change itself: An NSTextStorage object stores text attributes in dictionaries (see
the NSDictionary class specification for more information). Each range of characters that share
the same attributes conceptually share a dictionary. Within the dictionary, attributes are
identified by a key which has an associated value. In the preceding implementation of
emphasizeText:, the attribute we add to the selected text is identified by the globally scoped
key NSFontAttributeName whose value is set to the NSFont object representing the Helvetica-
Oblique type face.

Perhaps setting the font to an oblique angle doesn’t provide enough emphasis, so you decide to
additionally have the text drawn in blue on a red background. You can accomplish this by
sending two more addAttributeValue:range: messages, in which case the beginEditing and
endEditing messages are required, and not merely good coding practice. However, since you
plan to use this set of attributes repeatedly, a better idea is to create a dictionary containing this
set. This dictionary defines a style that you can use repeatedly:

NSDictionary *emphasisAttributes = [NSDictionary
 dictionaryWithObjectsAndKeys:
 [NSColor blueColor],NSForegroundColorAttributeName,
 [NSColor redColor], NSBackgroundColorAttributeName,
 [NSFont fontWithName:@"Helvetica-Oblique" size:12.0],
 NSFontAttributeName, nil];

- (void)emphasizeText:(id)sender

{
 NSTextStorage *theTextStore = [theTextView textStorage];
 NSRange changeCharRange = [theTextView
 rangeForUserCharacterAttributeChange];

 if (changeCharRange.location == NSNotFound) return;

 if ([theTextView shouldChangeTextInRange:changeCharRange
 replacementString:nil]) {
 [theTextStore beginEditing];

 [theTextStore addAttributes:emphasisAttributes
 range:changeCharRange];

 [theTextStore endEditing];
 [theTextView didChangeText];
 }
 return;

Note the use of the addAttributes:range: method. This method is similar to the
addAttribute:range: method, but applies a dictionary of attributes rather than a single attribute.
With either method, an added attribute replaces an existing one. For example, if the foreground
color is set to green and you then invoke the emphasizeText: method above, the new value of
the foreground color is blue. Of course, this is the correct behavior and is a result of storing
attributes in a dictionary, where a given key can have only one value.

Characters and Glyphs
Characters are conceptual entities that correspond to units of written language. Examples of
characters include the letters of the Roman alphabet, the Kanji ideographs used in Japanese, and
symbols that indicate mathematical operations. Characters are represented as numbers in a
computer’s memory or on disk, and a character encoding defines the mapping between a
numerical value and a specific character. For example, the ASCII and Unicode character
encodings both assign the value 97 (decimal) to the character ‘a’. The OPENSTEP text-handling
system uses the Unicode character encoding internally, although it can read and write other
encodings on disk.

You can think of a glyph as the rendered image of a character. The words of this sentence are
made visible through glyphs. A collection of glyphs that share certain graphic qualities is called
a font.

The difference between a character and a glyph isn’t immediately apparent in English since
there’s typically a one-to-one mapping between the two. But, in some Indic languages, for
example, a single character can map to more than one glyph. And, in many languages, two or
more characters may be needed to specify a single glyph. To take a simple example, the glyph
‘ö’ can be the result of two characters, one representing the base character ‘o’ and the other
representing the diacritical mark ‘¨’. A user of a word processor can strike the arrow key one
time to move the insertion point from one side of the ‘ö’ glyph to the other; however, the current
position in the character stream must be incremented by two to account for the two characters
that make up the single glyph.

Thus, the text system must manage two related but different streams of data: the stream of
characters (and their attributes) and the stream of glyphs that are derived from these characters.
The NSTextStorage object stores the attributed characters, and the NSLayoutManager stores the
derived glyphs. Finding the correspondence between these two streams is another responsibility
of the NSLayoutManager.

For a given glyph the NSLayoutManager can find the corresponding character or characters in
the character stream. Similarly, for a given character, the NSLayoutManager can locate the
associated glyph or glyphs. For example, when a user selects a range of text, the
NSLayoutManager must determine which range of characters corresponds to the selection.

When characters are deleted, some glyphs may have to be redrawn. For example, if the user
deletes the characters “ee” from the word “feel”, the ‘f’ and ‘l’ can be represented by the ‘fl’
ligature rather than the two glyphs ‘f’ and ‘l’. The NSLayoutManager has new glyphs generated
as needed. Once the glyphs are regenerated, the text must be laid out and displayed. Again, the
NSLayoutManager is instrumental in this step. Working with the NSTextContainer and other
objects of the text system, the NSLayoutManager determines where each glyph appears in the
NSTextView. Finally, the NSTextView renders the text.

Since an NSLayoutManager is central to the operation of the text-handling system, it also serves
as the repository of information shared by various components of the system.

These are just some of the functions of an NSLayoutManager; others are discussed in later
sections.

Class Clusters
The Foundation Framework’s architecture makes extensive use of class clusters. Class
clusters group a number of private, concrete subclasses under a public, abstract
superclass. The grouping of classes in this way simplifies the publicly visible
architecture of an object-oriented framework without reducing its functional richness.

Class Clusters With Multiple Public Superclasses
In the example above, one abstract public class declares the interface for multiple
private subclasses. This is a class cluster in the purest sense. It’s also possible, and
often desirable, to have two (or possibly more) abstract public classes that declare the
interface for the cluster. This is evident in the Foundation Framework, which includes
these clusters:

Class Cluster Public Superclasses

NSData NSData
NSMutableData

NSArray NSArray
NSMutableArray

NSDictionary NSDictionary
NSMutableDictionary

NSString NSString
NSMutableString

Other clusters of this type also exist, but these clearly illustrate how two abstract
nodes cooperate in declaring the programmatic interface to a class cluster. In each of
these clusters, one public node declares methods that all cluster objects can respond
to, and the other node declares methods that are only appropriate for cluster objects
that allow their contents to be modified.

This factoring of the cluster’s interface helps make an object-oriented framework’s
programmatic interface more expressive. For example, imagine a Book object that
declares this method:

- (NSString *)title;

The book object could return its own instance variable or create a new string object
and return that—it doesn’t matter. It’s clear from this declaration that the returned
string can’t be modified. Any attempt to modify the returned object will elicit a
compiler warning.

Class Hierarchy of the Text-Handling System
You’ve seen the four principal classes in the text-handling system, but there are a number of
auxiliary classes and protocols that make up the system. The diagrams below give you a picture
of the complete system. Following the diagrams is a synopsis of the elements that haven’t been
introduced so far.

• NSFileWrapper, NSTextAttachment, and NSTextAttachmentCell

• NSTextInput protocol, NSInputManager, and NSInputServer

• NSParagraphStyle, NSMutableParagraphStyle, and NSTextTab

Common Configurations
The following diagrams give you an idea of how you can configure objects of these four classes
—NSTextStorage, NSLayoutManager, NSTextContainer, and NSTextView—to accomplish
different text-handling goals.

To display a single flow of text, the objects are arranged like this:

The NSTextView provides the view that displays the glyphs, and the NSTextContainer object
defines an area within that view where the glyphs are laid out. Typically in this configuration,
the NSTextContainer’s vertical dimension is declared to be some extremely large value so that
the container can accommodate any amount of text, while the NSTextView is set to size itself
around the text using the setVerticallyResizable: method defined by NSText, and given a
maximum height equal to the NSTextContainer’s height. Then, with the NSTextView embedded
in an NSScrollView, the user can scroll to see any portion of this text.

If the NSTextContainer’s area is inset from the NSTextView’s bounds, a margin appears around
the text. The NSLayoutManager object, and other objects not pictured here, work together to
generate glyphs from the NSTextStorage’s data and lay them out within the area defined by the
NSTextContainer.

This configuration is limited by having only one NSTextContainer-NSTextView pair. In such an
arrangement, the text flows uninterrupted within the area defined by the NSTextContainer. Page
breaks, multi-column layout, and more complex layouts can’t be accommodated by this
arrangement.

By using multiple NSTextContainer-NSTextView pairs, more complex layout arrangements are
possible. For example, to support page breaks, an application can configure the text-handling
objects like this:

Each NSTextContainer-NSTextView pair corresponds to a page of the document. The gray
rectangle in the diagram above represents a custom view object that your application provides

as a background for the NSTextViews. This custom view can be embedded in an NSScrollView
to allow the user to scroll through the document’s pages.

A multi-column document uses a similar configuration:

Instead of having one NSTextView-NSTextContainer pair correspond to a single page, there are
now two pairs—one for each column on the page. Each NSTextContainer-NSTextView controls
a portion of the document. As the text is displayed, glyphs are first laid out in the top-left view.
When there is no more room in that view, the NSLayoutManager informs its delegate that it has
finished filling the container. The delegate can check whether there’s more text that needs to be
laid out and add another NSTextContainer and NSTextView. The NSLayoutManager proceeds
to lay out text in the next container, notifies the delegate when finished, and so on. Again, a
custom view (depicted as a gray rectangle) provides a canvas for these text columns.

Not only can you have multiple NSTextContainer-NSTextView pairs, you can also have
multiple NSLayoutManagers accessing the same NSTextStorage. The simplest arrangement
looks like this:

The effect of this arrangement is to give multiple views on the same text. If the user alters the
text in the top view, the change is immediately reflected in the bottom view (assuming the
location of the change is within the bottom view’s bounds).

Finally, complex page layout requirements, such as permitting text to wrap around embedded
graphics, can be achieved by a configuration that uses a custom subclass of NSTextContainer.
This subclass defines a region that adapts its shape to accommodate the graphic image:

Contents
The Foundation Framework

Foundation Framework Classes
Object Ownership and Automatic Disposal

Marking Objects for Disposal
Retaining Objects
Validity of Shared Objects
Object Ownership: Summary

Class Clusters
Simple Concept, Complex Interface
Simple Concept, Simple Interface
Creating Instances

 Class Clusters With Multiple Public Superclasses
 Creating Subclasses Within a Class Cluster

A True Subclass
True Subclasses: An Example
A Composite Object
A Composite Object: An Example

Services
Standard Services

Providing a Standard Service
Making a Service Available
Using Services

Variations on Standard Services
Filter Services
Print Filter Services
Spell Checker Services

The OPENSTEP Text System
Architectural Overview

The User-Interface Layer: the NSTextView Class
The Storage Layer: The NSTextStorage Class
The Complete System
Summary

Working with the Text-Handling System: Basic Operations
Creating an NSTextView Object
Text Input and Output
Putting an NSTextView Object in an NSScrollView

Working with the Text-Handling System: Intermediate Operations
Changing Character Attributes
Assembling the Text System by Hand

Text System Defaults and Key Bindings
Text System Defaults

NSModifierFlagMapping
NSMnemonicsWorkInText
NSRepeatCountBinding
NSQuotedKeystrokeBinding
NSTextShowsInvisibleCharacters
NSTextShowsControlCharacters
NSTextSelectionColor

NSMarkedTextAttribute
NSTextKillRingSize

Key Bindings

Creating Instances
The abstract superclass in a class cluster must declare methods for creating instances
of its private subclasses. It’s the superclass’s responsibility to dispense an object of
the proper subclass based on the creation method that you invoke—you don’t, and
can’t, choose the class of the instance.

In the Foundation Framework, you generally create an object by invoking a +
className... method or the alloc... and init... methods. Taking the Foundation
Framework’s NSNumber class as an example, you could send these messages to
create number objects:

NSNumber *aChar = [NSNumber numberWithChar:’a’];
NSNumber *anInt = [NSNumber numberWithInt:1];
NSNumber *aFloat = [NSNumber numberWithFloat:1.0];
NSNumber *aDouble = [NSNumber numberWithDouble:1.0];

(This style of instantiation creates objects that will be deallocated automatically—See
“Object Ownership and Automatic Disposal” for more information. Many classes also
provide the standard alloc... and init... methods to create objects that require you to
manage their deallocation.)

Each object returned—aChar, anInt, aFloat, and aDouble—may belong to a different
private subclass (and in fact does). Although each object’s class membership is
hidden, its interface is public, being the interface declared by the abstract superclass,
NSNumber. Although it is not precisely correct, it’s convenient to consider the aChar,
anInt, aFloat, and aDouble objects to be instances of the NSNumber class, since
they’re created by NSNumber class methods and accessed through instance method
declared by NSNumber.

Creating Subclasses Within a Class Cluster
The class cluster architecture involves a trade-off between simplicity and
extensibility: Having a few public classes stand in for a multitude of private ones
makes it easier to learn and use the classes in a framework but somewhat harder to
create subclasses within any of the clusters. However, if it’s rarely necessary to create
a subclass, then the cluster architecture is clearly beneficial. Clusters are used in the
Foundation Framework in just these situations.

If you find that a cluster doesn’t provide the functionality your program needs, then a
subclass may be in order. For example, imagine that you want to create a array object
whose storage is file-based rather than memory-based as in the NSArray class cluster.
Since you are changing the underlying storage mechanism of the class, you’d have to
create a subclass.

On the other hand, in some cases it might be sufficient (and easier) to define a class
that embeds within it an object from the cluster. Let’s say that your program needs to
be alerted whenever some data is modified. In this case, creating a simple cover for a
data object that the Foundation Framework defines may be the best approach. An
object of this class could intervene in messages that modify the data, intercepting the
messages, acting on them, and then forwarding them to the embedded data object.

In summary, if you need to manage your object’s storage, create a true subclass.
Otherwise, create a composite object, one that embeds a standard Foundation
Framework object in an object of your own design. The sections below give more
detail on these two approaches.

Creating an NSTextView Object
All applications use the text-handling system, if only to display the titles of buttons and other
labels. Most applications have far greater need of the system than that. This section describes
the most direct ways of assembling the network of objects that make up that system.

Creating an NSTextView Programmatically
At times, you may need to assemble the text-handling system programmatically. You can do this
in either of two ways: by creating an NSTextView object and letting it create its network of
supporting objects or by building the network of objects yourself. In most cases, you’ll find it
sufficient to create an NSTextView object and let it create the underlying network of text-
handling objects, as discussed in this section. If your application has complex text-layout
requirements, you’ll have to create the network yourself; see “Assembling the Text System by
Hand” for information.

You create an NSTextView object in the usual way: by sending the alloc and init... messages.
Given an NSWindow object represented by aWindow, you can create an NSTextView object in
this way:

/* determine the size for the NSTextView */
NSRect cFrame =[[aWindow contentView] frame];

/* create the NSTextView and add it to the window */
NSTextView *theTextView = [[NSTextView alloc] initWithFrame:cFrame];

[aWindow setContentView:theTextView];
[aWindow makeKeyAndOrderFront:nil];
[aWindow makeFirstResponder:theTextView];

This code determines the size for the NSTextView’s frame rectangle by asking aWindow for
the size of its content view. The NSTextView is then created and made aWindow’s content view
using setContentView:. Finally, the makeKeyAndOrderFront: and makeFirstResponder:
messages display the window and cause theTextView to prepare to accept keyboard input.

NSTextView’s initWithFrame: method not only initializes the receiving NSTextView object, it
causes the object to create and interconnect the other components of the text-handling system.
This is a convenience that frees you from having to create and interconnect them yourself. Since
the NSTextView created these supporting objects, it’s responsible for releasing them when they
are no longer needed. When you’re done with the NSTextView, release it and it takes care of
releasing the other objects of the text-handling system. Note that this ownership policy is only
in effect if you let NSTextView create the components of the text-handling system. See
“Assembling the Text System by Hand” for more information on object ownership when you
create the components yourself.

Enabling Services Menu Items Based on the Selection
While your application is running, various types of data can be selected and available for
transfer on the pasteboard. If a service doesn’t apply to the type of the selected data, its menu
item needs to be disabled. To check whether a service applies, the application object sends
validRequestorForSendType:returnType: messages to objects in the responder chain to see whether
they have data of the type used by that service. While the Services menu is visible, this method
is invoked frequently—typically many times per event—to ensure that the menu items for all
service providers are properly enabled: It’s sent for each service and possibly for many objects
in the responder chain. Because this method is invoked so frequently, it must be fast so that
event handling doesn’t fall behind the user’s actions.

The following example shows how this method can be implemented for an object that handles
unformatted text:

- (id)validRequestorForSendType:(NSString *)sendType
 returnType:(NSString *)returnType;
{

 if ((!sendType || [sendType isEqual:NSStringPboardType]) &&
 (!returnType || [returnType isEqual:NSStringPboardType])) {

 if (([self selection] || !sendType) &&
 ([self isEditable] || !returnType)) {
 return self;
 }
 }

 return [super validRequestorForSendType:sendType
 returnType:returnType];

}

This implementation checks both the types indicated and the state of the object. The object is a
valid requestor if the send and return types are unformatted text or simply aren’t specified, and
if the object has a selection and is editable (when send and return types are given). If this object
can’t handle the service request in its current state, it invokes its superclass’ implementation.

validRequestorForSendType:returnType: is sent along an abridged responder chain, comprising
only the responder chain for the key window and the application object. The main window is
excluded.

Entries in a Service Specification
This template shows all possible fields in a standard service specification:

NSServices = (
{ NSMessage = messageName;

NSPortName = programName;
NSSendTypes = (type1 [, type2] ...);
NSReturnTypes = (type1 [, type2] ...);
NSMenuItem = { default = item; [language = item;] };
NSKeyEquivalent = { default = character; [language = character;] };
NSUserData = string;
NSTimeout = milliseconds;
NSHost = hostName;
NSExecutable = pathname;

}
[, { another service entry }] ...

);

Filter, print filter, and spell checker services differ slightly. Their service specifications are
described in
“Variations on Standard Services.”

NSMessage indicates the name of the Objective-C method to invoke. Its value is the first part of
the method name, which follows the form messageName:userData:error:. This is a required
entry.

NSPortName is the name of the port the application should use to listen for service requests. Its
value depends on how you registered the service provider. If you used the NSApplication
method setServicesProvider:, NSPortName is the application name. If you used the
NSRegisterServicesProvider() function (which should only be used for filter services), NSPortName
is the value passed to that function for its name argument. See “Filter Services” for more
information on NSRegisterServicesProvider(). This is a required entry.

NSSendTypes and NSReturnTypes are arrays of names for data types, such as NSStringPboardType.
Send types are the types sent from the service requestor; return types are the types returned to
the service requestor. See the NSPasteboard class specification for a list of standard data types.
A service provider must specify one or both of these entries.

NSMenuItem and NSKeyEquivalent indicate the text of the Services menu item and its key
equivalent (if any). Both of these entries take the form of dictionaries, with language names as
keys and the text as values. In addition to actual language names, you can define a value for the
key default, which is used when no languages in the user’s preferences match the languages
named in the service specification. The text of a menu item can indicate a single submenu with
a slash; for example, “Mail/Send Selection” appears in the Services menu as a submenu named
“Mail” with an item named “Send Selection”. NSMenuItem is required, but NSKeyEquivalent is
optional.

NSUserData is a string containing a value of your choice. You can use this string to control the
behavior of your service method; this entry is useful for applications that provide open-ended
services (see “Add-on Services”). NSUserData is an optional entry.

NSTimeout is a string indicating the number of milliseconds the Services facility should wait for

a response from the service provider when a response is required. If this time is exceeded, the
services facility opens an attention panel informing the user that an error has occurred. This is
an optional entry. If you don’t specify this entry, the timeout value is 3000 milliseconds (30
seconds).

NSHost is a string containing the name of a host on the network. The executable is launched on
this host instead of on the host of the application requesting the service. This is an optional
entry.

NSExecutable is the path of the application that performs this service. This can either be a full or
relative path. If it is a relative path, the application must be located in the same bundle as this
service declaration. This entry is most useful for filter services. This entry is optional.

Filter Services
The NSPasteboard class automatically uses a filter service when you invoke a method for
filtering data, such as:

+ (NSArray *)typesFilterableTo:(NSString *)type
+ (NSPasteboard *)pasteboardByFilteringFile:(NSString *)filename
+ (NSPasteboard *)pasteboardByFilteringData:(NSData *)data

ofType:(NSString *)type
+ (NSPasteboard *)pasteboardByFilteringTypesInPasteboard:

(NSPasteboard *)pboard

Because filter services commonly translate data from unknown file formats into known formats,
you need a way of dynamically specifying pasteboard types. The filter services and pasteboard
facilities define types based on file extensions with these functions:

NSString *NSCreateFilenamePboardType(NSString *fileExtension)
NSString *NSCreateFileContentsPboardType(NSString *fileExtension)
NSString *NSGetFileType(NSString *pboardType)
NSArray *NSGetFileTypes(NSArray *pboardTypes)

The fileExtension argument is a file extension, minus the period (for example, “eps” or “tiff”).
You create pasteboard type strings with the first two functions, and get file types (extensions)
from pasteboard type strings with the second two functions. In a service specification (in the
CustomInfo.plist file), you can indicate a file type based on the extension as
NSTypedFilenamesPboardType:fileExtension and a file contents type as
NSTypedFileContentsPboardType:fileExtension; for example:

NSSendTypes = (NSTypedFilenamesPboardType:tiff);

NSSendTypes = (NSTypedFileContentsPboardType:tiff);

You implement a filter service exactly like a standard service, with a filterName:userData:error:
method that accepts a pasteboard containing a file path, converts the contents of the file to the
requested type or types, and returns the converted data on the pasteboard. There are two major
differences between filter services and standard services. The first major difference is in the way
you register the service provider. With filter services, you typically don’t have an
NSApplication object to register the service provider with. Instead, you use the function
NSRegisterServicesProvider(). This function’s declaration is:

(void)NSRegisterServicesProvider(id provider, NSString *name)

provider is the object that provides the services, and name is the same value you specify for the
NSPortName entry in the services specification. After making this function call, the filter service
must enter the run loop in order to respond to service requests as shown:

while(1) {

NS_DURING

[[NSRunLoop currentRunLoop] run];

NS_HANDLER

NSLog(@"Received exception: %@", localException);

NS_ENDHANDLER

}

The second major difference is in the service specification: Instead of an NSMessage entry you
define an NSFilter entry with filterName as the value; you must define both send and return
types; and the NSMenuItem and NSKeyEquivalent entries are ignored.

A filter service can use data-transfer mechanisms other than the pasteboard, indicated by an
optional entry in the filter service specification. The key is NSInputMechanism, and it can have a
value of NSUnixStdio, NSMapFile, or NSIdentity. If you specify an input mechanism, the value for
the NSFilter entry is ignored (though it’s still required).

NSUnixStdio allows you to turn nearly any UNIX command-line program into a filter service.
Instead of sending an Objective-C message to an object in your filter service program, the
services facility simply runs the executable specified in the service specification with the
contents of the pasteboard as the argument (which must be of NSFilenamesPboardType or
NSTypedFilenamesPboardType). If there is more than one filename on the pasteboard, only the
first is used. The output of the filter program (on stdout) is captured by the services facility and
put on a pasteboard for use by the requestor of the filter. Note that the UNIX program must be
relaunched every time the service is invoked; if you’re creating a filter service from scratch it’s
more efficient to package it as an application that can remain running. Here’s a sample service
specification for a UNIX program that converts GIF images to TIFF:

{
 NSServices = (
 { NSFilter = "";
 NSPortName = gif2tiff;
 NSInputMechanism = NSUnixStdio;
 NSSendTypes = (NSTypedFilenamesPboardType:gif);
 NSReturnTypes = (NSTIFFPboardType);
 }
);
}

NSMapFile defines an “empty” service for data in files, used when you invoke NSPasteboard’s
pasteboardByFilteringFile: class method. Its value must be an NSFilenamesPboardType or an
NSTypedFilenamesPboardType. When the filter service is invoked for a file, the services facility
merely puts the contents of the file on the pasteboard. This input mechanism is useful for file
types with nonstandard or special extensions whose format is nonetheless the same as a standard
type. For example, if you’ve defined an image format based on a subset of TIFF and given it a
file extension of stif, you can define a service that maps the stif file extension to
NSTIFFPboardType:

{
 NSServices = (
 { NSFilter = "";
 NSInputMechanism = NSMapFile;
 NSSendTypes = (NSTypedFilenamesPboardType:stif);
 NSReturnTypes = (NSTIFFPboardType);
 }
);
}

NSIdentity defines an empty service for data in memory, used when you invoke NSPasteboard’s
pasteboardByFilteringData:ofType: class method. It declares that the send type is effectively
identical to the return type—though the reverse isn’t necessarily true. For example, you can
define a service that filters your custom image format in memory with this service specification:

{
 NSServices = (
 { NSFilter = "";
 NSInputMechanism = NSIdentity;
 NSSendTypes = (MyCustomImagePboardType);
 NSReturnTypes = (NSTIFFPboardType);
 }
);
}

Neither NSMapFile nor NSIdentity result in any program being executed, so their services
specifications lack the NSPortName entry.

Foundation Framework Classes
The OpenStep class hierarchy is rooted in the Foundation Framework’s NSObject
class. The remainder of the Foundation Framework consists of several related groups
of classes as well as a few individuals. Most of the groups form what are called class
clusters—abstract classes that work as umbrella interfaces to a versatile set of private
subclasses. NSString and NSMutableString, for example, act as brokers for instances
of various private subclasses optimized for different kinds of storage needs.
Depending on the method you use to create a string, an instance of the appropriate
optimized class will be returned to you. See “Class Clusters” for a full treatment of
this new concept.

The complete Foundation Framework class inheritance hierarchy looks like this:

Many of these classes have closely related functionality:

• Data storage NSData and NSString provide object-oriented storage for arrays of
bytes. NSValue and NSNumber provide object-oriented storage for arrays of
simple C data values. NSArray, NSDictionary, NSPPL, and NSSet provide storage
for Objective-C objects of any class.

• Text and strings. NSCharacterSet represents various groupings of characters
which are used by the NSString and NSScanner classes. The NSString classes
represent text strings and provide methods for searching, combining, and
comparing strings. An NSScanner object is used to scan numbers and words from

an NSString object.

• Dates and times. The NSDate and NSTimeZone classes store times and dates.
They offer methods for calculating date and time differences, for displaying dates
and times in many formats, and for adjusting times and dates based on location in
the world.

• Application coordination and timing. NSNotification, NSNotificationCenter, and
NSNotificationQueue provide systems that an object can use to notify all interested
observers of changes that occur. You can use a NSTimer object to send a message
to another object at specific intervals.

• Object creation and disposal. NSAutoreleasePools are used to implement the
delayed-release feature of the Foundation Framework, as described in “Object
Ownership and Automatic Disposal.”

• Object distribution and persistence. The data that an object contains can be
represented in an architecture-independent way using NSSerializer. NSCoder and
its subclasses take this process a step further by allowing class information to be
stored along with the data. The resulting representations are used for archiving and
for object distribution.

• Operating system services. Several classes are designed to insulate you from the
idiosyncracies of various operating systems. The NSAccount, NSUserAccount,
NSGroupAccount, and NSHost classes provide an object-oriented representation of
various account and host data. NSFileManager provides a consistent interface for
file operations (creating, renaming, deleting, and so on). NSThread and
NSProcessInfo let you create multi-threaded applications and query the
environment in which an application runs.

Interface Builder and the Text-Handling System
The easiest way to use the text-handling system is through the objects on Interface Builder’s
palettes. The control objects (NSForm and NSTextField) provide objects that are preconfigured
for specific uses:

Using Interface Builder’s Inspector panel, you can set many text-related attributes of these
controls. For example, you can specify whether the text in a text field is selectable, editable,
scrollable, and so on. The Inspector panel also lets you set the text alignment and background
and foreground colors.

Interface Builder also provides a scrolling text view that supports the features of a basic text
editor:

The NSScrollView inspector in Interface Builder lets you specify, among other things, whether
the contained NSTextView allows multiple fonts and embedded graphics.

Much more of NSTextView’s functionality is accessible through menu commands. Interface
Builder’s Palettes window offers these ready-made menus that contain text-related commands:

By default, most of the commands in these menus operate on the first responder, that is, the
view within the key window that the user has selected for input. (See the NSResponder,
NSView, and NSWindow class specifications for more information on the first responder.) In
practice, the first responder is the object that’s displaying the selection, say a drawing object in
the case of a graphical selection or an NSTextView in the case of a textual selection. By adding
these menus to your application, you can offer the user access to many powerful text-editing
features.

NSTextViews cooperate with the Services facility through the Services menu, also available
from Interface Builder’s Menus palette. By simply adding the Services menu item to your
application’s main menu, the NSTextViews in your application can access services provided by
other applications. For example, if the user selects a word within an NSTextView and chooses
the Define in Webster service, the NSTextView passes its selected text to the Webster
application for look up.

Interface Builder offers these direct ways of accessing the features of the text-handling system.
You can also configure your own menu items or other controls within Interface Builder to send
messages to an NSTextView. For example, you can make an NSTextView output its text for
printing or faxing by sending it a print: or fax: message. One way to do this is to drag a menu
item from Interface Builder’s Menu palette into your application’s main menu and hook it up to
an NSTextView (either through the first responder or by direct connection). By specifying that
the item send a print: message to its target, the NSTextView’s contents can be printed or faxed
when the application is run.

Invoking a Standard Service Programmatically
Though the user typically invokes a standard service by choosing an item in the Services menu,
you can invoke it in code using this function:

BOOL NSPerformService(NSString *serviceItem, NSPasteboard *pboard)

This function returns YES if the service is successfully performed, NO otherwise. serviceItem is
the name of a Services menu item (in any language). It must be the full name of the service,
including the submenu and slash; for example, “Mail/Selection”. pboard contains the data to be
used for the service, and when the function returns contains the data resulting from the service.
You can then do with the data what you wish.

Key Bindings
The new text system uses a generalized key binding mechanism which is completely remappable
by the user.    The standard bindings for can always be found in
NextLibrary/Frameworks/AppKit.framework/Resources/StandardKeyBinding.dict or in
/NextLibrary/Frameworks/AppKit.framework/Resources/StandardKeyBinding-winnt.dict.
On both platforms these standard bindings include a large number of Emacs-compatible control
key bindings, all the various arrow key bindings, bindings for making field editors and some
keyboard UI work, and backstop bindings for many function keys.    On Windows the standard
bindings also include a number of Emacs-compatibile Alt key bindings (like Alt-f, Alt-b).

All these bindings are customizable by the user.    You can create a file in
~/Library/KeyBindings/DefaultKeyBinding.dict to augment or replace the standard bindings.
Use the standard bindings files as templates.    Modifier flags are specified using special
characters: "^" for control, "~" for Alt, "$" for Shift, and "#" for numeric keypad.    Multiple
keystroke bindings are supported through nested binding dictionaries.    For instance, Escape
could be bound to "cancel:" or it could be bound to a whole dictionary which would then
contain bindings for the next keystroke after Escape.

Here are a couple sample binding files that you might use:

1. The first one adds Alt-key bindings for some common Emacs stuff.    This might be useful on
Mach where the Alt-key bindings are not standard.    With these bindings it would be
necessary to type "Control-Q, Alt-f" in order to type a florin character instead of moving
forward a word.    This sample also explicitly binds Escape to "complete:".    On Mach, this is
the default so this override changes nothing, but on Windows, Escape is bound to "cancel:"
by default, so this example changes it so Escape will mean complete: when a text object is
key (it will still mean cancel: if some non-textual thing, like an NSButton, is key).

/* ~/Library/KeyBindings/DefaultKeyBinding.dict */

{
/* Additional Emacs bindings */
"~f" = "moveWordForward:";
"~b" = "moveWordBackward:";
"~<" = "moveToBeginningOfDocument:";
"~>" = "moveToEndOfDocument:";
"~v" = "pageUp:";
"~d" = "deleteWordForward:";
"~^h" = "deleteWordBackward:";
"~\010" = "deleteWordBackward:"; /* Alt-backspace */
"~\177" = "deleteWordBackward:"; /* Alt-delete */

/* Escape should really be complete: */
"\033" = "complete:"; /* Escape */

}

2. This example shows how to have multi-keystroke bindings.    It binds a number of Emacs
meta bindings using Escape as the meta key instead of the Alt modifier.    So Escape followed
by f means moveWordForward: here.    This sample binds Esc-Esc to "complete:".    Note
the nested dictionaries.

/* ~/Library/KeyBindings/DefaultKeyBinding.dict */

{
/* Additional Emacs bindings */
"\033" = {

"\033" = "complete:"; /* ESC-ESC */
"f" = "moveWordForward:"; /* ESC-f */
"b" = "moveWordBackward:"; /* ESC-b */
"<" = "moveToBeginningOfDocument:"; /* ESC-< */
">" = "moveToEndOfDocument:"; /* ESC-> */
"v" = "pageUp:"; /* ESC-v */
"d" = "deleteWordForward:"; /* ESC-d */
"^h" = "deleteWordBackward:"; /* ESC-Ctrl-H */
"\010" = "deleteWordBackward:"; /* ESC-backspace */
"\177" = "deleteWordBackward:"; /* ESC-delete */

};
}

With the right combination of key bindings and default settings, it should be possible to tailor
the text system to your preferences.

Making a Service Available
Now you have an object with methods that allow it to perform a service for another application.
There are two things remaining to do: register the object at run time so the services facility
knows which object to have perform the service, and advertise the service to the services
facility. You create and register your object in the applicationDidFinishLaunching: application
delegate method (or equivalent) with NSApplication’s setServicesProvider: method. If your
object is called encryptor you create and register it with this code fragment:

EncryptoClass *encryptor;

encryptor = [[EncryptoClass alloc] init];
[NSApp setServicesProvider:encryptor];

You can register only one service provider per application. If you have more than one service to
provide, a single object must be able to provide all of the services.

In order for the system to know that your application provides a service, you must advertise that
fact. You do this by adding an entry to your application project’s CustomInfo.plist file, which is
incorporated into the application’s Info.plist file when you build your project. The entry you add
is called the service specification. In our example, the service specification looks like this:

{
 NSServices = (
 { NSPortName = NewsReader;
 NSMessage = simpleEncrypt;
 NSSendTypes = (NSStringPboardType);
 NSReturnTypes = (NSStringPboardType);
 NSMenuItem = {
 default = "Encrypt Text";
 English = "Encrypt Text";
 French = "Encoder le texte";
 German = "Text verschlüsseln";
 };
 NSKeyEquivalent = {
 default = E;
 German = S;
 };

 }
);
}

The meaning of each of the subfields is explained further in “Entries in a Service Specification.”

Note: If you’ve just built an application with a service and you want to test the service, log out
and log back in again. The application must be in one of the standard directories: ~/Apps,
/NextApps, or /LocalApps.

Marking Objects for Disposal
The autorelease method, defined by NSObject, marks the receiver for later release.
By autoreleasing an object—that is, by sending it an autorelease message—you
declare that you don’t need the object to exist beyond the scope you sent autorelease
in. When your code completely finishes executing and control returns to the
application object (that is, at the end of the event loop), the application object releases
the object. The sprockets methods above could be implemented in this way:

- (NSArray *)sprockets
{
 NSArray *array;

 array = [[NSArray alloc] initWithObjects:mainSprocket,
 auxiliarySprocket, nil];
 return [array autorelease];
}

When another method gets the array of Sprockets, that method can assume that the
array will be disposed of when it’s no longer needed, but can still be safely used
anywhere within its scope (with certain exceptions; see “Validity of Shared Objects”).
It can even return the array to its invoker, since the application object defines the
bottom of the call stack for your code. The autorelease method thus allows every
object to use other objects without worrying about disposing of them.

Note:    Just as it’s an error to release an object after it’s already been deallocated, it’s
an error to send so many autorelease messages that the object would later be released
after it had already been deallocated. You should send release or autorelease to an
object only as many times as are allowed by its creation (one) plus the number of
retain messages you have sent it (retain messages are described below).

Object Ownership and Automatic Disposal
In an Objective-C program, objects are constantly creating and disposing of other
objects. Much of the time an object creates things for private use and can dispose of
them as it needs. However, when an object passes something to another object
through a method invocation, the lines of ownership—and responsibility for disposal
—blur. Suppose, for example, that you have a Gadget object that contains a number of
Sprocket objects, which another object accesses with this method:

- (NSArray *)sprockets

This declaration says nothing about who should release the returned array. If the
Gadget object returned an instance variable, it’s responsible; if the Gadget created an
array and returned it, the recipient is responsible. This problem applies both to objects
returned by a method and objects passed in as arguments to a method.

Ideally a body of code should never be concerned with releasing something it didn’t
create. The Foundation Framework therefore sets this policy: If you create an object
you alone are responsible for releasing it. If you didn’t create the object, you don’t
own it and shouldn’t release it.

When you write a method that creates and returns an object, then, that method is
responsible for releasing the object. It’s clearly not fruitful to dispose of an object
before the recipient of the object gets it, however. What’s needed is a way to mark an
object for later release, so that it will be properly disposed of after the recipient has
had a chance to use it. The Foundation Framework provides just such a mechanism.

Object Ownership: Summary
Now that the concepts behind the Foundation Framework’s object ownership policy
have been introduced, they can be expressed as a short list of rules:

• If you allocate, copy, or retain an object, you are responsible for releasing the
newly created object with release or autorelease. Any other time you receive an
object, you’re not responsible for releasing it.

• A received object is normally guaranteed to remain valid within the method it was
received in. That method may also safely return the object to its invoker.

• If you need to store a received object in an instance variable, you must retain or
copy it.

• Use retain and autorelease when needed to prevent an object from being
invalidated as a normal side-effect of a message.

Print Filter Services
A print filter service is invoked when the user saves a file as a PostScript file through the Print
panel. When the user clicks the Save... button on the Print panel a Save panel opens with a pop-
up list near the bottom. This pop-up list contains special types of PostScript that the user can
choose from. A print filter service adds an entry to this list.

You implement a print filter service as a UNIX command line program that reads PostScript on
the standard input stream and writes it to a file specified on the command line by a -o option; for
example:

ps2superps -o outputfile.ps

Instead of an NSMessage entry, the service specification for a print filter service contains a
NSPrintFilter entry, whose value is the extension used for the output file. If it’s empty “ps” is
used by default. The NSPortName entry is the name of the UNIX program—ps2superps in the
example. NSMenuItem gives the string that appears in the pop-up list. The following entries are
ignored in a print filter service specification:

NSKeyEquivalent
NSSendTypes
NSReturnTypes
NSUserData

A print filter service specification adds one entry: NSDeviceDependent. Its value is “YES” or
“NO” (the default). If you specify “YES” for this entry the PostScript code sent through your
print filter is specific to the type of printer chosen in the Print panel.

Here’s a sample print filter service specification:

{
 NSServices = (
 { NSPrintFilter = "superps";
 NSPortName = ps2superps;
 NSMenuItem = {
 default = "Super PostScript for Chosen Printer";
 English = "Super PostScript for Chosen Printer";
 French =
 "Super PostScript pour l'imprimante sélectionnée";
 German = "SuperPostScript für ausgewählten Drucker";
 };
 NSDeviceDependent = "YES";
 }
);
}

Providing a Standard Service
Suppose you’re working on a program to read USENET news, and have an object with a
method to encrypt and decrypt articles, such as the one below. News articles containing
offensive material are often encrypted with this algorithm, called “rot13,” in which letters are
shifted halfway through the alphabet.

- (NSString *)rotateLettersInString:(NSString *)aString
{

 NSString *newString;
 unsigned length;
 unichar *buf;
 unsigned i;

 length = [aString length];
 buf = malloc((length + 1) * sizeof(unichar));
 [aString getCharacters:buf];
 buf[length] = (unichar)0; // not really needed....

 for (i = 0; i < length; i++) {
 if (buf[i] >= (unichar)'a' && buf[i] <= (unichar) 'z') {
 buf[i] += 13;
 if (buf[i] > 'z') buf[i] -= 26;
 }

 else if (buf[i] >= (unichar)'A' &&

buf[i] <= (unichar) 'Z') {
 buf[i] += 13;
 if (buf[i] > 'Z') buf[i] -= 26;
 }
 }

 newString = [NSString stringWithCharacters:buf length:length];
 free(buf);

 return newString;
}

Since this feature is generally useful as a simple encryption scheme, it can be exported to other
applications. To offer this functionality as a service, write a method such as this:

- (void)simpleEncrypt:(NSPasteboard *)pboard
 userData:(NSString *)data
 error:(NSString **)error
{

 NSString *pboardString;
 NSString *newString;
 NSArray *types;

 types = [pboard types];

 if (![types containsObject:NSStringPboardType]) {
 *error = NSLocalizedString(@"Error: couldn't encrypt text.",
 @"pboard couldn't give string.");
 return;
 }

 pboardString = [pboard stringForType:NSStringPboardType];

 if (!pboardString) {
 *error = NSLocalizedString(@"Error: couldn't encrypt text.",
 @"pboard couldn't give string.");
 return;
 }

 newString = [self rotateLettersInString:pboardString];

 if (!newString) {
 *error = NSLocalizedString(@"Error: couldn't encrypt text.",
 @"self couldn't rotate letters.");
 return;
 }

 types = [NSArray arrayWithObject:NSStringPboardType];
 [pboard declareTypes:types owner:nil];
 [pboard setString:newString forType:NSStringPboardType];

 return;
}

A method for providing a standard service is of the form serviceName:userData:error: and takes
arguments as shown in the example. The method itself takes data from the pasteboard as
needed, operates on it, and writes any results back to the pasteboard. In case of an error, the
method simply sets the pointer given by the error argument to a non-nil NSString and returns.
The userData argument isn’t used here; see “Entries in a Service Specification” and “Add-on
Services” for some suggestions on how to use it.

Putting an NSTextView Object in an NSScrollView
A scrolling text view is commonly required in applications, and Interface Builder provides an
NSTextView configured just for this purpose. However, at times you may need to create a
scrolling text view programmatically, so it’s important to understand how to proceed.

The process consists of three steps: setting up the NSScrollView, setting up the NSTextView,
and assembling the pieces.

Assuming an object has the variable theWindow that represents the window where the scrolling
view is displayed, you can set up the NSScrollView like this:

NSScrollView *scrollview = [[NSScrollView alloc]
 initWithFrame:[[theWindow contentView] frame]];
NSSize contentSize = [scrollview contentSize];

[scrollview setBorderType:NSNoBorder];
[scrollview setHasVerticalScroller:YES];
[scrollview setHasHorizontalScroller:NO];
[scrollview setAutoresizingMask:NSViewWidthSizable |
 NSViewHeightSizable];

Note that we create an NSScrollView that completely covers the content area of the window it’s
displayed in. We also specify a vertical scroll bar but no horizontal scroll bar, since this
scrolling text view wraps text within the horizontal extent of the NSTextView, but lets text flow
beyond the vertical extent of the NSTextView.

Finally, we set how the NSScrollView reacts when the window it’s displayed in changes size.
By turning on the NSViewWidthSizable and NSViewHeightSizable bits of its resizing mask, we
ensure that the NSScrollView grows and shrinks to match the window’s dimensions.

The next step is to create and configure an NSTextView to fit in the NSScrollView:

theTextView = [[NSTextView alloc] initWithFrame:NSMakeRect(0, 0,
 contentSize.width, contentSize.height)];
[theTextView setMinSize:NSMakeSize(0.0, contentSize.height)];
[theTextView setMaxSize:NSMakeSize(1e7, 1e7)];
[theTextView setVerticallyResizable:YES];
[theTextView setHorizontallyResizable:NO];
[theTextView setAutoresizingMask:NSViewWidthSizable];

[[theTextView textContainer] setContainerSize:contentSize];
[[theTextView textContainer] setWidthTracksTextView:YES];

We specify that the NSTextView’s width and height initially match those of the content area of
the NSScrollView. The setMinSize: message tells the NSTextView that it can get arbitrarily
small in width, but no smaller than its initial height. The setMaxSize: message allows the
receiver to grow arbitrarily big in either dimension. These limits are used by the
NSLayoutManager when it resizes the NSTextView to fit the text laid out.

The next three messages determine how the NSTextView’s dimensions change in response to
additions or deletions of text and to changes in the scroll view’s size. The NSTextView is set to
grow vertically as text is added but not horizontally. Its’s resizing mask is set to allow it to
change width in response to changes in its superview’s width. Since, except for the minimum

and maximum values, the NSTextView’s height is determined by the amount of text it has in it,
we don’t let its height change with that of its superview.

The last message in this step is to the NSTextContainer, not the NSTextView. It tells the
NSTextContainer to resize its width according to the width of the NSTextView. Recall that the
text-handling system lays out text according to the dimensions stored in NSTextContainer
objects. An NSTextView provides a place for the text to be displayed, but its dimensions and
those of its NSTextContainer can be quite different. The setWidthTracksTextView:YES
message ensures that as the NSTextView is resized, the dimensions stored in its
NSTextContainer are likewise resized, causing the text to be laid out within the new boundaries.

The last step is to assemble and display the pieces:

[scrollview setDocumentView:theTextView];
[theWindow setContentView:scrollview];
[theWindow makeKeyAndOrderFront:nil];
[theWindow makeFirstResponder:theTextView];

Reading Text from a File
To read text from a file, you have to first determine format of the text. To illustrate how this is
done, consider an object of the custom class Controller. A Controller object is responsible for
opening and closing files. It stores an NSTextView and declares a variable that records the
format of the text that it reads in. Here’s the interface declaration:

#import <AppKit/AppKit.h>

typedef enum _dataFormat {
 Unknown = 0,
 PlainText = 1,
 RichText = 2,
 RTFD = 3,
} DataFormat;

@interface Controller : NSObject
{
 DataFormat theFormat;
 NSTextView *theTextView;
}

- (void)openFile:(id)sender;
- (void)saveFile:(id)sender;
@end

Now, the Controller object’s openFile: method can be implemented like this:

- (void)openFile:(id)sender
{
 NSOpenPanel *panel = [NSOpenPanel openPanel];

 if ([panel runModal] == NSOKButton) {
 NSString *fileName = [panel filename];
 if ([[fileName pathExtension] isEqualToString:@"rtfd"]) {
 [theTextView readRTFDFromFile:fileName];
 theFormat = RTFD;

 } else if([[fileName pathExtension] isEqualToString:@"rtf"]) {
 NSData *rtfData = [NSData dataWithContentsOfFile:fileName];
 [theTextView replaceRange:NSMakeRange(0, [[theTextView string]
 length]) withRTF:rtfData];
 theFormat = RichText;
 } else {

 NSString *fileContents = [NSString
 stringWithContentsOfFile:fileName];
 [theTextView setString:fileContents range:NSMakeRange(0,
 [[theTextView string] length])];
 theFormat = PlainText;
 }
 }
 return;
}

The openFile: method checks the file name returned by the Open panel for the extensions “rtfd”
or “rtf” and uses the appropriate means of loading data for each type. Files having any other
extension are loaded as plain text. Note that the Controller object records the format of the

loaded data in its theFormat variable. This information is used to determine how the file should
be saved, as discussed in the next section.

Registering User-Interface Objects for Standard Services
The Services menu doesn’t contain every standard service offered by other applications. For
example, in a text editor a service to invert a bitmapped image is of no use and shouldn’t be
offered. Which services appear in the Services menu is determined by the data types that the
objects in the application—specifically the NSResponder objects—can send and receive
through the pasteboard.

An NSResponder registers these data types using NSApplication’s
registerServicesMenuSendTypes:returnTypes: method. Application Kit objects already do this, but
your custom NSResponder subclass must do this in its initialize class method. All types used by
instances of the class must be registered, even if they’re not always available; Services menu
items are enabled and disabled dynamically based on what’s available at the moment, as
described in “Enabling Services Menu Items Based on the Selection”.

An object doesn’t have to register the same types for both sending and receiving. Suppose
you’re writing a rich text editor that can send unformatted and rich text, but can only receive
unformatted text. Here’s a portion of the initialization method for the text-editor NSView
subclass:

+ (void)initialize
{
 static BOOL initialized = NO;

 /* Make sure code only gets executed once. */
 if (initialized == YES) return;
 initialized = YES;

 sendTypes = [NSArray arrayWithObjects:NSStringPboardType,
 NSRTFPboardType, nil];
 returnTypes = [NSArray arrayWithObjects:NSStringPboardType,
 nil];
 [NSApp registerServicesMenuSendTypes:sendTypes
 returnTypes:returnTypes];

 return;
}

Your NSResponder object can register any pasteboard data type, public or proprietary, common
or rare. If it handles the public and common types, of course, it will have access to more
services. See the NSPasteboard class specification for a list of standard pasteboard data types.

Retaining Objects
There are times when you don’t want a received object to be disposed of; for example,
you may need to cache the object in an instance variable. In this case, only you know
when the object is no longer needed, so you need the power to ensure that the object
is not disposed of while you are still using it. You do this with the retain method,
which stays the effect of a pending autorelease (or preempts a later release or
autorelease message). By retaining an object you ensure that it won’t be deallocated
until you’re done with it. For example, if your object allows its main Sprocket to be
set, you might want to retain that Sprocket like this:

- (void)setMainSprocket:(Sprocket *)newSprocket
{
 [mainSprocket autorelease];
 mainSprocket = [newSprocket retain]; /* Claim the new Sprocket. */
 return;
}

Now, setMainSprocket: might get invoked with a Sprocket that the invoker intends
to keep around, which means your object would be sharing the Sprocket with that
other object. If that object changes the Sprocket, your object’s main Sprocket changes.
You might want that, but if your Gadget needs to have its own Sprocket the method
should make a private copy:

- (void)setMainSprocket:(Sprocket *)newSprocket
{
 [mainSprocket autorelease];
 mainSprocket = [newSprocket copy]; /* Get a private copy. */
 return;
}

Note that both of these methods autorelease the original main sprocket, so they don’t
need to check that the original main sprocket and the new one are the same. If they
simply released the original when it was the same as the new one, that sprocket would
be released and possibly deallocated, causing an error as soon as it was retained or
copied. Although they could store the old main sprocket and release it later, that kind
of code tends to be slightly more complex. For example:

- (void)setMainSprocket:(Sprocket *)newSprocket
{
 Sprocket *oldSprocket = mainSprocket;
 mainSprocket = [newSprocket copy];
 [oldSprocket release];
 return;
}

Sending and Receiving Data
When the user chooses a Services menu command, the responder chain is checked with
validRequestorForSendType:returnType: and the first object that returns a value other than nil is
called upon to handle the service request by providing data (if any is required) with a
writeSelectionToPasteboard:types: message. You can implement this method to provide the data
immediately or to provide the data only when it’s actually requested. Here’s an implementation
for an object that writes unformatted text immediately:

- (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard
 types:(NSArray *)types
{
 NSArray *typesDeclared;

 if ([types containsObject:NSStringPboardType] == NO) {
 return NO;
 }

 typesDeclared = [NSArray arrayWithObject:NSStringPboardType];
 [pboard declareTypes:typesDeclared owner:nil];
 return [pboard setString:[self selection]
 forType:NSStringPboardType];
}

This method returns YES if it successfully writes or declares any data and NO if it fails. If you
want to provide the data only on demand—which makes sense for large amounts—you have to
declare an object as the owner for the data and then make sure that object responds to
pasteboard:provideDataForType: (as described in the NSPasteboard class specification). In such a
case, the two methods look like this:

- (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard
 types:(NSArray *)types
{
 NSArray *typesDeclared;

 if ([types containsObject:NSStringPboardType] == NO) {
 return NO;
 }

 typesDeclared = [NSArray arrayWithObject:NSStringPboardType];
 [pboard declareTypes:typesDeclared owner:self];
 return YES;
}

- (void)pasteboard:(NSPasteboard *)pboard
 provideDataForType:(NSString *)type
{

 [pboard setString:[self selection] forType:NSStringPboardType];
 return;
}

You can even write some types in writeSelectionToPasteboard:types: and offer the rest on demand
only via pasteboard:provideDataForType:. Remember that the owner of a pasteboard must exist
when the data is finally requested. To be safe, you should make sure the owner is an object that
will never be deallocated.

Once the service requestor writes data to the pasteboard, it waits for a response as the service
provider is invoked to perform the operation; if the service doesn’t return data, of course, the
requesting application simply continues running and none of the following applies. The service
provider reads the data from the pasteboard, works on it, and then returns the result. At this
point the service requestor is sent a readSelectionFromPasteboard: message telling it to replace the
selection with whatever data came back. Our simple text object can implement this method as
follows:

- (BOOL)readSelectionFromPasteboard:(NSPasteboard *)pboard;
{
 NSArray *types;
 unsigned index;
 NSString *theText;

 types = [pboard types];
 index = [types indexOfObject:NSStringPboardType];
 if ([types containsObject:NSStringPBoardType] == NO) {
 return NO;
 }
 theText = [pboard stringForType:NSStringPboardType];
 [self replaceSelectionWithString:theText];

 return YES;
}

This method returns YES if it successfully reads the data from the pasteboard, NO otherwise.

Services
The OpenStep services facility allows an application to offer its functionality to other
applications, without requiring the other applications to know in advance what’s offered. A
service-providing application advertises an operation that it can perform on a particular type of
data—for example, encrypting text, performing optical character recognition on a bitmapped
image, or providing text such as a message of the day (with no input data). Any application that
uses the services facility then automatically has access to that functionality through its Services
menu, or through certain other mechanisms. It doesn’t need to know what the operations are in
advance; it merely indicates what types of data it has, and the Services menu makes available
the operations that apply to those types. The services facility thus gives applications an open-
ended means of extending each others’ functionality.

This document describes the four available types of service: standard services, which the user
chooses from the Services menu; filter services, which the developer invokes through the
NSPasteboard class; print filter services, which the user chooses when saving a printout as a
PostScript file; and spell checker services, which the user chooses from the standard spelling
checker panel. The first section, “Standard Services,” describes the general structure of all the
services and the details of standard services. The second section, “Variations on Standard
Services,” describes ways that the other three types of service differ from standard services.

Standard Services
Providing a Standard Service
Making a Service Available

Entries in a Service Specification
Add-on Services

Using Services
 Registering User-Interface Objects for Standard Services

Enabling Services Menu Items Based on the Selection
Sending and Receiving Data
Invoking a Standard Service Programmatically

Variations on Standard Services
Filter Services
Print Filter Services
Spell Checker Services

Simple Concept, Complex Interface
To illustrate the class cluster architecture and its benefits, consider the problem of
constructing a class hierarchy that defines objects to store numbers of different types
(chars, ints, floats, doubles). Since numbers of different types have many features in
common (they can be converted from one type to another and can be represented as
strings, for example), they could be represented by a single class. However, their
storage requirements differ, so it’s inefficient to represent them all by the same class.
This suggests the following architecture:

Number is the abstract superclass that declares in its methods the operations common
to its subclasses. However, it doesn’t declare an instance variable to store a number.
The subclasses declare such instance variables and share in the programmatic
interface declared by Number.

So far, this design is relatively simple. However, if the commonly used modifications
of these basic C types are taken into account, the diagram looks more like this:

The simple concept—creating a class to hold number values—can easily burgeon to
over a dozen classes.      The class cluster architecture presents a design that reflects
the simplicity of the concept.

Simple Concept, Simple Interface
Applying the class cluster design to this problem yields the following hierarchy
(private classes are in gray):

Users of this hierarchy see only one public class, Number, so how is it possible to
allocate instances of the proper subclass? The answer is in the way the abstract
superclass handles instantiation.

Spell Checker Services
A Spell checker service is made available in the Application Kit’s standard spell checker panel.
You implement a spell checker service by creating a program that uses an NSSpellServer object.
See the NSSpellServer class specification for full information on creating a spell checker
service. You’ll want to create the spell check service as an add-on service as described in “Add-
on Services.” Instead of a NSMessage entry, the service specification for a spell checker service
contains a NSSpellChecker entry, whose value is the text that should be used to identify the spell
checker in the spelling panel’s pop-up list. A spell checker service specification should also
contain a NSLanguages entry whose value is the language for which the spell checker applies.
The spell checker won’t be advertised unless one of its values for NSLanguages matches one of
the user’s preferred languages.

As an example, here’s the service specification for the NeXT spell checker:

{
 NSServices = (
 {NSExecutable = NeXTspell;

 NSLanguages = (English);

 NSSpellChecker = NeXT;

 },
);
}

Standard Services
In general terms, the standard services facility works as though the user copies data from one
application and pastes it into another, modifies the data, then copies the result and pastes it back
into the original application. The standard services facility does in fact use the pasteboard to
transfer data, automatically copying the selection from the service requestor and pasting the
altered data back—though the data transfer doesn’t have to be two-way, as the examples in the
introduction indicate. You should be familiar with the Application Kit’s NSPasteboard class
before working with the standard services facility.

This section describes how to provide a service in your application, and how to make sure your
application can also request appropriate services in any situation. “Providing a Standard
Service” covers everything you need to know as the implementor of a service. “Using Services”
shows you what you need to make your custom classes work as requestors of services.

Summary
The text-handling system’s architecture is both modular and layered, to enhance its ease of use
and flexibility. Its modular design reflects the model-view-controller paradigm (originating with
Smalltalk-80) where the data, its visual representation, and the logic that links the two are
represented by separate objects. In the case of the text-handling system, NSTextStorage holds
the model’s data, NSTextContainer and NSTextView work together to present the view, and
NSLayoutManager intercedes as the controller to make sure that the data and its representation
on screen stay in agreement.

This factoring of responsibilities makes each component less dependent on the implementation
of the others and makes it easier to replace individual components with improved versions
without having to redesign the entire system. To illustrate the independence of the text-handling
components, consider some of the operations that are possible using different subsets of the
text-handling system:

• Using only an NSTextStorage object, you can search text for specific characters, strings,
paragraph styles, and so on.

• Using only an NSTextStorage object you can programmatically operate on the text without
incurring the overhead of laying it out for display.

• Using all the components of the text system except for an NSTextView object you can
calculate layout information, determining where line breaks occur, the total number of pages,
etc.

The layering of the text-handling system reduces the amount you have to learn to accomplish
common text-handling tasks. Many applications interact with this system solely through the API
of the NSTextView class.

The following sections examine the text-handling system from a practical point of view,
showing you how to work with the system to achieve particular goals, starting with the most
basic.

Text Input and Output
The text-handling system provides a convenient interface to the file system allowing you to
read, display, and write files in these formats:

Format Description

Plain Text Characters unaccompanied by attribute information.

Rich Text Format (RTF) Character
and attribute
information
expressed in
the Rich
Text
FormatÒ(RT
F). See the
Rich Text
Format
Specification
by Microsoft
Corporation
for more
information.

Rich Text Format Directory (RTFD) Character
and
attribute
informatio
n expressed
in the Rich
Text
Format but
stored in a
directory
along with
the images
and other
attachment
s that are
embedded
in the text.

Text System Defaults
NSModifierFlagMapping    (dictionary) (Windows platform only)

This default is on OPENSTEP for Windows only.    It allows you to control the mapping
between physical modifier keys and logical modifier flags in OpenStep.    This default is
actually not specific to the text system, but its main purpose is to allow Emacs bindings to work
under Windows.    By default, both Control keys generate the Command key bit (for menu key
equivalents) and both Alt keys generate the Alternate key bit (for mnemonics, primarily).    The
Control key bit is not available in the default setup which means it is not possible to invoke
Emacs-style commands in the text system.    This default can be used to remap the available
keys to generate what you want.    The value of the default is a dictionary with four possible
keys, each of which can have one of three possible values.    The dictionary keys are:
"LeftControl", "RightControl", "LeftAlt", and "RightAlt".    The valid values are: "Command",
"Alt", and "Control".    So the default setup is like this:

{
"LeftControl" = "Command";
"RightControl" = "Command";
"LeftAlt" = "Alt";
"RightAlt" = "Alt";

}

One possible setup that allows you to use Emacs keys would be:

{
"LeftControl" = "Command";
"RightControl" = "Command";
"LeftAlt" = "Control";
"RightAlt" = "Alt";

}

This would make it so the left Alt key acts like a control key for Emacs.    The right Alt key is
still used for Alt.

Currently this default has a limitation that only a real Alt key (left or right) can be used for the
Alt bit.    Therefore it is not valid to assign "LeftControl" = "Alt".

NSMnemonicsWorkInText ("YES" or "NO")

This default controls whether the text system accepts key events with the Alt key down.    The
default value is NO on Mach and YES on Windows.    A value of YES means that any key event
with the Alt bit on will be passed up the responder chain to eventually be treated as a mnemonic
instead of being accepted by the text as textual input or a key binding command.    If this default
is set to NO then the key events with the Alt bit set will be passed through the text system's
normal key input sequence.    This will allow any key bindings involving Alt to work (such as
Emacs-style bindings like Alt-f for word forward) and, on Mach it allows typing of special
international and Symbol font characters.

NSRepeatCountBinding (key binding style string)

This default controls the numeric argument binding.    The default is for numeric arguments not

to be supported.    If you provide a binding for this default you enable the feature.    This allows
you to repeat a keyboard command a given number of times.    For instance "Control-U 10
Control-F" means move forward ten characters.

NSQuotedKeystrokeBinding (key binding style string)

This default controls the quote binding.    The default is for this to be "^q" (that's Control-Q).   
This is the binding that allows you to literally enter characters that would otherwise be
interpreted as commands.    For instance "Control-Q Control-F" would insert a Control-F
character into the document instead of performing the command moveForward:.

NSTextShowsInvisibleCharacters ("YES" or "NO")

The default controls whether a text object will by default show invisible characters like tab,
space, and carriage return using some visible glyph.    By default it is NO.    It only controls the
default setting for NSLayoutManagers (which can be modified programmatically).    In order for
this to work, the rule book generating the glyphs must support the feature.    Currently our rule
books do not support this feature, so currently this default is not very useful.

NSTextShowsControlCharacters ("YES" or "NO")

The default controls whether a text object will by default show control characters visibly
(usually by representing Control-C as "^C" in the text).    By default it is NO.    It only controls
the default setting for NSLayoutManagers (which can be modified programmatically).    In order
for this to work, the rule book generating the glyphs must support the feature.    This feature
carries a cost.    It will increase the memory needed for documents that contain control
characters by quite a lot.    Use it with care.

NSTextSelectionColor (color)

This default controls the background color of selected text.    By default this is light gray.    Kit
defaults that accept colors accept them in one of three ways.    Either as an archived NSColor
object, or as three RGB components, or as a string that can be resolved to a factory selector on
NSColor that will return the desired color (for example, "redColor").    Note that NSTextFields
and other controls that use field editors to edit their text control their own selection attributes to
conform with the platform UI.

NSMarkedTextAttribute and NSMarkedTextColor (color or "underline")

This default controls the way that marked text is displayed. The NSMarkedTextAttributed can
either be "Background" or "Underline". If it is "Background" then NSMarkedTextColor
indicates the background color to use for marked text. If NSMarkedTextAttribute is "Underline"
, NSMarkedTextColor indicates the foreground color to use for marked text (the marked text
will be drawn in the specified color and underlined). By default, marked text is drawn with a
yellow-ish background color.    Kit defaults that accept colors accept them in one of three ways.
Either as an archived NSColor object, or as three RGB components, or as a string that can be

resolved to a factory selector on NSColor that will return the desired color (for example,
"redColor"). For compatibility with the way this default worked in 4.0, if the
NSMarkedTextAttribute default contains a color instead of one of the strings "Background" or
"Underline" then that color is used as the background color for marked text and the
NSMarkedTextColor attribute is ignored.

NSTextKillRingSize (number string)

This default controls the size of the kill ring (as in Emacs Control-Y).    The default value is 1
(not really a ring at all, just a single buffer).    If you set this to a value larger than one, you also
need to rebind Control-Y to "yankAndSelect:" instead of "yank:" for things to work properly
(note that yankAndSelect: is not listed in any headers).    See below for more info on bindings.

Text System Defaults and Key Bindings
Copyright ã1996 by NeXT Software, Inc.    All Rights Reserved.

OPENSTEP 4.x has a new text system.    This document reveals some tips and tricks about
various defaults you can use to customize its behavior. It also describes how to customize the
key bindings supported by the new text system.

Note that the new text object exists only in the Release 4.x version of the Application Kit; the
following notes don't apply to NEXTSTEP Release 3.3 applications. Also note that the old (3.3)
text object exists in the 4.0 Application Kit; these defaults don't apply to it nor to any OpenStep
applications which use the old text object.

Heavy-duty subclassers may alter some or all of the text system's functionality, rendering some
or all of these features inactive. These notes do apply to NeXT's OPENSTEP applications such
as Project Builder, Interface Builder, Text Edit, and others which use the new text system.

The Complete System
The roster of objects that make up the complete text-handling system is relatively long, so this
section concentrates on the major players and only mentions the minor ones in passing.

To control layout of text on the screen or printed page, you work with the objects that link the
NSTextStorage repository to the NSTextView that displays its contents. These objects are of the
NSLayoutManager and NSTextContainer classes.

An NSTextContainer object defines a region where text can be laid out. Typically, an
NSTextContainer defines a rectangular area, but by creating a subclass of NSTextContainer you
can create other shapes: circles, pentagons, or irregular shapes, for example. NSTextContainer
isn’t a user-interface object, so it can’t display anything or receive events from the keyboard or
mouse. It simply describes an area that can be filled with text. Nor does an NSTextContainer
store text—that’s the job of NSTextStorage.

An NSLayoutManager orchestrates the operation of the other text handling objects. It intercedes
in operations that convert the data in an NSTextStorage object to rendered text in an
NSTextView’s display. It also oversees the layout of text within the areas defined by
NSTextContainer objects. To better understand the function of an NSLayoutManager object,
you need to understand the difference between characters and glyphs.

The Foundation Framework
Framework: NextLibrary/Frameworks/Foundation.framework

Header File Directories:
NextLibrary/Frameworks/Foundation.framework/Headers

The Foundation Framework defines a base layer of Objective-C classes for OpenStep.
In addition to providing a set of useful primitive object classes, it introduces several
paradigms that define functionality not covered by the Objective-C language.    The
Foundation Framework is designed with these goals in mind:

• Provide a small set of basic utility classes

• Make software development easier by introducing consistent conventions for
things such as deallocation

• Support Unicode strings, object persistence, and object distribution

• Provide a level of OS independence, to enhance portability

The Foundation Framework includes the root object class, classes representing basic
data types such as strings and byte arrays, and collections of other objects, and classes
representing system information such as dates and communication ports between
applications.    See “Foundation Framework Classes” for a detailed description of the
Foundation Framework.

The Foundation Framework introduces several paradigms to avoid confusion in
common situations, and to introduce a level of consistency across class hierarchies.
This is done with some standard policies, such as that for object ownership (that is,
who’s responsible for disposing of objects), and with abstract classes like
NSEnumerator. These new paradigms reduce the number of special and exceptional
cases in API, and allow you to code more efficiently by reusing the same mechanisms
with various kinds of objects.

This topic is organized as follows:

Foundation Framework Classes

Object Ownership and Automatic Disposal
Marking Objects for Disposal
Retaining Objects
Validity of Shared Objects
Object Ownership: Summary

Class Clusters

Simple Concept, Complex Interface
Simple Concept, Simple Interface
Creating Instances

 Class Clusters With Multiple Public Superclasses
 Creating Subclasses Within a Class Cluster

A True Subclass
True Subclasses: An Example
A Composite Object
A Composite Object: An Example

The OPENSTEP Text System
Note: A number of minor changes have occurred to the text system API that may render some
explanations, illustrations, and code samples inaccurate. NeXT is working to update this
document in a timely manner; a new version should be available from our web site shortly.

The text-handling component of any application framework presents one of the greatest
challenges to framework designers. Even the most basic text-handling system must be relatively
sophisticated, allowing for text input, layout, display, editing, copying and pasting, and many
other features. But these days developers and users commonly expect even more than these
basic features, requiring their simple editors to support multiple fonts, various paragraph styles,
embedded images, spell checking, and other features.

A framework that provides these more advanced text-handling features may be adequate for
today’s programming needs but falls far short when measured against the requirements that are
emerging from our ever more interconnected computing world: support for the character sets of
the world’s living languages, powerful layout capabilities to handle various text directionality
and nonrectangular text containers, and sophisticated typesetting capabilities including control
of kerning and ligatures.

The OPENSTEP text-handling system is designed to provide all these capabilities without
requiring you to learn about or interact with more of the system than is required to meet the
needs of your application. It does this by providing a layering of classes, as described in the
next section. The sections that follow the architectural overview give you practical examples of
how to work with the text-handling system.

This topic is organized as follows:

Architectural Overview
The User-Interface Layer: the NSTextView Class
The Storage Layer: The NSTextStorage Class
The Complete System

Characters and Glyphs
Common Configurations
Class Hierarchy of the Text-Handling System

Summary

Working with the Text-Handling System: Basic Operations
Creating an NSTextView Object

Interface Builder and the Text-Handling System
Creating an NSTextView Programmatically

Text Input and Output
Reading Text from a File
Writing Text to a File

Putting an NSTextView Object in an NSScrollView

Working with the Text-Handling System: Intermediate Operations
Changing Character Attributes
Assembling the Text System by Hand

The Storage Layer: The NSTextStorage Class
An NSTextStorage object serves as the data repository for a group of text handling objects. The
format for this data is called an attributed string, which is an association of characters (in
Unicode encoding) and the attributes (such as font, color, paragraph style) that apply to them.
Conceptually, each character in a text has associated with it a dictionary of keys and values. A
key names an attribute (say the font) and the associated value specifies the characteristics of that
attribute (such as Helvetica 12 point).

An NSTextView lets users affect character attributes through direct action: The user selects
some text and reduces the spacing between characters by choosing the Tighten menu command.
NSTextStorage lets you operate on the attributes of the text programmatically: Your code can
run through the text loosening the kerning for all characters of a certain font and size.

The User-Interface Layer: the NSTextView Class
The vast majority of applications interact with the text-handling system through one class:
NSTextView. An NSTextView object provides a rich set of text-handling features and can:

• Display text in various fonts, colors, and paragraph styles
• Display images
• Read text and images from (and write them to) disk or the pasteboard
• Let users control text attributes such as font, super- and subscripting, kerning, and the use of

ligatures
• Cooperate with other views to enable scrolling and display of the ruler
• Cooperate with the Font and Spell Check panels.
• Support various key bindings, such as those used in Emacs

The interface that this class declares (and inherits from its superclass NSText) lets you
programmatically:

• Control the size of the area in which text is displayed
• Control the editability and selectability of the text
• Select and act on portions of the text

NSTextView objects are used throughout the OPENSTEP user interface to provide standard text
input and editing features.

An NSTextView object is a convenient package of the most generally useful text-handling
features. If the features of the NSTextView class satisfy your application’s requirements, you
can skip to the section below titled “Working with the Text-Handling System: Basic
Operations”. However, if you need more programmatic control over the characters and
attributes that make up the text, you’ll have to learn something about the object that stores this
data, NSTextStorage.

True Subclasses: An Example
An example will help clarify the foregoing discussion. Let’s say that you want to
create a subclass of NSArray, named MonthArray, that returns the name of a month
given its index position. However, a MonthArray object won’t actually store the array
of month names as an instance variable. Instead, the method that returns a name given
an index position (objectAtIndex:) will return constant strings. Thus, only twelve
string objects will be allocated, no matter how many MonthArray objects exist in an
application.

The MonthArray class is declared as:

#import <foundation/foundation.h>
@interface MonthArray : NSArray
{
}

+ sharedMonthArray;
- (unsigned)count;
- objectAtIndex:(unsigned)index;

@end

Note that the MonthArray class doesn’t declare an init... method since it has no
instance variables to initialize. The count and objectAtIndex: methods simply cover
the inherited primitive methods, as described above.

The implementation of the MonthArray class looks like this:

#import "MonthArray.h"

@implementation MonthArray

static MonthArray *sharedMonthArray = nil;
static NSString *months[] = { @"January", @"February", @"March",
 @"April", @"May", @"June", @"July", @"August", @"September",
 @"October", @"November", @"December" };

+ monthArray
{
 if (!sharedMonthArray) {
 sharedMonthArray = [[MonthArray alloc] init];
 }
 return sharedMonthArray;
}

- (unsigned)count
{
 return 12;
}

- objectAtIndex:(unsigned)index
{
 if (index >= [self count])
 [NSException raise:NSRangeException format:@"***%s: index
 (%d) beyond bounds (%d)", sel_getName(_cmd), index,
 [self count] - 1];

 else
 return months[index];
}

@end

Since MonthArray overrides the inherited primitive methods, the derived methods
that it inherits will work properly without being overridden. NSArray’s lastObject,
containsObject:, sortedArrayUsingSelector:, objectEnumerator, and other
methods work without problems for MonthArray objects.

Using Services
If you add a Services menu to your application in Interface Builder, there’s nothing else you
need to do for your application to work with the standard services facility; your application
automatically has access to all appropriate services provided by other applications. If you need
to construct menus programmatically or if you subclass NSView or NSWindow (or any other
subclass of NSResponder), however, you need to do a little work to tie things into the standard
services facility. Setting a Services menu programmatically is straightforward. You simply
designate the NSMenu that you want as your Services menu with NSApplication’s
setServicesMenu: method. Tying custom NSViews or NSWindows into the standard services
facility falls into three steps, in which you invoke or implement these methods:

registerServicesMenuSendTypes:returnTypes:
validRequestorForSendType:returnType:
writeSelectionToPasteboard:types:
readSelectionFromPasteboard:

The following sections cover each of these methods. A final section, “Invoking a Standard
Service Programmatically,” shows how to invoke a standard service in your code.

Validity of Shared Objects
The Foundation Framework’s ownership policy limits itself to the question of when
you have to dispose of an object; it doesn’t specify that any object received in a
method must remain valid throughout that method’s scope. A received object nearly
always becomes invalid when its owner is released, and usually becomes invalid
when its owner reassigns the instance variable holding that object. Any method other
than release that immediately disposes of an object is documented as doing so.

For example, if you ask for an object’s main sprocket and then release the object, you
have to consider the main sprocket gone, because it belonged to the object. Similarly,
if you ask for the main sprocket and then send setMainSprocket: you can’t assume
that the sprocket you received remains valid:

Sprocket *oldMainSprocket;
Sprocket *newMainSprocket;

oldMainSprocket = [myObject mainSprocket];

/* If this releases the original Sprocket... */
[myObject setMainSprocket:newMainSprocket];

/* ...then this causes the application to crash. */
[oldMainSprocket anyMessage];

setMainSprocket: may release the object’s original main sprocket, possibly
rendering it invalid. Sending any message to the invalid sprocket would then cause
your application to crash. If you need to use an object after disposing of its owner or
rendering it invalid by some other means, you can retain and autorelease it before
sending the message that would invalidate it:

Sprocket *oldMainSprocket;
Sprocket *newMainSprocket;

oldMainSprocket = [[[myObject mainSprocket] retain] autorelease];
[myObject setMainSprocket:newMainSprocket];
[oldMainSprocket anyMessage];

Retaining and autoreleasing oldMainSprocket guarantees that it will remain valid
throughout your scope, even though its owner may release it when you send
setMainSprocket:.

Variations on Standard Services
The three other types of services—filter, print filter, and spell checker—all share the use of a
service specification, but they’re each implemented in different ways. The following sections
describe how the service specification for each type of service differs from that for a standard
service, and how you take advantage of that type of service.

Working with the Text-Handling System: Basic Operations
The previous section discussed basic operations that can be implemented using the NSTextView
and NSTextContainer classes. This section explores those classes in greater depth and brings in
the other major classes of the text-handling system, showing you how to use them to accomplish
various goals.

Writing Text to a File
Depending on the format of an NSTextView’s text, you use slightly different approaches to
write the text to a file. For plain text, you extract the contents of the NSTextView as an
NSString object and use NSString’s writeToFile:atomically: method to write the data to disk.
RTF text is treated similarly, except that the contents is extracted as an NSData object. Easiest
of all is RTFD data, which the NSTextView itself knows how to write to a file:

- (void)saveFile:(id)sender
{
 NSSavePanel *panel = [NSSavePanel savePanel];

 switch (theFormat) {
 case PlainText:
 [panel setRequiredFileType:@""];
 if ([panel runModal] == NSOKButton) {
 [[theTextView string] writeToFile:[panel filename]
 atomically:YES];
 }
 break;

 case RichText:
 [panel setRequiredFileType:@"rtf"];
 if ([panel runModal] == NSOKButton) {
 [[theTextView RTFFromRange:NSMakeRange(0, [[theTextView string]
 length])] writeToFile:[panel filename] atomically:YES];

 }
 break;

 case RTFD:
 [panel setRequiredFileType:@"rtfd"];
 if ([panel runModal] == NSOKButton) {
 [theTextView writeRTFDToFile:[panel filename] atomically:YES];
 }
 break;

 default:
 NSRunAlertPanel(@"Save Error",

 @"Couldn’t save file (unknown data format).\n", nil, nil, nil);
 break;
 }
 return;
}

