
C Preprocessor Output

The output from the C preprocessor looks much like the input,
except that all preprocessor command lines have been replaced
with blank lines and all comments with spaces.    White-space
characters within a line aren’t altered; however, a space is
inserted after the expansions of most macros.    Also, pragmas are
passed through verbatim.

Source file name and line number information is conveyed by
lines of the form

nil # linenum file {digit}

which are inserted as needed into the middle of the input (but
never within a string or character constant).    Such a line means
that the following line originated in file file at line linenum.

After the file name comes zero or more numeric flags: 1, 2 or 3,
separated by spaces if multiple flags:

1. The start of a new file
2. Return to a file (after having included another file).
3. Text that follows comes from a system header file

(so certain warnings should be suppressed).

Combining Source Files

One of the jobs of the C preprocessor is to tell the C compiler the
source file and line number that each line of C code came from.

C code can come from multiple source files if you use #include
or #import.    If you include header files, or if you use
conditionals or macros, the line number of a line in the
preprocessor output may be different from the line number of the
same line in the original source file.    Normally you would want
both the C compiler (in error messages) and the GDB debugger to
use the line numbers of your source file.

The C preprocessor offers a #line command by which you can
control this feature explicitly.    #line specifies the original line
number and source file name for subsequent input in the current
preprocessor input file.    #line has three variants:

#line linenum
linenum is a decimal integer constant.    This resets the
current line number in the source file to linenum.

#line linenum "file"
linenum is a decimal integer constant and "file" is a
string constant.    This resets the line number to
linenum and changes the name of the file referred to
by file.

#line macros
macros should be one or more macros that have been
defined by earlier preprocessing directives.    When the
macros have been expanded by the preprocessor, the
#line instruction will then resemble one of the first
two forms and be interpreted appropriately.

#line commands alter the results of the __FILE__ and
__LINE__ predefined macros from that point on.    See the
section “Predefined Macros.”

The output of the preprocessor (which is the input for the rest of
the compiler) contains commands that look much like #line
commands. They start with just # instead of #line, but this is
followed by a line number and file name as in #line.

Conditionals

In a macro processor, a conditional is a command that allows part
of the program to be ignored during compilation, on some
conditions.    In the C preprocessor, a conditional can test either
an arithmetic expression or whether a name is defined as a macro.

A conditional in the C preprocessor resembles an if statement in
C, but it’s important to understand the difference between them.   
The condition in an if statement is tested during the execution of
your program.    Its purpose is to allow your program to behave
differently from run to run, depending on the data it’s operating
on.    The condition in a preprocessor conditional command is
tested when your program is compiled.    Its purpose is to allow
different code to be included in the program depending on the
situation at the time of compilation.

There are three reasons to use a conditional:

• A program may need to use different code depending on the
target machine or operating system.    In some cases, the code
for one operating system may be erroneous on another
operating system; for example, it might refer to library routines
that don’t exist on the other system.    When this happens, it
isn’t enough to avoid executing the invalid code:    Merely
having it in the program makes it impossible to link the
program and run it.    With a preprocessor conditional, the
offending code can be effectively excised from the program
when it isn’t valid.

• You may want to be able to compile the same source file into
two different programs.    Sometimes the difference between
the programs is that one makes frequent time-consuming
consistency checks on its intermediate data while the other
doesn’t.

• A conditional whose condition is always false is a good way to
exclude code from the program but keep it for future reference.

Most programs using only OPENSTEP API won’t need to use
preprocessor conditionals.

Syntax of Conditionals

A conditional in the C preprocessor begins with a conditional

command:    #if, #ifdef, or #ifndef.    These and a few related   
commands are described in the following sections.

The #if Command

The #if command in its simplest form consists of

nil #if expression
conditional-text
#endif      /* expression */

The comment following the #endif isn’t required, but it makes
the code easier to read.    Such comments should always be used,
except in short conditionals that aren’t nested.    (Although you
can put anything at all after the #endif and it will be ignored by
the C preprocessor, only comments are acceptable in ANSI
Standard C.)

expression is a C expression of type int, subject to stringent
restrictions.    It may contain:

• Integer constants, which are all regarded as long or unsigned
long.

• Character constants, which are interpreted according to the
character set and conventions of the machine and operating
system on which the preprocessor is running.    The C
preprocessor uses the C data type char for these character
constants; therefore, whether some character codes are
negative is determined by the C compiler used to compile the
preprocessor.    If it treats char as signed, then character codes
large enough to set the sign bit will be considered negative;
otherwise, no character code is considered negative.

• Character constants.    The C preprocessor uses the C data type
char for these character constants.

• Arithmetic operators for addition, subtraction, multiplication,
division, bitwise operations, shifts, comparisons, &&, and ||.

• Identifiers that aren’t macros, which are all treated as 0.

• Macro invocation.    All macros in the expression are expanded
before actual computation of the expression’s value begins.

sizeof operators and enum-type values aren’t allowed.    enum-
type values, like all other identifiers that aren’t taken as macro
invocations and expanded, are treated as 0.

The controlled text inside a conditional can include preprocessor
commands.    Then the commands inside the conditional are
obeyed only if that branch of the conditional succeeds.    The text
can also contain other conditional groups.    However, the #if and
#endif commands must balance.

The #else Command

The #else command can be added to a conditional to provide
alternative text to be used if the condition is false:

nil #if expression
text-if-true
#else      /* not expression */
text-if-false
#endif        /* not expression */

If expression is nonzero, text-if-true is included; then #else acts
like a failing conditional and text-if-false is ignored.    If
expression is 0, the #if conditional fails and text-if-false is
included.

The #elif Command

A common use of nested conditionals is to check for more than
two possible alternatives:

#if X == 1
. . .
#else /* X != 1 */
#if X == 2
. . .
#else /* X != 2 */
. . .
#endif /* X != 2 */
#endif /* X != 1 */

The conditional command #elif (which stands for “else if”) can
be used to abbreviate this as follows:

#if X == 1
. . .
#elif X == 2
. . .

#else /* X != 2 and X != 1*/
. . .
#endif /* X != 2 and X != 1*/

Like #else, #elif goes in the middle of a #if-#endif pair and
subdivides it; it doesn’t require a matching #endif of its own.   
Like #if, the #elif command includes an expression to be tested.

The text following the #elif is processed only if the original #if-
condition failed and the #elif condition succeeds.    More than one
#elif can go in the same #if-#endif group.    Then the text after
each #elif is processed only if the #elif condition succeeds after
the original #if and any previous #elif commands within it have
failed.    #else is allowed after any number of #elif commands, but
#elif may not follow a #else.

Keeping Deleted Code for Future Reference

If you replace or delete part of the program but want to keep the
old code around as a comment for future reference, you can
simply put #if 0 before it and #endif after it.

This works even if the code being turned off contains
conditionals, but they must be entire conditionals (balanced #if
and #endif).

Conditionals and Macros

Conditionals are useful in    macros or assertions, because those
are the only ways that an expression's value can vary from one
compilation to another.    An #if command whose expression uses
no macros or assertions is equivalent to #if 1 or #if 0; you might
as well determine which one—by computing the value of the
expression yourself—and then simplify the program.

For example, here’s a conditional that tests the expression
BUFSIZE == 1020, where BUFSIZE must be a macro:

#if BUFSIZE == 1020
 printf ("Large buffers!\n");
#endif /* BUFSIZE is large */

(Programmers often wish they could test the size of a variable or
data type in    #if expressions, but this does not work.    The
preprocessor does not understand sizeof, or typedef names, or
even the type keywords such as int.)

The special operator defined is used in #if expressions to test
whether a certain name is defined as a macro.    Either defined
NAME or defined (NAME) is an expression whose value is 1 if
NAME is defined as macro at the current point in the program,
and 0 otherwise.    For the defined operator it makes no difference
what the definition of the macro is; all that matters is whether
there’s a definition.    Thus, for example,

#if defined (vax) || defined (ns16000)

will include the following code if either vax or ns16000 is
defined as a macro.

If a macro is defined and later undefined with #undef, subsequent
use of the defined operator    returns 0, because the name is no
longer defined.    If the macro is defined again with another
#define, defined will again return 1.

Conditionals that test just the definedness of one name are very
common, so there are two special short conditional commands for
this case:

• #ifdef name is equivalent to #if defined (name).
• #ifndef name is equivalent to #if ! defined (name).

Macro definitions can vary between compilations for any of the
following reasons:

• Some macros are predefined on each kind of machine.    For
example, on a NeXT computer the name NeXT is a
nonstandard predefined macro.    On other machines, it isn’t
defined.

• Many more macros are defined by system header files.   
Different systems and machines define different macros, or
give them different values.    It’s useful to test these macros
with conditionals to avoid using a system feature on a machine
where it isn’t implemented.

• Macros are a common way for you to customize a program for
different machines or applications.    For example, the macro
BUFSIZE might be defined in a configuration file for your
program that’s included as a header file in each source file.   
You would use BUFSIZE in a preprocessor conditional in
order to generate different code depending on the chosen
configuration.

• Macros can be defined or undefined with -D and -U command
options when you compile the program.    You can arrange to
compile the same source file into two different programs by
choosing a macro name to specify which program you want,
writing conditionals to test whether or how this macro is
defined, and then controlling the state of the macro with
compiler command options.      You can also use macros to
specify different build types of the same program.    For
example, you could use -DDEBUG and -DPROFILE for
debugging and profililing builds, respectively. See the section
“Invoking the C Preprocessor.”

The #error and #warning Commands

The #error command causes the preprocessor to report a fatal
error.    The rest of the line that follows #error is used as the error
message.

You would use #error inside a conditional that detects a
combination of parameters that you know the program doesn’t
support.

For example, if you know that the program won’t run properly on
a VAX, you might write

#ifdef vax
#error Won’t work on Vaxen. See comments at
get_last_object.
#endif

Similarly, if you have several configuration parameters that must
be set up by the installation in a consistent way, you can use
conditionals to detect an inconsistency and report it with #error.
For example:

#if (HASH_TABLE_SIZE % 2 == 0) || (HASH_TABLE_SIZE % 3
== 0) \
 || (HASH_TABLE_SIZE % 5 == 0)
#error HASH_TABLE_SIZE shouldn’t be divisible by a small
prime
#endif

The #warning command is like the #error command, but causes
the preprocessor to issue a warning and continue preprocessing.   
The rest of the line that follows #warning is used as the warning
message.

You might use #warning in obsolete header files, with a message
directing the user to the header file which should be used instead.

Copyright ã1996 by NeXT Software, Inc.    All Rights Reserved.

THE GNU C PREPROCESSOR
Contents

Introduction

Global Transformations
Preprocessor Commands

Header Files
Uses of Header Files
The #include Command
Multiple Inclusion of Header Files

Precompiled Header Files
Using Precompiled System Header Files
Creating Your Own Precompiled Header Files
Troubleshooting

Macros
Simple Macros
Macros That Take Arguments
Predefined Macros

 Nonstandard Predefined Macros
 Stringification
 Undefining Macros

Redefining Macros
Pitfalls and Subtleties of Macros

Conditionals
Syntax of Conditionals
Keeping Deleted Code for Future Reference
Conditionals and Macros

Pragmas

Combining Source Files

C Preprocessor Output

Invoking the C Preprocessor

Global Transformations

Most C preprocessor features are inactive unless you give
specific commands to request their use.    But there are three
transformations that the preprocessor always makes on all the
input it receives, even in the absence of commands:

• C comments (and Objective-C comments) are replaced with
single spaces.

• Backslash-newline sequences are deleted.    This feature allows
you to break long lines for cosmetic purposes without
changing their meaning.

• Predefined macro names are replaced with their expansions
(see the section "Predefined Macros”).

The first two transformations are done before nearly all other
parsing and before preprocessor commands are recognized.   
Thus, for example, you can split a line cosmetically with
backslash-newline anywhere (except when trigraphs are in use;
see below).

/*
/ # /
*/ defi\
ne FO\
O 10\
20

is equivalent to #define FOO 1020.    You can even split an
escape sequence with backslash-newline.    For example, you can
split “foo\bar” between the backslash and the b to get

"foo\\
bar"

This behavior is unclean: in all other contexts, a backslash can be
inserted in a string constant as an ordinary character by writing a
double backslash, and this creates an exception.    But the ANSI C
standard requires it.    (Strict ANSI C doesn’t allow newlines in
string constants, so this isn’t considered a problem.)

There are a few exceptions to all three transformations:

• C comments and predefined macro names aren’t recognized
inside an #include command in which the file name is
delimited with < and >.

• C comments and predefined macro names are never
recognized within a character or string constant.    (Strictly
speaking, this is the rule rather than an exception.)

• Backslash-newline may not safely be used within an ANSI
trigraph (trigraphs are converted before backslash-newline is
deleted).    If you write what looks like a trigraph with a
backslash-newline inside, the backslash-newline is deleted as
usual, but it is then too late to recognize the trigraph.

This exception is relevant only if you use the -trigraphs
option to enable trigraph processing.

Preprocessor Commands

Most preprocessor features are active only if you use
preprocessor commands to request their use.

Preprocessor commands are lines in your program that start with
#.    The # is followed by an identifier that’s the command name.
For example, #define is the command that defines a macro.   
White-space characters are allowed before and after the #.

The set of valid command names is fixed.    Programs can’t define
new preprocessor commands.

Some command names require arguments; these make up the rest
of the command line and must be separated from the command
name by one or more white-space characters.    For example,
#define must be followed by a macro name and the intended
expansion of the macro.

A preprocessor command normally can’t be more than one line.   
It may be split cosmetically with backslash-newline, but that has
no effect on its meaning.    Comments containing newlines can
also divide the command into multiple lines, but the comments
are changed to spaces before the command is interpreted.    The
only way a significant newline can occur in a preprocessor
command is within a string constant or character constant.    (Note
that most C compilers that might be applied to the output from
the preprocessor do not accept string or character constants
containing newlines.)

The # and the command name can’t come from a macro

expansion.    For example, if foo is defined as a macro expanding
to define, that doesn’t make #foo a valid preprocessor command.

Header Files

Header files can contain C declarations and macro definitions that
are to be shared by more than one source file.    You request the
inclusion of a header file in a source file by using the C
preprocessor command #include (or more typically in the
NEXTSTEP environment, the Objective-C preprocessor
command #import).

Uses of Header Files

Header files serve two kinds of purposes:

• System header files declare the interfaces to parts of the
operating system.    You include them in your program to
supply the definitions you need to invoke system calls and
libraries.

• Your own header files contain declarations for interfaces
between the source files of your program.    Each time you
have a group of related declarations and macro definitions, all
or most of which are needed in several different source files,
it’s a good idea to create a header file for them.

Including a header file produces the same results in C
compilation as copying the header file into each source file that
needs it.    But such copying would be time-consuming and error-
prone.    With a header file, the related declarations appear in only
one place.    If they need to be changed, they can be changed in
one place, and programs that include the header file will
automatically use the new version when recompiled.

By convention, names of header files end with the extension “.h”.

The #include Command

Both user and system header files are included using the
preprocessor command #include.    It has three variants:

#include <file>
This variant is used for system or framework header
files.    It a search for a file named file in a list of
directories specified by you, and then, if it isn’t found,
in a standard list of system directories.    You specify

directories to search for header files with the
command option -I (see the section “Invoking the C
Preprocessor”).    The option -nostdinc inhibits
searching the standard system directories; in this case
only the directories you specify are searched.

For frameworks the semantics of the text between the
angle brackets is different. The word preceding the
slash indicates a framework. Thus the line:

<AppKit/AppKit.h>

causes the search for the header file AppKit.h to
occur in the Application Kit framework
(/NextLibrary/Frameworks/AppKit.framework).   
The PrivateHeaders subdirectory is searched first,
and then the Headers directory, thus allowing a
private header file to override a public one. The flags
-F, -I, and -L affect search path for frameworks (see
“Invoking the Preprocessor,” below); The linker’s
-framework flag, however, has no effect.

The parsing of this form of #include is slightly special
because comments are not recognized within the
<file> argument.    Thus, in #include <x/*y> the /*
doesn’t start a comment and the command specifies
inclusion of a system header file named x/*y.    (Of
course, a header file with such a name is unlikely to
exist on a UNIX-based system, where shell wildcard
features would make it hard to manipulate.)

The file argument may not contain a > character,
although it may contain a < character.

#include "file"
This variant is used for header files of your own
program.    It searches for a file named file first in the
current directory, then in the same directories used for
system header files.    The current directory is tried
first because it’s presumed to be the location of the
files of the program being compiled.    (If the -I-
option is used, the special treatment of the current
directory is inhibited.)

The file argument may not contain " characters.    If
backslashes occur within file, they are considered
ordinary text characters, not escape characters.    None

of the character escape sequences appropriate to string
constants in C are processed.    Thus, #include "x\n\
\y" specifies a file name containing three backslashes.
It isn’t clear why this behavior is ever useful, but the
ANSI standard specifies it.

#include anything else
This variant is called a computed #include.    Any
#include command whose argument doesn’t fit the
above two forms is a computed #include.    The text
anything else is checked for macro calls, which are
expanded.    When this is done, the result must fit one
of the above two variants.

This feature allows you to define a macro that controls
the file name to be used at a later point in the program.
One application of this is to allow a site-configuration
file for your program to specify the names of the
system header files to be used.    This can help in
porting the program to various operating systems in
which the necessary system header files are found in
different places.

The #include command directs the C preprocessor to scan the
specified file as input before continuing with the rest of the
current file.    The output from the preprocessor will contain the
output already generated, followed by the output resulting from
the included file, followed by the output that comes from the text
after the #include command.    Included files can themselves
contain #include commands to include other files.

Included files are not limited to declarations and macro
definitions, although those are the typical uses.    Any fragment of
a C program can be included from another file.    The include file
could even contain the beginning of a statement that is concluded
in the containing file, or the end of a statement that was started in
the including file.    However, a comment or a string or character
constant may not start in the included file and finish in the
including file.    An unterminated comment, string constant or
character constant in an included file is considered to end (with
an error message) at the end of the file.

The line following the #include command is always treated as a
separate line by the C preprocessor, even if the included file lacks
a final newline.

Note:    The Objective-C language equivalent of #include is
#import; the only difference is that #import doesn’t include a
file more than once, no matter how many #import commands try
to include it.    You should feel free to use #import in your code,
but be aware that it isn’t defined as part of ANSI-standard C.

Multiple Inclusion of Header Files

Very often one header file includes another, which can result in a
certain header file being included more than once.    This may
lead to errors if the header file defines structure types or typedefs,
and in any event is wasteful.    For these reasons, you should try
to avoid multiple inclusion of a header file.

The standard way to prevent multiple inclusion of a file is to
enclose the entire real contents of the file in a conditional, like
this:

#ifndef __FILE_FOO_SEEN__
#define __FILE_FOO_SEEN__
the entire file
#endif /* __FILE_FOO_SEEN__ */

The macro __FILE_FOO_SEEN__ indicates that the file has
been included once already; its name begins with __ to avoid
conflicts with user programs, and it contains the name of the file
and some additional text to avoid conflicts with other header
files.

Alternatively (if compatibility with non-NeXT platforms isn’t an
issue), you can ensure that each file is included only once simply
by using the Objective-C #import command instead of the
#include command.

Introduction
The GNU C preprocessor (cpp) is a macro processor the C
compiler uses to transform your program before actual
compilation.    It’s called a macro processor because it allows you
to define macros, which are brief abbreviations for longer
constructs.

The C preprocessor provides the following four facilities:

• Inclusion of header files.    These are files of declarations that
can be substituted into your program.

• Macro expansion.    You can define and use macros, which are
abbreviations for arbitrary fragments of C code.    The C
preprocessor will replace the macros with their definitions
throughout the program.

• Conditional compilation.    Using special preprocessor
commands, you can include or exclude parts of the program
according to various conditions.

• Line control.    If you use a program to combine or rearrange
source files into an intermediate file which is then compiled,
you can use line control to inform the compiler of where each
source line originally came from.

C preprocessors vary in their implementation details.    This
section describes the GNU C preprocessor, which provides a
superset of the features of ANSI-standard C.

Note:    On OPENSTEP for Mach, the development environment
actually includes two preprocessors: the standard GNU C
preprocessor (cpp) and the precompilation preprocessor (cpp-
precomp). The precompilation preprocessor mirrors the
functionality of the GNU C preprocessor (except for some rarely
used extensions) and is the default preprocessor for C and
Objective-C code. The standard preprocessor is the default for
Objective-C++ code. You can switch to the GNU C preprocessor
for use on platforms on which precompiled headers are available
by specifying the compiler’s -traditonal-cpp flag on the
command line.

ANSI-standard C requires the rejection of many harmless
constructs commonly used by today’s C programs.    Such
incompatibility would be inconvenient for users, so the C
preprocessor is configured to accept these constructs by default.   

To get ANSI-standard C you would use the options -trigraphs,
-undef, and -pedantic, although in practice the consequences of
having strict ANSI Standard C may make it undesirable to do
this.    See the section “Invoking the C Preprocessor” for    more
information.

Invoking the C Preprocessor

Usually you won’t have to invoke the C preprocessor explicitly,
because the C compiler does so automatically.    However, there
may be times when you want to use the preprocessor by itself by
invoking the cpp command.

The cpp and cpp-precomp commands expect two file names as
arguments, infile and outfile.    The preprocessor reads infile
together with any other files that infile specifies by means of
#include or #import.    All the output generated by the combined
input files is written in outfile.

Either infile or outfile may be -, which as infile means to read
from the standard input and as outfile means to write to the
standard output.    Also, if outfile or both file names are omitted,
the standard output and standard input are used for the omitted
file names.

Here’s a list of command options accepted by the C preprocessor.
Most of them can also be given when compiling a C program;
they’re passed along automatically to the preprocessor when it’s
invoked by the compiler.

-P Inhibit generation of # lines with line-number
information in the output from the preprocessor (see
the section “C Preprocessor Output”).    This might be
useful when running the preprocessor on something
that isn’t C code and that will be sent to a program
which might be confused by the # lines.

-C Don’t discard comments:    Pass them through to the
output file.    Comments appearing in arguments of a
macro invocation will be copied to the output before
the expansion of the macro.

 -traditional
Try to imitate the behavior of old-fashioned C, as
opposed to ANSI C. Traditional C preprocessing has
these characteristics:

• Traditional macro expansion pays no attention to
single-quote or double-quote characters; macro
argument symbols are replaced by the argument
values even when they appear within apparent string
or character constants.

• Traditionally,    a macro expansion may end in the
middle of a string or character constant.    The
constant continues into the text surrounding the
macro call.

• Traditionally the end of the line terminates a string
or character constant, with no error.

• In traditional C a comment is equivalent to no text at
all.    (In ANSI C, a comment counts as whitespace.)

• Traditional C does not have the concept of a
preprocessing number. It considers 1.0e+4 to be
three tokens: 1.0e, +, and 4.

• In traditional C a macro is not suppressed within its
own definition. Thus, any macro that is used
recursively inevitably causes an error.

• The character # has no special meaning within a
macro definition in traditional C.

• In traditional C, the text at the end of a macro
expansion can run together with the text after the
macro call to produce a single token.

• Traditionally, \ inside a macro argument suppresses
the syntactic significance of the following character.

-trigraphs Process ANSI standard trigraph sequences.

-pedantic Issue warnings required by the ANSI C standard in
certain cases, such as when text other than a comment
follows #else or #endif.

-Idir Add the directory dir to the end of the list of
directories to be searched for header files (see the
section “The #include Command”).    This can be used
to override a system header file, substituting your own
version, since these directories are searched before the
system header file directories.    If you use more than
one -I option, the directories are scanned in left-to-
right order; the standard system directories come later.

-I- Any directories specified with -I options before the -I-

option are searched only for the case of #include
"file"; they aren’t searched for #include <file>.

If additional directories are specified with -I options
after the -I-, these directories are searched for all
#include commands.

In addition, the -I- option inhibits the use of the
current directory as the first search directory for
#include "file".    Therefore, the current directory is
searched only if it’s requested explicitly with a -I.
option.    Specifying both -I- and -I. allows you to
control precisely which directories are searched before
the current one and which are searched after.

-Fdir Add dir to the list of directories in which to search for
frameworks.    Directories specified with -F are
searched before the standard framework directories.

-Ldir Add dir to the list of directories in which to search for
libraries.    Directories specified with -L are searched
before the standard directories.

-nostdinc Don’t search the standard system directories for
header files.    Only the directories you specify with -I
options (and the current directory, if appropriate) are
searched.

-Dname Predefine name as a macro, with definition 1.

-Dname=definition
Predefine name as a macro, with definition definition.

-Uname Don’t predefine name.    If both -U and -D are
specified for one name, the name won’t be predefined.

-undef Don’t predefine any nonstandard macros.

-d Produce a list of #define commands for all the macros
defined during the execution of the preprocessor,
instead of producing the normal preprocessing output.

-M Produce a rule suitable for make describing the
dependencies of the main source file, instead of
outputting the result of preprocessing.    The
preprocessor produces one make rule containing the

object file name for that source file, a colon, and the
names of all the included files.    If there are many
included files then the rule is split into several lines
using backslash-newline.

This feature is used in automatic updating of
makefiles.

-MD This is similar to -M, but the dependency information
is written to files with names made by replacing “.c”
with “.d” at the end of the input file names.    This is in
addition to compiling the file as specified; -MD
doesn’t inhibit ordinary compilation the way -M does.

-MM This is similar to -M, but mentions only the files
included with #include "file".    System header files
included with #include <file> are omitted.

-MMD This is similar to -MM, but mentions only user header
files, not system header files.

-H Print the name of each header file used, in addition to
other normal activities.

-ifile Process file as input, discarding the resulting output,
before processing the regular input file.    Because the
output generated from file is discarded, the only effect
of -ifile is to make the macros defined in file available
for use in the main input.

Macros

Macros

A macro is an abbreviation you define once and then use later.   
This section describes some important features associated with
macros in the C preprocessor.

Simple Macros

A simple macro is a kind of abbreviation—it’s a name that stands
for a fragment of code.    Simple macros are sometimes referred to
as manifest constants.

Before you can use a macro, you must define it explicitly with the
#define command.    #define is followed by the name of the
macro and then the code it should be an abbreviation for.    For
example,

#define BUFFER_SIZE 1020

defines a macro named BUFFER_SIZE as an abbreviation for
the text 1020.    With this definition in effect, the C preprocessor
would expand the following statement

foo = (char *) xmalloc (BUFFER_SIZE);

to

foo = (char *) xmalloc (1020);

The definition must be a single line; however, it may not end in
the middle of a multiline string constant or character constant.

For readability, uppercase is used for macro names by
convention.    Programs are easier to read when it’s possible to tell
at a glance which names are macros.

Normally, a macro definition must be a single line (although you
can always split a long macro definition cosmetically with
backslash-newline).    There’s one exception:    Newlines can be
included in the macro definition if they’re within a string or
character constant.    It isn’t possible for a macro definition to
contain an unbalanced quote character; the definition
automatically extends to include the matching quote character
that ends the string or character constant.    Comments within a
macro definition may contain newlines (which make no
difference, since the comments are entirely replaced with spaces

regardless of their contents).

Aside from the above, there is no restriction on what can go in a
macro body.    Parentheses need not balance, and the body need
not resemble valid C code.    (Of course, you might get error
messages from the C compiler when you use the macro.)

The C preprocessor scans your program sequentially, so macro
definitions take effect at the place you write them.    Therefore,
the following input to the C preprocessor

foo = X;
#define X 4
bar = X;

produces as output:

foo = X;
bar = 4;

After the preprocessor expands a macro name, the macro’s
definition body is appended to the front of the remaining input,
and the check for macros continues.    Therefore, the macro body
can contain other macros.    For example, after the following
definitions

#define BUFSIZE 1020
#define TABLESIZE BUFSIZE

the name TABLESIZE when used in the program would go
through two stages of expansion, resulting ultimately in 1020.

This isn’t the same as defining TABLESIZE to be 1020.    The
#define for TABLESIZE uses exactly the body you specify—in
this case, BUFSIZE—and doesn’t check to see whether it too is
the name of a macro.    It’s only when you use TABLESIZE that
the result of its expansion is checked for more macro names.   
See the section “Cascaded Use of Macros.”

Macros that Take Arguments

A simple macro always stands for exactly the same text, each
time it’s used.    Macros can be more flexible when they accept
arguments.    Arguments are fragments of code that you supply
each time the macro is used.    These fragments are included in the
expansion of the macro according to the directions in the macro
definition.

To define a macro that takes arguments, you use the #define
command with a list of parameters in parentheses after the name
of the macro.    The parameters may be any valid C identifiers
separated by commas (and optionally, by white-space characters).
The left parenthesis must follow the macro name immediately,
with no space in between.

For example, here’s a macro that computes the minimum of two
numeric values:

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

Note that this isn’t the best way to define a “minimum” macro in
GNU C (see the section “Duplication of Side Effects” for more
information).

To use a macro that takes arguments, you write the name of the
macro followed by a list of arguments in parentheses, separated
by commas.    The number of arguments you give must match the
number of parameters in the macro definition.    The following
examples show the use of the macro min:

min (1, 2)
min (x + 28, *p)

The expansion text of the macro depends on the arguments you
use.    Each of the macro’s parameters is replaced, throughout the
macro definition, with the corresponding argument.    Using the
same macro min defined above, min (1, 2) expands to

((1) < (2) ? (1) : (2))

where 1 has been substituted for X and 2 for Y.

Likewise, min (x + 28, *p) expands into

((x + 28) < (*p) ? (x + 28) : (*p))

Parentheses in the arguments must balance; a comma within
parentheses doesn’t end an argument.    However, there’s no
requirement for brackets or braces to balance; thus, if you want to
supply

array[x = y, x + 1]

as an argument, you would write it as

array[(x = y, x + 1)]

After the arguments are substituted into the macro body, the
entire result is appended to the front of the remaining input, and
the check for macros continues.    Therefore, the arguments can
contain other macros, either with or without arguments, or even
the same macro.    The macro body can also contain other macros.
For example, min (min (a, b), c) expands into

((((a) < (b) ? (a) : (b))) < (c)
 ? (((a) < (b) ? (a) : (b)))
 : (c))

Line breaks shown here for clarity wouldn’t actually be
generated.

If a macro    takes one argument, and you want to supply an
empty argument, you must write at least some whitespace
between the parentheses. For example

foo ()

is acceptable, but

foo ()

generates an error if foo expects an argument.    The correct way
to call a macro defined to take zero arguments is:

#define foo0() @dots{}

If you use the macro name followed by something other than a
left parenthesis (after ignoring any spaces, tabs, and comments
that follow), it isn’t considered a macro invocation, and the
preprocessor doesn’t change what you’ve written.    Therefore, it’s
possible for the same name to be a variable or function in your
program as well as a macro, and you can choose in each instance
whether to refer to the macro (if an argument list follows) or the
variable or function (if an argument list doesn’t follow).

Such dual use of one name could be confusing and should be
avoided except when the two meanings are effectively
synonymous:    that is, when the name is both a macro and a
function and the two have similar effects.    You can think of the
name simply as a function; use of the name for purposes other
than calling it (such as, to take the address) will refer to the
function, while calls will expand the macro.    For example, you
can use a function named min in the same source file that defines

the macro.    If you write &min with no argument list, you refer to
the function.    If you write min (x, bb), with an argument list, the
macro is expanded.    If you write (min) (a, bb), where the name
min isn’t followed by a left parenthesis, the macro isn’t
expanded; rather, the function min is called.

A name can’t be defined as both a simple macro and a macro with
arguments.

In the definition of a macro with arguments, the list of argument
names must follow the macro name immediately with no space in
between.    If there is a space after the macro name, the macro is
defined as taking no arguments, and the rest of the name is taken
to be the expansion.    The reason for this is that it’s often useful
to define a macro that takes no arguments and whose definition
begins with an identifier in parentheses.    This rule about spaces
makes it possible for you to do either this (which defines FOO to
take an argument and expand into minus the reciprocal of that
argument)

#define FOO(x) - 1 / (x)

or this (which defines FOO to take no argument and always
expand into (x) - 1 / (x)):

#define FOO (x) - 1 / (x)

It matters only in the macro definition whether there’s a space
before the left parenthesis; when you use the macro, it doesn’t
matter if there are spaces there or not.

Predefined Macros

Several standard macros are predefined, some by ANSI C and
some as extensions.    Their names all start and end with double
underscores.

The following predefined macros are part of the ANSI C
standard:

__FILE__
This macro expands to the name of the current input
file, in the form of a C string constant.

__BASE_FILE__
This macro expands to the name of the main input file,

in the form of a C string constant.    This is the source
file that was specified as an argument when the C
compiler was invoked.

__LINE__
This macro expands to the current input line number,
in the form of a decimal integer constant.    (Note that
although this is considered a predefined macro, its
definition changes with each new line of source code.)

This and __FILE__ are useful in generating an error
message to report an inconsistency detected by the
program; the message can state the source line at
which the inconsistency was detected.    For example:

fprintf (stderr,
 "Internal error: negative string
length "
 "%d at %s, line %d."
 length, __FILE__, __LINE__);

An #include command changes the expansions of
__FILE__ and __LINE__ to correspond to the
included file.    At the end of that file, when processing
resumes on the input file that contained the #include
command, the expansions of __FILE__ and
__LINE__ revert to the values they had before the
#include (but __LINE__ is then incremented by one
as processing moves to the line after the #include).

The expansions of both __FILE__ and __LINE__ are
altered if a #line command is used.    See the section
“Combining Source Files.”

__DATE__
This macro expands to a string constant that describes
the date on which the preprocessor is being run.    The
string constant contains 15 characters and looks like
“Tue Jun 02 1992”.

__TIME__
This macro expands to a string constant that describes
the time at which the preprocessor is being run.    The
string constant contains 12 characters and looks like
“23:59:01 EDT”.

__STDC__
This macro expands to the constant 1, to signify that

this is ANSI-standard C.    (Whether that’s actually
true depends on what C compiler will operate on the
output from the preprocessor.)

The following predefined macros are GNU C extensions to the
ANSI C standard:

__GNUC__
This macro is defined if and only if this is GNU C.   
Moreover, it’s defined only when the entire GNU C
compiler is in use; if you invoke the preprocessor
directly, __GNUC__ is undefined.

__STRICT_ANSI__
This macro is defined if and only if the -ansi switch
was specified when GNU C was invoked.    Its
definition is the null string.    This macro exists
primarily to direct certain GNU header files not to
define traditional UNIX constructs that are
incompatible with ANSI C.

__GNUG__
The GNU C compiler defines this when the
compilation language is C++; use __GNUG__ to
distinguish between GNU C and GNU C++ code.

__cplusplus
The draft ANSI standard for C++ previously required
the predefinition of this variable.    Though it is no
longer required, GNU C++ continues to define it, as
do other popular C++ compilers.    You can use
__cplusplus to test whether a header is compiled by a
C compiler or a C++ compiler.

__VERSION__
This macro expands to a string describing the version
number of the compiler.    The string is normally a
sequence of decimal numbers separated by periods,
such as “1.18”.    The main use of this macro is to
incorporate the version number into a string constant.

__OPTIMIZE__
This macro is defined in optimizing compilations.    It
causes certain GNU header files to define alternative
macro definitions for some system library functions.   
It’s unwise to refer to or test the definition of this

macro unless you make sure that programs will
execute with the same effect regardless.

__CHAR_UNSIGNED__
This macro is defined if and only if the data type char
is unsigned on the target machine.    Its purpose is to
cause the standard header file limit.h to work
correctly.    It’s bad practice to refer to this macro
yourself; instead, refer to the standard macros defined
in limit.h.

The following macros are defined in NEXTSTEP:

__OBJC__
This macro is defined when you compile Objective-C
“.m” files or Objective-C++ “.M” files, or when you
override the file extension with -ObjC or -ObjC++.

__GNU__
This macro is defined when compiling “.m”, “.c”, or
“.s” files.

__ASSEMBLER__
This macro is defined when compiling “.s” files.

__STRICT_BSD__
This macro is defined if and only if the -bsd switch
was specified when GNU C was invoked.

__MACH__
This macro is defined if Mach system calls are
supported.

Nonstandard Predefined Macros

The C preprocessor normally has several predefined macros that
vary between machines because their purpose is to indicate what
type of system and machine is in use.    This section lists some
that are useful on NEXTSTEP computers.

Some nonstandard predefined macros describe the operating
system in use.    For example:

unix Predefined on UNIX systems.

BSD Predefined on versions of Berkeley UNIX 4.3BSD.

Other nonstandard predefined macros describe the kind of CPU.
For example:

mc68000 Predefined on most computers whose CPU is a
Motorola 68000, 68010, 68020, 68030, or 68040.

Yet other nonstandard predefined macros describe the
manufacturer of the system.    For example:

NeXT Predefined on a NeXT computer.

These predefined symbols aren’t only nonstandard, they’re
contrary to the ANSI standard because their names don’t start
with underscores.    The -ansi option, which requests complete
support for ANSI C, inhibits the definition of these predefined
symbols.

This tends to make the use of -ansi problematic, since some
programs depend on the customary nonstandard predefined
symbols that indicate computer type.    Even system header files
check them and will generate incorrect declarations if they do not
find the names that are expected.    Header files supplied for a
specific computer type sometimes don’t assume the type but test
for it using the customary names.

What, then, should you do in an ANSI C program to test the type
of machine it will run on?

GNU C offers a parallel series of symbols for this purpose, whose
names are made from the customary ones by adding __ at the
beginning and end.    Thus, the symbol __vax__ would be
available on a VAX, and so on.

The set of nonstandard predefined names in the GNU C
preprocessor is controlled (when cpp is itself compiled) by the
macro CPP_PREDEFINES, which should be a string containing
-D options, separated by spaces.    For example, on the Sun 3, we
use the following definition:

#define CPP_PREDEFINES "-Dmc68000 -Dsun -Dunix -Dm68k"

This macro is usually specified in tm.h.

Stringification

“Stringification” means turning a code fragment into a string
constant whose contents are the text for the code fragment.    For
example, stringifying foo (z) results in "foo (z)".

In the C preprocessor, stringification is an option available when
macro arguments are substituted into the macro definition.    In
the body of the definition, when an argument name appears, the
character # before the name specifies stringification of the
corresponding argument when it’s substituted at that point in the
definition.    The same argument may be substituted in other
places in the definition without stringification if the argument
name appears in those places with no #.

Here’s an example of a macro definition that uses stringification:

#define WARN_IF(EXP) \
if (EXP) fprintf (stderr, "Warning: " #EXP "\n");

Here the argument for EXP is substituted once as given, into the
if statement, and once as stringified, into the argument to fprintf.
The do and while (0) make it possible to write WARN_IF
(ARG); (see the section “Swallowing the Semicolon”).

The stringification feature is limited to transforming one macro
argument into one string constant:    There’s no way to combine
the argument with other text and then stringify it all together.   
But the example above shows how an equivalent result can be
obtained in ANSI-standard C using the feature that adjacent string
constants are concatenated as one string constant.    The
preprocessor stringifies the actual value of    EXP into a separate
string constant, resulting in text like

if (x == 0) fprintf (stderr, "Warning: " "x == 0" "\n");

but the C compiler then sees three consecutive string constants
and concatenates them into one, producing:

if (x == 0) fprintf (stderr, "Warning: x == 0\n");

Stringification in C involves more than putting double quotes
around the fragment; it’s necessary to put backslashes in front of
all double quotes, and all backslashes in string and character
constants, in order to get a valid C string constant with the proper
contents.    Thus, stringifying p = "foo\n"; results in "p = \"foo\
\n\";".    However, backslashes that aren’t inside string or
character constants aren’t duplicated:    \n by itself stringifies to
"\n".

White-space characters (including comments) in the text being
stringified are handled according to the following rules:

• All leading and trailing white-space characters are ignored.

• Any sequence of white-space characters in the middle of the
text is converted to a single space in the stringified result.

It’s often useful to define, for example:

STR(X) #X

so that when you use the macro instead of #X directly, X is re-
scanned one more time for macro expansion.

Concatenation

Concatenation means joining two strings into one.    In the context
of macro expansion, concatenation refers to joining two lexical
units into one longer one.    Specifically, an argument to the macro
can be concatenated with another argument or with fixed text to
produce a longer name.    The longer name might be the name of a
function, variable or type, or a C keyword; it might even be the
name of another macro, in which case it will be expanded.

When you define a macro, you request concatenation with the
special operator ## in the macro body.    When the macro is
invoked, arguments are substituted.    Then all ## operators are
deleted, along with any white-space characters next to them
(including white-space characters that are part of an argument).   
The result is to concatenate the syntactic tokens on either side of
the ##.

Consider a C program that interprets named commands.    There
probably needs to be a table of commands, perhaps an array of
structures declared as follows:

struct command
{
 char *name;
 void (*function) ();
};

struct command commands[] =
{
 { "quit", quit_command},
 { "help", help_command},

 . . .
};

It would be cleaner not to have to give each command name
twice, once in the string constant and once in the function name.
A macro that takes the name of a command as an argument can
make this unnecessary.    The string constant can be created with
stringification, and the function name by concatenating the
argument with “_command”:

#define COMMAND(NAME) { #NAME, NAME ## _command }

struct command commands[] =
{
 COMMAND (quit),
 COMMAND (help),
 . . .
};

The usual case of concatenation is concatenating two names (or a
name and a number) into a longer name.    But this isn’t the only
valid case.    It’s also possible to concatenate two numbers (or a
number and a name, such as 1.5 and e3) into a number.    Also,
multicharacter operators such as += can be formed by
concatenation.    In some cases it’s even possible to piece together
a string constant.    However, two pieces of text that don’t
together form a valid lexical unit cannot be concatenated.    For
example, concatenation with x on one side and + on the other
isn’t meaningful because those two characters can’t fit together in
any lexical unit of C.    Although the ANSI standard says that such
an attempt at concatenation is undefined, the GNU C
preprocessor handles it as follows:    it puts the x and + side by
side with no particular special results.

The C preprocessor converts comments to whitespace before
macros are even considered.    Therefore, you cannot create a
comment by concatenating / and *: the /* sequence that starts a
comment is not a lexical unit, but rather the beginning of a “long”
space character.    You can freely use comments next to a ## in a
macro definition, or in arguments that will be concatenated,
because the comments will be converted to spaces at first sight,
and concatenation will later discard the spaces.

Undefining Macros

To undefine a macro means to cancel its definition.    This is done
with the #undef command.    #undef is followed by the macro
name to be undefined.

Like definition, undefinition occurs at a specific point in the
source file, and it applies starting from that point.    The name
ceases to be a macro name, and from that point on it’s treated by
the preprocessor as if it had never been a macro name.

For example,

#define FOO 4
x = FOO;
#undef FOO
x = FOO;

expands into

x = 4;
x = FOO;

In this example, FOO must be a variable or function as well as
(temporarily) a macro, in order for the result of the expansion to
be valid C code.

The same form of #undef command will cancel definitions with
arguments or definitions that don’t expect arguments.    The
#undef command has no effect when used on a name not
currently defined as a macro.

Redefining Macros

Redefining a macro means defining (with #define) a name that is
already defined as a macro.

A redefinition is trivial if the new definition is transparently
identical to the old one.    You probably wouldn’t deliberately
write a trivial redefinition, but they can happen automatically
when a header file is included more than once (see the section
“Header Files”), so they’re accepted silently and without effect.

Nontrivial redefinition is considered likely to be an error, so it
provokes a warning message from the preprocessor.    However,
sometimes it’s useful to change the definition of a macro in mid-
compilation.    You can inhibit the warning by undefining the
macro with #undef before the second definition.

In order for a redefinition to be trivial, the new definition must
exactly match the one already in effect, with two possible
exceptions:

• Whitespace may be added or deleted at the beginning or the
end.

• Whitespace may be changed in the middle (but not inside
strings).    However, it may not be eliminated entirely, and it
may not be added where there was no whitespace previously.   
Remember, comments count as whitespace.

Pitfalls and Subtleties of Macros

This section describes some special rules that apply to macros
and macro expansion, and points out certain cases in which the
rules have counterintuitive consequences that you must watch out
for.

Improperly Nested Constructs

Recall that when a macro is invoked with arguments, the
arguments are substituted into the macro body and the result is
checked, together with the rest of the input file, for more macros.

It’s possible to piece together a macro invocation coming
partially from the macro body and partially from the arguments.   
For example,

#define double(x) (2*(x))
#define call_with_1(x) x(1)

would expand call_with_1 (double) into (2*(1)).

Macro definitions don’t have to have balanced parentheses.    By
writing an unbalanced left parenthesis in a macro body, it’s
possible to create a macro invocation that begins inside the macro
body but ends outside it.    For example:

#define strange(file) fprintf (file, "%s %d",
. . .
strange(stderr) p, 35)

This bizarre example expands to

fprintf (stderr, "%s %d", p, 35)

Unintended Grouping of Arithmetic

You may have noticed that in most of the macro definition
examples shown above, each occurrence of a macro argument
name has parentheses around it.    In addition, another pair of
parentheses usually surround the entire macro definition.    This
section discusses why it’s best to write macros that way.

Suppose you define a macro

#define ceil_div(x, y) (x + y - 1) / y

whose purpose is to divide, rounding up.    (One use for this
operation is to compute how many int objects are needed to hold
a certain number of char objects.)    Then suppose it’s used as
follows:

a = ceil_div (b & c, sizeof (int));

This expands into

a = (b & c + sizeof (int) - 1) / sizeof (int);

which doesn’t do what’s intended.    The operator-precedence
rules of C make this equivalent to:

a = (b & (c + sizeof (int) - 1)) / sizeof (int);

But what we want is:

a = ((b & c) + sizeof (int) - 1)) / sizeof (int);

Defining the macro as follows provides the desired result:

#define ceil_div(x, y) ((x) + (y) - 1) / (y)

However, unintended grouping can happen in another way.   
Consider sizeof ceil_div(1, 2).    This has the appearance of a C
expression that would compute the size of the type of ceil_div (1,
2), but in fact it means something very different.    Here’s what it
expands to:

sizeof ((1) + (2) - 1) / (2)

This would take the size of an integer and divide it by 2.    The
precedence rules have put the division outside the sizeof() when it
was intended to be inside.

Parentheses around the entire macro definition can prevent such
problems.    Here’s the recommended way to define ceil_div:

#define ceil_div(x, y) (((x) + (y) - 1) / (y))

Swallowing the Semicolon

Often it’s desirable to define a macro that expands into a
compound statement.    Consider, for example, the following
macro, which advances a pointer across space characters:

#define SKIP_SPACES (p, limit) \
{ register char *lim = (limit); \
 while (p != lim) { \
 if (*p++ != ’ ’) { \
 p-; break; }}}

Here backslash-newline is used to split the macro definition,
which must be a single line, so that it resembles the way such C
code would appear if not part of a macro definition.

An invocation of this macro might be SKIP_SPACES (p, lim).   
Strictly speaking, the invocation expands to a compound
statement, which is a complete statement with no need for a
semicolon to end it.    But it looks like a function call.    So it
minimizes confusion if you can use it like a function call, writing
a semicolon afterward:

SKIP_SPACES (p, lim);

But this can cause trouble before else statements, because the
semicolon is actually a null statement.    Suppose you write

if (*p != 0)
 SKIP_SPACES (p, lim);
else . . .

The presence of two statements—the compound statement and a
null statement—in between the if condition and the else makes
invalid C code.

The definition of the macro SKIP_SPACES can be altered to
solve this problem, using a do ... while statement:

#define SKIP_SPACES (p, limit) \
do { register char *lim = (limit); \
 while (p != lim) { \
 if (*p++ != ’ ’) { \
 p-; break; }}} \
while (0)

Now SKIP_SPACES (p, lim); expands into one statement:

do {. . .} while (0);

Duplication of Side Effects

Many C programs define a macro min (for “minimum”), like
this:

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

When you use this macro with an argument containing a side
effect (as shown here)

next = min (x + y, foo (z));

it expands as follows:

next = ((x + y) < (foo (z)) ? (x + y) : (foo (z)));

where x + y has been substituted for X and foo (z) for Y.

The function foo is used only once in the statement as it appears
in the program, but the expression foo (z) has been substituted
twice into the macro expansion.    As a result, foo might be called
two times when the statement is executed.    If it has side effects
or if it takes a long time to compute, the results might not be what
you intended.    Therefore min is an “unsafe” macro.

One way to solve this problem is to define min in a way that
computes the value of foo (z) only once.    The C language offers
no standard way to do this, but it can be done with GNU C
extensions as follows:

#define min(X, Y) \
({ typeof (X) __x = (X), __y = (Y); \
 (__x < __y) ? __x : __y; })

If you don’t wish to use GNU C extensions, the only solution is
to be careful when using the macro min.    For example, you can
calculate the value of foo (z), save it in a variable, and use that
variable in min:

#define min(X, Y) ((X) < (Y) ? (X) : (Y))
. . .
{
 int tem = foo (z);
 next = min (x + y, tem);
}

Self-Referential Macros

A self-referential macro is one whose name appears in its
definition.    A special feature of ANSI-standard C is that the self-
reference isn’t considered a macro invocation.    It’s passed into
the preprocessor output unchanged.

Consider the following example (assume that foo is also a
variable in your program):

#define foo (4 + foo)

Following the ordinary rules, each reference to foo will expand
into (4 + foo); then this will be rescanned and will expand into (4
+ (4 + foo)); and so on until it causes a fatal error (memory full)
in the preprocessor.

However, the special rule about self-reference cuts this process
short after one step, at (4 + foo).    Therefore, this macro
definition has the possibly useful effect of causing the program to
add 4 to the value of foo wherever foo is referred to.

In most cases, it’s a bad idea to take advantage of this feature.    A
person reading the program who sees that foo is a variable won’t
expect that it’s a macro as well.    The reader will come across the
identifier foo in the program and think its value should be that of
the variable foo, whereas in fact the value is 4 greater.

The special rule for self-reference applies also to indirect self-
reference.    This is the case where a macro X expands to use a
macro y, and y’s expansion refers to the macro x.    The resulting
reference to x comes indirectly from the expansion of x, so it’s a
self-reference and isn’t further expanded.    Thus, after

#define x (4 + y)
#define y (2 * x)

x would expand into (4 + (2 * x)).

But suppose y is used elsewhere, not from the definition of x.   
Then the use of x in the expansion of y isn’t a self-reference
because x isn’t in progress.    So it does expand.    However, the
expansion of x contains a reference to y, and that’s an indirect
self-reference now because y is in progress.    The result is that y
expands to (2 * (4 + y)).

Separate Expansion of Macro Arguments

We have explained that the expansion of a macro, including the
substituted arguments, is scanned over again for macros to be
expanded.

What really happens is more subtle:    First each argument text is
scanned separately for macros.    Then the results of this are
substituted into the macro body to produce the macro expansion,
and the macro expansion is scanned again for macros to expand.

The result is that the arguments are scanned twice to expand
macros in them.

Most of the time, this has no effect.    If the argument contained
any macros, they’re expanded during the first scan.    The result
therefore contains no macros, so the second scan doesn’t change
it.    If the argument were substituted as given, with no prescan,
the single remaining scan would find the same macros and
produce the same results.

You might expect the double scan to change the results when a
self-referential macro is used in an argument of another macro
(see the section “Self-Referential Macros” above); the self-
referential macro would be expanded once in the first scan, and a
second time in the second scan.    But this isn’t what happens.   
The self-references that don’t expand in the first scan are marked
so that they won’t expand in the second scan either.

The prescan isn’t done when an argument is stringified or
concatenated.    (More precisely, stringification and concatenation
use the argument as written, in unprescanned form.    The same
argument would be used in prescanned form if it’s substituted
elsewhere without stringification or concatenation.)    Thus,

#define str(s) #s
#define foo 4
str (foo)

expands to "foo".    Once more, prescan has been prevented from
having any noticeable effect.

The prescan does make a difference in three special cases:

• Nested invocations of a macro
• Macros that invoke other macros that stringify or concatenate
• Macros whose expansions contain unshielded commas

Nested invocations of a macro occur when a macro’s argument

contains an invocation of that very macro.    For example, if f is a
macro that expects one argument, f (f (1)) is a nested pair of
invocations of f.    The desired expansion is made by expanding f
(1) and substituting that into the definition of f.    The prescan
causes the expected result to happen.    Without the prescan, f (1)
itself would be substituted as an argument, and the inner use of f
would appear during the main scan as an indirect self-reference
and wouldn’t be expanded.    Here, the prescan cancels an
undesirable side effect of the special rule for self-referential
macros.

But prescan causes trouble in certain other cases of nested macro
calls.    For example:

#define foo a,b
#define bar(x) lose(x)
#define lose(x) (1 + (x))

bar(foo)

We would like bar(foo) to turn into (1 + (foo)), which would then
turn into (1 + (a,b)).    But instead, bar(foo) expands into
lose(a,b), and you get an error because lose requires a single
argument.    In this case, the problem is easily solved by the same
parentheses that ought to be used to prevent misnesting of
arithmetic operations:

#define foo (a,b)
#define bar(x) lose((x))

The problem is more serious when the operands of the macro
aren’t expressions (for example, when they are statements).   
Then parentheses are unacceptable because they would make for
invalid C code:

#define foo { int a, b; ... }

In GNU C you can shield the commas using the ({    . . . })
construct, which turns a compound statement into an expression:

#define foo ({ int a, b; ... })

Or you can rewrite the macro definition to avoid such commas:

#define foo { int a; int b; ... }

There’s also one case where prescan is useful.    It’s possible to
use prescan to expand an argument and then stringify it—if you
use two levels of macros.    Let’s add a new macro xstr to the

example shown above:

#define xstr(s) str(s)
#define str(s) #s
#define foo 4
xstr (foo)

This expands to "4", not "foo".    The reason for the difference is
that the argument of xstr is expanded at prescan (because xstr
doesn’t specify stringification or concatenation of the argument).
The result of prescan then forms the argument for str.    str uses
its argument without prescan because it performs stringification;
but it can’t prevent or undo the prescanning already done by xstr.

Cascaded Use of Macros

A cascade of macros occurs when one macro’s body contains a
reference to another macro (a very common practice).    For
example:

#define BUFSIZE 1020
#define TABLESIZE BUFSIZE

This isn’t at all the same as defining TABLESIZE to be 1020.   
The #define for TABLESIZE uses exactly the body you specify
—in this case, BUFSIZE—and doesn’t check to see whether it
too is the name of a macro.

It’s only when you use TABLESIZE that the result of its
expansion is checked for more macro names.

This makes a difference if you change the definition of
BUFSIZE at some point in the source file.    TABLESIZE,
defined as shown, will always expand using the definition of
BUFSIZE that’s currently in effect:

#define BUFSIZE 1020
#define TABLESIZE BUFSIZE
#undef BUFSIZE
#define BUFSIZE 37

Now TABLESIZE expands in two stages to 37.

Newlines in Macro Arguments

Traditional macro processing carries forward all newlines in
macro arguments into the expansion of the macro.    This means

that, if some of the arguments are substituted more than once, or
not at all, or are out of order, newlines can be duplicated, lost, or
moved around within the expansion.    If the expansion consists of
multiple statements, then the    the line numbers of some of these
statements can become distorted.    The result can be incorrect line
numbers in error messages or as displayed by a debugger.

The    C preprocessor operating in ANSI C mode adjusts itself   
for multiple uses of an argument---the first use expands all the
newlines, and subsequent uses of the same argument produce no
newlines. But even in this mode, it can produce incorrect line
numbering if arguments are used out of order, or are not used at
all.

Here is an example illustrating this problem:

#define ignore_second_arg(a,b,c) a; c
ignore_second_arg (foo (),
 ignored (),
 syntax error);

The syntax error triggered by the tokens syntax error results in
an error message citing line four, even though the statement text
comes from line five.

Inability to Define a Macro that Produces a # Character

You can’t use the C preprocessor to define macros that produce #
characters.    For instance, the following is illegal:

#define linkmacro(numBytes) link #numBytes,a6

Note that you can use the # character inside a string or character
constant, as shown here:

#define PrintSharp() printf("#")

Macro Arguments inside String Constants

The C preprocessor doesn’t substitute macro arguments that
appear inside string constants.    For example, the following
macro will produce the output "a" no matter what the argument a
is:

#define foo(a) "a"

The -traditional option directs cc to handle such cases (among

others) in the traditional non-ANSI way.

Pragmas
Pragmas

The #pragma command is specified in the ANSI standard to have
an arbitrary implementation-defined effect.    For example, a
#pragma might be used to indicate to the translator the best way
to generate code, optimize, or diagnose errors.    It may also pass
information to the translator about the environment, or add
debugging information.

The effect of anything specified in a #pragma is currently limited
to the outermost declaration (that is, a function or a global data
declaration).

The following pragmas are passed on by the C preprocessor to
the compiler itself:

#pragma CC_OPT_ON Force
optimization on.

#pragma CC_OPT_OFF Force
optimization off.

#pragma CC_OPT_RESTORE Restore
optimization to
what was
specified on the
command line
(on if -O was
specified, off if
not).

#pragma CC_WRITABLE_STRINGS Place strings in
the data
segment.

#pragma CC_NON_WRITABLE_STRINGS

Place strings in
the text segment.

All other #pragma commands are ignored by the C preprocessor.

Precompiled Header Files

A precompiled header is a C header file that has been
preprocessed and parsed, thereby improving compile time and
reducing symbol table size.    The macros and external
declarations from the original header are sorted to enable fast
lookup. A new implementation of the C preprocessor can use
precompiled headers in place of standard headers.

In most cases, the use of precompiled headers is transparent.   
Precompiled headers are simple enough to use that most projects
require no conversion at all, or can be converted in a day or less.

Using Precompiled System Header Files

The precompiled version of a header file has a “.p” extension,
rather than the standard “.h” extension.    You should not refer to
AppKit.p in your source files; just use AppKit.h and the
preprocessor will use the precompiled form if it’s available and
appropriate.

When the preprocessor encounters an include directive, it
automatically looks for a precompiled version of the header.    If
one is found, it checks whether the context is equivalent to the
context in which the precompiled header was built—if it is, the
precompiled header is used.    However, if any of the following
problems occur, the non-precompiled form is included instead:

• A header which was included by the precompiled header could
not be found in the filesystem to verify its modification time,
or the modification time did not match.    In practice, this never
occurs for precompiled headers that are part of the release, and
occurs only rarely when programmers build their own
precompiled headers.

• A macro was defined when the precompiled header was built,
but is not defined in the current context.    This is only a
problem if the macro was actually referenced somewhere in
the precompiled header.

• A macro was undefined when the precompiled header was
built, but is defined in the current context.    This is only a
problem if there might have been an invocation of the macro in
the precompiled header.

Compile-time warnings (described at the end of this file) indicate
the nature of any problems that occur.    However, you may
suppress these warning messages with -Wno-precomp. The
intent of these messages is to point out problems that, if
corrected, would improve compilation speed.

If you’re developing a small project, you don’t need to bother
building your own precompiled headers—just use the
precompiled system headers AppKit.p, Foundation.p,    mach.p
and so on.    If these system precompiled header files don’t exist
on OPENSTEP for Mach, you can create them by running the
fixPrecomps utility. Also, it’s easy to create your own
precompiled headers if you wish to do so, however, as described
in the next section.

Creating Your Own Precompiled Header Files

You create a precompiled header by passing the new -precomp
switch to cc. Depending on the context(s) in which the header is
used, -D switches should also be passed to cc, as explained
below.

% cc -precomp foo.h -o foo.p

We say a header is “context dependent” if the definitions in the
header may change depending on the context in which it is
included.    Most uses of conditional compilation and macro
expansions cause context dependence.    For instance, the
following header is context dependent:

#ifdef DEBUG
int a;
#else
int b;
#endif

The context at any point is determined by the macros that are
defined there.    A precompiled header must be created in a
context equivalent to that where it is used.    By passing switches
to the preprocessor, any set of macros can be predefined, creating
a context in which the precompiled header is built.    This is done
by passing a -D switch for each macro in the context.

A precompiled header built from system headers typically
requires no -D switches, because programmers usually include
system headers in a context-independent way.    For instance, the
public Application Kit headers contain almost no preprocessor

conditionals; clients cannot change declarations in headers by
defining macros. So the command to build a precompiled header
from AppKit.h is:

% cc -precomp AppKit.h -o AppKit.p -arch i386 -arch hppa

(The architectures affected are usually specified using the -arch
switch: “fat” compilation requires “fat” precompilation.) But if
you must use a header bar.h in a context where FOO is defined,
you should build the precompiled header as follows:

% cc -precomp -DFOO bar.h -o bar.p

You should also pass any preprocessor switches, such as -I, that
you use in your project.

By making precompiled headers bigger (that is, containing more
headers), a given C file may include fewer precompiled headers,
and will generally compile faster. However, the bigger a
precompiled header is, the more likely that name conflicts will
occur.

For example, if you were to combine all the headers for a project,
including system headers, into a single precompiled header, it is
possible that there would be a name conflict.    There may be a
macro defined that happens to match one of your local identifiers,
or there may be a public struct declared that happens to match
one of your private struct names.    Such conflicts manifest
themselves as preprocessing errors, syntax errors, or semantic
errors. The conflicts may be resolved by renaming identifiers, or
removing a conflicting header from the precompiled header.

Another disadvantage to big precompiled headers is file
dependencies.    If all of the C files in a project depend on a single
precompiled header which in turn depends on all headers in the
project, then changing a header requires recompilation of the
entire project.    A better approach is to build a precompiled
header containing all the system headers used by a project, and
perhaps also a separate precompiled header for the local headers
in the project. We recommend that during development, while
local headers are changing, precompiled headers be used only for
system files.    When local headers have stabilized, they may be
combined into a precompiled header.

A precompiled header is dependent on all the files it includes.    A
make dependency rule can be constructed similar to the way rules
are constructed for source files. The following rule builds a

precompiled header from a header:

.h.p:
 cc -precomp $(CFLAGS) $*.h $*.p

A precompiled header records absolute path names for all the
headers that went into it. These paths are then checked when the
precompiled header is used. Therefore a precompiled header
should be built in the same directory in which it is to be used, and
all the headers that went into the precompiled header must not be
moved or modified.

Troubleshooting

To use precompiled headers you must have the cpp-precomp
preprocessor and parser, which has several incompatibilities with
the standard GNU C preprocessor and parser.    For example,
preprocessing errors and syntax errors are in a slightly different
format.

Only rarely will you have trouble building a precompiled header.
The most common problem you might encounter is that the
header doesn’t parse; this is often because the header does not
include other headers it depends on, so that there are undefined
types. Another typical problem is conflicting definitions, which
can be solved by renaming identifiers or removing a header from
the precompiled header.

The following list describes the compile-time warnings that may
occur when using a precompiled header:

• could not use precompiled header ‘header.p’

The precompiled header could not be used for one of the
reasons below.

• macro ‘macro’ undefined

The macro was defined when the precompiled header was
built, but is not defined in the current context.

• macro ‘macro’ defined

The macro was undefined when the precompiled header was
built, but is defined in the current context. This error can often
be avoided by importing precompiled headers in the source file

before any other headers.

• macro ‘macro’ defined by ‘header.p’ conflicts with precomp

A previously included precompiled header defines a macro
differently than does the current precompiled header being
processed.

• macro ‘macro’ defined on command line conflicts with
precomp

Similar to the previous warning, except that the earlier
definition of the macro occurred on the command line.

• macro ‘macro’ redefined, locations of the conflict are:
header1.h:23
header2.h:47 (within the precompiled header)

The macro has been defined in two different ways in two
different precompiled headers

• #ifdef ‘SYM’ not defined when precompiled

A symbol was defined for the inclusion of this precompiled
header, but was not when the header was precompiled.    Since
this symbol is used in an #ifdef, the precompiled header does
not contain all the source code desired by the including
context.

• ‘header.h’ has different date than in precomp

The modification time of the header on the disk does not
match the modification time of the header when the
precompiled header was built.

• could not find ‘header.h’

The header which was included by the precompiled header
could not be found on the disk to verify its modification time.

• could not use precomp ‘header.p’ (incorrect version)

It was discovered that the version of the referenced
precompiled header is incompatible with the compiler,
possibly signifying a corrupt or obsolete header.p.

