
Assembler Directives

This chapter describes assembler directives (also known as pseudo operations, or pseudo-ops), which
allow control over the actions of the assembler.    For organizational purposes, the directives are grouped
here into the following functional categories:

• Directives for designating the current section
• Built-in directives for designating the current section
• Directives for moving the location counter
• Directives for generating data
• Directives for dealing with symbols
• Miscellaneous directives
• Processor-specific directives

Directives for Designating the Current Section

The assembler in NEXTSTEP Release 3.3 and later supports designation of arbitrary sections with the
.section and .zerofill directives (descriptions apear below).    Only those sections specified by a directive
in the assembly file appear in the resulting object file (including implicit .text directives—see “Built-in
Directives for Designating the Current Section”).    Sections appear in the object file in the order their
directives first appear in the assembly file.    When object files are linked by the link editor, the output
objects have their sections in the order the sections first appear in the object files that are linked.    See
the ld(1) UNIX man page for more details.

Associated with each section in each segment is an implicit location counter which begins at zero and is
incremented by 1 for each byte assembled into the section.    There is no way to explicitly reference a
particular location counter, but the directives described here can be used to “activate” the location counter
for a section, making it the current location counter.    As a result, the assembler begins assembling into
the section associated with that location counter.

Note:    If the -n command line option isn’t used, the (__TEXT,__text) section is used by default at the
beginning of each file being assembled, just as if each file began with the .text directive.

.section

SYNOPSIS:
.section    segname , sectname [[[, type] , attribute] , sizeof_stub]

The .section directive causes the assembler to begin assembling into the section given by segname and
sectname.    A section created with this directive contains initialized data or instructions and is referred to
as a content section.    type and attribute may be specified as described below under “Section Types and
Attributes.”    If type is symbol_stubs, then the sizeof_stub field must be given as the size in bytes of the
symbol stubs contained in the section.

.zerofill

SYNOPSIS:
.zerofill    segname , sectname [, symbolname , size [, align_expression]]

The .zerofill directive causes symbolname to be created as uninitialized data in the section given by
segname and sectname, with a size in bytes given by size.    A power of 2 between 0 and 15 may be
given for align_expression to indicate what alignment should be forced on symbolname, which will then

be placed on the next expression boundary having the given alignment.    See the description of the .align
built-in directive for more information.

Section Types and Attributes

A content section has a type, which informs the link editor about special processing needed for the items
in that section.    The most common form of special processing is for sections containing literals (strings,
constants, and so on) where only one copy of the literal is needed in the output file and the same literal
can be used by all references in the input files.

A section’s attributes record supplemental information about the section that    the link editor may use in
processing that section.    For example, the reloc_at_launch attribute indicates that a section should be
relocated immediately when a program is launched.

A section’s type and attribute are recorded in a Mach-O file as the flags field in the section header, using
constants defined in the header file mach-o/loader.h.    The following paragraphs describe the various
types and attributes by the names used to identify them in a .section directive.    The name of the related
constant is also given in parentheses following the identifier.

Type Identifiers

regular (S_REGULAR)

A regular section may contain any kind of data and gets no special processing from the link editor.   
This is the default section type.    Examples of regular sections include program instructions or
initialized data.

cstring_literals (S_CSTRING_LITERALS)

A cstring_literals section contains null-terminated literal C language character strings.    The link
editor places only one copy of each literal into the output file’s section and relocates references to
different copies of the same literal to the one copy in the output file.    There can be no relocation
entries for a section of this type, and all references to literals in this section must be inside the
address range for the specific literal being referenced.    The last byte in a section of this type must be
a null byte, and the strings can’t contain null bytes in their bodies.    An example of a cstring_literals
section is one for the literal strings that appear in the body of an ANSI C function where the compiler
chooses to make such strings read-only.

4byte_literals (S_4BYTE_LITERALS)

A 4byte_literals section contains 4-byte literal constants.    The link editor places only one copy of
each literal into the output file’s section and relocates references to different copies of the same literal
to the one copy in the output file.    There can be no relocation entries for a section of this type, and all
references to literals in this section must be inside the address range for the specific literal being
referenced.    An example of a 4byte_literals section is one in which single-precision floating-point
constants are stored for a RISC machine (these would normally be stored as immediates in CISC
machine code).

8byte_literals (S_8BYTE_LITERALS)

An 8byte_literals section contains 8-byte literal constants.    The link editor places only one copy of
each literal into the output file’s section and relocates references to different copies of the same literal
to the one copy in the output file.    There can be no relocation entries for a section of this type, and all

references to literals in this section must be inside the address range for the specific literal being
referenced.    An example of a 8byte_literals section is one in which double-precision floating-point
constants are stored for a RISC machine (these would normally be stored as immediates in CISC
machine code).

literal_pointers (S_LITERAL_POINTERS)

A literal_pointers section contains 4-byte pointers to literals in a literal section.    The link editor
places only one copy of a pointer into the output file’s section for each pointer to a literal with the
same contents.    The link editor also relocates references to each literal pointer to the one copy in the
output file.    There must be exactly one relocation entry for each literal pointer in this section, and all
references to literals in this section must be inside the address range for the specific literal being
referenced.    The relocation entries can be external relocation entries referring to undefined symbols
if those symbols identify literals in another object file.    An example of a literal_pointers section is
one containing selector references generated by the Objective C compiler.

symbol_stubs (S_SYMBOL_STUBS)

A symbol_stubs section contains symbol stubs, which are sequences of machine instructions (all the
same size) used for lazily binding undefined function calls at run time.    If a call to an undefined
function is made, the compiler outputs a call to a symbol stub instead, and tags the stub with an
indirect symbol that indicates what symbol the stub is for.    On transfer to a symbol stub, a program
executes instructions that eventually reach the code for the indirect symbol associated with that stub.
Here’s a sample of assemly code based on a function func() containing only a call to the undefined
function foo():

.text

.align 4, 0x90
_func:
 call _foo_stub
 ret

 .symbol_stub
_foo_stub:
 .indirect_symbol _foo
 ljmp _foo_lazy_ptr # the symbol stub
_foo_stub_1:
 pushl $_foo_lazy_ptr

jmp dyld_stub_binding_helper

 .lazy_symbol_pointer
_foo_lazy_ptr: # the symbol pointer
 .indirect_symbol _foo
 .long _foo_stub_1 # to be replaced by _foo’s address

In the assembly code, _func calls _foo_stub, which is responsible for finding the definition of the
function foo().    _foo_stub jumps to the contents of _foo_lazy_ptr, initially causing the code at
_foo_stub_1 to be executed.    This value is initially the address for _foo_stub1, which calls the
dyld_stub_binding_helper() function to overwrite the contents of    _foo_lazy_ptr with the address
of the real function, _foo.    This way,    jumps through _foo_lazy_ptr will immediately execute foo()’s
code.

The indirect symbol entries for _foo provide information to the static and dynamic linkers for binding
the symbol stub.    Each symbol stub and lazy pointer entry must have exactly one such indirect

symbol, associated with the first address in the stub or pointer entry.    See the description of the
.indirect_symbol directive for more information.

The static link editor places only one copy of each stub into the output file’s section for a particular
indirect symbol, and relocates all references to the stubs with the same indirect symbol to the stub in
the output file.    Further, the static link editor eliminates a stub if a definition of the indirect symbol for
that stub is present in the output file and that output file isn’t a dynamically linked shared library file.   
The stub can refer only to itself, one lazy symbol pointer (referring to the same indirect symbol as the
stub), and the dyld_stub_binding_helper() function.    No global symbols can be defined in this type
of section.

lazy_symbol_pointers (S_LAZY_SYMBOL_POINTERS)

A lazy_symbol_pointers section contains 4-byte symbol pointers that will eventually contain the
value of the indirect symbol associated with the pointer.    These pointers are used by symbol stubs to
lazily bind undefined function calls at run time.    A lazy symbol pointer initially contains an address in
the symbol stub of instructions that cause the symbol pointer to be bound to the function definition (in
the example above, the lazy pointer _foo_lazy_ptr initially contains the address for _foo_stub_1 but
gets overwritten with the address for _foo).    The dynamic link editor binds the indirect symbol
associated with the lazy symbol pointer by overwriting it with the value of the symbol.

The static link editor only places a copy of a lazy pointer in the output file if the corresponding symbol
stub is in the output file.    Only the corresponding symbol stub can make a reference to a lazy symbol
pointer, and no global symbols can be defined in this type of section.    There must be one indirect
symbol assocated with each lazy symbol pointer.    An example of a lazy_symbol_pointers section is
one in which the compiler has generated calls to undefined functions, each of which can be bound
lazily at the time of the first call to the function.

non_lazy_symbol_pointers (S_NON_LAZY_SYMBOL_POINTERS)

A non_lazy_symbol_pointers section contains 4-byte symbol pointers that will contain the value of
the indirect symbol associated with a pointer that may be set at any time before any code makes a
reference to it.    These pointers are used by the code to reference undefined symbols.    Initially these
pointers have no interesting value, but will get overwritten by the dynamic link editor with the value of
the symbol for the associated indirect symbol before any code can make a reference to it.

The static link editor places only one copy of each non-lazy pointer for its indirect symbol into the
output file and relocates all references to the pointer with the same indirect symbol to the pointer in
the output file.    The static link editor futher can fill in the pointer with the value of the symbol if a
definition of the indirect symbol for that pointer is present in the output file.    No global symbols can be
defined in this type of section.    There must be one indirect symbol assocated with each non-lazy
symbol pointer.    An example of a non_lazy_symbol_pointers section is one in which the compiler
has generated code to indirectly reference undefined symbols to be bound at run time—this
preserves the sharing of the machine instructions by allowing the dynamic link editor to update
references without writing on the instructions.

Here’s an example of assembly code referencing an element in the undefined structure.    The
corresponding ‘C’ code would be:

 struct s {
 int member1, member2;

 };
 extern struct s bar;
 int func()
 {

 return(bar.member2);

 }

The i386 assembly code might look like this:

 .text
 .align 4, 0x90

.globl _func
_func:
 movl _bar_non_lazy_ptr,%eax
 movl 4(%eax),%eax
 ret

 .non_lazy_symbol_pointer
_bar_non_lazy_ptr:
 .indirect_symbol _bar
 .long 0

mod_init_funcs (S_MOD_INIT_FUNC_POINTERS)

A mod_init_funcs section contains 4-byte pointers to functions that are to be called just after the
module containing the pointer is bound into the program by the dynamic link editor.    The static link
editor does no special processing for this section type except for disallowing section ordering.    This is
done to maintain the order the functions will be called (which is the order their pointers appear in the
original module).    There must be exactly one relocation entry for each pointer in this section.    An
example of a mod_init_funcs section is one in which the compiler has generated code to call C++
constructors for modules that get dynamicly bound at run time.

Attribute Identifiers

none (0)

No attributes for this section.    This is the default section attribute.

pure_instructions (S_ATTR_PURE_INSTRUCTIONS)

The pure_instructions attribute means that this section contains nothing but machine instructions.   
This attribute would be used for the (__TEXT,__text) section of NeXT compilers and sections which
have a section type of symbol_stubs.

reloc_at_launch (S_ATTR_RELOC_AT_LAUNCH)

The reloc_at_launch attribute means that this section is to be relocated by the dynamic linker when
the program is first run or first loaded into memory, regardless of whether a module is needed to bind
undefined symbols.    Sections are normally relocated only when first referenced.    This attribute
would be used for the (__OBJC,__message_refs) section of NeXT Objective C compiler to allow the
Objective C run-time system to initialize images being loaded into a program.

Built-in Directives for Designating the Current Section

The directives described here are simply built-in equivalents for .section directives with specific

arguments.

Designating Sections in the __TEXT Segment

The directives listed below cause the assembler to begin assembling into the indicated section of the
__TEXT segment.    Note that the underscore before __TEXT, __text, and the rest of the segment names
is actually two underscore characters.

Directive Section

.text    (__TEXT,__text)

.const    (__TEXT,__const)

.static_const    (__TEXT,__static_const)

.cstring    (__TEXT,__cstring)

.literal4    (__TEXT,__literal4)

.literal8    (__TEXT,__literal8)

.constructor    (__TEXT,__constructor)

.destructor    (__TEXT,__destructor)

.fvmlib_init0    (__TEXT,__fvmlib_init0)

.fvmlib_init1    (__TEXT,__fvmlib_init1)

.symbol_stub (__TEXT,__symbol_stub)

.mod_init_func (__TEXT,__mod_init_func)

The following paragraphs describe the sections in the __TEXT segment and the types of information that
should be assembled into each of them:

(__TEXT,__text)
This is equivalent to .section __TEXT,__text,regular,pure_instructions

The compiler only places machine instructions in the (__TEXT,__text) section (no read-only data,
jump tables or anything else).    With this the entire (__TEXT,__text) section is pure instructions and
tools that operate on object files can take advantage of this and can locate the instructions of the
program and not get confused with data that could have been mixed in.    To make this work all run-
time support code linked into the program must also obey this rule (all NeXT library code follows this
rule).

(__TEXT,__const)
This is equivalent to .section __TEXT,__const

The compiler places all data declared const in this section and all jump tables it generates for switch
statements.

(__TEXT,__static_const)
This is equivalent to .section __TEXT,__static_const

This is not currently used by the compiler.    It was added to the assembler so that the compiler may
separate global and static const data into separate sections if it wished to.

(__TEXT,__cstring)
This is equivalent to .section __TEXT,__cstring, cstring_literals

This section is marked with the section type S_LITERAL_CSTRING, which the link editor recognizes.
The link editor merges the like literal C strings in all the input object files to one unique C string in the
output file.    Therefore this section must only contain C strings (a C string in a sequence of bytes that

ends in a null byte, ‘\0’, and does not contain any other null bytes except its terminator).    The
compiler places literal C strings found in the code that are not initializers and do not contain any
imbedded nulls in this section.

(__TEXT,__literal4)
This is equivalent to .section __TEXT,__literal4,4byte_literals

This section is marked with the section type S_4BYTE_LITERALS, which the link editor recognizes.   
The link editor then can merge the like 4 byte literals in all the input object files to one unique 4 byte
literal in the output file.    Therefore this section must only contain 4 byte literals. This is typically
intended for single precision floating-point constants and the compiler uses this section for that
purpose.    On some machines it is more efficient to place these constants in line as immediates as
part of the instruction (this is what is done on NeXT 68k machines when the optimizer is turned on).

(__TEXT,__literal8)
This is equivalent to .section __TEXT,__literal8,8byte_literals

This section is marked with the section type S_8BYTE_LITERALS, which the link editor recognizes.   
The link editor then can merge the like 8 byte literals in all the input object files to one unique 8 byte
literal in the output file.    Therefore this section must only contain 8 byte literals. This is typically
intended for double precision floating-point constants and the compiler uses this section for that
purpose.    On some machines it is more efficient to place these constants in line as immediates as
part of the instruction (this is what is done on NeXT 68k machines when the optimizer is turned on).

(__TEXT,__constructor)
This is equivalent to .section __TEXT,__constructor
(__TEXT,__destructor)
This is equivalent to .section __TEXT,__destructor

These sections are used by the C++ run-time system, and are reserved exclusively for the C++
compiler.

(__TEXT,__fvmlib_init0)
This is equivalent to .section __TEXT,__fvmlib_init0
(__TEXT,__fvmlib_init1)
This is equivalent to .section __TEXT,__fvmlib_init1

These two sections are used by the fixed virtual memory shared library initialization.    The compiler
doesn’t place anything in these sections, as they are reserved exclusively for the shared library
mechanism.

(__TEXT,__symbol_stub)
This is equivalent to .section __TEXT,__symbol_stub, symbol_stubs, pure_instructions,NBYTES

This section is of type symbol_stubs and has the attribute pure_instructions.    The compiler places
symbol stubs in this section for undefined functions that are called in the module.    This is the
standard symbol stub section for non position-independent code.    The value NBYTES is dependent
on the target architecture.    The standard symbol stub for the m68k is 20 bytes and has an alignment
of 2 bytes (.align 1 or .even) .    For example, a stub for the symbol _foo would be (using a lazy
symbol pointer Lfoo$stub_binder):

 .symbol_stub
Lfoo$stub:

 .indirect_symbol _foo
 movel L_foo$lazy_ptr,a0

 jmp a0@
Lfoo$stub_binder:

 movel #L_foo$lazy_ptr,sp@-
 bra dyld_stub_binding_helper

 .lazy_symbol_pointer
L_foo$lazy_ptr:

 .indirect_symbol _foo
 .long Lfoo$stub_binder

The standard symbol stub for the i386 is 16 bytes and has an alignment of 1 byte (.align 0).    For
example a stub for the symbol _foo would be (using a lazy symbol pointer Lfoo$stub_binder):

 .symbol_stub
Lfoo$stub:

 .indirect_symbol _foo
 ljmp L_foo$lazy_ptr

Lfoo$stub_binder:
 pushl L_foolazy_ptr
 jmp dyld_stub_binding_helper

 .lazy_symbol_pointer
L_foo$lazy_ptr:

 .indirect_symbol _foo
 .long Lfoo$stub_binder

(__TEXT, __picsymbol_stub)
This is equivalent to        .section __TEXT, __picsymbol_stub, symbol_stubs, pure_instructions,
NBYTES

This section is of type symbol_stubs and has the attribute pure_instructions.    The compiler places
symbol stubs in this section for undefined functions that are called in the module.    This is the
standard symbol stub section for position-independent code.    The value of NBYTES is dependent on
the target architecture.

The standard position-independent symbol stub for the m68k is 24 bytes and has an alignment of 2
bytes (.align 1 or .even).    For example a stub for the symbol _foo would be (using a lazy symbol
pointer Lfoo$stub_binder):

 .picsymbol_stub
Lfoo$stub:

 .indirect_symbol _foo
 movel pc@(L_foo$lazy_ptr-.),a0
 jmp a0@

Lfoo$stub_binder:
 pea pc@(L_foo$lazy_ptr-.)
 bra dyld_stub_binding_helper

 .lazy_symbol_pointer
L_foo$lazy_ptr:

 .indirect_symbol _foo
 .long Lfoo$stub_binder

The standard position-independent symbol stub for the i386 is 26 bytes and has an alignment of 1
byte (.align 0).    For example a stub for the symbol _foo would be (using a lazy symbol pointer
Lfoo$stub_binder):

 .picsymbol_stub
Lfoo$stub:

 .indirect_symbol _foo
 call L1foo$stub

L1foo$stub:
 popl %eax
 movl L_foo$lazy_ptr-L1foo$stub(%eax),%ebx
 jmp %ebx

Lfoo$stub_binder:
 lea L_foo$lazy_ptr-L1foo$stub(%eax),%eax
 pushl %eax
 jmp dyld_stub_binding_helper

 .lazy_symbol_pointer
L_foo$lazy_ptr:

 .indirect_symbol _foo
 .long Lfoo$stub_binder

(__TEXT,__mod_init_func)
This is equivalent to        .section __TEXT, __mod_init_func, mod_init_funcs

This section is of type mod_init_funcs and has no attributes.    The C++ compiler places a pointer to
a function in this section for each function it creates to call the constructors (if the module has them).

Designating Sections in the __DATA Segment

These directives cause the assembler to begin assembling into the indicated section of the __DATA
segment:

Directive Section

.data    (__DATA,__data)

.static_data    (__DATA,__static_data)

.non_lazy_symbol_pointer (__DATA,__nl_symbol_pointer)

.lazy_symbol_pointer    (__DATA,__la_symbol_pointer)

.dyld (__DATA,__dyld)

The following paragraphs describe the sections in the __DATA segment and the types of information that
should be assembled into each of them:

(__DATA,__data)
This is equivalent to        .section __DATA, __data

The compiler places all non-const initialized data (even initialized to zero) in this section.

(__DATA,__static_data)

This is equivalent to      .section __DATA, __static_data

This is not currently used by the compiler.    It was added to the assembler so that the compiler could
separate global and static data symbol into separate sections if it wished to.

(__DATA,__nl_symbol_ptr)
This is equivalent to      .section __DATA, __nl_symbol_ptr,non_lazy_symbol_pointers

This section is of type non_lazy_symbol_pointers and has no attributes. The compiler places a non-
lazy symbol pointer in this section for each undefined symbol referenced by the module (except for
function calls).

(__DATA,__la_symbol_ptr)
This is equivalent to    .section __DATA, __la_symbol_ptr,lazy_symbol_pointers

This section is of type lazy_symbol_pointers and has no attributes.    The compiler places a lazy
symbol pointer in this section for each symbol stub it creates for undefined functions that are called in
the module.      (See __TEXT, __symbol_stub for examples.)

(__DATA,__dyld)
This is equivalent to    .section __DATA, __dyld,regular

This section is of type regular and has no attributes.    This section is used by the dynamic link editor.
The compiler doesn’t place anything in this section, as it is reserved exclusively for the dynamic link
editor.

Designating Sections in the __OBJC Segment

These directives cause the assembler to begin assembling into the indicated section of the __OBJC
segment:

Directive Section

.objc_class    (__OBJC,__class)

.objc_meta_class    (__OBJC,__meta_class)

.objc_cat_cls_meth    (__OBJC,__cat_cls_meth)

.objc_cat_inst_meth    (__OBJC,__cat_inst_meth)

.objc_protocol    (__OBJC,__protocol)

.objc_string_object    (__OBJC,__string_object)

.objc_cls_meth    (__OBJC,__cls_meth)

.objc_inst_meth    (__OBJC,__inst_meth)

.objc_cls_refs    (__OBJC,__cls_refs)

.objc_message_refs    (__OBJC,__message_refs)

.objc_symbols    (__OBJC,__symbols)

.objc_category    (__OBJC,__category)

.objc_class_vars    (__OBJC,__class_vars)

.objc_instance_vars    (__OBJC,__instance_vars)

.objc_module_info    (__OBJC,__module_info)

.objc_class_names    (__OBJC,__class_names)

.objc_meth_var_names    (__OBJC,__meth_var_names)

.objc_meth_var_types    (__OBJC,__meth_var_types)

.objc_selector_strs    (__OBJC,__selector_strs)

All sections in the __OBJC segment, including old sections that are no longer used and future sections
that may be added, are exclusively reserved for the Objective C compiler’s use.

Directives for Moving the Location Counter

This section describes directives that advance the location counter to a location higher in memory.    They
have the additional effect of setting the intervening memory to some value.

.align

SYNOPSIS:
.align    expression [, fill_expression]

The .align directive advances the location counter to the next expression boundary, if it isn’t currently on
such a boundary.    expression is a power of 2 between 0 and 15 (not the result of the power of 2;    for
example, the argument of    .align 3 means 2 to the third).    The fill expression, if specified, must be
absolute.    The space between the current value of the location counter and the desired value is filled with
the low-order byte of the fill expression (or with zeros, if fill_expression isn’t specified).

Note:    The assembler enforces no alignment for any bytes created in the object file (data or machine
instructions).    You must supply the desired alignment before any directive or instruction.

EXAMPLE:
 .align 3

one: .double 0r1.0

.org

SYNOPSIS:
.org    expression [, fill_expression]

The .org directive sets the location counter to expression, which must be a currently known absolute
expression.    This directive can only move the location counter up in address.    The fill expression, if
specified, must be absolute.    The space between the current value of the location counter and the
desired value is filled with the low-order byte of the fill expression (or with zeros, if fill_expression isn’t
specified).

Note:    If the output file is later link-edited, the .org directive isn’t preserved.

EXAMPLE:
.org 0x100,0xff

Directives for Generating Data

The directives described in this section all generate data (unless specified otherwise, the data goes into
the current section).    In some respects they are similar to the directives in the previous section,
“Directives for Moving the Location Counter”—they do have the effect of moving the location counter—but
this isn’t their primary purpose.

.ascii and .asciz

SYNOPSIS:
.ascii    [“string”] [, “string”] ...
.asciz    [“string”] [, “string”] ...

These two directives translate character strings into their ASCII equivalents for use in the source program.
Each directive takes zero or more comma-separated, quoted strings.    Each string can contain any
character or escape sequence that can appear in a character string; the newline character cannot appear,
but it can be represented by the escape sequence \012 or \n.

• The .ascii directive generates a sequence of ASCII characters.

• The .asciz directive is similar, except that it automatically terminates the sequence of ASCII
characters with the null character, \0 (necessary when generating strings usable by C programs).

If no strings are specified, the directive is ignored.

EXAMPLE:
.ascii “Can’t open the DSP.\0”
.asciz “%s has changes.\tSave them?”

.byte, .short, and .long

SYNOPSIS:
.byte    [expression] [, expression] ...
.short    [expression] [, expression] ...
.long    [expression] [, expression] ...

These directives reserve storage locations in the current section and initialize them with specified values.
Each directive takes zero or more comma-separated absolute expressions and generates a sequence of
bytes for each expression.    The expressions are truncated to the size generated by the directive:

• .byte generates one byte per expression
• .short generates two bytes per expression
• .long generates four bytes per expression

EXAMPLE:
.byte 74,0112,0x4A,0x4a,’J | all the same byte
.short 64206,0175316,0xface | all the same short
.long -1234,037777775456,0xfffffb2e | all the same long

.single    and .double

SYNOSIS:
.single    [number] [, number] ...
.double    [number] [, number] ...

These two directives reserve storage locations in the current section and initialize them with specified
values.    Each directive takes zero or more comma-separated decimal floating-point numbers:

• .single takes IEEE single-precision floating point numbers; it reserves four bytes for each number, and
initializes them to the value of the corresponding number

• .double takes IEEE double-precision floating point numbers; it reserves eight bytes for each number,
and initializes them to the value of the corresponding number

EXAMPLE:
.single 3.33333333333333310000e-01
.double 0.00000000000000000000e+00
.single +Infinity
.double -Infinity
.single NaN

.fill

SYNOPSIS:
.fill repeat_expression , fill_size , fill_expression

The .fill directive advances the location counter by repeat_expression times fill_size bytes.

• fill_size is in bytes, and must have the    value 1, 2, or 4
• repeat_expression must be an absolute expression greater than zero
• fill_expression may be any absolute expression (it gets truncated to the fill size)

EXAMPLE:
.fill 69,4,0xfeadface | put out 69 0xfeadface’s

.space

SYNOPSIS:
.space    num_bytes [, fill_expression]

The .space directive advances the location counter by num_bytes, where num_bytes is an absolute
expression greater than zero.    The fill expression, if specified, must be absolute.    The space between
the current value of the location counter and the desired value is filled with the low-order byte of the fill
expression (or with zeros, if fill_expression isn’t specified).

EXAMPLE:
ten_ones:
 .space 10,1

.comm

SYNOPSIS:
.comm    name, size

The .comm directive creates a common symbol named name of size bytes.    If the symbol isn’t defined
elsewhere, its type is “common.”

The link editor allocates storage for common symbols that aren’t otherwise defined.    Enough space is left
after the symbol to hold the maximum size (in bytes) seen for each symbol in the (__DATA,__common)
section.

The link editor will align each such symbol (based on its size aligned to the next greater power of two) to
the maximum alignment of the (__DATA,__common) section.    For information about how to change the
maximum alignment, see the description of -sectalign in the ld(1) UNIX manual page.

EXAMPLE:
.comm _global_uninitialized,4

.lcomm

SYNOPSIS:
.lcomm    name, size [, align]

The .lcomm directive creates a symbol named name of size bytes in the (__DATA,__bss) section.    It will
contain zeros at execution.    The name isn’t declared as global, and hence will be unknown outside the
object module.

The optional align expression, if specified, causes the location counter to be rounded up to an align
power-of-two boundary before assigning the location counter to the value of name.

EXAMPLE:
.lcomm abyte,1 | or: .lcomm abyte,1,0
.lcomm padding,7
.lcomm adouble,8 | or: .lcomm adouble,8,3

These are the same as:

.zerofill __DATA,__bss,abyte,1

.lcomm __DATA,__bss,padding,7

.lcomm __DATA,__bss,adouble,8

Directives for Dealing with Symbols

This section describes directives that have an effect on symbols and the symbol table.

.globl

SYNOPSIS:
.globl    symbol_name

The .globl directive makes symbol_name external.    If symbol_name is otherwise defined (by .set or by
appearance as a label), it acts within the assembly exactly as if the .globl statement were not given;
however, the link editor may be used to combine this object module with other modules referring to this
symbol.

EXAMPLE:
 .globl abs
 .set abs,1

 .globl var
var: .long 2

.indirect_symbol

SYNOPSIS:
.indirect_symbol symbol_name

The .indirect_symbol directive creates an indirect symbol with symbol_name and associates the current
location with the indirect symbol.    An indirect symbol must be defined immediately before each item in a
symbol_stub, lazy_symbol_pointers, and non_lazy_symbol_pointers section.    The static and
dynamic linkers use symbol_name to identify the symbol associated with the following item.

.reference

SYNOPSIS:
.reference    symbol_name

The .reference directive causes symbol_name to be an undefined symbol that will be present in the
output’s symbol table.    This is useful in referencing a symbol without generating any bytes to do it (used,
for example, by the Objective C run-time system to reference superclass objects).

EXAMPLE:
.reference .objc_class_name_Object

.private_extern

SYNOPSIS:
.private_extern symbol_name

The .private_extern directive makes symbol_name a private external symbol.    When the link editor
combines this module with other modules (and the -keep_private_externs command-line option is not
specified) the symbol turns it from global to static.

.lazy_reference

SYNOPSIS:
.lazy_reference    symbol_name

The .reference directive causes symbol_name to be a lazy undefined symbol that will be present in the
output’s symbol table.    This is useful in referencing a symbol without generating any bytes to do it (used,
for example, by the Objective C run-time system with the dynamic linker to reference superclass objects

but to allow the runtime to bind them on first use).

EXAMPLE:
.lazy_reference .objc_class_name_Object

.stabs, .stabn, and .stabd

SYNOPSIS:
.stabs    n_name , n_type , n_other , n_desc , n_value
.stabn    n_type , n_other , n_desc , n_value
.stabd    n_type , n_other , n_desc

These three directives are used to place symbols in the symbol table for the symbolic debugger (a “stab”
is a symbol table entry).

• .stabs specifies all the fields in a symbol table entry.    The n_name is the name of a symbol; if the
symbol name is null, the .stabn directive may be used instead.

• .stabn is like .stabs, except that it uses a NULL (“”) name.

• .stabd is like .stabn, except that it uses the value of the location counter (.) as the n_value field.

In each case, the n_type field is assumed to contain a 4.3BSD-like value for the N_TYPE bits.    For
.stabs and .stabn the n_sect field of the Mach-O file’s nlist is set to the section number of the symbol for
the specified n_value parameter.    For .stabd the n_sect field is set to the current section number for the
location counter.    The nlist structure is defined in mach-o/nlist.h.

Note:    The n_other field of a stab directive is ignored.

EXAMPLE:
.stabs “hello.c”,100,0,0,Ltext
.stabn 192,0,0,LBB2
.stabd 68,0,15

.desc

SYNOPSIS:
.desc    symbol_name , absolute_expression

The .desc directive sets the n_desc field of the specified symbol to absolute_expression.

EXAMPLE:
.desc _main,0xface

.set

SYNOPSIS:
.set    symbol_name , absolute_expression

The .set directive creates the symbol symbol_name and sets its value to absolute_expression.    This is
the same as using symbol_name = absolute_expression.

EXAMPLE:
.set one,1
two = 2

.lsym

SYNOPSIS:
.lsym    symbol_name , expression

A unique and otherwise unreferenceable symbol of the (symbol_name, expression) pair is created in the
symbol table.    Some Fortran 77 compilers use this mechanism to communicate with the debugger.

Miscellaneous Directives

This section describes additional directives that don’t fit into any of the previous sections.

.abort

SYNOPSIS:
.abort [    “abort_string”]

The .abort directive causes the assembler to ignore all further input and quit processing.    No files are
created.    The directive would be used, for example, in a pipe interconnected version of a compiler—the
first major syntax error would cause the compiler to issue this directive, saving unnecessary work in
assembling code that would have to be discarded anyway.

The optional “abort_string” is printed as part of the error message when the .abort directive is
encountered.

EXAMPLE:
#ifndef VAR
 .abort “You must define VAR to assemble this file.”
#endif

.file and .line

SYNOPSIS:
.file    file_name
.line    line_number

The .file directive causes the assembler to report error messages as if it were processing the file
file_name.

The .line directive causes the assembler to report error messages as if it were processing the line
line_number.    The next line after the .line directive is assumed to be line_number.

The assembler turns C preprocessor comments of the form

line_number file_name level

into

.line line_number; .file file_name

EXAMPLE:
.line 6
nop | this is line 6

.if, .elseif, .else, and .endif

SYNOPSIS:
.if expression
.elseif expression
.else
.endif

These directives are used to delimit blocks of code that are to be assembled conditionally, depending on
the value of an expression.    A block of conditional code may be nested within another block of conditional
code.    Expression must be an absolute expression.

For each .if directive,

• there must be a matching .endif
• there may be as many intervening .elseif’s as desired
• there may be no more than one intervening .else before the tailing .endif

Labels or multiple statements must not be placed on the same line as any of these directives; otherwise,
statements including these directives won’t be recognized and will produce errors or incorrect conditional
assembly.

EXAMPLE:
.if a==1
.long 1
.elseif a==2
.long 2
.else
.long 3
.endif

.include

SYNOPSIS:
.include filename

The .include directive causes the named file to be included at the current point in the assembly.    The
-Idir option to the assembler specifies alternative paths to be used in searching for the file if it isn’t found

in the current directory    (the default path, /usr/include, is always searched last).

EXAMPLE:
.include macros.h

.macro, .endmacro, .macros_on, and .macros_off

SYNOPSIS:
.macro
.endmacro
.macros_on
.macros_off

These directives allow your to define simple macros (once a macro is defined, however, you can’t
redefine it).    For example:

.macro var
instruction_1 $0,$1
instruction_2 $2
 . . .
instruction_N
.long $n
.endmacro

$d (where d is a single decimal digit, 0 through 9) represents each argument—there can be at most 10
arguments.    $n is replaced by the actual number of arguments the macro was invoked with.

When you use a macro, arguments are separated by a comma (except inside matching parentheses—for
example, xxx(1,3,4),yyy contains only two arguments).    You could use the macro defined above as
follows:

var #0,@sp,4

This would be expanded to:

instruction_1 #0,@sp
instruction_2 4
 . . .
instruction_N
.long 3

The directives .macros_on and .macros_off allow macros to be written that override an instruction or
directive while still using the instruction or directive.    For example:

.macro .long

.macros_off

.long $0,$0

.macros_on

.endmacro

If you don’t specify an argument, the macro will substitute nothing (also see the .abs directive below).

.abs

SYNOPSIS:
.abs    symbol_name , expression

This directive sets the value of symbol_name to 1 if expression is an absolute expression; otherwise, it
sets the value to 0.

EXAMPLE:
.macro var
.abs is_abs,$0
.if is_abs==1
.abort “must be absolute”
.endif
.endmacro

.dump and .load

SYNOPSIS:
.dump filename
.load filename

These directives let you dump and load the absolute symbols and macro definitions, for faster loading
and faster assembly.

These work like this:

.include “big_file_1”

.include “big_file_2”

.include “big_file_3”

. . .

.include “big_file_N”

.dump “symbols.dump”

The .dump directive writes out all the N_ABS symbols and macros.    You can later use the .load directive
to load all the N_ABS symbols and macros faster than you could with .include:

.load “symbols.dump”

One useful side effect of loading symbols this way is that they aren’t written out to the object file.

Additional Processor-Specific Directives

The following processor-specific directives are synonyms for other standard directives described earlier in
this chapter; although they are listed here for completeness, their use isn’t recommended; wherever
possible, you should use the standard directive instead.

The following are i386-specific directives:

i386 Directive Standard Directive

.ffloat .single

.dfloat .double

.tfloat [expression] ¬ 80-bit IEEE extended precision floating-point

.word .short

.value .short

.ident (ignored)

.def (ignored)

.optim (ignored)

.version (ignored)

.ln (ignored)

Assembly Language Statements

This chapter describes the assembly language statements that make up an assembly language program.

The general format of an assembly language statement is shown below.    Each of the fields shown here
is described in detail in one of the following sections.

[label_field] [opcode_field [operand_field]] [comment_field]

A line may contain multiple statements separated by semicolons, or by at (@) signs for the hppa, which
may then be followed by a single comment:

[statement [; statement ...]] [comment_field]
[statement [@ statement ...]] [comment_field]

The following rules apply to the use of whitespace within a statement:

• Spaces or tabs are used to separate fields.
• At least one space or tab must occur between the opcode field and the operand field.
• Spaces may appear within the operand field.
• Spaces and tabs are significant when they appear in a character string.

Label Field

Labels are identifiers that you use to tag the locations of program and data objects.    Each label is
composed of an identifier and a terminating colon.    The format of the label field is:

identifier: [identifier:] ...

The optional label field can only occur first in a statement.    The following example shows a label field
containing two labels, followed by a (M68000-style) comment:

var: VAR: | two labels defined here

As shown here, letters in identifiers are case-sensitive, and both uppercase and lowercase letters may be
used.

Operation Code Field

The operation code field of an assembly language statement identifies the statement as a machine
instruction, an assembler directive, or a macro defined by the programmer:

• A machine instruction is indicated by an instruction mnemonic.    An assembly language statement
that contains an instruction mnemonic is intended to produce a single executable machine
instruction.    The operation and use of each instruction is described in the manufacturer’s user
manual.

• An assembler directive (or pseudo-op) performs some function during the assembly process.    It
doesn’t produce any executable code, but it may assign space for data in the program.

• Macros are defined with the .macro directive (see Chapter 4 for more information).

One or more spaces or tabs must separate the operation code field from the following operand field in a
statement.    Spaces or tabs are optional between the label and operation code fields, but they help to
improve the readability of the program.

Architecture- and Processor-Specific Caveats

Intel i386 Architecture

• As with the Motorola 68000 family, i386 instructions can operate on byte, word, or long word data
(the last is called “double word” by Intel).    The size can be indicated in the same way as it is for
the MC68000.    If no size is specified, the assembler attempts to determine the size from the
operands.    For example, if the 16-bit names for registers are used as operands, a 16-bit
operation will be performed.    When both a size specifier and a size-specific register name are
given, the size specifier is used.    Thus, the following are all correct and result in the same
operation:

 movw %bx,%cx
 mov %bx,%cx
 movw %ebx,%ecx

• An i386 operation code can also contain optional prefixes, which are separated from the
operation code by a slash (‘/’) character.    The prefix mnemonics are:

data16 operation uses 16-bit data

addr16 operation uses 16-bit addresses

lock exclusive memory lock

wait wait for pending numeric exceptions

cs, ds, es, fs, gs, ss segment register override

rep, repe, repne repeat prefixes for string instructions

More than one prefix may be specified for some operation codes.    For example:

lock/fs/xchgl %ebx,4(%ebp)

Segment register overrides and the 16-bit data specifications are usually given as part of the
operation code itself or of its operands.    For example, the following two lines of assembly generate
the same instructions:

movw %bx,%fs:4(%ebp)
data16/fs/movl %bx,4(%ebp)

Not all prefixes are allowed with all instructions.    The assembler does check that the repeat prefixes
for strings instructions are used correctly, but doesn’t otherwise check for correct usage.

Operand Field

The operand field of an assembly language statement supplies the arguments to the machine instruction,

assembler directive, or macro.

The operand field may contain one or more operands, depending on the requirements of the preceding
machine instruction or assembler directive.    Some machine instructions and assembler directives don’t
take any operand, and some take two or more.    If the operand field contains more than one operand, the
operands are generally separated by commas, as shown here:

[operand [, operand] ...]

The following types of objects can be operands:

• register operands
• register pairs
• address operands
• string constants
• floating-point constants
• register lists
• expressions

Register operands in a machine instruction refer to the machine registers of the processor or
coprocessor.    Register names may appear in mixed case.

Architecture-and Processor-Specific Caveats

Intel 386 Architecture

• The NeXT assembler orders operand fields for i386 instructions in the reverse order from Intel’s
conventions.    Intel’s convention is destination first, source second;    NeXT’s is source first,
destination second.    Where Intel documentation would describe the Compare and Exchange
instruction for 32-bit operands as follows:

CMPXCHG r/m32,r32 # Intel processor manual convention

The NeXT assembler syntax for this same instruction is:

cmpxchg r32,r/m32 # NeXT assembler syntax

So an example of actual assembly code for the NeXT would be:

cmpxchg %ebx,(%eax) # NeXT assembly code

Comment Field

The assembler recognizes two types of comments in source code:

• A line whose first non-whitespace character is the hash character (#) is a comment.    This style
of comment is useful for passing C preprocessor output through the assembler.    Note that
comments of the form

 # line_number file_name level

get turned into

 .line line_number; .file file_name

This can cause problems when comments of this form which aren’t intended to specify line
numbers precede assembly errors, since the error will be reported as occurring on a line relative
to that specified in the comment.    Suppose a program contains these two lines of assembly
source:

500
 .var

If “.var” hasn’t been defined, this fragment will result in the following error message:

var.s:500:Unknown pseudo-op: .var

• A comment field, appearing on a line after one or more statements.    The comment field consists
of the appropriate comment character and all the characters that follow it on the line:

| comment character for MC68000 processors

; comment character for hppa processors

comment character for i386 architecture processors

An assembly language source line can consist of just the comment field; in this case, it’s equivalent to
using the hash character comment style:

This is a comment.
| This is a comment.

Note the warning given above for hash character comments beginning with a number.

Direct Assignment Statements

This section describes direct assignment statements, which don’t conform to the normal statement syntax
described throughout this chapter.    A direct assignment statement can be used to assign the value of an
expression to an identifier.    The format of a direct assignment statement is:

 identifier = expression

If expression in a direct assignment is absolute, identifier is also absolute, and it may be treated as a
constant in subsequent expressions.    If expression is relocatable, identifier is also relocatable, and it is
considered to be declared in the same program section as the expression.

The use of an assignment statement is analogous to using the .set directive (described in the following
chapter), except that the .set directive requires that expression be absolute.

Once an identifier has been defined by a direct assignment statement, it may be redefined—its value is
then the result of the last assignment statement.    There are a few restrictions, however, concerning the
redefinition of identifiers:

• Register identifiers may not be redefined.

• An identifier that has already been used as a label should not be redefined, since this would

amount to redefining the address of a place in the program.    Moreover, an identifier that has
been defined in a direct assignment statement cannot later be used as a label.    Only the second
situation produces an assembler error message.

Assembly Language Syntax

This chapter first describes the basic lexical elements of assembly language programming, and then
describes how those elements combine to form complete assembly language expressions.    The following
chapter goes on to explain how sequences of expressions are put together to form the statements that
make up an assembly language program.

Elements of Assembly Language

This section describes the basic building blocks of an assembly language program—these are
characters, symbols, labels, and constants.

Characters

The following characters are used in assembly language programs

• alphanumeric characters—‘A’ through ‘Z’, ‘a’ through ‘z’, and ‘0’ through ‘9’
• other printable ASCII characters (such as #, $, :, ., +, -, *, /, !, and |)
• non-printing ASCII characters (such as space, tab, return, and newline)

Some of these characters have special meanings, which are described in the section “Expression Syntax”
and in the following chapter.

Identifiers

An identifier (also known as a symbol) can be used for several purposes:

• as the label for an assembler statement (see the following section, “Labels”)
• as a location tag for data
• as the symbolic name of a constant

Each identifier consists of a sequence of alphanumeric characters (which may include other printable
ASCII characters such as ., _, and $).    The first character must not be numeric.      Identifiers may be of
any length, and all characters are significant.    Case of letters is significant—for example, the identifier var
is different from the identifier Var.

It is also possible to define a new identifier by enclosing multiple identifiers within a pair of double quotes.
For example:

"Object +new:":
.long "Object +new:"

Labels

A label is written as an identifier immediately followed by a colon (:).    The label represents the current
value of the current location counter; it can be used in assembler instructions as an operand.

Note:    You may not use a single identifier to represent two different locations.

Numeric Labels

Local numeric labels allow compilers and programmers to use names temporarily.    A numeric label
consists of a digit (between 0 and 9) followed by a colon.    These ten local symbol names can be reused
any number of times throughout the program.    As with alphanumeric labels, a numeric label assigns the
current value of the location counter to the symbol.

Although multiple numeric labels with the same digit may be used within the same program,    only the
next definition and the most recent previous definition of a label can be referenced:

• To refer to the most recent previous definition of a local numeric label, write digitb, (using the
same digit as when you defined the label).

• To refer to the next definition of a numeric label, write digitf.

The Scope of a Label

The scope of a label is the distance over which it is visible to (and referenceable by) other parts of the
program.    Normally, a label that tags a location or data is visible only within the current assembly unit.

The .globl directive (described in Chapter 4) may be used to make a label external.    In this case, the
symbol is visible to other assembly units at link time.

Constants

Four types of constants are available:    numeric constants, character constants, string constants, and
floating point constants.    All constants are interpreted as absolute quantities when they appear in an
expression.

Numeric Constants

A numeric constant is a token that starts with a digit.    Numeric constants can be decimal, hexadecimal, or
octal.    The following restrictions apply:

• Decimal constants contain only digits between 0 and 9, and normally aren’t longer than 32 bits—
having a value between -2,147,483,648 and 2,147,483,647 (values that don’t fit in 32 bits are
bignums, which are legal but which should fit within the designated format).    Decimal constants
cannot contain leading zeros or commas.

• Hexadecimal constants start with 0x (or 0X), followed by between one and eight decimal or
hexadecimal digits (0 through 9, ‘a’ through ‘f’,    and ‘A’ through ‘F’).    Values that don’t fit in 32
bits are bignums.

• Octal constants start with 0, followed by from one to eleven octal digits (0 through 7).    Values
that don’t fit in 32 bits are bignums.

Character Constants

A single-character constant consists of a single quote (') followed by any ASCII character.    The
constant’s value is the code for the given character.

String Constants

A string constant is a sequence of 0 or more ASCII characters surrounded by quotation marks
("characters").

Floating Point Constants

The general lexical form of a floating point number is:

0flt_char[{+-}]dec...[.][dec...][exp_char[{+-}][dec...]]

where:

flt_char a required type specification character (see the following table)

[{+-}] the optional occurrence of either + or -, but not both

 dec... a required sequence of 1 or more decimal digits

[.] a single optional    “.”

[dec...] an optional sequence of 1 or more decimal digits

[exp_char] an optional exponent delimiter character (see the following table)

The type specification character, flt_char, specifies the type and representation of the constructed
number; the set of legal type specification characters with the processor architecture, as shown here:

Architecture

flt_char exp_char
M68000

{rRsSfFdDxXeEpP} {eE}
i386 {fFdDxX}

{eE}
hppa {dDfF}

{eE}

On the M68000 architecture, 0b can be used to specify an immediate hexadecimal bit pattern.    For
example:

fmoves #0b7f80001,fp0

moves the signaling Nan into the register fp0 and

fmoves #0x7f80001,fp0

moves the decimal number 2,139,095,041 (0x7f80001 in hexadecimal) into the register fp0.

When floating-point constants are used as arguments to the .single and .double directives, the type
specification character isn’t actually used in determining the type of the number.    For convenience, r or R
can be used consistently to specify all types of floating-point numbers.

Collectively, all floating point numbers, together with quad and octal scalars, are called Bignums.    When

as requires a Bignum, a 32-bit scalar quantity may also be used.

Floating point constants are internally represented as flonums, in a machine-independent, precision-
independent floating point format (for accurate cross-assembly).

Assembly Location Counter

A single period (.), usually referred to as “dot,” is used to represent the current location counter.    There
is no way to explicitly reference any other location counters besides the current location counter.

Even if it occurs in the operand field of a statement, dot refers to the address of the first byte of that
statement; the value of dot isn’t updated until the next machine instruction or assembler directive.

Expression Syntax

Expressions are combinations of operand terms (which can be numeric constants or symbolic identifiers)
and operators.    This section lists the available operators, and describes the rules for combining these
operators with operands in order to produce legal expressions.

Operators

Identifiers and numeric constants can be combined, through the use of operators, to form expressions.   
Each operator operates on 32-bit values.    If the value of a term occupies 8 or 16 bits, it is sign extended
to a 32-bit value.

The assembler provides both unary and binary operators.    A unary operator precedes its operand; a
binary operator follows its first operand, and precedes its second operand.    For example:

!var | unary expression
var+5 | binary expression

The assembler recognizes the following unary operators:

- Unary minus:    the result is the two’s complement of the
operand

~ One’s complement:    the result is the one’s complement of the operand

! Logical negation:    the result is 0 if the operand is non-zero, and 1 if the operand is 0

The assembler recognizes the following binary operators:

+ Addition:    the result is the arithmetic addition of the two operands

- Subtraction:    the result is the arithmetic subtraction of the two operands

* Multiplication:    the result is the arithmetic multiplication of the two operands

/ Division:    the result is the arithmetic division of the two
operands; this is integer division, which truncates towards zero

% Modulus:    the result is the remainder that’s produced when the first operand is divided by the
second (this operator applies only to integral operands)

>> Right shift:    the result is the value of the first operand shifted to the right, where the second
operand specifies the number of bit positions by which the first operand is to be shifted (this
operator applies only to integral operands).    This is always an arithmetic shift since all operators
operate on signed operands.

<< Left shift:    the result is the value of the first operand shifted to the left, where the second operand
specifies the number of bit positions by which the first operand is to be shifted (this operator
applies only to integral operands)

& Bitwise AND:    the result is the bitwise AND function of the two operands (this operator applies
only to integral operands)

^ Bitwise exclusive OR:    the result is the bitwise exclusive OR function of the two operands (this
operator applies only to integral operands)

| Bitwise inclusive OR:    the result is the bitwise inclusive OR function of the two operands (this
operator applies only to integral operands); this operator can’t be used on the M68000
microprocessor family, because the ‘|’ character is used there to mark the start of a comment

< Less than:    the result is 1 if the first operand is less than the second operand, and 0 otherwise

> Greater than:    the result is 1 if the first operand is greater than the second operand, and 0
otherwise

<= Less than or equal:    the result is 1 if the first operand is less than or equal to the second
operand, and 0 otherwise

>= Greater than or equal:    the result is 1 if the first operand is greater than or equal to the second
operand, and 0 otherwise

== Equal:    the result is 1 if the two operands are equal, and 0 otherwise

!= Not equal (same as <>):    the result is 0 if the two operands are equal, and 1 otherwise

Terms

A term is a part of an expression; it may be:

• An identifier.

• A numeric constant (its 32-bit value is used).    The assembly location counter (.), for example, is
a valid numeric constant.

• An expression or term enclosed in parentheses.    Any quantity enclosed in parentheses is
evaluated before the rest of the expression.    This can be used to alter the normal evaluation of
expressions—for example, to differentiate between x * y + z and x * (y + z) or to apply a unary
operator to an entire expression—for example, -(x * y + z).

• A term preceded by a unary operator (for example, ~var).    Multiple unary operators may be used
in a term (for example, !~var).

Expressions

Expressions are combinations of terms joined together by binary operators.    An expression is always
evaluated to a 32-bit value, but in some situations a different value will be used:

• If the operand requires a one-byte value (a .byte directive, for example), the low-order eight bits
of the expression are used.

• If the operand requires a 16-bit value (a .short directive or a movem instruction, for example), the
low-order 16 bits of the expression are used.

All expressions are evaluated using the same operator precedence rules that are used by the    C
programming language.

When an expression is evaluated its value is absolute, relocatable, or external, as described below.

Absolute Expressions

An expression is absolute if its value is fixed.    The following, for example, are absolute:

• An expression whose terms are constants

• An identifier whose value is a constant via a direct assignment statement

• A relocatable expression minus a relocatable term, if both items belong to the same program
section.

Relocatable Expressions

An expression (or term) is relocatable if its value is fixed relative to a base address, but will have an offset
value when it is linked or loaded into memory.    For example, all labels of a program defined in relocatable
sections are relocatable.

Expressions that contain relocatable terms must only add or subtract constants to their value.    For
example, if the identifiers var and dat were defined in a relocatable section of the program, then the
following examples demonstrate the use of relocatable expressions:

var is a simple relocatable term.    Its value is an offset from the base address of the current
control section.

var+5 is a simple relocatable expression.    Since the value of var is an offset from the base address
of the current control section, adding a constant to it doesn’t change its relocatable status.

var*2 is not relocatable.    Multiplying a relocatable term by a constant invalidates the relocatable
status of the expression.

2-var is not relocatable.    The expression can’t be linked by adding var’s offset to it.

var+dat+5 is a relocatable expression if both var and dat are both defined in some section—that is, if
neither is undefined.    This form of relocatable expression is used for position-independent

code and is supported in NEXTSTEP Release 3.3 and later.

External Expressions

An expression is external (or global) if it contains an external identifier not defined in the current program.
In general, the same restrictions on expressions containing relocatable identifiers apply to expressions
containing external identifiers.    An exception is that the expression var-dat is incorrect when both var
and dat are external identifiers (that is, you cannot subtract two external relocatable expressions).    Also,
you cannot multiply or divide any relocatable expression.

Contents

Using the Assembler

Command Syntax
Assembler Options

Architecture Options

Assembly Language Syntax

Elements of Assembly Language

Characters
Identifiers
Labels
Constants
Architecture
Assembly Location Counter

Expression Syntax
Operators
Terms
Expressions

Assembly Language Statements
Label Field
Operation Code Field
Operand Field
Comment Field
Direct Assigment Statements

Assembler Directives
Directives for Designating the Current Section

Section Types and Attributes

Built-In Directives for Designating the Current Section

Designating Sections in the __TEXT Segment
Designating Sections in the __DATA Segment
Designating Sections in the __OBJC Segment

Directives for Moving the Location Counter

Directives for Generating Data
Directives for Dealing With Symbols
Miscellaneous Directives

Architecture-Specific Information
i386 Addressing Modes and Assembler Instructions

Using the Assembler

This chapter describes how to run the as assembler, which produces an object file from one or more files
of assembly language source code.

Note:    Although a.out is the default file name that as gives to the object file that’s created (as is
conventional with most UNIX-style compiler systems), the format of the object file is not standard UNIX
4.3BSD a.out format.    Object files produced by the assembler are in Mach-O (Mach object) file format.   
For more information about the Mach-O file format, see the NEXTSTEP Development Tools and
Techniques manual.

Command Syntax

To run the assembler, type the following command in a shell window:

as [option] ... [file] ...

You can specify one or more command-line options.    These assembler options are described in the
following section.

You can specify one or more files containing assembly language source code.    If no files are specified,
as uses the standard input (stdin) for the assembly source input.

Note:    By convention,    files containing assembly language source code should have a .s extension.

Assembler Options

The following command-line options are recognized by the assembler:

-o name The name argument after -o is used as the name of the as
output file, instead of a.out.

-- Use the standard input (stdin) for the assembly source input.

-f Fast; no need to run    app (the assembler preprocessor).
This option is intended for use by compilers that produce
assembly code in a strict “clean” format that specifies
exactly where whitespace can go.    The app preprocessor
needs to be run on handwritten assembly files and on file
that have been preprocessed by    cpp (the C preprocessor).
This typically is needed when assembler files are assembled
through the use of the cc(1) command, which automatically
runs the C preprocessor on assembly source files.    The
assembler preprocessor strips out excess spaces, turns
each single-quoted character into a decimal constant, and
turns occurrences of

 # number filename level

into:

 .line number;.file filename

The assembler preprocessor can also be turned off by
starting the assembly file with #NO_APP\n.    When the
assembler preprocessor has been turned off in this way, it
can be turned on and off with pairs of #APP\n and
#NO_APP\n at the beginning of lines.    This is used by the
compiler to wrap assembly statements produced from asm()
statements.

-g Produce debugging information for the symbolic debugger
gdb(1) so the the assembly source can be debugged
symbolically.    For include files (included by the C
preprocessor’s #include or by the assembler    directive
.include) that produce instructions in the (__TEXT,__text)
section, the include file must be included while a .text
directive is in effect (that is, there must be a .text directive
before the include) and end with the a .text directive in effect
(at the end of the include file).    Otherwise the debugger will
have trouble dealing with that assembly file.

-v Print the version of the assembler (both the NeXT version
and the GNU version that it is based on).

-n Don’t assume that the assembly file starts with a .text
directive.

-Idir Add dir to the list of directories to search for files included
with the .include directive.    The default places to search are
the current directory, and then /usr/include.

-L Save defined labels beginning with an ‘L’ (the compiler
generates these temporary labels).    Temporary labels are
normally discarded to save space in the resulting symbol
table.

-W Suppress warnings.

Architecture Options

The program /bin/as is a driver that executes assemblers for specific target architectures.    If no target
architecture is specified, it defaults to the architecture of the host it is running on.

-arch arch_type
Specifies to the target architecture, arch_type, the
assembler to be executed.    The target assemblers for each
architecture are in /lib/arch_type/as.

-arch_multiple
This is used by the cc(1) driver program when it is run with
multiple -arch arch_type flags and instructs programs like
as(1) that if it prints any messages to precede the messages
with one line stating the program name—in this case a

—and the architecture (from the -arch arch_type flag) to
distinguish which architecture the error messages refer to.
This flag is accepted only by the actual assemblers (in /lib
arch_type/as) and not by the assembler driver, /bin/as.

i386 Addressing Modes and Assembler Instructions

This chapter contains information specific to the Intel i386 processor architecture, which includes the
i386, i486, and Pentium processors.    The first section, “i386 Registers and Addressing Modes,” lists the
registers available and describes the addressing modes used by assembler instructions.    The second
section, “i386 Assembler Instructions,” lists each assembler instruction with NeXT assembler syntax.

Note:    Don’t confuse the i386 architecture with the i386 processor.    NEXTSTEP makes use of
instructions specific to the i486 processor, and will not run on an i386 processor.

i386 Registers and Addressing Modes

This section describes the conventions used to specify addressing modes and instruction mnemonics for
the Intel i386 processor architecture.    The instructions themselves are detailed in the next section, “i386
Assembler Instructions.”

Instruction Mnemonics

The instruction mnemonics that the assembler uses are based on the mnemonics described in the
relevant Intel processor manuals.

Note:    Branch instructions are always long (32 bits) for non-local labels on the NeXT i386 architecture
machines.    This allows the link editor to do procedure ordering (see the description of the -sectorder
option in the ld(1) man page, and the “Link Optimization” paper in the directory
/NextLibrary/Documentation/NextDev/Concepts/Performance).

Registers

Many instructions accept registers as operands.    The available registers are listed in this section.    The
NeXT assembler for Intel i386 processors always uses names beginning with a percent sign (‘%’) for
registers, so naming conflicts with identifiers aren’t possible; further, all register names are in lowercase
letters.

General Registers

Each of the 32-bit general registers of the i386 architecture are accessible by different names, which
specify parts of that register to be used.    For example, the AX register can be accessed as a single byte
(%ah or %al), a 16-bit value (%ax), or a 32-bit value (%eax).    Figure 6-1 shows the names of these
registers and their relation to the full 32-bit storage for each register:

Figure 6-1

Floating-Point Registers

%st

%st(0)-%st(7)

Segment Registers

%cs code segment register

%ss stack segment register

%ds data segment register

%es data segment register (string operation destination segment)

%fs data segment register

%gs data segment register

Other Registers

%cr0-%cr3 control registers

%db0-%db7 debug registers

%tr3-%tr7 test registers

Operands and Addressing Modes

The i386 architecture uses four kinds of instruction operands:

• Register

• Immediate
• Direct Memory
• Indirect Memory

Each type of operand corresponds to an addressing mode.    Register operands specify that the value
stored in the named register is to be used by the operator.    Immediate operands are constant values
specified in assembler code.    Direct memory operands are the memory location of labels, or the value of
a named register treated as an address.    Indirect memory operands are calculated at run time from the
contents of registers and optional constant values.

Register Operands

A register operand is given simply as the name of a register.    It can be any of the identifiers beginning
with ‘%’ listed above; for example, %eax.    When an operator calls for a register operand of a particular
size, the operand is listed as r8, r16, or r32.

Immediate Operands

Immediate operands are specified as numeric values preceded by a dollar sign (‘$’).    They are decimal
by default, but can be marked as    hexadecimal by beginning the number itself with ‘0x’.    Simple
calculations are allowed if grouped in parentheses.    Finally, an immediate operand can be given as a
label, in which case its value is the address of that label.    Here are some examples:

$100
$0x5fec4
$(10*6) # calculated by the assembler
$begloop

A reference to an undefined label is allowed, but that reference must be resolved at link time.

Direct Memory Operands

Direct memory operands are references to labels in assembler source.    They act as static references to a
single location in memory relative to a specific segment, and are resolved at link time.    Here’s an
example:

 .data
var: .byte 0 # declare a byte-size variable labelled "var"
 .text
 .
 .
 .
 movb %al,var # move the low byte of the AX register into the
 # memory location specified by "var"

By default, direct memory operands use the %ds segment register.    This can be overridden by prefixing
the operands with the segment register desired and a colon:

 movb %es:%al,var # move the low byte of the AX register into the
 # memory location in the segment given by %es
 # and "var"

Note that the segment override applies only to the memory operands in an instruction; “var” is affected,
but not %al.    The string instructions, which take two memory operands, use the segment override for
both.    A less common way of indicating a segment is to prefix the operator itself:

 es/movb %al,%var # same as above

Indirect Memory Operands

Indirect memory operands are calculated from the contents of registers at run time.    An indirect memory
operand can contain a base register, and index register, a scale, and a displacement.    The most general
form is:

displacement(base_register,index_register,scale)

displacement is an immediate value.    The base and index registers may be any 32-bit general register
names, except that %esp can’t be used as an index register.    scale must be 1, 2, 4, or 8; no other values
are allowed.    The displacement and scale can be omitted, but at least one register must be specified.   
Also, if items from the end are omitted, the preceding commas can also be omitted, but the comma
following an omitted item must remain:

10(%eax,%edx)
(%eax)
12(,%ecx,2)
12(,%ecx)

The value of an indirect memory operand is the memory location given by the contents of the register,
relative to a segment’s base address.    The segment register used is %ss when the base register is
%ebp or %esp, and %ds for all other base registers.    For example:

movl (%eax),%edx # default segment register here is %ds

The above assembler instruction moves 32 bits from the address given by %eax into the %edx register.   
The address %eax is relative to the %ds segment register.    A different segment register from the default
can be specified by prefixing the operand with the segment register name and a colon (‘:’):

movl %es:(%eax),%edx

A segment override can also be specified as an operator prefix:

es/movl (%eax),%edx

i386 Assembler Instructions

Note the following points about the information contained in this section:

• Name is the name that appears in the upper left corner of a page in the Intel manuals.

• Operation Name is the name that appears after the operator name in the Intel manuals.   
Processor-specific instructions are marked as they occur.

• The form of operands is that used in Intel’s i486 Microprocessor Programmer’s Reference
Manual.

• The order of operands is source ® destination, the opposite of the order in Intel’s manuals.

Instructions

Name Operator Operand Operation Name

aaa aaa ASCII Adjust after Addition

aad aad ASCII Adjust AX before

Division

aam aam ASCII Adjust AX after

Division

aas aas ASCII Adjust AL after

Subtraction

adc adc $imm8,r/m8 Add with Carry

adc $imm16,r/m16

adc $imm32,r/m32

adc $imm8,r/m16

adc $imm8,r/m32

adc r8,r/m8

adc r16,r/m16

adc r32,r/m32

adc r/m8,r8

adc r/m16,r16

adc r/m32,r32

add add $imm8,r/m8 Add

add $imm16,r/m16

add $imm32,r/m32

add $imm8,r/m16

add $imm8,r/m32

add r8,r/m8

add r16,r/m16

add r32,r/m32

add r/m8,r8

add r/m16,r16

add r/m32,r32

and and $imm8,r/m8 Logical AND

and $imm16,r/m16

and $imm32,r/m32

and $imm8,r/m16

and $imm8,r/m32

and r8,r/m8

and r16,r/m16

and r32,r/m32

and r/m8,r8

and r/m16,r16

and r/m32,r32

arpl arpl r16,r/m16 Adjust RPL Field of Selector

bound bound m16&16,r16 Check Array Index Against

bound m32&32,r32 Bounds

bsf bsf r/m16,r16 Bit Scan Forward

bsf r/m32,r16

bsr bsr r/m16,r16 Bit Scan Reverse

bsr r/m32,r16

bswap bswap r32 Byte Swap (i486-specific)

bt bt r16,r/m16 Bit Test

bt r32,r/m32

bt $imm8,r/m16

bt $imm8,r/m32

btc btc r16,r/m16 Bit Test and Complement

btc r32,r/m32

btc $imm8,r/m16

btc $imm8,r/m32

btr btr r16,r/m16 Bit Test and Reset

btr r32,r/m32

btr $imm8,r/m16

btr $imm8,r/m32

bts bts r16,r/m16 Bit Test and Set

bts r32,r/m32

bts $imm8,r/m16

bts $imm8,r/m32

call call rel16 Call Procedure

call r/m16

call ptr16:16

call m16:16

call rel32

call r/m32

lcall $imm16,$imm32

lcall m16

lcall m32

cbw/cwde cbw Convert Byte to Word/

cwde Convert Word to Doubleword

clc clc Clear Carry Flag

cld cld Clear Direction Flag

cli cli Clear Interrupt Flag

clts clts Clear Task-Switched Flag in

CR0

cmc cmc Complement Carry Flag

cmp cmp $imm8,r/m8 Compare Two Operands

cmp $imm16,r/m16

cmp $imm32,r/m32

cmp $imm8,r/m16

cmp $imm8,r/m32

cmp r8,r/m8

cmp r16,r/m16

cmp r32,r/m32

cmp r/m8,r8

cmp r/m16,r16

cmp r/m32,r32

cmps/cmpsb/cmpsw/cmpsd Compare String Operands

cmps m8,m8

cmps m16,m16

cmps m32,m32

cmpsb

cmpsw

cmpsd

(optional forms with segment override)

cmpsb %seg:0(%esi),%es:0(%edi)

cmpsw %seg:0(%esi),%es:0(%edi)

cmpsd %seg:0(%esi),%es:0(%edi)

cmpxchg cmpxchg r8,r/m8 Compare and Exchange

cmpxchg r16,r/m16 (i486-specific)

cmpxchg r32,r/m32

cmpxchg8b cmpxchg8b m32 Compare and Exchange 8 Bytes

(Pentium-specific)

cpuid cpuid CPU Identification

(Pentium-specific)

cwd/cdq cwd Convert Word to Doubleword/

cdq Convert Doubleword to

Quadword

daa daa Decimal Adjust AL after

Addition

das das Decimal Adjust AL after

Subtraction

dec dec r/m8 Decrement by 1

dec r/m16

dec r/m32

dec r16

dec r32

div div r/m8,%al Unsigned Divide

div r/m16,%ax

div r/m32,%eax

enter enter $imm16,$imm8 Make Stack Frame for Procedure

Parameters

f2xm1 f2xm1 Computer 2x-1

fabs fabs Absolute Value

fadd/faddp/fiadd Add

fadd m32real

fadd m64real

fadd ST(i),ST

fadd ST,ST(i)

faddp ST,ST(i)

fadd

fiadd m32int

fiadd m16int

fbld fbld m80dec Load Binary Coded Decimal

fbstp fbstp m80dec Store Binary Coded Decimal and

Pop

fchs fchs Change Sign

fclex/fnclex Clear Exceptions

fclex

fnclex

fcom/fcomp/fcompp Compare Real

fcom m32real

fcom m64real

fcom ST(i)

fcom

fcomp m32real

fcomp m64real

fcomp ST(i)

fcomp

fcompp

fcos fcos Cosine

fdecstp fdecstp Decrement Stack-Top Pointer

fdiv/fdivp/fidiv Divide

fdiv m32real

fdiv m64real

fdiv ST(i),ST

fdiv ST,ST(i)

fdivp ST,ST(i)

fdiv

fidiv m32int

fidiv m16int

fdivr/fdivpr/fidivr Reverse Divide

fdivr m32real

fdivr m64real

fdivr ST(i),ST

fdivr ST,ST(i)

fdivrp ST,ST(i)

fdivr

fidivr m32int

fidivr m16int

ffree ffree ST(i) Free Floating-Point Register

ficom/ficomp Compare Integer

ficom m16real

ficom m32real

ficomp m16int

ficomp m32int

fild filds m16int Load Integer

fildl m32int

fildq m64int

fincstp fincstp Increment Stack-Top Pointer

finit/fninit finit Initialize Floating-Point Unit

fninit

fist/fistp fists m16int Store Integer

fistl m32int

fistps m16int

fistpl m32int

fistpq m64int

fld flds m32real Load Real

fldl m64real

fldt m80real

fld ST(i)

fld1/fldl2t/fldl2e/fldpi/fldlg2/gldln2/fldz Load Constant

fld1

fld2t

fld2e

fldpi

fldlg2

fldln2

fldz

fldcw fldcw m2byte Load Control Word

fldenv fldenv m14/28byte Load FPU Environment

fmul/fmulp/fimul Multiply

fmul m32real

fmul m64real

fmul ST(i),ST

fmul ST(i),ST

fmulp ST,ST(i)

fmul

fimul m32int

fimul m16int

fnop fnop No Operation

fpatan fpatan Partial Arctangent

fprem fprem Partial Remainder

fprem1 fprem1 Partial Remainder

fptan fptan Partial Tangent

frndint frndint Round to Integer

frstor frstor m94/108byte Restore FPU State

fsave/fnsave Store FPU State

fsave m94/108byte

fnsave m94/108byte

fscale fscale Scale

fsin fsin Sine

fsincos fsincos Sine and Cosine

fsqrt fsqrt Square Root

fst/fstp fst m32real Store Real

fst m64real

fst ST(i)

fstp m32real

fstp m64real

fstp m80real

fstp ST(i)

fstcw/fnstcw Store Control Word

fstcw m2byte

fnstcw m2byte

fstenv/fnstenv Store FPU Environment

fstenv m14/28byte

fnstenv m14/28byte

fstsw/fnstsw Store Status Word

fstsw m2byte

fstsw %ax

fnstsw m2byte

fnstsw %ax

fsub/fsubp/fisub Subtract

fsub m32real

fsub m64real

fsub ST(i),ST

fsub ST,ST(i)

fsubp ST,ST(i)

fsub

fisub m32int

fisub m16int

fsubr/fsubpr/fisubr Reverse Subtract

fsubr m32real

fsubr m64real

fsubr ST(i),ST

fsubr ST,ST(i)

fsubpr ST,ST(i)

fsubr

fisubr m32int

fisubr m16int

ftst ftst Test

fucom/fucomp/fucompp Unordered Compare Real

fucom ST(i)

fucom

fucomp ST(i)

fucomp

fucompp

fwait fwait Wait

fxam fxam Examine

fxch fxch ST(i) Exchange Register Contents

fxch

fxtract fxtract Extract Exponent and

Significand

fyl2x fyl2x Compute y ´ log2

fyl2xp1 fyl2xp1 Compute y ´ log2(x+1)

hlt hlt Halt

idiv idiv r/m8 Signed Divide

idiv r/m16,%ax

idiv r/m32,%eax

imul imul r/m8 Signed Multiply

imul r/m16

imul r/m32

imul r/m16,r16

imul r/m32,r32

imul $imm8,r/m16,r16

imul $imm8,r/m32,r32

imul $imm8,r16

imul $imm8,r32

imul $imm16,r/m16,r16

imul $imm32,r/m32,r32

imul $imm16,r16

imul $imm32,r32

in in $imm8,%al Input from Port

in $imm8,%ax

in $imm8,%eax

in %dx,%al

in %dx,%ax

in %dx,%eax

inc inc r/m8 Increment by 1

inc r/m16

inc r/m32

inc r16

inc r32

ins/insb/insw/insd Input from Port to String

ins

insb

insw

insd

int/into int 3 Call to Interrupt Procedure

int $imm8

into

invd invd Invalidate Cache (i486-specific)

invlpg invlpg m Invalidate TLB Entry

(i486-specific)

iret/iretd iret Interrupt Return

iretd

jcc Jump if Condition is Met

ja rel8 short if above

jae rel8 short if above or equal

jb rel8 short if below

jbe rel8 short if below or equal

jc rel8 short if carry

jcxz rel8 short if %cx register is 0

jecxz rel8 short if %ecx register is 0

je rel8 short if equal

jz rel8 short if 0

jg rel8 short if greater

jge rel8 short if greater or equal

jl rel8 short if less

jle rel8 short if less or equal

jna rel8 short if not above

jnae rel8 short if not above or equal

jnb rel8 short if not below

jnbe rel8 short if not below or equal

jnc rel8 short if not carry

jne rel8 short if not equal

jng rel8 short if not greater

jnge rel8 short if not greater or equal

jnl rel8 short if not less

jnle rel8 short if not less or equal

jno rel8 short if not overflow

jnp rel8 short if not parity

jns rel8 short if not sign

jnz rel8 short if not 0

jo rel8 short if overflow

jp rel8 short if parity

jpe rel8 short if parity even

jpo rel8 short if parity odd

js rel8 short if sign

jz rel8 short if zero

ja rel16/32 near if above

jae rel16/32 near if above or equal

jb rel16/32 near if below

jbe rel16/32 near if below or equal

jc rel16/32 near if carry

je rel16/32 near if equal

jz rel16/32 near if 0

jg rel16/32 near if greater

jge rel16/32 near if greater or equal

jl rel16/32 near if less

jle rel16/32 near if less or equal

jna rel16/32 near if not above

jnae rel16/32 near if not above or equal

jnb rel16/32 near if not below

jnbe rel16/32 near if not below or equal

jnc rel16/32 near if not carry

jne rel16/32 near if not equal

jng rel16/32 near if not greater

jnge rel16/32 near if not greater or less

jnl rel16/32 near if not less

jnle rel16/32 near if not less or equal

jno rel16/32 near if not overflow

jnp rel16/32 near if not parity

jns rel16/32 near if not sign

jnz rel16/32 near if not 0

jo rel16/32 near if overflow

jp rel16/32 near if parity

jpe rel16/32 near if parity even

jpo rel16/32 near if parity odd

js rel16/32 near if sign

jz rel16/32 near if 0

jmp jmp rel8 Jump

jmp rel16

jmp r/m16

jmp rel32

jmp r/m32

ljmp $imm16,$imm32

ljmp m16

ljmp m32

lahf lahf Load Flags into AH Register

lar lar r/m16,r16 Load Access Rights Byte

lar r/m32,r32

lea lea m,r16 Load Effective Address

lea m,r32

leave leave High Level Procedure Exit

lgdt/lidt lgdt m16&32 Load Global/Interrupt

lidt m16&32 Descriptor Table Register

lgs/lss/lds/les/lfs Load Full Pointer

lgs m16:16,r16

lgs m16:32,r32

lss m16:16,r16

lss m16:32,r32

lds m16:16,r16

lds m16:32,r32

les m16:16,r16

les m16:32,r32

lfs m16:16,r16

lfs m16:32,r32

lldt lldt r/m16 Load Local Descriptor Table

Register

lmsw lmsw r/m16 Load Machine Status Word

lock lock Assert LOCK# Signal Prefix

lods/lodsb/lodsw/lodsd Load String Operand

lods m8

lods m16

lods m32

lodsb

lodsw

lodsd

(optional forms with segment override)

lodsb %seg:0(%esi),%al

lodsw %seg:0(%esi),%al

lodsd %seg:0(%esi),%al

loop/loopcond Loop Control with CX Counter

loop rel8

loope rel8

loopz rel8

loopne rel8

loopnz rel8

lsl lsl r/m16,r16 Load Segment Limit

lsl r/m32,r32

ltr ltr r/m16 Load Task Register

mov mov r8,r/m8 Move Data

mov r16,r/m16

mov r32,r/m32

mov r/m8,r8

mov r/m16,r16

mov r/m16,r16

mov Sreg,r/m16

mov r/m16,Sreg

mov moffs8,%al

mov moffs8,%ax

mov moffs8,%eax

mov %al,moffs8

mov %ax,moffs16

mov %eax,moffs32

mov $imm8,reg8

mov $imm16,reg16

mov $imm32,reg32

mov $imm8,r/m8

mov $imm16,r/m16

mov $imm32,r/m32

mov mov r32,%cr0 Move to/from Special Registers

mov %cr0/%cr2/%cr3,r32

mov %cr2/%cr3,r32

mov %dr0-3,r32

mov %dr6/%dr7,r32

mov r32,%dr0-3

mov r32,%dr6/%dr7

mov %tr4/%tr5/%tr6/%tr7,r32

mov r32,%tr4/%tr5/%tr6/%tr7

mov %tr3,r32

mov r32,%tr3

movs/movsb/movsw/movsd Move Data from String to String

movs m8,m8

movs m16,m16

movs m32,m32

movsb

movsw

movsd

(optional forms with segment override)

movsb %seg:0(%esi),%es:0(%edi)

movsw %seg:0(%esi),%es:0(%edi)

movsd %seg:0(%esi),%es:0(%edi)

movsx movsx r/m8,r16 Move with Sign-Extend

movsx r/m8,r32

movsx r/m16,r32

movzx movzx r/m8,r16 Move with Zero-Extend

movzx r/m8,r32

movzx r/m16,r32

mul mul r/m8,%al Unsigned Multiplication of AL

mul r/m16,%ax or AX

mul r/m32,%eax

neg neg r/m8 Two’s Complement Negation

neg r/m16

neg r/m32

nop nop No Operation

not not r/m8 One’s Complement Negation

not r/m16

not r/m32

or or $imm8,r/m8 Logical Inclusive OR

or $imm16,r/m16

or $imm32,r/m32

or $imm8,r/m16

or $imm8,r/m32

or r8,r/m8

or r16,r/m16

or r32,r/m32

or r/m8,r8

or r/m16,r16

or r/m32,r32

out out %al,$imm8 Output to Port

out %ax,$imm8

out %eax,$imm8

out %al,%dx

out %ax,%dx

out %eax,%dx

outs/outsb/outsw/outsd Output String to Port

outs r/m8,%dx

outs r/m16,%dx

outs r/m32,%dx

outsb

outsw

outsd

pop pop m16 Pop a Word from the Stack

pop m32

pop r16

pop r32

pop %ds

pop %es

pop %ss

pop %fs

pop %gs

popa/popad Pop all General Registers

popa

popad

popf/popfd popf Pop Stack into FLAGS or

popfd EFLAGS Register

push push m16 Push Operand onto the Stack

push m32

push r16

push r32

push $imm8

push $imm16

push $imm32

push Sreg

pusha/pushad Push all General Registers

pusha

pushad

pushf/pushfd Push Flags Register onto the

pushf Stack

pushfd

rcl/rcr/rol/ror Rotate

rcl 1,r/m8

rcl %cl,r/m8

rcl $imm8,r/m8

rcl 1,r/m16

rcl %cl,r/m16

rcl $imm8,r/m16

rcl 1,r/m32

rcl %cl,r/m32

rcl $imm8,r/m32

rcr 1,r/m8

rcr %cl,r/m8

rcr $imm8,r/m8

rcr 1,r/m16

rcr %cl,r/m16

rcr $imm8,r/m16

rcr 1,r/m32

rcr %cl,r/m32

rcr $imm8,r/m32

rol 1,r/m8

rol %cl,r/m8

rol $imm8,r/m8

rol 1,r/m16

rol %cl,r/m16

rol $imm8,r/m16

rol 1,r/m32

rol %cl,r/m32

rol $imm8,r/m32

ror 1,r/m8

ror %cl,r/m8

ror $imm8,r/m8

ror 1,r/m16

ror %cl,r/m16

ror $imm8,r/m16

ror 1,r/m32

ror %cl,r/m32

ror $imm8,r/m32

rdmsr rdmsr Read from Model-Specific

Register (Pentium-specific)

rdstc rdstc Read from Time Stamp Counter

(Pentium-specific)

rep/repe/repz/repne/repnz Repeat Following String

rep ins %dx,rm8 Operation

rep ins %dx,rm16

rep ins %dx,rm32

rep movs m8,m8

rep movs m16,m16

rep movs m32,m32

rep outs rm8,%dx

rep outs rm16,%dx

rep outs rm32,%dx

rep lods m8

rep lods m16

rep lods m32

rep stos m8

rep stos m16

rep stos m32

repe cmps m8,m8

repe cmps m16,m16

repe cmps m32,m32

repe scas m8

repe scas m16

repe scas m32

repne cmps m8,m8

repne cmps m16,m16

repne cmps m32,m32

repne scas m8

repne scas m16

repne scas m32

ret ret Return from Procedure

ret $imm16

rsm rsm Resume from System-

Management Mode

(Pentium-specific)

sahf sahf Store AH into Flags

sal/sar/shl/shr Shift Instructions

sal 1,r/m8

sal %cl,r/m8

sal $imm8,r/m8

sal 1,r/m16

sal %cl,r/m16

sal $imm8,r/m16

sal 1,r/m32

sal %cl,r/m32

sal $imm8,r/m32

sar 1,r/m8

sar %cl,r/m8

sar $imm8,r/m8

sar 1,r/m16

sar %cl,r/m16

sar $imm8,r/m16

sar 1,r/m32

sar %cl,r/m32

sar $imm8,r/m32

shl 1,r/m8

shl %cl,r/m8

shl $imm8,r/m8

shl 1,r/m16

shl %cl,r/m16

shl $imm8,r/m16

shl 1,r/m32

shl %cl,r/m32

shl $imm8,r/m32

shr 1,r/m8

shr %cl,r/m8

shr $imm8,r/m8

shr 1,r/m16

shr %cl,r/m16

shr $imm8,r/m16

shr 1,r/m32

shr %cl,r/m32

shr $imm8,r/m32

sbb sbb $imm8,r/m8 Integer Subtraction with Borrow

sbb $imm16,r/m16

sbb $imm32,r/m32

sbb $imm8,r/m16

sbb $imm8,r/m32

sbb r8,r/m8

sbb r16,r/m16

sbb r32,r/m32

sbb r/m8,r8

sbb r/m16,r16

sbb r/m32,r32

scas/scasb/scasw/scasd Compare String Data

scas m8

scas m16

scas m32

scasb

scasw

scasd

(optional forms with segment override)

scasb %al,%seg:0(%edi)

scasw %ax,%seg:0(%edi)

scasd %eax,%seg:0(%edi)

setcc Byte Set on Condition

seta r/m8 above

setae r/m8 above or equal

setb r/m8 below

setbe r/m8 below or equal

setc r/m8 carry

sete r/m8 equal

setg r/m8 greater

setge r/m8 greater or equal

setl r/m8 less

setle r/m8 less or equal

setna r/m8 not above

setnae r/m8 not abover or equal

setnb r/m8 not below

setnbe r/m8 not below or equal

setnc r/m8 not carry

setne r/m8 not equal

setng r/m8 not greater

setnge r/m8 not greater or equal

setnl r/m8 not less

setnle r/m8 not less or equal

setno r/m8 not overflow

setnp r/m8 not parity

setns r/m8 not sign

setnz r/m8 not zero

seto r/m8 overflow

setp r/m8 parity

setpe r/m8 parity even

setpo r/m8 parity odd

sets r/m8 sign

setz r/m8 zero

sgdt/sidt sgdt m Store Global/Interrupt

sidt m Descriptor Table Register

shld shld $imm8,r16,r/m16 Double Precision Shift Left

shld $imm8,r32,r/m32

shld %cl,r16,r/m16

shld %cl,r32,r/m32

shrd shrd $imm8,r16,r/m16 Double Precision Shift Right

shrd $imm8,r32,r/m32

shrd %cl,r16,r/m16

shrd %cl,r32,r/m32

sldt sldt r/m16 Store Local Descriptor Table

Register

smsw smsw r/m16 Store Machine Status Word

stc stc Set Carry Flag

std std Set Direction Flag

sti sti Set Interrupt Flag

stos/stosb/stosw/stosd Store String Data

stos m8

stos m16

stos m32

stosb

stosw

stosd

(optional forms with segment override)

stosb %al,%seg:0(%edi)

stosw %ax,%seg:0(%edi)

stosd %eax,%seg:0(%edi)

str str r/m16 Store Task Register

sub sub $imm8,r/m8 Integer Subtraction

sub $imm16,r/m16

sub $imm32,r/m32

sub $imm8,r/m16

sub $imm8,r/m32

sub r8,r/m8

sub r16,r/m16

sub r32,r/m32

sub r/m8,r8

sub r/m16,r16

sub r/m32,r32

test test $imm8,r/m8 Logical Compare

test $imm16,r/m16

test $imm32,r/m32

test r8,r/m8

test r16,r/m16

test r32,r/m32

verr, verw verr r/m16 Verify a Segment for Reading or

    verw r/m16 Writing

wait wait Wait

wbinvd wbinvd Write-Back and Invalidate

    Cache (i486-specific)

wrmsr wrmsr Write to Model-Specific

Register (Pentium-specific)

xadd xadd r8,r/m8 Exchange and Add

xadd r16,r/m16 (i486-specific)

xadd r32,r/m32

xchg xchg r16,%ax Exchange Register/Memory

xchg %ax,r16 with Register

xchg %eax,r32

xchg r32,%eax

xchg r8,r/m8

xchg r/m8,r8

xchg r16,r/m16

xchg r/m16,r16

xchg r32,r/m32

xchg r/m32,r32

xlat/xlatb xlat m8 Table Look-up Translation

xlatb

xor xor $imm8,r/m8 Logical Exclusive OR

xor $imm16,r/m16

xor $imm32,r/m32

xor $imm8,r/m16

xor $imm8,r/m32

xor r8,r/m8

xor r16,r/m16

xor r32,r/m32

xor r/m8,r8

xor r/m16,r16

xor r/m32,r32

