
The makefiles used by ProjectBuilder may be divided into three groups, which will be
discussed below.

Project-Type Makefiles

The project-type makefiles contain rules and variables specific to building a particular
project type.

Imported Variables

Project-type makefiles assume that the following variables will be provided by
common.make:
PRODUCT_DIR:    An absolute path to the directory where the product should be

located.
DEPENDENCIES:    A list of all .o files, definition files, and other files required by the

product.
LOADABLES:    A list of all .o files, definition files, and other files required by the

product, correctly formatted for ld (for example, if DEPENDENCIES contains
"foo.ofileList" then LOADABLES will contain "-filelist foo.ofileList").

ALL_LDFLAGS:    A list of flags to pass to ld.
ALL_LIBTOOLFLAGS: A list of flags to pass to libtool.

Exported Variables

Project-type makefiles define the following variables for use by common.make:
PROJTYPE:    The type of project (BUNDLE, LIBRARY, etc.).
PRODUCTS:    A list of products to be built by the project. All existing project types only

define one product, prefixed by PRODUCT_ROOT.
STRIPPED_PRODUCTS:    A list of products to be stripped during installation.    The

paths in this variable should match the paths in PRODUCTS.
PROJTYPE_*FLAGS:    A list of flags to be passed to various tools.    For example,

app.make defines PROJTYPE_LDFLAGS to -win on Windows.

Exported Targets

Project-type makefiles must define the rules for building their products.    These rules are
invoked from common.make.    A sample rule (assuming that PRODUCTS = $
(PRODUCT))may look like this:
$(PRODUCT): $(DEPENDENCIES)
$(LD) -o $@ $(ALL_LDFLAGS) $(LOADABLES)

aggregate.make
Aggregate projects contain other projects.    None of the standard make targets have
any particular meaning in aggregates -- the target is simply applied to all of the
subprojects.

app.make
Applications are wrapped projects which contain a launchable executable and a number
of resources.

bundle.make
Bundles are wrapped projects which contain a loadable executable and a number of
resources.

framework.make
Frameworks are wrapped projects which contain a shared library, header files, and a
number of resources.    Framework projects may be versioned, whereby a given
framework contains numerous historical releases of the library and applications load the
version that they were linked against.

library.make
Library projects create either static or shared libraries.    Unlike most project types,
libraries have more than one destination when they are installed (the library itself, the
public header files, and the private header files)

palette.make
Palettes are a special type of bundle used by InterfaceBuilder.

subproj.make
Subprojects are a way of organizing your code during development, but have no effect
on the final product (i.e., a resource of a subproject will appear in the same location as a
resource of the main project).

tool.make
Tools are standalone executables with no resources.    Tools are almost always
command-line programs.

Target Makefiles

The target makefiles contain the rules and variables specific to the top-level rules that
will be invoked on the project.    These rules recurse through the various subprojects,
and also invoke earlier top-level rules.    The "most final" target is install, which results
in the following sequence of events:
prebuild is invoked on the current project and on every subproject it contains.
build is invoked on the current project and on every subproject it contains
install is invoked on the current project only
postinstall (found in install.make) is invoked on the current project and on every
subproject it contains.    Postinstall processing also invokes a nonrecursive installhdrs
on each project as it processes it.

prebuild.make
The prebuild target is generally invoked implicitly by the build target, but it may be
invoked directly as well.    The prebuild target creates the resource directories, header
file directories, and copies all public/project/private header files into their correct
locations.

build.make
The build target is the target which is most commonly used, and is fired by the
shorthand "all" target.    The build target creates a version of the product in the $
(SYMROOT) directory.

installhdrs.make
The installhdrs target is generally invoked as part of the install target, but may be
invoked directly.    The installhdrs target copies the public and private header files to
their appropriate locations in $(DSTROOT).

install.make
The install target is used to install the finished product in $(DSTROOT).    The install
target implicitly invokes the prebuild, build, and installhdrs targets.

other targets
Two additional targets (sv and clean) are sufficiently simple that they appear in
common.make rather than having their own files.    The clean target deletes temporary
files created during the build, and the sv target shows the contents of the variable
whose name is in the variable V (i.e. make sv V=ALL_CFLAGS will list the compile
flags).

Functionality Makefiles
The remaining makefiles are used to provide functionality that is needed by all builds.   
The following files are functionality makefiles:

flags.make
The flags makefile contains definitions for the flags used to compile and link source
files.    Clients may add flags via the OTHER and LOCAL variables.    For example,
OTHER_CFLAGS=-DDEBUG will add -DDEBUG to the compile flags of the current
project and all its subprojects.    LOCAL_LDFLAGS=-lm will add -lm to the link flags of
the current project only.

implicitrules.make
This makefile contains implicit rules for generating object files from C, Objective-C,
Objective-C++, and Assembly source files.    It also contains implicit rules for generating
intermediate source files from a number of specification files (lex, yacc, pswraps, etc.).

tools-NEXTSTEP.make
tools-WINDOWS.make

The tools makefiles contain paths to the various build tools (cc, ld, mv, etc.) on the
various architectures.

common.make
The common makefile is the heart of the project makefiles.    It includes the target and
other functionality rules, and defines most of the internal variables used by the
makefiles.

compatibility.make
The compatibility makefile contains variable definitions to provide backward-
compatibility with project_makefiles projects.

platform.make
The platform makefile contains a single variable definition which lets the makfiles know
what platform they are being used on.

recursion.make
The recursion makefile contains the rules required to build targets in subprojects.    The
pattern target@directory will change to directory and invoke make with target.    If you
want to go deeper, you can reverse-stack the directories (i.e.,
target@subdirectory@directory).    Recursion is only explicitly supported for a small
number of targets, but the R variable allows you to recurse on arbitrary rules (i.e., "make
countlines@parser.subproj@interpreter.tproj R=countlines").

version.make
The version makefile is used to determine the current project version.

wrapped-common.make
The wrapped-common makefile contains rules common to all projects with wrapped-
style products (applications, bundles, palettes, and frameworks).

