
Object Links for Draw (file: 
gvLinks.m)

Object Links are not currently a part of the OpenStep specification, 
so the implementation that is Draw has not been debugged or 
tested in any way to work.    This documentation may also refer to 
methods, etc., that have been renamed in OpenStep.    Despite that, 
the code and this documentation is left here for reference.

There are a number of things you have to do to implement Object 
Links in an application.    Many of them are optional (depending on 
the level of functionality you want or are able to provide), but Draw 
does them ALL, so this should be a good reference point for you.

Please refer to the documentation in the system about Object Links 



to get an overall background in place before reading this document.

DrawDocument

Note first that Object Links only works on a document basis, so the 
GraphicView object cannot do links on its own.    Only the 
DrawDocument object knows the name of the file, for example, and 
this is crucial to making links work.    So, even though most of the 
implementation of Object Links in Draw is in GraphicView 
(actually, a category thereof found in gvLinks.m), you'll notice that 
it is the DrawDocument which creates (and is the delegate of) the 
NXDataLinkManager, etc.    However, it usually forwards most of 
the messages it gets from the NXDataLinkManager onto the 
GraphicView.

Note also that a significant part of making Object Links work in Draw 



is all the messages that DrawDocument sends TO the 
NXDataLinkManager (grep for ``[linkManager'' in 
DrawDocument.m to find all those calls).    DrawDocument is 
responsible for letting the system know when something about the 
document changes (e.g. the document is saved or closed or 
reverted to saved or whatever).

The ``Publish'' aspect of Draw is done via the saveLink: method 
in DrawDocument.    You should be able to understand the 
implementation of this method after reading all the description of 
how Object Links works below.

It also calls updateLinksPanel from its windowDidUpdate: 
method to keep the Link Inspector panel up to date.

Now let's dive into how Draw actually implements the Object Links 



mechanism ...

Selections

The most important part of participating in Object Links is also the 
part that requires the most thought.    It is the process of 
representing a ``selection'' in your document.    It is appropriate that 
this be the most ``difficult'' thing to do in Object Links because it is 
the part of the Object Links mechanism that is purely application-
dependent.    NeXTSTEP tries to do as much of the Object Links 
functionality for you, but it cannot do the things that are dependent 
upon what your application does for a living.

A ``linked-to'' selection (``source'' selections):

If you want people to link to documents in your application, you 



must be able to describe a selection that the user makes and then 
copies and pastes (and links) into another document in another 
application.    This selection description can be anything you want 
(it's a ``bag o' bits''), but it must survive and make sense no matter 
what happens to the source document (unless, of course, the items 
in the selection the user originally made eventually get deleted, but 
even that case you must detect).

How you represent this selection is really something you must think 
about carefully.    Draw actually has more than one way of 
representing the selection (this may well be true in the case of your 
application too).    Draw's selection-representation choice is purely 
for example purposes and you should, by no means, draw the 
conclusion that Draw's way is the only way (or even the best way) to 
represent a selection in an application that manipulates graphical 
elements (and obviously, Draw's way is not appropriate for text 
manipulation, spreadsheets, and other kinds of applications).



Okay, now that the disclaimer is out of the way, let's talk about how 
Draw represents selections that it exports to other applications.    
First, note that you can get the ``selection'' that the user has made 
in a GraphicView at any time by calling the currentSelection 
method defined in this file.    It returns an NXSelection object (the 
bag o' bits mentioned above) representing the current selection.

So, how does Draw represent is current selection?

1. [NXSelection allSelection]

This is the selection that is created when the user does Select All 
(and only in that case).    The allSelection method of 
NXSelection returns a ``special'' selection that Draw just chooses 
to know how to interpret.    Most applications will want to handle this 



special-case of allSelection.

2. Drag-Selection

When the user drags out a box to make a selection in Draw, the 
NXSelection that Draw uses to represent that state is the 
rectangle the user dragged out.    Then, whenever Draw is asked 
about this NXSelection, it just intersects that rectangle with the 
current state of the Graphic's in the view.

This is a particularly questionable type of selection because the 
user often ends up with ``not quite what she expected.''    On the 
other hand, it is a bit more accurate than selection type #3 below 
because it remembers a bit more of the semantics of what the user 
selected.    In any case, I have included it to show you what an 
alternative selection mechanism might be like and how to handle it.



The getRect:forSelection: method returns YES if the 
NXSelection passed to it is of the drag-select type (and, 
obviously, the ``rect'' that it ``gets'' is the rect the user dragged out to 
make her original selection).

3. Individual Graphic Selection

In this case, Draw just remembers the unique identifiers of each of 
the Graphic's in the selection.    Then, when the system asks Draw 
about a selection of this kind, it looks in the current state of the 
Draw document for all of these items.    Note that it also includes any 
Group objects which include one of the Graphic's in the original 
selection.    Users can use this to, for example, have a background 
which they include in the original copy/paste link and then group 
whatever image they want to be the ``currently exported thing'' with 



that background.

The best selection mechanism would probably be some mixture of 
#2 and #3 (and perhaps some other types of selection 
mechanisms).    I've chosen these two because they are easy to 
understand.

The findGraphicsInSelection: method returns a List object 
with all the Graphic's in the current document represented by the 
NXSelection passed to it.    This method can handle all three sorts 
of ``source'' selections (i.e. #1, #2, and #3 above).    This method 
calls the above-mentioned getRect:forSelection: method to 
handle case #2.

A ``linked-from'' selection (``destination'' selections):



If you allow the user to copy something from another application 
and Paste and Link it into the documents your application edits, you 
must be able to describe where in your document the thing was 
Paste and Link'ed.    This, too, is just a description of a selection in 
your document.

Since Draw only allows PostScript and TIFF (i.e. NXImage-handled 
data types) and RTF and ASCII (i.e. Text object-handled data 
types) to be Paste and Link'ed in (of course, these are the only types 
Draw allows to be normal-pasted in as well!), Draw represents this 
sort of ``destination'' selection by just remembering which Image or 
TextGraphic was created to import the data (since all objects in 
Draw have a unique identifier associated with them, this is an easy 
task).

There is a method implemented in the Graphic base class called 



``selection'' which returns an NXSelection which describes the 
Graphic you sent the message to in terms of its unique identifier 
(i.e., it creates an NXSelection and tosses the unique identifier of 
the receiving Graphic into the bag o' bits and returns it to you).    
The findGraphicInSelection: method in this file searches 
through the document to find the Graphic with the corresponding 
unique identifier extracted from the NXSelection passed to it.

Importing/Exporting Link Data

Okay, so now you understand how Draw creates an NXSelection 
object to represent either a selection made in a Draw document 
which is going to be exported to another application via Copy/Paste 
and Link and also how it represents a selection which describes 
which Graphic is the receiving end of an Object Link.    Let's 
quickly talk about how Draw exports a link and how it imports a link.



Exporting:

It exports a link via the method 
writeLinkToPasteboard:types:.    This is a very simple 
method, but very important to the Object Links mechanism.    It does 
two distinct things:

1. It creates and writes an NXDataLink object to the Pasteboard 
which includes all the stuff another application would need to know 
to create an Object Link to the current selection the user has made 
in Draw (primarily just the currentSelection itself and the data 
types Draw will export (e.g. PostScript and TIFF)).    This is the most 
important thing this method does.

2. It writes all of the links in the GraphicView to the Pasteboard.



Why, you may ask, does it do this?    Well, if you copy an Image in 
Draw which is actually the destination of an Object Link (not the 
source of a link, but the DESTINATION), then if you pasted that 
Image into another Draw document, you want it to keep its 
``linkness'', i.e., you want the thing you pasted to also get updates 
when the source of that Image gets updated.    Simple, huh?

Which brings us to the 
readLinkForGraphic:fromPasteboard:useNewIdentifier
: method.    It's the thing that is called every time you paste a 
Graphic into Draw to get that pasted Graphic properly linked up 
with the NXDataLinkManager in the Draw document you paste it 
into.

It is implemented by calling the 



addLinkPreviouslyAt:fromPasteboard:at: method in 
NXDataLinkManager which simply reestablishes the link that 
Image has to another document (that was at oldSelection in the old 
document) by setting the destination selection of the link to the 
selection which represents the Image's location in the new 
document ([graphic selection]).

The useNewIdentifier thing is so that if you copy and immediately 
paste back into the same document, no actual change occurs (this 
is important in case someone else is linked to something that is in 
turn linked to something else--just trust me, you want copy/paste 
from/to the same document to be a net ``no-change'' in the 
document as far as links are concerned).

Importing:



Importing a linked thing happens only via the 
addLink:toGraphic:at:update: method.    No where else in 
Draw is a linked thing added to the document (except, of course in 
readLinkForGraphic:fromPasteboard:useNewIdentifier
:, but that's a special case).

Let's quickly summarize how this method works:

The arguments are simple.    The link is an NXDataLink gotten 
either from a file (.objlink) or from a Pasteboard (during Paste 

and Link) or was alloc/init'ed pointing to a file.    See the callers of 
addLink:... to see about that.    The graphic is just an Image or 
TextGraphic created from the same Pasteboard we got the link 
out of or from the file that we alloc/init'ed the link to point to.    If 
graphic nil, then we probably got the link from a .objlink file, so 
we don't actually know what kind of data we're talking about yet.    



We take care of that first thing in this method (see the next 
paragraph).    The update argument is used to describe whether this 
is a normal link, or a link which is never updated (link buttons and 
links to files represented by the file's icon are the classic examples 
of these) or a link which must be updated immediately because we 
don't yet have any data for it (again, see the next paragraph).

The first if-statement handles the case of pasting or dragging in an 
NXDataLink without any corresponding data (i.e. no PostScript or 
TIFF to go with it).    This is always the case for a .objlink file, 
and could conceivably be the case for a Copy/Paste and Link if the app 
that copied the stuff in only copied the NXDataLink and forgot to 
(or chose not to for some reason) put the thing being linked to itself 
in the Pasteboard.    Anyway, what that first if-statement does is 
figure out what data types the NXDataLink deals in (again, e.g., 
PostScript or RTF or some such) and creates an ``empty'' Graphic 



(an Image or TextGraphic) which will be filled in immediately 
when, later in the method, we force an updateDestination to 
occur (setting the update mode to UPDATE_IMMEDIATELY is what 
does this).

The second if-statement is what's doing all the work, of course.    
First, it asks the Graphic which is going to be the destination of 
this Object Link (it'll be an Image or TextGraphic) for an 
NXSelection object which represents it.    Then it ``adds'' the link 
to the NXDataLinkManager.        If the link is successfully added, 
then we let the Image or TextGraphic know about the link to it 
(only so that we can ask for it back later, the Image and 
TextGraphic's never actually do anything themselves with the 
link).    Next, we put the Graphic into the document using the 
standard placeGraphic:at: method that we always use to add 
foreign data to the view (see gvPasteboard.m).



Finally, if we need to update the link immediately because we have 
no data, we do so by calling updateDestination, then ensuring 
that the update actually caused some data to flow over by seeing if 
the Graphic isValid.    This works well for Image's, but not so 
well for TextGraphic's, I'm afraid (they always say they are valid!). 
Anyway, it's better than nothing.

That's it for exporting and importing links.    Not so bad, is it?

Updating Links

Now, how do we actually update links (in either direction)?    This, 
too, is simple.    Whenever NeXTSTEP wants you to update 
someone else who is linked to you, it sends you the message 
copyToPasteboard:at:cheapCopyAllowed:.    Whenever 



NeXTSTEP asks someone else to update something that is linked 
into your document, it sends you the message 
pasteFromPasteboard:at: (or importFile:at: if it's a whole 
file).    All you have to do is to responds to these messages sensibly 
(you should assume that they can be called at any time).    Return 
nil from these methods if the NXSelection's in question no 
longer exist (in their entirety).

Draw's implementation of these methods is very straightforward 
(these methods are almost always really easy to implement if you 
already implement Copy/Paste or Services).

In pasteFromPasteboard:at:, it just finds the Image or 
TextGraphic represented by the NXSelection passed to it (see 
findGraphicInSelection:), then sends a message to that 
Graphic to reinitialize itself with the data in the Pasteboard 



passed to it.    It then updates the view and marks the view as 
edited.

The method importFile:at: is just like 
pasteFromPasteboard:at:, except that the source of the data 
comes out of a file instead of from a Pasteboard.    This happens 
when you create an Object Link to a whole file without involving the 
application that knows how to edit that file (see gvDrag.m and the 
stuff where we drag a file into Draw with the Control key down 
(which means create a link to this file)).

In copyToPasteboard:at:cheapCopyAllowed:, there are 
basically two paths that can be taken depending on whether 
cheapCopyAllowed is true.    cheapCopyAllowed just means that 
you can use the lazy pasteboard mechanism to the fullest because 
NeXTSTEP guarantees that no changes to your document can 



occur between the time this method is called and the time the lazy 
provideData: is called.    In other words, when 
cheapCopyAllowed is true, we don't actually have to write the Draw 
objects in the selection to the pasteboard by value, we can simply 
write a reference to them.

So, in Draw, when cheapCopyAllowed is true, we just declare that 
we can provide PostScript and TIFF, but write neither to the 
Pasteboard (we'll provide it lazily).    Of course, when the lazy 
provideData: is called, we have to know what part of our 
document to put into the Pasteboard, so we simply drop in the 
NXSelection that we were asked to copyToPasteboard:.

Thus, in the cheapCopyAllowed case, the actual work of putting the 
data in is done in the INSTANCE method 
pasteboard:provideData:!    It is okay to use the instance as 



the owner of the Pasteboard because the system has guaranteed 
us that our document would not be changed (especially not 
FREED!).    The implementation of provideData: is really simple 
since we already had methods lying around that could write the 
PostScript or TIFF for a list of Graphic's into a stream 
(write{PS,TIFF}ToStream:usingList:).    We get the list of 
Graphic's to write from the NXSelection we put in there (see 
how this all just dovetails together? Idn it great?).

When cheapCopyAllowed is not true, then we just do what we 
normally do when the user hits Copy, we just do it with the 
Graphic's that are in the passed NXSelection instead of the 
ones in the current selection.    We plop the list of Graphic's into 
the Pasteboard and let the normal lazy Pasteboard stuff take 
care of the rest (the CLASS method pasteboard:provideData: 
in this case, see gvPasteboard.m).



Miscellaneous methods.

There's a few other little methods you may want to implement.

You'll probably want something akin to updateLinksPanel which 
just keeps the Link Inspector panel up to date (it is called from 
windowDidUpdate: in DrawDocument).

The showSelection: method in gvLinks.m (the actual names of 
some of these methods is different, see DrawDocument.m which 
forwards them onto GraphicView) is sent by NeXTSTEP when the 
user asks to show the source of an Object Link that comes from 
your document.    It is very nice to respond properly to this message 
(the user will certainly be expecting this to work in your application). 
It is very easy for Draw to get the bounding box of the Graphic's in 



the passed selection (it even draws the little drag-selection 
rectangle if that's the kind of NXSelection it is) since we already 
have methods lying around that, given a list of Graphic's can find 
their bounding box.

There is one notable thing that Draw does when showing source 
selections.    It uses the fact that all the drawing done in a Draw 
document is actually done in an off-screen cache and composited to 
the screen.    When Draw shows a source selection, it draws them 
directly to the on-screen window, then remembers the areas in 
which it draw (this is the invalidRect).    Then, it leaves the 
source selection showing until the user touches the view (see 
drawSelf::) at which point, it just blows the invalidRect away 
by copying that rectangle from the off-screen cache.    If you do 
double-buffering like this in your application, this trick is easy and 
effective.



The breakLinkAndRedrawOutlines: method in Draw is what 
keeps the link outlines up-to-date.    When the user chooses Show 
Links from the menu, all things that are linked into your document 
should show a border around them (there is a NeXTSTEP function 
to draw this border).    These borders are kind of the opposite of 
what the showSelection: method draws (i.e. showSelection: 
shows what Object Links originate in your document, and Show Links 
shows the Object Links that are linked into your document from 
somewhere else).    The argument to 
breakLinkAndRedrawOutlines: is a link that was recently 
broken by NeXTSTEP (this method is called from DrawDocument's 
dataLinkManager:didBreakLink: and 
dataLinkManagerRedrawLinkOutlines: methods which are 
sent by NeXTSTEP).



If the link argument is nil, it means that no link was broken, so 
Draw just redraws all the link outlines.    If the argument is not nil, 
then the method searches for the Graphic which held that link and 
redraws it so that it's outline goes away.    Furthermore, if it was a 
link that didn't show the source data (i.e. it was a link button or file 
icon or something), that Graphic is removed from the document 
(since it is now disconnected and useless--don't we all feel that way 
sometimes?).

Tracking Links

Finally, there is the task of tracking the sources of links.    This is 
optional behaviour but is really a must if you want to implement 
Continually updating links.    The idea here is that you tell NeXTSTEP 
when a selection which is the source of a link which you export has 
changed.    Otherwise, NeXTSTEP has to assume that every time 



your document is edited that all the links that you export have 
changed.    In other words, this is a performance optimization, but a 
valuable one.

Note that you don't have to track all your links, only the ones that 
are showing up in other documents that are on the screen at the 
same time.    NeXTSTEP (through the NXDataLinkManager) will 
tell you when to start and stop tracking links (NeXTSTEP is such a 
polite entity, is it not?).

Draw tracks links very easily by making the assumption that if any 
region of the Draw document which is redrawn overlaps the source 
of a link, that link must have changed and needs to be updated.    
Since Draw has a nice knothole through which all updates to the 
document go (cache:), this is a mere matter of keeping track of the 
boundaries of the sources of links which Draw exports.



Draw does this by keeping a Storage object which a struct in it that 
has three pieces of information.

1. The rectangle which encloses the source of the link.
2. The link in question.
3. What type of selection is involved (all, drag or normal).

Almost every time cache: is called (sometimes 
cache:andUpdateLinks: is called with NO as its argument, but 
not very often, grep the code and you find out the times when that is 
necessary) the method updateTrackedLinks: is called.    This 
method has a two-fold purpose:

1. Notify the NXDataLinkManager if any of the currently-being-
tracked links intersects the area which was just cache:'ed.



2. Reevaluate the bounds of any of the source selections that 
intersects the area which was just cache:'ed.

We must do step #2, because the thing that might have caused 
cache: to get called could have been that the user resized one of 
the objects which are linked to.    Thus, step #2 is not necessary for 
the drag-selection (since that originally dragged-out box can never 
``change size'') and allSelection cases.    Step #2 is 
implemented simply by getting the NXSelection from the link, 
calling findGraphicsInSelection:, then calling the already-
existing getBBox:of: method.

All we do in startTrackingLinks: and stopTrackingLinks: 
is add/remove structs from the Storage object.

Summary



Well, that's all there is about links and Draw.    I hope this document 
is illuminating.    The take-home messages should be that Object 
Links should be simple to implement if you already implement 
Copy/Paste and/or Services.    The only ``hard part'' might be figuring 
out how to represent a selection in your document.    Good luck with 
that part. :-)


