


init
initTextCell:
initIconCell:
copyFromZone:
free

Determining component sizes calcCellSize:inRect:
getDrawRect:
getTitleRect:
getIconRect:

Setting the titles setTitle:
setTitleNoCopy:
title
setAltTitle:
altTitle
setFont:

Setting the icons setIcon:
icon
setAltIcon:
altIcon
setImage:
image
setAltImage:
altImage
setIconPosition:
iconPosition

Setting the Sound setSound:
sound

Setting the state setDoubleValue:



doubleValue
setFloatValue:
floatValue
setIntValue:
intValue
setStringValue:
setStringValueNoCopy:
stringValue

Setting the repeat interval setPeriodicDelay:andInterval:
getPeriodicDelay:andInterval:

Tracking the mouse trackMouse:inRect:ofView:
Setting the key equivalent setKeyEquivalent:

setKeyEquivalentFont:
setKeyEquivalentFont:size:
keyEquivalent

Setting parameters setParameter:to:
getParameter:

Modifying graphic attributes setBordered:
isBordered
setTransparent:
isTransparent
isOpaque

Modifying display behavior setType:
setHighlightsBy:
highlightsBy
setShowsStateBy:
showsStateBy

Simulating a click performClick:
Displaying the ButtonCell drawInside:inView:

drawSelf:inView:
highlight:inView:lit:

Archiving read:
write:

(const char *)altIcon

Returns the name of the NXImage that appears on the ButtonCell when it's in its alternate state, or NULL if there is no
alternate icon or the NXImage has no name. This NXImage is displayed only for ButtonCells that highlight or show their
alternate state by displaying their alternate contents (as opposed to simply lighting or pushing in).

setAltIcon:, setIconPosition:, altImage, icon, image, setType:

altImage

Returns the NXImage that appears on the ButtonCell when it's in its alternate state, or nil if there is no alternate
NXImage. This ButtonCell only displays its alternate NXImage if it highlights or shows its alternate state by displaying
its alternate contents.

setAltImage:, setIconPosition:, altIcon, image, icon, setType:

(const char *)altTitle

Returns the string that appears on the ButtonCell when it's in its alternate state, or NULL if there isn't one. The alternate
title is only displayed if the ButtonCell highlights or shows its alternate state by displaying its alternate contents.



setAltTitle:, title, setType:

calcCellSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Returns self, and by reference in theSize the minimum width and height required for displaying the ButtonCell in aRect.
This minimum size is the larger of the sizes required for displaying the normal contents or the alternate contents, plus any
space needed to display a border.

getDrawRect:, getIconRect:, getTitleRect:

copyFromZone:(NXZone *)zone

Allocates, initializes, and returns a copy of the receiving ButtonCell. The copy is allocated from zone and is given the
same data as the receiver.

(double)doubleValue

Returns 0.0 if the ButtonCell is in its normal state, 1.0 if the it's in its alternate state.

setDoubleValue:, floatValue, intValue, stringValue

drawInside:(const NXRect *)aRect inView:controlView

Draws the inside of the ButtonCell (the title, icon, and their background, but not the border) in aRect within controlView.
aRect should be the same rectangle passed to drawSelf:inView:. The PostScript focus must be locked on controlView
when this message is sent. This method is invoked by drawSelf:inView: and by the Control classes' drawCellInside:
method. It's provided so that when a ButtonCell's state is set (with setIntValue:, for example), a minimal update of the
ButtonCell's visual appearance can occur. Returns self.

If you subclass ButtonCell and override drawSelf:inView:, you must also override this method. However, you are free to
override only this method and not drawSelf:inView: if your subclass doesn't draw outside the area that ButtonCell draws
in.

drawInside:inView: (Cell), drawSelf:inView:, lockFocus (View)

drawSelf:(const NXRect *)cellFrame inView:controlView

Displays the ButtonCell in cellFrame within controlView. The PostScript focus must be locked on controlView when this
message is sent. Draws the border of the ButtonCell if necessary, then invokes drawInside:inView:. Returns self.

drawInside:inView:, lockFocus (View)

(float)floatValue

Returns 0.0 if the ButtonCell is in its normal state, 1.0 if it's in its alternate state.

setFloatValue:, doubleValue, intValue, stringValue

free

Frees the memory used by the ButtonCell and returns nil.



getDrawRect:(NXRect *)theRect

Returns self and, by reference in theRect the bounds of the area into which the title and icon (not including the border) are
drawn. You must pass the bounds of the ButtonCell in theRect (the same bounds calculated by calcCellSize:inRect: and
passed to drawSelf:inView:). This method assumes that the ButtonCell is being drawn in a flipped View.

getIconRect:, getTitleRect:, calcCellSize:inRect:

getIconRect:(NXRect *)theRect

Returns self and, by reference in theRect, the bounds of the area into which the icon of the ButtonCell will be drawn. This
will be the larger of the bounds for the normal and the alternate icons. If the ButtonCell has no icon, then theRect will be
completely zeroed. You must pass the bounds of the ButtonCell in theRect (the same bounds calculated by calcCellSize:
inRect: and passed to drawSelf:inView:). This method assumes that the ButtonCell is being drawn in a flipped View.
Returns self.

getTitleRect:, getDrawRect:, calcCellSize:inRect:

(int)getParameter:(int)aParameter

Returns the value of one of the frequently accessed flags for a ButtonCell. See setParameter:to: for a list of the
parameters and corresponding methods. Since the parameters are also accessible through normal querying methods, you
shouldn't need to use this method often.

setParameter:to:

getPeriodicDelay:(float *)delay andInterval:(float *)interval

Returns self, and by reference the delay and interval periods for a continuous ButtonCell. delay is the amount of time (in
seconds) that a continuous ButtonCell will pause before starting to periodically send action messages to the target object.
interval is the amount of time (also in seconds) between those messages.

setContinuous: (Cell), setPeriodicDelay:andInterval:

getTitleRect:(NXRect *)theRect

Returns self and, by reference in theRect a copy of the bounds of the area into which the ButtonCell's title will be drawn.
This will be the larger of the bounds for the normal and the alternate titles. If the ButtonCell has no title, then theRect
will be completely zeroed. You must pass the bounds of the ButtonCell in theRect (the same bounds calculated by
calcCellSize:inRect: and passed to drawSelf:inView:). This method assumes that the ButtonCell is being drawn in a
flipped View.

getIconRect:, getDrawRect:, calcCellSize:inRect:

highlight:(const NXRect *)cellFrame
inView:controlView
lit:(BOOL)flag

Displays the ButtonCell in cellFrame if its highlight state is not equal to flag. The PostScript focus must be locked on
controlView when this method is invoked. If flag is YES, the ButtonCell is displayed as highlighted. How this is done
depends on how the ButtonCell has been configured see the description of setHighlightsBy: for the possible manners of
highlighting. This method does nothing if the ButtonCell is disabled or transparent. Returns self.

lockFocus (View)



(int)highlightsBy

Returns the logical OR of flags that indicate the way the ButtonCell highlights when it gets a mouse-down event. See
setHighlightsBy: for the list of flags.

setHighlightsBy:, showStateBy, setShowsStateBy:

(const char *)icon

Returns the name of the NXImage that appears on the ButtonCell when it's in its normal state, or NULL if there is no
such NXImage or the NXImage doesn't have a name. A ButtonCell that doesn't display its alternate contents to highlight
or show its alternate state will always display its normal icon.

setIcon:, setIcon:position:, setIconPosition:, image, altIcon, altImage, setType:

(int)iconPosition

Returns the position of the ButtonCell's icon (if any). See setIconPosition: for a list of the valid positions.

setIconPosition:

image

Returns the NXImage that appears on the ButtonCell when it's in its normal state, or nil if there is no such NXImage. This
NXImage is always displayed on a ButtonCell that doesn't change its contents when highlighting or showing its alternate
state.

setImage:, setIconPosition:, icon, altImage, altIcon, setType:

init

Initializes and returns the receiver, a new text ButtonCell, with the title ªButtonº aligned in the center. The new
ButtonCell is enabled, but has no icon, tag, target, action, or key equivalent associated with it. The new ButtonCell is
bordered, and is of type NX_MOMENTARYPUSH.

initIconCell:, initTextCell:

initIconCell:(const char *)iconName

Initializes and returns the receiver, a new ButtonCell instance that displays an icon. iconName is the name of an
NXImage that will be used for the Button's icon. The new ButtonCell is enabled, bordered, and is of type
NX_MOMENTARYPUSH.

This is the designated initializer for ButtonCells that display icons.

initTextCell:, init

initTextCell:(const char *)aString

Initializes and returns the receiver, a new ButtonCell instance that displays a title. aString is the title that will be used it
will be displayed in the user's default system font (as set with the Preferences application), 12.0 point size, and aligned in
the center. The new ButtonCell is enabled, is bordered, and is of type NX_MOMENTARYPUSH.

This is the designated initializer for ButtonCells that display titles.

initIconCell:, init



(int)intValue

Returns 0 if the ButtonCell is in its normal state, 1 if in its alternate state.

setIntValue:, doubleValue, floatValue, stringValue

(BOOL)isBordered

Returns YES if the ButtonCell has a border, NO if not. A ButtonCell's border isn't the single line of most other Cells'
borders instead, it's a raised bezel (ªbezelº usually refers to a depressed bezel, as seen on FormCells, for example).

setBordered:

(BOOL)isOpaque

Returns YES if the ButtonCell draws over every pixel in its frame, NO if not. The ButtonCell is opaque only if it is not
transparent and if it has a border.

isBordered, setBordered:, isTransparent, setTransparent:

(BOOL)isTransparent

Returns YES if the ButtonCell is transparent, NO if not. A transparent ButtonCell never draws anything, but it does
receive mouse-down events and track the mouse properly.

setTransparent:, isOpaque

(unsigned short)keyEquivalent

Returns the key equivalent character of the ButtonCell, or 0 if one hasn't been set.

setKeyEquivalent:, setKeyEquivalentFont:, setKeyEquivalentFont:size:

performClick:sender

If this ButtonCell is contained in a Control, then invoking this method causes the ButtonCell to act as if the user had
clicked it.

read:(NXTypedStream *)stream

Reads the ButtonCell from the typed stream stream. Returns self.

write:

setAltIcon:(const char *)iconName

Sets the ButtonCell's alternate icon by name iconName is the name of the NXImage to be displayed. Has the ButtonCell
redrawn if possible, and returns self.

A ButtonCell's alternate icon is only displayed if the ButtonCell highlights or shows its alternate state by changing its
contents.



altIcon, setIconPosition:, setAltImage:, setIcon:, setImage:, + findImageNamed: (NXImage), setType:

setAltImage:altImage

Sets the Button's alternate icon by id altImage is the NXImage to be displayed. Has the ButtonCell redrawn if possible,
and returns self.

A ButtonCell displays its alternate NXImage only if it highlights or displays its alternate state by using its alternate
contents.

altImage, setIconPosition:, setAltIcon:, setImage:, setIcon:, setType:

setAltTitle:(const char *)aString

Sets the title that the ButtonCell displays in its alternate state to aString. Doesn't display the ButtonCell even if
autodisplay is on in the ButtonCell's View. Returns self.

The alternate title is shown only if the ButtonCell changes its contents when highlighting or displaying its alternate state.

altTitle:, setTitle:, setType:

setBordered:(BOOL)flag

If flag is YES, the ButtonCell displays a border if NO, the If flag is YES, the ButtonCell displays a border if NO, the
ButtonCell doesn't display a border. A ButtonCell's border is not the single line or most other Cells' borders instead, it's
a raised bezel (ªbezelº usually refers to a depressed bezel, as seen on FormCells, for example). Your code shouldn't use
setBezeled: with a ButtonCell. This method redraws the ButtonCell if the bordered state changes. Returns self.

isBordered

setDoubleValue:(double)aDouble

If aDouble is 0.0, sets the ButtonCell's state to 0 (the normal state) if aDouble is nonzero, sets it to 1 (the alternate state).
Returns self.

doubleValue, setFloatValue:, setIntValue:, setStringValue:

setFloatValue:(float)aFloat

If aDouble is 0.0, sets the ButtonCell's state to 0 (the normal state) if aDouble is nonzero, sets it to 1 (the alternate state).
Returns self.

floatValue, setDoubleValue:, setIntValue:, setStringValue:

setFont:fontObject

Sets the Font used to displaying the title and alternate title. Does nothing if the cell has no title or alternate title. Returns
self.

If the ButtonCell has a key equivalent, its Font is not changed, but the key equivalent's Font size is changed to match the
new title Font.

setKeyEquivalentFont:, setKeyEquivalentFont:size:



setHighlightsBy:(int)aType

Sets the way the ButtonCell highlights itself while pressed, and returns self. aType can be the logical OR of one or more
of the following constants:

NX_PUSHIN (the default): The ButtonCell ªpushes inº when pressed if it has a border.

NX_NONE: The ButtonCell doesn't change. This flag is ignored if any others are set in aType.

NX_CONTENTS: The ButtonCell displays its alternate icon and/or title.

NX_CHANGEGRAY: The ButtonCell swaps the light gray and white pixels on the its background and icon.

NX_CHANGEBACKGROUND: Same as NX_CHANGEGRAY, but only background pixels are changed.

If both NX_CHANGEGRAY and NX_CHANGEBACKGROUND are specified, both are recorded, but which behavior is
used depends on the ButtonCell's icon. If there is no icon, or if the icon has no alpha (tranparency) data,
NX_CHANGEGRAY is used. If the icon does have alpha data, NX_CHANGEBACKGROUND is used this allows the
gray/white swap of the background to show through the icon's transparent pixels.

highlightsBy, setShowsStateBy:, showsStateBy

setIcon:(const char *)iconName

Sets the Button's icon by name iconName is the name of the NXImage to be displayed. Redraws the Button's inside and
returns self.

A ButtonCell's icon is displayed when the ButtonCell is in its normal state, or always if the ButtonCell doesn't highlight
or show state by changing its contents.

setIcon:position:, icon, setIconPosition:, setImage:, setAltIcon:, setAltImage:, + findImageNamed: (NXImage),
setType:

setIconPosition:(int)aPosition

Sets the position of the icon when a ButtonCell simultaneously displays both text and an icon. aPosition can be one of the
following constants:

NX_TITLEONLYtitle only (no icon on the Button)
NX_ICONONLYicon only (no text on the Button)
NX_ICONLEFTicon is to the left of the text
NX_ICONRIGHTicon is to the right of the text
NX_ICONBELOWicon is below the text
NX_ICONABOVEicon is above the text
NX_ICONOVERLAPSicon and text overlap (text drawn over icon)

If the position is top or bottom, the alignment of the text will be changed to NX_CENTERED. This behavior can be
overridden with a subsequent setAlignment: method. Redraws the Button's inside and returns self.

iconPosition, setAlignment: (ActionCell)

setImage:image

Sets the Button's icon by id image is the NXImage to be displayed. Redraws the Button's inside and returns self.

A ButtonCell's NXImage is displayed when the ButtonCell is in its normal state, or all the time for a ButtonCell that
doesn't change its contents when highlighting or displaying its alternate state.

image, setIconPosition:, setIcon:, setAltImage:, setAltIcon:, setType:

setIntValue:(int)anInt

Sets the ButtonCell's state to 1 if anInt is nonzero, 0 otherwise. Returns self.



intValue, setDoubleValue:, setFloatValue:, setStringValue:

setKeyEquivalent:(unsigned short)charCode

Sets the key equivalent character of the ButtonCell. Has the ButtonCell redrawn if needed. The key equivalent isn't
displayed if the icon position is set to NX_TITLEONLY, NX_ICONONLY or NX_ICONOVERLAPS. Returns self.

The key equivalent isn't displayed on a ButtonCell that has an icon. To make sure it gets displayed, set the image and
alternate image to nil before using this method.

keyEquivalent, setKeyEquivalentFont:, setKeyEquivalentFont:size:, performKeyEquivalent: (Button, Matrix classes)

setKeyEquivalentFont:fontObject

Sets the Font used to draw the key equivalent, and has the ButtonCell redrawn if possible. Does nothing if there is
already an icon associated with this ButtonCell. The default Font is the same as that used to draw the title. Returns self.

setKeyEquivalentFont:size:

setKeyEquivalentFont:(const char *)fontName size:(float)fontSize

Sets by name and size the font used to draw the key equivalent, and has the ButtonCell redrawn if possible. Does nothing
if there is already an icon associated with this ButtonCell. The default Font is the same as that used to draw the title.
Returns self.

setKeyEquivalentFont:

setParameter:(int)aParameter to:(int)value

Sets the value of one of a number of frequently accessed flags for a ButtonCell to value, and returns self. You don't
normally need to use this method since all of these flags can be set through specific methods (for example, setEnabled:,
setHighlightsBy:, and so on). The following table lists each constant used to identify a parameter with the methods for
setting and retrieving the value for that parameter:

getParameter:, setKeyEquivalent:



setPeriodicDelay:(float )delay andInterval:(float )interval

Sets the message delay and interval for the ButtonCell. These two values are used if the ButtonCell has been setÐby a
setContinuous: messageÐto continuously send its action message to its target object while tracking the mouse. delay is
the amount of time (in seconds) that a continuous ButtonCell will pause before starting to periodically send action
messages to the target object. interval is the amount of time (also in seconds) between those messages. Returns self.

The maximum value allowed for both delay and the interval is 60.0 seconds.

getPeriodicDelay:andInterval:, setContinuous: (Cell)

setShowsStateBy:(int)aType

Sets the way the ButtonCell indicates its alternate state. aType should be the logical OR of one or more of the following
constants:

NX_NONE (the default): The ButtonCell doesn't change. This flag is ignored if any others are set in aType.

NX_CONTENTS: The ButtonCell displays its alternate icon and/or title.

NX_CHANGEGRAY: The ButtonCell swaps the light gray and white pixels on its background and icon.

NX_CHANGEBACKGROUND: Same as NX_CHANGEGRAY, but only the background pixels are changed.

If both NX_CHANGEGRAY and NX_CHANGEBACKGROUND are specified, both are recorded, but the actual
behavior depends on the ButtonCell's icon. If there is no icon, or if the icon has no alpha (tranparency) data,
NX_CHANGEGRAY is used. If the icon exists and has alpha data, NX_CHANGEBACKGROUND is used this allows
the gray/white swap of the background to show through the icon's transparent pixels.

showsStateBy, setHighlightsBy:, highlightsBy

setSound:aSound

Sets the Sound that will be played when the mouse goes down in the ButtonCell, and whenever the cursor re-enters the
ButtonCell while tracking. Be sure to link against the Sound Kit if you use a Sound object. Returns self.

sound

setStringValue:(const char *)aString

Sets the ButtonCell's state to 1 if aString is non-null (even if the string is empty), 0 otherwise. Returns self.

setStringValueNoCopy:, stringValue

setStringValueNoCopy:(const char *)aString

Sets the ButtonCell's state to 1 if aString is non-null (even if the string is empty), 0 otherwise. Returns self.

setStringValue:, stringValue, setDoubleValue:, setFloatValue:, setIntValue:

setTitle:(const char *)aString

Sets the title displayed by the ButtonCell when in its normal state to aString. This title is always shown on ButtonCells
that don't use their alternate contents when highighting or displaying their alternate state. Redraws the Button's inside
and returns self.

setTitleNoCopy:, title, setAltTitle:



setTitleNoCopy:(const char *)aString

Similar to setTitle: but does not make a copy of aString. Returns self.

setTitle:

setTransparent:(BOOL)flag

Sets whether the ButtonCell is transparent. Returns self.

A transparent ButtonCell never draws, but does track the mouse and send its action normally. A transparent ButtonCell is
useful for sensitizing an area on the screen so that an action gets sent to a target when the area receives a mouse click.

isTransparent, isOpaque

setType:(int)aType

Sets the way the ButtonCell highlights while pressed, and how it shows its state. Redraws the ButtonCell if possible and
returns self. aType can be one of the following constants (as described in the Button class specification's setType:
method description):

NX_MOMENTARYPUSH
NX_MOMENTARYCHANGE
NX_PUSHONPUSHOFF
NX_ONOFF
NX_TOGGLE
NX_SWITCH
NX_RADIOBUTTON

setType: (Button), setHighlightsBy:, setShowsStateBy:

(int)showsStateBy

Returns the logical OR of flags that indicate the way the ButtonCell shows its alternate state. See setShowsStateBy: for
the list of flags.

setShowsStateBy:, highlightsBy, setHighlightsBy:

sound

Returns the Sound played when the ButtonCell gets a mouse-down event, and whenever the cursor re-enters the
ButtonCell while tracking.

setSound:

(const char *)stringValue

Returns ªº (an empty string) if the ButtonCell's state is 1 (the alternate state), or NULL if the state is 0 (the normal state).

setStringValue:, setStringValueNoCopy:, doubleValue, floatValue, intValue

(const char *)title

Returns the title displayed on the Button when it's in its normal state, or always if the Button doesn't use its alternate
contents for highlighting or displaying the alternate state. Returns NULL if there is no title.

setTitle:, setTitleNoCopy:



(BOOL)trackMouse:(NXEvent *)theEvent
inRect:(const NXRect *)cellFrame
ofView:controlView

Tracks the mouse by starting the Sound (if any) and sending trackMouse:inRect:ofView to super with the same
arguments. When super's method returns, stops the Sound if needed and returns YES if the mouse Button went up with
the cursor in the cell, NO otherwise. This method returns if the cursor leaves the bounds of the ButtonCell.

trackMouse:inRect:ofView: (Cell)

write:(NXTypedStream *)stream

Writes the receiving ButtonCell to the typed stream stream. Returns self.

read:


