

init
initContent:style:backing:buttonMask:defer:
initContent:style:backing:buttonMask:

defer:screen:
Freeing a Window object free
Computing frame and content rectangles

+ getFrameRect:forContentRect:style:
+ getContentRect:forFrameRect:style:
+ minFrameWidth:forStyle:buttonMask:

Accessing the frame rectangle getFrame:
getFrame:andScreen:
setFrameUsingName:
saveFrameUsingName:
+ removeFrameUsingName:
setFrameAutosaveName:
frameAutosaveName
setFrameFromString:
saveFrameToString:

Accessing the content view setContentView:
contentView

Querying Window attributes windowNum
buttonMask
style
worksWhenModal

Window graphics setTitle:
setTitleAsFilename:
title
setBackgroundColor:
backgroundColor

setBackgroundGray:
backgroundGray

Window device attributes setBackingType:
backingType
setOneShot:
isOneShot
setFreeWhenClosed:

The miniwindow counterpart
setMiniwindowIcon:
setMiniwindowImage:
setMiniwindowTitle:
miniwindowIcon
miniwindowImage
miniwindowTitle

The field editor endEditingFor:
getFieldEditor:for:

Window status makeKeyWindow
makeKeyAndOrderFront:
becomeKeyWindow
isKeyWindow
resignKeyWindow
canBecomeKeyWindow
becomeMainWindow
isMainWindow
resignMainWindow
canBecomeMainWindow

Moving and resizing
moveTo::screen:
moveTopLeftTo::
moveTopLeftTo::screen:
dragFrom::eventNum:
constrainFrameRect:toScreen:
placeWindow:
placeWindow:screen:
placeWindowAndDisplay:
sizeWindow::
setMinSize:
setMaxSize:
getMinSize:
getMaxSize:
resizeFlags
center

Ordering on and off screen makeKeyAndOrderFront:
orderFront:
orderBack:
orderOut:
orderWindow:relativeTo:
orderFrontRegardless
isVisible
setHideOnDeactivate:
doesHideOnDeactivate

Converting coordinates convertBaseToScreen:
convertScreenToBase:

Managing display display
displayIfNeeded
disableDisplay
isDisplayEnabled
reenableDisplay
flushWindow
flushWindowIfNeeded
disableFlushWindow
reenableFlushWindow

isFlushWindowDisabled
displayBorder
useOptimizedDrawing:
update

Screens and Window depths screen
bestScreen
+ defaultDepthLimit
setDepthLimit:
depthLimit
setDynamicDepthLimit:
hasDynamicDepthLimit
canStoreColor

Graphics state objects gState
Cursor management addCursorRect:cursor:forView:

removeCursorRect:cursor:forView:
invalidateCursorRectsForView:
disableCursorRects
enableCursorRects
discardCursorRects
resetCursorRects

Handling user actions and events
close
performClose:
miniaturize:
performMiniaturize:
deminiaturize:
setDocEdited:
isDocEdited
windowExposed:
windowMoved:
screenChanged:

Setting the event mask setEventMask:
addToEventMask:
removeFromEventMask:
eventMask

Aiding event handling getMouseLocation:
setTrackingRect:inside:owner:tag:left:right:
discardTrackingRect:
makeFirstResponder:
firstResponder
sendEvent:
rightMouseDown:
commandKey:
tryToPerform:with:
setAvoidsActivation:
avoidsActivation

Dragging registerForDraggedTypes:count:
unregisterDraggedTypes
dragImage:at:offset:event:pasteboard:source:slideBack:

Services and Windows menu support
validRequestorForSendType:andReturnType:
setExcludedFromWindowsMenu:
isExcludedFromWindowsMenu

Assigning a delegate setDelegate:
delegate

Printing printPSCode:
smartPrintPSCode:
faxPSCode:
smartFaxPSCode:
openSpoolFile:
spoolFile:

copyPSCodeInside:to:
knowsPagesFirst:last:
getRect:forPage:
placePrintRect:offset:
heightAdjustLimit
widthAdjustLimit
beginPSOutput
endPSOutput
beginPrologueBBox:creationDate:

createdBy:fonts:forWhom:pages:title:
endHeaderComments
endPrologue
beginSetup
endSetup
beginPage:label:bBox:fonts:
endPage
beginPageSetupRect:placement:
endPageSetup
beginTrailer
endTrailer

Archiving read:
write:
awake

setDepthLimit:, setDynamicDepthLimit:, canStoreColor

setFrameUsingName:, setFrameAutosaveName:

addCursorRect:(const NXRect *)aRect
cursor:anObject
forView:aView

Adds the rectangle specified by aRect to the Window's list of cursor rectangles and returns self. aRect, which is taken in
the Window's base coordinate system, must lie within the Window's content rectangle. If it doesn't, the cursor rectangle
isn't added and nil is returned.

You typically add cursor rectangles to View objects (through View's addCursorRect:cursor: method) rather than to
Windows.

addCursorRect:cursor: (View)

(int)addToEventMask:(int)newEvents

Adds newEvents to the Window's current event mask and returns the original event mask. This method is typically used
when an object sets up a modal event loop to respond to certain events. The return value should be used to restore the
Window's original event mask when the modal loop done. See setEventMask: for a list of event mask constants.

setEventMask:, eventMask, removeFromEventMask:

(BOOL)avoidsActivation

Returns YES if the Window's application doesn't become active when the user clicks in the Window's content area. The
default is NO. Note that clicking on the title bar will always activate the Window's application.

setAvoidsActivation:

awake

You never invoke this method directly it's invoked automatically after the Window has been read from an archive file.

read:

(NXColor)backgroundColor

Returns the color of the Window's background when the object is displayed on a color screen. The default is the color
equivalent of NX_LTGRAY.

setBackgroundColor:, setBackgroundGray:

(float)backgroundGray

Returns the shade of gray of the Window's background when the object is displayed on a monochrome screen. The
default is NX_LTGRAY.

setBackgroundGray:, setBackgroundColor:

(int)backingType

Returns the Window's backing type as one of the following constants:

NX_BUFFERED
NX_RETAINED
NX_NONRETAINED

setBackingType:

becomeKeyWindow

You never invoke this method it's invoked automatically when the Window becomes the key window. The method sends
becomeKeyWindow to the Window's first responder, and sends windowDidBecomeKey: to the Window's delegate (if the
respective objects can respond). Returns self.

makeKeyWindow, makeKeyAndOrderFront:

becomeMainWindow

You never invoke this method it's invoked automatically when the Window becomes the main window. The method
sends windowDidBecomeMain: to the Window's delegate (if the delegate can respond). Returns self.

makeKeyWindow, makeKeyAndOrderFront:

beginPage:(int)ordinalNum
label:(const char *)aString
bBox:(const NXRect *)pageRect
fonts:(const char *)fontNames

Writes a PostScript page separator by forwarding the beginPage:... message to the Window's frame view. You never
invoke this method directly it's invoked automatically when printing or faxing the Window.

beginPage:labelbBox:fonts: (View)

beginPageSetupRect:(const NXRect *)aRect
placement:(const NXPoint *)location

Writes the start of a PostScript page-setup section by forwarding the beginPageSetupRect:placement: message to the
Window's frame view. You never invoke this method directly it's invoked automatically when printing or faxing the
Window.

beginPageSetupRect:placement: (View)

beginPrologueBBox:(const NXRect *)boundingBox
creationDate:(const char *)dateCreated
createdBy:(const char *)anApplication

fonts:(const char *)fontNames
forWhom:(const char *)user
pages:(int)numPages
title:(const char *)aTitle

Writes the start of a PostScript prolog section by forwarding the beginPrologueBbox:... message to the Window's frame
view. You never invoke this method directly it's invoked automatically when printing or faxing the Window.

beginPrologueBBox:.. (View)

beginPSOutput

Prepares the Window (and the application environment) for printing or faxing by forwarding the beginPSOutput message
to the Window's frame view. You never invoke this method directly it's invoked automatically when printing or faxing
the Window.

beginPSOutput (View)

beginSetup

Writes the start of a PostScript document-setup section by forwarding the beginSetup message to the Window's frame
view. You never invoke this method directly it's invoked automatically when printing or faxing the Window.

beginSetup (View)

beginTrailer

Writes the start of a PostScript document-trailer section by forwarding the beginTrailer message to the Window's frame
view. You never invoke this method directly it's invoked automatically when printing or faxing the Window.

beginTrailer (View)

(const NXScreen *)bestScreen

Returns a pointer to the deepest screen that the Window is on, or NULL if the Window is currently off-screen.

screen, colorScreen (Application)

(int)buttonMask

Returns a mask that indicates which buttons appear in the Window's title bar. The return value may include one or both
of these constants:

NX_CLOSEBUTTONMASK
NX_MINIATURIZEBUTTONMASK

The button mask is set when the Window is initialized and is, thereafter, immutable.

initContent:style:backing:buttonMask:defer:screen:

(BOOL)canBecomeKeyWindow

Returns YES if the Window can be made the key window, and NO if it can't. This method is consulted when the
Window tries to become the key window the attempt is thwarted if this method returns NO.

isKeyWindow, makeKeyWindow

(BOOL)canBecomeMainWindow

Returns YES if the Window can be made the main window, and NO if it can't. This method is consulted when the
Window tries to become the main window the attempt is thwarted if this method returns NO.

isMainWindow, makeKeyWindow

(BOOL)canStoreColor

Returns YES if the Window has a depth limit that allows it to store color values, and NO if it doesn't.

depthLimit, shouldDrawColor (View)

center

Moves the Window to the center of the screen: The Window is placed dead-center horizontally and placed somewhat
above center vertically. Such a placement is consider to carry a certain immediacy and importance, visually. You
typically use this method to place a WindowÐmost likely an attention PanelÐwhere the user can't miss it. This method
is invoked automatically when a Panel is placed on the screen by Application's runModalFor: method. Returns self.

close

Removes the Window from the screen. If the Window is set to be freed when it's closed (the default), a free message is
sent to the object (but note that the message isn't sent until the current event is completed).

Normally, this method is invoked by the Application Kit when the user clicks the Window's close button. Note that this
method doesn't cause windowWillClose: to be sent to the Window's delegate (the message is sent when the user clicks
the close button). You can induce an invocation of the delegate method by simulating the user's action through the
performClose: method.

Returns nil.

performClose:, setFreeWhenClosed:

(BOOL)commandKey:(NXEvent *)theEvent

Responds to the Command key-down event passed as theEvent. You never invoke this method directly the Application
object, upon receiving a Command key-down event, sends a commandKey: message to each Window in the Window list
until one of them returns YES (signifying that the event was recognized and handled). The default implementation of this
method returns NOÐinstances of Window can't handle these events. (By contrast, Panels can.)

You can create your own subclass of Window that responds to Command key-down events. A typical subclass
implementation of this method passes a performKeyEquivalent: message down the view hierarchy:

performKeyEquivalent: (View), commandKey: (Panel)

(BOOL)constrainFrameRect:(NXRect *)theFrame
toScreen:(const NXScreen *)screen

Modifies the rectangle pointed to by theFrame such that its top edge lies on the given screen. If the Window is resizable,
the rectangle's height is adjusted to bring the bottom edge onto the screen as well. The rectangle's width and horizontal

location are unaffected. You shouldn't need to invoke this method yourself it's invoked automatically (and the modified
frame is used to locate and set the size of the Window) whenever a titled Window is placed on-screen or resized through
sizeWindow::.

You can override this method to prevent a particular Window from being constrained, or to constrain it differently. The
unconstrained frame rectangle is pointed to by theFrame the screen it wants to lie on is pointed to by screen. If your
method modifies the rectangle, it should return YES otherwise, it should return NO.

contentView

Returns the Window's content view, the highest accessible View object in the Window's view hierarchy.

setContentView:

convertBaseToScreen:(NXPoint *)aPoint

Converts the point referred to by aPoint from the Window's base coordinate system to the screen coordinate system.
Returns self.

convertScreenToBase:

convertScreenToBase:(NXPoint *)aPoint

Converts the point referred to by aPoint from the screen coordinate system to the Window's base coordinate system.
Returns self.

convertBaseToScreen:

copyPSCodeInside:(const NXRect *)rect to:(NXStream *)stream

Generates PostScript code, in the manner of printPSCode:, for all the Views located inside the rect portion of the
Window. The rectangle is specified in the Window's base coordinates. The PostScript code is written to stream.

Returns self (unless an exception is raised).

printPSCode:, faxPSCode:

counterpart

Returns the Window's miniwindow or, if this Window is a miniwindow, the Window that it represents. You can't set a
Window's counterpart directly a corresponding miniwindow is created automatically the first time the Window is
miniaturized. If the Window has not yet been miniaturized, this method will return nil.

setMiniwindowImage:, setMiniwindowTitle:

delegate

Returns the Window's delegate, or nil if it doesn't have one.

setDelegate:

deminiaturize:sender

Deminiaturizes the Window (which should be a miniwindow). You rarely need to invoke this method it's invoked
automatically when a Window is deminiaturized by the user (by double-clicking a miniwindow, or by choosing the
Arrange in Front item in the Windows menu). However, if you feel compelled to deminiaturize a Window
programmatically, you should note that the deminiaturize message is sent to the miniwindow, not the original Window.
The value passed as sender is ignored. Returns self.

miniaturize:

(NXWindowDepth)depthLimit

Returns the depth limit of the Window as one of the following values:

NX_DefaultDepth
NX_TwoBitGrayDepth
NX_EightBitGrayDepth
NX_TwelveBitRGBDepth
NX_TwentyFourBitRGBDepth

If the return value is NX_DefaultDepth, you can find out the actual depth limit by sending the Window class a
defaultDepthLimit message.

setDepthLimit:, setDynamicDepthLimit:

disableCursorRects

Disables all cursor rectangle management within the Window. Typically this method is used when you need to do some
special cursor manipulation, and you don't want the Application Kit interfering. Returns self.

enableCursorRects

disableDisplay

Disables View's display methods, thus preventing the Views in the Window's view hierarchy from being displayed (note,
however, that this doesn't disable Window's display method). This permits you to alter or update the Views before
displaying them again.

Displaying should be disabled only temporarily. Each disableDisplay message should be paired with a subsequent
reenableDisplay message. Pairs of these messages can be nested drawing won't be reenabled until the last (unnested)
reenableDisplay message is sent or until a display message is sent to the Window.

Returns self.

reenableDisplay, isDisplayEnabled, display, display::: (View)

disableFlushWindow

Disables the flushWindow method for the Window. If the Window is a buffered window, drawing won't automatically be
flushed to the screen by the display methods defined in the View class. This permits several Views to be displayed before
the results are shown to the user.

Flushing should be disabled only temporarily, while the Window's display is being updated. Each disableFlushWindow
message should be paired with a subsequent reenableFlushWindow message. Message pairs can be nested flushing won't
be reenabled until the last (unnested) reenableFlushWindow message is sent.

Returns self.

reenableFlushWindow, flushWindow, disableDisplay

discardCursorRects

Removes all cursor rectangles from the Window, and returns self. This method is invoked by resetCursorRects to remove
existing cursor rectangles before resetting them. In general, you wouldn't invoke it in the code you write, but might want
to override it to change its behavior.

resetCursorRects

discardTrackingRect:(int)trackNum

Removes the tracking rectangle identified by trackNum and returns self. The tag was assigned when the tracking
rectangle was created.

setTrackingRect:inside:owner:tag:left:right:

display

Passes a display message down the Window's view hierarchy, thus redrawing all Views within the Window, including the
border, resize bar, and title bar. If displaying is disabled for the Window, this method reenables it. Returns self.

display (View), disableDisplay, displayIfNeeded

displayBorder

Redraws the Window's border, title bar, and resize bar, and returns self. You rarely need to invoke this method yourself a
Window's border is automatically displayed when any of the elements therein are changedÐwhen the Window is resized
or its title is changed, for example.

display

displayIfNeeded

Sends a displayIfNeeded message down the Window's view hierarchy, thus redrawing all Views that need to be
displayed, including the Window's border, title bar, and resize bar. This method is useful when you want to disable
displaying in the Window, modify some number of Views, and then display only the ones that were modified. Note that
this method, unlike display, doesn't reenable display if it's currently disabled. Returns self.

display, displayIfNeeded (View), setNeedsDisplay: (View), update (View)

(BOOL)doesHideOnDeactivate

Returns YES if the Window will be removed from the screen when its application is deactivated, and NO if it will remain
on-screen.

setHideOnDeactivate:

dragFrom:(float)x
:(float)y
eventNum:(int)num

Lets the user drag a Window from a location other than the title bar.

mouseDown:(NXEvent *)theEvent

moveTo::

dragImage:anImage
at:(NXPoint *)location
offset:(NXPoint *)initialOffset
event:(NXEvent *)event
pasteboard:(Pasteboard *)pboard
source:sourceObject
slideBack:(BOOL)slideFlag

Instigates an image-dragging session. You never invoke this method directly from your application it can only be
invoked from within a View's implementation of the mouseDown: method. Furthermore, View also implements the
dragImage:... method you typically instigate an image-dragging session by sending this message to a View, rather than a
Window. The two methods are identical except for the interpretation of the location argument: In Window's
implementation, location is taken in the base coordinate system. See the description of this method in the View class for
the meanings of the other arguments.

dragImage:at:offset:event:pasteboard:source:slideBack: (View)

enableCursorRects

Reenables cursor rectangle management. Returns self.

disableCursorRects

endEditingFor:anObject

Prepares the Window's field editor for a new editing assignment and returns self. The argument is ignored by Window's
default implementation.

If the field editor is the first responder, it resigns that status, passing it to the Window (even if the field editor refuses to
resign). This forces a textDidEnd:endChar: message to be sent to the field editor's delegate. The field editor is then
removed from the view hierarchy and its delegate is set to nil.

To conditionally end editing, first try to make the Window the first responder:

getFieldEditor:for:

endHeaderComments

Writes the end of a PostScript comment section by forwarding the endHeaderComments message to the Window's frame
view. You never invoke this method directly it's invoked automatically when printing or faxing the Window.

endHeaderComments (View)

endPage

Writes the end of a PostScript page separator by forwarding the endPage message to the Window's frame view. You
never invoke this method directly it's invoked automatically when printing or faxing the Window.

endPage (View)

endPageSetup

Writes the end of a PostScript page-setup section by forwarding the endPageSetup message to the Window's frame view.
You never invoke this method directly it's invoked automatically when printing or faxing the Window.

endPageSetup (View)

endPrologue

Writes the end of a PostScript prolog section by forwarding the endPrologue message to the Window's frame view. You
never invoke this method directly it's invoked automatically when printing or faxing the Window.

endPrologue (View)

endPSOutput

Declares that printing or faxing is finished by forwarding the endPSOutput to the Window's frame view. You never
invoke this method directly it's invoked automatically when printing or faxing the Window.

endPSOutput (View)

endSetup

Writes the end of a PostScript document-setup section by forwarding the endSetup message to the Window's frame view.
You never invoke this method directly it's invoked automatically when printing or faxing the Window.

endSetup (View)

endTrailer

Writes the end of a PostScript document-trailer section by forwarding the endTrailer message to the Window's frame
view. You never invoke this method directly it's invoked automatically when printing or faxing the Window.

endTrailer (View)

(int)eventMask

Returns the current event mask for the Window. See setEventMask: for a list of the possible contents of the mask.

setEventMask:, addToEventMask:, removeFromEventMask:

faxPSCode:sender

Prints the Window (all the Views in its view hierarchy including the frame view) to a fax modem. A return value of nil
indicates that there were errors in generating the PostScript code or that the user canceled the job.

In the current user interface, faxing is initiated from within the Print panel. However, with this method, you can provide
users with an independent control for faxing a Window.

This method normally brings up the Fax panel before actually beginning printing. But if sender implements a
shouldRunPrintPanel: method, that method will be invoked to first query whether to run the panel. If
shouldRunPrintPanel: returns NO, the Fax panel won't be displayed, and the Window will be printed using the previous
settings of the panel.

smartFaxPSCode:, printPSCode:, shouldRunPrintPanel: (Object Additions)

firstResponder

Returns the Window's first responder.

makeFirstResponder:, acceptsFirstResponder (Responder)

flushWindow

if the Window is buffered and flushing hasn't been disabled by disableFlushWindow, this flushes the off-screen buffer to
the screen. This method is automatically invoked when you send a display message to a Window or View. However, it
has no effect if the display is being directed to a printer or other device, rather than to the screen. Returns self.

display:: (View), disableFlushWindow

flushWindowIfNeeded

Flushes the Window's off-screen buffer to the screen, provided that:

·The Window is a buffered window
·Flushing isn't currently disabled
·Some previous flushWindow messages had no effect because flushing was disabled

You should use this method, rather than flushWindow, to flush a Window after flushing has been reenabled. Returns self.

flushWindow, disableFlushWindow, reenableFlushWindow

(const char *)frameAutosaveName

Returns the name that's used to automatically save the Window's frame rectangle data in the defaults system, as set
through setFrameAutosaveName:. If the Window has an autosave name, it's frame data is written as a default whenever
the frame rectangle changes.

setFrameAutosaveName:

free

Deallocates memory for the Window object and all that it surveys. This includes the Views in its view hierarchy, its
instance variables (including the field editor), and the Window Server window device that it's associated with.

getFieldEditor:(BOOL)flag for:anObject

Returns the field editor, the Window's communal Text object. The field editor is provided as a convenience and can be
used however your application sees fit. Typically, the field editor is used by simple text-bearing objectsÐfor example, a
TextField object uses its Window's field editor to display and manipulate text. The field editor can be shared by any
number of objects and so its state may be constantly changing. Therefore, it shouldn't be used to display text that
demands sophisticated Text object preparation (for this you should create a dedicated Text object).

A freshly created Window doesn't have a field editor the only way to create a field editor is to invoke this method with a
flag value of YES. After a field editor has been created for a Window, the flag argument is ignored.

The Window's delegate can supply the object that this method returns as the return value of the
windowWillReturnFieldEditor:toObject: delegate message (the Window is passed as the first argument, anObject is
passed as the second). However, note the following:

·If the Window's delegate is anObject, windowWillReturnFieldEditor:toObject: isn't sent.

·The object returned by the delegate method doesn't become the Window's field editor.

If this method returns a non-nil value, it should be followed by an invocation of Window's endEditingFor: method before
the field editor is actually used.

endEditingFor:

getFrame:(NXRect *)theRect

Returns the Window's frame rectangle by reference in theRect and returns self. The frame rectangle is always reckoned
in the screen coordinate system.

getFrame:andScreen:

getFrame:(NXRect *)theRect andScreen:(const NXScreen **)theScreen

Copies the Window's frame rectangle into the structure referred to by theRect. A pointer to the screen where the Window
is located is provided in the variable referred to by theScreen. The frame rectangle is specified relative to the lower left
corner of the screen. However, if theScreen is NULL, the frame rectangle is specified in absolute coordinates (relative to
the origin of the screen coordinate system). Returns self.

getFrame:

getMaxSize:(NXSize *)aSize

Returns, by reference in aSize, an NXSize structure that gives the maximum size to which the Window's frame can be
sized by the user or by the setFrame:... methods. Note that this constraint doesn't apply to sizeWindow:: or the
placeWindow:... methods.

setMaxSize:, setMinSize:, getMinSize:

getMinSize:(NXSize *)aSize

Returns, by reference in aSize, an NXSize structure that gives the minimum size to which the Window's frame can be
sized by the user or by the setFrame:... methods. Note that this constraint doesn't apply to sizeWindow:: or the
placeWindow:... methods.

setMinSize:, setMaxSize:, getMaxSize:

getMouseLocation:(NXPoint *)thePoint

Returns, by reference in thePoint, the current location of the mouse reckoned in the Window's base coordinate system.
Returns self.

currentEvent (Application)

(BOOL)getRect:(NXRect *)theRect forPage:(int)page

Implemented by subclasses to provide the rectangle to be printed for page number page. A Window receives getRect:
forPage: messages when it's being printed (or faxed) if its knowsPagesFirst:last: method returns YES.

If page is a valid page number for the Window, this method should return YES after providing (in the variable referred to
by theRect) the rectangle that represents the page requested. The rectangle should be specified in the Window's base
coordinates.

If page is not a valid page number, this method should return NO. By default, it returns NO.

The Window may receive a series of getRect:forPage: messages, one for each page that's being printed. It shouldn't
assume that the pages will be generated in any particular order.

knowsPagesFirst:last:, printPSCode:

(int)gState

Returns the PostScript graphics state object associated with the Window.

(BOOL)hasDynamicDepthLimit

Returns YES if the Window's depth limit can change to match the depth of the screen it's on, and NO if it can't.

setDynamicDepthLimit:

(float)heightAdjustLimit

Returns the fraction of a page that can be pushed onto the next page to prevent items from being cut in half. The limit
applies to vertical pagination. By default, it's 0.2.

You never invoke this method directly it's invoked during automatic pagination when printing (or faxing) the Window.
However, you can override it to return a different value. The value returned should lie between 0.0 and 1.0 inclusive.

widthAdjustLimit

init

Initializes the receiver, a newly allocated Window object, by passing default values to the initContent:style:backing:
buttonMask:defer: method. The initialized object is a plain, buffered window, and has a default frame rectangle. Returns
self.

initContent:style:backing:buttonMask:defer:

initContent:(const NXRect *)contentRect
style:(int)aStyle
backing:(int)backingType
buttonMask:(int)mask
defer:(BOOL)flag

Initializes the Window object and returns self. This method is the designated initializer for the Window class.

The first argument, contentRect, specifies the location and size of the Window's content area in screen coordinates. If a
NULL pointer is passed for this argument, a default rectangle is used.

The second argument, aStyle, specifies the Window's style. It can be:

NX_PLAINSTYLE
NX_TITLEDSTYLE
NX_RESIZEBARSTYLE
NX_MENUSTYLE
NX_MINIWINDOWSTYLE
NX_MINIWORLDSTYLE
NX_TOKENSTYLE

You usually only create titled and resizable Windows. Menu style is used by the Menu class miniwindows, miniworld
icons, and tokens (application icons) are created for you by the Application Kit. Plain Windows lack interface
accouterments and should very rarely be created and displayed.

The third argument, backingType, specifies how the drawing done in the Window is buffered by the object's window
device:

NX_BUFFERED
NX_RETAINED
NX_NONRETAINED

The fourth argument, mask, specifies whether the Window's title bar will sport a close or resize button. You build the
mask by joining (with the bitwise OR operator) the individual masks for the buttons:

NX_CLOSEBUTTONMASK
NX_MINIATURIZEBUTTONMASK

The fifth argument, flag, determines whether the Window Server will create a window device for the new object
immediately. If flag is YES, it will defer creating the window until the Window is ordered on-screen. All display
messages sent to the Window or its Views will be postponed until the window is created, just before it's moved on-
screen. Deferring the creation of the window improves launch time and minimizes the virtual memory load on the Server.

The Window creates an instance of View to be its default content view. You can replace it with your own object by using
the setContentView: method.

orderFront:, setTitle:, setOneShot:

initContent:(const NXRect *)contentRect
style:(int)aStyle
backing:(int)bufferingType
buttonMask:(int)mask
defer:(BOOL)flag
screen:(const NXScreen *)aScreen

Initializes the Window object and returns self. This method is equivalent to initContent:style:backing:buttonMask:defer:,
except that the content rectangle is specified relative to the lower left corner of aScreen.

If aScreen is NULL, the content rectangle is interpreted relative to the lower left corner of the main screen. The main
screen is the one that contains the current key window, or, if there is no key window, the one that contains the main menu.
If there's neither a key window nor a main menu (if there's no active application), the main screen is the one where the
origin of the screen coordinate system is located.

initContent:style:backing:buttonMask:defer:

invalidateCursorRectsForView:aView

Marks the Window as having invalid cursor rectangles. If the Window is the key window, the Application object will
send it a resetCursorRects message to have it fix its cursor rectangles before getting the next event. If the Window isn't
the key window, it will receive the message when it next becomes the key window. Returns self.

resetCursorRects

(BOOL)isDisplayEnabled

Returns YES if the display mechanism is currently disabled (because of a previous disableDisplay message), and NO if it
isn't.

disableDisplay, reenableDisplay, display::: (View)

(BOOL)isDocEdited

Returns YES if the Window's document has been edited, otherwise returns NO.

setDocEdited:

(BOOL)isExcludedFromWindowsMenu

Returns YES if the Window is excluded from the application's Windows menu, and NO if it isn't.

setExcludedFromWindowsMenu:

(BOOL)isFlushWindowDisabled

Returns YES if the Window's flushing ability has been disabled otherwise returns NO.

disableFlushWindow, reenableFlushWindow

(BOOL)isKeyWindow

Returns YES if the Window is the key window for the application, and NO if it isn't.

isMainWindow

(BOOL)isMainWindow

Returns YES if the Window is the main window for the application, and NO if it isn't.

isKeyWindow

(BOOL)isOneShot

Returns YES if the window device that the Window manages is freed when it's removed from the screen list, and NO if
not. The default is NO.

setOneShot:

(BOOL)isVisible

Returns YES if the Window is on-screen (even if it's obscured by other Windows).

getVisibleRect: (View)

(BOOL)knowsPagesFirst:(int *)firstPageNum last:(int *)lastPageNum

Implemented by subclasses to indicate whether the Window knows where its own pages lie. This method is invoked
when printing (or faxing) the Window. Although it can be implemented in a Window subclass, it should not be used in
program code.

If this method returns YES, the Window will receive getRect:forPage: messages querying it for the rectangles
corresponding to specific pages. If it returns NO, pagination will be done automatically. By default, it returns NO.

Just before this method is invoked, the first page to be printed is set to 1 and the last page to be printed is set to the
maximum integer size. An implementation of this method can set firstPageNum to a different initial page (for example, a
chapter may start on page 40), even if it returns NO. If it returns YES, lastPageNum can be set to a different final page. If
it doesn't reset lastPageNum, the subclass implementation of getRect:forPage: must be able to signal that a page has been
asked for beyond what is available in the document.

getRect:forPage:, printPSCode:

makeFirstResponder:aResponder

Makes aResponder the first receiver of keyboard events and action messages sent to the Window. If aResponder isn't
already the Window's first responder, this method first sends a resignFirstResponder message to the object that currently
is, and a becomeFirstResponder message to aResponder. However, if the old first responder refuses to resign, no changes
are made.

The Application Kit uses this method to alter the first responder in response to mouse-down events you can also use it to
explicitly set the first responder from within your program. aResponder should be a Responder object typically, it's a
View in the Window's view hierarchy.

If successful in making aResponder the first responder, this method returns self. If not (if the old first responder refuses
to resign), it returns nil.

becomeFirstResponder (Responder), resignFirstResponder (Responder)

makeKeyAndOrderFront:sender

Moves the Window to the front of the screen list (within its tier) and makes it the key window. This method can be used
in action message. Returns self.

orderFront:, orderBack:, orderOut:, orderWindow:relativeTo:

makeKeyWindow

Makes the Window object the key window, and returns self.

becomeKeyWindow, isKeyWindow

miniaturize:sender

Removes the Window from the screen list and displays its miniwindow counterpart on-screen. If the Window doesn't
have a miniwindow counterpart, one is created.

A miniaturize: message is generated when the user clicks the miniaturize button in the Window's title bar. This method
has a sender argument so that it can be used in an action message from a Control. It ignores this argument. Returns self.

deminiaturize:

(const char *)miniwindowIcon

Returns the name of the icon that's displayed in the Window's miniwindow.

setMiniwindowIcon:

(NXImage *)miniwindowImage

Returns the NXImage object that's displayed in the Window's miniwindow.

setMiniwindowImage:

(const char *)miniwindowTitle

Returns the title that's displayed in the Window's miniwindow.

setMiniwindowTitle:

moveTo:(NXCoord)x :(NXCoord)y

Moves the Window by the lower left corner of its frame rectangle. The arguments are taken in the screen coordinate
system. Returns self.

dragFrom::eventNum:, moveTopLeftTo::

moveTo:(NXCoord)x :(NXCoord)y screen:(const NXScreen *)aScreen

Repositions the Window so that its lower left corner lies at (x, y) relative to a coordinate origin at the lower left corner of
aScreen. If aScreen is NULL, this method is the same as moveTo::. Returns self.

moveTopLeftTo:(NXCoord)x :(NXCoord)y

Moves the Window by the top left corner of its frame rectangle. The arguments are taken in the screen coordinate system.
Returns self.

dragFrom::eventNum:, moveTo::

moveTopLeftTo:(NXCoord)x :(NXCoord)y screen:(const NXScreen *)aScreen

Repositions the Window so that its top left corner lies at (x, y) relative to a coordinate origin at the lower left corner of
aScreen. If aScreen is NULL, this method is the same as moveTopLeftTo::. Returns self.

moveTo::

openSpoolFile:(char *)filename

Opens the filename file for print spooling. This method is invoked when printing (or faxing) the Window it shouldn't be
used in program code. However, you can override it to modify its behavior.

If filename is NULL or empty, PostScript code for the Window will be sent directly to the printing daemon, npd, without
opening a file. (However, if the Window is being previewed or saved, a default file is opened in /tmp.)

If a filename is provided, the file is opened. The printing machinery will then write the PostScript code to that file and the
file will be printed using lpr.

This method opens a Display PostScript context that will write to the spool file, and sets the context of the global
PrintInfo object to this new context. It returns nil if the file can't be opened.

printPSCode:

orderBack:sender

Moves the Window to the back of its tier in the screen list. It may also change the key window and main window.
Returns self.

orderFront:, orderOut:, orderWindow:relativeTo:, makeKeyAndOrderFront:

orderFront:sender

Moves the Window to the front of its tier in the screen list. It may also change the key window and main window.
Returns self.

orderBack:, orderOut:, orderWindow:relativeTo:, makeKeyAndOrderFront:

orderFrontRegardless

Moves the Window to the front of its tier, even if the Window's application isn't active. Normally a Window can't be
moved in front of the key window unless the Window and the key window are in the same application. You should rarely
need to invoke this method it's designed to be used when applications are cooperating such that an active application
(with the key window) is using another application to display data.

orderFront:

orderOut:sender

Takes the Window out of the screen list. It may also change the key window and main window. Returns self.

orderFront:, orderBack:, orderWindow:relativeTo:

orderWindow:(int)place relativeTo:(int)otherWin

Repositions the Window's window device in the Window Server's screen list. place can be one of:

NX_ABOVE
NX_BELOW
NX_OUT

If it's NX_OUT, the window is removed from the screen list and otherWin is ignored. If it's NX_ABOVE or
NX_BELOW, otherWin is the window number of the window that the receiving Window is to be placed above or below.
If otherWin is 0, the receiving Window will be placed above or below all other windows in its tier. Returns self.

orderFront:, orderBack:, orderOut:, makeKeyAndOrderFront:

performClose:sender

Simulates the user clicking the close button by momentarily highlighting the button and then closing the Window. If the
Window's delegate or the Window itself implements windowWillClose:, then that message is sent with the Window as
the argument (only one such message is sent if both the delegate and the Window implement the method, only the
delegate will receive the message).

If the Window doesn't have a close button, then the method calls NXBeep(). Returns self.

performClick: (Button), close, performMiniaturize:

performMiniaturize:sender

Simulates the user clicking the miniaturize button by momentarily highlighting the button then miniaturizing the Window.
If the Window doesn't have a miniaturize button, then this method calls NXBeep(). Returns self.

performClick: (Button), miniaturize:, performClose:

placePrintRect:(const NXRect *)aRect offset:(NXPoint *)location

Determines the location of the rectangle being printed on the physical page. You never invoke this method directly it's
automatically invoked when the Window is printed or faxed. However, you can override it to change the way it places
the rectangle.

aRect specifies the rectangle being printed on the current page location is set by this method to be the offset of the
rectangle from the lower left corner of the page. All coordinates are in the base coordinate system (that of the page itself)
.

By default, if the flags for centering are YES in the global PrintInfo object, this method centers the rectangle within the
margins. If the flags are NO, it abuts the rectangle against the top and left margins.

getRect:forPage:, printPSCode:

placeWindow:(const NXRect *)frameRect

Resizes and moves the Window. frameRect specifies the Window's new frame rectangle in screen coordinates. The
Window's frame viewÐbut none of its other ViewsÐis automatically redisplayed at its new size and location. Returns
self.

sizeWindow::, moveTo::, placeWindowAndDisplay:

placeWindow:(const NXRect *)frameRect screen:(const NXScreen *)aScreen

This is the same as placeWindow:, except that the frame rectangle is specified relative to a coordinate origin at the lower
left corner of aScreen. If aScreen is NULL, this method is exactly the same as placeWindow:. Returns self.

placeWindow:, placeWindowAndDisplay:

placeWindowAndDisplay:(const NXRect *)frameRect

This is the same as placeWindow:, except the Window's Views are redisplayed before the Window is shown. Returns
self.

placeWindow:

printPSCode:sender

Prints the Window (all the Views in its view hierarchy including the frame view). A return value of nil indicates that
there were errors in generating the PostScript code or that the user canceled the job.

This method normally brings up the Print panel before actually beginning printing. But if sender implements a
shouldRunPrintPanel: method, that method will be invoked to first query whether to run the panel. If
shouldRunPrintPanel: returns NO, the Print panel won't be displayed, and the Window will be printed using the last
settings of the panel.

smartPrintPSCode:, faxPSCode:, shouldRunPrintPanel: (Object Methods)

read:(NXTypedStream *)stream

Reads the Window and its Views from the typed stream stream.

write:

reenableDisplay

Counters the effect of disableDisplay, reenabling View's display methods. Returns self.

disableDisplay, isDisplayEnabled, display::: (View)

reenableFlushWindow

Reenables the flushWindow method for the Window after it was disabled through a previous disableFlushWindow
message. Returns self.

disableFlushWindow, flushWindow

registerForDraggedTypes:(const char *const *)pbTypes count:(int)count

Registers the Pasteboard types that the Window will accept in an image-dragging session. pbTypes is a pointer to an
array of the types count is the number of elements in the array. Returns self.

Keep in mind that the values in the first argument are Pasteboard types, not file extensions (you can't register for specific
file extensions). For example, the following registers a Window as accepting files:

unregisterDraggedTypes

removeCursorRect:(const NXRect *)aRect
cursor:anObj
forView:aView

Removes a cursor rectangle from the Window. You never invoke this method it's used by View's removeCursorRect:
cursor: method. To remove a cursor rectangle, use the View method.

removeCursorRect:cursor: (View), resetCursorRects (View)

(int)removeFromEventMask:(int)oldEvents

Removes the event types specified by oldEvents from the Window's event mask, and returns the old mask.

eventMask, setEventMask:, addToEventMask:

resetCursorRects

Removes all existing cursor rectangles from the Window, then recreates the cursor rectangles by sending a
resetCursorRects message to every View in the Window's view hierarchy. Returns self.

This method is typically invoked by the Application object when it detects that the key window's cursor rectangles are
invalid. In program code, it's more efficient to invoke invalidateCursorRectsForView:, rather than this method, to fix
invalid cursor rectangles.

invalidateCursorRectsForView:, resetCursorRects (View)

resignKeyWindow

You never invoke this method it's invoked automatically when the Window resigns key window status. The method
sends resignKeyWindow to the Window's first responder, and sends windowDidResignKey: to the Window's delegate (if
the respective objects can respond). Returns self.

becomeKeyWindow

resignMainWindow

You never invoke this method it's invoked automatically when the Window resigns main window status. The method
sends windowDidResignMain: to the Window's delegate (if the delegate can respond). Returns self.

becomeMainWindow

(int)resizeFlags

Valid only while the Window is being resized, this method returns the flags field of the event record for the mouse-down
event that initiated the resizing session. The integer encodes, as a mask, information such as which of the modifier keys
was held down when the event occurred. The flags are listed in dpsclient/event.h. Because of its limited validity, this
method should only be invoked from within an implementation of the delegate methods windowWillResize:toSize: or
windowDidResize:.

rightMouseDown:(NXEvent *)theEvent

Responds to uncaught right mouse-down events by forwarding this message to the Application object. By default, a right
mouse-down event in a window causes the main menu to pop up under the cursor. Returns the value returned by the
Application object.

rightMouseDown: (Application)

(void)saveFrameToString:(char *)string

Saves the Window's frame rectangle data as a NULL-terminated ASCII string to the buffer pointed to by string. The
string can be stored as you see fit and used later to set the dimensions of a Window through the setFrameFromString:
method. You should use the constant NX_MAXFRAMESTRINGLENGTH to allocate the buffer.

setFrameFromString:, saveFrameUsingName:

(void)saveFrameUsingName:(const char *)name

Saves the Window's frame rectangle as a system default. With the companion method setFrameUsingName:, you can
save and reset a Window's frame over various launchings of an application. The default is owned by the application, filed
under the name

ªWindow Frame nameº

setFrameUsingName:, saveFrameToString:

(const NXScreen *)screen

Returns a pointer to the screen that the Window is on. If the Window is partly on one screen and partly on another, the
screen where most of it lies is the one returned.

bestScreen

screenChanged:(NXEvent *)theEvent

Invoked when the user releases the Window, having moved all or part of it to a different screen. This method sends the
delegate a windowDidChangeScreen: message (if the delegate can respond) and returns self.

If the Window has a dynamic depth limit, this method will make sure that the depth limit matches the new device. If the
Window is on more than one screen, its depth limit will be adjusted to match the deepest screen it's on.

bestScreen

sendEvent:(NXEvent *)theEvent

Dispatches mouse and keyboard events sent to the Window by the Application object you never invoke this method
directly.

setAvoidsActivation:(BOOL)flag

Establishes whether the Window's application will become the active application when the user clicks in the Window's
content area. If flag is YES, the application won't become active if flag is NO, it will. The default is NO. Note that
clicking on the title bar will always activate the Window's application.

avoidsActivation

setBackgroundColor:(NXColor)color

Sets the color that fills the Window's content area when the Window is displayed on a color screen. Returns self.

backgroundColor

setBackgroundGray:(float)value

Sets the shade of gray that fills the Window's content area when the Window is displayed on a monochrome screen. value
should lie in the range 0.0 (black) to 1.0 (white). Returns self.

backgroundGray, setBackgroundColor:

setBackingType:(int)backing

Sets the type of backing used by the Window's window device and returns self. This method can only be used to switch a
buffered Window to retained or vice versa you can't change the backing type of a nonretained Window (a PostScript error
is generated if you attempt to do so).

backingType

setContentView:aView

Makes aView the Window's content view the previous content view is removed from the Window's view hierarchy and
returned by this method. aView is resized to fit precisely within the content area of the Window. You can transform the
content view's coordinate system, but you can't alter its size or location directly.

contentView

