

T Ul Llass
superclass

| dentifying and comparing instances
IsEqual:
hash
self
name
printForDebugger:

Testing inheritance relationships
IsSKindOf:
IsKindOfClassNamed:
isMemberOf:
IsMemberOf ClassNamed:

Testing class functionality respondsTo:
+ instancesRespondTo:

Testing for protocol conformance
+ conformsT o:
conformsTo:

Sending messages determined at run time
perform:
perform:with:
perform:with:with:

Forwarding messages forward::
performv::

Obtaining method information methodFor:
+ instanceM ethodFor:
descriptionForM ethod:
+ descriptionForlnstanceM ethod:

Posing+ poseAs:
Enforcing intentions notl mplemented:
subclassResponsibility:
Error handling doesNotRecogni ze:
error;

Dynamic loading+ finishL oading:
+ startUnloading

Archiving read:
write:
startArchiving:
awake
finishUnarchiving
+ setVersion:
+ version

zone, init

name, class

conformsTo:

descriptionForMethod:

free

init, class

respondsTo:, forward::

name, + class

init, + alloc, + allocFromZone:

superclass

awake

Implemented by subclasses to reinitialize the receiving object after it has been unarchived (by reac
isautomatically sent to every object after it has been unarchived and after all the objectsit refers te

The default version of the method defined here merely returns self.

A class can implement an awake method to provide for more initialization than can be done in the
implementation of awake should limit the work it does to the scope of the class definition, and inc
initialization of classes farther up the inheritance hierarchy through a message to super. For exam

read:, finishUnarchiving, awakeFromNib (NXNibNotification protocol in the Application Kit), |
(Application classin the Application Kit)

class
Returns the class object for the receiver's class.

copy

Returns a new instance that's an exact copy of the receiver. This method creates only one new obj
instance variables that point to other objects, the instance variables in the copy will point to the sar
of the instance variables are copied, but the objects they point to are not.

This method does its work by invoking the copyFromZone: method and specifying that the copy S
the same memory zone as the receiver. |f a subclassimplements its own copyFromZone: method,
use it to copy instances of the subclass. Therefore, a class can support copying from both methods
class-specific version of copyFromZone:.

copyFromZone:

copyFromZone:(NXZone *)zone
Returns a new instance that's an exact copy of the receiver. Memory for the new instance is alloc:

This method creates only one new object. If the recelver has instance variables that point to other
variables in the copy will point to the same objects. The values of the instance variables are copie
point to are not.

Subclasses should implement their own versions of copyFromZone:, not copy, to define class-spec
copy, zone

(struct objc_method_description *)descriptionForM ethod: (SEL)aSel ector

Returns a pointer to a structure that describes the aSelector method, or NULL if the aSelector mett
When the receiver is an instance, aSelector should be an instance method when the receiver is acl:
method.

The objc_method description structure is declared in objc/Protocol.h, and is mostly used in the im
protocols. It includestwo fieldsbthe selector for the method (which will be the same as aSel ector
encoding the method's return and argument types:

descriptionForClassM ethod: (Protocol class in the Run-Time System), descriptionForinstanceMe
the Run-Time System)

doesNotRecognize:(SEL)aSel ector

Handles aSelector messages that the receiver doesn't recognize. The run-time system invokes this
object receives an aSelector message that it can't respond to or forward. This method, in turn, inve
to generate an error message and abort the current process.

doesNotRecognize: messages should be sent only by the run-time system. Although they're some
code to prevent a method from being inherited, it's better to use the error: method directly. For ex
subclass might renounce the copy method by reimplementing it to include an error: message as fol

error:, subclassResponsibility:, + name

error:(const char *)aString, ...

Generates aformatted error message, in the manner of printf(), from aString followed by a variabls
For example:

subclassResponsibility:, notimplemented:, doesNotRecognize:

HTICIC o 11U Uciauit HTHPIEHTICh kall Ul On utic st iviia CHrvieig et iod.. 111 UDjeul Liaso Ucuid o LI

defineit.
read:, awake, startArchiving:

forward:(SEL)aSelector :(marg_list)argFrame

Implemented by subclasses to forward messages to other objects. When an object is sent an aSele
run-time system can't find an implementation of the method for the receiving object, it sends the
message to give it an opportunity to delegate the message to another receiver. (If the delegated re
the message either, it too will be given achance to forward it.)

The forward:: message thus allows an object to establish relationships with other objects that will,
act on its behalf. Theforwarding object is, in a sense, able to dnherit® some of the characteristics

forwards the message to.

A forward:: message is generated only if the aSelector method isn't implemented by the receiving
of the classes it inherits from.

An implementation of the forward:: method has two tasks:
-To locate an object that can respond to the aSelector message. This need not be the same object f
-To send the message to that object, using the performv:: method.

In the simple case, in which an object forwards messages to just one destination (such as the hypot
variable in the example below), aforward:: method could be as simple as this:

performv::, doesNotRecognize:

free

Frees the memory occupied by the receiver and returns nil. Subsequent messages to the object wil
indicating that a message was sent to afreed object (provided that the freed memory hasn't been re

Subclasses must implement their own versions of free to deallocate any additional memory consur
as dynamically allocated storage for data, or other objects that are tightly coupled to the freed obje
without it. After performing the class-specific deall ocation, the subclass method should incorpora
of free through a message to super:

the sameid.
iIsEqual:

init
Implemented by subclassesto initialize a new object (the receiver) immediately after memory for |
Aninit messageis generally coupled with an aloc or allocFromZone: message in the same line of

(BOOL)isEqual:anObject
Returns YES if the recelver isthe same as anObject, and NO if it isn't. Thisis determined by cormr
receiver to theid of anObject.

Subclasses may need to override this method to provide a different test of equivalence. For examy:
two objects might be said to be the same if they're both the same kind of object and they both cont

(BOOL)isKindOf:aClassObject

Returns YES if the recelver is an instance of aClassObject or an instance of any class that inherits
Otherwise, it returns NO. For example, in this code isKindOf: would return Y ES because, in the £

Menu class inherits from Window:

isM emberOf:

(BOOL)isKindOfClassNamed:(const char *)aClassName

Returns YES if therecelver is an instance of aClassName or an instance of any class that inherits f
method is the same as isKindOf:, except it takes the class name, rather than the classid, asits argu

isM emberOf ClassNamed:

(BOOL)isMemberOf:aClassObject

Returns YES if the receiver is an instance of aClassObject. Otherwise, it returns NO. For exampl
iIsMemberOf: would return NO:

ISKindOf:

UIVIF)IMEodrOr. (oL) asel eCLor

L ocates and returns the address of the recelver's implementation of the aSelector method, so that i
function. If therecever isan instance, aSelector should refer to an instance method if the receiver
refer to a class method.

aSelector must be avalid, nonNULL selector. If in doubt, use the respondsTo: method to check b
selector to methodFor:.

IMP is defined (in the objc/objc.h header file) as a pointer to afunction that returns an id and takes
arguments (in addition to the two @idden® argumentsb self and _cmdbthat are passed to every

(const char *)name
Implemented by subclasses to return a name associated with the receiver.

By default, the string returned contains the name of the receiver's class. However, this method is
to return amore object-specific name. Y ou should therefore not rely on it to return the name of th
name of the class, use the class name method instead:

notlmplemented: (SEL)aSel ector

Used in the body of a method definition to indicate that the programmer intended to implement the
stub for the time being. aSelector is the selector for the unimplemented method notlmplemented: |
self. For example:

Sends an aSel ector message to the receiver and returns the result of the message. Thisisequivaler
aSelector message directly to the receiver. For example, al three of the following messages do the

perform:with:, perform:with:with:, methodFor:

perform:(SEL)aSel ector with:anObject

Sends an aSel ector message to the receiver with anObject as an argument. This method is the sam
that you can supply an argument for the aSelector message. aSelector should identify a method th:
argument of typeid.

perform:, perform:with:afterDelay:cancel Previous. (Application Kit Object Additions)

perform:(SEL)aSel ector
with:anObject
with:anotherObject

Sends the receiver an aSelector message with anObject and anotherObject as arguments. This met
perform:, except that you can supply two arguments for the aSelector message. aSelector should i
can take two arguments of typeid.

perform:

performv:(SEL)aSelector :(marg_list)argFrame

Sends the receiver an aSelector message with the argumentsin argFrame. performv:: messages art
implementations of the forward:: method. Both arguments, aSelector and argFrame, are identical 1
run-time system passes to forward::. They can be taken directly from that method and passed thro
performv:..

performv:: should be restricted to implementations of the forward:: method. Because it doesn't re:
arguments in the aSelector message or their type, it may seem like a more flexible way of sending
, perform:with:, or perform:with:with:. However, it's not an appropriate substitute for those methc

[JI UVIVULO LTIU VIGODO TIATIC AU LTI TTULACUUUITTIAAD Ul Lo UL LTI VULl VL, TUNLTHTTIALLOUU GO TULNTUYY O.
<classname: Oxaddress>
Debuggers can use this method to ask objects to identify themselves.

read:(NX TypedStream *)stream

Implemented by subclasses to read the receiver's instance variables from the typed stream stream.
implement aread: method for any class you create, if you want its instances (or instance of classes
be archivable.

The method you implement should unarchive the instance variables defined in the class in a mann
way they were archived by write:. 1n each class, the read: method should begin with a message to

awake, finishUnarchiving, write:

(BOOL)respondsT o:(SEL)aSel ector

Returns Y ESif the receiver implements or inherits a method that can respond to aSelector messag
The application is responsible for determining whether a NO response should be considered an err

Note that if the receiver is able to forward aSel ector messages to another object, it will be abletor
abeit indirectly, even though this method returns NO.

forward::, + instancesRespondTo:

salf
Returns the receiver.

startArchiving:(NXTypedStream *)stream

Implemented by subclasses to prepare an object for being archivedbthat is, for being written to th
A startArchiving: message is sent to an object just beforeit's archivedbbut only if it implements:
respond. The message gives the object an opportunity to do anything necessary to get itself, or the
write: message begins the archiving process.

THHIPEGTIOTHIL UHIC TTIGLNTVUA, TUVVTE TR TU L TTUNTT LG CGJOoUT UL JU UL Ul oo, FTHICR VUL AU UL LT TTICU U Y

it's invoked. To avoid the error, subclasses must override the superclass method.
For example, if subclasses are expected to implement doSomething methods, the superclass woulc
way':

doesNotRecognize:, notlmplemented:, error:

superclass
Returns the class object for the receiver's superclass.

write:(NXTypedStream *)stream

Implemented by subclasses to write the receiver's instance variables to the typed stream stream. 'Y
write: method for any class you create, if you want to be able to archive its instances (or instances

from it).

The method you implement should archive only the instance variables defined in the class, but sho
message to super so that all inherited instance variables will also be archived:

read:, startArchiving:

(NXZone *)zone

Returns a pointer to the zone from which the receiver was alocated. Objects created without spec
allocated from the default zone, which is returned by NXDefaultM allocZone().

