
initFromFile:
Describing the model source directory

name
currentAdaptorName
defaultAdaptorName
defaultLoginString
currentLoginString
loginStringForUser:

Describing the database model entityNamed:
getEntities:

Revising the data dictionary emptyDataDictionary
loadDefaultDataDictionary

Connecting to the database+ findDatabaseNamed:connect:
connect
connectUsingAdaptor:andString:
disconnect
disconnectUsingString:
isConnected
connectionName

Managing transactions beginTransaction
rollbackTransaction
commitTransaction
isTransactionInProgress
areTransactionsEnabled
enableTransactions:

Using a delegate delegate



setDelegate:
Evaluating an arbitrary string evaluateString:
Controlling the user interface arePanelsEnabled

setPanelsEnabled:

connect, connectUsingAdaptor:andString:

(BOOL)arePanelsEnabled

Returns YES if the adaptor upon which the DBDatabase object is built is allowed to display panels in the user interface.
By default, panels are enabled you can disallow by passing NO to the setPanelsEnabled: method.

setPanelsEnabled:

(BOOL)areTransactionsEnabled

Returns YES if the DBDatabase's adaptor allows transaction contexts to be established. The method returns NO if
transactions aren't allowed or if the DBDatabase isn't currently connected to the server.

enableTransactions:

(BOOL)beginTransaction

Tells the adaptor to set up a transaction context. Exactly how the transaction is implemented depends on the server
typically, a virtual copy of subsequently fetched data is created (by the server), thus ªstabilizingº the data while the
transaction is in progress. When you've finished reading and modifying the data, you send commitTransaction to the
DBDatabase, which attempts to write the data back to the server, or rollbackTransaction, which simply throws the copy
away. You're allowed to set up only one transaction context at a time.



Returns YES if the transaction context is successfully initiated the method will fail, and return NO, if the adaptor doesn't
allow transactions, if the DBDatabase isn't connected to the server, or if a transaction context has already been initiated.

commitTransaction, rollbackTransaction

(BOOL)commitTransaction

Causes a transaction started with beginTransaction to be committed. Any changes to the data that have been queued up
since the previous beginTransaction will be irreversibly made in the database. Returns YES if the transaction was
committed. If the server rejects the data, this method returns NO.

beginTransaction, rollbackTransaction

(BOOL)connect

Opens a connection to the server, using the default adaptor name and login string. Returns YES if the connection was
successfully established by this method. Note well that this method returns NO if the DBDatabase is already connected.

defaultAdaptorName, defaultLoginString, disconnect

(const unsigned char *)connectionName

Returns the name of the adaptor's current connection to the server (as defined by the adaptor itself). If the DBDatabase
isn't connected, this returns an empty string.

(BOOL)connectUsingAdaptor:(const char *)adaptorName
andString:(const unsigned char *)aString

Opens a connection to the server using the adaptor identified by adaptorName, and the login string aString. You must
supply the adaptor name if the login string aString is NULL, the method uses the default login string. You should only
invoke this method if you want to connect to an adaptor other than the one named in the model through which the
DBDatabase was created. For a ªnormalº connection, use the findDatabaseNamed:connect: class method, or the connect
instance method.

Returns YES if the connection is made. Note well that this method returns NO if the DBDatabase is already connected.

connect, disconnect, disconnectUsingString:

(const char *)currentAdaptorName

Returns the name of the adaptor through which the DBDatabase is connected to the server. This method returns NULL if
the DBDatabase isn't currently connected.

Typically, the current adaptor is the same as the default adaptorÐin other words, it's the adaptor that's named in the
DBDatabase's model. The one case in which the current and default adaptors may differ is if the DBDatabase was
connected through the connectUsingAdaptor:andString: method.

defaultAdaptorName, defaultLoginString, currentLoginString

(const unsigned char *)currentLoginString

Returns the login string that was used to form the connection to the server. If the DBDatabase isn't currently connected,
this method returns NULL.



Typically, the current login string is the same as the default login stringÐin other words, it's the login string that's named
in the DBDatabase's model. The one case in which the current and default login strings may differ is if the DBDatabase
was connected through the connectUsingAdaptor:andString: method.

defaultLoginString, defaultAdaptorName, currentAdaptorName

(const char *)defaultAdaptorName

Returns the name of the adaptor that's named in the DBDatabase's model. This is the adaptor that, by default, is used to
form a connection to the server. To use some other adaptor, you must name it in an invocation of the
connectUsingAdaptor:andString: method.

currentAdaptorName, defaultLoginString, currentLoginString

(const unsigned char *)defaultLoginString

Returns the login string that's given in the DBDatabase's model. This is the login string that, by default, is used to form a
connection to the server. To use some other string, you must pass it in an invocation of the connectUsingAdaptor:
andString: method.

currentLoginString, defaultAdaptorName, currentAdaptorName

delegate

Returns the DBDatabase's delegate.

setDelegate:

(const char *)directory

Returns the full pathname of the model file that the DBDatabase represents.

name

(BOOL)disconnect

Closes the connection to the database. Returns YES if the connection was successfully closed.

disconnectUsingString: connect, + findDatabaseNamed:connect:

(BOOL)disconnectUsingString:(const unsigned char *)aString

Closes the connection to the database by sending it the command aString. Returns YES if the connection was
successfully closed.

disconnect, connect, + findDatabaseNamed:connect:

emptyDataDictionary

Frees the information that the DBDatabase found in its model. Specifically, the entity names (and property names),
adaptor name, and login string are all erased. You should only need to invoke this method if you want to load the server's
default data dictionary (and that should be rare). Returns self.

loadDefaultDataDictionary



(BOOL)enableTransactions:(BOOL)flag

Controls the right to use transactionsÐthat is, permits use of the methods beginTransaction, commitTransaction, and
rollbackTransactionÐaccording to the value of flag. Returns YES if the adaptor is able to comply, NO otherwise.

areTransactionsEnabled

(id <DBEntities>)entityNamed:(const char *)aName

Returns the entity named aName from the DBDatabase object's list of entities, or nil if it isn't found. The list of entities
is gotten from the DBDatabase's model.

getEntities:

(BOOL)evaluateString:(const unsigned char *)aString

Asks the server to evaluate the string aString, which must be a valid statement in the server's query language.

db:willEvaluateString:usingBinder: (delegate method)

(List *)getEntities:(List *)aList

Fills aList with the DBEntities objects that represent the model's entities. The method also returns the List.

entityNamed:

initFromFile:(const char *)aPath

Initializes and returns the DBDatabase object from the database model information in the bundle identified by the path
aPath. Model information (database name, login string, adaptor name, and entities) are read from the file. You rarely
should need to invoke this method. In general, you should use the class method findDatabaseNamed:connect: to get a
DBDatabase object.

(BOOL)isConnected

Returns YES if the DBDatabase is connected to the server.

connect

(BOOL)isTransactionInProgress

Returns YES if a transaction has been started (by beginTransaction) and has not yet been committed or rolled back.

beginTransaction, commitTransaction, rollbackTransaction



loadDefaultDataDictionary

Reads the server's data dictionary (its list of entities and properties) and fills the DBDatabase with this information. You
should always precede the method with an invocation of emptyDataDictionary (the DBDatabase's current dictionary must
be empty for this method to succeed). This method has no effect if the DBDatabase object isn't connected to the server.
You should rarely need to invoke this method. Returns self.

emptyDataDictionary

(const unsigned char *)loginStringForUser:(const char *)aUser

Returns the login string for the database server user identified by aUser.

(const char *)name

Returns the name of the model that the DBDatabase object represents.

directory

(BOOL)rollbackTransaction

Causes the server to roll back all changes since a preceding beginTransaction. Returns YES if the rollback was
successful. Returns NO if the server couldn't roll back the transaction, or if there wasn't a transaction in progress.

beginTransaction, commitTransaction, dbWillRollbackTransaction: (delegate method)

setDelegate:anObject

Makes anObject the DBDatabase's delegate. Returns self.

delegate

setPanelsEnabled:(BOOL)flag

Tells the DBDatabase to suppress (or not) the attention panels that it displays (in response to server errors, for example).
By default, panels are enabled. You should disable a DBDatabase's panels if you're creating an application that must run
on its own, or that doesn't have a graphic interface. Returns self.

arePanelsEnabled, db:notificationFrom:message:code: (delegate method)

db:aDatabase log:(const char *)fmt, ...

Invoked when the DBDatabase experiences a particularly important, stressful, or otherwise notable moment. The second
argument is a log entry that can be written to a file, displayed in the user interface, spat to standard out, or placed on a
shelf along with the object's other trophies and mementoes. The format of the log entry argument is in the varargs style
the example implementation shown below demonstrates how to turn the argument into text (which, here, is displayed in
the user interface):



(BOOL)db:aDatabase
notificationFrom:anAdaptor
message:(const unsigned char *)msg
code:(int)errorCode

Invoked (by the adaptor) when the server encounters an exceptional situation. The arguments are:

·aDatabase is the DBDatabase object.
·anAdaptor is the object that represents the adaptor.
·msg is a string that describes the error.
·errorCode is an integer constant, defined by the server, that represents the error.

The return value is ignored.

If the delegate doesn't implement this method, and if panels are enabled, an attention panel that displays the msg and
errorCode values is presented to the user.

setPanelsEnabled:

(BOOL)db:aDb
willEvaluateString:(const unsigned char *)aString
usingBinder:aBinder

Invoked before aString, which must be expressed in the server's query language, is sent to the server for evaluation.
Whether the string is actually sent depends on the value that's returned by this method: If this method returns YES (or if
it isn't implemented), the string is sent a return of NO prevents the evaluation.

This method is invoked when the DBDatabase receives an evaluateString: message, and when the DBDatabase's adaptor
is about to perform a data operation, such as selecting or updating.

evaluateString:

dbDidCommitTransaction:aDatabase

Invoked just after a transaction is committed. The return value is ignored.

dbWillCommitTransaction: (delegate method)

dbDidRollbackTransaction:aDatabase

Invoked just after a transaction is rolled back. The return value is ignored.

dbWillRollbackTransaction: (delegate method)



dbWillCommitTransaction:aDatabase

Invoked just before a transaction is committed. The return value is ignored.

dbDidCommitTransaction: (delegate method)

dbWillRollbackTransaction:aDatabase

Invoked just before a transaction is rolled back. The return value is ignored.

dbDidRollbackTransaction: (delegate method)


