


addRetrieveOrder:(DBRetrieveOrder)anOrder for:(id <DBProperties>)aProperty

Associates a retrieval order with the property aProperty. The permissible values of anOrder are:



getProperties:

binderDelegate

Returns the delegate used by the DBRecordStream's DBBinder objects.

setBinderDelegate:

cancelFetch

Terminates the current fetch operation this is generally only of use if the DBRecordStream is fetching in the background.
Returns self.

fetchUsingQualifier:

clear

Resets the DBRecordStream. The DBRecordStream's record data, list of properties, and list of key properties are
emptied. Its database instance variable is set to nil, but its delegate remains unchanged. Its status is set to DB_NotReady.
Returns self.

currentRetrieveStatus, free

(DBRecordRetrieveStatus)currentRetrieveStatus

Returns the DBRecordStream's status, which can be:

delegate

Returns the DBRecordStream's delegate or nil if no delegate has be set.

setDelegate:, recordStream:willFailForReason: (delegate method)

deleteRecord

Deletes the current record in the DBRecordStream and causes the DBRecordStream to access the next record in sequence,
if any.

Returns nil if the deletion can't be accomplished otherwise, returns self. If the deletion fails, the DBRecordStream will
attempt to notify its delegate of the reason, and the cursor remains unchanged (pointing to the record that should have
been deleted but wasn't) .

recordStream:willFailForReason: (delegate method)



fetchUsingQualifier:(DBQualifier *)aQualifier

Selects data from the database and makes it available to the DBRecordStream. The scope of records retrieved from the
database is controlled by aQualifier. For example, assuming the data source is an SQL database, aQualifier could be an
object that represents the expression ªwhere name = `Holbein'º. If aQualifier is nil, all records in aSource are selected.
The argument aQualifier and the current property list must refer to the same entity otherwise an error occurs.

In case of error, this method makes the DBRecordStream's list of properties empty, and returns nil. Otherwise, returns
self.

cancelFetch, setProperties:ofSource:

free

Releases the storage for the DBRecordStream.

(List *)getKeyProperties:(List *)keyList

Fills keyList with objects that represent the key properties of the DBRecordStream. Each of these objects conforms to the
DBProperties protocol. Returns the newly filled List object.

setKeyProperties:

(List *)getProperties:(List *)propertyList

Places the DBRecordStream's property list in propertyList and returns propertyList.

setProperties:ofSource:

getRecordKeyValue:(DBValue *)aValue

Places the value of the current record's key property (or properties) in aValue.

This method is especially useful when data must be exchanged between DBRecordStreams. For example, suppose one
DBRecordStream supplies employee information and another supplies department information to the user interface of an
application. A user can change an employee's department by selecting from a list of department names. After a
department name is selected, you can use getRecordKeyValue: to determine the corresponding record's key value so that
you can set the department identification in the employee's record.

Returns nil if the DBRecordStream has status DB_NotReady otherwise, returns aValue.

getValue:(DBValue *)aValue forProperty:aProperty

Places the value for aProperty into aValue. This method is the only means of retrieving record data stored in the
DBRecordStream.

When aProperty is a relationship, the method sets aValue so that it includes the key value of the relationship's source
property and the entity that is the relationship's target. (In that case, sending aValue the DBValues message isEntity
would get the response YES.) The fact that the value object identifies the target entity is exploited by the method
setProperties:ofSource:.

If the status of the DBRecordStream is DB_NotReady, this method return nil. Otherwise, it returns the DBValue object.

setValueFor:from:, propertyNamed: (DBDatabase), isEntity (DBValues protocol), setProperties:ofSource:

init



Initializes and returns a newly allocated DBRecordStream. The DBRecordStream's delegate instance variable is set to nil
and its retrieve status is set to DB_NotReady.

This method is the designated initializer for DBRecordStream.

(BOOL)isModified

Returns YES if the current record has been modified since it was added to the DBRecordStream or fetched from the
database NO otherwise.

isNewRecord

(BOOL)isNewRecord

Returns YES if the current record is new that is, it the result of the DBRecordStream receiving a newRecord message.

newRecord, isModified

(BOOL)isReadOnly

Returns YES if the records in the DBRecordStream can only be read, not modified. If a DBRecordStream's key
properties haven't been set, isReadOnly will return YES.

setKeyProperties:, getKeyProperties:

newRecord

Creates a new, empty record. Before this operation can take place, the DBRecordStream attempts to save modifications
of the current record to the database. If these changes can't be saved, newRecord returns nil, no new record is created,
and the cursor is not advanced. Otherwise, newRecord returns self, and the cursor is advanced to make the new record the
current record.

saveModifications

(unsigned int)saveModifications

Saves the new or modified record to the database. If the database supports transactions and there's no transaction in
progress, this save operation is nested within a new transaction.

If there is no transaction in progress, a new transaction is created for this operation. If the modifications can be made to
the database, this transaction is committed. An error during this commit process raises a DB_TRANSACTION_ERROR
exception.

Returns these values:

areTransactionsEnabled (DBDatabase), beginTransaction (DBDatabase)

setBinderDelegate:newDelegate



Sets the delegate for the DBRecordStream's DBBinder objects. This delegate can intercede in operations that would add
or modify the database. See the DBBinder class specification for more information.

binderDelegate

setDelegate:anObject

Sets the DBRecordStream's delegate. Returns self.

delegate, recordStream:willFailForReason: (delegate method)

(List *)setKeyProperties:(List *)propertyList

Sets the DBRecordStream's list of key properties to propertyList. Each of the objects in propertyList must conform to the
DBProperties protocol. Typically, key properties are identified in the database model using DBModeler, so you rarely
invoke this method.

Returns nil if any property in propertyList is not a property of the DBRecordStream's source otherwise, returns the
property list.

getKeyProperties:

setNext

Advances the DBRecordStream's internal cursor by 1, so that it points to the next record in the group of records made
available by a fetch operation.

Returns self if successful and nil if not. A nil return can mean that there are no further records to return or that the
DBRecordStream was unable to save modifications to the current record.

saveModifications

(List *)setProperties:(List *)propertyList ofSource:aSource

Sets the properties that will be fetched or stored by a DBRecordStream, or its subclass, a DBRecordList. The properties
transferred will be those contained in propertyList. The argument aSource specifies the entity that contains the properties
this is typically a DBEntities object that's the ªrootº of all the properties in the property list. If aSource is nil, the entity
for the first property in propertyList is used.

The argument aSource can also be a DBValue object that's gotten by asking for the value for a relationship from a data-
storage object that has already fetched data. The DBValue object encodes the relationship's attribute equivalence such
that when the receiving DBRecordStream fetches, it qualifies the fetch to select the ªdetailº records for the ªmasterº
record from whence the DBValue was plucked.

The application should send a setProperties:ofSource: message before doing anything with a DBRecordStream or
DBRecordList. Once the list of properties has been set, the application can send fetchUsingQualifier: messages, based on
the list of properties that has been set. To a DBRecordList, the application can also send fetchUsingQualifier:empty:, or
can make multiple inserts or multiple deletes. (After once calling setProperties:ofSource:, you shouldn't call it again
until you really need to establish a new property list, since each use discards any prior data without saving.)

Returns nil if the properties in propertyList don't share the same entity or if some other error occurs otherwise, returns
self.

getProperties:, getValue:forProperty:, isEntity (DBValues protocol)

setValue:(DBValue *)aValue forProperty:aProperty

Sets the value for aProperty in the current record to that contained in aValue. Returns a nonzero value if successful
otherwise, returns nil.



getValue:forProperty:

(BOOL)recordStream:sender willFailForReason:(DBFailureCode) aCode

Responds to a message informing the delegate that a modification couldn't be saved to the database. In general,
returning YES to this message acknowledges the failure and permits the operation to be aborted, thereby aborting the
local transaction of which it is part.

saveModifications, setDelegate:, delegate

(BOOL)recordStreamPrepareCurrentRecordForModification:aRecordStream

Notifies the delegate of a proposed modification to the current record, verifies that the record is unique, and permits
modification to proceed only if the return is YES.

If implemented, this delegate method provides an alternative to the standard check that a DBRecordStream performs
before deleting or modifying a record. (The DBRecordStream or its subclass normally verifies that a record still exists,
and that it is unique. It invokes a ªconfirming selectº on the DBDatabase using the key value, and then compares all
properties to see that none has changed. The select is usually a locking select.) This delegate method replaces that
mechanism, making the delegate responsible for verification and locking. If the method returns YES, the record is
considered to be verified, and modification proceeds. If the method returns NO, the record is not modified, which may
cause the entire sequence containing saveModifications: to fail, depending on the transaction model being used.

This method should not call any of the methods implemented by DBRecordStream or DBRecordList other than getValue:
forProperty:


