

free

Setting up the application+ workspace

loadNibFile:owner:

loadNibFile:owner:withNames:

loadNibFile:owner:withNames:.fromZone:

|oadNibSection:owner:

|loadNibSection:owner:withNames:

|loadNibSection:owner:withNames:fromHeader:

|oadNibSection:owner:withNames:fromZone:

|loadNibSection:owner:withNames:fromHeader:
fromZone:

appName

setMainMenu:

mainMenu

Responding to notification applicationWillLaunch:

Changing the active application

Running the event loop run

applicationDidLaunch:
applicationDidTerminate:

activeApp
becomeActiveApp
activate:
activateSelf:
ISActive
resignActiveApp
deactivateSelf

IsSRunning

stop:

runModal For:
stopModal
stopModal:
abortModal
beginM odal Session:for:
runM odal Session:
endM odal Session:
delayedFree:
sendEvent:

Getting and peeking at events currentEvent

Journaling setJournalable:

getNextEvent:
getNextEvent:waitFor:threshold:
peek AndGetNextEvent:
peekNextEvent:into:
peekNextEvent:into:waitFor:threshold:

powerOff:
powerOffln:andSave:
rightMouseDown:
unmounting:ok:

Sending action messages sendA ction:to:from:
tryToPerform:with:
calcTargetForAction:

Remote messaging setAppListener:
appListener
setA ppSpeaker:
appSpeaker
appListenerPortName
replyPort

Managing Windows applcon
findWindow:
getWindowNumbers:count:
keyWindow
mainWindow
makeWindowsPerform:inOrder:
setAutoupdate:
updateWindows
windowL ist
miniaturizeAll:
preventWindowOrdering

Managing the Windows menu set\WindowsM enu:
windowsMenu
arrangel nFront:
addWindowsltem:title:filename:
changeWindowsltem:title:filename:
removeWindowsltem:
updateWindowsltem:

Managing Panels showHel pPanel:
orderFrontDatal inkPanel :

Managing the Services menu setServicesMenu:
servicesMenu
registerServicesM enuSendTypes.andReturnTypes:
validRequestorForSendType:andReturnType:

Managing screens mainScreen
colorScreen
getScreens.count:
getScreenSize:

Querying the application context
focusView
hostName
Reporting current languages systemL anguages
Using files openFile:ok:
openTempFile:ok:
fileOperationCompl eted:

Responding to devices mounted:
unmounted:

Printing setPrintinfo:

run

(void)abortModal

Aborts the modal event loop by raising the NX_abortModal exception, which is caught by runMoc
started the modal loop. Since this method raises an exception, it never returns runModal For:, whe
method, returns NX_RUNABORTED. This method istypically invoked from procedures reglsten
DPSAddTlmedEntry() DPSAddPort(), or DPSAddFD(). Note that you can't use this method to al
where you control the modal loop and periodically invoke runM odal Session:.

runModalFor:, runModal Session:, endModal Session:, stopModal, stopModal:

(int)activate: (int)contextNumber

IVICUNCO LTI T ULl Vi IH a'J'JIIbaLIUI Huio Gl ve a'J'JII\,aLIUI L 11 II(I.J 1O NG, LU a'JlJIIbaLIUI 11O Gl vaiLu U
application is currently active. Normally, this method isinvoked with flag set to NO. When the W
launches an application, it deactivatesitself, so activateSelf:NO allows the application to become ¢
for it to launch, but the application remains unobtrusive if the user activates another application. |
application will always activate. Regardless of the setting of flag, there may be atime lag beforet
you should not assume that the application will be active immediately after sending this message.

Note that you can make one of your Windows the key window without changing the active applics
makeK eyWindow message to a Window, you simply ensure that the Window will be the key winc
application is active.

Y ou should rarely need to invoke this method. Under most circumstances the Application Kit take
activation. However, you might find this method useful if you implement your own methods for i
communication. This method returns the PostScript context number of the previously active appli

activeApp, activate:, deactivateSelf, makeKeyWindow (Window)

(int)activeApp
Returns the active application's PostScript context number. If no application is active, returns zer
iISActive, activate:

addWindowsltem:awWindow
title:(const char *)aString
filename:(BOOL)isFilename

Adds an item to the Windows menu corresponding to the Window awindow. If isFilenameisNO
literally in the menu. If isFilenameis YES, aString is assumed to be a converted name with the na
the path (the way Window's setTitleAsFilename: method shows atitle). If anitem for awindow a
Windows menu, this method has no effect. Y ou rarely invoke this method because an itemis plac
menu for you whenever a Window's titleis set. Returns self.

changeWindowsltem:title:filename:, setTitle: (Window), setTitleAsFilename: (Window)

applcon

Returns the Window object that represents the application in the Workspace Manager (containing
and icon).

applicationDefined:(NX Event *)theEvent

Invoked when the application receives an application-defined (NX_APPDEFINED) event. Thisis
provide whatever response you want, by overriding the default definition in a subclass or defining
delegate. Returns self.

(int)applicationDidL aunch:(const char *)appName

\I NNV W VI l*JW\;I \\1\.1”\1\-‘- rll ULU\JUll

(int)applicationDidTerminate:(const char *)appName

Notification from the Workspace Manager that the application whose name is appName has termir
messages the Application will receive if it has previously sent the Workspace Manager the messag
beginListeningForApplicationStatusChanges.

If the delegate implements the method app:applicationDidTerminate:, that message is sent to it. If
implement it, the method is handled by the Application subclass object (if you created one). Ther
integer your application defines and interpretsit. If you neither provide a delegate method nor ove
default definition ssmply returns O.

app:applicationDidTerminate: (Application delegate method), beginListeningForApplicationStatt
(NXWorkspaceRequest protocol)

(int)applicationWillLaunch:(const char *)appName

Notification from the Workspace Manager that the application whose name is appName is about tc
the messages the Application will receiveif it has previously sent the Workspace Manager the me:
beginListeningForApplicationStatusChanges.

If the delegate implements the method app:applicationWillLaunch:, that messageis sent to it. If tf
implement it, the method is handled by the Application subclass object (if you created one). Ther
integer your application defines and interpretsit. If you neither provide a delegate method nor ove
default definition ssimply returns O.

app:applicationWillLaunch: (Application delegate method), beginListeningForApplicationStatus
(NXWorkspaceRequest protocol)

appListener

Returns the Application object's Listenerbthe object that will receive messages sent to the port th
application's name. If you don't send a setAppListener: message before your application starts rur
Listener is created for you. (Note, however, that to communicate with the Workspace Manager to
files, you should send messages to the object that represents the Workspace Manager, returned by
method it responds to the NXWorkspaceRequest protocol.)

setAppListener:, appListenerPortName, run, + workspace

(const char *)appListenerPortName

Returns the name used to register the Application object's Listener. The default is the same name
Application object's appName method. If adifferent nameis desired, this method should be overr
by name to appListenerPortName will be received by your Application object.

checklnAs: (Listener), appName, NXPortFromName()

dppopearel
Returns the Application object's Speaker. Y ou can use this object to send messages to other appli

setSendPort: (Speaker)

arrangel nFront:sender

Arranges all of the windows listed in the Windows menu in front of all other windows. Windows
application but not listed in the Windows menu are not ordered to the front. Returns self.

removeWindowsltem:, makeKeyAndOrderFront: (Window)

becomeActiveApp

Sends the appDidBecomeActive: message to the Application object's delegate. This method isiny
application is activated. Y ou never send a becomeA ctiveApp message directly, but you can overri
subclass. Returns self.

activateSelf:, appDidBecomeActive: (delegate method)

(NXM odal Session *)beginM odal Session:(NXM odal Session *)session for:theWindow

Prepares the application for amodal session with theWindow. In other words, prepares the applic:
events get to it only if they occur in theWindow. If sessionisNULL, an NXModal Session isalloc
given storage is used. (The sender could declare alocal NXModal Session variable for this purpos
the key window and ordered to the front.

beginM odal Session:for: should be balanced by endModal Session:. |f an exception israised, begir
arranges for proper cleanup. Do not use NX_ DURING constructs to send an endM odal Session: m
an exception. Returns the NXM odal Session pointer that's used to refer to this session.

runModal Session:, endM odal Session:

calcTargetForAction:(SEL)theAction

Returns the first object in the responder chain that responds to the message theAction. The messa
dispatched. Note that this method doesn't test the value that the responding object would return st
sent specifically, it doesn't test to seeif the responder would return nil. Returns nil if no responde

sendAction:to:from:

changeWindowsltem:awindow
title:(const char *)aString
filename:(BOOL)isFilename

Changes the item for awindow in the Windows menu to aString. 1f awindow doesn't have an iter
menu, this method adds the item. If isFilenameis NO, aString appears literally in the menu. If isF

| i B

(DPSContext)context
Returns the Application object's Display PostScript context.

(NXEvent *)currentEvent

Returns a pointer to the last event the Application object retrieved from the event queue. A pointe
also passed with every event message.

getNextEvent:waitFor:threshold:, peekNextEvent:waitFor:threshold:

deactivateSelf

Deactivates the application if it's active. Normally, you shouldn't invoke this method the Applica
for proper deactivation. Returns self.

activeApp, activate:, activateSelf:

delayedFree:theObject

Frees theObject by sending it the free message after the application finishes responding to the curr
getsthe next event. If this method is performed during a modal loop, theObject is freed after the n
Returns self.

perform:with:afterDelay:cancel Previous. (DelayedPerform informal protocol)

delegate
Returns the Application object's delegate.
setDelegate:

(BOOL)doeslmportAlpha

Reports whether the application imports colors that include a value for alpha (opacity), and include
its ColorPanel. The default is YES.

setlmportAlpha:

the integer returned by the method that requested the file operation, to wit performFileOperation:s
options: (part of NXWorkspaceRequest protocol).

If the delegate implements the method app:fileOperationCompl eted:, that messageissent toit. If
implement it, the method is handled by the Application subclass object (if you created one). Ther
integer your application defines and interpretsit. If you neither provide a delegate method nor ove
default definition ssmply returns O.

findWindow: (int)windowNum

Returns the Window object that corresponds to the window number windowNum. Thismethod is
finding the Window object associated with a particular event.

windowNum (Window)

focusView
Returns the View whose focusiis currently locked, or nil if no View's focusislocked.
lockFocus (View)

free

Closes al the Application object's windows, breaks the connection to the Window Server, and fre
object.

(NXEvent *)getNextEvent:(intymask

Gets the next event from the Window Server and returns a pointer to its event record. This methoc
getNextEvent:waitFor:threshold: with an infinite timeout and a threshold of NX_MODALRESPT}

getNextEvent:waitFor:threshold, run, runModalFor:, currentEvent

(NXEvent *)getNextEvent:(intymask
waitFor:(double)timeout
threshold:(int)level

Gets the next event from the Window Server and returns a pointer to its event record. Only events
returned getNextEvent:waitFor:threshold: goes through the event queue, starting from the head, ur
matching mask. (Event Type Mask constants are described in the @Types and Constants® section «
PostScript® chapter.) Eventsthat are skipped are left in the queue. Note that getNextEvent:waitFc
ater the window event masks that determine which events the Window Server will send to the apy;

If an event matching the mask doesn't arrive within timeout seconds, this method returnsa NULL
Y ou can use this method to short circuit normal event dispatching and get your own events. For €

peekNextEvent:waitFor:threshold:, run, runModalFor:

getScreens:(const NX Screen **)list count:(int *)numScreens

Gets screen information for every screen connected to the system. A pointer to an array of NXScr
in the variable indicated by list, and the number of NX Screen structures in that array isplaced in tl
numScreens. The list of NXScreen structures belongs to the A pplication object it should not be al
self.

getScreenSize:(NX Size *)theSize

Gets the size of the main screen, in units of the screen coordinate system, and placesit in the struc
theSize. Returns self.

getWindowNumbers:(int **)list count:(int *)numWindows

Gets the window numbers for all the Application object's Windows. A pointer to a non-NULL-ter
placed in the variable indicated by list. The number of entriesin thisarray is placed in the integer
numwWindows. The order of window numbersin the array is the same as their order in the Windov
which is their front-to-back order on the screen. The application isresponsible for freeing the list
Returns self.

hide:sender

Collapses the application's graphicsbincluding all its windows, menus, and panelsbinto asingle
hide: message is usually sent using the Hide command in the application's main Menu. Returns se

unhide:

(const char *)hostName

Returns the name of the host machine on which the Window Server that serves the Application ob
method returns the name that was passed to the receiving Application object through the NXHost «
either from its value in the defaults database or by providing a value for NXHost through the comr
NXHost isn't specified, NULL isreturned.

(BOOL)isActive
Returns YES if the application is currently active, and NO if it isn't.
activateSelf:, activate:

\PUUL)ToJull ld aul ©

Returns YES if the application can be journaled, and NO if it can't. By default, applications can b
is handled by the NXJournaler class.

setJournalable:

(BOOL)isRunning
Returns YES if the application is running, and NO if the stop: method has ended the main event 1o
run, stop:, terminate;

keyWindow

Returns the key Window, that is, the Window that receives keyboard events. If thereisno key Wi
Window belongs to another application, this method returns nil.

mainWindow, isKeyWindow (Window)

loadNibFile:(const char *)filename owner:anOwner

L oads interface objects from aNeXT Interface Builder (nib) file. The argument anOwner is the ol
File's Owner® in Interface Builder's File window. The objects and their names are read from the
storage allocated from the default zone.

Objects that were archived in the nib file (standard objects from an Interface Builder palette) are
and awake messages other objects are instantiated and are sent an init message.

Returns non-nil if the file filename is successfully opened and read, and nil otherwise.

Invoking loadNibFile:owner: is equivalent to invoking loadNibFile:owner:withNames.fromZone:
argument values indicate that names should also be loaded and that memory should be allocated fr

|loadNibFile:owner:withNames:.fromZone:, NXDefaultMallocZone(), awake (Object), init (Obje

loadNibFile:(const char *)filename
owner:anObject
withNames:(BOOL)flag

L oads interface objects from aNeXT Interface Builder (nib) file. The argument anOwner isthe ol
File's Owner® in Interface Builder's File window. The objects are read from the specified interfe
allocated from the default zone. When flag is YES, the objects' names are also loaded. Names mi
NX GetNamedObject() to get at the objects, but are not otherwise required.

Objects that were archived in the nib file (standard objects from an Interface Builder palette) are
and awake messages other objects are instantiated and are sent an init message.

Returns non-nil if the file filename is successfully opened and read.

Invoking loadNibFile:owner:withNames: is equivalent to invoking loadNibFile:owner:withNames
specifies that memory should be alocated from the default zone.

LUCUHO 11 1ILUl 1 Qv O UUJC\;LDIIUIII CLINC/N 1T 11 ItUl TGV L LUl vuuild \I IIIJ} e, 1 IICGIUUIIICI I INJVVITICL 1O LHTIC UL
FFile's Owner® in Interface Builder's File window. The objects are read into memory allocated fre
YES, the objects names are also loaded. Names must be loaded if you use NX GetNamedObject()
but are not otherwise required. Objects that were archived in the nib file (standard objects from ar
palette) are sent finishUnarchiving and awake messages other objects are instantiated and are sent

Returns non-nil if the file filename is successfully opened and read.
awake (Object), init (Object)

loadNibSection:(const char *)name owner:anOwner

L oads interface objects and their names from the source identified by name. To find the source, tr
follows:

‘First, for asection named name withinthe __ NIB segment of the application's executablefile. (°
versions of Interface Builder routinely put nib sections, but not where Project Builder puts then
will be here only if the applications was compiled by an earlier version of Interface Builder.)

-Second, if no such section exists, the method searches certain language directories within the maii
name name and type @nib, ° andbif it finds onebloads the interface objects from there. It sear
directories that the user specified for this application, or (if none) those specified by the user's
preferences (see systemL anguages).

-Third, if there's no file named name in the main bundl€e's relevant language directories, it |ooks fc
name and type 2nib° in the main bundle (but outside the 2 lproj° directories).

The argument anOwner is the object that corresponds to the @File's Owner® object in Interface Bui
The loaded objects are allocated memory from the default zone.

Objects that were archived in the nib file (standard objects from an Interface Builder palette) are
and awake messages other objects are instantiated and are sent an init message.

Returns non-nil if the section or file is successfully opened and read.

Invoking loadNibSection:owner: is equivalent to invoking loadNibSection:owner:withNames:fron
additional arguments indicate that names should also be loaded and that memory should be allocat
zone.

NXDefaultMallocZone(), + mainBundle (NXBundle), getPath:forResource:of Type: (NXBundle)
(Object)

loadNibSection:(const char *)name
owner:anOwner
withNames.(BOOL)flag

L oads interface objects and their names from the source identified by name. The source may be a
executable file, or afile within the application bundle, as described above for the loadNibSection:c

The argument anOwner is the object that corresponds to the @File's Owner® object in Interface Bui
The loaded objects are allocated memory from the default zone. When flag is YES, the objects' n:
Names must be loaded if you use NX GetNamedObject() to get at the objects, but are not otherwise

Objects that were archived in the nib file (standard objects from an Interface Builder palette) are
and awake messages other objects are instantiated and are sent an init message.

Returns non-nil if the section or file is successfully opened and read.

fromHeader:(const struct mach_header *)header

L oads interface objects from a section within adynamically loaded object filebthat is, from afile
application's main bundie. The argument header identifies the file, as returned by the function obj
argument name identifies a named section within thefile's _ _NIB segment. When no such file ex
searches the executable file's bundle, first within its language subdirectories, as described above fc
owner: instance method.

The argument anOwner is the object that corresponds to the 3File's Owner® object in Interface Bui
Memory for the loaded objectsis allocated from the default zone. When flag is YES, the objects
Names must be loaded if you use NX GetNamedObject() to get at the objects, but are not otherwise

Objects that were archived in the nib file (standard objects from an Interface Builder palette) are
and awake messages other objects are instantiated and are sent an init message.

A class can use this method in its finishLoading class method to load interface data objects require
stored separately (for example, because the same interface objects are also used by other classes).

Returns non-nil if the section or file is successfully opened and read.

Invoking loadNibSection:owner:withNames.fromHeader: is equivalent to invoking loadNibSectiol
fromHeader:fromZone: when the additional arguments indicate that names should also be loaded &
be allocated from the default zone.

awake (Object), init (Object)

loadNibSection:(const char *)name
owner:anOwner
withNames:(BOOL)flag
fromHeader:(const struct mach_header *)header
fromZone:(NXZone *)zone

L oads interface objects from a section within a dynamically loaded object fileDthat is, from afile
application's main bundle. The argument header identifies the file, as returned by the function obj
argument name identifies a named section within thefile's __NIB segment. When no such file ex
searches the executable file's bundle, first within its language subdirectories, as described above f¢
owner: instance method.

The argument anOwner is the object that corresponds to the @File's Owner® object in Interface Bui
Memory for the loaded objects is allocated from the zone specified by zone. When flag is YES, th
also loaded. Names must be loaded if you use NXGetNamedObject() to get at the objects, but are
Objects that were archived in the nib file (standard objects from an Interface Builder palette) are
and awake messages other objects are instantiated and are sent an init message.

A class can use this method in its finishLoading class method to load interface data objects require
stored separately (for example, because the same interface objects are also used by other classes).

Returns non-nil if the section is successfully opened and read.
loadNibSection:owner:withNames.fromZone:, awake (Object), init (Object)

loadNibSection:(const char *)name
owner:anOwner
withNames:(BOOL)flag
fromZone:(NXZone *)zone

ITVCRAINT VUYWLV EJVYVTHTIVE VYT TN AT T 1T VT TOUWBAA - 1TT VT e VT oy AV YV A\ ™ \\JLJJ\;\JL}, LR \\JUJ\I\JL/

mainMenu
Returns the Application object's main Menu.

(const NX Screen *)mainScreen

Returns the main screen. If thereisonly one screen, that screen isreturned. Otherwise, this methc
key window's screen. If thereisno key window, it attempts to return the main menu's screen. If
this method returns the screen that contains the screen coordinate system origin.

screen (Window)

mainWindow

Returns the main Window. This method returns nil if there is no main window, if the main windo
application, or if the application is hidden.

keyWindow, isManWindow (Window)

makeWindowsPerform:(SEL)aSel ector inOrder:(BOOL)flag

Sends the Application object's Windows a message to perform the aSelector method. The messag
Window in turn until one of them returns Y ES this method then returns that Window. If no Windc
method returns nil.

If flag is YES, the Application object's Windows receive the aSelector message in the front-to-bac
appear in the Window Server's window list. If flagis NO, Windows receive the message in the or
Application object's window list. Thisorder generally reflects the order in which the Windows wi

The method designated by aSelector can't take any arguments.

masterJournal er
Returns the Application object's master journaler. Journaling is handled by the NXJournaler clas
slaveJournalar:

miniaturizeAll:sender
This method miniaturizes all of the receiver's application windows. Returns self.

-

unmounting:ok:, unmounted:

(int)openFile:(const char *)full Path ok:(int *)flag

Responds to a remote message requesting the application to open afile. openFile:ok: istypically <
from the Workspace Manager, although an application can send it directly to another application.

object's delegate is queried with appAcceptsAnotherFile: and if theresult is YES, it's sent an app:
If the delegate doesn't respond to either of these messages, they're sent to the Application object (|

The variable pointed to by flag is set to YES if the file is successfully opened, NO if thefileis not
and 1 if the application does not accept another file. Returns zero.

app:openFile:type: (delegate method), openTempFile.ok:, openFile:ok: (Speaker)

(int)openTempkile:(const char *)fullPath ok:(int *)flag
Same as the openFile:ok: method, but app:openTempFileitype: is sent. ReturnsO.
app:openTempkFileitype: (delegate method), openTempkile:ok: (Speaker)

orderFrontColorPanel :sender
Displays the color panel. Returns self.

orderFrontDatal inkPanel :sender

Displays the data link panel. It doesthis by sending an orderFront: message to the shared instance
(if need be, creating anew one). Returns self.

(NXEvent *)peekAndGetNextEvent: (int)mask

This method is similar to getNextEvent:waitFor:threshold: with a zero timeout and a threshold of
NX_ MODALRESPTHRESHOLD.

getNextEvent:waitFor:threshold, run, runModalFor:, currentEvent, peekNextEvent:into:

(NXEvent *)peekNextEvent:(int)mask into:(NXEvent *)eventPtr

This method is similar to peekNextEvent:into:waitFor:threshold: with a zero timeout and a threshc
NX_ MODALRESPTHRESHOLD.

peekNextEvent:into:waitFor:threshold, run, runModalFor:, currentEvent

YCUNCALLVEl ILVWa LUl ulres luid., Tdil, 1Tduriivivua r-ul., culiciitvel it

powerOff:(NXEvent *)theEvent

A powerOff: message is generated when a power-off event is sent from the Window Server. Asa
Workspace Manager and login window should respond to this event. If the application was launcl
Manager, this method does nothing instead, the Application object will wait for the powerOffin:ar
the Workspace Manager. |If the application wasn't launched from the Workspace Manager, thism
delegate a powerOff: message, assuming there's a delegate and it implements the method. Applic:
launched from the Workspace Manager are not fully supported, and are not guaranteed any amoun
thismessage. However, applications launched from the Workspace Manager can request addition:
from within the app:powerOffin:andSave method. Returns self.

app:powerOffin:andSave: (delegate method), powerOffln:andSave:

(int)powerOffIn:(int)ms andSave:(int)aFlag

Y ou never invoke this method directly it's sent from the Workspace Manager. The delegate or you
Application will be given the chance to receive the app:powerOffln:andSave message. The aFlag
particular meaning and can beignored. This method raises an exception, so it never returns.

app:powerOffIn:andSave: (delegate method)

preventWindowOrdering

Suppresses the usual window ordering behavior entirely. Most applications will not need to use th
Application Kit support for dragging will call it when dragging is initiated.

printinfo
Returns the Application object's global PrintInfo object. If none exists, adefault oneis created.

registerServicesM enuSendTypes:(const char * const *)sendTypes andReturnTypes:(const char

Registers pasteboard types that the application can send and receive in response to service request:
a Services menu, amenu item is added for each service provider that can accept one of the specifie
one of the specified return types. This method should typically be invoked at application startup ti
that can use servicesis created. It can beinvoked more than once its purpose isto ensure that ther
every service that the application may use. Theindividual itemswill be dynamically enabled and
handling mechanism to indicate which services are currently appropriate. An application (or objex
or paste) should register every possible type that it can send and receive. Returns self.

validRequestorForSendType:andReturnType: (Responder), readSelectionFromPasteboard: (Obje
writeSel ectionToPasteboard:types: (Object method)

(port_t)replyPort

Returns the Application object's reply port. This port is alocated for you automatically by the rur
default reply port which can be shared by all the Application object's Speakers.

setReplyPort: (Speaker)

resignActiveApp

This method isinvoked immediately after the application is deactivated. Y ou never send resignAc
directly, but you could override this method in your Application object to notice when your applic:
Alternatively, your delegate could implement appDidResignActive:. Returns self.

deactivateSelf:, appDidResignActive: (delegate method)

rightMouseDown:(NXEvent *)theEvent
Pops up the main Menu. Returns self.

run

Initiates the Application object's main event loop. The loop continues until a stop: or terminate: n
Each iteration through the loop, the next available event from the Window Server is stored, and is
sending the event to the Application object using sendEvent:

A run message should be sent as the last statement from main(), after the application's objects hav
Returns self if terminated by stop:, but never returnsif terminated by terminate:..

runModalFor:, sendEvent:, stop:, terminate;, appDidinit: (delegate method)

(int)runM odal For:theWindow

Establishes a modal event loop for theWindow. Until the loop is broken by a stopModal, stopMaoc
message, the application won't respond to any mouse, keyboard, or window-close events unless th
theWindow. If stopModal: is used to stop the modal event loop, this method returns the argument
If stopModal isused, it returns the constant NX_RUNSTOPPED. [f abortModal is used, it returns
NX_RUNABORTED. This method isfunctionally similar to the following:

stopModal, stopModal:, abortModal, runModal Session:

passed to stopModal:. The NX_abortModal exception raised by abortModal isn't caught.
beginModal Session:, endModal Session, stopModal:, stopModal, runModalFor:

runPagelayout:sender

Brings up the Application object's Page Layout panel, which allows the user to select the page sz
Returns self.

(BOOL)sendAction:(SEL)aSel ector to:aTarget from:sender

Sends an action message to an object. If aTarget isnil, the Application object looks for an object t
messagebthat is, for an object that implements a method matching aSelector. It begins with the fi
window. If thefirst responder can't respond, it tries the first responder's next responder and contit
responder links up the Responder chain. If none of the objectsin the key window's responder cha
message, the Application object attempts to send the message to the key Window's delegate.

If the delegate doesn't respond and the main window is different from the key window, NXApp be
responder in the main window. If objectsin the main window can't respond, the Application obje
message to the main window's delegate. If still no object has responded, NXApp triesto handle tt
NXApp can't respond, it attempts to send the message to its own delegate.

Returns YES if the action is applied otherwise returns NO.

sendEvent:(NXEvent *)theEvent

Sends an event to the Application object. You rarely send sendEvent: messages directly although'
override this method to perform some action on every event. sendEvent: messages are sent from tl
run method). sendEvent isthe method that dispatches eventsto the appropriate responders the Ap
application events, the Window indicated in the event record handles window related events, and r
are forwarded to the appropriate Window for further dispatching. Returns self.

setAutoupdate:

servicesMenu
Returns the Application object's Services menu. Returnsnil if no Services menu has been created
setServicesMenu:

setAppListener:alistener

Sets the Listener that will receive messages sent to the port that's registered for the application. If
special Listener reply to these messages, you must either send a setAppListener: message before tf
to the Application object, or send this message from the del egate method appWilllnit:, so that alis
registered. This method doesn't free the Application object's previous Listener object. Returns se

appListenerPortName, appWilllnit: (delegate method)

setAutoupdate:(BOOL)flag

Turns on or off automatic updating of the application's windows. (Until this message is sent, auto
enabled.) When automatic updating is on, an update message is sent to each of the application's W
event has been processed. This can be used to keep the appearance of menus and panels synchroni
application. Returns self.

updateWindows

setDelegate:anObject

Sets the Application object's delegate. The notification messages that a del egate can expect to rec
end of the Application class specification. The delegate doesn't need to implement all the method:

delegate

setlmportAlpha:(BOOL)flag

Determines whether your application will accept translucent colorsin objectsit receives. This affe
the View method acceptsColor:atPoint:, or by NXColorPanel's dragColor:withEvent:fromView:.
internal programmatic manipulations of colors.

A pixel may be described by its color (values for red, blue, and green) and also by its opacity, mea
called alpha. When aphais 1.0, acolor is completely opaque and thus hides anything beneath it.
1, the effective color is derived partly from the color of the object itself and partly from the color c
it. When flagisYES, the application accepts a color that includes an alpha coefficient, and forces
for a source where alpha was not specified. In addition, when flag is YES, a ColorPanel opened w
includes an opacity slider.

When the Application has received a setlmportAlpha: message with flag set to NO, al imported c
an aphavaue of NX_NOALPHA, and there's no opacity dider in the ColorPanel. The default stz
apha

This method has the same effect as the NX ColorPanel method setShowAlpha:. The only differenc
setimportAlpha: even before an NXColorPanel has been instantiated. Since the two methods set tt
each can reverse the effect of the other.

Returns self.
doesimportAlpha, doesShowAlpha (NXColorPanel), setShowAlpha: (NXColorPanel)

setJournalable:(BOOL)flag

Sets whether the application isjournalable. Returnsself. See the class specification for NXJourn
information on journaling.

isJournalable

Sets the Application object's global Printinfo object. Returns the previous Printinfo object, or nil |
printinfo

setServicesMenu:aMenu
Makes aMenu the Application object's Services menu. Returns self.
servicesMenu

setWindowsMenu:aM enu
Makes aMenu the Application object's Windows menu. Returns self.
windowsMenu

showHel pPanel :sender

Shows the application's Help panel. If no Help pandl yet exists, the method first creates a default |
delegate implements app:will ShowHelpPanel:, notifiesit. Returns self.

slaveJournaler

Returns the Application object's slave journaler if one exists, or nil if not. The slavejournaler isc
your application if these two conditions are met:

Your application alows journaling (see setJournaable:)

-Some application running concurrently with yours (or your application itself) starts ajournaling s
See the NXJournaler class specification for more information.

masterJournalar:

stop:sender

Stops the main event loop. This method will break the flow of control out of the run method, there
main() function. A subsequent run message will restart the loop.

If this method is applied during amodal event loop, it will break that loop but not the main event |
terminate;, run, runModalFor:, runModal Session:

stopModal

Stops amodal event loop. This method should always be paired with a previous runModal For: or
for: message. When runModal For: is stopped with this method, it returns NX_RUNSTOPPED. T

ol .

stopModal, runModalFor:, abortModal

(const char *const *)systemL anguages

Returns alist of the names of languagesin order of the user's preference. If your application will |
language preference, this method is the way to discover what the preferencesare. Thereturnisal
pointers to NULL-terminated strings.

If the user has recorded preferences specific to the application now in use, the method returns then
recorded no preferences for the application, but has recorded a global preference, the method retur
preferences. (Note that just because the user has recorded a preference doesn't mean than the lang
installed on the host that is executing the application.) If this method returns NULL, the user has

terminate:sender

Terminates the application. (Thisisthe default action method for the application's Quit menu iten
terminate: invokes appWill Terminate: to notify the delegate that the application will terminate. |1f
returns nil, terminate: returns self control is returned to the main event loop, and the application ist
Otherwise, this method frees the Application object and calls exit() to terminate the application. N
put final cleanup code in your application's main() function it will never be executed.

stop, appWillTerminate: (delegate method), exit()

(BOOL)tryToPerform:(SEL)aSelector with:anObject

Aids in dispatching action messages. The Application object triesto perform the method aSelectc
Responder method try ToPerform:with:. |f the Application object doesn't perform aSelector, the d
opportunity to perform it using its inherited Object method perform:with:. If either the Applicatiol
Application object's delegate accept aSelector, this method returns Y ES otherwise it returns NO.

tryToPerform:with: (Responder), respondsTo: (Object), perform:with: (Object)

(int)unhide

Responds to an unhide message sent from Workspace Manager. Y ou shouldn't invoke this metho
instead. Returns zero.

unhide:

unhide:sender

Restores a hidden application to its former state (all of the windows, menus, and panelsvisible), ar
application. This method is usually invoked as the result of double-clicking the icon for the hidder
self.

hide:, unhideWithoutActivation:, activateSalf:

(int)unmounted:(const char *)fullPath

Invoked by the Workspace Manager when it has completed unmounting the device identified by ft
directly send an unmounted: message. Thisis one of the messages the Application will receive if
the Workspace Manager the message beginListeningForDeviceStatusChanges.

If the del egate implements the method app:unmounted:, that messageis sent to it. If the delegate
the method is handled by the Application subclass object (if you created one). Thereturnisan ark
application defines and interpretsit. If you neither provide a delegate method nor override in a sut
definition simply returns 0.

mounted:, unmounting:ok:

(int)unmounting:(const char *)full Path ok:(int *)flag

Invoked and sent to all active applications when the Workspace Manager has received a request to
identified by fullPath. This servesto warn applications that may be making use of the device. Yo
send unmounting:ok: messages.

The method sets flag to point to Y ES to indicate that the A pplication assents to unmounting, and N

If the delegate implements the method app:unmounting:, that message is sent to it, and flag is set t
returns. If the delegate doesn't implement app:unmounting:, the method is handled by the Applice
you created one). The default behavior isto close all files on the device, and if the current workin
device, to change the current working directory to the user's home directory.

The return value is an arbitrary integer your application defines and interpretsit. If you neither pre
nor override in a subclass, the default definition simply returns 0.

updateWindows

Sends an update message to the Application object's visible Windows. When automatic updating
method is invoked automatically in the main event loop after each event. An application can also
messages at other times to have Windows update themselves.

If the delegate implements appWillUpdate:, that message is sent to the del egate before the window
Similarly, if the delegate implements appDidUpdate:, that message is sent to the delegate after the
Returns self.

setAutoupdate:, appWillUpdate: (delegate method), appDidUpdate: (delegate method)

updateWindowsltem:awWindow

Updates the item for awindow in the Windows menu to reflect the edited status of aWindow. Yol
this method because it is invoked automatically when the edited status of a Window is set. Return

changeWindowsltem:title:filename:, setDocEdited: (Window)

validRequestorForSendType: (NXAtom)sendType andReturnType:(NXAtom)returnType

windowList

Returns the List object used to keep track of all the Application object's Windows, including Meni
In the current implementation, this list al'so contains global (shared) Windows.

windowsMenu
Returns the Application object's Windows menu. Returnsnil if no Windows menu has been creat

app:sender applicationDidL aunch:(const char *)appName

Implement this method to respond to an applicationDidL aunch: message sent from the Workspace
Application object), informing it that an application named appName has launched. Thisis one of
Application will receive if it has previoudly sent the Workspace Manager the message
beginListeningForApplicationStatusChanges.

applicationDidL aunch:

app:sender applicationDidTerminate:(const char *)appName

Implement this method to respond to an applicationDidTerminate: message sent from the Workspe
(an Application object), informing it that an application named appName hasterminated. Thisisc
Application will receiveif it has previoudy sent the Workspace Manager the message
beginListeningForApplicationStatusChanges.

applicationDidTerminate:

app:sender applicationWillLaunch:(const char *)appName

Implement this method to respond to an applicationWillLaunch: message sent from the Workspac
Application object), informing it that an application named appName is about to launch. Thisis ol
Application will receiveif it has previously sent the Workspace Manager the message
beginListeningForApplicationStatusChanges.

applicationWillLaunch:

app:sender fileOperationCompl eted: (int)operation

Invoked when the Workspace Manager compl etes an asynchronous file operation requested by the
operation argument is a tag identifying the particular operation requested. It's the same asthe inte
method that initiated the request, performFileOperation:source:destination:files.options..

performFileOperation:source: destination:files:options. (NXWorkspaceRequestProtocol)

1H1IUuUl Itou.

(int)app:sender
openFile:(const char *)filename
type:(const char *)aType

Invoked from within openFile:ok: after it has been determined that the application can open anoth
should attempt to open the file of type type and name filename, returning YES if the file is success
otherwise. (Although afile's type may by convention be reflected in its name, type is not a synon
filename should not exclude part of the name just because it can sometimes be inferred from type.)

This method is also invoked from within openTempFile:ok: if neither the delegate nor the Applica
to app:openTempkiletype:

openFile:ok:, openTempFile:ok:, app:openFileWithoutUl:type:, app:openTempkFiletype:

(NXDatalLinkManager *)app:sender
openFileWithoutUI:(const char *)filename
type:(const char *)type

Sent to the delegate when sender (an Application) requests that the file of type type and name filer
linked file. Thefileisto be opened without bringing up its application’'s user interface that is, wor
under programmeatic control of sender, rather than under keyboard control of the user.

Returns a pointer to the NXDatal inkManager that will coordinate data flow between the two appli
app:openFiletype:

(int)app:sender
openTempFile:(const char *)filename
type:(const char *)aType

Invoked from within openTempFile:ok: after it has been determined that the application can open:
method should attempt to open the file filename with the extension aType, returning Y ES if the fil
opened, and NO otherwise.

By design, afile opened through this method is assumed to be temporary it's the application's resy
thefile at the appropriate time.

openFile:ok:, openTempFile:ok:

app:sender powerOffIn:(int)ms andSave: (int)aFlag

Invoked from the powerOffIn:andSave: method after the Workspace Manager receives a power-of
invoked only if the application was launched from the Workspace Manager. The argument msist
milliseconds to wait before powering down or logging out. The argument aFlag has no particular |
and can be ignored. Y ou can ask for additional time by sending the extendPowerOffBy:actual: me
Manager from within your implementation of this method. The Workspace Manager will power t
log out the user) as soon as all applications terminate, even if there's time remaining on thetime e

extendPowerOffBy:actual: (Speaker)

uliinivunitey, Gp-11ivualiitcu.

(int)app:sender unmounting:(const char *)fullPath

Invoked when the device mounted at fullPath is about to be unmounted. This method isinvoked f
and isinvoked only if the application was launched from the Workspace Manager. The Applicatic
should do whatever is necessary to allow the device to be unmounted. Specifically, al files on the
closed and the current working directory should be changed if it's on the device.

unmounting:ok:, app:unmounted:

app:sender will ShowHel pPanel :panel

Implement this to respond to notice that sender (an Application) has received a showHelpPanel: m
put up the Help panel identified by panel. The return value doesn't matter.

showHelpPanel:

(BOOL)appA cceptsAnotherFile:sender

Invoked from within Application's openFile:ok: and openTempFile:ok: methods, this method shot
okay for the application to open another file, and NO if isn't. If neither the delegate nor the Applic
to the message, then the file shouldn't be opened.

openFile:ok:, openTempFile:ok:

appDidBecomeA ctive:sender

I mplement to respond to notification sent from the Workspace Manager immediately after the Apy
active.

applicationDidL aunch:

appDidHide:sender
Invoked immediately after the application is hidden.
hide:, unhide:, appDidUnhide: (delegate method)

appDidinit:sender

Invoked after the application has been launched and initialized, but before it has received itsfirst €
the Application subclass can implement this method to perform further initialization.

appWillInit: (delegate method)

Invoked immediately after the application is unhidden.
hide:, unhide:, appDidHide: (delegate method)

appDidUpdate:sender
Invoked immediately after the Application object updates its Windows.
updateWindows, updateWindowsltem:, appWillUpdate: (delegate method)

applicationDefined:(NXEvent *)theEvent

Invoked when the application receives an application-defined (NX_APPDEFINED) event. See th
method under 3 nstance Methods,® above.

appWillInit:sender

Invoked before the Application object isinitialized. This method isinvoked before the Applicatio
its Listener and Speaker objects and before any app:openFile:type: messages are sent to your del e
object's Listener and Speaker objects will be created for you immediately after invoking this meth
previously created.

appDidinit: (delegate method), appListener, appSpeaker

appWill Terminate: sender

Invoked from within the terminate: method immediately before the application terminates. If this
application is not terminated, and control is returned to the main event loop. If you want to allow |
terminate, you should put your clean up code in this method and return non-nil.

terminate;

appWillUpdate:sender
Invoked immediately before the Application object updates its Windows.
updateWindows, updateWindowsltem:, appDidUpdate: (del egate method)

powerOff:(NXEvent *)theEvent

Invoked from the powerOff: Application method only if the application wasn't launched from the
Only applications launched from the Workspace Manager are fully supported, so your application
amount of processing time after this message isreceived. This notification is provided mainly for
login window programs.

powerOff:, powerOffln:andSave:

