initFromFile:

Describing the model source directory
name
currentAdaptorName
defaultAdaptorName
defaultL oginString
currentLoginString
loginStringForUser:

Describing the database model entityNamed:
getEntities:

Revising the data dictionary emptyDataDictionary
|loadDefaultDataDictionary

Connecting to the database+ findDatabaseNamed:connect:
connect
connectUsingAdaptor:andString:
disconnect
disconnectUsingString:
isConnected
connectionName

Managing transactions beginTransaction
rollback Transaction
commitTransaction
IsTransactionlnProgress
areT ransactionsEnabl ed
enableTransactions:

Using a delegate delegate

connect, connectUsingAdaptor:andString:

(BOOL)arePanel sEnabled

Returns Y ESif the adaptor upon which the DBDatabase object is built is allowed to display panel:
By default, panels are enabled you can disallow by passing NO to the setPanel sEnabled: method.

setPanel sEnabled:

(BOOL)areT ransactionsEnabl ed

Returns YES if the DBDatabase's adaptor allows transaction contexts to be established. The meth
transactions aren't allowed or if the DBDatabase isn't currently connected to the server.

enableTransactions:

(BOOL)beginTransaction

Tells the adaptor to set up atransaction context. Exactly how the transaction is implemented depe
typically, avirtual copy of subsequently fetched datais created (by the server), thus astabilizing® t
transaction isin progress. When you've finished reading and modifying the data, you send commi
DBDatabase, which attempts to write the data back to the server, or rollbackTransaction, which sit
away. You're allowed to set up only one transaction context at atime.

SHTIVL LG MEOUVIIULUO DUyl Tdiotiulivil vl o TTT LV LUl Al y THICAG T LG UGV OOL. ThLlullio T2 11 Uiv

committed. If the server rgjects the data, this method returns NO.

beginTransaction, rollbackTransaction

(BOOL)connect

Opens a connection to the server, using the default adaptor name and login string. Returns YES i
successfully established by this method. Note well that this method returns NO if the DBDatabase

defaultAdaptorName, defaultLoginString, disconnect

(const unsigned char *)connectionName

Returns the name of the adaptor's current connection to the server (as defined by the adaptor itself
isn't connected, this returns an empty string.

(BOOL)connectUsingAdaptor:(const char *)adaptorName
andString:(const unsigned char *)aString

Opens a connection to the server using the adaptor identified by adaptorName, and the login string
supply the adaptor name if the login string aString is NUL L, the method uses the default login stril
invoke this method if you want to connect to an adaptor other than the one named in the model thr
DBDatabase was created. For a@hormal® connection, use the findDatabaseNamed:connect: class
instance method.

Returns YES if the connection is made. Note well that this method returns NO if the DBDatabase
connect, disconnect, disconnectUsingString:

(const char *)currentAdaptorName

Returns the name of the adaptor through which the DBDatabase is connected to the server. Thisn
the DBDatabase isn't currently connected.

Typically, the current adaptor is the same as the default adaptorbin other words, it's the adaptor ti
DBDatabase's model. The one case in which the current and default adaptors may differ isif the
connected through the connectUsingAdaptor:andString: method.

defaultAdaptorName, defaultLoginString, currentLoginString

(const unsigned char *)currentLoginString

Returns the login string that was used to form the connection to the server. If the DBDatabase isn'
this method returns NULL.

Liuliio tiv icalic Ul L iv GacGpitul ticdl o Tidilicu i tiv o Udvoow O THTIUUUL. THHOo To Uiv CAdgJLtul Lthica

form a connection to the server. To use some other adaptor, you must name it in an invocation of |
connectUsingAdaptor:andString: method.

currentAdaptorName, defaultLoginString, currentLoginString

(const unsigned char *)defaultL oginString

Returns the login string that's given in the DBDatabase's model. Thisisthe login string that, by d
connection to the server. To use some other string, you must passit in an invocation of the connec
andString: method.

currentLoginString, defaultAdaptorName, currentAdaptorName

delegate
Returns the DBDatabase's delegate.
setDelegate:

(const char *)directory
Returns the full pathname of the model file that the DBDatabase represents.
name

(BOOL)disconnect
Closes the connection to the database. Returns YES if the connection was successfully closed.
disconnectUsingString: connect, + findDatabaseNamed: connect:

(BOOL)disconnectUsingString:(const unsigned char *)aString

Closes the connection to the database by sending it the command aString. Returns YES if the conl
successfully closed.

disconnect, connect, + findDatabaseNamed:connect:

emptyDataDictionary

Frees the information that the DBDatabase found in its model. Specifically, the entity names (and
adaptor name, and login string are all erased. Y ou should only need to invoke this method if you v
default data dictionary (and that should be rare). Returns self.

loadDefaultDataDictionary

(id <DBEntities>)entityNamed:(const char *)aName

Returns the entity named aName from the DBDatabase object's list of entities, or nil if it isn't four
Is gotten from the DBDatabase's model.

getEntities:

(BOOL)evauateString:(const unsigned char *)aString
Asks the server to evaluate the string aString, which must be avalid statement in the server's quen

db:willEvaluateString:usingBinder: (delegate method)

(List *)getEntities:(List *)alist
Fills aList with the DBEntities objects that represent the model's entities. The method also returns
entityNamed:

InitFromFile:(const char *)aPath

Initializes and returns the DBDatabase object from the database model information in the bundle i
aPath. Model information (database name, login string, adaptor name, and entities) are read from
should need to invoke this method. In general, you should use the class method findDatabaseNam
DBDatabase object.

(BOOL)isConnected
Returns YES if the DBDatabase is connected to the server.
connect

(BOOL)isTransactionlnProgress
Returns YES if atransaction has been started (by beginTransaction) and has not yet been committe
beginTransaction, commitTransaction, rollbackTransaction

(const unsigned char *)loginStringForUser:(const char *)aUser
Returns the login string for the database server user identified by aUser.

(const char *)name
Returns the name of the model that the DBDatabase object represents.
directory

(BOOL)rollbackTransaction

Causes the server to roll back all changes since a preceding beginTransaction. Returns YESif the
successful. Returns NO if the server couldn't roll back the transaction, or if there wasn't atransac

beginTransaction, commitTransaction, dbWillRollbackTransaction: (delegate method)

setDel egate:anObject
Makes anObject the DBDatabase's delegate. Returns self.
delegate

setPanel sEnabled: (BOOL)flag

Tells the DBDatabase to suppress (or not) the attention panels that it displays (in response to serve
By default, panels are enabled. Y ou should disable a DBDatabase's panelsif you're creating an g
on itsown, or that doesn't have a graphic interface. Returns self.

arePanelsEnabled, db:notificationFrom:message:code: (delegate method)

db:aDatabase |og:(const char *)fmt, ...

Invoked when the DBDatabase experiences a particularly important, stressful, or otherwise notabl
argument is alog entry that can be written to afile, displayed in the user interface, spat to standard
shelf along with the object's other trophies and mementoes. The format of the log entry argument
the example implementation shown below demonstrates how to turn the argument into text (which
the user interface):

(BOOL)db:aDatabase
notificationFrom:anAdaptor
message:(const unsigned char *)msg
code:(int)errorCode

Invoked (by the adaptor) when the server encounters an exceptional situation. The arguments are:

-aDatabase is the DBDatabase object.

-anAdaptor is the object that represents the adaptor.

-msg is astring that describes the error.

-errorCode is an integer constant, defined by the server, that represents the error.

The return value isignored.

If the delegate doesn't implement this method, and if panels are enabled, an attention panel that di
errorCode values is presented to the user.

setPanel sEnabled:

(BOOL)db:aDb
willEvaluateString:(const unsigned char *)aString
usingBinder:aBinder

Invoked before aString, which must be expressed in the server's query language, is sent to the serv
Whether the string is actually sent depends on the value that's returned by this method: If this met
itisn't implemented), the string is sent areturn of NO prevents the evaluation.

This method is invoked when the DBDatabase receives an evaluateString: message, and when the
Is about to perform a data operation, such as selecting or updating.

evaluateString:

dbDidCommitTransaction:aDatabase
Invoked just after atransaction is committed. The return valueisignored.
doWill CommitTransaction: (delegate method)

dbDidRollbackTransaction:aDatabase
Invoked just after atransaction isrolled back. The return value isignored.
dbWillRollbackTransaction: (delegate method)

Invoked just before atransaction isrolled back. The return value isignored.
dbDidRollbackTransaction: (delegate method)

