
isEqual:
hash
self

Identifying class and superclass class
superclass

Determining allocation zones zone
Sending messages determined at run time

perform:
perform:withObject:
perform:withObject:withObject:

Identifying proxies isProxy
Testing inheritance relationships isKindOfClass:

isMemberOfClass:
Testing for protocol conformance

conformsToProtocol:
Testing class functionality respondsToSelector:
Managing reference counts retain

release
autorelease
retainCount

autorelease

Adds the receiver to the current autorelease pool and returns self. You add an object to an autorelease pool so that it
receives a release messageÐand thus might be deallocatedÐwhen the pool is destroyed. For more information on the
autorelease mechanism, see the NSAutoreleasePool class specification.

retain, release

(Class)class

Returns the class object for the receiver's class.



(BOOL)conformsToProtocol:(Protocol *)aProtocol

Returns YES if the class of the receiver conforms to aProtocol, and NO if it doesn't. This method works identically to the
conformsToProtocol: class method declared in NSObject. It's provided as a convenience so that you don't need to get the
class object to find out whether an instance can respond to a given set of messages.

(unsigned int)hash

Returns an unsigned integer that can be used as a table address in a hash table structure. If two objects are equal (as
determined by the isEqual: method), they must have the same hash value.

isEqual:

(BOOL)isEqual:anObject

Returns YES if the receiver and anObject are equal otherwise returns NO. For the NSObject class, the id of anObject and
the receiver are compared to determine equality. Subclasses can override this method to redefine what it means for
instance to be equal. For example, a container object might define two containers as equal if they contain the same
contents, even though the contains themselves are different objects. See the NSData, NSDictionary, NSArray, and
NSString class specifications for examples of the use of this method.

(BOOL)isKindOfClass:(Class)aClass

Returns YES if the receiver is an instance of aClass or an instance of any class that inherits from aClass. Otherwise, it
returns NO. For example, in this code isKindOfClass: would return YES because, in the Application Kit, the Menu class
inherits from Window:

isMemberOfClass:

(BOOL)isMemberOfClass:(Class)aClass

Returns YES if the receiver is an instance of aClass. Otherwise, it returns NO. For example, in this code,
isMemberOfClass: would return NO:

isKindOfClass:

(BOOL)isProxy

Returns YES to indicate that the receiver is an NSProxy, rather than an object that descends from NSObject. Otherwise,
it returns NO. NSObject's implementation of this method returns NO to indicate that an NSObject is a normal object, not
a stand-in for one.



perform:(SEL)aSelector

Sends an aSelector message to the receiver and returns the result of the message. If aSelector is null, an
NSInvalidArgumentException is raised.

perform: is equivalent to sending an aSelector message directly to the receiver. For example, all three of the following
messages do the same thing:

perform:withObject:, perform:withObject:withObject:, methodForSelector: (NSObject class)

perform:(SEL)aSelector withObject:anObject

Sends an aSelector message to the receiver with anObject as an argument. If aSelector is null, an
NSInvalidArgumentException is raised.

This method is the same as perform: except that you can supply an argument for the aSelector message. aSelector should
identify a method that takes a single argument of type id.

perform:, perform:withObject:withObject:,
methodForSelector: (NSObject class)

perform:(SEL)aSelector
withObject:anObject
withObject:anotherObject

Sends the receiver an aSelector message with anObject and anotherObject as arguments. If aSelector is null, an
NSInvalidArgumentException is raised. This method is the same as perform: except that you can supply two arguments
for the aSelector message. aSelector should identify a method that can take two arguments of type id.

perform:, perform:withObject:, methodForSelector: (NSObject class)

(void)release

As defined in the NSObject class, release decrements the receivers's reference count. When an object's reference count
reaches 0, the object is automatically deallocated.

You send release messages only to objects that you ªownº. By definition, you own objects that you create using one of
the alloc... or copy... methods. These object creation methods return objects with an implicit reference count of one. You
also own (or perhaps share ownership in) an object that you send a retain message to, since retain increments the object's
reference count. Each retain message you send an object should be balanced eventually with a release message, so that
the object can be deallocated. For more information on the automatic deallocation mechanism, see the introduction to the
Foundation Kit.



You would only implement this method to define your own reference-counting scheme. Such implementations should not
invoke the inherited method that is, they should not include a release message to super.

autorelease, release, retainCount

(BOOL)respondsToSelector:(SEL)aSelector

Returns YES if the receiver implements or inherits a method that can respond to aSelector messages, and NO if it doesn't.
The application is responsible for determining whether a NO response should be considered an error.

Note that if the receiver is able to forward aSelector messages to another object, it will be able to respond to the message,
albeit indirectly, even though this method returns NO.

forwardInvocation: (NSObject class), + instancesRespondToSelector:(NSObject class)

retain

As defined in the NSObject class, retain increments the receiver's reference count. You send an object a retain message
when you want to prevent it from being deallocated without your express permission.

An object is deallocated automatically when its reference count reaches 0. retain messages increment the reference count,
and release messages decrement it. For more information on this mechanism, see the introduction to the Foundation Kit.

As a convenience, retain returns self, since it is often used in nested expressions:

autorelease, release, retainCount

(unsigned int)retainCount

Returns the receiver's reference count for debugging purposes. You rarely send a retainCount message however, you
might implement this method in a class to implement your own reference-counting scheme. For objects that never get
released (that is, their release method does nothing), this method should return UINT_MAX, as defined in <limits.h>.

autorelease, release, retain

self

Returns the receiver.

class

superclass

Returns the class object for the receiver's superclass.

(NSZone *)zone

Returns a pointer to the zone from which the receiver was allocated. Objects created without specifying a zone are
allocated from the default zone, which is returned by NSDefaultMallocZone().




