(NSArray *)sprockets

This declaration says nothing about who should release the returned array. If the Gadget object returned an instance
variable, it's responsible if the Gadget created an array and returned it, the recipient is responsible. This problem applies
both to objects returned by a method and objects passed in as arguments to a method.

Ideally abody of code should never be concerned with releasing something it didn't create. The Foundation Kit therefore

sets this policy: If you create an object you alone are responsible for releasing it. If you didn't create the object, you don't
own it and shouldn't release it.

When you write a method that creates and returns an object, then, that method is responsible for releasing the object. It's
clearly not fruitful to dispose of an object before the recipient of the object getsit, however. What's needed isaway to
mark an object for later release, so that it will be properly disposed of after the recipient has had a chance to useit. The
Foundation Kit provides just such a method.

(NSArray *)sprockets



(void)setMainSprocket: (Sprocket *)newSprocket

(void)setMainSprocket: (Sprocket * )newSprocket

(void)setMainSprocket: (Sprocket * )newSprocket






1].

containsObject:Find an object by repeatedly sending the array object an objectAtlndex: messac
incrementing the index until all objectsin the array have been

The division of an interface between primitive and derived methods makes creating subclasses eas
override inherited primitives, but having done so can be sure that al derived methods that it inheri

The primitive-derived distinction appliesto the interface of afully initialized object. The question
should be handled in a subclass also needs to be addressed.

In general, acluster's abstract superclass declares a number of init... and + className methods. A
Instances® above, the abstract class decides which concrete subclass to instantiate based your choi
className method. Y ou can consider that the abstract class declares these methods for the conven
Since the abstract class has no instance variables, it has no need of initialization methods.

Y our subclass should declareitsown init... (if it needs to initialize its instance variables) and possi
methods. It should not rely on any of those that it inherits. To maintain itslink in the initialization

its superclass's designated initializer within its own designated initializer method. (Seethe NEX
Programming and the Objective C Language manual for adiscussion of the designated initializers.
the designated initializer of the abstract superclassis aways init.












