encodeWithCoder:
InitWithCoder:

NSObject autorelease
class
conformsToProtocol:



retan
retainCount
salf

zone

init
+ new
dealloc

| dentifying classes+ class
+ superclass

Testing class functionality+ instancesRespondT oSel ector:
Testing protocol conformance+ conformsToProtocol

Obtaining method information methodForSel ector:
+ instanceM ethodFor Sel ector:
methodSignatureForSel ector:
Describing objects+ description
description
Posing+ poseAsClass:
Error handling doesNotRecognizeSel ector:
Forwarding messages forwardl nvocation:
Dynamic loading+ load
Archiving awakeAfterUsingCoder:
classForArchiver
classForCoder
replacementObjectForArchiver
replacementObjectForCoder:

+ set\/_ersi on:
+ version

init, + new



init

class (NSObject protocol)

conformsToProtocol:

description



init, class (NSObject protocol)

methodForSel ector:

respondsToSelector:, forwardlnvocation:



init, + alloc, + alocWithZone:

superclass



If areplacement takes place, the implementation of awakeAfterUsingCoder: is responsible for rele
initWithCoder:(NSCoding protocol)

(Class)classForArchiver
|dentifies the class to be used during archiving. NSODbject's implementation returns the object retu

(Class)classForCoder
| dentifies the class to be used during coding. An NSObject returns its own class by default.

class (NSObject protocol)

(void)dealloc

Deallocates the memory occupied by the receiver. Subsequent messages to the object will generate
amessage was sent to a freed object (provided that the freed memory hasn't been reused yet).

Y ou never send a dealloc message directly. Instead, an object's dealloc method isinvoked indirec
method. See the introduction to the Foundation Kit for more details on the use of these methods.

Subclasses must implement their own versions of dealloc to alow the deall ocation of any addition
by the objectbsuch as dynamically allocated storage for data, or other objects that are tightly couy
and are of no use without it. After performing the class-specific deallocation, the subclass method
superclass versions of dealloc through a message to super:

release (NSODbject protocol), autorelease (NSObject protocol)

(NSString *)description

Returns a string object that represents the contents of the receiver. The debugger's print-object co
method to produce atextual description of an object.

NSObject's implementation of this method ssmply prints the name of the receiver's class and the I
id.

(void)doesNotRecognizeSel ector: (SEL )aSel ector



forwardlnvocation;

(void)forwardlnvocation:(NSInvocation *)anlnvocation

Implemented by subclasses to forward messages to other objects. When an object is sent a messag
corresponding method, the run-time system gives the receiver an opportunity to delegate the mess:
It does this by creating an NSInvocation object representing the message and sending the receiver
message containing this NSInvocation as the argument. The receiver's forwardlnvocation: method
forward the message to another object. (If the delegated receiver can't respond to the message eith
chanceto forward it.)

The forwardInvocation: message thus allows an object to establish relationships with other objects
messages, act on its behalf. The forwarding object is, in asense, able to dnherit® some of the char
it forwards the message to.

A forwardlnvocation: message is generated only if the message encoded in anlnvocation isn't imp
receiving object's class or by any of the classes it inherits from.

An implementation of the forwardlnvocation: method has two tasks:

-To locate an object that can respond to the message encoded in anlnvocation. This need not be th
messages.
-To dispatch the message to that object.

In the simple case, in which an object forwards messages to just one destination (such as the hypot
variable in the example below), aforwardlnvocation: method could be as ssmple as this:

doesNotRecognizeSel ector:

(unsigned int)hash

Returns an unsigned integer that can be used as a table address in a hash table structure. For NSOL
value based on the object's id. If two objects are equal (as determined by the isEqual: method), the



1o yulivldl y LUUMICU VVITUT AT AdTUL U AATULV VLI UTTC. TTTIOIOU gL 1T U Te AT e Ut



(IMP)methodForSelector: (SEL )aSel ector

L ocates and returns the address of the receiver's implementation of the aSelector method, so that i
function. If thereceiver isan instance, aSelector should refer to an instance method if the receiver

refer to a class method.

aSelector must be avalid, non-NULL selector. If in doubt, use the respondsToSelector: method ta
the selector to methodForSel ector:.

IMP is defined as a pointer to afunction that returns an id and takes a variable number of argumen
two dhidden® argumentsb self and _cmdbthat are passed to every method implementation):

(NSMethodSignature * )methodSi gnaturefForSel ector: (SEL )aSel ector

Returns an NSMethodSignature object that contains a description of the aSelector method, or nil if
can't befound. When the receiver is an instance, aSelector should be an instance method when th
should be aclass method. This method is mostly used in the implementation of protocols.

(id)replacementObjectForArchiver:(NSArchiver *)anArchiver

Allows an object to substitute another object for itself during archiving. NSObject's implementatic
returned by replacementObjectForCoder:.

replacementObj ectForCoder:(NSCoder * )encoder






