
init
Determining component sizes calcCellSize:inRect:

getKnobRect:flipped:
Setting value limits setMinValue:

minValue
setMaxValue:
maxValue

Setting values setDoubleValue:
doubleValue
setFloatValue:
floatValue
setIntValue:
intValue
setStringValue:
stringValue

Modifying a SliderCell's appearance
setKnobThickness:
knobThickness
setImage:
image
setTitle:
setTitleNoCopy:
title
setTitleCell:
titleCell
setTitleFont:
titleFont
setTitleColor:
titleColor
setTitleGray:
titleGray
isOpaque
isVertical



Displaying the SliderCell drawSelf:inView:
drawInside:inView:
drawBarInside:flipped:
drawKnob
drawKnob:

Modifying behavior setEnabled:
setContinuous:
isContinuous
setAltIncrementValue:
altIncrementValue

Tracking the mouse+ prefersTrackingUntilMouseUp
trackMouse:inRect:ofView:
startTrackingAt:inView:
continueTracking:at:inView:
stopTracking:at:inView:mouseIsUp:

Archiving read:
write:
awake

(double)altIncrementValue

Returns the amount that the SliderCell will alter its value when the user drags the knob one pixel with the Alternate key
held down. If the Alternate-dragging feature isn't enabled, this method returns 1.0.

setAltIncrementValue:

awake

Retrieves the system images used to draw SliderCell knobs, and returns self. This message is sent from the read: method
you never send it yourself.

read:

calcCellSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Returns self, and by reference in theSize the minimum width and height needed to draw the SliderCell in aRect. If aRect
too small to fit the knob and bezel, the width and height of theSize are set to 0.0.

If the SliderCell hasn't had its tracking rectangle set, this method will determine from aRect whether the SliderCell should
be vertical or horizontal, and will set a vertical SliderCell's height to aRect->size.height, a horizontal SliderCell's width to
aRect->size.width, and the other dimension of either type to the minimum SliderCell breadth.

If you draw your own knob on the SliderCell and that knob is not the same size as a standard SliderCell knob, or if you
draw the SliderCell itself differently, you should override this method to take your knob's dimensions into account. You
must also override getKnobRect:flipped: and drawKnob:.

getKnobRect:flipped:, drawKnob:



(BOOL)continueTracking:(const NXPoint *)lastPoint
at:(const NXPoint *)currentPoint
inView:controlView

Continues tracking by moving the knob to currentPoint. Always returns YES. Invokes getKnobRect:flipped: to get the
current location of the knob and drawKnob to draw the knob at the new position based on currentPoint.

Override this method if you want to change the way positioning is done.

trackMouse:inRect:ofView:, startTrackingAt:inView:, stopTracking:at:inView:mouseIsUp:

(double)doubleValue

Returns the value of the SliderCell as a double-precision floating point number.

setDoubleValue:, floatValue, intValue, stringValue

drawBarInside:(const NXRect *)cellFrame flipped:(BOOL)flipped

Draws the SliderCell's background bar, but not the bezel around it or the knob. flipped indicates whether the View's
coordinate system is flipped or not. Returns self.

Override this method if you want to draw your own slider bar. Note, however, that the setImage: method allows you to
conveniently customize the appearance of the SliderCell's background.

drawInside:inView:, drawSelf:inView:, isFlipped (View), setImage:, lockFocus (View)

drawInside:(const NXRect *)cellFrame inView:controlView

Draws the SliderCell's background bar and knob, along with the background title, but not the bezel. The PostScript focus
must be locked on controlView when this message is sent. Returns self.

drawBarInside:flipped:, drawKnob, drawSelf:inView:, lockFocus (View)

drawKnob

Calculates the rectangle in which the knob should be drawn and invokes drawKnob: to actually draw the knob. The
PostScript focus must be locked on the SliderCell's View when this message is sent. You never override this method
override drawKnob: instead.

drawKnob:, lockFocus (View)

drawKnob:(const NXRect*)knobRect

Draws the knob in knobRect. The PostScript focus must be locked on the SliderCell's View when this message is sent.

Override this method and getKnobRect:flipped: if you want to draw your own knob. You should also override
calcCellSize:inRect: if your knob is of a different size from the standard SliderCell knob.

drawKnob, getKnobRect:flipped:, calcCellSize:inRect:, isVertical, lockFocus (View)

drawSelf:(const NXRect *)cellFrame inView:controlView

Draws the SliderCell background bar (including the bezel) and knob. The knob is drawn at a position which reflects the
current value of the SliderCell. This method doesn't invoke drawInside:inView:. The PostScript focus must be locked on
controlView when this message is sent. Returns self.



This method invokes calcCellSize:inRect: and centers the resulting sized rectangle in cellFrame, draws the bezel, fills the
bar with NX_LTGRAY if the cell is disabled, and 0.5 gray if not, then invokes drawKnob.

If, for example, you want a SliderCell that could be any size, you simply have calcCellSize:inRect: return whatever size
you deem appropriate, override getKnobRect:flipped: to return the correct rectangle to draw the knob in, and drawKnob:
so that an appropriate knob is drawn.

drawBarInside:flipped:, drawKnob, lockFocus (View)

(float)floatValue

Returns the value of the SliderCell as a single-precision floating point number.

setFloatValue:, doubleValue, intValue, stringValue

getKnobRect:(NXRect*)knobRect flipped:(BOOL)flipped

Returns self, and by reference in knobRect the rectangle into which the knob will be drawn. This rectangle is determined
from the SliderCell's value in relation to its tracking rectangle and its minimum and maximum values. flipped indicates
whether the SliderCell's View has a flipped coordinate system.

Override this method and drawKnob: if you want to draw your own knob. You should also override calcCellSize:inRect:
if your knob is of a different size from the standard SliderCell knob (and be careful of setting the knob's width).
Remember to take into account the flipping of the View in vertical SliderCells otherwise, your knob might appear the
correct distance from the wrong end.

drawKnob:, calcCellSize:inRect:, isVertical, isFlipped (View)

image

Returns the NXImage that the SliderCell displays as its background.

setImage:

init

Initializes and returns the receiver, a new instance of SliderCell. Its value is set to 0.0, minimum value to 0.0, and maximum
value to 1.0. New SliderCells are continuous by default.

This method is the designated initializer for SliderCell override it if you create a subclass of SliderCell that performs its
own initialization. You shouldn't use Cell's designated initializers, initIconCell: or initTextCell:, to initialize a
SliderCell.

setMinValue:, setMaxValue:, setFloatValue:, setContinuous:

(int)intValue

Returns the value of the SliderCell as an integer.

setIntValue:, doubleValue, floatValue, stringValue

(BOOL)isContinuous

Returns YES if the action is sent to the target continuously as mouse-dragged events occur while tracking, or on a mouse-
up event NO if the action is sent only on a mouse-up event.

setContinuous:



(BOOL)isOpaque

Returns YES, since a SliderCell always draw over every pixel in its frame.

isOpaque (Cell)

(int)isVertical

Returns 1 if the SliderCell is vertical, 0 if it's horizontal, and 1 if the orientation can't be determined (because the
SliderCell hasn't been drawn in a View, for example). A SliderCell is vertical if its height is greater than its width.

(NXCoord)knobThickness

Returns the thickness of the SliderCell's knob (that is, its extent along the bar's length) in the SliderCell's coordinate
system.

setKnobThickness:

(double)maxValue

Returns the maximum value of the SliderCell.

setMaxValue:, minValue

(double)minValue

Returns the minimum value of the SliderCell.

setMinValue:, maxValue

read:(NXTypedStream *)stream

Reads the SliderCell from the typed stream stream. Returns self.

write:, awake

setAltIncrementValue:(double)incValue

Sets the amount that the SliderCell will alter its value when the user drags the knob one pixel with the Alternate key held
down. incValue should be greater than 0.0, and less than the SliderCell's maximum value it can also be 1, in which case
this feature is disabled. Normally, you'll want to use this method with incValue less than 1.0, so the knob will move more
slowly than the mouse.

altIncrementValue, maxValue

setContinuous:(BOOL)flag

If flag is YES, the SliderCell will send its action to its target continuously as mouse-dragged events occur while tracking,
or on a mouse-up event. If NO, the SliderCell will send its action only on a mouse-up event. The default is YES. Returns
self.



isContinuous

setDoubleValue:(double)aDouble

Sets the value of the SliderCell to aDouble. Updates the SliderCell knob position to reflect the new value and returns self.

doubleValue, setFloatValue:, setIntValue:, setStringValue:

setEnabled:(BOOL)flag

If flag is YES, the SliderCell will become enabled if NO, the SliderCell will become disabled. A disabled SliderCell
draws its non-image background in light gray. An enabled SliderCell draws its non-image background in 50% gray.

isEnabled (ActionCell)

setFloatValue:(float)aFloat

Sets the value of the SliderCell to aFloat. Updates the SliderCell knob position to reflect the new value and returns self.

floatValue, setDoubleValue:, setIntValue:, setStringValue:

setImage:image

Sets the NXImage used as the SliderCell's background. This method doesn't scale the NXImage. Returns self.

image

setIntValue:(int)anInt

Sets the value of the SliderCell to anInt. Updates the SliderCell knob position to reflect the new value and returns self.

intValue, setDoubleValue:, setFloatValue:, setStringValue:

setKnobThickness:(NXCoord)aFloat

Sets the thickness of the SliderCell's knob (that is, its extent along the bar's length) in its own coordinate system. aFloat
must be greater than 0.0, and shouldn't be greater than the Slider's length. If the knob thickness changes, the SliderCell's
inside is redrawn. Returns self.

knobThickness

setMaxValue:(double)aDouble

Sets the maximum value of the SliderCell to aDouble and returns self. If the maximum value changes, the SliderCell's
inside is redrawn to reposition the knob relative to the new maximum.

maxValue, setMinValue:

setMinValue:(double)aDouble



Sets the minimum value of the SliderCell to aDouble and returns self. If the minimum value changes, the SliderCell's
inside is redrawn to reposition the knob relative to the new minimum.

minValue, setMaxValue:

setStringValue:(const char *)aString

Parses aString for a floating point value. If a floating point value can be found, then the SliderCell value is set and the
knob position is updated to reflect the new value otherwise, does nothing. Returns self.

stringValue, setDoubleValue:, setFloatValue:, setIntValue:

setTitle:(const char *)aString

Sets the title drawn over the SliderCell's background to aString. Returns self.

setTitleNoCopy:, title

setTitleCell:aCell

Sets the Cell used to draw the SliderCell's background title. aCell should be an instance of TextFieldCell (or of a
subclass). Doesn't redraw the SliderCell further, a setTitle: message is required to display a title, even if aCell already
has a string value. Returns the old Cell.

titleCell, setTitle:

setTitleColor:(NXColor)color

Sets the color used to draw the SliderCell's background title, redraws the SliderCell's inside, and returns self. The default
is to draw in a gray level of 0.0 (NX_BLACK).

titleColor, setTitleGray:

setTitleFont:fontObject

Sets the Font used to draw the SliderCell's background title and redraws the SliderCell's inside. The default font is the
default system font as set by the user (with the Preferences application), and its size is 12.0 point. Returns self.

titleFont

setTitleGray:(float)aFloat

Sets the gray value used to draw the SliderCell's background title, redraws the SliderCell's inside, and returns self. The
default gray level is 0.0 (NX_BLACK).

titleGray, setTitleColor:

setTitleNoCopy:(const char *)aString

Sets the title drawn over the SliderCell's background to aString, but doesn't copy the string. Returns self.

setTitle:, title



(BOOL)startTrackingAt:(const NXPoint *)startPoint inView:controlView

Begins a tracking session by moving the knob to startPoint. Always returns YES.

trackMouse:inRect:ofView:, continueTracking:at:inView:, stopTracking:at:inView:mouseIsUp:

stopTracking:(const NXPoint *)lastPoint
at:(const NXPoint *)stopPoint
inView:controlView
mouseIsUp:(BOOL)flag

Ends tracking by moving the knob to stopPoint. Returns self.

trackMouse:inRect:ofView:, startTrackingAt:inView:, continueTracking:at:inView:

(const char *)stringValue

Returns a string representing the value of the SliderCell. The floating point format is applied when generating the string
representation.

setStringValue:, doubleValue, floatValue, intValue, setFloatingPointFormat:left:right: (Cell)

(const char *)title

Returns the string used as the SliderCell's background title. The title is drawn over the SliderCell's background. Returns
self.

setTitle:

titleCell

Returns the TextFieldCell used to draw the SliderCell. If the SliderCell doesn't have a title, a new TextFieldCell is
created and returned. This doesn't result in a title getting set.

setTitleCell:

(NXColor)titleColor

Returns the color used to draw the SliderCell's background title. The default is to draw in a gray level of 0.0
(NX_BLACK). Returns self.

setTitleColor:, titleGray

titleFont

Returns the Font used to draw the SliderCell's title. The default font is the default system font as set by the user (with the
Preferences application), and its size is 12.0 point.

setTitleFont:

(float)titleGray



Returns the gray value used to draw the SliderCell's background title. The default gray level is 0.0 (NX_BLACK).
Returns self.

setTitleGray:, titleColor

(BOOL)trackMouse:(NXEvent *)theEvent
inRect:(const NXRect *)cellFrame
ofView:controlView

Tracks the mouse until it goes up or until it goes outside the cellFrame. If cellFrame is NULL, then it tracks until the
mouse goes up. Since SliderCell responds YES to prefersTrackingUntilMouseUp, this method will be invoked with a
NULL cellFrame. Returns YES if the mouse goes up, NO otherwise.

If the SliderCell is continuous, then the action will be continuously sent to the target as the mouse is dragged. If
cellFrame isn't the same cellFrame that was passed to the last drawSelf:inView:, then this method doesn't track.

startTrackingAt:inView:, continueTracking:at:inView:, stopTracking:at:inView:mouseIsUp:, setContinuous:

write:(NXTypedStream *)stream

Writes the receiving SliderCell to the typed stream stream. Returns self.

read:


