
init
initTextCell:

Copying a TextFieldCell copyFromZone:
Setting the TextFieldCell's value

setFloatValue: (Cell)
floatValue (Cell)
setDoubleValue: (Cell)
doubleValue (Cell)
setIntValue: (Cell)
intValue (Cell)
setStringValue: (Cell)
setStringValueNoCopy: (Cell)
setStringValueNoCopy:shouldFree: (Cell)
stringValue (Cell)

Modifying Graphic Attributes setTextColor:
textColor
setTextGray:
textGray
setBackgroundColor:
backgroundColor
setBackgroundGray:
backgroundGray
setBackgroundTransparent:
isBackgroundTransparent
setTextAttributes:
setBezeled:
isOpaque

Displaying drawSelf:inView:
drawInside:inView:

Tracking the Mouse trackMouse:inRect:ofView:
Archiving read:

write:



(NXColor)backgroundColor

Returns the color used to draw the background on color displays.

setBackgroundColor:, backgroundGray

(float)backgroundGray

Returns the gray level used to draw the background on monochrome displays. If the gray level is less than 0, then the
background is transparent.

setBackgroundGray:, backgroundColor

copyFromZone:(NXZone *)zone

Creates and returns a new TextFieldCell as a copy of the receiver, allocated from zone.

drawInside:(const NXRect *)cellFrame inView:controlView

Draws the inside of the TextFieldCell (the background and text, but not the bezel or border). This method is invoked
from drawSelf:inView: and also from Control and its subclasses' drawCellInside: method. If you subclass TextFieldCell,
and you override drawSelf:inView:, then you should override this method as well. Returns self.

drawSelf:inView:

drawSelf:(const NXRect *)cellFrame inView:controlView

Draws the TextFieldCell's background, text, and border or bezel. Returns self.

drawInside:inView:

init

Initializes and returns the receiver, a new instance of TextFieldCell, with the default title, ªFieldº. Other defaults are set
as described in initTextCell: below.

initTextCell:

initTextCell:(const char *)aString

Initializes and returns the receiver, a new instance of TextFieldCell, with aString as its text. The default text gray is
NX_BLACK, and the default background gray is transparent (1.0). Its font is set to the user's system font, and the font
size is 12.0 point.

This method is the designated initializer for TextFieldCell. Override this method if you create a subclass of TextFieldCell
that performs its own initialization. Note that TextFieldCell doesn't override Cell's initIconCell: designated initializer
your code shouldn't use that method to initialize an instance of TextFieldCell.

init

(BOOL)isBackgroundTransparent



Returns YES if the background of the TextFieldCell is transparent (that is, if the background gray is less than 0).

setBackgroundTransparent:, setBackgroundGray:

(BOOL)isOpaque

Returns YES if the TextFieldCell draws over every pixel in its frame. This will be true if the cell is bezeled, or if its
background gray is not transparent.

setBezeled:, setBackgroundGray:

read:(NXTypedStream *)stream

Reads the TextFieldCell from the typed stream stream. Returns self.

write:

setBackgroundColor:(NXColor)aColor

Sets the background color for the TextFieldCell to aColor. The background color is used only on color displays on
monochrome displays, the background gray is used. Returns self.

backgroundColor, setBackgroundGray:

setBackgroundGray:(float)value

Sets the gray level that will be used to draw the background on monochrome displays. If value is less than 0.0, no
background will be drawn. If the cell is editable, it should have a background gray greater than or equal to 0.0. Returns
self.

backgroundGray, setBackgroundColor:

setBackgroundTransparent:(BOOL)flag

If flag is YES, sets the background gray of the TextFieldCell to transparent (a negative value) if NO, sets the background
gray to NX_WHITE. Returns self.

setBackgroundGray:

setBezeled:(BOOL)flag

If flag is YES, the TextFieldCell is drawn with a bezel around the edge if NO, nothing is drawn around the text. If the
current background gray is transparent, it's changed to NX_WHITE. Bezeled transparent TextFieldCells look rather
strange, but if you want to have one, invoke setBackgroundGray: with 1.0 after invoking setBezeled:.

isBezeled (Cell), setBackgroundGray:

setTextAttributes:textObject

Used to set the attributes of the field editor when editing the TextFieldCell (see the TextFieldCell class description). Sets
the background and text colors or gray levels of textObject to those of the TextFieldCell, and returns textObject.
textObject should respond to the messages setBackgroundGray:, setBackgroundColor:, setTextGray:, and setTextColor:.
You rarely need to override this method you never need to invoke it.



If the TextFieldCell is disabled, then 0.333 is added or subtracted to textObject's brightness level so that the brightness is
brought toward the background gray level (if the background is transparent, the text is always made darker). The gray
level is never brought below 0.0 or above 1.0 by this adjustment this can cause brightly colored text on a white
background to look no different when the cell is disabled.

Note that if the TextFieldCell has a transparent background, textObject's background gray isn't changed. Since a
TextFieldCell's background is transparent by default, and the field editor's background could be any gray level or color
(depending on where it was last used), this can cause ugly side effects. Editable TextFieldCells should use an opaque
background whenever possible in order to avoid this.

setTextGray:, setBackgroundGray:, setTextAttributes: (Cell)

setTextColor:(NXColor)aColor

Sets the color used to draw the text. On monochrome displays this can result in unsightly dithering of text, so this method
should only be used if the drawing view responds YES to a shouldDrawColor message. setTextColor: doesn't cause the
text to be redrawn. Returns self.

textColor, setTextGray:, shouldDrawColor (View)

setTextGray:(float)value

Sets the gray level used to draw the text, regardless of the color capability of the display. value should lie in the range 0.
0 (indicating black) to 1.0 (indicating white). To specify one of the four pure shades of gray, use one of these constants:

textGray, setTextColor:

(NXColor)textColor

Returns the color used to draw the text. Returns self.

setTextColor:, textGray

(float)textGray

Returns the gray level used to draw the text. Returns self.

setTextGray:, textColor

(BOOL)trackMouse:(NXEvent*)theEvent
inRect:(const NXRect*)aRect
ofView:controlView

Causes editing to occur, and increments the state of the TextFieldCell if its enabled and the mouse goes up in its frame.
Returns YES if the mouse goes up in the TextFieldCell, NO otherwise.

trackMouse:inRect:ofView: (Cell)



write:(NXTypedStream *)stream

Writes the receiving TextFieldCell to the typed stream stream. Returns self.

read:


