


copy
copyFromZone:
zone
free
+ free

Initializing a new instance init
Identifying classes+ name

+ class
class
+ superclass
superclass

Identifying and comparing instances
isEqual:
hash
self
name
printForDebugger:

Testing inheritance relationships
isKindOf:
isKindOfClassNamed:
isMemberOf:
isMemberOfClassNamed:

Testing class functionality respondsTo:
+ instancesRespondTo:

Testing for protocol conformance
+ conformsTo:
conformsTo:

Sending messages determined at run time
perform:
perform:with:
perform:with:with:

Forwarding messages forward::
performv::

Obtaining method information methodFor:
+ instanceMethodFor:
descriptionForMethod:
+ descriptionForInstanceMethod:

Posing+ poseAs:
Enforcing intentions notImplemented:

subclassResponsibility:
Error handling doesNotRecognize:

error:
Dynamic loading+ finishLoading:

+ startUnloading
Archiving read:

write:
startArchiving:
awake
finishUnarchiving
+ setVersion:
+ version



init, + new

zone, init

name, class

conformsTo:

descriptionForMethod:



free

init, class



methodFor:

respondsTo:, forward::

name, + class

init, + alloc, + allocFromZone:



superclass

awake

Implemented by subclasses to reinitialize the receiving object after it has been unarchived (by read:). An awake message
is automatically sent to every object after it has been unarchived and after all the objects it refers to are in a usable state.

The default version of the method defined here merely returns self.

A class can implement an awake method to provide for more initialization than can be done in the read: method. Each
implementation of awake should limit the work it does to the scope of the class definition, and incorporate the
initialization of classes farther up the inheritance hierarchy through a message to super. For example:

read:, finishUnarchiving, awakeFromNib (NXNibNotification protocol in the Application Kit), loadNibFile:owner:
(Application class in the Application Kit)

class

Returns the class object for the receiver's class.



(BOOL)conformsTo:(Protocol *)aProtocol

Returns YES if the class of the receiver conforms to aProtocol, and NO if it doesn't. This method invokes the
conformsTo: class method to do its work. It's provided as a convenience so that you don't need to get the class object to
find out whether an instance can respond to a given set of messages.

copy

Returns a new instance that's an exact copy of the receiver. This method creates only one new object. If the receiver has
instance variables that point to other objects, the instance variables in the copy will point to the same objects. The values
of the instance variables are copied, but the objects they point to are not.

This method does its work by invoking the copyFromZone: method and specifying that the copy should be allocated from
the same memory zone as the receiver. If a subclass implements its own copyFromZone: method, this copy method will
use it to copy instances of the subclass. Therefore, a class can support copying from both methods just by implementing a
class-specific version of copyFromZone:.

copyFromZone:

copyFromZone:(NXZone *)zone

Returns a new instance that's an exact copy of the receiver. Memory for the new instance is allocated from zone.

This method creates only one new object. If the receiver has instance variables that point to other objects, the instance
variables in the copy will point to the same objects. The values of the instance variables are copied, but the objects they
point to are not.

Subclasses should implement their own versions of copyFromZone:, not copy, to define class-specific copying.

copy, zone

(struct objc_method_description *)descriptionForMethod:(SEL)aSelector

Returns a pointer to a structure that describes the aSelector method, or NULL if the aSelector method can't be found.
When the receiver is an instance, aSelector should be an instance method when the receiver is a class, it should be a class
method.

The objc_method_description structure is declared in objc/Protocol.h, and is mostly used in the implementation of
protocols. It includes two fieldsÐthe selector for the method (which will be the same as aSelector) and a character string
encoding the method's return and argument types:



descriptionForClassMethod: (Protocol class in the Run-Time System), descriptionForInstanceMethod (Protocol class in
the Run-Time System)

doesNotRecognize:(SEL)aSelector

Handles aSelector messages that the receiver doesn't recognize. The run-time system invokes this method whenever an
object receives an aSelector message that it can't respond to or forward. This method, in turn, invokes the error: method
to generate an error message and abort the current process.

doesNotRecognize: messages should be sent only by the run-time system. Although they're sometimes used in program
code to prevent a method from being inherited, it's better to use the error: method directly. For example, an Object
subclass might renounce the copy method by reimplementing it to include an error: message as follows:

error:, subclassResponsibility:, + name

error:(const char *)aString, ...

Generates a formatted error message, in the manner of printf(), from aString followed by a variable number of arguments.
For example:

subclassResponsibility:, notImplemented:, doesNotRecognize:



finishUnarchiving

Implemented by subclasses to replace an unarchived object with a new object if necessary. A finishUnarchiving message
is sent to every object after it has been unarchived (using read:) and initialized (by awake), but only if a method has been
implemented that can respond to the message.

The finishUnarchiving message gives the application an opportunity to test an unarchived and initialized object to see
whether it's usable, and, if not, to replace it with another object that is. This method should return nil if the unarchived
instance (self) is OK otherwise, it should free the receiver and return another object to take its place.

There's no default implementation of the finishUnarchiving method. The Object class declares this method, but doesn't
define it.

read:, awake, startArchiving:

forward:(SEL)aSelector :(marg_list)argFrame

Implemented by subclasses to forward messages to other objects. When an object is sent an aSelector message, and the
run-time system can't find an implementation of the method for the receiving object, it sends the object a forward::
message to give it an opportunity to delegate the message to another receiver. (If the delegated receiver can't respond to
the message either, it too will be given a chance to forward it.)

The forward:: message thus allows an object to establish relationships with other objects that will, for certain messages,
act on its behalf. The forwarding object is, in a sense, able to ªinheritº some of the characteristics of the object it
forwards the message to.

A forward:: message is generated only if the aSelector method isn't implemented by the receiving object's class or by any
of the classes it inherits from.

An implementation of the forward:: method has two tasks:

·To locate an object that can respond to the aSelector message. This need not be the same object for all messages.

·To send the message to that object, using the performv:: method.

In the simple case, in which an object forwards messages to just one destination (such as the hypothetical friend instance
variable in the example below), a forward:: method could be as simple as this:

performv::, doesNotRecognize:

free

Frees the memory occupied by the receiver and returns nil. Subsequent messages to the object will generate an error
indicating that a message was sent to a freed object (provided that the freed memory hasn't been reused yet).

Subclasses must implement their own versions of free to deallocate any additional memory consumed by the objectÐsuch
as dynamically allocated storage for data, or other objects that are tightly coupled to the freed object and are of no use
without it. After performing the class-specific deallocation, the subclass method should incorporate superclass versions
of free through a message to super:



(unsigned int)hash

Returns an unsigned integer that's derived from the id of the receiver. The integer is guaranteed to always be the same for
the same id.

isEqual:

init

Implemented by subclasses to initialize a new object (the receiver) immediately after memory for it has been allocated.
An init message is generally coupled with an alloc or allocFromZone: message in the same line of code:



(BOOL)isEqual:anObject

Returns YES if the receiver is the same as anObject, and NO if it isn't. This is determined by comparing the id of the
receiver to the id of anObject.

Subclasses may need to override this method to provide a different test of equivalence. For example, in some contexts,
two objects might be said to be the same if they're both the same kind of object and they both contain the same data:

(BOOL)isKindOf:aClassObject

Returns YES if the receiver is an instance of aClassObject or an instance of any class that inherits from aClassObject.
Otherwise, it returns NO. For example, in this code isKindOf: would return YES because, in the Application Kit, the
Menu class inherits from Window:

isMemberOf:

(BOOL)isKindOfClassNamed:(const char *)aClassName

Returns YES if the receiver is an instance of aClassName or an instance of any class that inherits from aClassName. This
method is the same as isKindOf:, except it takes the class name, rather than the class id, as its argument.

isMemberOfClassNamed:

(BOOL)isMemberOf:aClassObject

Returns YES if the receiver is an instance of aClassObject. Otherwise, it returns NO. For example, in this code,
isMemberOf: would return NO:

isKindOf:



(BOOL)isMemberOfClassNamed:(const char *)aClassName

Returns YES if the receiver is an instance of aClassName, and NO if it isn't. This method is the same as isMemberOf:,
except it takes the class name, rather than the class id, as its argument.

isKindOfClassNamed:

(IMP)methodFor:(SEL)aSelector

Locates and returns the address of the receiver's implementation of the aSelector method, so that it can be called as a
function. If the receiver is an instance, aSelector should refer to an instance method if the receiver is a class, it should
refer to a class method.

aSelector must be a valid, nonNULL selector. If in doubt, use the respondsTo: method to check before passing the
selector to methodFor:.

IMP is defined (in the objc/objc.h header file) as a pointer to a function that returns an id and takes a variable number of
arguments (in addition to the two ªhiddenº argumentsÐ self and _cmdÐthat are passed to every method implementation)
:

(const char *)name

Implemented by subclasses to return a name associated with the receiver.

By default, the string returned contains the name of the receiver's class. However, this method is commonly overridden
to return a more object-specific name. You should therefore not rely on it to return the name of the class. To get the
name of the class, use the class name method instead:

notImplemented:(SEL)aSelector

Used in the body of a method definition to indicate that the programmer intended to implement the method, but left it as a
stub for the time being. aSelector is the selector for the unimplemented method notImplemented: messages are sent to
self. For example:



subclassResponsibility:, error:

perform:(SEL)aSelector

Sends an aSelector message to the receiver and returns the result of the message. This is equivalent to sending an
aSelector message directly to the receiver. For example, all three of the following messages do the same thing:

perform:with:, perform:with:with:, methodFor:

perform:(SEL)aSelector with:anObject

Sends an aSelector message to the receiver with anObject as an argument. This method is the same as perform:, except
that you can supply an argument for the aSelector message. aSelector should identify a method that takes a single
argument of type id.

perform:, perform:with:afterDelay:cancelPrevious: (Application Kit Object Additions)

perform:(SEL)aSelector
with:anObject
with:anotherObject

Sends the receiver an aSelector message with anObject and anotherObject as arguments. This method is the same as
perform:, except that you can supply two arguments for the aSelector message. aSelector should identify a method that
can take two arguments of type id.

perform:

performv:(SEL)aSelector :(marg_list)argFrame

Sends the receiver an aSelector message with the arguments in argFrame. performv:: messages are used within
implementations of the forward:: method. Both arguments, aSelector and argFrame, are identical to the arguments the
run-time system passes to forward::. They can be taken directly from that method and passed through without change to
performv::.

performv:: should be restricted to implementations of the forward:: method. Because it doesn't restrict the number of
arguments in the aSelector message or their type, it may seem like a more flexible way of sending messages than perform:
, perform:with:, or perform:with:with:. However, it's not an appropriate substitute for those methods. First, it's more



expensive than they are. The run-time system must parse the arguments in argFrame based on information stored for
aSelector. Second, in future releases, performv:: may not work in contexts other than the forward:: method.

forward::, perform:

(void)printForDebugger:(NXStream *)stream

Implemented by subclasses to write a useful description of the receiver to stream. Object's default version of this method
provides the class name and the hexadecimal address of the receiver, formatted as follows:

<classname: 0xaddress>

Debuggers can use this method to ask objects to identify themselves.

read:(NXTypedStream *)stream

Implemented by subclasses to read the receiver's instance variables from the typed stream stream. You need to
implement a read: method for any class you create, if you want its instances (or instance of classes that inherit from it) to
be archivable.

The method you implement should unarchive the instance variables defined in the class in a manner that matches they
way they were archived by write:. In each class, the read: method should begin with a message to super:

awake, finishUnarchiving, write:

(BOOL)respondsTo:(SEL)aSelector

Returns YES if the receiver implements or inherits a method that can respond to aSelector messages, and NO if it doesn't.
The application is responsible for determining whether a NO response should be considered an error.

Note that if the receiver is able to forward aSelector messages to another object, it will be able to respond to the message,
albeit indirectly, even though this method returns NO.

forward::, + instancesRespondTo:

self

Returns the receiver.

startArchiving:(NXTypedStream *)stream

Implemented by subclasses to prepare an object for being archivedÐthat is, for being written to the typed stream stream.
A startArchiving: message is sent to an object just before it's archivedÐbut only if it implements a method that can
respond. The message gives the object an opportunity to do anything necessary to get itself, or the stream, ready before a
write: message begins the archiving process.



There's no default implementation of the startArchiving: method. The Object class declares the method, but doesn't
define it.

awake, finishUnarchiving, write:

subclassResponsibility:(SEL)aSelector

Used in an abstract class to indicate that its subclasses are expected to implement aSelector methods. If a subclass fails to
implement the method, it will inherit it from the abstract superclass. That version of the method generates an error when
it's invoked. To avoid the error, subclasses must override the superclass method.

For example, if subclasses are expected to implement doSomething methods, the superclass would define the method this
way:

doesNotRecognize:, notImplemented:, error:

superclass

Returns the class object for the receiver's superclass.

write:(NXTypedStream *)stream

Implemented by subclasses to write the receiver's instance variables to the typed stream stream. You need to implement a
write: method for any class you create, if you want to be able to archive its instances (or instances of classes that inherit
from it).

The method you implement should archive only the instance variables defined in the class, but should begin with a
message to super so that all inherited instance variables will also be archived:

read:, startArchiving:

(NXZone *)zone

Returns a pointer to the zone from which the receiver was allocated. Objects created without specifying a zone are
allocated from the default zone, which is returned by NXDefaultMallocZone().


