

init
initForDatabase:withProperties.andQualifier:
free

Connecting to a database database
setDatabase:

Managing properties getProperties:
setProperties:
addProperty:

Managing the record prototype+ setDynamicRecordSuperclassName:

+ setDynamicRecordClassName:
setRecordPrototype:
createRecordPrototype
ownsRecordPrototype
recordPrototype
associateRecordl var:withProperty:
associ ateRecordSel ectors.:withProperty:
valueForProperty:

Ordering and ignoring records addRetrieveOrder:for:

Accessing the database fetch

Fetching in athread fetchinThread

removeRetrieveOrderFor:
retrieveOrderFor:
positionlnOrderingsFor:
ignoresDuplicateResults
setlgnoresDuplicateResults:

select
selectWithoutFetching
insert

update

delete

evaluateString:
adaptorWillEvaluateString:

cancel Fetch
checkThreadedFetchCompl etion:

Limiting a fetch setM aximumRecordsPerFetch:

maximumRecordsPerFetch
recordLimitReached

Using the shared cursor for several binders

Managing general resources reset

Appointing a delegate delegate

Archiving read:

setRecordPrototype:

setSharesContext:
sharesContext

flush
scratchZone

setDelegate:

write:

(BOOL)adaptorWillEvaluateString:(const unsigned char *)aString

Returns Y ESif the adaptor associated with the DBBinder's DBDatabase object will accept the giv
(as determined by sending bionder:willEvaluateString: to the DBBinder's delegate), otherwise retu

binder:willEvaluateString: (DBBinder delegate)

addProperty:anObject

Adds the given object (which should conform to the DBProperties protocol) to the DBBinder's lis
interested in. Thelist can't contain duplicates if the property is already present, the addition isn't |
value should be ignored.

Typicaly, you only use this method if you're building the DBBinder's property list incrementally,
DBBinder to create arecord class dynamically. If you're setting your own prototype record object
setRecordPrototype:), you should, rather than use this method, inform the DBBinder of its properti
InitForDatabase:withProperties:andQualifier: or setProperties..

setProperties:, getProperties:, removePropertyAt:

addRetrieveOrder:(DBRetrieveOrder)anOrder for:(id <DBProperties>)aProperty

Establishes the order in which records are retrieved from the database (and stored in the DBBinde
the value of the aProperty property as aretrieval %key, °© records are retrieved in |east-to-greatest or
asanOrder isDB_AscendingOrder or DB_DescendingOrder. If anOrder is DB_NoOrder, the defe
removed from the retrieval order scheme. Returns self.

Y ou can invoke this method for as many properties as you choose, but the order in which the invor
important: The first invocation establishes the primary retrieval order property, the second establi:
property, and so on. If two or more records have the same value for their primary properties, their
according to the values of their secondary properties. If they still can't be distinguished, the decisi
properties, and so on.

Note well that it's the adaptorbnot the DBBinderbthat retrievesrecords. If the adaptor that you'
support the notion of an ordered retrieval, then this method is for naught.

retrieveOrderFor:, removeRetrieveOrderFor:, positioninOrderingskor:

(BOOL)areObjectsFreedOnFlush

Returns Y ESif the objectsin the DBBinder's container are freed when the DBBinder is flushed, o
Flushing is explained in the description of the flush method. By default, the objects are freed.

setFreeObjectsOnFlush:, setFlushEnabled:

associateRecordlvar:(const char *)variableName
withProperty:(id <DBProperties>)aProperty

Associates the record object instance variable named variableName with the given property such tl
fetched from the database, the value of the named instance variable (in the record object that's cre:

variaple or one method palr invoking this method with a particular property undoes the effect of a
this or of the associateRecordSelectors:withProperty: method for that property.

associ ateRecordSel ectors::withProperty:

associateRecordSel ectors: (SEL) set
:(SEL)get
withProperty:(id <DBProperties>)aProperty

Associates the record object instance methods set and get with the given property such that when &
the database, the value at the property is set through the set method, and when the record is writter
the value is retrieved through the get method. Either or both of the selector arguments may be NU
set method must take exactly one argument, the value that's being set the get method must take no
type of the value returned by the get method should match that of the set method's argument.

Y ou should only invoke this method if you're setting your own prototype record object (through tf
method). Furthermore, the prototype record must have already been set, and the object must respc
methods (if they're non-NULL). If it doesn't respond, or if aProperty isn't in the DBBinder's list
association isn't made and nil isreturned. Otherwise, the method returns non-nil.

Rather than associate a property with a pair of methods, you can associate it with an instance varia
associateRecordlvar:withProperty: method. However, a single property can be associated with onl
or one method pair invoking this method with a particular property undoes the effect of a previous
the associateRecordl var:withProperty: method for that property.

associateRecordl var:withProperty:

cancel Fetch

Interrupts an asynchronous fetch. Y ou can also use this method after a successful synchronous fet
resources are reclaimed.

fetchinThread, fetch, fetchDone: (DBDatabase)

checkThreadedFetchCompl etion: (doubl e)timeout

If you're performing an asynchronous fetch but you're not using the Application Kit's event |oopt
aparticularly safe thing to dobyou should invoke this message (after invoking fetchinThread) to ¢
message binderDidFetch: is sent. The argument is the maximum amount of time, in seconds, to w
Returns nil (and the message isn't sent) if the time limit expires before the fetch completes, otherw

fetchinThread

(id <DBContainers>)container

Returns the DBBinder's container object, as set through setContainer:. The container, which must
DBContainers protocol, holds the record objects that are created when the DBBinder fetches data.
default container and can operate without one, although this impedes some of the object's function
container, a DBBinder can't perform an asynchronous fetch, and its cursor can only be positioned
method.

DAL Yy TIATHUEALDLUT VUM UL UHGOO: UTGOO TTITIGLTHTUUO. TTHOTTIGUHTUUM TGO 1TV LiTLut d v Totluntiotnl ulivel uic

1f the DBBinder's current prototype record object isn't nil.

1f the DBBinder has no properties.

1f the name set through setDynamicRecordClass. names an existing class.
1f the class named by setDynamicRecordSuperclass. doesn't exist.

Upon success, this method returns the class that it created.

This method is automatically invoked when the DBBinder fetches data, thus you needn't invoke it
it's agood ideato never invoke this method however, if you dobfor example, to examine the retu
send a setRecordPrototype:nil message to the DBBinder before the next fetch to ensure that the col
assembled.

(DBDatabase *)database
Returns the DBDatabase object that's associated with the DBBinder.
initForDatabase:withProperties.andQualifier:, setDatabase:

delegate
Returns the object that will receive notification messages for the DBBinder.
setDel egate:

delete
Deletes from the database each of the DBBinder's record objects.

Before the operation begins, a binderWillDelete: message is sent to the DBBinder's delegate (with
argument) if the delegate message returns NO, then the deletion isn't performed and this method re
records have been processed, the DBBinder is flushed. If the records were successfully deleted, a
message is sent to the delegate and self is returned, otherwise the delegate message isn't sent and r

As each record is deleted, one of two messages is sent to the container's delegate (if the DBBinder
container has a delegate, and if the delegate implements the method):

-binder:didAcceptObject: if the record was deleted.
-binder:didRejectObject: is sent if the record couldn't be deleted.

For both methods, the first argument is the DBBinder and the second is the record object. The val
methods are ignored.

(BOOL)evaluateString:(const unsigned char *)aString

Tells the adaptor to evaluate and execute the commands that are encoded in aString. The DBBin
applied to the evaluation.

Fetches records from the database, forms arecord object for each, and places the record objects in
container. If the binder has no container, you should use the setNext method, rather than this one,

Before the fetch begins, the DBBinder's delegate is sent a binderWill Fetch: message after, it's sen
binderWillFetch: returns NO, the fetch isn't performed and this method immediately returns nil.

As each record of dataisfetched, a copy of the DBBinder's prototype record object is created to h
DBBinder's prototype record hasn't been set, a classis dynamically assembled to fill the need, as
description of createRecordPrototype.

The fetch continues until there's no more datato retrieve, or until the record limit (as set through tl
setM aximumRecordsPerFetch: method) has been reached.

After the fetch has ended, the DBBinder's cursor is set to the first record in the container (or to the
there is no container) and self isreturned. If there was no datato fetch, or if there's afetch in proc
has a container), the cursor isn't set and nil is returned.

If the fetch ended by exhausting the source databin other words, it didn't end because the record |
should then invoke cancel Fetch to reclaim resources that were used during the fetch. Use the recol
method to test whether the fetch ended because it reached the limit while there was more data to fe

fetchInThread

Fetches data asynchronously from the database by performing the fetch in a separate thread. The ¢
conditions are as described in the fetch method, but with these differences:

-An asynchronous fetch only works if the DBBinder has a container.
You shouldn't invoke cancel Fetch after invoking this method unless you actually want to abort th
‘The record limit set through setMaximumRecordsPerFetch:has no effect on an asynchronous fetcl

If thereis no container, or if the binderWillFetch: delegate message returns NO, then the fetch isn'
method returns nil. Otherwise, this method returns self while the fetch proceeds in the backgrounc
complete, the binderDidFetch: method is sent to the delegate.

If you're not using the Application Kit's main event loop, then you probably don't want to fetch a:
are any number of things that you can do, in this situation, that will make your application hang. E
lucky you should note that this method, when run without the App Kit, should be followed by an i
checkThreadedFetchCompletion:. This synchronizes the fetch thread with the main thread, and en
binderDidFetch: message is sent. Good luck.

To be used in an asynchronous fetch, the DBBinder's container must be thread-safe (it must be re-
if you limit yourself to DBCursorPositioning methods, such as setTo: and setNext:, you can access
regardless of the type of fetch employed.

fetch, cancelFetch, checkThreadedFetchCompletion:

(BOOL)flush

If flushing is enabled, this empties the DBBinder's container. Furthermore, if the DBBinder hasb
flush, the records that were in the container are freed and the prototype record object is set to nil. |
flushing and free-on-flush are enabled. Returns Y ESif flushing is enabled, NO if not.

This method always interrupts afetch, if oneisin progress, whether or not flushing is enabled.
The following DBBinder methods may cause flush to be invoked:

free
Freesthe DBBIinder and its records. If the DBBinder owns the prototype record object, it too isfre

(List *)getProperties:(List *)aList

FillsaList with the DBBinder's properties, then returnsthe List directly and by reference. The orc
the List isthat by which they were added to the DBBinder. Y ou mustn't free the contents of alist
the List itself.

initForDatabase:withProperties.andQualifier:, setProperties:, addProperty

(BOOL)ignoresDuplicateResults

Returns YES if the DBBinder is set to ignore duplicate records during a select. The default is NO.
to support this (the Oracle and Sybase adapters supplied with the Database Kit do).

setlgnoresDuplicateResults:

init
The designated initializer for the DBBinder class, init initializes and returns the DBBinder. All the

DBBinder owns or knows of, such as its container, properties, DBDatabase, and DBQualifier are
attributes are set as follows:

initForDatabase:withProperties.andQualifier

InitForDatabase:aDBDatabase
withProperties:(List *)propertyList
andQualifier:(DBQualifier *)aDBQualifier

Invokesinit and then sets the DBBinder's DBDatabase, properties, and DBQualifier as given by tt
propertiesin propertyList are added to the DBBinder's own List, thus the argument may be freed.

init

insert

-pinder:didAcceptODject: IT the record was Inserted.
-binder:didRejectObject: is sent if the record couldn't be inserted.

For both methods, the first argument is the DBBinder and the second is the record object. The val
methods are ignored.

(BOOL)isFlushEnabled

Returns YES if the DBBinder has flushing enabled, otherwise return NO. The default isYES. Se
flush method for more information. (Note that sharing a cursor is incompatible with flushing, so s
the side effect of disabling flushing.)

flush, setFlushEnabled:, setSharesContext:

(unsigned int)maximumRecordsPerFetch

Returns the maximum number of records that will be retrieved during a synchronous fetch, as set t
setM aximumRecordsPerFetch: method. By default, thislimit is set to DB_Nolndex, which impos

setM aximumRecordsPerFetch:, recordLimitReached, fetch

(BOOL)ownsRecordPrototype

Returns YES if the DBBinder owns its prototype record objectbin other words, if it will create at
(when createRecordPrototype isinvoked). If you've set the prototype record object yourself, throt
setRecordPrototype:, then this returns NO.

(unsigned int)positionl nOrderingsFor:(id <DBProperties>)aProperty

Returns an integer that indicates the level (primary, secondary, tertiary, and so on) at which the gi\
order the records that are retrieved from the database. The ordering position of a particular proper!
it was added to the ordering mechanism (amongst the currently 2active® ordering properties) throu
addRetrieveOrder:for: method. A return of DB_Nolndex means that the property isn't used in the

addRetrieveOrder:For:

(DBQudlifier *)qualifier

Returns the DBQualifier object that was set through setQualifier: or initForDatabase: withProperti
qualifier is used to qualify values during a select.

setQualifier:, initForDatabase:withProperties.andQualifier:

read:(NXTypedStream *)stream

setM aximumRecordsPerFetch:, maximumRecordsPerFetch, fetch

recordPrototype

Returns the DBBinder's prototype record object. If you've set the object yourself, through setRec
object isreturned. Otherwise, this returns nil unless you've previously invoked createRecordProtc
thisis called from within a subclass implementation of fetch.

setRecordPrototype, createRecordPrototype

removePropertyAt:(unsigned int)index

Removes the property at the given index. To find the index of a particular property, get the DBBIl
through the getProperties: method, and then ask for the index by sending indexOf: to the List, pass
argument. Returns the property (or nil if there was none).

setProperties:, addProperty:

removeRetrieveOrderFor:(id <DBProperties>)aProperty

Removes the given property from the list of properties that are used to sort records as they're bein
property's retrieve order constant is set to DB_NoOrder. Returnsnil if the property hadn't previol
record-sorting list (if it hadn't previously received an addRetrieveOrderFor: message), otherwise s

addRetrieveOrderFor:, positionlnOrderingsFor:

reset

Restores the DBBinder to avirgin state. The DBBinder isfirst flushed (which cancels afetch, if o
the objectsthat it has allocated, and any that you've allocated in the scratch zone, are freed. The s
methods automatically cause a reset.

flush, scratchZone

(DBRetrieveOrder)retrieveOrderFor:(id <DBProperties>)aProperty

Returns a constant that indicates the order in which records are retrieved when aProperty is used &
addRetrieveOrder:for: method for afurther explanation). The retrieval order constants are:

addRetrieveOrder:for:, positionlnOrderingsFor:

select

Selects and fetches data from the database. First, selectWithoutFetching isinvoked if that returns|
If the method was successful, then fetch isinvoked the value returned by fetch is returned by thisr

selectWithoutFetching, fetch

selectWithoutFetching

Selects records from the database, using the DBBinder's qualifier (as set through setQualifier: or i
withProperties.andQualifier:) to qualify the records that are selected.

Before the operation begins, a binderWillSelect: message is sent to the DBBinder's delegate (with
argument) if the delegate message returns NO, then the select isn't performed and nil isimmediate
method. Otherwise, the DBBinder is flushed and the datais selected. If the select was successful,
message is sent to the delegate and self is returned, otherwise the delegate message isn't sent and r

If the DBBinder is set to ignore duplicate results, only the first of duplicate records will be selecte
select, setlgnoreDuplicateResults

setContainer:(id <DBContai ners>)anObject

Sets the container that's used to store record objects. The argument must either adopt the DBCont
can be aList objectbDBBinder definesa category of List that allows its instances, and those of it
DBContainers-conforming objects. Most DBBinders are well served using aList asacontainer. |
and practice of containment, see the class description, above.

Returns the previous container.

setDatabase:(DBDatabase *)aDatabase
Sets the DBBinder's database. Returns the previous DBDatabase object.

setDel egate:anObject
Sets the object that receives notification messages for the DBBinder.

setFlushEnabled:(BOOL)flag

Establishes whether the DBBinder is capable of being flushed, as explained in the description of tt
default is YES.

flush, setFreeObjectOnFlush:

setlgnoresDuplicateResults:(BOOL)flag

Establishes whether duplicate records are ignored during aselect. The default isNO. It's up the a
the Oracle and Sybase adapters supplied with the Database Kit do.

ignoresDuplicateRecords, selectWithoutFetching

setM aximumRecordsPerFetch: (unsigned int)limit

Sets, to limit, the maximum number of records that will be retrieved during afetch. The limit only
fetches the asynchronous fetch method fetchinThread ignores the record limit.

maximumRecordsPerFetch, recordLimitReached, fetch

(List *)setProperties:(List *)aList
Resets the DBBinder and then addsto it the propertiesin aList. Returns the argument.
getProperties:, addProperty:, removePropertyAt:

setQualifier:(DBQualifier *)aQualifier
Sets the qualifier that's used during a select. Returns self.
qualifier

setRecordPrototype:anObject

Sets the object that's copied to store the results of afetch. See the class description for afull exple
prototype object.

recordPrototype, createRecordPrototype

setSharesContext:(BOOL)flag

Establishes whether the DBBinder shares its cursor with other DBBinder objects. The default is N
DBBinder shareits cursor disables flushing. Returns self.

Shared cursor behavior depends on the implementation of the adaptor rather than the database it's
Oracle and the Sybase adaptors as away of achieving atomic updates. Sharing the cursor also pro
efficient use of memory.

sharesContext

(BOOL)sharesContext

LA RS S N)\ UIJCI vl IJCUI 1o, (A MI1IULl VVIIIU'JU(JLC. [] ICOWC oIl it LU LIV Ui ivul O UCIU.JGLC \VVI U
argument) if the delegate message returns NO, then the update isn't performed and nil isimmediat
method. After al the records have been processed, the DBBinder isflushed. If the recordswere s
binderDidUpdate: message is sent to the delegate and self is returned, otherwise the delegate mess
returned.

As each record is updated, one of two messages is sent to the container's delegate (if the DBBinde
container has a delegate, and if the delegate implements the appropriate method):

-binder:didAcceptObject: if the record was updated.
-binder:didRejectObject: is sent if the record couldn't be updated.

For both methods, the first argument is the DBBinder and the second is the record object. The val
methods are ignored.

(DBValue *)valueForProperty:(id <DBProperties>)aProperty

Returns a DBV aue object for the given property of the currently pointed-to record. Use the DBCi
methods, such as setNext and setTo:, to set the cursor to point to a particular record. The object th
by the DBBinder and shouldn't be freed.

write:(NXTypedStream *)stream
Writes the DBBinder to the typed stream stream. Returns self.

binder:aBinder didEvaluateString:(const unsigned char *)aString

Invoked after the given string has been successfully evaluated by DBBinder's evaluateString: mett
ignored.

(BOOL)binder:aBinder will EvaluateString:(const unsigned char *)aString

Invoked before the given string is evaluated by DBBinder's evaluateString: method. A return of N
evaluation.

binderDidDelete:aBinder
Invoked after the DBBinder has successfully deleted records through the delete method. The retur

binderDidFetch:aBinder

binderDidSel ect:aBinder

Invoked after the DBBinder has successfully selected data through the selectWithoutFetching metl
ignored.

binderDidUpdate:aBinder

Invoked after the DBBinder has successfully updated the database through the update method. Th
ignored.

(BOOL)binderWill Delete:aBinder

Invoked before the DBBinder attempts to delete records from the database through the delete metf
will thwart the attempt.

(BOOL)binderWill Fetch:aBinder

Invoked before the DBBinder attempts to fetch data through the fetch or fetchinThread method. A
thwart the attempt.

(BOOL)binderWilllnsert:aBinder

Invoked before the DBBinder attempts to insert records into the database through the insert metho
thwart the attempt.

(BOOL)binderWill Select:aBinder

Invoked before the DBBinder attempts to select data from the database through the selectWithoutF
return of NO will thwart the attempt.

(BOOL)binderWillUpdate:aBinder

Invoked before the DBBinder attempts to update the database through the update method. A retur
attempt.

