
Copyright ã1996 by NeXT Software, Inc.    All Rights Reserved.

;J_ToDo_Subclass3.rtfd;linkMarkername ;¬ Previous Section 
  ;L_ToDo_BuildRunExtend.rtfd;linkMarkername ;¬ Next Section

4. To Do Tutorial

Setting Up Timers for Notification Messages
The To Do application includes as a feature the capability for notifying users of items with impending due
times. Users can specify various intervals before the due time for these notifications, which take the form of a
message in an attention panel. In this section you will implement the notification feature of To Do. In the
process you'll learn the basics of creating, setting, and responding to timers.

Here's how it works: Each ToDoItem with a ªWhen to Notifyº switch (other than ªDo not notifyº) selected in the
inspector panelÐand hence has a positive secsUntilNotif valueÐhas a timer set for it. If a user cancels a
notification by selecting ªDo not notify,º the document controller invalidates the timer. When a timer fires, it
invokes a method that displays the attention panel, selects the ªDo not notifyº switch, and sets secsUntilNotif to
zero.

Implementing the timer feature takes place entirely in Project Builder, but extends across several classes.

1 Add the timer as an instance variable to ToDoItem.

Open ToDoItem.h.

Add the instance variable itemTimer of class NSTimer.

Write accessor methods to get and set this instance variable.

2 Create and set the timer, or invalidate it.

Open ToDoDoc.m.

Implement the setTimerForItem: method, which is shown below.

- (void)setTimerForItem:(ToDoItem *)anItem
{
 NSDate *notifDate;
 NSTimer *aTimer;
 if ([anItem secsUntilNotif]) { /* 1 */
 notifDate = [[anItem day] addTimeInterval:[anItem
 secsUntilNotif]];
 aTimer = [NSTimer scheduledTimerWithTimeInterval: /* 2 */
 [notifDate timeIntervalSinceNow]
 target:self
 selector:@selector(itemTimerFired:)
 userInfo:anItem
 repeats:NO];
 [anItem setItemTimer:aTimer];
 } else
 [[anItem itemTimer] invalidate]; /* 3 */
}

This method sets or invalidates a timer, depending on whether the ToDoItem passed in has a positive
secsUntilNotif value.

1. Tests the ToDoItem to see if it has a positive secsUntilNotif value and, if it has, composes the time the
notification should be sent.

2. Creates a timer and schedules it to fire at the notification time, and instructs it to invoke itemTimerFired:
when it fires. It also sets the timer in the ToDoItem.

3. If the secsUntilNotif variable is zero, invalidates the item's timer.

3 Respond to timers firing.

Implement itemTimerFired: as shown at right.

- (void)itemTimerFired:(id)timer
{
 id anItem = [timer userInfo];
 ToDoInspector *inspController = [[[NSApp delegate] /* 1 */
 inspector] delegate];
 NSDate *dueDate = [[anItem day] addTimeInterval: /* 2 */
 [anItem secsUntilDue]];
 NSBeep();
 NSRunAlertPanel(@"To Do", @"%@ on %@", nil, nil, nil,
 [anItem itemName], [dueDate
 descriptionWithCalendarFormat:@"%b %d, %Y at %I:%M %p"
 timeZone:[NSTimeZone defaultTimeZone] locale:nil]);
 [anItem setSecsUntilNotif:0];
 [inspController resetNotifSwitch];
}

When a ToDoItem's timer goes off, it invokes the itemTimerFired: method (remember, you designated this
method when you scheduled the timer).

1. This method communicates with ToDoInspector in a more direct manner than notification. It gets the
ToDoInspector object through this chain of association: the delegate of the application object is
ToDoController, which holds the id of the inspector panel as an instance variable, and the delegate of

the inspector panel is ToDoInspector.

2. Composes the notification time (as an NSDate), beeps, and displays an attention panel specifying the
name of a ToDoItem and the time it is due. It then sets the ToDoItem's secsUntilNotif instance variable to
zero, and sends resetNotifSwitch to ToDoInspector to have it reset the ªWhen to Notifyº switches to ªDo
not Notify.º

TableRule.eps ¬Before You Go On

Implement resetNotifSwitch: You haven't written ToDoInspector's resetNotifSwitch method yet, so do it now as an
exercise. It should select the ªDo not Notifyº switch after turning off all switches in the matrix, and then force a
redisplay of the switch matrix.
758816_TableRule.eps ¬
Next you must send setTimerForItem: at the right place and time, which is ToDoInspector, when the user alters
a ªWhen to Notifyº value.

4 Send the message that sets the timer at the right times

Open ToDoInspector.m.

In switchChecked:, insert the setTimerForItem: message below after the
switch statement evaluating which ªWhen to Notifyº switch was checked.

In controlTextDidEndEditing:, insert the same message at the end of the block
related to the inspNotifOtherHours variable.

[[[NSApp mainWindow] delegate] setTimerForItem:currentItem];

Instead of archiving an item's NSTimer, To Do re-creates and resets it when the application is launched.

5 When the application is launched, reset item timers.

Add the code below to ToDoDoc's initWithFile: method.

 if ([self activeDays]) {
 dayenum = [[self activeDays] keyEnumerator];
 while (itemDate = [dayenum nextObject]) {
 NSEnumerator *itemenum;
 ToDoItem *anItem=nil;
 NSArray *itemArray = [[self activeDays]
 objectForKey:itemDate];
 itemenum = [itemArray objectEnumerator];
 while ((anItem = [itemenum nextObject]) &&
 [anItem isKindOfClass:[ToDoItem class]] &&
 [anItem secsUntilNotif]) {
 [self setTimerForItem:anItem];
 }
 }
 }

This block of code traverses the activeDays dictionary, evaluating each ToDoItem within the dictionary. If the
ToDoItem has a positive secsUntilNotif value, it invokes setTimerForItem: to have a timer set for it.

Related Concept: ;ToDoConcepts.rtfd;linkMarkername TickTockBrrrring:RunLoopsandTimers;,    Tick Tock
Brrrring: Run Loops and Timers

