
init
initTitle:

Setting up the Menu commands addItem:action:keyEquivalent:
setItemList:
itemList

Finding Menu items findCellWithTag:
Building submenus setSubmenu:forItem:

submenuAction:



Managing Menu windows moveTopLeftTo::
windowMoved:
getLocation:forSubmenu:
sizeToFit
close

Displaying the Menu display
setAutoupdate:
update

Handling events mouseDown:
rightMouseDown:

Archiving read:
write:
awake

alloc (Object), + setMenuZone:

alloc (Object), + menuZone:

addItem:(const char *)aString
action:(SEL)aSelector
keyEquivalent:(unsigned short)charCode

Adds a new command named aString to the bottom of the receiving Menu and returns the MenuCell created. The
MenuCell's action method is set to aSelector, but its target is nil. charCode is set as the MenuCell's key equivalent. The
command name and key equivalent aren't checked for duplications within the same Menu (or any other Menu) be sure to
assign them uniquely. The new MenuCell is enabled, but has no tag or alternate title your code may set these, but should
never set a MenuCell's icon.

This method doesn't automatically redisplay the Menu. Upon the next display message, the Menu is automatically sized
to fit and displayed.

setSubmenu:forItem:

awake

Checks whether an unarchived Menu should have a close Button. Your code shouldn't invoke this method it's invoked
by the read: method. Returns self.

read:

close

Overrides Window's close method. Ensures that attached submenus are closed along with the receiver.

close (Window)



display

Overrides Window's display method so that the Menu is automatically sized to fit its Matrix of items if needed. All Menu
methods that change the appearance of the Matrix delay resizing and displaying the Menu until it receives this message.

sizeToFit

findCellWithTag:(int)aTag

Returns the MenuCell that has aTag as its tag, or nil if no such Cell can be found. If your application uses MenuCell
tages, each MenuCell should have a unique tag.

findCellWithTag: (Matrix), setTag: (ActionCell)

getLocation:(NXPoint *)theLocation forSubmenu:aSubmenu

Returns the location in screen coordinates at which the lower-left corner of the receiving Menu's submenu should be
drawn. Menu invokes this method whenever it brings up a submenu. By default, the submenu is to the right of its
supermenu, with its title bar aligned with the supermenu's. Your code need never directly use this method, but may
override it to cause the submenu to be attached at a different location.

submenuAction:

init

Initializes and returns the receiver, a new instance of Menu, displaying the title ªMenuº. All other features are as
described in the initTitle: method below.

initTitle:

initTitle:(const char *)aTitle

Initializes and returns the receiver, a new instance of Menu, displaying the title aTitle. The Menu is positioned in the
upper left corner of the screen, and has no command items. A new Menu must receive an orderFront: message to be
displayed on the screen the Application object takes care of this for standard Menus.

The Menu is created as a buffered window, of style NX_MENUSTYLE and button mask NX_CLOSEBUTTON (though
a Menu hides its close button until it's torn off from its supermenu). All Menus have an event mask that excludes
keyboard events, so they never become the key window or main window.

addItem:action:keyEquivalent:, init

itemList

Returns the Matrix of MenuCells used by the Menu, which your code can use to add or rearrange command items
directly. Be sure to send sizeToFit after altering the Matrix, as the Menu won't know that the Matrix has been altered.

setItemList:, sizeToFit

mouseDown:(NXEvent *)theEvent

Overrides the Responder method to catch a mouse-down event instead of passing it along, so that the Menu can track the



mouse itself and manage display of its submenus properly. MenuCell's trackMouse:inRect:ofView: sends this message.
Returns self.

rightMouseDown:, trackMouse:inRect:ofView: (MenuCell)

moveTopLeftTo:(NXCoord)x :(NXCoord)y

Moves the top left corner of the Menu to the position on the screen defined (in screen coordinates) by x and y. This
method is overriden fromWindow's to resize the Matrix if needed before redisplaying the Menu at the new location.

moveTo:: (Window)

read:(NXTypedStream *)stream

Reads the Menu from the typed stream stream. Returns self.

awake, write:

rightMouseDown:(NXEvent *)theEvent

Pops the menu up under the cursor position in theEvent. Before doing so, this method saves the current state of the Menu
(including selected cells, attached submenus, menu positions, and so on). The menu is popped up with no Cells selected
or submenus attached. The Menu is tracked as for a mouseDown: event. On mouse-up, the Menu's state is restored so
that the original Menu arrangment on screen isn't changed. Returns self.

mouseDown:

setAutoupdate:(BOOL)flag

If flag is YES, the Menu will invoke the update action for each MenuCell whenever it receives an update
messageÐusually sent by the Application object when autoupdating of windows is enabled. If NO, the Menu doesn't
update its MenuCells on receiving an update message.

update, setAutoupdate: (Application), setUpdateAction:forMenu: (MenuCell)

setItemList:aMatrix

Sets the Menu's Matrix of items to aMatrix. A following display message will size the Menu to fit the new Matrix before
drawing. Returns the old Matrix.

itemList, display

setSubmenu:aMenu forItem:aCell

Sets aMenu as the submenu of the receiver, controlled by the MenuCell aCell. aCell's target is set to aMenu, its action to
submenuAction: and its icon to the arrow indicating that it brings up a submenu. Doesn't remove aCell's key equivalent.
If aMenu was on screen, it won't be removed from the screen or moved until it's first brought up as a submenu. Returns
aCell.

submenuAction:

sizeToFit



Sizes the Menu's Matrix to its MenuCells, so that all items fit in as small a rectangle as possible, and then fits the Menu to
the resized Matrix. Use this method after you've added or altered items by sending messages directly to the Matrix.
When the Menu is resized, its upper left corner remains fixed. After performing any necessary resizing, this method
redisplays the Menu.

sizeToFit (Matrix), display

submenuAction:sender

Action method sent to a submenu associated with an entry in a Menu. If sender's Window is a visible Menu, the receiver
attaches and displays itself as a submenu of the sender's Menu otherwise, does nothing. sender should be the Matrix
containing the MenuCell that brings up the submenu. Returns self.

setSubmenu:forItem:

update

Updates the Menu's items. If the Menu has been set to autoupdate, this method gets the update action method for each of
its MenuCells and sends that method to the first of the following that responds to it: the Menu's delegate, NXApp, or
NXApp's delegate. If a MenuCell's update action returns YES, that MenuCell is redrawn.

setAutoupdate: setUpdateAction:forMenu: (MenuCell)

windowMoved:(NXEvent *)theEvent

Overrides the Window method to implement tear-off Menu behavior. When a submenu is torn off, the item selected in its
supermenu is unhighlighted. The submenu is flagged as detached, is moved to the appropriate window level, and displays
its close Button. Returns self.

windowMoved: (Window)

write:(NXTypedStream *)stream

Writes the receiving Menu to the typed stream stream. Returns self.

read:


