

initFrame:
InitFrame:mode:cell Class:numRows;numCaoals:
initFrame:mode: prototype:numRows:numCaols:
free

Setting the selection mode setMode:
mode

Configuring the Matrix setEnabled:
setEmpty Sel ectionEnabl ed:
ISEmpty SelectionEnabled
setSel ectionByRect:
1SSel ectionByRect

Setting the Cell class setCellClass:
setPrototype:
prototype

Laying out the Matrix addCol
addRow
insertCol At:
InsertRowAL:
removeCol At:andFree:
removeRowAt:andFree:
makeCellAt::
putCell:at::
renewRows:cols:
setCellSize:
getCedllSize:
getCellFrame:at::
setintercell:

Selecting Cells selectCell:

Finding Cells findCelIWithTag:

L Y. ld ycu. acllull.al..

selectCellAt::
selectCellWithTag:

setSel ectionFrom:to:anchor:lit:
selectAll:

selectedCell

getSelectedCells:

selectedCol

selectedRow

clearSelectedCell

cellAt::
cellList

Modifying graphic attributes setBackgroundColor:

Editing text in Cells selectText:

backgroundColor
setBackgroundGray:
backgroundGray
setCellBackgroundColor:
cellBackgroundColor
setCellBackgroundGray:
cellBackgroundGray
setBackgroundTransparent:
isBackgroundTransparent
setCellBackgroundT ransparent:
isCellBackgroundTransparent
setFont:

font

selectTextAt::

Setting Tab key behavior setNextText:

setPreviousT ext:

Assigning a Text delegate setTextDelegate:

textDelegate

Text object delegate methods textWillChange:

textDidChange:
textDidGetK eys:.isEmpty:
textWillEnd:
textDidEnd:endChar:

Resizing the Matrix and Cells setAutosizeCells:

Scrolling setAutoscroll:

Displaying display

doesAutosizeCells
cacSize

sizeTo::
sizeToCedlls
sizeToFit
validateSize:

setScrollable:
scrollCellToVisible:

drawSelf::
drawCsdll:

errorAction

setTarget:at::
setAction:at::

sendAction
sendAction:to:
sendAction:to:forAllCells:
sendDoubleAction
setReaction:

Handling event and action messages
acceptsFirstMouse

mouseDown:
mouseDownFlags
performK eyEquivalent:

Managing the cursor resetCursorRects

Archiving read:
write:

initFrame:...
(BOOL)acceptsFirstMouse

Returns NO if the selection mode of the Matrix isNX_LISTMODE, YES f the Matrix isin any of
The Matrix does not accept first mouse in NX_LISTMODE to prevent the loss of multiple selectic

mode

(SEL)action

Returns the default action of the Matrix. The returned method is used when a Cell with no action |
would ordinarily cause its action to be sentbnormally amouse-up in the Cell. In such cases, the |
to its own target.

only if new Cells are needed (since renewRows:cols: doesn't free Cells, it just rearranges them). 1
and shrink a Matrix without repeatedly creating and freeing the Cells.

insertColAt:, makeCellAt::, renewRows.cols:, isAutodisplay (View)

addRow

Adds anew row of Cellsto the bottom of the existing rows, creating new Cells if needed with mak
redraw even if autodisplay ison. Returns self.

If the number of rows or columnsin the Matrix has been changed with renewRows:cols:, then mak
only if new Cells are needed (since renewRows:.cols: doesn't free Cells, it just rearranges them). T
and shrink a Matrix without repeatedly creating and freeing the Cells.

insertRowAt:, makeCellAt::, renewRows:.cols:, isAutodisplay (View)

(NXColor)backgroundColor
Returns the color used to draw the background (the space between the Cells).
setBackgroundColor:, backgroundGray, cellBackgroundColor

(float)backgroundGray

Returns the gray level used to draw the background (the space between the Cells). If the gray leve
background is transparent.

setBackgroundGray:, backgroundColor, cellBackgroundGray

cacSize

Y our code should never invoke this method. It isinvoked automatically by the system if it hasto
information about the Cells. It invokes calcDrawlnfo: on each Cell in the Matrix. Can be overridc
necessary (Form overrides calcSize, for example). Returns self.

calcSize (Control, Form), validateSize:

cellAt:(int)row :(int)col
Returns the Cell at row row and column col, or nil if no such Cell exists.
getRow:andCol:of Cell:

(NXColor)cellBackgroundColor
Returns the color used to fill the background of a Cell.

(int)cel|Count
Returns the number of Cell positionsin the Matrix (that is, the number of rows times the number c
cellList

cellList

Returns a List object that contains the Cells of the Matrix. The Cellsin thelist are row-ordered th:
Cells appear first in the List, then the next row, and so on.

clearSelectedCell

Deselects the selected Cell or Cells, and returns the previously selected Cell (the last of the selecte
more than one). If the selection modeis NX_RADIOMODE and empty selection is not allowed, t
deselect the selected Cell. Doesn't redisplay the Matrix. It's often more convenient to use selectC
column of (1, 1), since thiswill clear the selected Cell and redisplay the Matrix.

selectCellAt::;, mode, setEmptySelectionEnabled:

display
Draws the Matrix. This method invokes displayFromOpagueAncestor::: if any part of the Matrix |
between Cells, or any Cell) istransparent, or display::: if the entire Matrix is opague. Returns self

display::: (View), displayFromOpaqueAncestor::: (View)

(BOOL)doesAutosizeCells

Returns YES if Cells are resized proportionally to the Matrix when its size changes the inter-Cell «
Returns NO if the inter-Cell spacing changes when the Matrix is resized the Cell size remains con:

setAutosizeCells:

(SEL)doubleAction

Returns the action sent by the Matrix to its target when the user double-clicks an entry. Unlike N>
returns NULL if there is no double-click action. The double-click action of aMatrix is sent after t
click action (for the Cell clicked or for the Matrix if the Cell doesn't have its own action). If there
action and the Matrix doesn't ignore multiple clicks, the single-click action is sent twice.

setDoubleAction:, action, target, sendDoubleAction, ignoreMultiClick: (Control)

drawCellAt:(int)row :(int)col
Displaysthe Cell at (row, col) if it's in the Matrix. Does nothing otherwise. Returns self.
drawCell:, drawCelllnside:

drawCellInside:aCell
If aCell isin the Matrix, then itsinside (usually al but abezel or border) isdrawn.
drawCell:, drawCellAt::, drawlnsideiinView: (Cell)

drawSelf:(const NXRect *)rects :(int)rectCount
Displays the Cellsin the Matrix which intersect any of the rects.

(SEL)errorAction

Returns the action sent to the target of the Matrix when the user entersan illegal value for a Cell's
setEntry Type: method and checked by Cell's isEntryAcceptable: method).

setErrorAction:, setEntryType: (Cell), isEntryAccectable: (Cell)

findCellWithTag:(int)anint
Returns the Cell which has atag matching anint, or nil if no such Cell existsin the Matrix.

setTag:at::, setTag: (ActionCell), setTag:target:action:at::,
selectCellWithTag:

font
Returns the Font used to display text in the Cells of the Matrix, or nil if the Cells don't contain tex
setFont:

free
Deallocates the storage for the Matrix and all its Cells, and returns nil.

getCellFrame:(NXRect *)theRect
at:(int)row
:(int)col

getCellFrame:at::, getintercell:

getintercell:(NXSize *)theSize
Returns self, and by reference in theSize the vertical and horizontal spacing between Cells.
getCellSize:

getNumRows:(int *)rowCount numCals:(int *)col Count
Returns self, and, by reference in rowCount and col Count, the number of rows and columnsin the

getRow:(int *)row
andCol:(int *)col
forPoint:(const NXPoint *)aPoint

Returns the Cell at aPoint in the Matrix. aPoint must be in the coordinate system of the Matrix. If
bounds of the Matrix or in an intercell spacing, getRow:andCol:forPoint: returnsnil. Also returns
col the row and column position of the Cell.

getRow:andCol:of Cell:

getRow:(int *)row
andCol:(int *)col
of Cell:aCell

Returns by reference in row and col the row and column indices for the position of aCell within th
if it's in the Matrix, nil otherwise.

getRow:andCol:forPoint:

getSelectedCells:(List *)aList

Addsto alList the Cells of the Matrix that are selected. If aListisnil, anew List object is created a
selected Cells. Your code may free the List object, but not the Cellsin the List. Returnsthe List ¢

selectedCell

highlightCellAt:(int)row
:(int)col
lit:(BOOL)flag
Highlights or unhighlights the Cell at (row, col) in the Matrix by sending highlight:inView:lit: to tl
focus must be locked on the Matrix when this message is sent. Returns self.

HIGVY IVICATITIA LUTLIAT IO 1TV 1T UVVO UL LUTULT T 1O, FTHIC UCICAUAITL TTTUVUUD TO NN T VALY TUVIVEUVL b

initFrame:mode....

initFrame:(const NXRect *)frameRect
mode:(int)aM ode
cellClass:.classld
numRows: (int)numRows
numCaols:(int)numCols

Initializes and returns the receiver, a new instance of Matrix, in frameRect with numRows rows an
aMode is set as the tracking mode for the Matrix, and can be one of four constants:

NX_ TRACKMODEJust track the mouse inside the Cells
NX_HIGHLIGHTMODE Highlight the Cell, then track, then unhighlight
NX_RADIOMODEAIIow no more than one selected Cell
NX_LISTMODEAIllow multiple selected Cells

The behavior for these constants is more fully described in the class description. The new Matrix
of class classld, which should be the return value of a class message sent to a subclass of Cell.

This method is the designated initializer for Matrices that add Cells by creating instances of a Cell
initFrame:, initFrame:mode: prototype:numRows:numcCols:

initFrame: (const NXRect *)frameRect
mode:(int)aM ode
prototype:aCell
numRows:(int)numRows
numCaols:(int)numCols

Initializes and returns the receiver, a new instance of Matrix, in frameRect with numRows rows an
aModeis set as the tracking mode for the Matrix, and can be one of four constants:

NX_ TRACKMODEJust track the mouse inside the Cells
NX_HIGHLIGHTMODE Highlight the Cell, then track, then unhighlight
NX RADIOMODEAIIow no more than one selected CeII
NX_LISTMODEAIllow multiple selected Cells

The behavior for these constants is more fully described in the class description. The new Matrix
copying aCell, which should be an instance of a subclass of Cell.

This method is the designated initializer for Matrices that add Cells by copying an instance of a Ce
initFrame:, initFrame:mode:cellClass:numRows.numCaols:

insertCol At:(int)col

Inserts a new column of Cells before col, creating new Cells with makeCellAt::. If col is greater tl
columns in the Matrix, enough columns are created to expand Matrix to be col columnswide. Thi
redraw even if autodisplay ison. Your code may need to use sizeToCells after sending this metho
fit the newly added Cells. Returns self.

TGO AATIVVY TUVY Ul LUIHTO MUTUTL TUVY, UEUALTTTY TTIGVY DUITO VVTLTT TTIGAALAD UL T TUVY 1O gt Llatl LA

the Matrix, enough rows are created to expand Matrix to be row rows high. This method doesn't r
autodisplay ison. Your code may need to use sizeToCells after sending this method to resize the |
added Cells. Returns self.

If the number of rows or columnsin the Matrix has been changed with renewRows:cols:, then mak
only if new Cells are needed (since renewRows:cols: doesn't free Cells, it just rearranges them). 1
and shrink a Matrix without repeatedly creating and freeing the Cells.

addRow, insertColAt:, sizeToCedls, makeCdllAt::

(BOOL)isBackgroundTransparent
Returns YES if the Matrix background is transparent, NO otherwise,
setBackgroundTransparent:, backgroundGray

(BOOL)isCellBackgroundTransparent
Returns YES if Cellsin the Matrix have transparent backgrounds, NO otherwise.
setCellBackgroundTransparent:, cellBackgroundGray

(BOOL)isEmpty Sel ectionEnabled
Returns YESIf it is possible to have no Cells selected in a radio-mode Matrix, NO otherwise.
setEmpty Sel ectionEnabl ed:

(BOOL)isSelectionByRect
Returns YES if arectangle of Cellsin the Matrix can be selected by dragging the cursor, NO other
setSel ectionFrom:to:anchor:lit:

makeCellAt:(int)row :(int)col

Creates anew Cell at the specified location in the Matrix. If the Matrix has a prototype Cell, it's ¢
Cell if the Matrix has a Cell class set, it allocates and initializes (with init) an instance of that class
had a Cell class set, the default class, ActionCell, isused. The new Cell's font is set to the font of
newly created Cell.

Y our code should never invoke this method directly it's used by addRow and other methods when
It may be overridden to provide more specific initialization of Cells.

addCol, addRow, insertColAt:, insertRowAt:

Y our code should never invoke this method, but you may override it to implement different mouse
does. Theresponse of the Matrix depends on its selection mode, as explained in the class descripti

In any selection mode, a mouse-down in an editable text Cell immediately enters text editing mode
any other kind of Cell sends the double-click action of the Matrix (if there is one) in addition to the

sendAction, sendDoubleAction

(intymouseDownFlags

Returns the flags (for example, NX_SHIFTMASK) that were in effect at the mouse-down event th
tracking session. Use this method if you want to access these flags, but don't want the overhead o
sendActionOn: to add NX_MOUSEDOWNMASK to every Cell to get them. This method isvalic
it's not useful if the target of the Matrix initiates another tracking loop as part of its action method
aPopUpList does, for example).

sendActionOn: (Cell)

(BOOL)performKeyEquival ent:(NXEvent *)theEvent

If thereisa Cell in the Matrix that has a key equivalent equal to the character in theEvent->data.ke
made to react as if the user had clicked it by highlighting, changing its state as appropriate, sendin
and then unhighlighting. Returns YES if a Cell in the Matrix responds to the key equivalent in the
responds.

Y our code should never send this message it is sent when the Matrix or one of its superviews s the
user presses akey. You may want to override this method to change the way key equivalents are
or to disable them in your subclass.

prototype
Returns the prototype Cell that is copied whenever anew Cell needs to be made, or nil if thereisn
setPrototype:, initFrame:mode:prototype:numRows.numCols:, makeCellAt::

putCell:newCell
at:(int)row
:(int)col

Replaces the Cell at (row, col) by newCell, and returns the old Cell at that position. Draws the nex
on.

read:(NX TypedStream *)stream
Reads the Matrix from the typed stream stream. Returns self.
write:

removeRowAt:(int)row andFree:(BOOL)flag

Removes the row at position row. If flagisYES then the Cells from that row are freed. Doesn't r
autodisplay ison. Your code should normally send sizeToCells after invoking this method to resiz
the reduced Cell count. Returns self.

removeCol At:andFree;, addRow, insertRowAt:

renewRows: (int)newRows cols:(int)newCols

Changes the number of rows and columnsin the Matrix. This method uses the same Cells as befol
only if the new sizeislarger it never frees Cells. Doesn't display the Matrix even if autodisplay is
normally send sizeToCells after invoking this method to resize the Matrix so it fits the changed Ce
method deselects al Cellsin the Matrix. Returns self.

addRow, addCol

resetCursorRects

Sends resetCursorRect:inView: to each Cell in the Matrix. Any Cell that has a cursor rectangle to
message addCursorRect:cursor: back to the Matrix. Returns self.

resetCursorRect:inView: (Cell), addCursorRect:cursor: (View)

scrollCellToVisible:(int)row :(int)col
If the Matrix isin ascrolling View, then the Matrix will scroll to make the Cell at (row, col) visibl
scrollRectToVisible: (View)

selectAll:sender

If the mode of the Matrix isnot NX_RADIOMODE, then all the Cellsin the Matrix are selected a
Matrix isredisplayed. The currently selected Cell is unaffected. Editable text Cells are not affecte

selectCell:, selectCelAt::, sdectCelWithTag:, selectText:

selectCell:aCell

If aCdll isin the Matrix, then the Cell is selected, the Matrix is redrawn, and the selected Cell isre
Cdl's text issalected. Returnsnil if the Céll is not in the Matrix.

selectCellAt::, selectCellWithTag:, selectAll:, selectText:

selectCelIWithTag: (int)anl nt
If the Matrix has a Cell whose tag is equal to anint, that Cell is selected. An editable text Cell's te

salf, or nil if thereisno such Cell.
selectCell:, selectCellAt::, selectAll:, selectText:

selectedCell
Returns the currently selected Cell, or nil if no Cell is selected. If more than one Cell is selected, r
Cell that is, the Cell that is lowest and furthest to the right in the Matrix.

getSelectedCells:

(int)selectedCol
Returns the column number of the selected Cell, or 1 if no Cells are selected. If Cellsin multiple c
this method returns the number of the last column containing a selected Cell.

selectedRow

(int)sel ectedRow
Returns the row number of the selected Cell, or 1 if no Cells are selected. If Cellsin multiple row:
method returns the number of the last row containing a selected Cell.

selectedCol

selectText:sender
If sender isthe next Text object of the Matrix (as set with setNextText:), the text in the last selecta
lowest and furthest to the right) is selected otherwise, the text of the first selectable text Cell is sele
whose text was selected, the Matrix if such a Cell wasn't found, and nil if the Cell was bound but \

wasn't selectable.
selectTextAt::, selectText: (TextField)

selectTextAt:(int)row :(int)col
Select the text of the Céll at (row, col) in the Matrix, if thereis such a Cell and itstext is selectable
whose text was selected, the Matrix if such a Cell wasn't found, and nil if the Cell was found but v

selectable.
selectText:, selectText: (TextField)

sendAction:(SEL)theAction to:theTarget

If both theAction and theTarget are non-null, sends theAction to theTarget. If theActionisnull, se
Matrix to itstarget. If theActionisnil, sendstheAction to the target of the Matrix. Returnsnil if r
to theAction could be found otherwise returns self.

Y our code shouldn't normally invoke this method. It is used by event handling methods such as C
INnRect:of View: to send an action to atarget in response to an event within the Matrix.

sendAction, sendAction:to: (Control)

sendAction:(SEL)aSel ector
to:anObject
forAllCells:(BOOL)flag

Iterates through the Cells in the Matrix, sending aSelector to anObject for each. aSelector must re
takes a single argument: the id of the current Cell in the iteration. aSelector's return value must be
begins with the Cell in the upper-left corner of the Matrix, proceeding through all entriesin the fir:
next. Returns self.

If aSelector returns NO for any Cell, this method terminates immediately and return self, without <
other Cells. If it returns Y ES, this method keeps sending the message.

This method is not invoked to send action messages to target objectsin response to mouse-down e
Instead, you can invoke it if you want to have multiple Cellsin a Matrix interact with an object. F
useit to verify thetitlesin alist of items, or to enable a series of radio buttons based on their purpt
anObject.

sendAction:to:

sendDoubleAction

If the Matrix has a double-click action, sends that message to the target of the Matrix. If not, then
returned by selectedCell) has an action, that message is sent to the selected Cell's target. If the sel
action, then the action of the Matrix is sent to the target of the Matrix. This method only sends an
Cell isenabled. Returns self.

Y our code shouldn't invoke this method it's sent in response to a double-click event in the Matrix.
override it to change the search order for an action to send.

sendAction, sendAction:to:, ignoreMultiClick: (Control)

setAction:(SEL)aSel ector

Sets the default action of the Matrix, the message sent for a Cell which has no action of itsown. T
Is always sent to its target, never to the Cell's target. Returns self.

action, setDoubleAction, setTarget:, setAction:at::, setTarget:at::

setAction:(SEL)aSel ector

If flag is YES and the Matrix isin ascrolling View, it will be automatically scrolled whenever atf
outside the Matrix after a mouse-down event within its bounds. Returns self.

setAutosizeCells:(BOOL)flag

If flag is YES, then whenever the Matrix isresized, the sizes of the Cells changes in proportion, ke
gpace constant further, this method verifies that the Cell sizes and inter-Cell spacing add up to the:
Matrix, adjusting the size of the Cells and updating the Matrix if they don't. If flagis NO, then the
changes when the Matrix isresized, with the Cell size remaining constant. Returns self.

doesAutosizeCells, update (Control)

setBackgroundColor:(NXColor)aColor

Sets the background color for the Matrix to aColor. Thiscolor is used to fill the space between Ce
any non-opague Cells. Doesn't redraw the Matrix even if autodisplay ison. Returns self.

backgroundColor, setBackgroundGray:, setCellBackgroundColor:, isAutodisplay (View)

setBackgroundGray:(float)value

Sets the background gray level for the Matrix to value. Thisgray level is used to draw the inter-Cc
behind any non-opagque Cells. If the gray level is 1, the background is transparent (that is, doesn't
the Matrix if the background gray level changes. Returns self.

backgroundGray, setBackgroundColor:, setCellBackgroundGray:, update (Control)

setBackgroundTransparent:(BOOL)flag

If flagis YES, setsthe background gray level of the Matrix to 1 (transparent). If flagisNO, set th
to NX_WHITE,

isBackgroundTransparent, setBackgroundGray:

setCellBackgroundColor:(NX Color)aColor

Sets the background color for the Cellsin the Matrix to aColor. This color is used to fill the space
Cells. Doesn't redraw the Matrix even if autodisplay ison. Returns self.

cellBackgroundColor, setCellBackgroundGray:, setBackgroundColor:, isAutodisplay (View)

setCellBackgroundGray:(float)value
Sets the background gray level for the Cellsin the Matrix to value. Thisgray level isused to draw

Yy TVl LU INZA, vVl it b .

IsCelIBackgroundTransparent, setCellBackgroundGray:

setCedl|Class:classld

Configures asingle Matrix to use instances of classld when creating new Cells. classld should be
Cell, obtained by sending the class message to either the Cell subclass object or to an instance of tt
classisthat set with the class method setCellClass: the default Cell classis ActionCell. Returns se

Y ou only need to use this method with Matrices initialized with initFrame:, since the other initializ
specify an instance-specific Cell class or Cell prototype.

setPrototype:, initFrame:

setCellSize:(const NXSize *)aSize

Sets the width and the height of each of the Cellsin the Matrix to thosein aSize. This may change
Does not redraw the Matrix, even if autodisplay is on.

getCellSize:, calcSize, isAutodisplay (View)

setDoubleAction:(SEL)aSel ector

Make aSelector the action sent to the target of the Matrix when the user double-clicksa Cell. A dc
aways sent after the appropriate single-click action the Cell's if it has one, otherwise the single-cli
Returns self.

If aMatrix has no double-click action set, then by default a double-click is treated as a single-click
click action also sets allowMultiClick: to Y ES be sure to set the Matrix to ignore multiple-clicks if
double-click action.

doubleAction, setAction:, setTarget:, ignoreMultiClick: (Control)

setEmpty SelectionEnabled:(BOOL)flag

If flag is YES, then the Matrix will allow one or zero Cells to be selected. If flag isNO, then the N
and only one Cell (not zero Cells) to be selected. This setting has effect only in NX_RADIOMOL

This method replaces the allowEmptySel: method of NEXTSTEP Release 2.
ISEmpty Sel ectionEnabled

setEnabled:(BOOL)flag

If flag is YES, enables all Cellsin the Matrix if NO, disables all Cells. If autodisplay ison, thisre
Returns self.

isEnabled, setEnabled: (ActionCell), isAutodisplay (View)

setFont:fontObject

Sets the Font for the Matrix to fontObject. Thiswill cause al current Cellsto have their Font char
well as cause all future Cellsto have that Font. If autodisplay is on, this redraws the entire Matrix.

font, isAutodisplay (View)

setlcon:(const char *)iconName
at:(int)row
:(int)col

Sets the icon of the Cell at (row, col) to the NXImage with the name iconName. If autodisplay iS¢
redrawn. Returns self.

setlcon: (ButtonCell, Cell), isAutodisplay (View)

setintercell:(const NXSize *)aSize

Sets the width and the height of the space between Cellsto those in aSize. Doesn't redraw the Ma
ison. Returns self.

getintercell:, isAutodisplay (View)

setMode:(int)aM ode
Sets the selection mode of the Matrix. aMode can be one of four constants:

NX_TRACKMODEJust track the mouse inside the Cells
NX_HIGHLIGHTMODE Highlight the Cell, then track, then unhighlight
NX_RADIOMODEAIlow no more than one selected Cell
NX_LISTMODEAIllow multiple selected Cells

The behaviors associated with these constants are explained in the class description.
mode

setNextText:anObject

Sets anObject as the object whose text is selected when the user presses Tab while editing the last
anObject should respond to the selectText: message. |f anObject also responds to both selectText:
it's sent setPrevious: with the receiving Matrix as the argument this builds a two-way connection, -
the last text Cell selects anObject's text, and pressing Shift-Tab in anObject selects the last text Ce
Returns self.

setPreviousText:, selectText:

setPrototype:aCell

Sets the prototype Cell that is copied whenever a new Cell needs to be made. aCell should be anil
Cedll. If aMatrix has aprototype Cell, it doesn't useits Cell class object to create new Cellsif you
use its Cell class, invoke this method with nil as the argument. The Matrix is considered to own tt
free it when the Matrix isitself freed be sure to make a copy of an instance that your code may use
the old prototype Cell, or nil if there wasn't one.

If you implement your own Cell subclass for use as a prototype with a Matrix, make sure your Cel
when it recelves a copy message. For example, Object's copy copies only pointers, not what they

thisiswhat it should do, sometimes not. The best way to implement copy when you subclass Cell

then copy instance variable values (for example, title strings) into your subclass instance individue
that freeing the prototype will not damage any of the copies that were made and put into the Matri:
pointers that are freed, for example).

prototype, initFrame:mode:prototype:numRows;numCaols:

setReaction:(BOOL)flag

Sent to the Matrix by the target of an action message. If flag is NO, prevents the selected Cell fror
previous state if YES, allowsit to revert to its previous state (to reflect unhighlighting, for exampl
action method if the action causes the Cell to change in such away that trying to unhighlight it wo
example, if the Cell is deleted or its visual appearance completely changed by the action method.

setScrollable:(BOOL)flag

Sets all the Cells to be scrollable, so that the text they contain scrollsto remain in view if the user 1
the Cell. Returns self.

setScrollable: (Cell)

setSel ectionByRect:(BOOL)flag

If flag is YES, arectangle of Cellsin the Matrix can be selected by dragging the cursor if flagisN
possible.

isSelectionByRect, setSelectionFrom:to:anchor:lit:

setSel ectionFrom: (int)startPos
to:(int)endPos
anchor:(int)anchorPos
lit:(BOOL)flag

Programmatically selects arange of Cells. startPos, endPos, and anchorPos are Cell positions, col
upper left Cell of the Matrix, rows before columns. For example, the third Cell in the top row wot

startPos and endPos are used to mark where the user would have pressed the mouse button and rel

Sets the state of the Cell at row row and column col to value. For radio-mode Matrices, thisisidet
except that the state can be set to any arbitrary value. If autodisplay is on, redraws the affected Ce
radio mode, the Cell is redrawn regardless of the setting of autodisplay. Returns self.

setState: (Cell), selectCellAt::, isAutodisplay (View)

setTag:(int)anint
at:(int)row
:(int)col

If there's a Cell at (row, col), setsthat Cell's tag to anint and returns self.
setTag:target:action:at::, setTag: (ActionCell)

setTag:(int)anint
target:anObject
action:(SEL)aSel ector
at:(int)row
:(int)col

If there's a Cell at (row, col), setsthat Cell's tag, target, and action to anlnt, anObject, and aSel ect
self.

setTag:.at::, setTarget.at::, setAction:at::

setTarget:anObject

Sets the target object of the Matrix. Thisis the object to which actions will be sent for Cells that d
target. Returns self.

target, action

setTarget:anObject
at:(int)row
:(int)col

If there's aCell at (row, col), setsthat Cell's target to anObject and returns self.
setTag:target:action:at::, setTarget:, setTarget: (ActionCell)

setTextDel egate:anObject

Sets the object to which the Matrix will forward messages from the field editor. These messages i
textWillEnd:, textDidEnd:endChar:, textWillChange:, and textDidChange:. Returns self.

textDelegate, Text class delegate methods

sizeTo:(float)width :(float)height

Resizes the Matrix to width and height, but doesn't redraw it. If the Matrix has been set to autosiz
resized proportionally to the change in size of the Matrix, keeping the inter-Cell spacing constant i
autosize, then the inter-Cell spacing is adjusted, and the Cells remain the same size. If editingisg
it's aborted after the Matrix isredrawn, the text is reselected to alow editing to continue. Returns

sizeToCells, sizeToFit, setAutosizeCells:, selectText:

sizeToCells

Changes the width and the height of the Matrix frame so that it exactly contains the Cells. Does
Returns self.

sizeTo::, sizeToFit

sizeToFit

Changes the Cell size to accommodate the Cell with the largest contents in the Matrix, then change
height of the Matrix frame so that it exactly containsthe Cells. Doesn't redraw the Matrix. Returt

sizeTo::, sizeToCells, calcCelSize: (Cell)

target

Returns the target of the Matrix. This object receives action messages for Cells that don't have the
and receives all double-click action messages.

setTarget:, setTarget:at::, action

textDelegate

Returns the object that receives messages passed on by the Matrix from the field editor. Thefield
the TextField class specification, is the Text object used to draw text in all Cellsin a Window.

setTextDelegate:

textDidChange:textObject

Passes this message on, with the same argument, to the Text delegate of the Matrix. Override this
your subclass of Matrix to act asthe field editor's delegate. Returns self.

textDidChange: (Text class delegate method)

Y ou may want to override this method to interpret more characters (such as the Enter or Escape ke
sendAction, setNextText:, setPreviousText:, textDidEnd:endChar: (Text class delegate method)

textDidGetK eys:textObject isEmpty:(BOOL)flag

Passes this message on, with the same argument, to the Text delegate of the Matrix. Override this
your subclass of Matrix to act asthe field editor's delegate. Returns self.

textDidGetK eys.isEmpty: (Text class delegate method)

(BOOL)textWill Change:textObject

Invoked automatically during editing to determineif it is OK to edit the selected text. This metho
Cell is editable and sends textWillChange: to the TextField's Text delegate to allow it to respond.
isn't editable NO if thetext is editable but the Text delegate doesn't respond to textWillChange: tf
value for textWillChange: if the Text delegate responds to it.

setEditable: (Cell), setTextDelegate:, textWillChange: (Text class delegate method)

(BOOL)textWill End:textObject

Invoked automatically before text editing ends. Checks the text by sending isEntryAcceptable: to
the entry isn't acceptable, sends the error action to the target. This method is then passed on to the
same argument. The return value is based on whether the entry is acceptable and on the return val
delegate. If the delegate responds to textWillEnd:, then the return value is NO only if the entry is:
delegate returns NO. Otherwise the return value is Y ES to indicate that editing shouldn't end, and
abeep (to indicate an error in the entry).

iIsEntryAcceptable: (Cell), setTextDelegate:, textWillEnd: (Text class delegate method)

validateSize:(BOOL)flag

If flag is YES, then the size information in the Matrix is assumed correct. If flagis NO, then calcS
before any further drawing is done. Returns self.

calcSize

write:(NXTypedStream *)stream
Writes the receiving Matrix to the typed stream stream. Returns self.
read:

