
init
initCount:elementSize:description:

Copying and freeing Storage objects
copyFromZone:
free

Getting, adding, and removing elements
addElement:
insertElement:at:
removeElementAt:



removeLastElement
replaceElementAt:with:
empty
elementAt:

Comparing Storage objects isEqual:
Managing the storage capacity and type

count
description
setAvailableCapacity:
setNumSlots:

Archiving read:
write:

addElement:(void *)anElement

Adds anElement at the end of the Storage array and returns self. The size of the array is increased if necessary.

insertElement:at:

copyFromZone:(NXZone *)zone

Returns a new Storage object containing the same data as the receiver. The data and the object are both copied, and
memory for both is taken from zone. However, the description string is not copied the two objects share the same string.

copy (Object)

(unsigned int)count

Returns the number of elements currently in the Storage array.

setNumSlots:

(const char *)description

Returns the string encoding the data type of elements in the Storage array.

initCount:elementSize:description:

(void *)elementAt:(unsigned int)index

Returns a pointer to the element at index in the Storage array. If no element is stored at index (index is beyond the end of
the array), a NULL pointer is returned.

Before using the pointer that's returned, you must convert it into the appropriate type by a cast. The pointer can be used
either to read the element at index or to alter it.

replaceElementAt:with:, insertElement:at:

empty

Empties the Storage array of all its elements and returns self. The current capacity of the array remains unchanged
nothing is deallocated.



free

free

Frees the Storage object and all the elements it contains. Pointers stored in the object will be freed, but the data they point
to won't be (unless the data is also stored in the object). You might want to free the data before freeing the Storage
object. The description string isn't freed.

empty

init

Initializes the Storage object so that it's ready to store object ids. The initial capacity of the array isn't set. In general, it's
better to store object ids in a List object. Returns self.

initCount:elementSize:description:, initCount: (List)

initCount:(unsigned int)count
elementSize:(unsigned int)sizeInBytes
description:(const char *)string

Initializes the Storage object so that it has count elements. Each element is of size sizeInBytes and of the type described
by string. Memory for all the elements is set to 0. Returns self.

If string is NULL, the object won't be archivable. Once set, the description string should never be modified.

This method is the designated initializer for the class. It's used to initialize Storage objects immediately after they have
been allocated it should never be used to reinitialize a Storage object that's already been placed in use.

insertElement:(void *)anElement at:(unsigned int)index

Puts anElement in the Storage array at index. All elements between index and the last element are shifted to make room.
The size of the array is increased if necessary. Returns self.

addElement:, setNumSlots:

(BOOL)isEqual:anObject

Compares the receiver with anObject, and returns YES if they're the same and NO if they're not. Two Storage objects
are considered to be the same if they have the same number of elements and the elements at each position in the array
match.

read:(NXTypedStream *)stream

Reads the Storage object and the data it stores from the typed stream stream. Where an archived string is represented by a
`%' descriptor, the NXUniqueString() function is called to make sure that the string is unique within the new context.

write:

removeElementAt:(unsigned int)index

Removes the element located at index from the Storage array and returns self. All elements between index and the last
element are shifted to close the gap.



removeLastElement

removeLastElement

Removes the last element from the Storage array and returns self.

removeElementAt:

replaceElementAt:(unsigned int)index with:(void *)anElement

Replaces the data at index with the data pointed to by anElement. However, if no element is stored at index (index is
beyond the end of the array), nothing is replaced. Returns self.

elementAt:, insertElement:at:

setAvailableCapacity:(unsigned int)numSlots

Sets the storage capacity of the array to at least numSlots elements and returns self. If the array already contains more
than numSlots elements, its capacity is left unchanged and nil is returned.

setNumSlots:, count

setNumSlots:(unsigned int)numSlots

Sets the number of elements in the Storage array to numSlots and returns self. If numSlots is greater than the current
number of elements in the array (the value returned by count), the new slots will be filled with zeros. If numSlots is less
than the current number of elements in the array, access to all elements with indices equal to or greater than numSlots will
be lost.

If necessary, this method increases the capacity of the storage array so there's room for at least numSlots elements.

setAvailableCapacity:, count

write:(NXTypedStream *)stream

Writes the Storage object and its data to the typed stream stream.

read:


