
init
initFrame:
initFrame:icon:tag:target:action:key:enabled:
initFrame:title:tag:target:action:key:enabled:

Setting the Button type setType:
Setting the state setState:

state
Setting the repeat interval setPeriodicDelay:andInterval:

getPeriodicDelay:andInterval:
Setting the titles setTitle:

setTitleNoCopy:
title
setAltTitle:
altTitle

Setting the icons setIcon:
setIcon:position:
icon
setAltIcon:
altIcon
setImage:
image
setAltImage:
altImage
setIconPosition:
iconPosition

Modifying graphic attributes setTransparent:
isTransparent
setBordered:
isBordered

Displaying the Button display
highlight:

Setting the key equivalent setKeyEquivalent:



keyEquivalent
Handling events and action messages

acceptsFirstMouse
performClick:
performKeyEquivalent:

Setting the Sound setSound:
sound

(BOOL)acceptsFirstMouse

Returns YES. Buttons always accept the mouse-down event that activates a Window, regardless of whether the Button is
enabled.

(const char *)altIcon

Returns the name of the NXImage that appears on the Button when it's in its alternate state, or NULL if there is no
alternate icon or the NXImage has no name. This NXImage is displayed only for Buttons that highlight or show their
alternate state by displaying their alternate contents (as opposed to simply lighting or pushing in).

setAltIcon:, setIconPosition:, altImage, icon, image, setType:

altImage

Returns the NXImage that appears on the Button when it's in its alternate state, or nil if there is no alternate NXImage.
This Button only displays its alternate NXImage if it highlights or shows its alternate state by displaying its alternate
contents.

setAltImage:, setIconPosition:, altIcon, image, icon, setType:

(const char *)altTitle

Returns the string that appears on the Button when it's in its alternate state, or NULL if there isn't one. The alternate title
is only displayed if the Button highlights or shows its alternate state by displaying its alternate contents.

setAltTitle:, title, setType:

display

Displays the Button. This method is overridden from View so that displayFromOpaqueAncestor::: is invoked if the
Button is not opaque. Returns self.

isOpaque (Cell), isTransparent, setTransparent:



getPeriodicDelay:(float *)delay andInterval:(float *)interval

Returns self, and by reference the delay and interval periods for a continuous Button. delay is the amount of time (in
seconds) that a continuous Button will pause before starting to periodically send action messages to the target object.
interval is the amount of time (also in seconds) between those messages.

setContinuous: (Control), setPeriodicDelay:andInterval:

highlight:(BOOL)flag

If the highlight state of the cell is not equal to flag, the Button is highlighted and the highlight state of the cell is set to
flag. Highlighting may involve the Button appearing ªpushed inº to the screen, displaying its alternate title or icon, or
lighting. This method issues a flushWindow message after highlighting the Button. Returns self.

setType:

(const char *)icon

Returns the name of the NXImage that appears on the Button when it's in its normal state, or NULL if there is no such
NXImage or the NXImage doesn't have a name. A Button that doesn't display its alternate contents to highlight or show
its alternate state will always display its normal icon.

setIcon:, setIcon:position:, setIconPosition:, image, altIcon, altImage, setType:

(int)iconPosition

Returns the position of the icon (if any) on the Button. See setIconPosition: for the list of positions.

setIconPosition:, setIcon:position:

image

Returns the NXImage that appears on the Button when it's in its normal state, or nil if there is no such NXImage. This
NXImage is always displayed on a Button that doesn't change its contents when highlighting or showing its alternate
state.

setImage:, setIconPosition:, icon, altImage, altIcon, setType:

init

Initializes and returns the receiver, a new Button instance, with a frame origin of (0, 0) and width and height of 50 units
each. The new instance is enabled and displays the default title ªButtonº centered in its frame, but has no icon, tag,
target, action, or key equivalent associated with it. The new Button is bordered, and is of type
NX_MOMENTARYPUSH. One of the more specific initializers is usually used to initialize a Button.

initFrame:title:tag:target:action:key:enabled:, initFrame:icon:tag:target:action:key:enabled:, initFrame:, setType:

initFrame:(const NXRect *)frameRect

Initializes and returns the receiver, a new Button instance, with default parameters in the given frame. The new instance
is enabled and displays the default title ªButtonº centered in its frame, but has no icon, tag, target, action, or key
equivalent. The new Button is bordered, and is of type NX_MOMENTARYPUSH. One of the more specific initializers
is usually used to initialize a Button.

initFrame:title:tag:target:action:key:enabled:, initFrame:icon:tag:target:action:key:enabled:, initFrame:, setType:



initFrame:(const NXRect *)frameRect
icon:(const char *)iconName
tag:(int)anInt
target:anObject
action:(SEL)aSelector
key:(unsigned short)charCode
enabled:(BOOL)flag

Initializes and returns the receiver, a new Button instance that displays an icon. frameRect is the rectangle defining the
Button's position and size in its superview. iconName is the name of an NXImage that will be used for the Button's icon.
anInt is set as the Button's tag. anObject is set as the target, which will be sent aSelector when the Button is clicked or
pressed. charCode is the new Button's key equivalent. flag determines whether the Button is enabled or not. The new
Button is bordered, and is of type NX_MOMENTARYPUSH.

This method is the designated initializer for Buttons that display icons. A Button that displays an icon can be configured
to also display a title with the setTitle: and setIconPosition: methods.

setTitle:, setIconPosition:, setType:

initFrame:(const NXRect *)frameRect
title:(const char *)aString
tag:(int)anInt
target:anObject
action:(SEL)aSelector
key:(unsigned short)charCode
enabled:(BOOL)flag

Initializes and returns the receiver, a new Button instance that displays a text string. The arguments and operation of this
method are identical to those of initFrame:icon:tag:target:action:key:enabled:, except that aString is the title that the
Button will display instead of the name of an icon. The new Button is bordered, and is of type
NX_MOMENTARYPUSH.

This method is the designated initializer for Buttons that display text. A Button that displays an icon can be configured to
also display an icon with the setIcon:position: method, or a combination of setIcon: or setImage: and setIconPosition:.

setIcon:, setImage:, setIconPosition:, setType:

(BOOL)isBordered

Returns YES if the Button has a border, NO otherwise. A Button's border isn't the single line of most other Controls'
borders instead, it's a raised bezel (ªbezelº usually refers to a depressed bezel, as seen on FormCells, for example). You
shouldn't use the setBezeled: method with a Button.

setBordered:

(BOOL)isTransparent

Returns YES if the Button is transparent, NO otherwise. A transparent Button never draws itself, but it receives mouse-
down events and tracks the mouse properly.

setTransparent:

(unsigned short)keyEquivalent

Returns the key equivalent character of the Button, or 0 if one hasn't been defined.

setKeyEquivalent:, performKeyEquivalent:



performClick:sender

Highlights the Button, sends its action message to the target object, then unhighlights the Button. Invoke this method
when you want the Button to behave exactly as if the user had clicked it with the mouse.

performKeyEquivalent:

(BOOL)performKeyEquivalent:(NXEvent *)theEvent

If the character in theEvent matches the Button's key equivalent, simulates the user clicking the Button by sending
performClick: to self, and returns YES. Otherwise, does nothing and returns NO.

The Button won't perform the key equivalent if there's a modal panel present that the Button isn't on.

keyEquivalent, performClick:

setAltIcon:(const char *)iconName

Sets the Button's alternate icon by name iconName is the name of the NXImage to be displayed. Doesn't display the
Button even if autodisplay is on. Returns self.

A Button's alternate icon is only displayed if the Button highlights or shows its alternate state by changing its contents.

altIcon, setIconPosition:, setAltImage:, setIcon:, setImage:, + findImageNamed: (NXImage), setType:,
setAutodisplay: (View)

setAltImage:altImage

Sets the Button's alternate icon by id altImage is the NXImage to be displayed. Returns self.

A Button displays its alternate NXImage only if it highlights or displays its alternate state by using its alternate contents.

altImage, setIconPosition:, setAltIcon:, setImage:, setIcon:, setType:

setAltTitle:(const char *)aString

Sets the title that the Button displays in its alternate state to aString. Returns self.

The alternate title is shown only if the Button changes its contents when highlighting or displaying its alternate state.

altTitle:, setTitle:, setType:

setBordered:(BOOL)flag

If flag is YES, the Button displays a border if NO, the Button doesn't display a border. A Button's border is not the
single line or most other Controls' borders instead, it's a raised bezel (ªbezelº usually refers to a depressed bezel, as seen
on FormCells, for example). This method redraws the Button if the bordered state changes. Returns self.

isBordered

setIcon:(const char *)iconName

Sets the Button's icon by name iconName is the name of the NXImage to be displayed. Redraws the Button's inside and
returns self.



A Button's icon is displayed when the Button is in its normal state, or always if the Button doesn't highlight or show state
by changing its contents.

setIcon:position:, icon, setIconPosition:, setImage:, setAltIcon:, setAltImage:, + findImageNamed: (NXImage),
setType:

setIcon:(const char *)iconName position:(int)aPosition

Combines setIcon: and setIconPosition: into one message. Returns self.

setIcon:, setIconPosition:

setIconPosition:(int)aPosition

Sets the position of the icon when a Button simultaneously displays both text and an icon. aPosition can be one of the
following constants:

NX_TITLEONLYtitle only (no icon on the Button)
NX_ICONONLYicon only (no text on the Button)
NX_ICONLEFTicon is to the left of the text
NX_ICONRIGHTicon is to the right of the text
NX_ICONBELOWicon is below the text
NX_ICONABOVEicon is above the text
NX_ICONOVERLAPSicon and text overlap (text drawn over icon)

If the position is top or bottom, the alignment of the text will be changed to NX_CENTERED. This behavior can be
overridden with a subsequent setAlignment: method. Redraws the Button's inside and returns self.

iconPosition, setIcon:position:, setAlignment: (Control)

setImage:image

Sets the Button's icon by id image is the NXImage to be displayed. Redraws the Button's inside and returns self.

A Button's icon is displayed when the Button is in its normal state, or all the time for a Button that doesn't change its
contents when highlighting or displaying its alternate state.

image, setIconPosition:, setIcon:, setAltImage:, setAltIcon:, setType:

setKeyEquivalent:(unsigned short)charCode

Sets the key equivalent character of the Button, and redraws the Button's inside if there is no icon or alternate icon set for
the Button. The key equivalent isn't displayed if the icon position is set to NX_TITLEONLY, NX_ICONONLY or
NX_ICONOVERLAPS that is, the Button must display both its title and its ªiconº (the key equivalent in this case), and
they must not overlap. Returns self.

To display a key equivalent on a Button, set the image and alternate image to nil, then set the key equivalent, and then set
the icon position.

keyEquivalent, setIconPosition:, performKeyEquivalent:, setImage:, setAltImage:

setPeriodicDelay:(float)delay andInterval:(float)interval

Sets the message delay and interval for the Button. These two values are used if the Button is configured (by a
setContinuous: message) to continuously send the action message to the target object while tracking the mouse. delay is
the amount of time (in seconds) that a continuous Button will pause before starting to periodically send action messages
to the target object. interval is the amount of time (also in seconds) between those messages. Returns self.

The maximum value allowed for both the delay and the interval is 60.0 seconds.



getPeriodicDelay:andInterval:, setContinuous (Control)

setSound:soundObject

Sets the Sound played when the Button is pressed, and whenever the cursor re-enters the Button while tracking. Returns
self.

sound

setState:(int)anInt

Sets the Button's state to anInt and redraws the Button. 0 is the normal or ªoffº state, and any nonzero number is the
alternate or ªonº state. Returns self.

state

setTitle:(const char *)aString

Sets the title displayed by the Button when in its normal state to aString. This title is always shown on Buttons that don't
use their alternate contents when highighting or displaying their alternate state. Redraws the Button's inside and returns
self.

setTitleNoCopy:, title, setAltTitle:, setType:

setTitleNoCopy:(const char *)aString

Similar to setTitle: but doesn't make a copy of aString. Returns self.

setTitle:

setTransparent:(BOOL)flag

Sets whether the Button is transparent, and redraws the Button if flag is NO. Returns self.

A transparent Button tracks the mouse and sends its action, but doesn't draw. A transparent Button is useful for
sensitizing an area on the screen so that an action gets sent to a target when the area receives a mouse click.

isTransparent

setType:(int)aType

Sets the way the Button highlights while pressed, and how it shows its state. Redraws the Button and returns self. The
types available are for the most common Button types, which are also accessible in Interface Builder you can configure
different behavior with ButtonCell's setHighlightsBy: and setShowsStateBy: methods. aType can be one of seven
constants:

NX_MOMENTARYPUSH (the default): While the Button is held down it's shown as lit, and also ªpushed inº to the
screen if the Button is bordered. This type of Button is best for simply triggering actions, as it doesn't show its state it
always displays its normal icon or title. This option is called ªMomentary Pushº in Interface Builder's Button
Inspector.

NX_MOMENTARYCHANGE: While the Button is pressed, the alternate icon or alternate title is displayed. This
type always displays its normal title or icon (that is, it doesn't display its state). The miniaturize button in a window's
title bar is a good example of this type of Button. This option is called ªMomentary Changeº in Interface Builder's
Button Inspector.



NX_PUSHONPUSHOFF: Holding the Button down causes it to be shown as lit, and also ªpushed inº to the screen if
the Button is bordered. The Button displays itself as lit while in its alternate state. This option is called ªPush On/
Push Offº in Interface Builder's Button Inspector.

NX_ONOFF: Highlights while pressed by lighting, and stays lit in its alternate state. This option is called ªOn/ Offº
in Interface Builder's Button Inspector.

NX_TOGGLE: Highlighting is performed by changing to the alternate title or icon ªpushing in.º The alternate state
is shown by displaying the alternate title or icon. This option is called ªToggleº in Interface Builder's Button
Inspector.

NX_SWITCH: A variant of NX_TOGGLE that has no border, and that has a default icon called ªswitchº and an
alternate icon called ªswitchHº (these are identical to the ªNXswitchº and ªNXswitchHº system bitmaps). This type
of Button is available as a separate palette item in Interface Builder.

NX_RADIOBUTTON: Like NX_SWITCH, but the default icon is ªradioº and the alternate icon is ªradioHº
(identical to the ªNXradioº and ªNXradioHº system bitmaps). This type of Button is available as a separate palette
item in Interface Builder.

There is no constant for Interface Builder's ªMomentary Lightº type you can set this programmatically as follows:

setType: (ButtonCell), setHighlightsBy: (ButtonCell), setShowsStateBy: (ButtonCell)

sound

Returns the Sound played when the Button is pressed, and whenever the cursor re-enters the Button while tracking.

setSound:

(int)state

Returns the Button's state, either 0 for normal or ªoff, º or 1 for alternate or ªon. º

setState:

(const char *)title

Returns the title displayed on the Button when it's in its normal state, or always if the Button doesn't use its alternate
contents for highlighting or displaying the alternate state. Returns NULL if there is no title.

setTitle:, altTitle, setType:


