

boolValueForParameter:
floatValueForParameter:
getParameters:count:
getValues:count:forParameter:
intValueForParameter:

isParameterPresent:
removeParameter:
setParameter:toBool:
setParameter:toFloat:
setParameter:toInt:

init
initOnHost:
free

Using a separate thread+ replyThread
+ isUsingSeparateThread
+ setThreadThreshold:
+ setUseSeparateThread:
+ threadThreshold

Examining ports devicePort
+ replyPort
streamOwnerPort

Identifying the host computer host
Configuring the object isReserved

setReserved:
setParameters:
parameters
name
+ setTimeout:
+ timeout

Retrieving peak amplitudes getPeakLeft:right:
clipCount

Setting up streams acceptsContinuousStreamSamplingRates
getStreamChannelCountsLimit:
getStreamSamplingRates:low:high:
getStreamSamplingRates:count:
getStreamDataEncodings:count:

Controlling streams abortStreams:
pauseStreams:
resumeStreams:

Handling errors lastError
+ textForError:

lastError

abortStreams:sender

Aborts all streams that are connected to the NXSoundDevice. You should check the return value of lastError after
invoking this method to see if an error occurred. Returns self.

abort: (NXSoundStream), lastError

(BOOL)acceptsContinuousStreamSamplingRates

Returns YES if the underlying hardware accepts sampling rate values that are continuous (in other words, that are non-
discrete). You use this method to determine the type of sampling rate values that you can set in a NXSoundParameters
object that's applied to an NXSoundStream that's attached to this NXSoundDevice.

getStreamSamplingRates:count:, getStreamSamplingRatesLow:high:

(unsigned int)clipCount

Returns the number of sample frames that have been clipped since the activation of the oldest connected stream. Clipping
occurs when the amplitude of a sample is great than the greatest representable value for this device. The clip count is
reset to 0 when the last stream is deactivated.

getPeakLeft:right:

(port_t)devicePort

Returns the port that the NXSoundDevice uses to communicate with the sound driver. You can't set this port yourself,
and you normally don't need to note its identity this method is provided so you can pass the port as an argument to a
function such as port_status().

free

Deallocates the NXSoundDevice's ports and frees the object. If the NXSoundDevice had reserved the underlying sound
device, it's made available again.

setReserved:

(unsigned int)getStreamChannelCountLimit

Returns the maximum number of channels of sound data that are accepted by the underlying hardware. To play a sound,
you must set the channel count of any NXSoundStream object that's attached to this NXSoundDevice to a value not
greater than that returned by this method.

getStreamSamplingRates:count:, getStreamSamplingRatesLow:high:, getStreamDataEncodings:count:

(NXSoundDeviceError)getStreamDataEncodings:
(const NXSoundParameterTag **)encodings
count:(unsigned int *)numEncodings

Returns, by reference in encodings, a list of the data encoding values that are accepted by the underlying hardware. The
encodings are represented by paramater value tags the number of encodings in the list is returned by reference in
numEncodings. You then set an NXSoundStream object's encoding to a value plucked from the list.

getStreamChannelCountLimit:, getStreamSamplingRatesLow:high:, getStreamSamplingRates:count:

(NXSoundDeviceError)getStreamSamplingRates:(const float **)rates
count:(unsigned int *)numRates

Returns, by reference in rates, a list of the discrete sampling rates that are accepted by the underlying hardware. The
number of sampling rates in the list is returned by reference in numRates. You then set an NXSoundStream object's
sampling rate to a value plucked from the list. You invoke this method only if the NXSoundDevice doesn't accept

continuous sampling rate values (as determined by the acceptsContinuousStreamSamplingRates method). If it accepts
continuous values, use the getStreamSamplingRatesLow:high: method instead of this one.

acceptsContinuousStreamSamplingRates, getStreamSamplingRatesLow:high:, getStreamChannelCountLimit:,
getStreamDataEncodings:count:

(NXSoundDeviceError)getStreamSamplingRatesLow:(float *)lowRate
high:(float *)highRate

Returns, by reference, the lowest and highest sampling rates that are accepted by the underlying hardware. You then set
an NXSoundStream object's sampling rate to a value in the returned range. You invoke this method only if the
NXSoundDevice accepts continuous sampling rate values (as determined by the acceptsContinuousStreamSamplingRates
method). If it only accepts discrete values, use the getStreamSamplingRates:count: method to return this information.

acceptsContinuousStreamSamplingRates, getStreamSamplingRates:count:, getStreamChannelCountLimit:,
getStreamDataEncodings:count:

(NXSoundDeviceError)getPeakLeft:(float *)leftAmp right:(float *)rightAmp

Returns the most recent peak amplitudes detected by the NXSoundDevice's underlying sound device. For stereo sounds,
peaks are detected independently for the two channels and returned by reference in leftAmp and rightAmp. For
monophonic sounds, the same value is returned in both arguments. The peak values returned in the arguments are
normalized to fall within (0.0, 1.0), where 0.0 is no amplitude and 1.0 is the maximum amplitude supported by the data
format. See the class description for more information on peak detection. An error code is returned.

clipCount (NXSoundOut)

(const char *)host

Returns the name of the computer on which the NXSoundDevice was initialized, or nil if it's the local host.

initOnHost:

init

Initializes the NXSoundDevice on the machine specified by the NXHost default (normally the local host). Returns nil if the
sound resources cannot be accessed otherwise returns self.

initOnHost:

initOnHost:(const char *)hostName

Initializes the NXSoundDevice on the machine named hostName. Returns nil if the sound resources cannot be accessed
otherwise returns self.

init

(BOOL)isReserved

Returns YES if the device is reserved for exclusive access by this NXSoundDevice otherwise, returns NO (the default).

setReserved:

(NXSoundDeviceError)lastError

Returns the most recent sound device error associated with the NXSoundDevice. Many methods don't explicitly return
an NXSoundDeviceError, but set an internal variable, which can be retrieved with this method. To retrieve localized text
that describes the error, pass the value returned by this method to the textForError: class method.

(const char *)name

Returns the name of the NXSoundDevice's underlying device, as registered with the network.

(id <NXSoundParameters>)parameters

Returns an object that contains the NXSoundDevice's parameter settings. The parameters take default value settings in a
freshly initialized NXSoundDeivce.

setParameters:

pauseStreams:sender

Pauses all streams that are connected to the NXSoundDevice. You should check the return value of lastError after
invoking this method to see if an error occurred. Returns self.

pause: (NXSoundStream), lastError

resumeStreams:sender

Resumes all streams that are connected to the NXSoundDevice. You should check the return value of lastError after
invoking this method to see if an error occurred. Returns self.

resume: (NXSoundStream), lastError

(NXSoundDeviceError)setParameters:(id <NXSoundParameters>)parameterObject

Sets the NXSoundDevice's parameter values to those specified in the argument.

parameters

(NXSoundDeviceError)setReserved:(BOOL)flag

If flag is YES, reserves the underlying device for exclusive access by the NXSoundDevice (even if it's currently reserved
by another NXSoundDeviceÐthe current owner is forced to yield). No other application, nor any other NXSoundDevice
within your application, will be able access the device while it's reserved. Any currently active streams not connected to
this NXSoundDevice instance are aborted. If flag is NO the device is made available to all NXSoundDevices.
NXSoundDevices are unreserved by default. An error code is returned.

isReserved, soundStreamDidAbort:deviceReserved: (NXSoundStream delegate)

(port_t)streamOwnerPort

Returns the port that the NXSoundDevice uses to connect to the sound driver. You can't set this port yourself, and you
normally don't need to note its identity this method is provided in case you want to pass the port as an argument to a
function such as port_status().

