


initFrame:
free

Setting the Control's Cell+ setCellClass:
setCell:
cell

Enabling and disabling the Control
isEnabled
setEnabled:

Identifying the selected Cell selectedCell
selectedTag

Setting the Control's value setFloatValue:
floatValue
setDoubleValue:
doubleValue
setIntValue:
intValue
setStringValue:
setStringValueNoCopy:
setStringValueNoCopy:shouldFree:
stringValue

Interacting with other Controls takeDoubleValueFrom:
takeFloatValueFrom:
takeIntValueFrom:
takeStringValueFrom:

Formatting text setAlignment:
alignment
setFont:
font
setFloatingPointFormat:left:right:

Managing the field editor abortEditing
currentEditor
validateEditing

Managing the cursor resetCursorRects
Resizing the Control calcSize

sizeTo::
sizeToFit

Displaying the Control and Cell drawCell:
drawCellInside:
drawSelf::
selectCell:
update
updateCell:
updateCellInside:

Target and action setAction:



action
setTarget:
target
setContinuous:
isContinuous
sendAction:to:
sendActionOn:

Assigning a tag setTag:
tag

Tracking the mouse ignoreMultiClick:
mouseDown:
mouseDownFlags

Archiving read:
write:

abortEditing

Terminates and discards any editing of text displayed by the receiving Control. Returns self, or nil if no editing was
going on in the receiving Control. This method doesn't redisplay the old value of the Control.

endEditingFor: (Window), validateEditing

(SEL)action

Returns the action message sent by the Control's Cell, or the default action message for a Control with multiple Cells
(such as a Matrix or Form). To retrieve the action message, this method sends an action message to the Cell. For
Controls with multiple Cells, it's better to get the action message for a particular Cell using:

setAction:, target, sendAction:to:

(int)alignment

Returns the alignment mode of the text in the Control's Cell. The return value can be one of three constants:
NX_LEFTALIGNED, NX_CENTERED or NX_RIGHTALIGNED.

setAlignment:

calcSize

Recomputes any internal sizing information for the Control, if necessary, by invoking its Cell's calcDrawInfo: method.
This method doesn't actually draw. It can be used for more sophisticated sizing operations as well (for example, Form).
calcSize is automatically invoked whenever the Control is displayed and something has changed you need never invoke it.
Returns self.

calcSize (Matrix, Form), sizeToFit



cell

Returns the Control's Cell. You should use selectedCell in the action method of the target of the Control, since a Control
may have multiple Cells.

selectedCell

currentEditor

If the receiving Control is being edited (that is, has a Text object acting as its editor, and is the first responder in its
Window), this method returns the Text object being used to perform that editing. If the Control isn't being edited, this
method returns nil.

abortEditing, validateEditing

(double)doubleValue

Returns the value of the Control's selected Cell as a double-precision floating point number. If the Control contains many
cells (for example, Matrix), then the value of the currently selectedCell is returned. If the Control is in the process of
editing the affected Cell, then validateEditing is invoked before the value is extracted and returned.

setDoubleValue:, floatValue, intValue, stringValue

drawCell:aCell

If aCell is the cell used to implement this Control, then the Control is displayed. This method is provided primarily to
support a consistent set of methods between Controls with single and multiple Cells, since a Control with multiple Cells
needs to be able to draw a single Cell at a time. Returns self.

updateCell:, drawCellInside:, updateCellInside:,
drawCell: (Matrix)

drawCellInside:aCell

Draws the inside of a Control (the area within a bezel or border). This method invokes Cell's drawInside:inView: method.
drawCellInside: is used by setStringValue: and similar content-setting methods to provide a minimal update of the
Control when its value is changed. Returns self.

drawCell:, drawInside:inView: (Cell), drawCellInside: (Matrix), updateCellInside:

drawSelf:(const NXRect *)rects :(int)rectCount

Draws the Control. This method invokes the drawSelf:inView: method of the Control's Cell. You must override this
method if you have a Control with multiple Cells. Returns self.

drawSelf:inView: (Cell)

(float)floatValue

Returns the value of the Control's selected Cell as a single-precision floating point number. See doubleValue for more
details.

setFloatValue:, doubleValue, intValue, stringValue



font

Returns the Font object used to draw the text (if any) of the Control's Cell.

setFont:

free

Frees the memory used by the Control and its Cells. Aborts editing if the text of the Control was currently being edited.
Returns nil.

free (View)

ignoreMultiClick:(BOOL)flag

Sets the Control to ignore multiple clicks if flag is YES. By default, double-clicks (and higher order clicks) are treated
the same as single clicks. You can use this method to ªdebounceº a Control, so that it won't inadvertently send its action
message twice when double-clicked. Returns self.

initFrame:(const NXRect *)frameRect

Initializes and returns the receiver, a new instance of Control, by setting the value pointed to by frameRect as its frame
rectangle. Makes the new instance an opaque View. Since Control is an abstract class, messages to perform this method
should appear only in subclass methods that is, there should always be a more specific designated initializer for the
subclass. initFrame: is the designated initializer for the Control class.

(int)intValue

Returns the value of the Control's selected Cell as an integer (see doubleValue for more details).

setIntValue:, doubleValue, floatValue, stringValue

(BOOL)isContinuous

Returns YES if the Control's Cell continuously sends its action message to its target during mouse tracking.

setContinuous:

(BOOL)isEnabled

Returns YES if the Control is enabled, NO otherwise.

setEnabled:

mouseDown:(NXEvent *)theEvent

Highlights the Control, and sends trackMouse:inRect:ofView: to the Control's Cell (or whichever Cell the mouse event
occured in if the Control has multiple Cells). This method is invoked when the mouse button goes down while the cursor
is within the bounds of the Control. The Control's Cell tracks the cursor until it goes outside the bounds, at which time
the Control is unhighlighted. If the cursor goes back into the bounds, then the Control highlights again and its Cell starts
tracking again. This behavior continues until the mouse button goes up. If it goes up with the cursor in the Control, the



state of the Control is changed, and the action message is sent to the target with sendAction:to:. If the mouse button goes
up with the cursor outside the Control, no action message is sent. Returns self.

trackMouse:inRect:ofView: (Cell), sendAction:to:

(int)mouseDownFlags

Returns the event flags (for example, NX_SHIFTMASK) that were in effect at the beginning of mouse tracking. The
flags are valid only in the action method invoked upon the Control's target.

mouseDownFlags (Cell), sendAction:to:

read:(NXTypedStream *)stream

Reads the Control from the typed stream stream. Returns self.

resetCursorRects

Reestablishes the cursor rectangles for the Control's Cell (or Cells). If the Cell displays text, and the text in the Cell is
selectable, then resetCursorRect:inView: is sent to the Cell. resetCursorRect:inView: in turn, sends addCursorRect:
cursor: back to the Control, so that the cursor will change to an I-beam when it enters the Cell's rectangle. Returns self.

resetCursorRect:inView: (Cell), addCursorRect:cursor: (View)

selectCell:aCell

If aCell is a Cell of the receiving Control and is unselected, this method selects aCell and redraws the Control. Returns
self.

selectedCell

Returns the Control's selected Cell. The target of the Control should use this method when it wants to get the Cell of the
sending Control. Note that even though the cell method will return the same value for Controls with only a single Cell,
it's strongly suggested that this method be used since it will work for Controls with either a single or multiple Cells.

sendAction:to:, selectedCell (Matrix)

(int)selectedTag

Returns the tag of the Control's selected Cell. This is equivalent to:

1 if there is no selected Cell. The Cell's tag can be set with ActionCell's setTag: method. You should only use the
setTag: and tag methods in conjunction with findViewWithTag:. When you set the tag of a Control with a single Cell in
Interface Builder, it sets both the tags of both Control and Cell as a convenience.

sendAction:to:

sendAction:(SEL)theAction to:theTarget

Sends a sendAction:to:from: message to NXApp, which in turn sends a message to theTarget to perform theAction.
sendAction:to:from: adds the Control as theAction's only argument. If theAction is NULL, no message is sent.
sendAction:to: is invoked primarily by Cell's trackMouse:inRect:ofView:



If theTarget is nil, NXApp looks for an object that can respond to the message by following the responder chain, as
detailed in the class description.

Returns nil if no object that responds to theAction could be found otherwise returns self.

action, target, trackMouse:inRect:ofView: (Cell), sendAction:to:from: (Application)

(int)sendActionOn:(int)mask

Uses mask to record the events that cause sendAction:to: to be invoked during tracking of the mouse, which is performed
in Cell's trackMouse:inRect:ofView:. Returns the old event mask.

sendAction:to:, sendActionOn: (Cell), trackMouse:inRect:ofView: (Cell)

setAction:(SEL)aSelector

Makes aSelector the Control's action method. If aSelector is NULL, then no action messages will be sent from the
Control. Returns self.

action, setTarget:, sendAction:to:

setAlignment:(int)mode

Sets the alignment mode of the text in the Control's Cell, or of all the Control's Cells if it has more than one, and redraws
the Control. mode should be one of: NX_LEFTALIGNED, NX_CENTERED or NX_RIGHTALIGNED. Returns self.

alignment

setCell:aCell

Sets the Cell of the Control to be cell. Use this method with great care as it can irrevocably damage your Control
specifically, you should only use this method in initializers for subclasses of Control. Returns the old Cell.

setContinuous:(BOOL)flag

Sets whether the Control will continuously send its action message to its target as the mouse is tracked. Returns self.

setContinuous: (ButtonCell, SliderCell), sendActionOn:

setDoubleValue:(double)aDouble

Sets the value of the Control's selected Cell to be aDouble (a double-precision floating point number). If the affected Cell
is being edited, that editing is aborted and the value being typed is discarded in favor of aDouble. If autodisplay is on,
then the Cell's inside (the area within a bezel or border) is redrawn. Returns self.

doubleValue, setFloatValue:, setIntValue:, setStringValue:, abortEditing, drawInside:inView: (Cell), isAutodisplay
(View), setAutodisplay: (View)

setEnabled:(BOOL)flag

Sets whether the Control is active or not (that is, whether it tracks the mouse and sends its action to its target). If flag is
NO, any editing is aborted. Redraws the entire Control if autodisplay is on. Subclasses may want to override this to
redraw only a portion of the Control when the enabled state changes (Button and Slider do this). Returns self.



setEnabled: (Cell), isAutodisplay (View), setAutodisplay: (View)

setFloatValue:(float)aFloat

Same as setDoubleValue:, but sets the value as a single-precision floating point number. Returns self.

floatValue, setDoubleValue:, setIntValue:, setStringValue:

setFloatingPointFormat:(BOOL)autoRange
left:(unsigned)leftDigits
right:(unsigned)rightDigits

Sets the autoranging and floating point number format of the Control's Cell, so that at most leftDigits are displayed to the
left of the decimal point, and rightDigits to the right. If the Control has more than one Cell, they're all affected. See the
description of this method in the Cell class specification for more detail. This method doesn't redraw the Control.
setFloatingPointFormat:left:right: affects only subsequent invocations of setFloatValue:. Returns self.

setFloatingPointFormat:left:right: (Cell)

setFont:fontObject

Sets the Font object used to draw the text (if any) in the Control's Cell, or in all the Cells if the Control has more than one.
You only need to use this method if you don't want to use the user's default system font (as set by the user in the
Preferences application). If autodisplay is on, then the inside of the Cell is redrawn. Returns self.

font, isAutodisplay (View), setAutodisplay: (View)

setIntValue:(int)anInt

Same as setDoubleValue:, but sets the value as an integer. Returns self.

intValue, setDoubleValue:, setFloatValue:, setStringValue:

setStringValue:(const char *)aString

Same as setDoubleValue:, but sets the value as a string by copying it from aString. Returns self.

stringValue, setStringValueNoCopy:, setStringValueNoCopy:shouldFree:, setDoubleValue:, setFloatValue:,
setIntValue:

setStringValueNoCopy:(const char *)aString

Like setStringValue:, but doesn't copy the string. Returns self.

stringValue, setStringValue:, setStringValueNoCopy:, setStringValueNoCopy:shouldFree:, setDoubleValue:,
setFloatValue:, setIntValue:

setStringValueNoCopy:(char *)aString shouldFree:(BOOL)flag

Like setStringValueNoCopy:, but lets you specify whether the string should be freed when the Control is freed. Returns
self.

stringValue, setStringValue: setStringValueNoCopy:, setDoubleValue:, setFloatValue:, setIntValue:



setTag:(int)anInt

Makes anInt the receiving Control's tag. Doesn't affect the Control's Cell. Returns self.

tag, selectedTag, findViewWithTag: (View), setTag: (Cell)

setTarget:anObject

Sets the target for the action message of the Control's Cell. Returns self.

If anObject is nil, then when an action message is sent, NXApp looks for an object that can respond to the message by
following the responder chain, as detailed in the class description.

target, setAction:, sendAction:to:

sizeTo:(NXCoord)width :(NXCoord)height

Changes the width and the height of the Control's frame. Redisplays the Control if autodisplay is on. Returns self.

isAutodisplay (View), setAutodisplay: (View)

sizeToFit

Changes the width and the height of the Control's frame so that they are the minimum needed to contain the Cell. If the
Control has more than one Cell, then you must override this method. Returns self.

sizeToFit (Matrix), sizeToCells (Matrix)

(const char *)stringValue

Returns the value of the Control's selected Cell as a string. If the Control is in the process of editing the affected Cell,
then validateEditing is invoked before the value is extracted and returned.

setStringValue:, doubleValue, floatValue, intValue

(int)tag

Returns the receiving Control's tag (not the tag of the Control's Cell).

setTag:, selectedTag, tag (Cell)

takeDoubleValueFrom:sender

Sets the double-precision floating-point value of the receiving Control's selected Cell to the value obtained by sending a
doubleValue message to sender. Returns self.

This method can be used in action messages between Controls. It permits one Control (the sender) to affect the value of
another Control (the receiver) by invoking this method in an action message to the receiver. For example, a TextField can
be made the target of a Slider. Whenever the Slider is moved, it will send a takeDoubleValueFrom: message to the
TextField. The TextField will then get the Slider's floating-point value, turn it into a text string, and display it, thus
tracking the value of the Slider.

setDoubleValue:, doubleValue



takeFloatValueFrom:sender

Sets the single-precision floating-point value of the receiving Control's selected Cell to the value obtained by sending a
floatValue message to sender. Returns self.

See takeDoubleValueFrom: for an example.

setFloatValue:, floatValue

takeIntValueFrom:sender

Sets the integer value of the receiving Control's selected Cell to the value returned by sending an intValue message to
sender. Returns self.

See takeDoubleValueFrom: for an example.

setIntValue:, intValue

takeStringValueFrom:sender

Sets the character string of the receiving Control's selected Cell to a string obtained by sending a stringValue message to
sender. Since this is an action method, there is no alternate like takeStringValueFrom:noCopy:. Returns self.

See takeDoubleValueFrom: for an example.

stringValue, setStringValue:

target

Returns the target for the action message of the Control's cell, or the Control's target for a Control with multiple Cells. If
nil, then any action messages sent by the Control will be sent up the responder chain, as detailed in the Class Description.

setTarget:, action, sendAction:to:

update

If autodisplay is enabled, sends a display message to itself. Otherwise it simply sets a flag indicating that the Control
needs to be displayed. This method also makes sure that calcSize is performed. Returns self.

updateCell:, updateCellInside:

updateCell:aCell

If aCell is a Cell used to implement this Control, and if autodisplay is on, then draws the Control's Cell otherwise, sets the
needsDisplay and calcSize flags to YES. Returns self.

update, updateCellInside:, isAutodisplay (View), setAutodisplay: (View)

updateCellInside:aCell

If aCell is a Cell used to implement this Control, and if autodisplay is on, draws the inside portion of the Cell otherwise
sets the needsDisplay flag to YES. Returns self.

update, updateCell:, isAutodisplay (View), setAutodisplay: (View)



validateEditing

Causes the value of the Control's selected Cell to be set to the value of the field being edited, if any. ªBeing editedº does
not necessarily mean that a user is typing if a field (for example, a TextField object) has the application's global Text
object acting in its place as first responder, then the field is considered as being edited. This method is invoked
automatically from stringValue, intValue, and other similar methods, so that a partially edited field's actual value will be
correctly returned by those methods. Returns self.

This method doesn't end editing to do that, invoke Window's endEditingFor: or abortEditing.

endEditingFor: (Window), abortEditing

write:(NXTypedStream *)stream

Writes the Control to the typed stream stream.

read:


