
Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

SNDAcquire(), SNDReset(), SNDRelease()

SUMMARY Access sound resources

DECLARED IN sound/accesssound.h

SYNOPSIS int SNDAcquire(int soundResource, int priority, int preempt, int timeout,   
SNDNegotiationFun negFun, void *arg, port_t *devicePort, port_t *ownerPort)

int SNDReset(int soundResource, port_t devicePort, port_t ownerPort)
int SNDRelease(int soundResource, port_t *devicePort, port_t *ownerPort)

DESCRIPTION SNDAcquire() attempts to gain ownership of the sound resources specified in
soundResource, a value that's created by (bitwise) or'ing a combination of the following resource
codes:

Code Resource
SND_ACCESS_OUT sound-out
SND_ACCESS_IN sound-in
SND_ACCESS_DSP the DSP

Alternatively, you can acquire the sound driver device port without gaining ownership of the device
by passing 0 as the value of soundResource.

Device and ownership ports to a successfully acquired sound resource are returned in devicePort
and ownerPort, respectively.    If you pass a previously created port as the value of devicePort, that
port is used; passing a value of PORT_NULL (0) causes SNDAcquire() to create a port for you.   
The value you pass through ownerPort is ignored by the function; a new owner port is always
created.

Acquiring a resource makes it active, such that other acquisition requests may fail, even if the
requests are in the same process.    You can grant a priority to the acquisition by setting the value of
the priority argumentÐin a subsequent call to SNDAcquire(), the acquisition with the higher
priority wins.    The preempt flag is used as a tie-breaker.

The function's timeout, negFun, and arg arguments are currently unused.

The ports that are created and returned by SNDAcquire() can be passed as arguments to certain
sound driver functions (functions that are prefixed ªsnddriverº).    Furthermore, there's not much
reason to call SNDAcquire() unless this is what you're doing:    Although you can use the function
generally to query for the existence of a particular resource, there's not much point in acquiring a
sound device if all you're going to do is call other SND...() functions.

SNDReset() and SNDRelease() reset to a virgin state and release, respectively, the specified
resources.    The resources must have been previously acquired through SNDAcquire(); the device
and owner port arguments are values returned by that function.    SNDRelease() sets the owner port
to PORT_NULL; the device port is unaffected.

RETURN If no error occurs, SND_ERR_NONE is returned.    Otherwise, an error code, as described in
SNDSoundError(), is returned.

ERRORS If SNDAcquire() is unable to acquire any one of the resources specified in soundResource,
none of the resources are acquired.

SNDAlloc(), SNDFree()

SUMMARY Create and free a sound structure

DECLARED IN sound/utilsound.h

SYNOPSIS int SNDAlloc(SNDSoundStruct **sound, int dataSize, int dataFormat, int samplingRate, int
channelCount, int infoSize)

int SNDFree(SNDSoundStruct *sound)

DESCRIPTION The SNDSoundStruct structure is the data format used by the sound software to
encapsulate a sound.    It defines the soundfile format and the sound pasteboard type, and it lies at
the heart of every Sound object.    SNDAlloc() creates and returns, in sound, a new
SNDSoundStruct.    The arguments to SNDAlloc() correspond to the SNDSoundStruct fields
described below.    SNDFree() frees the SNDSoundStruct pointed to by sound.    You should always
use SNDFree() to free a sound structure created through SNDAlloc().

The fields of the SNDSoundStruct structure list the attributes of the sound that the structure
represents.    The sound data itself isn't contained in the structure, but is located by a structure field.
Nonetheless, it's often convenient to think of a SNDSoundStruct as containing the sound data that it
represents.    By convention, the structure is referred to as the sound's ªheader.º    It's defined as:

typedef struct {
 int magic; /* SND_MAGIC ((int)0x2e736e64) */
 int dataLocation; /* Offset or pointer to the raw data */
 int dataSize; /* Raw data size in bytes */
 int dataFormat; /* The data format code */
 int samplingRate; /* The sampling rate */
 int channelCount; /* The number of channels */
 char info[4]; /* Textual information about the sound */
SNDSoundStruct;

The magic field is a magic number that identifies a SNDSoundStruct.    It's automatically set when
you allocate the structure.

The dataLocation field indicates the location of the actual sound data.    Usually, the data
immediately follows the header.    In this case, dataLocation is the offset from the beginning of the
structure to the first byte of the sound dataÐin other words, it's the size of the sound's header.   
However, if you edit the sound through functions such as SNDDeleteSamples() or
SNDInsertSamples(), the sound can become fragmented such that the data no longer follows the
header.    In this case, dataLocation is a pointer to a NULL-terminated block of addresses, each of
which points to a separate SNDSoundStruct.    The collection of these SNDSoundStructs make up
the fragmented data.

dataSize is the size, in bytes, of the memory allocated for the sound data.    The memory is
initialized to zero.

dataFormat describes the sound data as one of the following codes:

Code Format
SND_FORMAT_MULAW_8 8-bit mu-law samples
SND_FORMAT_LINEAR_8 8-bit linear samples
SND_FORMAT_LINEAR_16 16-bit linear samples
SND_FORMAT_EMPHASIZED 16-bit linear with emphasis
SND_FORMAT_COMPRESSED 16-bit linear with compression
SND_FORMAT_COMPRESSED_EMPHASIZED A combination of the two above
SND_FORMAT_LINEAR_24 24-bit linear samples
SND_FORMAT_LINEAR_32 32-bit linear samples

SND_FORMAT_FLOAT floating-point samples
SND_FORMAT_DOUBLE double-precision float samples
SND_FORMAT_DSP_DATA_8 8-bit fixed-point samples
SND_FORMAT_DSP_DATA_16 16-bit fixed-point samples
SND_FORMAT_DSP_DATA_24 24-bit fixed-point samples
SND_FORMAT_DSP_DATA_32 32-bit fixed-point samples
SND_FORMAT_DSP_CORE DSP program
SND_FORMAT_DISPLAY non-audio display data
SND_FORMAT_INDIRECT fragmented sampled data
SND_FORMAT_UNSPECIFIED unspecified format

All but the last five formats identify different sizes and types of sampled data.    The others deserve
special note:

· SND_FORMAT_DSP_CORE format contains data that represents a loadable DSP core program.
Sounds in this format are required by the SNDBootDSP() and SNDRunDSP() functions.    You
create a SND_FORMAT_DSP_CORE sound by reading a DSP load file (extension ª.lodº) with
the SNDReadDSPfile() function.

· SND_FORMAT_DISPLAY format is used by the Sound Kit's SoundView class.    Such sounds
can't be played.

· SND_FORMAT_INDIRECT indicates data that has become fragmented due to editing.    Only
sampled data can become fragmented.    You never allocate a sound with this format.

· SND_FORMAT_UNSPECIFIED is used for unrecognized formats.

samplingRate is also given as a code and should be cast into an int.    The NeXT sound hardware
supports the following sampling rates for recording and playback:

Code Sampling Rate (Hz)
SND_RATE_CODEC 8012.8210513
SND_RATE_LOW 22050
SND_RATE_HIGH 44100

channelCount is the number of channels of sound.    Playback of one- and two-channel sounds is
supported; a sound with more than two channels is unplayable.

infoSize is the size of a variable-length string that can be used to textually describe the sound.    The
size is extended to the next 4-byte boundary (the minimum size is 4 bytes).    You can't increase the
length of the info string once its size has been set.

RETURN If no error occurs, SND_ERR_NONE is returned.    Otherwise, an error code, as described in
SNDSoundError(), is returned.

SNDBootDSP()

SUMMARY Boot the DSP

DECLARED IN sound/accesssound.h

SYNOPSIS int SNDBootDSP(port_t *devicePort, port_t *ownerPort, SNDSoundStruct *dspCore)

DESCRIPTION SNDBootDSP() boots the DSP using the DSP bootstrap image specified in dspCore.   
This allows you to load all internal RAM and all but the top six words of external RAM on the DSP.
The owner and device ports must have been previously acquired through SNDAcquire().    The
format of dspCore must SND_FORMAT_DSP core image should be in loadable (ª.lodº) form, such
as is created through the SNDReadDSPfile() function.

RETURN If no error occurs, SND_ERR_NONE is returned.    Otherwise, an error code, as described in
SNDSoundError(), is returned.

SNDBytesToSamples() ® See SNDSampleCount()

SNDGetCompressionOptions() ® See SNDSetCompressionOptions()

SNDCompactSamples() ® See SNDInsertSamples()

SNDCompressSound()

SUMMARY Compress or decompress a sound

DECLARED IN sound/convertsound.h

SYNOPSIS int SNDCompressSound(SNDSoundStruct *fromSound, SNDSoundStruct **toSound,
BOOL bitFaithful, int compressionAmount)

DESCRIPTION SNDCompressSound() creates and returns, in toSound, a new SNDSoundStruct that
contains a compressed or decompressed version of the sound in fromSound:

· If fromSound's format is SND_FORMAT_LINEAR_16 or SND_FORMAT_EMPHASIZED, the
sound returned in toSound is compressed.

· If its format is SND_FORMAT_COMPRESSED or
SND_FORMAT_COMPRESSED_EMPHASIZED, the sound is decompressed.

No other formats are allowed; in addition, the sound can't have more than two channels.

The function's bitFaithful and compressionAmount arguments are used only when compressing:

· bitFaithful determines the fidelity with which a compressed sound can be restored to its original
state.    If bitFaithful is YES, the sound returned in toSound can be decompressed to exactly
match the original sound data; if it's NO, some degradation can be expected.

· The compressionAmount argument controls the amount of compression.    Its value ranges from 4
to 8 with higher numbers giving more compression but less fidelity.    Depending on the signal, a
compressionAmount of 4 will compress the sound to about half its original size; a value of 8
compresses to about one-sixth the size.    For bit-faithful compression, you should set
compressionAmount to 4.

RETURN If no error occurs, SND_ERR_NONE is returned.    Otherwise an error code, as described in
SNDSoundError(), is returned.

SNDConvertDecibelsToLinear(), SNDConvertLinearToDecibels()

SUMMARY Convert between logarithmic and linear units

DECLARED IN soundkit/NXSoundDevice.h

SYNOPSIS float SNDConvertDecibelsToLinear(float dB)
float SNDConvertLinearToDecibels(float linear)

DESCRIPTION These convenience functions convert from units of decibels to a linear value, and vice
versa.    Decibels express the difference between two quantities in logarithmic units, while on a
linear scale the same relationship is expressed as the ratio of the two quantities.    For example, a
difference of zero decibels is equivalent to a ratio of 1.0.    The functions are, in their entirety:

float SNDConvertDecibelsToLinear(float dB)
{
 return (float)pow(10.0, (double)dB/20.0);
}

float SNDConvertLinearToDecibels(float linear)
{
 return (float)(20.0 * log10((double)linear));
}

SNDConvertLinearToDecibels() ® See SNDConvertDecibelsToLinear()

SNDConvertSound(), SNDMulaw(), SNDiMulaw()

SUMMARY Convert a sound's attributes

DECLARED IN sound/convertsound.h

SYNOPSIS int SNDConvertSound(SNDSoundStruct *fromSound, SNDSoundStruct **toSound)
unsigned char SNDMulaw(short linearValue)
short SNDiMulaw(unsigned char mulawValue)

DESCRIPTION SNDConvertSound() copies the sampled data from fromSound into toSound,
converting the copied data to the format, channel count, and sampling rate specified by toSound.   
Memory for the converted data is automatically allocated.    The following conversions are possible:

· Arbitrary sampling rate conversion.
· Compression and decompression.
· Floating-point formats (including double-precision) to and from linear formats.
· Mono to stereo.
· CODEC mu-law to and from linear formats.

SNDMulaw() converts a value from 16-bit linear to mu-law:    It takes a single linear 16-bit
argument and returns the corresponding mu-law value.    SNDiMulaw() performs the inverse
operation:    It takes a mu-law argument and returns the 16-bit linear value.

RETURN If no error occurs, SNDConvertSound() returns SND_ERR_NONE.    Otherwise an error
code, as described in SNDSoundError(), is returned.

SEE ALSO SNDAlloc(), SNDSamplesToBytes()

SNDCopySamples() ® See SNDCopySound()

SNDCopySound(), SNDCopySamples()

SUMMARY Copy all or part of a sound

DECLARED IN sound/editsound.h

SYNOPSIS int SNDCopySound(SNDSoundStruct **toSound, SNDSoundStruct *fromSound)
int SNDCopySamples(SNDSoundStruct **toSound, SNDSoundStruct *fromSound, int startSample,

int sampleCount)

DESCRIPTION SNDCopySound() creates and returns, in toSound, a new SNDSoundStruct that
contains a copy of the sound in fromSound.    This works for any type of sound, including DSP
sounds.

SNDCopySamples() also creates a new SNDSoundStruct pointed to by toSound, but copies only the
specified of fromSound, starting with the startSample sample (counting from sample 0) and copying
sampleCount samples.    This function works only for sampled sounds.

toSound should eventually be freed with SNDFree().

RETURN Both functions return an error code as described in SNDSoundError().

ERRORS If an error occurs, the SNDSoundStruct isn't created.

SNDDeleteSamples() ® See SNDInsertSamples()

SNDDropATCSamples(), SNDInsertATCSamples()

SUMMARY Speed up or slow down playback of ATC sound

DECLARED IN sound/atcsound.h

SYNOPSIS int SNDDropATCSamples(int numSamples, int bySamples)
int SNDInsertATCSamples(int numSamples, int bySamples)

DESCRIPTION SNDDropATCSamples() and SNDInsertATCSamples() provide elementary support
for synchronizing sound playback to other events.    By skipping or repeating selected samples of an
ATC sound while it's playing, you can slightly shrink or stretch its duration, as necessary.    This
mechanism is intended for subtle timing adjustments, not for effects like fast forward.    Although
dropping or inserting samples shouldn't cause any clicks in the    sound, it will cause some distortion.
A sound in the ATC (Audio Transform Compression) format must be playing for these functions to
have any effect.

If bySamples is zero, one sample is chosen randomly out of the next 256 consecutive samples and
omitted (in the case of SNDDropATCSamples()) or repeated (in the case of
SNDInsertATCSamples()).    This process repeats until numSamples samples have been dropped or
inserted.    If bySamples is greater than zero, an attempt is made to drop or add numSamples samples
before bySamples more samples of the original sound have played.    Too large a ratio of
numSamples to bySamples may produce unwanted results.

To determine when to drop or insert samples, call SNDSamplesProcessed() to obtain an estimate of
how many samples have been played thus far.    Divide this number by the sampling rate to obtain
the elapsed time in seconds, and compare the result to the notion of time with which you want to
synchronize.

SEE ALSO SNDSamplesProcessed(), SNDCompressSound(), SNDSetATCGain(),
SNDGetNumberOfATCBands()

SNDFree() ® See SNDAlloc()

SNDGetCompressionOptions() ® See SNDCompressSound()

SNDGetDataPointer()

SUMMARY Gain access to sampled sound data

DECLARED IN sound/utilsound.h

SYNOPSIS int SNDGetDataPointer(SNDSoundStruct *sound, char **data, int *sampleCount, int
*width)

DESCRIPTION The SNDGetDataPointer() provides access to sound's sound data (which must be
unfragmented sample data).    A pointer to the sound data is returned by reference in data, the
number of samples in the data is returned in sampleCount, and the width (in bytes) of a single
sample is returned in width.    Note that sampleCount is the total sample countÐit isn't a count of the
sample frames.

RETURN If no error occurs, SND_ERR_NONE is returned.    Otherwise, an error code, as described in
SNDSoundError(), is returned.

SNDGetFilter() ® See SNDSetVolume()

SNDGetMute() ® See SNDSetVolume()

SNDGetNumberOfATCBands(), SNDGetATCBandFrequencies(),
SNDGetATCBandwidths()

SUMMARY Query for frequency bands used by Audio Transform Compression

DECLARED IN sound/atcsound.h

SYNOPSIS int SNDGetNumberOfATCBands(int *numBands)
int SNDGetATCBandFrequencies(int numBands, float *centerFreqs)
int SNDGetATCBandwidths(int numBands, float *bandwidths)

DESCRIPTION SNDGetNumberOfATCBands() returns, by reference in numBands, the number of
frequency bands that SNDCompressSound() uses for compressing sounds with ATC (Audio
Transform Compression).      Currently, this number is always 40.

SNDGetATCBandFrequencies() fills the array centerFreqs with floating-point numbers that
specify the center frequency in Hertz of each band.    Similarly, the array filled by
SNDGetATCBandwidths() contains the width in Hertz of each band.    The first argument to each
of these functions should be the value returned by SNDGetNumberOfATCBands().

The ATC bands correspond roughly to the ªcritical bandsº of hearing.    Band zero is centered at zero
Hz, and the highest band is centered at half the sampling rate.    The bandwidths and spacing are
uniform below a certain frequency, above which the bands are progressively wider in Hertz and
spaced further apart.    For sounds having the standard sampling rate of 44.1 kHz, bands below 1000
Hz have the same bandwidth, while bands above 1000 Hz have bandwidths of approximately 20%

of the band's center frequency.    For sounds with other sampling rates, the bands' frequencies are
scaled so that the same number of bands covers zero Hz to half the sampling rate, whatever the latter
may be.    SNDGetATCBandFrequencies() and SNDGetATCBandwidths() assume a 44.1-kHz
sampling rate when filling the arrays centerFreqs and bandwidths, respectively.    To obtain the
correct values for other sampling rates, multiply each element of the returned arrays by the ratio of
the sampling rate to 44.1 kHz.

RETURN 0 is returned unless the host isn't a NeXT computer, in which case ATC is unavailable.

SEE ALSO SNDCompressSound(), SNDSetATCGain(), SNDDropATCSamples()

SNDGetVolume() ® See SNDSetVolume()

SNDiMulaw() ® See SNDConvertSound()

SNDInsertSamples(), SNDDeleteSamples(), SNDCompactSamples()

SUMMARY Edit a sampled sound

DECLARED IN sound/editsound.h

SYNOPSIS int SNDInsertSamples(SNDSoundStruct *toSound, SNDSoundStruct *fromSound, int
startSample)

int SNDDeleteSamples(SNDSoundStruct *sound, int startSample, int sampleCount)
int SNDCompactSamples(SNDSoundStruct **toSound, SNDSoundStruct *fromSound)

DESCRIPTION SNDInsertSamples() inserts a copy of fromSound into toSound at position startSample
of toSound (counting from sample 0).    This operation may fragment toSound.

SNDDeleteSamples() deletes sampleCount samples from sound, starting at sample startSample.   
The memory occupied by the deleted segment is freed.    The sound may become fragmented.

SNDCompactSamples() creates and returns, in toSound, a new SNDSoundStruct that contains a
compacted version of fromSound.    Compaction eliminates the fragmentation that can be caused by
inserting and deleting samples.

These functions work only on sounds that contain sampled data.

RETURN If no error occurs, SND_ERR_NONE is returned.    Otherwise, an error code, as described in
SNDSoundError(), is returned.

SNDModifyPriority() ® See SNDStartPlaying()

SNDMulaw() ® See SNDConvertSound()

SNDPlaySoundfile()

SUMMARY Play a soundfile

DECLARED IN sound/utilsound.h

SYNOPSIS int SNDPlaySoundfile(char *path, int priority)

DESCRIPTION SNDPlaySoundfile() plays the soundfile named path.    The function returns
immediately while playback continues in a background thread.    Playback interrupts a currently
playing sound of the same or lower priority.

RETURN If no error occurs, SND_ERR_NONE is returned.    Otherwise, an error code, as described in
SNDSoundError(), is returned.

SNDRead() ® See SNDReadSoundfile()

SNDReadDSPfile() ® See SNDReadSoundfile()

SNDReadHeader() ® See SNDReadSoundfile()

SNDReadSoundfile(), SNDRead(), SNDReadHeader(), SNDReadDSPfile()

SUMMARY Read a sound from a file

DECLARED IN sound/filesound.h

SYNOPSIS int SNDReadSoundfile(char *path, SNDSoundStruct **sound)
int SNDRead(int fd, SNDSoundStruct **sound)
int SNDReadHeader(int fd, SNDSoundStruct **sound)
int SNDReadDSPfile(char *path, SNDSoundStruct **sound, char *info)

DESCRIPTION Each of these functions creates and returns, by reference in the sound argument, a
SNDSoundStruct that contains the sound represented in a specified file.

SNDReadSoundfile() and SNDRead() read the entire contents of a soundfile.    The path argument
to SNDReadSoundfile() is a pathname; the function opens and closes the file automatically.   
SNDRead() takes a file descriptor fd that must be open for reading.

SNDReadHeader() reads only the header portion of the file descriptor fd.    Storage for the actual
sound data isn't allocated.    The dataLocation field of the new SNDSoundStruct can be interpreted
as the size of the header.

SNDReadDSPfile() creates a SNDSoundStruct for the given loadable DSP core file.    The file,
which is opened and closed by the function, is specified as a pathname and must have a ª.lodº
extension.    The info argument is provided as a convenience, allowing you to specify an information
string that's written in sound's header.    The DSP program is executed by calling SNDBootDSP() or
SNDRunDSP().

For all three functions, sound should eventually be deallocated with SNDFree().

RETURN If no error occurs, SND_ERR_NONE is returned.    Otherwise, an error code, as described in
SNDSoundError(), is returned.

ERRORS If an error occurs, the SNDSoundStruct isn't created.

SEE ALSO SNDFree()

SNDRelease() ® See SNDAcquire()

SNDReserve(), SNDUnreserve()

SUMMARY Reserve sound resources for recording or playback

DECLARED IN sound/accesssound.h

SYNOPSIS int SNDReserve(int soundResource, int priority)
int SNDUnreserve(int soundResource)

DESCRIPTION SNDReserve() attempts to gain ownership of the sound resources specified in
soundResource, a value that's created by (bitwise) or'ing a combination of the following resource
codes:

Code Resource
SND_ACCESS_OUT sound out
SND_ACCESS_IN sound in
SND_ACCESS_DSP the DSP

The priority argument is used, ostensibly, to determine whether a particular reservation can
supercede an existing one.    However, the priority scheme doesn't work between applicationsÐif you
successfully reserve a sound resource, no other application can take it from you, regardless of the
relative priority values that were used in the respective SNDReserve() calls.    (The priority
argument does have an affect within the same application, but there really isn't much reason for one
part of an application to steal sound resources from another part.)

Despite this, SNDReserve() isn't utterly useless; it eliminates some of the overhead of acquiring and
setting up a device that would otherwise occur upon each instance of playback (or recording).    For
example, if you want to play a series of soundfiles, you stand a better chance of seamless playback if
you first reserve the sound-out device.

Use of SNDReserve() is optional; prioritized access to the appropriate resource is established when
either the SNDStartPlaying() or the SNDStartRecording() function is called.    The process should
eventually free its reserved resources by calling SNDUnreserve().    Sound resources are
automatically freed when the process terminates.

RETURN If no error occurs, SND_ERR_NONE is returned.    Otherwise, an error code, as described in
SNDSoundError(), is returned.

ERRORS If SNDReserve() is unable to reserve any one of the resources specified in soundResource, it
won't reserve any of them.

SNDReset() ® See SNDAcquire()

SNDRunDSP()

SUMMARY Run the DSP

DECLARED IN sound/convertsound.h

SYNOPSIS int SNDRunDSP(SNDSoundStruct *dspCore, char *toDSP, int toCount, int toWidth, int
toBufferSize, char **fromDSP, int *fromCount, int fromWidth, int negotiationTimeout, int

flushTimeout, int conversionTimeout)

DESCRIPTION SNDRunDSP() loads and runs the DSP program that you provide.    The functions is
designed to be used with DSP programs that process sound dataÐyou typically use this function to
provide your own sound conversion algorithms.    The arguments are as follows:

· The DSP program is represented by dspCore; it must implement complex DMA mode for its
output, and must be in loadable (ª.lodº) form.

· toDSP is a pointer to the data that you wish to feed to the DSP.

· toCount is the number of samples to process.

· toWidth is the size of a single unprocessed sample.

· toBufferSize is the total size, in bytes, of the toDSP data.

· fromDSP is a pointer to the address of the processed data.    The memory to store the data is
allocated for you.

· fromCount is returned by the function to give the number of samples that it actually processed.

· fromWidth is the size, in bytes, of a single processed sample.

· The timeout arguments, negotiationTimeout, flushTimeout, and conversionTimeout, are ignored.

RETURN If no error occurs, SND_ERR_NONE is returned.    Otherwise, an error code, as described in
SNDSoundError(), is returned.

SNDSampleCount(), SNDBytesToSamples(), SNDSamplesToBytes()

SUMMARY Measure samples in a sound

DECLARED IN sound/utilsound.h

SYNOPSIS int SNDSampleCount(SNDSoundStruct *sound)
int SNDBytesToSamples(int byteCount, int channelCount, int dataFormat)
int SNDSamplesToBytes(int sampleCount, int channelCount, int dataFormat)

DESCRIPTION SNDSampleCount() returns the number of sample frames, or channel-independent
samples, in sound.    The sound must contain sampled data.

SNDBytesToSamples() returns the number of samples contained in byteCount bytes of sound data
with the given channel count and data format.    SNDSamplesToBytes() performs the inverse
operation, returning the number of bytes needed to store sampleCount samples.    The value returned
by SNDSamplesToBytes() is useful for computing the dataSize argument to SNDAlloc().

RETURN If sound doesn't contain sampled data (or if for any other reason the sample count can't be
determined), SNDSampleCount() returns -1.    SNDBytesToSamples() and SNDSamplesToBytes()
return 0 if dataFormat isn't a sampled sound format and -1 if dataFormat isn't recognized.

SNDSamplesProcessed() ® See SNDStartPlaying()

SNDSamplesToBytes() ® See SNDSampleCount()

SNDSetATCGain(), SNDGetATCGain(), SNDSetATCEqualizerGains(),
SNDGetATCEqualizerGains(), SNDScaleATCEqualizerGains()

SUMMARY Modify volume or equalization for ATC playback

DECLARED IN sound/atcsound.h

SYNOPSIS int SNDSetATCGain(float level)
int SNDGetATCGain(float *level)
int SNDSetATCEqualizerGains(int numBands, float *gains)
int SNDGetATCEqualizerGains(int numBands, float *gains)
int SNDScaleATCEqualizerGains(int numBands, float *gainScalars)

DESCRIPTION Audio Transform Compression (ATC) can be used not only for compression, but also
to manipulate a sound's volume or frequency spectrum.    These functions determine the    playback
level of sounds in the ATC formatÐeither their overall gain, or the gains of their individual
frequency bands.

SNDSetATCGain() sets the overall sound output level for ATC sound playback.    The value for
level can range from 0.0 (which will silence any ATC sound) to 1.0 (which will play sounds
unchanged).    The new level setting takes effect starting with the next ATC sound played.   
SNDGetATCGain() returns, in its argument, a pointer to the current level.    Note that this volume
settingÐunlike that specified by SNDSetVolume()Ðaffects not only the speaker and headphone
output, but also the line-out jacks.    This is possible because SNDSetATCGain() is implemented as
a scaling of the ATC equalizer gains, and so it only affects ATC sounds.    For such sounds, the
volume at the speaker and headphones is the product of the ATC gain and the global setting returned
by SNDGetVolume().

Because ATC manipulates the gain of individual frequency bands, it can be used to implement a
graphic equalizer for playback of ATC sounds.    An array of ªequalizer gainsº is provided for this
purpose.    SNDSetATCEqualizerGains() sets the equalizer gains to the values in the array gains,
and SNDGetATCEqualizerGains() returns the current equalizer gains by reference.   
SNDScaleATCEqualizerGains() multiplies each band's gain by the corresponding scalar in the
array gainScalars.    For all three functions, numBands should be the value returned by
SNDGetNumberOfATCBands().    Each element of the gains array specifies a factor by which the
sound amplitude in the corresponding frequency band will be multiplied during sound playback.   
The gain should be a nonnegative number between 0.0 and 16.0 (inclusive).    Gains greater than 1.0
may cause the output to be clipped.    The system default gain for each band is 1.0, meaning that the
sound is played without modification.    Changes take effect starting with the next sound played; any
currently playing sound is unaffected.

RETURN Zero is returned, with one exception:    If SNDSetATCGain(),
SNDSetATCEqualizerGains(), or SNDScaleATCEqualizerGains() sets the gains of any
frequency bands to values less than zero or greater than the 16.0, those values are set to zero or the
maximum (respectively), and the function returns the number of bands that were clipped in this way.

SEE ALSO SNDCompressSound(), SNDGetNumberOfATCBands(), SNDSetVolume,
SNDDropATCSamples()

SNDSetATCSquelchThresholds(), SNDGetATCSquelchThresholds(),
SNDUseDefaultATCSquelchThresholds()

SUMMARY Set or get Audio Transform Compression parameters

DECLARED IN sound/atcsound.h

SYNOPSIS int SNDSetATCSquelchThresholds(int numBands, float *thresholds)
int SNDGetATCSquelchThresholds(int numBands, float *thresholds)
int SNDUseDefaultATCSquelchThresholds(void)

DESCRIPTION These functions set or retrieve parameters that control the amount of compression
achieved by SNDCompressSound() when it uses Audio Transform Compression (ATC).

SNDSetATCSquelchThresholds() and SNDGetATCSquelchThresholds() respectively fill and
retrieve the array thresholds, which specifies the squelch thresholds for each frequency band.    The
first argument to both functions, numBands, should be obtained from
SNDGetNumberOfATCBands().    (If desired, the frequencies of the bands can be determined by
invoking SNDGetATCBandFrequencies().)      The thresholds can range from zero to one.    A value
of 0.0 ensures that frequencies in that band will never be suppressed, while a value of 1.0 almost
always squelches them. The    default squelch threshold for each band is the estimated threshold of
audibility at a normal listening level.    The defaults can be restored by calling
SNDUseDefaultATCSquelchThresholds().    Changes to the thresholds take effect starting with the
next sound compressed; any currently compressing sound is unaffected.

RETURN Zero is returned upon success, with one exception:    If the thresholds array passed to   
SNDSetATCSquelchThresholds() contains any values less than zero or greater than one, those
values are set to zero or one (respectively), and the function returns the number of bands that were
clipped in this way.

SEE ALSO SNDCompressSound(), SNDGetNumberOfATCBands(),
SNDGetATCBandFrequencies(), SNDSetATCGain(), SNDDropATCSamples()

SNDSetCompressionOptions(), SNDGetCompressionOptions()

SUMMARY Set and get compression attributes used in recording

DECLARED IN sound/preformsound.h

SYNOPSIS int SNDSetCompressionOptions(SNDSoundStruct *sound, int bitFaithful, int
compressionAmount)

int SNDGetCompressionOptions(SNDSoundStruct *sound, int *bitFaithful, int
*compressionAmount)

DESCRIPTION SNDSetCompressionOptions() sets the bit-faithfulness and the compression amount
that SNDStartRecording() uses during subsequent recordings into the sound sound.    These values
are effective only if sound's format specifies compression.    By default, such a recording is bit-
faithful with a compression amount of 4.

SNDGetCompressionOptions() returns, in its arguments, pointers to the currently established
compression options.

RETURN If no error occurs, SND_ERR_NONE is returned.    Otherwise an error code, as described in
SNDSoundError(), is returned.

SNDSetFilter() ® See SNDSetVolume()

SNDSetHost()

SUMMARY Set the host computer for subsequent playback or recording

DECLARED IN sound/accesssound.h

SYNOPSIS int SNDSetHost(char *newHostname)

DESCRIPTION SNDSetHost() gives you access to the named host for subsequent playbacks or
recordings.    If newHostname is NULL or a zero-length string, the default (the local host) is
restored.

RETURN If no error occurs, SND_ERR_NONE is returned.    Otherwise, an error code, as described in
SNDSoundError(), is returned.

SNDSetMute() ® See SNDSetVolume()

SNDSetVolume(), SNDGetVolume(), SNDSetMute(), SNDGetMute(), SNDSetFilter(),
SNDGetFilter()

SUMMARY Sound playback utilities

DECLARED IN sound/utilsound.h

SYNOPSIS int SNDSetVolume(int left, int right)
int SNDGetVolume(int *left, int *right)
int SNDSetMute(int speakerOn)
int SNDGetMute(int *speakerOn)
int SNDSetFilter(int filterOn)
int SNDGetFilter(int *filterOn)

DESCRIPTION SNDSetVolume() sets the sound playback level for the left and right channels,
specified as an integer between 1 and 43 (inclusive).    This only affects the signal to the internal
speaker and the stereo headphone jack; the line-out level is undisturbed.    SNDGetVolume() returns,
in its arguments, pointers to the playback levels of either channel.

SNDSetMute() mutes and unmutes the internal speaker and headphone level as speakerOn is 0 and
nonzero, respectively.    SNDGetMute() returns, in its argument, a pointer to the mute status.

SNDSetFilter() turns the low-pass filter off or on as filterOn is 0 or nonzero, respectively.   
SNDGetFilter() returns, in its argument, a pointer to the state of the filter.    The filter is
automatically turned on while sounds whose format is SND_FORMAT_EMPHASIZED or
SND_FORMAT_COMPRESSED_EMPHASIZED are being played.

RETURN If no error occurs, SND_ERR_NONE is returned.    Otherwise, an error code, as described in
SNDSoundError(), is returned.

SNDSoundError()

SUMMARY Describe a sound error

DECLARED IN sound/sounderror.h

SYNOPSIS char *SNDSoundError(int err)

DESCRIPTION SNDSoundError() returns a pointer to a string that describes the given error code.   
The following are defined as error codes:

Code String
SND_ERR_NONE ""
SND_ERR_NOT_SOUND "Not a sound"
SND_ERR_BAD_FORMAT "Bad data format"
SND_ERR_BAD_RATE "Bad sampling rate"
SND_ERR_BAD_CHANNEL "bad channel count"
SND_ERR_BAD_SIZE "bad size"
SND_ERR_BAD_FILENAME "Bad file name"
SND_ERR_CANNOT_OPEN "Cannot open file"
SND_ERR_CANNOT_WRITE "Cannot write file"
SND_ERR_CANNOT_READ "Cannot read file"
SND_ERR_CANNOT_ALLOC "Cannot allocate memory"
SND_ERR_CANNOT_FREE "Cannot free memory"
SND_ERR_CANNOT_COPY "Cannot copy"
SND_ERR_CANNOT_RESERVE "Cannot reserve access"
SND_ERR_NOT_RESERVED "Access not reserved"
SND_ERR_CANNOT_RECORD "Cannot record sound"
SND_ERR_ALREADY_RECORDING "Already recording sound"
SND_ERR_NOT_RECORDING "Not recording sound"
SND_ERR_CANNOT_PLAY "Cannot play sound"
SND_ERR_ALREADY_PLAYING "Already playing sound"
SND_ERR_NOT_IMPLEMENTED "Not implemented"
SND_ERR_NOT_PLAYING "Not playing sound"
SND_ERR_CANNOT_FIND "Cannot find sound"
SND_ERR_CANNOT_EDIT "Cannot edit sound"
SND_ERR_BAD_SPACE "Bad memory space in DSP load

image"
SND_ERR_KERNEL "Mach kernel error"
SND_ERR_BAD_CONFIGURATION "Bad configuration"
SND_ERR_CANNOT_CONFIGURE "Cannot configure"
SND_ERR_UNDERRUN "Data underrun"
SND_ERR_ABORTED "Aborted"
SND_ERR_BAD_TAG "Bad tag"
SND_ERR_CANNOT_ACCESS "Cannot access hardware resources"
SND_ERR_TIMEOUT "Timeout"
SND_ERR_BUSY "Hardware resources already in use"
SND_ERR_CANNOT_ABORT "Cannot abort operation"
SND_ERR_INFO_TOO_BIG "Information string too large"
SND_ERR_UNKNOWN "Unknown error"

SNDStartPlaying(),    SNDVerifyPlayable(), SNDStartRecording(),
SNDStartRecordingFile(), SNDWait(), SNDStop(), SNDSamplesProcessed(),
SNDModifyPriority()

SUMMARY Recording and playing a sound

DECLARED IN sound/performsound.h

SYNOPSIS int SNDStartPlaying(SNDSoundStruct *sound, int tag, int priority, int preempt,

SNDNotificationFun beginFun, SNDNotificationFun endFun)
int SNDVerifyPlayable(SNDSoundStruct *sound)
int SNDStartRecording(SNDSoundStruct *sound, int tag, int priority, int preempt,

SNDNotificationFun beginFun, SNDNotificationFun endFun)
int SNDStartRecordingFile(char *fileName, SNDSoundStruct *sound, int tag, int priority, int

preempt, SNDNotificationFun beginFun, SNDNotificationFun endFun)
int SNDStop(int tag)
int SNDWait(int tag)
int SNDSamplesProcessed(int tag)
int SNDModifyPriority(int tag, int newPriority)

DESCRIPTION SNDStartPlaying() initiates the playback of sound.    The function returns immediately
while the playback continues in a background thread.    During playback, the sound is played on the
internal speaker and sent to the stereo line-out jacks.

The tag argument is an arbitrary positive integer that the caller supplies to identify the playback
session in subsequent calls to SNDWait(), SNDStop(), SNDSamplesProcessed(), and
SNDModifyPriority().    You should never set a sound's tag to 0.

The value of priority establishes the sound's right to use the playback resources.    The lowest
priority is 0, larger numbers signify higher priorities.    Negative priorities are reserved.    A call to
SNDStartPlaying() will interrupt a currently playing sound if the new sound has a higher priority.   
If the new sound has a lower priority, the old sound continues and the new sound is put in a sound
playback queue.    Sounds in the queue are sorted by priority.

A nonzero preempt flag is used for urgent sounds, such as system beeps.    Preemption allows a new
sound to interrupt a sound that has the same (or lower) priority.    However, if the new sound can't
interrupt, it isn't put in the queue.

beginFun and endFun are user-defined notification functions that are automatically called when the
sound begins playing and when it ends, respectively.    A notification function is defined as an integer
function with three arguments:

typedef int (*SNDNotificationFun)(SNDSoundStruct *sound, int tag, int err);

The sound and tag arguments are taken directly from the SNDStartPlaying() call.    The err
argument is one of the error codes listed in SNDSoundError() and is generated automatically to
inform the notification function of the state of the playback.    The return value is ignored.    The
value SND_NULL_FUN should be used to specify no function as either beginFun or endFun.

SNDVerifyPlayable() returns SND_ERR_NONE if sound can be played without first being
converted to another format, sampling rate, or number of channels.    Otherwise, it returns
SND_ERR_CANNOT_PLAY.

The arguments to SNDStartRecording() are like those to SNDStartPlaying().    The sound resource
used for recording is implied by information in sound's header; currently, two configurations are
allowed:

· If the sound is one channel of mulaw format (SND_FORMAT_MULAW) at the CODEC
sampling rate (SND_RATE_CODEC), then the recording is made from the CODEC input (the
microphone jack at the back of the monitor).

· If the format is one of the DSP data or compressed formats, the recording is made from the DSP
port.    In the case of a compressed format, the sound is compressed according to options set by
SNDSetCompressionOptions().

Like playback, recording is performed in a background thread.    The recording completes when the
storage allocated for the sound is filled with data.

For both playback and recording, reserving the appropriate sound device first (through
SNDReserve()) may help eliminate some overhead.    This is particularly true if you're playing a

series of sounds.

SNDStartRecordingFile() is similar to SNDStartRecording(), but the sound is written directly to
the file fileName.    The sound argument is used for its size and format information.

SNDStop() terminates the playback or recording session that has a tag of tag.

SNDWait() returns only when the playback or recording with a tag of tag has completed.    If tag is
0, all sounds in the sound queue are awaited.    Note that if you call this function from the main
thread of an application that has an asynchronous event-driven user interface, the interface will be
effectively frozen until this function returns.

SNDSamplesProcessed() returns the number of samples that have been played or recorded so far in
the playback or recording that has the given tag. If the tagged sound isn't currently active, -1 is
returned.

SNDModifyPriority() resets the priority, as newPriority, of the playback or recording that has a tag
of tag.

RETURN If no error occurs, SND_ERR_NONE is returned.    Otherwise, an error code, as described in
SNDSoundError(), is returned.

SNDStartRecording() ® See SNDStartPlaying()

SNDStartRecordingFile() ® See SNDStartPlaying()

SNDStop() ® See SNDStartPlaying()

SNDSwapHostToSound() ® SNDSwapSoundToHost()

SNDSwapSoundToHost(), SwapHostToSound()

SUMMARY Swap the bytes in each sample in a buffer of sound data

DECLARED IN sound/utilsound.h

SYNOPSIS int SNDSwapSoundToHost(void *dest, void *src, int sampleCount, int channelCount,
int dataFormat)

int SNDSwapHostToSound(void *dest, void *src, int sampleCount, int channelCount,
int dataFormat)

DESCRIPTION These functions read the data pointed to by src, swap the order of the bytes that
comprise each sample (if necessary) and write the swapped data to dest (src and dest can be the
same pointer).    The other arguments, taken cumulatively, describe the size of the sound buffer:

· sampleCount is the number of sample frames, or channel-independent samples.
· channelCount is the number of channels of sound data.
· dataFormat is a format-encoding constant, such as SND_FORMAT_LINEAR_16.

The functions return an error code, where SND_ERR_NONE indicates success.

The ªSoundº and ªHostº terms in these names have these meanings:

· To play a sound, the sound data must be in ªSoundº format.
· To examine sound data, it must be in ªHostº format.

When you read a soundfile or record a sound, the sound data is guaranteed to be in ªSoundº format;

if all you want to do is play the soundfile or write the recorded sound to a fileÐin other words, if you
don't want to examine the dataÐthen you don't need to call these functions.

However, if, for example, you read a soundfile in order to look at the value at each sample, you must
first call SNDSwapSoundToHost() to convert the sound data to ªHostº format.    If you modify
samples in a converted sound, you must re-convert to ªSoundº format, through
SNDSwapHostToSound(), before the sound can be played or written to a file.

Note that you don't have to convert entire soundfiles (or SNDSoundStruct data buffers) at a time.   
The arguments let you convert an arbitrary range of samples starting at any sample in a sound data
buffer.

These functions are built upon the general NXSwap... functions that are described in
/NextLibrary/Documentation/NextDev/Concepts/PortabilityGuide.    The primary difference
between the sound swapping functions and the general swapping functions is that the sound
functions let you convert buffers of data, whereas a single call to a general function can convert only
one datum.      If you wish, you can call the general functions (iteratively) rather than the sound
functions.    The correspondences between the    functions are:

Sound function Analogous general function
SNDSwapSoundToHost() NXSwapBigShortToHost()

SNDSwapHostToSound() NXSwapHostShortToBig()

RETURN If no error occurs, SND_ERR_NONE is returned.    Otherwise, an error code, as described in
SNDSoundError(), is returned.

SNDUnreserve() ® See SNDReserve()

SNDWait() ® See SNDStartPlaying()

SNDWrite() ® See SNDWriteSoundfile()

SNDWriteHeader() ® See SNDWriteSoundfile()

SNDWriteSoundfile(), SNDWrite(), SNDWriteHeader()

SUMMARY Write a sound to a file

DECLARED IN sound/soundfile.h

SYNOPSIS int SNDWriteSoundfile(char *path, SNDSoundStruct *sound)
int SNDWrite(int fd, SNDSoundStruct *sound)
int SNDWriteHeader(int fd, SNDSoundStruct *sound)

SNDWriteSoundfile() writes the specified sound structure as the soundfile.    path is a full
pathname that should include the ª.sndº extension (the convention for soundfiles).    The function
automatically opens and closes the file.

SNDWrite() also writes a complete soundfile, but its argument is a file descriptor rather than a
pathname.    The file must be open for writing.

With both SNDWriteSoundfile() and SNDWrite(), the actual sound data is written as a contiguous
block, even if sound is fragmented.    However, sound itself isn't affectedÐif it's fragmented, it
remains fragmented.

SNDWriteHeader() is similar to SNDWrite(), but it only writes sound's header to the file.

RETURN If no error occurs, SND_ERR_NONE is returned.    Otherwise, an error code, as described in
SNDSoundError(), is returned.

