
free

Setting the next responder setNextResponder:
nextResponder

Determining the first responder acceptsFirstResponder
becomeFirstResponder
resignFirstResponder

Aiding event processing performKeyEquivalent:
tryToPerform:with:

Forwarding event messages mouseDown:
rightMouseDown:
mouseDragged:
rightMouseDragged:
mouseUp:
rightMouseUp:
mouseMoved:
mouseEntered:
mouseExited:
keyDown:
keyUp:
flagsChanged:
noResponderFor:

Services menu support validRequestorForSendType:andReturnType:
Help menu support helpRequested:
Archiving read:

write:

(BOOL)acceptsFirstResponder

Returns NO to indicate that, by default, a Responder doesn't agree to become the first responder.

Before making any object the first responder, the Application Kit gives it an opportunity to refuse by sending it an



acceptsFirstResponder message. Objects that can display a selection should override this default to return YES. Objects
that respond with this default version of the method will receive mouse event messages, but no others.

makeFirstResponder: (Window)

becomeFirstResponder

Notifies the receiver that it has just become the first responder for its Window. This default version of the method simply
returns self. Responder subclasses can implement their own versions to take whatever action may be necessary, such as
highlighting the selection.

By returning self, the receiver accepts being made the first responder. A Responder can refuse to become the first
responder by returning nil.

becomeFirstResponder messages are initiated by the Window object (through its makeFirstResponder: method) in
response to mouse-down events.

resignFirstResponder, makeFirstResponder: (Window)

flagsChanged:(NXEvent *)theEvent

Passes the flagsChanged: event message to the receiver's next responder.

free

Frees the space used by a Responder instance and removes it from the hash table used to locate help. Returns self.

helpRequested:(NXEvent *)eventPtr

Invoked by a Window instance when the user has clicked for help. The Window instance sends this message to the first
responder. The receiver shows its help panel if it has one, and if not forwards the message to the next responder. If there
is no next responder to respond, the method executes NXBeep(). Your application should never invoke this method
directly. Returns self.

keyDown:(NXEvent *)theEvent

Passes the keyDown: event message to the receiver's next responder.

keyUp:(NXEvent *)theEvent

Passes the keyUp: event message to the receiver's next responder.

mouseDown:(NXEvent *)theEvent

Passes the mouseDown: event message to the receiver's next responder.

mouseDragged:(NXEvent *)theEvent

Passes the mouseDragged: event message to the receiver's next responder.



mouseEntered:(NXEvent *)theEvent

Passes the mouseEntered: event message to the receiver's next responder.

mouseExited:(NXEvent *)theEvent

Passes the mouseExited: event message to the receiver's next responder.

mouseMoved:(NXEvent *)theEvent

Passes the mouseMoved: event message to the receiver's next responder.

mouseUp:(NXEvent *)theEvent

Passes the mouseUp: event message to the receiver's next responder.

nextResponder

Returns the receiver's next responder.

setNextResponder:

noResponderFor:(const char *)eventType

Responds to an event message that has reached the end of the responder chain without finding an object that can respond.
When the event is a key down, noResponderFor: generates a beep.

(BOOL)performKeyEquivalent:(NXEvent *)theEvent

Returns NO to indicate that, by default, the Responder doesn't have a key equivalent and can't respond to key-down
events as keyboard alternatives.

The Responder class implements this method so that any object that inherits from it can be asked to respond to a
performKeyEquivalent: message. Subclasses that define objects with key equivalents must implement their own versions
of performKeyEquivalent:. If the key in theEvent matches the receiver's key equivalent, it should respond to the event
and return YES.

performKeyEquivalent: (View and Button)

read:(NXTypedStream *)stream

Reads the Responder from the typed stream stream. Returns self.

write:

resignFirstResponder

Notifies the receiver that it has been asked to relinquish its status as first responder for its Window. This default version
of the method simply returns self. Responder subclasses can implement their own versions to take whatever action may
be necessary, such as unhighlighting the selection.



By returning self, the receiver accepts the change. By returning nil, the receiver refuses to agree to the change, and
remains the first responder.

A resignFirstResponder message is sent to the current first responder (through Window's makeFirstResponder: method)
when another object is about to be made the new first responder.

becomeFirstResponder, makeFirstResponder: (Window)

rightMouseDown:(NXEvent *)theEvent

Passes the rightMouseDown: event message to the receiver's next responder.

rightMouseDragged:(NXEvent *)theEvent

Passes the rightMouseDragged: event message to the receiver's next responder.

rightMouseUp:(NXEvent *)theEvent

Passes the rightMouseUp: event message to the receiver's next responder.

setNextResponder:aResponder

Makes aResponder the receiver's next responder.

nextResponder

(BOOL)tryToPerform:(SEL)anAction with:anObject

Aids in dispatching action messages. This method checks to see whether the receiving object can respond to the method
selector specified by anAction. If it can, the message is sent with anObject as an argument. Typically, anObject is the
initiator of the action message.

If the receiver can't respond, tryToPerform:with: checks to see whether the receiving object's next responder can. It
continues to follow next responder links up the responder chain until it finds an object that it can send the action message
to, or the chain is exhausted.

Even if the receiver can respond to anAction messages, it can ªrefuseº them by having its implementation of the anAction
method return nil. In this case, the message is passed on to the next responder in the chain.

If successful in finding a receiver that doesn't refuse the message, tryToPerform: returns YES. Otherwise, it returns NO.

This method is used (indirectly, through the sendAction:to:from: method) to dispatch action messages from Control
objects. You'd rarely have reason to use it yourself.

sendAction:to:from: (Application)

validRequestorForSendType:(NXAtom)typeSent
andReturnType:(NXAtom)typeReturned

Implemented by subclasses to determine what services are available at any given time. In order to keep the Services
menu current, the Application object sends validRequestorForSendType:andReturnType: messages to the first responder
with the send and return types for each service method of every service provider. Thus, a Responder may receive this
message many times per event. If the receiving object can place data of type typeSent on the pasteboard and receive data
of type typeReturned back, it should return self otherwise it should return nil. The Application object checks the return
value to determine whether to enable or disable commands in the Services menu.



Responder's implementation of this method simply forwards the message to the next responder, so by default this method
returns nil. Like untargeted action messages, validRequestorForSendType:andReturnType: messages are passed up the
responder chain to the Window, then to the Window's delegate, and finally to the Application object and its delegate,
until an object returns self rather than nil.

typeSent and typeReturned are pasteboard types. They're NXAtoms, so you can compare them to the types your
application can send and receive by comparing pointers rather than comparing strings. Since this method will be invoked
frequently, it must be as efficient as possible.

Either typeSent or typeReturned may be NULL. If typeSent is NULL, the service doesn't require data from the
requesting application. If typeReturned is NULL, the service doesn't return data to the requesting application.

When the user chooses a menu item for a service, a writeSelectionToPasteboard:types: message is sent to the Responder
(if typeSent was not NULL). The Responder writes the requested data to the pasteboard and a remote message is sent to
the service. If the service's typeReturned is not NULL, it places return data on the pasteboard, and the Responder
receives a readSelectionFromPasteboard: message.

The following example demonstrates an implementation of the validRequestorForSendType:andReturnType: method for
an object that can send and receive ASCII text. Pseudocode is in italics.

registerServicesMenuSendTypes:andReturnTypes: (Application), writeSelectionToPasteboard:types: (Application),
readSelectionFromPasteboard: (Application)

write:(NXTypedStream *)stream

Writes the receiving Responder to the typed stream stream. The next responder is not explicitly written. Returns self.

read:


