initFromSection:
initFromPasteboard:
initFromSoundfile:
free

Accessing the Sound name table+ addName:sound:
+ findSoundFor:
+ removeSoundForName:

Accessing the Sound's name setName:
name

Reading and writing sound data readSoundfile:
readSoundFromStream:
writeSoundfile:
writeSound T oStream:
writeT oPasteboard:

Modifying sound data convertToFormat:samplingRate:channel Count:
convertToFormat:
setDataSi ze:dataFormat: samplingRate:
channel Count:infoSize:
setSoundStruct:soundStructSize:
setName:



info

infoSize
ISEmpty
compatibleWith:
processingError

Recording and playing pause
pause:
isPlayable
play
play:
record
record:
resume
resume;
stop
stop:
samplesProcessed
status
soundBeingProcessed
soundStructBeingProcessed

Editing sound dataisEditable
copySamples:at:count:
copySound:
deleteSamples
deleteSamplesAt:count:
InsertSampl es:at:
needsCompacting
compactSamples

Archiving the object finishUnarchiving
read:
write:

Accessing the del egate setDel egate:
delegate
tellDelegate:

Accessing the sound hardware+ getVolume::
+ setVolume:
+ isMuted
+ setMute:



(int)channel Count
Returns the number of channels in the Sound.

(int)compactSamples



\PVYVL ) VUNTIYARTJTCY VLT L. AU UL T

Returns YES if the format, sampling rate, and channel count of aSound's sound data is the same &
receiving this message. If one (or both) of the Sounds doesn't contain a sound (its soundStruct ist
declared compatible and YES is returned.

(int)convertToFormat: (int)newFormat

This is the same as convertToFormat:samplingRate:channel Count:, except that only the format is ¢
IS returned.

(int)convertToFormat: (int)newFormat
samplingRate: (double)newRate
channel Count: (int)newChannel Count

Convert the Sound's data to the given format, sampling rate, and number of channels. The followi
possible:

-Arbitrary sampling rate conversion.

-Compression and decompression.

-Floating- point formats (including double-precision) to and from linear formats.
-Mono to stereo.

-CODEC mu-law to and from linear formats.

An error code is returned.

(int)copy Samples.aSound
at:(int)startSample
count: (int)sampleCount

Replaces the Sound's sampled data with a copy of a portion of aSound's data. The copied portion
startSample'th sample (zero-based) and extends over sampleCount samples. The Sound receiving
editable and the two Sounds must be compatible. If the specified portion of aSound is fragmented
this message will also be fragmented. An error code is returned.

(int)copy Sound:aSound

Replaces the Sound's data with a copy of aSound's data. The Sound receiving this message needr
the two Sounds be compatible. An error code is returned.

(unsigned char *)data

Returns a pointer to the Sound's sampled data. Y ou can use the pointer to examine, create, and mq
intelligently manipulate the data, you need to be aware of its size, format, sampling rate, and the n
it contains (a query method for each of these attributesis provided by the Sound class). The size c
must be respected it's set when the Sound is created or given a new sound (through readSoundfile:



Returns the format of the Sound's data. If the datais fragmented, the format of the samplesis retu
SND_FORMAT _INDIRECT is never returned by this method).

(int)dataSize

Return the size (in bytes) of the Sound's data. If you modify the data (through the pointer returnec
you must be careful not to exceed its length. If the sound is fragmented, the value returned by this
the Sound's soundStruct and doesn't include the actual dataitself.

delegate
Returns the Sound's delegate.

(int)deleteSamples
Deletes al the samplesin the Sound's data. The Sound must be editable. An error codeis returne

(int)del eteSampl esAt: (int)startSampl e count: (int)sampleCount

Deletes arange of samples from the Sound: sampleCount samples are deleted starting with the ste
(zero-based). The Sound must be editable and may become fragmented. An error code is returnec

(double)duration
Returns the Sound's length in seconds.

finishUnarchiving

Y ou never invoke this method. It's invoked automatically by the read: method to tie up loose end:s
Sound.

free

Frees the Sound and deallocates its sound data. The Sound is removed from the named Sound tabl
eligible for reuse.

(char *)info
Returns a pointer to the Sound's info string.



nntrivltiry@rcolovvud .\ moolcova u - )uiclrvua u

Initializes the Sound instance, which must be newly allocated, by copying the sound data from the
thePboard. (A Pasteboard can have only one sound entry at atime.) Returns self (an unnamed So
currently contains a sound entry otherwise, frees the newly allocated Sound and returns nil.

initFromSection:(const char *)sectionName

Initializes the Sound instance, which must be newly allocated, by copying the sound data from sec
sound segment of the application's executablefile. If the section isn't found, the object looks for
sectionName in the same directory as the application's executable. Returns self (an unnamed Sou
was successfully copied otherwise, frees the newly allocated Sound and returns nil.

initFromSoundfile:(const char *)filename

Initializes the Sound instance, which must be newly allocated, from the soundfile filename. Retut
Sound) if the file was successfully read otherwise, frees the newly alocated Sound and returns nil.

(int)insertSamples.aSound at:(int)startSample

Pastes the sound data in aSound into the Sound receiving this message, starting at the receiving Sc
sample (zero-based). The receiving Sound doesn't lose any of its original sound databthe sample
to startSample are moved to accommodate the inserted sound data. The receiving Sound must be ¢
Sounds must be compatible (as determined by isCompatible:). If the method is successful, the reci
fragmented. An error codeis returned.

(BOOL)isEditable
Returns YES if the Sound's format indicates that it can be edited, otherwise returns NO.

(BOOL)isEmpty

Returns YES if the Sound doesn't contain any sound data, otherwise returns NO. This always rett
isn't editable (as determined by sending it the isEditable message).

(BOOL)isPlayable

Returns YES if the Sound can be played, otherwise returns NO. Some unplayable Sounds just nee
another format, sampling rate, or number of channels others are inherently unplayable, such astho



(BOOL )needsCompacting
Returns YES if the Sound's datais fragmented. Otherwise returns NO.

(int)pause
Pauses the Sound during recording or playback. An error codeis returned.

pause:sender

Action method that pauses the Sound. Other than the argument and the return type, thisis the sam
Returns self.

(int)play
Initiates playback of the Sound. The method returns immediately while the playback continues as
background. The playback ends when the Sound receives the stop message, or when its datais exl

When playback starts, willPlay: is sent to the Sound's delegate when it stops, didPlay: issent. An

play:sender

Action method that plays the Sound. Other than the argument and the return type, thisis the same
Returns self.

(int)processingError

Returns a constant that represents the last error that was generated. The sound error codes are liste
Constants.®

read:(NX TypedStream *)stream
Reads archived sound data from stream into the Sound. Returns self.

(int)readSoundfile:(const char *)filename

Replaces the Sound's contents with those of the soundfile filename. The Sound loses its current ni
code isreturned.



(int)record

Initiate recording into the Sound. To record from the CODEC microphone, the Sound's format, s¢
channel count must be SND_FORMAT_MULAW _8, SND RATE_CODEC, and 1, respectlvely
set (if the Sound is a newly created object, for example), it defaults to accommodate a CODEC rec
format isSND_FORMAT_DSP_DATA_16, therecording is from the DSP.

The method returns immediately while the recording continues asynchronously in the background.
when the Sound receives the stop message or when the recording has gone on for the duration of tt
The default CODEC recording lasts precisely ten minutes if not stopped. To record for alonger tit
size of the sound data with setSoundStruct:soundStructSize: or setDataSi ze:dataFormat:samplingR
infoSize:.

When the recording begins, willRecord: is sent to the Sound's delegate when the recording stops, ¢
An error code is returned.

record:sender

Action method that initiates arecording. Other than the argument and return type, thisis the same
Returns self.

(int)resume
Resumes the paused Sound's activity. An error code is returned.

resume:sender
Action method that resumes the paused Sound. Returns self.

(int)sampleCount
Returns the number of sample frames, or channel count-independent samples, in the Sound.

(int)samplesProcessed

If the Sound is currently playing or recording, this returns the number of sample frames that have |
so far. Otherwise, the number of sample framesin the Sound is returned. If the sample frame cou
1 isreturned.

(double)samplingRate



Allocates new, unfragmented sound data for the Sound, as described by the arguments. The Sounc
freed. Thismethod is useful for setting a determinate data length prior to arecording or for creatir
algorithmic sound creation. An error code is returned.

setDel egate:anObject
Sets the Sound's delegate to anObject. The delegate may implement the following methods:

willPlay:
-didPlay:
-willRecord:
-didRecord:
-hadError:

Returns sdif.

setName:(const char *)aName

Sets the Sound's name to aName. If aName is already being used, then the Sound's nameisn't set
otherwise returns self.

setSoundStruct:(SNDSoundStruct *)aStruct soundStructSize:(int)size

Sets the Sound's sound structure to aStruct. The size in bytes of the new structure, including its sc
be specified by size. This method can be used to set up alarge buffer before recording into an exi:
the existing soundStruct in the first argument while making size larger than the current size. (The
minutes of CODEC sound.) The method is also useful in cases where aStruct already has sound d:
encapsulated in a Sound object yet. The Sound's status must be NX_Soundlnitialized or NX_Soul
method to do anything. Returns self.

soundBeingProcessed
Returns the Sound object that's being performed. The default implementation always returns self.

(SNDSoundStruct *)soundStruct
Returns a pointer to the Sound's SNDSoundStruct structure that holds the object's sound data.

(SND SoundStruct *)soundStructBei ngProcessed

Returns a pointer to the SNDSoundStruct structure that's being performed. This may not be the se
returned by the soundStruct methodbSound object's contain a private sound structure that may be
playing. If the Sound isn't currently playing or recording, then thiswill return the public structure



(int)status
Return the Sound's current status, one of the following integer constants:

‘NX_SoundStopped
‘NX_SoundRecording
‘NX_SoundPlaying
‘NX_Soundinitialized

‘N X_SoundRecordingPaused
‘NX_SoundPlayingPaused
‘NX_SoundRecordingPending
-NX_SoundPlayingPending
‘NX_SoundFreed

(int)stop

Terminates the Sound's playback or recording. If the Sound was recording, the didRecord: messa
delegateif playing, didPlay: issent. Anerror codeis returned.

stop:sender

Action method that stops the Sound's playback or recording. Other than the argument and the rett
asthe stop method. Returns self.

tellDelegate: (SEL )theM essage

Sends theM essage to the Sound's delegate (only sent if the delegate implements theMessage). Yo
method directly it's invoked automatically as the result of activities such as recording and playing.
it in designing a subclass of Sound. Returns self.

write:(NXTypedStream *)stream
Archives the Sound by writing its data to stream, which must be open for writing. Returns self.

(int)writeSoundfile:(const char *)filename
Writes the Sound's contents (its SNDSoundStruct and sound data) to the soundfile filename. An e

writeSoundToStream: (N X Stream * )stream

Writes the Sound's name (if any), priority, SNDSoundStruct, and sound data (if any) to the NXStr
self.



didPlay:sender
Sent to the delegate when the Sound stops playing.

didRecord:sender
Sent to the delegate when the Sound stops recording.

hadError:sender
Sent to the delegate if an error occurs during recording or playback.

willPlay:sender
Sent to the delegate when the Sound beginsto play.

willRecord:sender
Sent to the del egate when the Sound begins to record.



