free

Setting the next responder setNextResponder:
nextResponder

Determining the first responder acceptsFirstResponder
becomeFirstResponder
resignFirstResponder

Aiding event processing performKeyEquivalent:
tryToPerform:with:

Forwarding event messages mouseDown:
rightMouseDown:
mouseDragged:
rightM ouseDragged:
mouseUp:
rightM ouseUp:
mouseM oved:
mouseEntered:
mouseExited:
keyDown:
keyUp:
flagsChanged:
noResponderFor:

Services menu support validRequestorForSendType:andReturnType:

Help menu support hel pRequested:

Archiving read:
write:

(BOOL )acceptsFirstResponder
Returns NO to indicate that, by default, a Responder doesn't agree to become the first responder.
Before making any object the first responder, the Application Kit givesit an opportunity to refuse by sending it an



TUlUitio Ul TALIJUIT UL SUVUTICGOOLO VAT TTTHIPEUTTICHIL LTTIGT UVVTT VUL S UTHO LU LUV VVicaLv ol GoLtivit icy

highlighting the selection.

By returning self, the receiver accepts being made the first responder. A Responder can refuseto |
responder by returning nil.

becomeFirstResponder messages are initiated by the Window object (through its makeFirstRespor
response to mouse-down events.

resignFirstResponder, makeFirstResponder: (Window)

flagsChanged:(NXEvent *)theEvent
Passes the flagsChanged: event message to the receiver's next responder.

free
Frees the space used by a Responder instance and removes it from the hash table used to locate hel

hel pRequested: (NX Event *)eventPtr

Invoked by a Window instance when the user has clicked for help. The Window instance sends thi
responder. The receiver showsits help pandl if it has one, and if not forwards the message to ther
IS no next responder to respond, the method executes NXBeep(). Y our application should never in
directly. Returns self.

keyDown:(NXEvent *)theEvent
Passes the keyDown: event message to the receiver's next responder.

keyUp:(NXEvent *)theEvent
Passes the keyUp: event message to the recelver's next responder.

mouseDown:(NXEvent *)theEvent
Passes the mouseDown: event message to the receiver's next responder.

mouseDragged:(NXEvent *)theEvent
Passes the mouseDragged: event message to the receiver's next responder.



mouseM oved:(NX Event *)theEvent
Passes the mouseMoved: event message to the receiver's next responder.

mouseUp:(NXEvent *)theEvent
Passes the mouseUp: event message to the receiver's next responder.

nextResponder
Returns the receiver's next responder.
setNextResponder:

noResponderFor:(const char *)eventType

Responds to an event message that has reached the end of the responder chain without finding an c
When the event is a key down, noResponderFor: generates a beep.

(BOOL )performKeyEquivalent:(NX Event *)theEvent

Returns NO to indicate that, by default, the Responder doesn't have a key equivalent and can't res
events as keyboard alternatives.

The Responder class implements this method so that any object that inherits from it can be asked t
performKeyEquivalent: message. Subclasses that define objects with key equivalents must impler
of performKeyEquivalent:. If the key in theEvent matches the receiver's key equivalent, it should
and return YES.

performKeyEquivalent: (View and Button)

read:(NXTypedStream *)stream
Reads the Responder from the typed stream stream. Returns self.
write:

resignFirstResponder

Notifies the receiver that it has been asked to relinquish its status as first responder for its Window
of the method ssimply returns self. Responder subclasses can implement their own versions to take
be necessary, such as unhighlighting the selection.



rightMouseDown:(NXEvent *)theEvent
Passes the rightM ouseDown: event message to the receiver's next responder.

rightMouseDragged: (NXEvent * )theEvent
Passes the rightM ouseDragged: event message to the receiver's next responder.

rightMouseUp: (NXEvent *)theEvent
Passes the rightM ouseUp: event message to the receiver's next responder.

setNextResponder:aResponder
Makes aResponder the receiver's next responder.
nextResponder

(BOOL)tryToPerform:(SEL )anAction with:anObject

Aidsin dispatching action messages. This method checks to see whether the receiving object can
selector specified by anAction. If it can, the message is sent with anObject as an argument. Typic
initiator of the action message.

If the receiver can't respond, tryToPerform:with: checks to see whether the receiving object's next
continues to follow next responder links up the responder chain until it finds an object that it can s
to, or the chain is exhausted.

Even if the recelver can respond to anAction messages, it can &efuse® them by having its impleme
method return nil. In this case, the message is passed on to the next responder in the chain.

If successful in finding areceiver that doesn't refuse the message, tryToPerform: returns YES. Ot

This method is used (indirectly, through the sendA ction:to:from: method) to dispatch action messe
objects. You'd rarely have reason to use it yourself.

sendAction:to:from: (Application)

validRequestorForSendType: (NXAtom)typeSent
andReturnType:(NXAtom)typeReturned

Implemented by subclasses to determine what services are available at any giventime. In order to
menu current, the Application object sends validRequestorForSendType:andReturnType: message
with the send and return types for each service method of every service provider. Thus, a Responc
message many times per event. If the receiving object can place data of type typeSent on the paste
of type typeReturned back, it should return self otherwise it should return nil. The Application obj
value to determine whether to enable or disable commands in the Services menu.



When the user chooses a menu item for a service, a writeSel ectionToPasteboard:types. messageis
(if typeSent was not NULL). The Responder writes the requested data to the pasteboard and aren

the service. If the service's typeReturned isnot NULL, it places return data on the pasteboard, anc
receives a readSel ectionFromPasteboard: message.

The following example demonstrates an implementation of the validRequestorForSendType:andR
an object that can send and receive ASCI I text. Pseudocodeisinitalics.

registerServicesM enuSendTypes.andReturnTypes: (Application), writeSelectionToPasteboard:ty
readSel ectionFromPasteboard: (Application)

write:(NXTypedStream *)stream

Writes the receiving Responder to the typed stream stream. The next responder is not explicitly w
read:



