
Copyright ã1996 by NeXT Software, Inc.    All Rights Reserved.

;F_ToDo_MgmtByDelegation.rtfd;;¬ Previous Section    ;H_ToDo_Subclass2.rtfd;;¬ Next Section

4. To Do Tutorial

Managing the Data and Coordinating its Display
(ToDoDoc)

If you recall the discussion on To Do's design earlier in this chapter, you'll remember that the application's real
data consists of instances of the model class, ToDoItem. To Do stores these objects in arrays and stores the
arrays in a dictionary; it uses dates as the keys for accessing specific arrays. (Both the dictionary and its
arrays are mutable, of course.) You might also recall that this design depends on a positional correspondence
between the text fields of the document interface and the ªslotsº of the arrays.

To lend clarity to this design's implementation, this section follows the process from start to finish through
which the ToDoDoc class handles entered data, and organizes, displays, and stores it. It also shows how the
display and manipulation of data is driven by the selections made in the CalendarMatrix object.

Start by revisiting a portion of code you wrote earlier for ToDoDoc's initWithFile: method.

- initWithFile:(NSString *)aFile
{
 /* ... */
 if (aFile) {
 activeDays = [NSUnarchiver unarchiveObjectWithFile:aFile];
 if (activeDays)
 activeDays = [activeDays retain];
 else
 NSRunAlertPanel(@"To Do", @"Couldn't unarchive file %@",
 nil, nil, nil, aFile);

 } else {
 activeDays = [[NSMutableDictionary alloc] init];
 [self setCurrentItems:nil];
 }
/* ... */
}

Assume the user has chosen the New command from the Document menu. Since there is no archive file (aFile
is nil), the activeDays dictionary is created but is left empty. Then initWithFile: invokes its own setCurrentItems:
method, passing in nil.

1 Set the current items or, if necessary, create and prepare the array that holds them.

Implement setCurrentItems:.

- (void)setCurrentItems:(NSMutableArray *)newItems
{
 if (currentItems) [currentItems autorelease];

 if (newItems)
 currentItems = [newItems mutableCopy];
 else {
 int numRows = [[itemMatrix cells] count];
 currentItems = [[NSMutableArray alloc]
 initWithCapacity:numRows];
 while (--numRows >= 0)
 [currentItems addObject:@""];
 }
}

This ªsetº accessor method is like other such methods, except in how it handles a nil argument. In this case,

nil signifies that the array does not exist, and so it must be created. Not only does setCurrentItems: create the
array, but it ªinitializesº it with empty string objects. It does this because NSMutableArray's methods cannot
tolerate nil objects within the bounds of the array.

So there's now a currentItems array ready to accept ToDoItems. Imagine yourself using the application. What
are the user events that cause a ToDoItem to be added to the currentItems array? To Do allows entry of items
ªon the fly,º and thus does not require the user to click a button to add a ToDoItem to the array. Specifically,
items are added when users type something and then:

SquareBullet.eps ¬ Press the Tab key.
953169_SquareBullet.eps ¬ Press the Enter key.
75306_SquareBullet.eps ¬ Click outside the text field.

The controlTextDidEndEditing: delegation method makes these scenarios possible. The matrix of editable text
fields (itemMatrix) invokes this method when the cursor leaves a text field that has been edited.

2 As items are entered in the interface, add ToDoItems to internal storage,
delete them, or modify them, as appropriate.

Implement controlTextDidEndEditing:.

- (void)controlTextDidEndEditing:(NSNotification *)notif
{
 id curItem, newItem;
 int row = [itemMatrix selectedRow];
 NSString *selName = [[itemMatrix selectedCell] stringValue];
/* 1 */
 if (![[itemMatrix window] isDocumentEdited] ||
 (row >= [currentItems count])) return;
 if (!currentItems)
 [self setCurrentItems:nil];
/* 2 */

 if ([selName isEqualToString:@""] &&
 ([[currentItems objectAtIndex:row] isKindOfClass:
 [ToDoItem class]]) &&
 (![[[currentItems objectAtIndex:row] itemName]
 isEqualToString:@""]))
 [currentItems replaceObjectAtIndex:row withObject:@""];
/* 3 */
 else if ([[currentItems objectAtIndex:row] isKindOfClass:
 [ToDoItem class]] &&
 (![[[currentItems objectAtIndex:row] itemName]
 isEqualToString:selName]))
 [[currentItems objectAtIndex:row] setItemName:selName];
/* 4 */
 else if (![selName isEqualToString:@""]) {
 newItem = [[ToDoItem alloc] initWithName:selName
 andDate:[calendar selectedDay]];
 [currentItems replaceObjectAtIndex:row withObject:newItem];
 [newItem release];
 }
/* 5 */
 [self updateMatrix];
}

A control sends controlTextDidEndEditing: to its delegate when the cursor leaves a text field. In addition to
creating new ToDoItems, this implementation of controlTextDidEndEditing: removes ToDoItems from arrays and
modifies item text. What it does is appropriate to what the user does.

1. If the document hasn't been edited (see controlTextDidChange:) or if the selected row exceeds the array
bounds, it returns because there's no reason to proceed. It initializes a currentItems array if one doesn't
exist.

2. If the user deletes the text of an existing item, it removes the ToDoItem that positionally corresponds to
the row of that deleted text.

3. It changes the name of an item if the text entered in a field doesn't match the name of the corresponding
item in the currentItems array.

4. If either of the two previous conditions don't apply, and text has been entered, it creates a new ToDoItem
and inserts it in the currentItems array.

5. Updates the list of items in the document interface.

3 Update the document interface with the current items.

Implement updateMatrix:.

- (void)updateMatrix
{
 int i, cnt = [currentItems count], rows = [[itemMatrix cells] count];
 ToDoItem *thisItem;

 for (i=0; i<cnt, i<rows; i++) {
 NSDate *due;
 thisItem = [currentItems objectAtIndex:i];
 if ([thisItem isKindOfClass:[ToDoItem class]]) { /* 1 */
 if ([thisItem secsUntilDue])
 due = [[thisItem day] addTimeInterval:
 [thisItem secsUntilDue]];
 else
 due = nil;
 [[itemMatrix cellAtRow:i column:0] setStringValue:
 [thisItem itemName]];

 [[markMatrix cellAtRow:i column:0] setTimeDue:due];
 [[markMatrix cellAtRow:i column:0] setTriState:
 [thisItem itemStatus]];
 }
 else { /* 2 */
 [[itemMatrix cellAtRow:i column:0] setStringValue:@""];
 [[markMatrix cellAtRow:i column:0] setTitle:@""];
 [[markMatrix cellAtRow:i column:0] setImage:nil];
 }
 }
}

The updateMatrix method writes the names of the items (ToDoItems) in the currentItems array to the text fields
of itemMatrix. It also updates the visual appearance of the cells in the matrix (markMatrix) next to itemMatrix.
These cells are instances of a custom subclass of NSButtonCell that you will create later in this tutorial. For
now, just type all the code above; later, when you create the cell class, ToDoCell, you can refer back to this
example to see what is happening.

Basically, this method cycles through the array of items, doing the following:

1. If an object in the array is a ToDoItem, it writes the item name to the text field corresponding to the array
slot and updates the button cell next to the field.

2. If an object isn't a ToDoItem, it blanks the corresponding text field and cell.

4 Respond to user actions in the calendar.

Implement CalendarMatrix's delegation methods.

- (void)calendarMatrix:(CalendarMatrix *)matrix /* 1 */
 didChangeToDate:(NSDate *)date
{

 [[itemMatrix window] makeFirstResponder:[itemMatrix window]];
 [self saveDocItems];

 [self setCurrentItems:[activeDays objectForKey:date]];
 [dayLabel setStringValue:[date descriptionWithCalendarFormat:
 @"To Do on %a %B %d %Y" timeZone:[NSTimeZone defaultTimeZone]
 locale:nil]];
 [self updateMatrix];
}

- (void)calendarMatrix:(CalendarMatrix *)matrix€ /* 2 */
 didChangeToMonth:(int)mo year:(int)yr
{
 [self saveDocItems];
 [self setCurrentItems:nil];
 [self updateMatrix];
}

As you recall, CalendarMatrix declared two methods to allow delegates to ªhook intoº its behavior. Its delegate
for this application is ToDoDoc.

1. The calendar sends calendarMatrix:didChangeToDate: when users click a new day of the month. This
implementation saves the current items to the activeDays dictionary. It then sets the current items to be
those corresponding to the selected date (if there are no items for that date, the objectForKey: message
returns nil and the currentItems array is initialized with empty strings). Finally it updates the matrix with
the new data.

2. The calendar sends calendarMatrix:didChangeToMonth:year: when users go to a new month and
(possibly) a new year. This implementation responds by saving the current items to internal storage and
presenting a blank list of items.

5 Save the data to internal storage.

Implement saveDocItems:.

- (void)saveDocItems
{
 ToDoItem *anItem;
 int i, cnt = [currentItems count];
 // save day's current items (array) to document dictionary
 for (i=0; i<cnt; i++) {
 if ((anItem = [currentItems objectAtIndex:i]) &&
 ([anItem isKindOfClass:[ToDoItem class]])) {
 [activeDays setObject:currentItems forKey:
 [anItem day]];
 break;
 }
 }
}

This method inspects the currentItems array and, if it contains at least one ToDoItem, puts the array in the
activeDays dictionary with a key corresponding to the date.

6 Archive and unarchive the document's data.

Implement encodeWithCoder: and initWithCoder: to archive and
unarchive the dictionary holding the arrays of ToDoItems.

Now that you've completed the methods for saving and archiving the collection objects holding ToDoItems,
assume that the user has saved his document and then opens it.

7 Perform set-up tasks when the document's nib file is unarchived.

Implement awakeFromNib as shown below.

- (void)awakeFromNib
{
 int i;
 NSDate *date;

 date = [calendar selectedDay];
 [self setCurrentItems:[activeDays objectForKey:date]];
 /* set up self as delegates */
 [[itemMatrix window] setDelegate:self];
 [itemMatrix setDelegate:self];
 [[itemMatrix window] makeKeyAndOrderFront:self];
}

When the ToDoDoc.nib file is completely unarchived, awakeFromNib is invoked. It sets the current items for
today, sets a couple of delegates, and puts the document window in front of all other windows.

Note: This method sets some delegates programmatically, which is redundant since you set these delegates in
Interface Builder. However, this code demonstrates the programmatic routeÐand no harm done.

8 Set up the document once it's created or opened.

Implement activateDoc as shown below.

- (void)activateDoc
{
 if ([currentItems count]) [self updateMatrix];
 [dayLabel setStringValue:[[calendar selectedDay]
 descriptionWithCalendarFormat:@"To Do on %a %B %d %Y"
 timeZone:[NSTimeZone defaultTimeZone] locale:nil]];
}

The activateDoc method is invoked right after a ToDo document is created or opened. It starts the ball rolling by
updating the list matrices of the document and writing the current date to the ªTo Do on <date>º label.

