






changeSpelling:
NXIgnoreMisspelledWords spellDocumentTag
NXReadOnlyTextStream openTextStream

seekToCharacterAt:relativeTo:
readCharacters:count:
currentCharacterOffset
isAtEOTS
closeTextStream

NXSelectText selectCharactersFrom:to:
selectionCharacterCount
readCharactersFromSelection:count:
makeSelectionVisible

initFrame:



initFrame:text:alignment:
Freeing a Text object free
Modifying the frame rectangle setMaxSize:

getMaxSize:
setMinSize:
getMinSize:
setVertResizable:
isVertResizable
setHorizResizable:
isHorizResizable
sizeTo::
sizeToFit
resizeText::
moveTo::

Laying out the text setMarginLeft:right:top:bottom:
getMarginLeft:right:top:bottom:
getMinWidth:minHeight:maxWidth:maxHeight:
setAlignment:
alignment
alignSelLeft:
alignSelCenter:
alignSelRight:
setSelProp:to:
changeTabStopAt:to:
calcLine
setCharWrap:
charWrap
setNoWrap
setParaStyle:
defaultParaStyle
calcParagraphStyle::
setLineHeight:
lineHeight
setDescentLine:
descentLine

Reporting line and position
positionFromLine:
offsetFromPosition:
positionFromOffset:

Setting, reading, and writing the text
setText:
readText:
startReadingRichText
readRichText:
readRichText:atPosition:
readRTFDFrom:
finishReadingRichText
openRTFDFrom:
saveRTFDTo:removeBackup:errorHandler:
writeText:
writeRichText:
writeRichText:from:to:
writeRTFDSelectionTo:
writeRTFDTo:
stream
firstTextBlock
getParagraph:start:end:rect:
getSubstring:start:length:
byteLength
charLength
textLength

Setting editability setEditable:
isEditable



Allowing multiple fonts and paragraph styles
setMonoFont:
isMonoFont

Editing the text copy:
copyFont:
copyRuler:
paste:
pasteFont:
pasteRuler:
cut:
delete:
clear:
selectAll:
selectText:

Managing the selection subscript:
superscript:
unscript:
underline:
showCaret
hideCaret
setSelectable:
isSelectable
selectError
selectNull
setSel::
getSel::
replaceSel:
replaceSel:length:
replaceSel:length:runs:
replaceSelWithRichText:
replaceSelWithRTFD:
scrollSelToVisible

Setting the font setFontPanelEnabled:
isFontPanelEnabled
changeFont:
setFont:
font
setFont:paraStyle:
setSelFont:
setSelFontFamily:
setSelFontSize:
setSelFontStyle:
setSelFont:paraStyle:

Checking spelling checkSpelling:
showGuessPanel:

Managing the ruler toggleRuler:
isRulerVisible

Finding text findText:ignoreCase:backwards:wrap:
Modifying graphic attributes setBackgroundGray:

backgroundGray
setBackgroundColor:
backgroundColor
setSelGray:
selGray
runGray:
setSelColor:
selColor
runColor:
setTextGray:
textGray
setTextColor:
textColor



Reusing a Text object renewFont:text:frame:tag:
renewFont:size:style:text:frame:tag:
renewRuns:text:frame:tag:
windowChanged:

Displaying drawSelf::
setRetainedWhileDrawing:
isRetainedWhileDrawing

Assigning a tag setTag:
tag

Handling event messages acceptsFirstResponder
becomeFirstResponder
resignFirstResponder
becomeKeyWindow
resignKeyWindow
mouseDown:
keyDown:
moveCaret:

Handling graphics within the text
+ registerDirective:forClass:
replaceSelWithCell:
setLocation:ofCell:
getLocation:ofCell:
setGraphicsImportEnabled:
isGraphicsImportEnabled

Using the Services menu+ excludeFromServicesMenu:
validRequestorForSendType:andReturnType:
readSelectionFromPasteboard:
writeSelectionToPasteboard:types:

Setting tables and functions setCharFilter:
charFilter
setTextFilter:
textFilter
setBreakTable:
breakTable
setPreSelSmartTable:
preSelSmartTable
setPostSelSmartTable:
postSelSmartTable
setCharCategoryTable:
charCategoryTable
setClickTable:
clickTable
setScanFunc:
scanFunc
setDrawFunc:
drawFunc

Printing adjustPageHeightNew:top:bottom:limit:
Archiving read:

write:
Assigning a delegate setDelegate:

delegate

validRequestorForSendType:andReturnType:, registerServicesMenuSendTypes:andReturnTypes: (Application)



setFont:

replaceSelWithCell:

setLineHeight:, + newFont:size: (Font)

(BOOL)acceptsFirstResponder

Assuming the text is selectable, returns YES to let the Text object become the first responder otherwise, returns NO.
acceptsFirstResponder messages are sent for you you never send them yourself.

setSelectable:, setDelegate:, resignFirstResponder

adjustPageHeightNew:(float *)newBottom
top:(float)oldTop
bottom:(float)oldBottom
limit:(float)bottomLimit

During automatic pagination, this method is performed to help lay a grid of pages over the top-level view being printed.
newBottom is passed in undefined and must be set by this method. oldTop and oldBottom are the current values for the
horizontal strip being created. bottomLimit is the topmost value newBottom can be set to. If this limit is broken, the new
value is ignored. By default, this method tries to prevent the view from being cut in two. All parameters are in the view's
own coordinate system. Returns self.



(int)alignment

Returns a value indicating the default alignment of the text. The returned value is equal to one of these constants:

setAlignment:

alignSelCenter:sender

Sets the paragraph style of one or more paragraphs so that text is centered between the left and right margins. For a plain
Text object, all paragraphs are affected. For a rich Text object, only those paragraphs marked by the selection are
affected. The sending object passes its id as part of the alignSelCenter: message. The text is rewrapped and redrawn.
Returns self.

alignSelLeft:, alignSelRight:, setSelProp:to:, setMonoFont:

alignSelLeft:sender

Sets the paragraph style of one or more paragraphs so that text is aligned to the left margin. For a plain Text object, all
paragraphs are affected. For a rich Text object, only those paragraphs marked by the selection are affected. The sending
object passes its id as part of the alignSelLeft: message. The text is rewrapped and redrawn. Returns self.

alignSelCenter:, alignSelRight:, setSelProp:to:, setMonoFont:

alignSelRight:sender

Sets the paragraph style of one or more paragraphs so that text is aligned to the right margin. For a plain Text object, all
paragraphs are affected. For a rich Text object, only those paragraphs marked by the selection are affected. The sending
object passes its id as part of the alignSelRight: message. The text is rewrapped and redrawn. Returns self.

alignSelCenter:, alignSelLeft:, setSelProp:to:, setMonoFont:

(NXColor)backgroundColor

Returns the color used to draw the text's background on color displays.

setBackgroundGray:, backgroundGray:, setBackgroundColor:, setTextGray:, textGray, setTextColor:, textColor,
setSelGray:, selGray, setSelColor:

(float)backgroundGray

Returns the gray value used to draw the text's background on monochrome displays.

setBackgroundGray:, setBackgroundColor:, backgroundColor, setTextGray:, textGray, setTextColor:, textColor,
setSelGray:, selGray, setSelColor:



becomeFirstResponder

Lets the Text object know that it's becoming the first responder. By default, the Text object always accepts becoming
first responder. becomeFirstResponder messages are sent for you you never send them yourself. Returns self.

setDelegate:, acceptsFirstResponder, selectError

becomeKeyWindow

Activates the caret if it exists. becomeKeyWindow messages are sent by an application's Window object, which, upon
receiving a mouse-down event, sends a becomeKeyWindow message to the first responder. You should never directly
send this message to a Text object. Returns self.

showCaret, hideCaret, becomeKeyWindow (Window)

(const NXFSM *)breakTable

Returns a pointer to the break table, the finite-state machine table that the Text object uses to determine word boundaries.

setBreakTable:

(int)byteLength

Returns the number of bytes used by the characters in the receiving Text object. The number doesn't include the null
terminator (`\0') that getSubstring:start:length: returns if you ask for all the text in a Text object.

In a standard Text object, the number of bytes is equal to the number of characters (thus, this method would return the
same value as charLength or textLength). Subclasses of Text that use more than one byte per character should override
this method to return the number of bytes used to store the text.

charLength, textLength, getSubstring:start:length:

(int)calcLine

Calculates the array of line breaks for the text. The text will then be redrawn if autodisplay is set.

This message should be sent after the Text object's frame is changed. These methods send a calcLine message as part of
their implementation:

initFrame:text:alignment: readText:
read: renewFont:size:style:text:frame:tag:
renewFont:text:frame:tag: setFont:
renewRuns:text:frame:tag: setParaStyle:
setFont:paraStyle: setText:

In addition, if a vertically resizable Text object is the document view of a ScrollView, and the ScrollView is resized, the
Text object receives a calcLine message. Has no significant return value.

readText:, renewRuns:text:frame:tag:

(void *)calcParagraphStyle:fontId :(int)alignment

Recalculates the default paragraph style given the Font's fontId and alignment. The Text object sends this message for
you after its font has been changed you will rarely need to send a calcParagraphStyle:: message directly. Returns a
pointer to an NXTextStyle structure that describes the default style.

defaultParaStyle



changeFont:sender

Changes the font of the selection for a rich Text object. It changes the font for the entire Text object for a plain Text
object. sender must respond to the convertFont: message.

If the Text object's delegate implements the method, it receives a textWillConvert:fromFont:toFont: notification message
for each text run that's about to be converted.

setFontPanelEnabled:

changeTabStopAt:(NXCoord)oldX to:(NXCoord)newX

Moves the tab stop from the receiving Text object's x coordinate oldX to the coordinate newX. For a plain Text object,
all paragraphs are affected. For a rich Text object, only those paragraphs marked by the selection are affected. The text is
rewrapped and redrawn. Returns self.

setMonoFont:, setSelProp:to:

(const unsigned char *)charCategoryTable

Returns a pointer to the character category table, the table that maps ASCII characters to character categories.

setCharCategoryTable:

(NXCharFilterFunc)charFilter

Returns the character filter function, the function that analyzes each character the user enters. By default, this function is
NXEditorFilter().

setCharFilter:

(int)charLength

Returns the number of characters in a Text object. The length doesn't include the null terminator (`\0') that getSubstring:
start:length: returns if you ask for all the text in a Text object. The charLength and textLength methods are identical the
related method byteLength returns the length of the text in bytes, which, depending on the number of bytes used to store a
character, may return a larger value.

byteLength, textLength, getSubstring:start:length:

(BOOL)charWrap

Returns a flag indicating how words whose length exceeds the line length should be treated. If YES, long words are
wrapped on a character basis. If NO, long words are truncated at the boundary of the bodyRect.

setCharWrap:

checkSpelling:sender

Searches for a misspelled word in the text of the receiving Text object. The search starts at the current selection and
continues until it reaches a word suspected of being misspelled or the end of the text. If a word isn't recognized by the
spelling server or listed in the user's local dictionary in ~/.NeXT/LocalDictionary, it's highlighted. A showGuessPanel:
message will then display the Guess panel and allow the user to make a correction or add the word to the local dictionary.
Returns self.

showGuessPanel:



clear:sender

Provided for backward compatibility. Use the delete: method instead.

delete:

(const NXFSM *)clickTable

Returns a pointer to the click table, the finite-state machine table that defines word boundaries for double-click selection.

setClickTable:

copy:sender

Copies the selected text from the Text object to the selection pasteboard. The selection remains unchanged. The
pasteboard receives the text and its corresponding run information. The pasteboard types used are NXAsciiPboardType
and NXRTFPboardType.

The sender passes its id as part of the copy: message. Returns self.

cut:, paste:, delete:, copyFont:, pasteFont:, copyRuler:, pasteRuler:

copyFont:sender

Copies font information for the selected text to the font pasteboard. If the selection spans more than one font, the
information copied is that of the first font in the selection. The selection remains unchanged. The pasteboard type used is
NXFontPboardType.

The sender passes its id as the argument of the copyFont: message. Returns self.

pasteFont:, copyRuler:, pasteRuler:, copy:, cut:, paste:, delete:

copyRuler:sender

Copies ruler information for the paragraph containing the selection to the ruler pasteboard. The selection expands to
paragraph boundaries.

The ruler controls a paragraph's text alignment, tab settings, and indentation. If the selection spans more than one
paragraph, the information copied is that of the first paragraph in the selection. The pasteboard type used is
NXRulerPboardType.

Once copied to the pasteboard, ruler information can be pasted into another object or application that's able to paste RTF
data into its document.

The sender passes its id as the argument of the copyRuler: message. Returns self.

pasteRuler:, copyFont:, pasteFont:, copy:, cut:, paste:, delete:

cut:sender

Copies the selected text to the pasteboard and then deletes it from the Text object. The pasteboard receives the text and
its corresponding font information.

If the Text object's delegate implements the method, it receives a textDidGetKeys:isEmpty: message immediately after
the cut operation. If this is the first change since the Text object became the first responder (and the delegate implements
the method), a textDidChange: message is also sent to the delegate.

The sender passes its id as part of the cut: message. Returns self.



copy:, paste:, delete:, textDidGetKeys:isEmpty:, textDidChange:

(void *)defaultParaStyle

Returns by reference the default paragraph style for the text. The pointer that's returned refers to an NXTextStyle
structure. The fields of this structure contain default paragraph indentation, alignment, line height, descent line, and tab
information. The Text object's default values for these attributes can be altered using methods such as setParaStyle:,
setAlignment:, setLineHeight:, and setDescentLine:.

setParaStyle:, setAlignment:, setLineHeight:, setDescentLine:

delegate

Returns the Text object's delegate.

setDelegate:

delete:sender

Deletes the selection without adding it to the pasteboard. The sender passes its id as part of the delete: message.

If the Text object's delegate implements the method, it receives a textDidGetKeys:isEmpty: message immediately after
the delete operation. If this is the first change since the Text object became the first responder (and the delegate
implements the method), a textDidChange: message is also sent to the delegate.

The delete: method replaces clear:. Returns self.

cut:, copy:, paste:, textDidGetKeys:isEmpty:, textDidChange:

(NXCoord)descentLine

Returns the default descent line for the Text object. The descent line is the distance from the bottom of a line of text to
the base line of the text.

setDescentLine:

(NXTextFunc)drawFunc

Returns the draw function, the function that's called to draw each line of text. NXDrawALine() is the default draw
function.

setDrawFunc:, setScanFunc:

drawSelf:(const NXRect *)rects :(int)rectCount

Draws the Text object. You never send a drawSelf:: message directly, although you may want to override this method to
change the way a Text object draws itself. Returns self.

drawSelf:: (View)

(BOOL)findText:(const char *)string
ignoreCase:(BOOL)ignoreCaseflag
backwards:(BOOL)backwardsflag



wrap:(BOOL)wrapflag

Searches for string in the text, starting at the insertion point. If ignoreCaseflag is YES, the search is case-insensitive. If
backwardsflag is NO, the search proceeds forward through the text. If wrapflag is YES, upon reaching the end of the text,
the search loops back to the start. If the string is found, it's highlighted andÐif the Text object is the document view of a
ScrollViewÐthe selection is scrolled into view. Returns YES, if string is found, NO otherwise.

This method searches for the literal string regular expression substitutions and wildcard characters aren't supported.

finishReadingRichText

Notifies the Text object that it has finished reading RTF data. The Text object responds by sending its delegate a
textWillFinishReadingRichText: message, assuming there is a delegate and it responds to this message. The delegate can
then perform any required cleanup. Alternatively, a subclass of Text could put these cleanup routines in its own
implementation of this method. Returns self.

(NXTextBlock *)firstTextBlock

Returns a pointer to the first text block. You can traverse this head of the linked list of text blocks to read the contents of
the Text object. In most cases, however, it's better to use the getSubstring:start:length: method to get a substring of the
text or the stream method to get read-only access to the entire contents of the Text object.

getSubstring:start:length:, stream

font

Returns the Font object for a plain Text object. For rich Text objects, the Font object for the first text run is returned.

setFont:

free

Releases the storage for a Text object.

free (View)

getLocation:(NXPoint *)origin ofCell:cell

Places the x and y coordinates of cell in the NXPoint structure specified by origin. The coordinates are in the Text
object's coordinate system. cell is a Cell object that's displayed as part of the text.

Returns nil if the Cell object isn't part of the text otherwise, returns self.

replaceSelWithCell:, setLocation:ofCell:, calcCellSize: (Cell)

getMarginLeft:(NXCoord *)leftMargin
right:(NXCoord *)rightMargin
top:(NXCoord *)topMargin
bottom:(NXCoord *)bottomMargin



Calculates the dimensions of the Text object's margins and returns by reference these values in its four arguments.
Returns self.

setMarginLeft:right:top:bottom:

getMaxSize:(NXSize *)theSize

Copies the maximum size of the Text object into the structure referred to by theSize. Returns self.

setMaxSize:, getMinSize:

getMinSize:(NXSize *)theSize

Copies the minimum size of the Text object into the structure referred to by theSize. Returns self.

setMinSize:, getMaxSize:

getMinWidth:(NXCoord *)width
minHeight:(NXCoord *)height
maxWidth:(NXCoord)widthMax
maxHeight:(NXCoord)heightMax

Calculates the minimum width and height needed to contain the text. Given a maximum width and height (widthMax and
heightMax), this method copies the minimum width and height to the addresses pointed to by the width and height
arguments. This method doesn't rewrap the text. To get the absolute minimum dimensions of the text, send a
getMinWidth:minHeight:maxWidth:maxHeight: message only after sending a calcLine message.

The values derived by this method are accurate only if the Text object hasn't been scaled. Returns self.

sizeToFit

getParagraph:(int)prNumber
start:(int *)startPos
end:(int *)endPos
rect:(NXRect *)paragraphRect

Copies the positions of the first and last characters of the specified paragraph to the addresses startPos and endPos. It also
copies the paragraph's bounding rectangle into the structure referred to by paragraphRect. A paragraph ends in a Return
character the first paragraph is paragraph 0, the second is paragraph 1, and so on. Returns self.

getSubstring:start:length:, firstTextBlock

getSel:(NXSelPt *)start :(NXSelPt *)end

Copies the starting and ending character positions of the selection into the addresses referred to by start and end. start
points to the beginning of the selection end points to the end of the selection. Returns self.

setSel::

(int)getSubstring:(char *)buf
start:(int)startPos
length:(int)numChars

Copies a substring of the text to a specified memory location. The substring is specified by startPos and numChars. startPos
is the position of the first character of the substring numChars is the number of characters to be copied. buf is the starting
address of the memory location for the substring. getSubstring:start:length: returns the number of characters actually



copied. This number may be less than numChars if the last character position is less than startPos + numChars. Returns 1
if startPos is beyond the end of the text.

getSubstring:start:length: appends a null terminator (`\0') to the substring only if the requested substring includes the end
of the Text object's text.

textLength, getSel::

hideCaret

Removes the caret from the text. The Text object sends itself hideCaret messages whenever the display of the caret
would be inappropriate you rarely need to send a hideCaret message directly. Occasions when the hideCaret message is
sent include whenever the Text object receives a resignKeyWindow, mouseDown:, or keyDown: message. Returns self.

showCaret

initFrame:(const NXRect *)frameRect

Initializes a new Text object. This method invokes the initFrame:text:alignment: method with the size and location
specified by frameRect. Text alignment is set to NX_LEFTALIGNED. Returns self.

initFrame:text:alignment:

initFrame:(const NXRect *)frameRect
text:(const char *)theText
alignment:(int)mode

Initializes a new Text object. This is the designated initializer for Text objects: If you subclass Text, your subclass's
designated initializer must maintain the initializer chain by sending a message to super to invoke this method. See the
introduction to the class specifications for more information.

The three arguments specify the Text object's frame rectangle, its text, and the alignment of the text. The frameRect
argument specifies the Text object's location and size in its superview's coordinates. A Text object's superview must be
a flipped view that's neither scaled nor rotated. The second argument, theText, is a null-terminated array of characters.
The mode argument determines how the text is drawn with respect to the bodyRect:

initFrame:

(BOOL)isEditable

Returns YES if the text can be edited, NO if not. The default value is YES.

isSelectable, setDelegate:

(BOOL)isFontPanelEnabled

Returns YES if the Text object will respond to the Font panel, NO if not. The default value is YES.



setFontPanelEnabled:

(BOOL)isGraphicsImportEnabled

Returns YES if the Text object will import TIFF and EPS images dragged into it by the user. The default value is NO.

setGraphicsImportEnabled:

(BOOL)isHorizResizable

Returns YES if the text can automatically change size horizontally, NO if not. The default value is NO.

setVertResizable:, isVertResizable, setHorizResizable:

(BOOL)isMonoFont

Returns YES if the Text object permits only one font and paragraph style for its text, NO if not. The default value is
YES.

setMonoFont:

(BOOL)isRetainedWhileDrawing

Returns YES if the Text object automatically changes its window's buffering type from buffered to retained whenever it
redraws itself, NO if not.

setRetainedWhileDrawing:, drawSelf::

(BOOL)isRulerVisible

Returns YES if the ruler is visible in the Text object's superview, a ScrollView otherwise, returns NO.

toggleRuler:

(BOOL)isSelectable

Returns YES if the text can be selected, NO if not. The default value is YES.

isEditable, setDelegate:

(BOOL)isVertResizable

Returns YES if the text can automatically change size vertically, NO if not. The default value is NO.

setVertResizable:, setHorizResizable:, isHorizResizable

keyDown:(NXEvent *)theEvent

Analyzes key-down events received by the Text object. keyDown: first uses the Text object's character filter function to
determine whether the event should be interpreted as a command to move the cursor or as a command to end the Text
object's status as the first responder. If the latter, the Text object's delegate is given an opportunity to prevent the change.



If the event represents a character that should be added to the text, the Text object sets up a modal event loop to process it
along with other key-down events as they're received. The text is redrawn, and then keyDown: notifies the delegate that
the text has changed. This message is sent by the system in response to keyboard events. You never send this message,
though you may want to override it.

setCharFilter:, setDelegate:, getNextEvent:waitFor: (Application)

(int)lineFromPosition:(int)position

Returns the line number that contains the character at position. To get more information about the contents of the Text
object, use the stream returned by the stream method to read the contents of the Text object.

positionFromLine:, stream

(NXCoord)lineHeight

Returns the default line height for the Text object.

setLineHeight:

mouseDown:(NXEvent *)theEvent

Responds to mouse-down events. When a Text object that allows selection receives a mouseDown: message, it tracks
mouse-dragged events and responds by adjusting the selection and autoscrolling, if necessary. You never send this
message, though you may want to override it.

setEditable:, setDelegate:, getNextEvent:waitFor: (Application)

moveCaret:(unsigned short)theKey

Moves the caret either left, right, up, or down if theKey is NX_LEFT, NX_RIGHT, NX_UP, or NX_DOWN. If theKey
isn't one of these four values, the caret doesn't move. Returns self.

keyDown:

moveTo:(NXCoord)x :(NXCoord)y

Moves the origin of the Text object's frame rectangle to (x, y) in its superview's coordinates. Returns self.

moveTo:: (View)

(int)offsetFromPosition:(int)charPosition

Returns the byte offset corresponding to the character position charPosition in the Text object's text. In the standard
software release, where each character is represented by a byte, a character's position and its byte offset are identical.

positionFromOffset:, positionFromLine:, lineFromPosition:

(NXRTFDError)openRTFDFrom:(const char *)path

Opens the RTFD file package specified by path. The last element in the path must be the name of the RTFD
directoryÐfor example, ª/ tmp/MyFile.rtfdºÐnot the name of the RTF document within the directory. On success, the
Text object's contents are replaced with the text and images found in the file package, and the new contents are displayed.



readRTFDFrom:, replaceSelWithRTFD:, writeRTFDSelectionTo:, writeRTFDTo:

paste:sender

Places the contents of the selection pasteboard into the Text object at the position of the current selection. If the selection
is zero-width, the text is inserted at the caret. If the selection has positive width, the selection is replaced by the contents
of the pasteboard. In either case, the text is rewrapped and redrawn.

Before the paste operation, a textDidChange: message is sent to the delegate, assuming that this is the first change since
the Text object became the first responder and that the delegate implements the method. After the paste operation, the
delegate receives a textDidGetKeys:isEmpty: message, if it implements the method.

sender is the id of the sending object. paste: returns nil if the pasteboard can provide neither NXAsciiPboardType nor
NXRTFPboardType format types otherwise, returns self.

copy:, cut:, delete:, copyFont:, copyRuler:, pasteFont:, pasteRuler:, textDidGetKeys:isEmpty:, textDidChange:

pasteFont:sender

Takes font information from the font pasteboard and applies it to the current selection. If the selection is zero-width, only
those characters subsequently entered at the insertion point are affected.

pasteFont: works only with rich Text objects (see setMonoFont:). Attempting to paste a font into a plain Text object
generates a system beep without altering any fonts.

Before the paste operation, a textDidChange: message is sent to the delegate, assuming that this is the first change since
the Text object became the first responder and that the delegate implements the method. After the paste operation, the
delegate receives a textDidGetKeys:isEmpty: message, if it implements the method.

sender is the id of the sending object. After the font is pasted, the text is rewrapped and redrawn. pasteFont: returns nil if
the pasteboard has no data of the type NXFontPboardType otherwise, returns self.

copyFont:, copyRuler:, pasteRuler:, copy:, cut:, delete:, paste:, setMonoFont:, textDidGetKeys:isEmpty:,
textDidChange:

pasteRuler:sender

Takes ruler information from the ruler pasteboard and applies it to the paragraph or paragraphs marked by the current
selection. The ruler controls a paragraph's text alignment, tab settings, and indentation.

pasteRuler: works only with rich Text objects (see setMonoFont:). Attempting to paste a ruler into a plain Text object
generates a system beep without altering any ruler settings.

Before the paste operation, a textDidChange: message is sent to the delegate, assuming that this is the first change since
the Text object became the first responder and that the delegate implements the method. After the paste operation, the
delegate receives a textDidGetKeys:isEmpty: message, if it implements the method.

sender is the id of the sending object. After the ruler is pasted, the text is rewrapped and redrawn. If the ruler is visible,
it's also updated. pasteRuler: returns nil if the pasteboard has no data of the type NXRulerPboardType otherwise, returns
self.

copyRuler:, copyFont:, pasteFont:, copy:, cut:, delete:, paste:, setMonoFont:- textDidGetKeys:isEmpty:, -
textDidChange:

(int)positionFromLine:(int)line

Returns the character position of the line numbered line. Each line is terminated by a Return character, and the first line
in a Text object is line 1. To find the length of a line, you can send the positionFromLine: message with two successive
lines, and use the difference of the two to get the line length. To get more information about the contents of the Text
object, use the stream returned by the stream method to read the contents of the Text object.

lineFromPosition:, stream



(int)positionFromOffset:(int)offset

Returns the character position corresponding to a byte offset into the Text object's text. The character position is
determined by counting characters from the beginning of the Text object, with the first character designated as 0. In the
standard software release, where each character is represented by a byte, a character's position and its byte offset are
identical.

offsetFromPosition:, positionFromLine:, lineFromPosition:

(const unsigned char *)postSelSmartTable

Returns a pointer to the table that specifies which characters on the right end of a selection are treated as equivalent to a
space character.

setPostSelSmartTable:, setPreSelSmartTable:, preSelSmartTable

(const unsigned char *)preSelSmartTable

Returns a pointer to the table that specifies which characters on the left end of a selection are treated as equivalent to a
space character.

setPreSelSmartTable:, setPostSelSmartTable:, postSelSmartTable

read:(NXTypedStream *)stream

Reads the Text object in from the typed stream stream. A read: message is sent in response to archiving you never send
this message directly. Returns self.

readRichText:(NXStream *)stream

Reads RTF text from stream into the Text object and formats the text accordingly. The Text object is resized to be large
enough for all the text to be visible. Returns self.

writeRichText:

readRichText:(NXStream *)stream atPosition:(int)position

Reads RTF text from stream into the Text object's text at position and formats the text accordingly. You never send this
message, but may want to override it to read special RTF directives while the Text object is reading RTF data. Returns
self.

readRTFDFrom:(NXStream *)stream

Reads the RTFD data contained in stream. The Text object's contents are replaced with the text and images found in the
stream, and the new contents are displayed. Returns self if the data is successfully read from the stream otherwise, returns
nil.

openRTFDFrom:, replaceSelWithRTFD:, writeRTFDSelectionTo:, writeRTFDTo:



readSelectionFromPasteboard:pboard

Replaces the current selection with data from the supplied Pasteboard object, pboard. When the user chooses a command
in the Services menu, a writeSelectionToPasteboard:types: message is sent to the first responder. This message is
followed by a readSelectionFromPasteboard: message, if the command requires the requesting application to replace its
selection with data from the service provider.

writeSelectionToPasteboard:types:, validRequestorForSendType:andReturnTypes:

readText:(NXStream *)stream

Reads new text into the Text object from stream. All previous text is deleted. The Text object wraps and redraws the new
text if autodisplay is enabled. This method doesn't affect the object's frame or bounds rectangle. To resize the text
rectangle to make the text entirely visible, use the sizeToFit method. Returns self. This method raises an
NX_textBadRead exception if an error occurs while reading from stream.

setSel::, setText:, readRichText:, sizeToFit

renewFont:(const char *)newFontName
size:(float)newFontSize
style:(int)newFontStyle
text:(const char *)newText
frame:(const NXRect *)newFrame
tag:(int)newTag

Resets a Text object so that it can be reused to draw or edit another piece of text. If newText is NULL, the new text is the
same as the previous text. newTag sets the Text object's tag. A font object is created with newFontName, newFontSize,
and newFontStyle. This method is a convenient cover for the renewRuns:text:frame:tag: method. Returns self.

renewRuns:text:frame:tag:, setText:

renewFont:newFontId
text:(const char *)newText
frame:(const NXRect *)newFrame
tag:(int)newTag

Resets a Text object so that it can be reused to draw or edit another piece of text. If newText is NULL, the new text is the
same as the previous text. newTag sets a Text object's tag. This method is a convenient cover for the renewRuns:text:
frame:tag: method. Returns self.

setText:

renewRuns:(NXRunArray *)newRuns
text:(const char *)newText
frame:(const NXRect *)newFrame
tag:(int)newTag

Resets a Text object so that it can be reused to draw or edit another piece of text. If newRuns is NULL, the new text uses
the same runs as the previous text. If newText is NULL, the new text is the same as the previous text. newTag sets a
Text object's tag. Returns self.

setText:

replaceSel:(const char *)aString

Replaces the current selection with text from aString, a null-terminated character string, and then rewraps and redisplays
the text. Returns self.



replaceSel:length:

replaceSel:(const char *)aString length:(int)length

Replaces the current selection with length characters of text from aString, and then rewraps and redisplays the text.
Returns self.

replaceSel:

replaceSel:(const char *)aString
length:(int)length
runs:(NXRunArray *)insertRuns

Replaces the current selection with length characters of text from aString, using insertRuns to describe the run changes.
Another way to replace the selection with multiple-run text is with replaceSelWithRichText:.

After replacing the selection, this method rewraps and redisplays the text. Returns self.

replaceSel:, replaceSelWithRichText:

replaceSelWithCell:cell

Replaces the current selection with the image provided by cell. This method works only with rich Text objects. (See
setMonoFont:.)

The image is treated like a single character. Its height and width are determined by sending the Cell a calcCellSize:
message. The height determines the line height of the line containing the image, and the width sets the character
placement in the line. The image is drawn by sending the Cell a drawSelf:inView: message.

After receiving a replaceSelWithCell: message, a Text object rewraps and redisplays its contents. Returns self.

setMonoFont:,


