
initInStore:
initFromBlock:inStore:
freeFromStore
+ freeFromBlock:inStore:

Retrieving the block and store getBlock:andStore:

freeFromStore

freeFromStore

Removes the receiver's storage from its IXStore and frees the run-time object. A store client's free method simply frees
the run-time object without affecting any data in the IXStore. Returns nil.

free (Object)

getBlock:(unsigned int *)aHandle andStore:(IXStore **)aStore

Returns by reference the handle of the receiver's boot block, and its IXStore. Also returns self.

Since a store client needs to record its boot block handle and its IXStore to function properly, implementing this method
is simply a matter of putting those values into aHandle and aStore.

initFromBlock:(unsigned int)aHandle inStore:(IXStore *)aStore

Initializes the receiver using existing data from the boot block identified by aHandle in aStore. That block should have
been created by a previous invocation of the initInStore: method on the original instance of the store client. The receiver
isn't required to be of the same class as the original creator of the store data, but it must be able to make sense of that data.
Returns self if successful, or nil if the receiver can't be initialized (for example, if aHandle doesn't exist in aStore).

A block handle of zero should be interpreted as a request for the creation of a new store client. This allows the store client
class' implementation of the initInStore: method to simply send initFromBlock:inStore: to self with a block handle of
zero.

To implement this method, simply access the data in aHandle to set up a usable state for the client instance. This may
involve opening other blocks whose handles are stored in the boot block. For example IXBTree implements this method
to read the block at aHandle and to check that the contents of that block form the root node of a BTree.

initInStore:

initInStore:(IXStore *)aStore

Initializes the receiver, creating a new boot block in store. After initialization, the boot block can be used to hold the
receiver's data. That block's handle can be retrieved with getBlock:andStore:. Returns self if successful, or nil if the
receiver can't initialize itself.

To implement this method, simply create a block in aStore, record its handle as the boot block, and store whatever
initialization values your client may need there. If your client needs to use several blocks within aStore, it can also create
those, and store their handles in its boot block. This allows a later instance to retrieve those blocks when it receives an
initFromBlock:inStore: message. For example, IXBTree implements this method by creating a block and formatting it as
the root node of a BTree it creates more blocks only as it needs them.

This method is usually implemented to send initFromBlock:inStore: to self with a block handle of zero, since a block
handle of zero is interpreted as a request to create a new store client.

initFromBlock:inStore:

