
fetchUsingQualifier:empty:

recordLimit



setRecordLimit:
Accessing data

swapRecordAt:withRecordAt:
Saving data

appendRecord

Adds an empty record at the end of the record list by invoking DBRecordList's insertRecordAt: method. Returns the
value returned by insertRecordAt:.

insertRecordAt:, newRecord, deleteRecord, deleteRecordAt:

clear

Resets the DBRecordList. The DBRecordList's record data, list of properties, and list of key properties are emptied. Its
database instance variable is set to nil, but its delegate remains unchanged. Its status is set to DB_NotReady. Returns
self.

empty (DBRecordStream)

(DBRecordListRetrieveMode)currentRetrieveMode

Returns the DBRecordList's retrieve mode, which can be DB_SynchronousStrategy, DB_BackgroundStrategy, or
DB_BackgroundNoBlockingStrategy. See the class description above for more information.

setRetrieveMode:

deleteRecord

Deletes the current record. Returns nil if there's no current record otherwise, returns self.

deleteRecordAt:

deleteRecordAt:(unsigned)index

Deletes the record at position index. Returns nil if there's no record at index otherwise, returns self.



deleteRecord, currentPosition (DBCursorPositioning)

fetchRecordForRecordKey:(DBValue *)aValue

Fetches the record identified by the record key stored in aValue. Typically, this method is used to find data in
DBRecordLists containing related information. For example, suppose one DBRecordList contains employee data and
another contains department data. The department data for a specific employee can be found by first getting the value of
the department number from the employee record (see getRecordKeyValue:at:) and then using it as the argument to
fetchRecordForRecordKey: in a message to the DBRecordList containing department information.

Returns nil if no record has the supplied key value or if an error occurs otherwise, returns self.

fetchUsingQualifier:, fetchUsingQualifier:empty:

fetchUsingQualifier:(DBQualifier *)aQualifier

Invoking this method is equivalent to invoking

fetchUsingQualifier:(DBQualifier *)aQualifier empty:emptyFirst

Loads the DBRecordList with records from the database. Before invoking this method, use setProperties:ofSource: to
specify the source and properties of the data to be retrieved. The scope of the retrieved records is controlled by
aQualifier. For example, assuming the data source is an SQL database, aQualifier could be an object that represents the
expression ªwhere name = `Holbein'º. If aQualifier is nil, all records are retrieved.

If emptyFirst is YES, before loading new data, the method first empties the DBRecordList and its list of properties.
Setting emptyFirst to NO leaves records already fetched in the DBRecordList, and append to them the unique records
retrieved by the current fetch. In that case, the effect of successive invocations with different qualifiers builds in the
DBRecordList the union of the sets returned by the various qualifiers.

Each fetch can be done synchronously or asynchronously, depending on the fetch mode in effect at the time the fetch is
begun (see the class description above for details). If you specify an invalid fetch mode, fetchUsingQualifier:empty:
raises a DB_UNIMPLEMENTED_ERROR exception.

A synchronous fetch is subject to a limit on the total number of records in the DBRecordList, set by setRecordLimit:. If the
number of qualifying records would exceed that limit, the DBRecordList receives that number, and the delegate is sent a
recordStream:willFailForReason: message with the argument DB_RecordLimitReached.

Returns nil if the data can't be selected (for example, if the DBDatabase isn't connected to the database) or if the qualifier
and DBRecordList refer to different entities in the database otherwise, returns self. After fetchUsingQualifier:empty:
returns, the DBRecordList's current record is set to the first record in the list.

cancelFetch, fetchUsingQualifier:, setProperties:ofSource:

free

Releases the storage for the DBRecordList.

getRecordKeyValue:(DBValue *)aValue

Places the value of the current record's key property (or properties) into aValue.

Returns nil if the DBRecordList has status DB_NotReady or if there is no current record otherwise, returns aValue.

getRecordKeyValue:at:



getRecordKeyValue:(DBValue *)aValue at:(unsigned)index

Places the value of the key property (or properties) for the record at index into aValue.

This method is especially useful when data must be exchanged between DBRecordLists. For example, suppose one
DBRecordList supplies employee information and another supplies department information to the user interface of an
application. A user can change an employee's department by selecting from a list of department names. After a department
name is selected, you can use getRecordKeyValue: to determine the corresponding record's key value so that you can set
the department identification in the employee's record.

Returns nil if the DBRecordList has status DB_NotReady or if there is no record at index otherwise, returns aValue.

getRecordKeyValue:

getValue:(DBValue *)aValue forProperty:aProperty

Places the value for the property aProperty of the current record into the DBValue object aValue and returns aValue.

setValue:forProperty:at:, setValue:forProperty, getValue:forProperty:at:

getValue:(DBValue *)aValue
forProperty:aProperty
at:(unsigned)index

Places the value for the property aProperty of the record at position index into aValue and returns aValue. aProperty is an
object that conforms to the DBProperties protocol. Such an object is returned by DBDatabase's propertyNamed: method.
The argument index identifies the record within the DBRecordList and has the range from 0 to the value returned by the
count method.

setValue:forProperty:at:, setValue:forProperty, getValue:forProperty:

init

Initializes a newly allocated DBRecordList. The DBRecordList's delegate instance variable is set to nil, its retrieve
mode is set to DB_SynchronousStrategy, and its cursor (its current record) is set to DB_NoIndex. Returns self.

This method is the designated initializer for DBRecordList.

insertRecordAt:(unsigned)index

Adds a new, empty record to the record list at index. The newly inserted record becomes the current record.

Returns nil if the DBRecordList has a DB_NotReady status or if an error prevents the insertion of the record. Otherwise,
returns self.

appendRecord, deleteRecord, deleteRecordAt:

(BOOL)isModified

Returns YES if any record in the DBrecordList has been modified, added, or deleted NO otherwise.

isModifiedAt:, isModifiedForProperty:at:

(BOOL)isModifiedAt:(unsigned int)index

Returns YES if the record at index is new or has been modified NO otherwise.



isModified, isModifiedAt:for:

(BOOL)isModifiedForProperty:aProperty at:(unsigned int)index

Returns YES if aProperty in the record at index has been modified since the record was added to the DBRecordList or
fetched from the database NO otherwise.

isModified, isModifiedAt:

(BOOL)isNewRecord

Returns YES if the current record is new that is, it the result of the DBRecordList receiving an appendRecord,
insertRecordAt:, or newRecord message.

isNewRecordAt:, isModified

(BOOL)isNewRecordAt:(unsigned int)index

Returns YES if the record at index is new that is, if it was produced by the DBRecordList's receiving an appendRecord,
insertRecordAt:, or newRecord message.

isNewRecord, isModified

moveRecordAt:(unsigned int)sourceIndex to:(unsigned int)destinationIndex

Moves the record at sourceIndex to destinationIndex. Returns nil if there is no record at sourceIndex or if an error
prevents the insertion of the record are destinationIndex otherwise, returns self.

newRecord

Creates a new, empty record by invoking DBRecordList's insertRecordAt: method and passing the index of the current
row as the argument. Before this operation can take place, the DBRecordList attempts to save modifications of the
current record to the database. If these changes can't be saved, newRecord returns nil, and no new record is created.
Otherwise, newRecord returns self, and the new record becomes the current record.

saveModifications

(unsigned int)positionForRecordKey:(DBValue *)aValue

Searches the records in the DBRecordList for the first record whose key value matches aValue. Returns DB_NoIndex if
no such record is found otherwise, returns the index of the matching record.

(unsigned int)recordLimit

Returns the maximum number of records that a fetch can deliver to a DBRecordList (as set by setRecordLimit:). If no
limit has been set, returns DB_NoIndex.

(unsigned int)saveModifications



Saves to the database any changes (additions, deletions, or modifications) that have been made to the list of records. If
the database supports transactions and there's no transaction in progress, this save operation is nested within a new
transaction, called a local transaction. If there is already a transaction in progress for the RecordList's database, the
modification is attempted within that transaction context, without generating a new transaction.

The possible return values from saveModifications are as follows:

areTransactionsEnabled (DBDatabase), beginTransaction (DBDatabase)

setRecordLimit:(unsigned int)count

Makes count the maximum number of records that can be retrieved during a fetch. If a fetch is attempted with a qualifier
that would fetch more than this number of records, the method returns the maximum number permitted but sends a
recordStream:willFailForReason: message to the delegate with the argument DB_RecordLimitReached. Returns self.

setRetrieveMode:(DBRecordListRetrieveMode)aMode

Sets the DBRecordList's retrieve mode, which can be DB_SynchronousStrategy, DB_BackgroundStrategy, or
DB_BackgroundNoBlockingStrategy. See the class description above for more information.

currentRetrieveMode:

setValue:(DBValue *)aValue forProperty:aProperty

Sets the value for aProperty in the current record to that contained in aValue. Returns a nonzero value if successful
otherwise, returns nil.

getValue:forProperty:, setValue:forProperty:at:

setValue:(DBValue *)aValue
forProperty:aProperty
at:(unsigned int)index

Sets the value for aProperty in the record at index to that contained in aValue. Returns a nonzero value if successful
otherwise, returns nil.

getValue:forProperty:, setValue:forProperty

swapRecordAt:(unsigned int)anIndex withRecordAt:(unsigned int)anotherIndex

Transposes the locations of two records. Both arguments must be valid positions in the DBRecordList's sequence of
records. Returns self, but if an argument is invalid, returns nil.


