
(NSArray *)sprockets

This declaration says nothing about who should release the returned array. If the Gadget object returned an instance
variable, it's responsible if the Gadget created an array and returned it, the recipient is responsible. This problem applies
both to objects returned by a method and objects passed in as arguments to a method.

Ideally a body of code should never be concerned with releasing something it didn't create. The Foundation Kit therefore
sets this policy: If you create an object you alone are responsible for releasing it. If you didn't create the object, you don't
own it and shouldn't release it.

When you write a method that creates and returns an object, then, that method is responsible for releasing the object. It's
clearly not fruitful to dispose of an object before the recipient of the object gets it, however. What's needed is a way to
mark an object for later release, so that it will be properly disposed of after the recipient has had a chance to use it. The
Foundation Kit provides just such a method.

(NSArray *)sprockets



(void)setMainSprocket:(Sprocket *)newSprocket

(void)setMainSprocket:(Sprocket *)newSprocket

(void)setMainSprocket:(Sprocket *)newSprocket





1].

containsObject:Find an object by repeatedly sending the array object an objectAtIndex: message, each time
incrementing the index until all objects in the array have been tested.

The division of an interface between primitive and derived methods makes creating subclasses easier. Your subclass must
override inherited primitives, but having done so can be sure that all derived methods that it inherits will operate properly.

The primitive-derived distinction applies to the interface of a fully initialized object. The question of how init... methods
should be handled in a subclass also needs to be addressed.

In general, a cluster's abstract superclass declares a number of init... and + className methods. As described in ªCreating
Instancesº above, the abstract class decides which concrete subclass to instantiate based your choice of init... or +
className method. You can consider that the abstract class declares these methods for the convenience of the subclass.
Since the abstract class has no instance variables, it has no need of initialization methods.

Your subclass should declare its own init... (if it needs to initialize its instance variables) and possibly + className
methods. It should not rely on any of those that it inherits. To maintain its link in the initialization chain, it should invoke
its superclass's designated initializer within its own designated initializer method. (See the NEXTSTEP Object-Oriented
Programming and the Objective C Language manual for a discussion of the designated initializers.) Within a class cluster,
the designated initializer of the abstract superclass is always init.








