
encodeWithCoder:
initWithCoder:

NSObject autorelease
class
conformsToProtocol:



hash
isEqual:
isKindOfClass:
isMemberOfClass:
isProxy
perform:
perform:withObject:
perform:withObject:withObject:
release
respondsToSelector:
retain
retainCount
self
zone

init
+ new
dealloc

Identifying classes+ class
+ superclass

Testing class functionality+ instancesRespondToSelector:
Testing protocol conformance+ conformsToProtocol:
Obtaining method information methodForSelector:

+ instanceMethodForSelector:
methodSignatureForSelector:

Describing objects+ description
description

Posing+ poseAsClass:
Error handling doesNotRecognizeSelector:
Forwarding messages forwardInvocation:
Dynamic loading+ load
Archiving awakeAfterUsingCoder:

classForArchiver
classForCoder
replacementObjectForArchiver
replacementObjectForCoder:
+ setVersion:
+ version

init, + new



init

class (NSObject protocol)

conformsToProtocol:

description



init, class (NSObject protocol)

methodForSelector:

respondsToSelector:, forwardInvocation:



init, + alloc, + allocWithZone:

superclass



awakeAfterUsingCoder:(NSCoder *)aCoder

This method is implemented by subclasses to reinitialize the receiver, providing one last chance for the object to propose
another in its place. The NSObject implementation of this method simply returns self.

This method is necessary because an object (say an instance of a subclass Font) may decide to replace itself after all the
initWithCoder messages have been processed, and the method deciding to replace maybe in the middle of the inheritance
hierarchy (say, Font).

If a replacement takes place, the implementation of awakeAfterUsingCoder: is responsible for releasing the old self.

initWithCoder:(NSCoding protocol)

(Class)classForArchiver

Identifies the class to be used during archiving. NSObject's implementation returns the object returned by classForCoder:
.

(Class)classForCoder

Identifies the class to be used during coding. An NSObject returns its own class by default.

class (NSObject protocol)

(void)dealloc

Deallocates the memory occupied by the receiver. Subsequent messages to the object will generate an error indicating that
a message was sent to a freed object (provided that the freed memory hasn't been reused yet).

You never send a dealloc message directly. Instead, an object's dealloc method is invoked indirectly through the release
method. See the introduction to the Foundation Kit for more details on the use of these methods.

Subclasses must implement their own versions of dealloc to allow the deallocation of any additional memory consumed
by the objectÐsuch as dynamically allocated storage for data, or other objects that are tightly coupled to the freed object
and are of no use without it. After performing the class-specific deallocation, the subclass method should incorporate
superclass versions of dealloc through a message to super:

release (NSObject protocol), autorelease (NSObject protocol)

(NSString *)description

Returns a string object that represents the contents of the receiver. The debugger's print-object command invokes this
method to produce a textual description of an object.

NSObject's implementation of this method simply prints the name of the receiver's class and the hexadecimal value of its
id.

(void)doesNotRecognizeSelector:(SEL)aSelector



Handles aSelector messages that the receiver doesn't recognize. The run-time system invokes this method whenever an
object receives an aSelector message that it can't respond to or forward. This method, in turn, raises an
NSInvalidArgumentException exception, and generates an error message.

doesNotRecognizeSelector: messages are generally sent only by the run-time system. However, they can be used in
program code to prevent a method from being inherited. For example, an NSObject subclass might renounce the copy
method by reimplementing it to include a doesNotRecognizeSelector: message as follows:

forwardInvocation:

(void)forwardInvocation:(NSInvocation *)anInvocation

Implemented by subclasses to forward messages to other objects. When an object is sent a message for which it has no
corresponding method, the run-time system gives the receiver an opportunity to delegate the message to another receiver.
It does this by creating an NSInvocation object representing the message and sending the receiver a forwardInvocation:
message containing this NSInvocation as the argument. The receiver's forwardInvocation: method can then choose to
forward the message to another object. (If the delegated receiver can't respond to the message either, it too will be given a
chance to forward it.)

The forwardInvocation: message thus allows an object to establish relationships with other objects that will, for certain
messages, act on its behalf. The forwarding object is, in a sense, able to ªinheritº some of the characteristics of the object
it forwards the message to.

A forwardInvocation: message is generated only if the message encoded in anInvocation isn't implemented by the
receiving object's class or by any of the classes it inherits from.

An implementation of the forwardInvocation: method has two tasks:

·To locate an object that can respond to the message encoded in anInvocation. This need not be the same object for all
messages.

·To dispatch the message to that object.

In the simple case, in which an object forwards messages to just one destination (such as the hypothetical friend instance
variable in the example below), a forwardInvocation: method could be as simple as this:

doesNotRecognizeSelector:

(unsigned int)hash

Returns an unsigned integer that can be used as a table address in a hash table structure. For NSObject, hash returns a
value based on the object's id. If two objects are equal (as determined by the isEqual: method), they will have the same



hash value.This last point is particularly important if you define hash in a subclass and intend to put instances of that
subclass into a collection.

isEqual: (NSObject protocol)

init

Implemented by subclasses to initialize a new object (the receiver) immediately after memory for it has been allocated.
An init message is generally coupled with an alloc or allocWithZone: message in the same line of code:



(BOOL)isEqual:anObject

Returns YES if the receiver and anObject are equal otherwise returns NO. For NSObject, the id of anObject and the
receiver are compared to determine equality.

(IMP)methodForSelector:(SEL)aSelector

Locates and returns the address of the receiver's implementation of the aSelector method, so that it can be called as a
function. If the receiver is an instance, aSelector should refer to an instance method if the receiver is a class, it should
refer to a class method.

aSelector must be a valid, non-NULL selector. If in doubt, use the respondsToSelector: method to check before passing
the selector to methodForSelector:.

IMP is defined as a pointer to a function that returns an id and takes a variable number of arguments (in addition to the
two ªhiddenº argumentsÐ self and _cmdÐthat are passed to every method implementation):

(NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector

Returns an NSMethodSignature object that contains a description of the aSelector method, or nil if the aSelector method
can't be found. When the receiver is an instance, aSelector should be an instance method when the receiver is a class, it
should be a class method. This method is mostly used in the implementation of protocols.

(id)replacementObjectForArchiver:(NSArchiver *)anArchiver

Allows an object to substitute another object for itself during archiving. NSObject's implementation returns the object
returned by replacementObjectForCoder:.

replacementObjectForCoder:(NSCoder *)encoder



Allows an object to substitute another object for itself during coding. An encoder value of nil indicates that nothing
should be encoded. NSObject's implementation returns self.


