
Copyright ã1996 by NeXT Software, Inc.    All Rights Reserved.

TheFrameworkvs.theLibrary;¬The Framework vs. the Library
Because of their convenience, you'll want to create framework projects instead of library projects in most
cases. However, if the project doesn't use resources and doesn't contain API that is public to your users (for
example, if you distribute an application that uses a private library), you may choose to create a library project
instead. If you need to create a static library (and you shouldn't need to), you must create a library project
instead of a framework.

Creating a library project is very similar to creating a framework project. The tasks described in this chapter
are things you do when you create either type of project. The main differences between creating a library
project and creating a framework project are:

· The name of the binary file. For library projects. The name is libProjectName.MajorVersion.dylib. For
framework projects it is just ProjectName.

· Publishing header files. For framework projects, all header files are public by default. In Library projects,
header files are private by default. To install them so that the library's users may access them, you must
use the File Attributes inspector to mark each header file as public, and you must specify where to install
them using the PUBLIC_HEADER_DIR macro in the file Makefile.preamble.

905775_TableRule.eps ¬

SettingtheSearchPathforFrameworksandLibraries;¬Setting the Search Path for
Frameworks and Libraries
When you link a program with a framework (or library), the framework binary's full path is recorded in the
program executable. By default, a program only looks in that one location for the binary. If it can't find it, the
program won't launch.

To have a program look in more than one location, set the environment variable DYLD_LIBRARY_PATH.
This variable works like the PATH environment variable. For example, if you enter the following commands in

a Terminal window, the Foo application will look for the binary file MyFramework in two locations: the
recorded location and in the directory ~/Library/MyFramework.framework.

% setenv DYLD_LIBRARY_PATH \
~/Library/MyFramework.framework
% Foo.app/Foo

905775_TableRule.eps ¬

MacrosfortheMakefileHacker;¬Macros for the Makefile Hacker
The files Makefile.preamble and Makefile.postamble define several macros that affect frameworks and
libraries. Using these macros, you can change the way a framework or library is built or installed. (See
Chapter 9      ;../../04_BuildingDebugging/09_Building/Building.rtfd;;¬    for a description of the other macros in
these files.)

By default, a framework project builds a bundle named ProjectName.framework with the subdirectories
Headers, Resources, and Versions.Each major version is installed in a subdirectory under Versions along
with its public headers, documentation, and resources in the appropriate subdirectories. Also under Versions
is a subdirectory named Current, which contains links to the latest version. The subdirectories immediately
under ProjectName.framework are really just symbolic links into Current.

A library project creates a binary file named libProjectName.MajorVersion.dylib and a symbolic link to this file
named libProjectName.dylib. Both are installed in /usr/lib. No headers are installed by default.

Makefile.preamble Macros

SECTORDER_FLAGS Arguments to the linker's -sectorder option. See the ld(1) man page for more
information.

OTHER_PUBLIC_HEADERS Header files that should be installed as public other than those marked as
public in the File Attributes inspector.

OTHER_PRIVATE_HEADERS Header files that should be installed as private other than those included in

the project.

PUBLIC_HEADER_DIR Location in which to install public headers. You must define this for library projects if
you want header files to be installed when the library is installed. For frameworks, any header file marked as
public is placed in the Headers subdirectory.

PUBLIC_PRECOMPILED_HEADERS Header files to be precompiled after installation. See ªInstalling a
precompiled headerº in this chapter.    ;InstallingAPrecompiledHeader.rtfd;;¬

PUBLIC_PRECOMPILED_HEADERS_CFLAGS See ªInstalling a precompiled headerº in this chapter. 
  ;InstallingAPrecompiledHeader.rtfd;;¬

PRIVATE_HEADER_DIR Location in which to install private headers, which can be stripped away separately
from your product build image. The default is not to install private headers.

PUBLIC_HEADER_DIR_SUFFIX    Define this macro if a framework or library has a subproject whose public
headers should be installed in a subdirectory of the parent's public header directory. For example, if you
define this macro as /sys, they are installed in Headers/sys.

PRIVATE_HEADER_DIR_SUFFIX    The same as PUBLIC_HEADER_DIR_SUFFIX, but for private headers.

LIBRARY_STYLE If STATIC, builds a static archive library (.a extension) rather than a dynamic shared
library.

BUILD_OFILES_LIST_ONLY If YES, links the object files in the project together but does not call libtool to
create a dynamic shared libraryfrom the object files. This macro is useful if you want to use the modules in
another, larger library project.

Makefile.postamble Macros

CURRENTLY_ACTIVE_VERSION If YES, a symbolic link to the framework's binary file is created in the
directory Versions/Current. If NO, the link is not created. The default is YES. Set this to NO if you want to
install a new version of a framework but you still want projects to link against the previously installed version.

This macro does not affect library projects. Using this macro is the same as checking the current version box
on the Project Attributes inspector.

DEPLOY_WITH_VERSION_NAME This is the same as changing the version name in the Project Attributes
inspector. See ªProviding backward compatibilityº in this chapter.    ;ProvidingBackwardCompatibility.rtfd;;¬

CURRENT_PROJECT_VERSION The minor version number. See ªCURRENT_PROJECT_VERSION: For
That Extra Level of Checkingº in this chapter. 
  ;FrameworksLibrariesConcepts.rtfd;CURRENT_PROJECT_VERSION:ForThatExtraLevelofChecking;¬

COMPATIBILITY_PROJECT_VERSION The compatibility version number. See ªAdding public APIº in this
chapter.    ;AddingPublicAPI.rtfd;;¬

DYLIB_INSTALL_NAME The name of the binary file that is built. The default is
libProjectName.MajorVersion.dylib for library projects, ProjectName for frameworks.

DYLIB_INSTALL_DIR Sets the path recorded in the library's binary file.
$DYLIB_INSTALL_DIR/$DYLIB_INSTALL_NAME is passed as the argument to the -install_name option of
libtool, which is used to set the name recorded in the library file to be something other than its path name.
The default is not to use this option.

LIBRARY_STRIP_OPTS Options to pass to strip for statically linked libraries. You shouldn't have to create a
static library, so you shouldn't have to use this macro.

DYNAMIC_STRIP_OPTS Options to pass to strip for framework projects and dynamic shared libraryprojects.

905775_TableRule.eps ¬

TipsandTrickstoChangingtheMajorVersion;¬Tips and Tricks to Changing the
Major Version
If you don't change the framework's major version number when you need to, programs linked with it will fail
in unpredictable ways. If you change the major version number and you don't need to, you're cluttering up the

system with compatible frameworks. You can avoid errors in changing the major version number if you follow
a few simple tricks.

Don't Do It

The first trick is to avoid having to change the version number in the first place. Some ways to do this are:

· Pad classes and structs with reserved fields. Whenever you add an instance variable to a public class, you
must change the major version number because subclasses depend on a superclass's size. However, you
can pad a class by defining an unused instance variable of type id. Then, if you need to add instance
variables to the class, you can instead define a whole new class containing the storage you need and have
your reserved instance variable point to it.

· Don't publish API unless you want your users to use it. You can freely change private API because you can
be sure no programs are using it. Declare any API in danger of changing in a private header. See ªMaking
a header file privateº in this chapter.    ;MakingAHeaderFilePrivate.rtfd;;¬

· Don't delete things. If a method or function no longer has any useful work to perform, leave it in the API for
compatibility purposes. Make sure it returns some reasonable value. (Even if you add additional arguments
to a method, leave the old form around if at all possible.)

· Remember that if you add API rather than change or delete it, you don't have to change the major version
number because the old API still exists. The exception to this rule is instance variables. (You do have to
change the compatibility version number, however. See ªAdding public APIº in this chapter. 
  ;AddingPublicAPI.rtfd;;¬)

If You Do, Don't Clean It

make clean deletes the entire .framework bundle in the project directory, which means it deletes the old
binaries in addition to the current binary. The subsequent build creates only the current version. You have no
way of retrieving the earlier versions.

If you must perform a make clean, you'll need to create multiple copies of the project: one that builds the

current version, and one for each of the previous versions. The projects that build the previous versions
should set the CURRENTLY_ACTIVE_VERSION macro to NO so that the pointer to the current version is not
changed when these older versions are installed. When you install, you'll need to install all versions.

Verify Whatever You Do

Use cmpdylib to make sure you did the right thing. If cmpdylib says the older library defines symbols that
aren't defined in the newer library, you need to change the major version number. See ªVerifying compatibility
between two librariesº in this chapter.    ;VerifyingCompatibilityBetweenTwoLibraries.rtfd;;¬
ChangingMajorVersion.eps ¬

905775_TableRule.eps ¬

CURRENT_PROJECT_VERSION:ForThatExtraLevelofChecking;¬CURRENT_PR
OJECT_VERSION: For That Extra Level of Checking
In addition to the major version number, and the compatibility version number, a dynamic shared library has a
third version number. This is the minor version number or current version number. You set the current version
number in the macro CURRENT_PROJECT_VERSION, which is in Makefile.postamble.

At the very least, increment CURRENT_PROJECT_VERSION every time you increment
COMPATIBILITY_PROJECT_VERSION. The CURRENT_PROJECT_VERSION stored in a program's
executable is compared with the COMPATIBILITY_PROJECT_VERSION stored in the library's binary file.
The version in the program must be greater than or equal to the version in the library for the program to
launch.

The intent is that you increment CURRENT_PROJECT_VERSION every time you distribute the framework
when you haven't changed or added API. For example, if you fix a bug in the way a method works, you
increment CURRENT_PROJECT_VERSION. Changes involving implementation only are almost always
compatible. Programs linked against older versions of the framework can run against the new version and in
fact are actually intended to run against the new version. Programs linked against the new version can still
run against the old version (even though they will then encounter the bug that you have fixed).

In rare cases, someone may write a program that needs a fix from a certain version of the library. That
program can use the function NSVersionOfRunTimeLibrary() to determine the current version of the library
and take the appropriate action if the version isn't the one it needs: put up an alert panel, disable some
feature of the program, or disable the entire program. Because of these rare cases where a program may
need to check the version number, you should always increment CURRENT_PROJECT_VERSION when you
distribute a new framework.

