init
initCount:

Copying and freeing a List copyFromZone:
free

Manipulating objects by index insertObject:at:
addObject:
removeObjectAt:
removel astObject
replaceObjectAt:with:
objectAt:
lastObject
count

Manipulating objects by id addObject:
addObjectlfAbsent:
removeObject:
replaceObject:with:
indexOf:

Comparing and combining Lists
iIsEqual:
appendList:

Emptying aList empty
freeObjects

Sending messages to the objects

makeObjectsPerform:

makeObjectsPerform:with:
Managing the storage capacity capacity

setAvailableCapacity:
Archiving read:

write:



addODbj ectIf Absent:anObj ect

Inserts anObject at the end of the List and returns self, provided that anObject isn't already in the L
the List, it won't be inserted, but self is still returned.

If anObject is nil, nothing isinserted and nil is returned.
insertObject:at:

appendList:(List *)otherList

Inserts all the objectsin otherList at the end of the receiving List, and returns self. The ordering of
mai ntai ned.

addObject:

(unsigned int)capacity

Returns the maximum number of objects that can be stored in the List without allocating more mel
memory is alocated, it's taken from the same zone that was specified when the List was created.

count, setAvailableCapacity:

copyFromZone:(NXZone *)zone

Returns anew List object with the same contents as the receiver. The objectsin the List aren't coy
Lists contain pointers to the same set of objects. Memory for the new List is allocated from zone.

copy (Object)

(unsigned int)count
Returns the number of objects currently in the List.

capacity

empty
Emptiesthe List of al its objects without freeing them, and returns self. The current capacity of tt
freeObjects

free

Deallocates the List object and the memory it allocated for the array of object ids. However, the o
freed.



empty

(unsigned int)indexOf:anObject
Returns the index of the first occurrence of anObject in the List, or NX_NOT IN_LIST if anObje

init
Initializes the receiver, anew List object, but doesn't allocate any memory for its array of object ic

will be 0. Minimal amounts of memory will be allocated when objects are added to the List. Or a
set, before objects are added, using the setAvailableCapacity: method. Returns self.

initCount:, setAvailableCapacity:

initCount:(unsigned int)numSlots
Initializes the receiver, anew List object, by allocating enough memory for it to hold numS|ots ob

This method is the designated initializer for the class. It should be used immediately after memory
allocated and before any objects have been assigned to it it shouldn't be used to reinitializea List t

capacity

InsertObject:anObject at:(unsigned int)index

Inserts anObject into the List at index, moving objects down one slot to make room. If index equa
the count method, anObject isinserted at the end of the List. However, the insertion failsif index
returned by count or anObject is nil.

If anObject is successfully inserted into the List, this method returns self. If not, it returns nil.
count, addObject:

(BOOL)isEqual:anObject

Comparesthereceiving List to anObject. If anObject isaList with exactly the same contents as tt
returns YES. If not, it returns NO.

Two Lists have the same contents if they each hold the same number of objects and the ids in each
occur in the same order.

lastObject

Returns the last object in the List, or nil if there are no objectsin the List. This method doesn't rer
returned.



makeObj ectsPerform: (SEL )aSel ector with:anObject

Sends an aSel ector message to each object in the List in reverse order (starting with the last object
backwards through the List to the first object), and returns self. The message is sent each time wit
argument, so the aSelector method must be one that takes a single argument of typeid. The aSele
as aside effect, modify the List.

objectAt:(unsigned int)index
Returnsthe id of the object located at slot index, or nil if index is beyond the end of the List.
count

read:(NXTypedStream *)stream
Reads the List and al the objects it contains from the typed stream stream.
write:

removel astObject

Removes the object occupying the last position in the List and returnsit. If there are no objectsin
returns nil.

lastObject, removeObjectAt:

removeObject:anObject

Removes the first occurrence of anObject from the List, and returnsit. If anObject isn't inthe Lis
nil.

The positions of the remaining objects in the List are adjusted so there's no gap.
removel astObject, removeObjectAt:

removeObjectAt:(unsigned int)index
Removes the object located at index and returnsit. If there's no object at index, this method returr
The positions of the remaining objectsin the List are adjusted so there's no gap.
removel astObject, removeObject:



replaCcUDECLAL (UNSgred I index Witn.rnevwouojecl

Returns the object at index after replacing it with newObject. If there's no object at index or new(
replaced and nil is returned.

replaceObject:with:

setAvailableCapacity:(unsigned int)numS|ots

Sets the storage capacity of the List to at least numSlots objects and returns self. However, if the L
more than numSlots objects (if the count method returns a number greater than numSlots), its cape
and nil is returned.

capacity, count

write:(NXTypedStream *)stream
Writesthe List, including all the objectsit contains, to the typed stream stream.
read:



