
initFromFile:
initFromPasteboard:
initLinkedToFile:
initLinkedToSourceSelection:managedBy:

supportingTypes:count:
copyFromZone:

Exporting a link writeToPasteboard:
saveLinkIn:
writeToFile:

Information about the link manager
disposition
linkNumber

Information about the link's source
sourceAppName
sourceFilename
sourceSelection
openSource
lastUpdateTime
types

Information about the link's destination
destinationAppName
destinationFilename
destinationSelection

Updating the link's data sourceEdited
updateDestination
setUpdateMode:
updateMode
break

break



Breaks the link so the data referred to by its selection will not get updated. The link is removed from its link manager and
its destination selection is freed. The link itself is not freed if it wasn't formerly a source link it can be hooked back up
again using NXDataLinkManager's addLink:at: method. Alternatively, it can be explicitly freed by the application if the
application directly sent the break message, or freed by Applications's delayedFree: method on receiving a
dataLinkManager:didBreakLink: notification that the link was broken. (This could happen in response to user input from
the data link panel.) Returns self if sent to a destination link, does nothing and returns nil if sent to a broken link If sent
to a source link, the message is forwarded to the destination link it then returns self if the link is successfully broken and
nil otherwise.

copyFromZone:(NXZone *)zone

Returns a copy of the receiving data link allocated from zone. The copy is essentially linked to the source data, but not
hooked up to the destination document. The copy has a copy of the receiver's source selection, has no destination
selection, and its disposition is NX_LinkBroken.

addLink:at: (NXDataLinkManager)

(const char *)destinationAppName

Returns the name (as returned by Application's appName method) of the application containing the destination link.

sourceAppName

(const char *)destinationFilename

Returns the file name of the destination document, as set by any of several NXDataLinkManager methods for the
destination document.

sourceFilename

(NXSelection *)destinationSelection

Returns the destination selection, which describes how the linked data is represented in the destination document.

sourceSelection

(NXDataLinkDisposition)disposition

Identifies the link as a source link, a destination link, or a broken link by returning one of the following values:

NX_LinkInDestination
NX_LinkInSource
NX_LinkBroken

addLink:at: (NXDataLinkManager), dataLinkManager:startTrackingLink: (NXDataLinkManager delegate), break

initFromFile:(const char *)filename

Initializes a newly allocated NXDataLink instance from filename, a link that was previously saved using the saveLinkIn:
or writeToFile: method. The new link is generally used by adding it to a destination document's link manager with
addLink:at:. Returns the link if it is successfully initialized otherwise frees the link and returns nil.

saveLinkIn:, writeToFile:, addLink:at: (NXDataLinkManager)



initFromPasteboard:(Pasteboard *)pasteboard

Initializes a newly allocated NXDataLink instance from the pasteboard pasteboard. The new link is generally used by
adding it to a destination document's link manager with addLink:at:.

In order for this method to succeed, a link must have been placed on the pasteboard using writeToPasteboard:, or the file
name of a saved link (data of type NXFilenamePboardType with an extension of NXDataLinkFilenameExtension) must
be on the pasteboard.

Returns the link if it is successfully initialized otherwise frees the link and returns nil.

writeToPasteboard:, saveLinkIn:, addLink:at: (NXDataLinkManager)

initLinkedToFile:(const char *)filename

Initializes a newly allocated NXDataLink instance corresponding to the entire file filename. The link is identified as a
link to a file because it has no source selection. Returns the link if it is successfully initialized otherwise frees the link and
returns nil.

addLink:at: (NXDataLinkManager), writeToPasteboard:, sourceSelection

initLinkedToSourceSelection:(NXSelection *)selection
managedBy:linkManager
supportingTypes:(const char *const *)newTypes
count:(int)numTypes

Initializes a newly allocated NXDataLink instance corresponding to a selection in the source document described by
selection. linkManager is the source document's link manager. newTypes is an array (with size numTypes) of pointers to
the pasteboard types that linkManager's delegate is willing to provide (by copyToPasteboard:at: cheapCopyAllowed:)
when a user of the link requests the data described by selection.

Typically, when the user uses the Copy command to copy linkable data, this method should be invoked to create a link
corresponding to the data. The new link should be added to the pasteboard (by writeToPasteboard:) and immediately
freed, since it will usually be of no further use to the source document. Many links so placed on the pasteboard will go
unused and will simply be discarded when the pasteboard changes. If state identifying selection must be saved in the
source document, the link manager's delegate should find out whether the selection is used by implementing
dataLinkManager:startTrackingLink: (to discover if the selection gets used) and the Pasteboard owner's method
pasteboardChangedOwner: (to discover when the pasteboard has changed, precluding the use of a link that was placed
there).

Returns the new link.

copyToPasteboard:at:cheapCopyAllowed: (NXDataLinkManager delegate), dataLinkManager:startTrackingLink:
(NXDataLinkManager delegate), pasteboardChangedOwner: (Pasteboard owner)

(time_t)lastUpdateTime

Returns the last time the link was updated. A link could be updated for many reasons for example, a message could be
sent to the source document's link manager telling it that its document was saved, or the link could be brought up to date
with an updateDestination message.

setLinksVerifiedByDelegate: (NXDataLinkManager),
documentSaved (NXDataLinkManager)

(NXDataLinkNumber)linkNumber

Returns a destination link's link-number, which may be useful in identifying the link. This number is constant through
the life of the document, and unique among the document's links it is not meaningful in source links.



(NXDataLinkManager *)manager

Returns the link's link manager, or nil if it doesn't have one. (For example, returns nil if the link is broken.)

openSource

Opens the document corresponding to the link's source selection. This message only has meaning when sent to a
destination link. Returns self if the source document is successfully opened, nil otherwise.

app:openFile:type: (Application delegate),
showSelection: (NXDataLinkManager delegate)

saveLinkIn:(const char *)directoryName

Saves the link with a file name provided by the user. This method should be invoked through the Publish Selection
command. It runs the SavePanel to prompt the user for a filename to save the link to. The SavePanel's initial directory is
provided in directoryName. It then writes the link using the writeToFile: method. Returns self if the link is successfully
saved nil otherwise.

initFromFile:

setUpdateMode:(NXDataLinkUpdateMode)mode

Sets the link's update mode to mode, which must be one of the following values:

NX_UpdateContinuously
NX_UpdateWhenSourceSaved
NX_UpdateManually
NX_UpdateNever

A mode of NX_UpdateContinuously updates the link's destination data every time a sourceEdited message is sent to the
source link. A mode of NX_UpdateWhenSourceSaved updates the link's destination data every time a documentSaved
(or related) message is sent to the source link's link manager. A mode of NX_UpdateManually updates the link's
destination data every time a updateDestination message is sent to the destination link this message can be sent
programmatically or by the data link panel. A mode of NX_UpdateNever makes the link never update once a
destination link has been set to this mode, it can't be set back to any other mode until it is broken. (This mode is used
for link buttons, for example.)

This message only has meaning when sent to a destination link or a broken link. Returns self.

updateMode, break

(const char *)sourceAppName

Returns the name (as returned by Application's appName method) of the application containing the source link.

destinationAppName

sourceEdited

Sent to a source link to inform it that the data referred to by its source selection has changed. If the link's destination
link has been set to update continuously, the destination will be updated.

This message only has meaning if sent to a source link. An application will only know of the source links that are being
used in its document if the data link manager's delegate tracks links individually and responds to dataLinkManager:
startTrackingLink: messages. However, an application doesn't need to track source links individually unless it wishes to
allow continuous updating.



Returns self unless the link's destination is set to continuously update and the update fails in this case, the method returns
nil.

dataLinkManager:startTrackingLink: (NXDataLinkManager delegate)

(const char *)sourceFilename

Returns the file name of the source document, as set by any of several NXDataLinkManager methods for the source
document.

destinationFilename

(NXSelection *)sourceSelection

Returns the source selection, or nil if the link refers to an entire file (in which case the source file can be retrieved from
sourceFilename).

destinationSelection

(const NXAtom *)types

Returns the pasteboard types that the source document can provide when the data for the link's source selection is
required.

copyToPasteboard:at:cheapCopyAllowed: (NXDataLinkManager delegate)

updateDestination

Updates the data referred to by the link's destination selection. This message can be sent to a source link or a
destination link. If it's sent to a destination link, it will usually open the source document if it isn't already open. If it is
sent to a source link, it will usually force the destination data to be immediately updated (which is generally less
desirable than sending the source link a sourceEdited message, since that would allow the update to occur at the normal
time). If the destination must be updated, it will be done by sending a pasteFromPasteboard:at: or importFile:at:
message to the destination link manager's delegate.

pasteFromPasteboard:at: (NXDataLinkManager delegate)

(NXDataLinkUpdateMode)updateMode

Returns the link's update mode, which determines when the data referred to by the link's destination selection will be
updated. Possible return values are:

NX_UpdateContinuously
NX_UpdateWhenSourceSaved
NX_UpdateManually
NX_UpdateNever

A description of these values can be found in the method description for setUpdateMode:.

writeToFile:(const char *)filename

Writes the link into the file filename. This allows selections to be published by the file system the link can be read in later
using initFromFile:. Returns self if the link is successfully written, nil otherwise.

initLinkedToSourceSelection:managedBy:supportingTypes:count:, writeToPasteboard:, saveLinkIn:, initFromFile:



writeToPasteboard:(Pasteboard *)pasteboard

Writes the link onto the pasteboard pasteboard, allowing other applications to paste both copied data and the link referring
to that data. When a link is written to a pasteboard, the type NXDataLinkPboardType must be included in the
pasteboard's types, either using declareTypes:num:owner: or addTypes:num:owner:. The link can be read in later using
initFromPasteboard:. Returns self if the link is successfully written, nil otherwise.

initLinkedToSourceSelection:managedBy:supportingTypes:count:, writeToFile, initFromPasteboard:


