
Copyright ã1996 by NeXT Software, Inc.    All Rights Reserved.

;C_TravelAdvisor_DefineClasses.rtfd;;¬ Previous Section    ;E_TravelAdvisor_ImplemTAController.rtfd;;¬ Next
Section

3. Travel Advisor Tutorial

Implementing the Country Class
Although it has no outlets, the Country class defines a number of instance variables that correspond to the
fields of Travel Advisor.

1 Declare instance variables.

In Project Builder, click Headers in the project browser, then select Country.h.

Add the declarations shown between the braces below.

@interface Country : NSObject <NSCoding> /* 1 */
{
 NSString *name; /* 2 */
 NSString *airports;
 NSString *airlines;
 NSString *transportation;
 NSString *hotels;
 NSString *languages;
 BOOL englishSpoken;
 NSString *currencyName;
 float currencyRate; /* 3 */
 NSString *comments;

}

1. Declares that the Country class adopts the NSCoding protocol

When a class adopts a protocol, it asserts that it implements the methods the protocol declares. Classes that archive or
serialize their data must adopt the NSCoding protocol. See Object-Oriented Programming and the Objective-C
Language for more on protocols.

2. Explicitly types the instance variable as ªa pointer to class NSStringºÐor a NSString object. See below
for more about the NSString class.

3. Declare non-object instance variables the same way you declare them in C programs. In this case,
currencyRate is of type float.

Related Concept:    ;TravelAdvisorConcepts.rtfd;linkMarkername NSString:AStringforAllCountries;,    NSString:
A String for All Countries

Country.h also declares a dozen or more methods. Most of these are accessor methods. Accessor methods
fetch and set the values of instance variables. They are a critical part of an object's interface.

2 Declare methods.

After the instance variables, add the declarations listed here.

/* initializtion and de-allocation */
- (id)init; /* 1 */
- (void)dealloc;
/* archiving and unarchiving */
- (void)encodeWithCoder:(NSCoder *)coder; /* 2 */
- (id)initWithCoder:(NSCoder *)coder;
/* accessor methods */
- (NSString *)name; /* 3 */
- (void)setName:(NSString *)str;
- (NSString *)airports;

- (void)setAirports:(NSString *)str;
- (NSString *)airlines;
- (void)setAirlines:(NSString *)str;
/* ...other accessor method declarations follow... */

1. Object initialization and deallocation. In OpenStep you usually create an object by allocating it (alloc) and
then initializing it (init or init... variant):

Country *aCountry = [[Country alloc] init];

When Country's init method is invoked, it initializes its instance variables to known values and
completes other start-up tasks. Similarly, when an object is deallocated, its dealloc method is invoked,
giving it the opportunity to release objects it's created, free malloc'd memory, and so on. You'll learn
more about init and dealloc shortly.

2. Object archiving and unarchiving. The encodeWithCoder: declaration indicates that objects of this class are
to be archived. Archiving encodes an object's class and state (typically instance variables) in a file that
is often stored within the application wrapper (that is, the ªhiddenº application directory). Unarchiving,
through initWithCoder:, reads the encoded class and state data and restores the object to its previous
state. There's more on this topic in the following pages.

3. Accessor methods. The declaration for accessor methods that return values is, by convention, the name
of the instance variable preceded by the type of the returned value in parentheses. Accessor methods
that set the value of instance variables begin with ªsetº prepended to the name of the instance variable
(initial letter capitalized). The ªsetº method's argument takes the type of the instance variable and the
method itself returns void.

975498_TableRule.eps ¬Before You Go On

If you don't want to allow an instance variable's value to be changed by anyone outside of your class, don't
provide a set method for the instance variable. If you do provide a set method, make sure objects of your own

class use it when specifying a value for the instance variables. This has important implications for subclasses
of your class.

Exercise: The previous example shows the declarations for only a few accessor methods. Every instance
variable of the Country class should have an accessor method that returns a value and one that sets a value.
Complete the remaining declarations.
316044_TableRule.eps ¬
Related Concept: ;TravelAdvisorConcepts.rtfd;linkMarkername
TheFoundationFramework:Capabilities,Concepts,andParadigms;,    The Foundation Framework: Capabilities,
Concepts, and Paradigms

Now that you've declared the Country class's accessor methods, implement them.

3 Implement the accessor methods.

Select Country.m in the project browser.

Write the code that fetches and sets the values of instance variables.

- (NSString *)name /* 1 */
{
 return name;
}

- (void)setName:(NSString *)str /* 2 */
{
 [name autorelease];
 name = [str copy];
}

/* more accessor method implementations follow */

1. For ªgetº accessor methods (at least when the instance variables, like Travel Advisor's, hold immutable
objects) simply return the instance variable.

2. For accessor methods that set object values, first send autorelease to the current instance variable, then
copy (or retain) the passed-in value to the variable. The autorelease message causes the previously
assigned object to be released at the end of the current event loop, keeping current references to the
object valid until then.

If the instance variable has a non-object value (such as an integer or float value), you don't need to
autorelease and copy; just assign the new value.

In many situations you can send retain instead of copy to keep an object around. But for ªvalueº type objects, such as
Country's instance variables, copy is better. For the reason why, and for more on autorelease, retain, copy, and
related messages for object disposal and object retention, see ``Object Ownership, Retention, and Disposal.''

Related Concept: ;TravelAdvisorConcepts.rtfd;linkMarkername ObjectOwnership,Retention,andDisposal;,   
Object Ownership, Retention, and Disposal

401819_TableRule.eps ¬Before You Go On

Exercise: The example above shows the implementation of the accessor methods for the name instance
variable. Implement the remaining accessor methods.

565943_TableRule.eps ¬

4 Write the object-initialization and object-deallocation code.

Implement the init method, as shown here.

Implement the dealloc method, following the suggestions in the Required Exercise, below.

- (id)init
{
 [super init]; /* 1 */

 name = @""; /* 2 */
 airports = @"";
 airlines = @"";
 transportation = @"";
 hotels = @"";
 languages = @"";
 currencyName = @"";
 comments = @"";

 return self; /* 3 */
}

1. Invokes super's (the superclass's) init method to have inherited instance variables initialized. Always do
this first in an init method.

2. Initializes an NSString instance variable to an empty string. @ºº is a compiler-supported construction
that creates an immutable NSString object from the text enclosed by the quotes. You could have just as
well typed:

name = @ºHowdy Doodyº;

But that wouldn't have been practical as an initial value. You don't need to initialize instance variables to
null values because the run-time system does it for you; it assigns nil to objects, zeroes to integers and
floats, and NULL to char *'s if they're not explicitly initialized. However, you should initialize instance
variables that take other starting values.

Don't substitute nil when empty objects are expected, and vice versa.The Objective-C keyword nil represents an
ªobjectº with an id (value) of zero. An empty object (such as @``'') is a true object; it just has no content of its given
type. To learn more about Objective-C keywords, see Object-Oriented Programming and the Objective-C Language.

3. By returning self you're returning a true instance of your object; up until this point, the instance is
considered undefined.

549033_TableRule.eps ¬Before You Go On

Implement the dealloc method. In this method you release (that is, send release or autorelease to) objects that
you've created, copied, or retained (which don't have an impending autorelease). For the Country class, release
all objects held as instance variables. If you had other retained objects, you would release them, and if you
had dynamically allocated data, you would free it. When this method completes, the Country object is
deallocated. The dealloc method should send dealloc to super as the last thing it does, so that the Country
object isn't released by its superclass before it's had the chance to release all objects it owns.

Note that release itself doesn't deallocate objects, but it leads to their deallocation. For more on release and
autorelease, see ``Object Ownership, Retention, and Disposal'' ;TravelAdvisorConcepts.rtfd;linkMarkername
ObjectOwnership,Retention,andDisposal;, .

836878_TableRule.eps ¬

You want the Country objects created by the Travel Advisor application to be persistent. That is, you want them
to ªrememberº their state between sessions. Archiving lets you do this by encoding the state of application
objects in a file along with their class membership. The NSCoding protocol defines two methods that enable
archiving for a class: encodeWithCoder: and initWithCoder:.

5 Implement the methods that archive and unarchive the object.

Implement the encodeWithCoder: method, as shown below.

- (void)encodeWithCoder:(NSCoder *)coder
{
 [coder encodeObject:name]; /* 1 */
 [coder encodeObject:airports];
 [coder encodeObject:airlines];
 [coder encodeObject:transportation];

 [coder encodeObject:hotels];
 [coder encodeObject:languages];
 [coder encodeValueOfObjCType:"s" at:&englishSpoken]; /* 2 */
 [coder encodeObject:currencyName];
 [coder encodeValueOfObjCType:"f" at:¤cyRate];
 [coder encodeObject:comments];
}

1. The encodeObject: method encodes a single object in the archival file.

2. For both object and non-object types, you can use encodeValueOfObjCType:at:.

Implement the initWithCoder: method, as shown below.

- (id)initWithCoder:(NSCoder *)coder
{
 name = [[coder decodeObject] copy]; /* 1 */
 airports = [[coder decodeObject] copy];
 airlines = [[coder decodeObject] copy];
 transportation = [[coder decodeObject] copy];
 hotels = [[coder decodeObject] copy];
 languages = [[coder decodeObject] copy];
 [coder decodeValueOfObjCType:"s" at:&englishSpoken];
 currencyName = [[coder decodeObject] copy];
 [coder decodeValueOfObjCType:"f" at:¤cyRate];
 comments = [[coder decodeObject] copy];

 return self; /* 2 */
 }

1. The order of decoding should be the same as the order of encoding; since name is encoded first it
should be decoded first. Use copy when you assign value-type objects to instance variables (see the
concept ``Object Ownership, Retention, and Disposal'' ;TravelAdvisorConcepts.rtfd;linkMarkername
ObjectOwnership,Retention,andDisposal;,). NSCoder defines decode... methods that correspond the
encode... methods, which you should use.

2. As in any init... method, end by returning selfÐan initialized instance.

