
1, width is calculated as needed.
titleCell The Cell used to draw the title.
titleEndPoint The coordinate that separates the title from the text area.

init
initTextCell:
copyFromZone:
free

Determining a FormCell's size calcCellSize:inRect:
Enabling the FormCell setEnabled:
Modifying the title setTitle:

title
setTitleFont:
titleFont
setTitleAlignment:
titleAlignment
setTitleWidth:
titleWidth:
titleWidth

Modifying graphic attributes isOpaque
Displaying drawInside:inView:

drawSelf:inView:
Managing cursor rectangles resetCursorRect:inView:
Tracking the mouse trackMouse:inRect:ofView:
Archiving read:

write:

calcCellSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Calculates the size of the FormCell assuming it's constrained to fit within aRect. Returns the size in theSize.



copyFromZone:(NXZone *)zone

Creates and returns a copy of the receiving FormCell instance allocated from zone.

drawInside:(const NXRect *)cellFrame inView:controlView

Draws only the text inside the FormCell (not the bezel or the title of the FormCell). If you create a subclass of FormCell
and override drawSelf:inView:, you must implement this method as well. Returns self.

drawSelf:inView:

drawSelf:(const NXRect *)cellFrame inView:controlView

Has the FormCell's title Cell drawn, then draws the editable text portion of the FormCell. returns self.

drawInside:inView:

free

Frees the storage used by the FormCell and returns nil.

init

Initializes and returns the receiver, a new instance of FormCell, with its contents set to an empty string (ªº) and its title set
to ªFieldº, right-aligned.

initTextCell:

initTextCell:(const char *)aString

Initializes and returns the receiver, a new instance of FormCell, with its contents set to the empty string (ªº) and its title
set to aString. The font for both title and text is the user's chosen system font in 12.0 point, and the text area is drawn
with a bezel. This method is the designated initializer for FormCell.

init

(BOOL)isOpaque

Returns YES if the FormCell is opaque, NO otherwise. If the FormCell has a title, then it's not opaque (since the title
field is not opaque).

isOpaque (Cell)

read:(NXTypedStream *)stream

Reads the FormCell from the typed stream stream. Returns self.

write:

resetCursorRect:(const NXRect *)cellFrame inView:controlView



Adds a cursor rectangle to controlView (with addCursorRect:cursor:), allowing the cursor to change to an I-beam when it
passes over the text portion of the FormCell.

addCursorRect:cursor: (View, Control)

setEnabled:(BOOL)flag

If flag is YES, the FormCell accepts mouse clicks if NO, it doesn't.

isEnabled (Cell)

setTitle:(const char *)aString

Sets the title of the FormCell to aString.

title

setTitleAlignment:(int)mode

Sets the alignment of the title. mode can be one of three constants: NX_LEFTALIGNED, NX_CENTERED, or
NX_RIGHTALIGNED.

titleAlignment

setTitleFont:fontObject

Sets the Font used to draw the title of the FormCell.

setFont:

setTitleWidth:(NXCoord)width

Sets the width of the title field to width. If width is 1, the title field's width is always calculated when needed. Use this
method only if the FormCell's title isn't going to change, or if your code always resets the title width when it resets the
title.

titleWidth, titleWidth:

(const char *)title

Returns the title of the FormCell.

setTitle:

(int)titleAlignment

Returns the alignment of the title, which will be one of the following: NX_LEFTALIGNED, NX_CENTERED, or
NX_RIGHTALIGNED.

setTitleAlignment:



titleFont

Returns the Font used to draw the title of the FormCell.

setTitleFont:

(NXCoord)titleWidth

If the width of the title has already been set, then that value is returned. Otherwise, it's calculated and returned.

setTitleWidth:, titleWidth:

(NXCoord)titleWidth:(const NXSize *)aSize

If the title width has been set, then it's returned. Otherwise, the width is calculated constrained to aSize. aSize may be
NULL, in which case the width is calculated without constraint.

setTitleWidth:, titleWidth:

(BOOL)trackMouse:(NXEvent*)event
inRect:(const NXRect*)aRect
ofView:controlView

Causes editing to occur. Returns YES if the mouse goes up in the FormCell, NO otherwise.

trackMouse:inRect:ofView: (TextFieldCell)

write:(NXTypedStream *)stream

Writes the receiving FormCell to the typed stream stream. Returns self.

read:


