
Copyright ã1996 by NeXT Software, Inc.    All Rights Reserved.

;B_ToDo_SettingUp.rtfd;;¬ Previous Section    ;D_ToDo_Subclass1.rtfd;;¬ Next Section

4. To Do Tutorial

Creating the Model Class (ToDoItem)
The ToDoItem class provides the model objects for the To Do application. Its instance variables hold the data
that defines tasks that should be done or appointments that have to be kept. Its methods allow access to this
data. In addition, it provides functions that perform helpful calculations with that data. ToDoItem thus
encapsulates both data and behavior that goes beyond accessing data.

Since ToDoItem is a model class, it has no user-interface duties and so the expedient course is to create the
class without using Interface Builder. We first add the class to the project; Project Builder helps out by
generating template source-code files.

1 Add the ToDoItem class to the project.

Select Classes in the project browser.

Choose New In Project from the File menu.

In the New File In ToDo panel, type ªToDoItemº in the Name field.

Make sure the ªCreate headerº switch is checked.

Click the OK button.

TD_CreatingModelClass.eps ¬

As you've done before with Travel Advisor, start by declaring instance variables and methods in the header file,
ToDoItem.h.

2 Declare ToDoItem's instance variables and methods.

Type the instance variables as shown at right.

Indicate the protocols adopted by this class.

@interface ToDoItem:NSObject<NSCoding, NSCopying>
{
 NSCalendarDate *day;
 NSString *itemName;
 NSString *notes;
 NSTimer *itemTimer;
 long secsUntilDue;
 long secsUntilNotif;
 ToDoItemStatus itemStatus;
}

You are adopting the NSCopying protocol in addition to the NSCoding protocol because you are going to
implement a method that makes ªsnapshotº copies of ToDoItem instances.

Instance Variable What it Holds
TableHeadRule.eps ¬
day The day (a date resolved to 12:00 AM) of the to-do item
TableRule.eps ¬
itemName The name of the to-do item (the content's of a document text field)
419488_TableRule.eps ¬
notes The contents of the inspector's Notes display; this could be any information related to the to-do

item, such as an agenda to discuss at a meeting.
528181_TableRule.eps ¬
itemTimer A timer for notification messages.
650634_TableRule.eps ¬
secsUntilDue The seconds after day at which the item comes due
762569_TableRule.eps ¬
secsUntilNotif The seconds after day at which a notification is sent (before secsUntilDue)
885413_TableRule.eps ¬
itemStatus Either ªincomplete,º ªcomplete,º or ªdeferToNextDayº

3 Define enum constants for use in ToDoItem's methods.

Define these constants before the @interface directive.

typedef enum _ToDoItemStatus {
 incomplete=0,
 complete,
 deferToNextDay
} ToDoItemStatus;

enum {
 minInSecs = 60,
 hrInSecs = (minInSecs * 60),
 dayInSecs = (hrInSecs * 24),
 weekInSecs = (dayInSecs * 7)
};

The first set of constants are values for the itemStatus instance variable. The second set of constants are for
convenience and clarity in the methods that deal with temporal values.

4 Declare two time-conversion functions.

BOOL ConvertSecondsToTime(long secs, int *hour, int *minute);
long ConvertTimeToSeconds(int hr, int min, BOOL flag);

These functions provide computational services to clients of this class, converting time in seconds to hours
and minutes (as required by the user interface), and back again to seconds (as stored by ToDoItem).

Type the method declarations shown below.

- (id)initWithName:(NSString *)name andDate:(NSCalendarDate *)date;
- (void)dealloc;
- (BOOL)isEqual:(id)anObject;
- (id)copyWithZone:(NSZone *)zone;
- (id)initWithCoder:(NSCoder *)coder;
- (void)encodeWithCoder:(NSCoder *)coder;
- (void)setDay:(NSCalendarDate *)newDay;
- (NSCalendarDate *)day;
- (void)setItemName:(NSString *)newName;
- (NSString *)itemName;
- (void)setNotes:(NSString *)notes;
- (NSString *)notes;
- (void)setItemTimer:(NSTimer *)aTimer;
- (NSTimer *)itemTimer;
- (void)setSecsUntilDue:(long)secs;
- (long)secsUntilDue;
- (void)setSecsUntilNotif:(long)secs;
- (long)secsUntilNotif;
- (void)setItemStatus:(ToDoItemStatus)newStatus;
- (ToDoItemStatus)itemStatus;

Most of these declarations are for accessor methods. You know what to do.

5 Implement accessor methods.

Open ToDoItem.m in the code editor.

Implement methods that get and set the values of ToDoItem's instance variables.

Implement the setItemTimer: method as shown below.

- (void)setItemTimer:(NSTimer *)aTimer
{
 if (itemTimer) {

 [itemTimer invalidate];
 [itemTimer autorelease];
 }
 itemTimer = [aTimer retain];
}

The setItemTimer: method is slightly different from the other ªsetº accessor methods. It sends invalidate to
itemTimer to disable the timer before it autoreleases it.

Timers (instances of NSTimer) are always associated with a run loop (an instance of NSRunLoop). See ``Tick Tock
Brrrring: Run Loops and Timers'' ;ToDoConcepts.rtfd;linkMarkername TickTockBrrrring:RunLoopsandTimers;¬ for more
on timers and run loops.

In this application, you want client objects to be able to copy your ToDoItem objects and test them for equality.
You must define this behavior yourself.

6 Implement the isEqual: method.

- (BOOL)isEqual:(id)anObject
{
 if ([anObj isKindOfClass:[ToDoItem class]] &&
 [itemName isEqualToString:[anObj itemName]] &&
 [day isEqualToDate:[anObj day]])
 return YES;
 else
 return NO;
}

The default implementation of isEqual: (in NSObject) is based on pointer equality. However, ToDoItem has a
different basis for equality; any two ToDoItem objects for the same calendar day and having the same item
name are considered equal. The implementation of isEqual: overrides NSObject to make these tests. (Note

that it invokes NSString's and NSDate's own isEqual... methods for the specific tests.)

938726_TableRule.eps ¬Before You Go On

There is a specific as well as a general need for the isEqual: override. In the To Do application, an NSArray
contains a day's ToDoItems. To access them, other objects in the application invoke several NSArray methods
that, in turn, invoke the isEqual: method of each object in the array.
256075_TableRule.eps ¬

7 Implement the copyWithZone: method.

- (id)copyWithZone:(NSZone *)zone
{
 ToDoItem *newobj = [[ToDoItem alloc] initWithName:itemName
 andDate:day];
 [newobj setNotes:notes];
 [newobj setItemStatus:itemStatus];
 [newobj setSecsUntilDue:secsUntilDue];
 [newobj setSecsUntilNotif:secsUntilNotif];

 return newobj;
}

This implementation of the copyWithZone: protocol method makes a copy of a ToDoItem instance that is an
independent replicate of the original (self). It does this by allocating a new ToDoItem object and initializing it
with the essential instance variables held by self. Copying is often implemented for value objectsÐ objects that
represent attributes such as numbers, dates, and to-do items.

Copies of objects can be either deep or shallow. In deep copies (like ToDoItem's) every copied instance variable is an
independent replicate, including the values referenced by pointers. In shallow copies, pointers are copied but the
referenced objects are the same. For more on this topic, see the description of the NSCopying protocol in the
Foundation reference documentation.

The next method you'll implementÐdescriptionÐassists you and other developers in debugging the To Do
application with gdb. When you enter the po (print object) command in gdb with a ToDoItem as the argument,
this description method is invoked and essential debugging information is printed.

8 Implement the description method.

- (NSString *)description
{
 NSString *desc = [NSString stringWithFormat:@"%@\n\tName: %@\n\tDate: %@\n\tNotes:

%@\n\tCompleted: %@\n\tSecs Until Due: %d\n\tSecs Until Notif: %d",
 [super description],
 [self itemName],
 [self day],
 [self notes],
 (([self itemStatus]==complete)?@"Yes":@"No"),
 [self secsUntilDue],
 [self secsUntilNotif]];

 return (desc);
}

9 Implement ToDoItem's initializing and deallocation methods.

Here are some things to remember as you implement initWithName:andDate: and dealloc:

SquareBullet.eps ¬ If the first argument of initWithName:andDate: (the item name) is not a valid string,
return nil. If the second argument (the date) is nil, set the related instance variable to some reasonable
value (such as today's date). Also, be sure to invoke super's init method.

609779_SquareBullet.eps ¬ The instance variables to initialize are day, itemName, notes, and
itemStatus (to ªincompleteº).

727869_SquareBullet.eps ¬ In dealloc, release those object instance variables initialized in
initWithName:andDate: plus any object instance variables that were initialized later. Also invalidate any
timer before you release it.

10 Implement ToDoItem's archiving and unarchiving methods.

When you implement encodeWithCoder: and initWithCoder:, keep the following in mind:

954074_SquareBullet.eps ¬ Encode and decode instance variables in the same order.

65074_SquareBullet.eps ¬ Copy the object instance variables after you decode them.

173937_SquareBullet.eps ¬ You don't need to archive the itemTimer instance variable since timers are
re-set when a document is opened.

The final step in creating the ToDoItem class is to implement the functions that furnish ªvalue-addedº behavior.

11 Implement ToDoItem's time-conversion functions.

long ConvertTimeToSeconds(int hr, int min, BOOL flag) /* 1 */
{
 if (flag) { /* PM */
 if (hr >= 1 && hr < 12)
 hr += 12;
 } else {
 if (hr == 12)
 hr = 0;
 }
 return ((hr * hrInSecs) + (min * minInSecs));
}

BOOL ConvertSecondsToTime(long secs, int *hour, int *minute) /* 2 */
{
 int hr=0;
 BOOL pm=NO;

 if (secs) {
 hr = secs / hrInSecs;
 if (hr > 12) {
 *hour = (hr -= 12);
 pm = YES;
 } else {
 pm = NO;
 if (hr == 0)
 hr = 12;
 *hour = hr;
 }
 *minute = ((secs%hrInSecs) / minInSecs);
 }
 return pm;
}

1. This expression, as well as others in these two methods, uses the enum constants for time-values-as
seconds that you defined earlier.

2. The ConvertSecondsToTime() function uses indirection as a means for returning multiple values and
directly returns a Boolean to indicate AM or PM.

