
initDatabase:entity:
Querying the DBModule database

entity
Accessing fetch groups and associations

getFetchGroups:
rootFetchGroup
fetchGroupNamed:
addFetchGroup:
associationForObject:
editingAssociation

Performing transactions fetchContentsOf:usingQualifier:
fetchAllRecords:
saveChanges:
discardChanges:
deleteRecord:
appendNewRecord:
insertNewRecord:

Browsing the record list nextRecord:
previousRecord:

Interface methods takeValueFrom:
textDidEnd:endChar:
textWillChange:
textWillEnd:

Accessing the delegate setDelegate
delegate:



addFetchGroup:aFetchGroup

Adds the given DBFetchGroup object to the list of fetch groups that the DBModule manages. Returns self.

appendNewRecord:sender

Creates a new record and adds it to the end of the root fetch group's DBRecordList. This is a convenience method that's
implemented by sending an insertNewRecordAt: message to the root fetch group. Returns self if the record was
successfully appended otherwise returns nil.

insertNewRecordAt: (DBFetchGroup)

associationForObject:anObject

Returns the DBAssociation object that's associated with the given user interface object.

database

Returns the DBDatabase object for which the DBModule was created.

initDatabase:entity:

delegate

Returns the DBModule's delegate.

setDelegate:

deleteRecord:sender

Deletes the currently selected records by sending deleteCurrentSelection to the root fetch group and returns self.

deleteCurrentSelection (DBFetchGroup)

discardChanges:sender

Terminates any editing changes currently in progress for the DBModule's fetch groups. The user interface object and the
corresponding instance of DBRecordList are cleared in response to this message. All the DBAssociations involved are
notified so that they can update the display accordingly. The method is implemented by sending a discardChanges
message to the DBModule's root fetch group. Returns self.

editingAssociation

Returns the DBAssociation that is currently involved in editing (the one that contains the text insertion cursor). If none of
the DBAssociation objects is involved in editing, returns nil.

entity



Returns the DBEntity corresponding to this DBModule.

initDatabase:entity:

fetchAllRecords:sender

Fetches records into the root fetch group. This method is implemented by invoking fetchContentsOf:usingQualifier: with
aSource and aQualifier both nil. Returns self, unless the fetch fails. The fetch will fail if the connection to the database
is closed and cannot be reopened, or if any of the fetch groups has unsaved changes that may not be discarded.

fetchContentsOf:aSource usingQualifier:aQualifier

Replaces the records in the current DBRecordList with records fetched from the database. Any editing in progress for this
fetch group is terminated.

The argument aSource may be a DBEntity it may also be a DBValue that specifies a relationship. When it specifies a
relationship, the DBValue object contains both the key value of a source entity and the target entity to which it is joined
such an object responds YES to an isEntity message. For example, if the DBValue is the value ª10º for the attribute
ªDepartment, º the effect is to use ªDepartment = 10º as a key that defines the set of records to be fetched. If aSource is
nil, the DBModule's DBEntity is assumed.

The argument aQualifier is a DBQualifier that further restricts the records that will be fetched. If aQualifier is nil, there is
no further qualification and all records are returned.

If the parent DBModule's delegate responds to fetchGroupWillFetch:, it is notified. Similarly, after the fetch, if the
DBModule's delegate responds to fetchGroupDidFetch:, it is notified, giving it a chance to set up null values for the
DBRecordList. The various DBAssociations are notified that the contents of their views has changed, so they can redraw
themselves. The current record index is set to 0 (the index of the first record).

Returns self when the fetch is successful, and nil otherwise. A nil return may arise if the root fetch group has unsaved
changes that may not be discarded.

fetchContentsOf:usingQualifier: (DBFetchGroup), isEntity (DBTypes protocol)

fetchGroupNamed:(const char *)aName

Returns the DBFetchGroup whose name matches aName (as declared in the model file or set through the DBFetchGroup
method setName:). If aName is nil, the method returns the root fetch group. Returns nil if the name isn't found.

getFetchGroups:(List *)aList

Fills aList with the DBModule's DBFetchGroup objects. Returns aList.

initDatabase:aDatabase entity:anEntity

Initializes an instance of DBModule for the given database and entity, and creates and adds the object's root fetch group.
Returns self.

insertNewRecord:sender

Creates a new record and inserts it into the root fetch group's DBRecordList. This is done by sending an
insertNewRecordAt: message to the root fetch group, passing the index of the current record as the argument. Returns
self if the record was successfully inserted otherwise returns nil.

insertNewRecordAt: (DBFetchGroup)



nextRecord:sender

Advances the currently selected record in the root fetch group to the next record in the list. If there is no currently
selected record, does nothing. Returns self.

previousRecord:sender

Moves the current selection back to the previous record. However, if there is no currently selected record, does nothing.
Returns self.

rootFetchGroup

Returns the module's one required DBFetchGroup (the first in the list of fetch groups).

saveChanges:sender

Causes all changes made within the module to be saved to the database, by saving all the module's fetch groups. Returns
self, but nil if any error occurred.

Instructs the root DBFetchGroup to save the changes that the user has introduced by editing the module's data display.
Returns self if the changes were successfully saved (or if there were no changes to save).

If the database supports transactions and no other transaction is in progress, the saveChanges: method signals the start of a
new transaction before starting the save, and commits the transaction if the save is completed successfully. Thus all
changes within the module are saved as a single transaction (see the DBDatabase methods beginTransaction and
commitTransaction).

If for any reason the save could not be carried out, saveChanges: returns nil, and leaves the database unchanged. There
are several reasons a save might be unsuccessful. Before starting the save, the fetch groups may run a validation check.
The method also notifies the DBModule's delegate by sending it a moduleWillSave message, giving the delegate a chance
to interpose its own checks. When the save has been carried out, the method again notifies the delegate, this time by
sending it a moduleDidSave message. The delegate may still object at this point if it does, the save is rolled back.

setDelegate: anObject

Makes anObject the delegate of the DBModule instance. Returns self.

takeValueFrom:sender

Notifies the DBModule that the user modified one of the displays (DBImageView, NXBrowser). The DBModule finds
the corresponding DBAssociations and through them their DBFetchGroups and causes the object's new value to be read
into the appropriate part of the DBRecordList. Returns self however, if sender has no association linking it to the
module's DBRecordList, returns nil.

textDidEnd:textObject endChar:(unsigned short)whyEnd

Called by a DBEditableTextFormatter object when it has relinquished first responder status. The argument whyEnd
identifies the character (Tab, Shift-Tab, or Return) that caused the sender to cease being first responder. A return of YES
permits the change to proceed a return of NO prevents the change and selects the entire text field. Your application will
not normally need to use this method explicitly.



(BOOL)textWillChange:textObject

Called by a DBEditableTextFormatter object when the user first makes a change to an editable field in the display. A
return of YES permits editing to proceed. Your application will not normally need to use this method explicitly.

(BOOL)textWillEnd:textObject

Called by a DBEditableTextFormatter object when it is about to relinquish first responder status. A return of YES
permits the change to proceed a return of NO prevents the change and selects the entire text field. Your application will
not normally need to use this method explicitly.

moduleDidSave:module

Called when module has completed a save to the database.

(BOOL)moduleWillLoseChanges:module

Called when module is about to discard changes received from the user interface.

(BOOL)moduleWillSave:module

Called when module is about to save its data to the database.


