
initWithDelegate:
initWithDelegate:fromFile:
free

Adding and removing links addLink:at:
addLinkAsMarker:at:
writeLinksToPasteboard:
addLinkPreviouslyAt:fromPasteboard:at:
breakAllLinks

Informing the link manager of document status
documentClosed
documentEdited
documentReverted
documentSaved
documentSavedAs:
documentSavedTo:

Getting and setting information about the link manager
filename
isEdited
setLinksVerifiedByDelegate:
areLinksVerifiedByDelegate
delegate
setInteractsWithUser:
interactsWithUser

Getting and setting information about the manager's links
setLinkOutlinesVisible:
areLinkOutlinesVisible
findDestinationLinkWithSelection:
prepareEnumerationState:forLinksOfType:
nextLinkUsing:

addLink:(NXDataLink *)link at:(NXSelection *)selection

Adds the link link to the document, indicating that the data in the document described by selection is dependent upon the
link. This method is invoked as part of the Paste and Link command to actually link in the data that was just pasted. It
can also be used at other times for example, to link to files that are dragged into the document.



This method makes link a destination link and sets selection as link's destination selection. When the link's source is
modified, the link manager's delegate will be sent a pasteFromPasteboard:at: or importFile:at: message with selection as
an argument, indicating that the destination data must be updated.

Returns self if the link is successfully added, nil if it isn't. There are several situations that will result in failure to add the
link, such as an inability to resolve the link to its source, so it's important to check the return value of this method and
undo the requested operation if the linking fails.

addLinkAsMarker:(NXDataLink *)link at:(NXSelection *)selection

Incorporates link into the document as a marker. This method is used to implement link buttons that allow access to the
link's source, but are never asked to receive data from the source document. The link button in the destination document
is described by selection. This method adds the link and, upon success, sets its the link's update mode to
NX_UpdateNever. Returns self upon success, nil otherwise.

The named images ªNXLinkButtonº and ªNXLinkButtonHº can be used (through NXImage's findImageNamed: method)
to represent ordinary and highlighted link buttons, respectively. These images are shared, so you must copy them (using
NXImage's copy method) if you need to scale them to a different size.

addLink:at:

(NXDataLink *)addLinkPreviouslyAt:(NXSelection *)oldSelection
fromPasteboard:(Pasteboard *)pasteboard
at:(NXSelection *)selection

Creates and adds a new destination link corresponding to the same source data as the link described by the destination
selection oldSelection. The new link's destination selection is provided in selection. This method is useful if you paste
data that is already linked. It's similar to copying the old link and adding it using addLink:at:, except you specify the old
destination selection rather than the old link. Before invoking this method, the document's links must be written to the
pasteboard pasteboard using writeLinksToPasteboard:. Returns the new link if it's successfully added, or nil if the link
can't be added or no link for oldSelection existed.

(BOOL)areLinkOutlinesVisible

Used to inform the link manager's delegate of whether link outlines should be drawn around linked destination data.
When the delegate receives a dataLinkManagerRedrawLinkOutlines: message, it should query the link manager with an
areLinkOutlinesVisible message. If this message returns YES, the delegate should call the NXFrameLinkRect()
function to draw a distinctive link outline around the dependent data.

setLinkOutlinesVisible:

(BOOL)areLinksVerifiedByDelegate

Return YES if the link manager's delegate will be asked to verify whether data based on the delegate's source links
needs to be updated. If so, the delegate should implement the dataLinkManager:isUpdateNeededForLink: method.
Returns NO by default, but the application can change this by sending the link manager a setLinksVerifiedByDelegate:
message.

breakAllLinks

Breaks all the destination links in the document by sending each link a break message. This method is typically invoked
by the application's data link panel in response to user input. Returns self.

break (NXDataLink), pickedBreakAllLinks: (NXDataLinkPanel)



delegate

Returns the data link manager's delegate, the object that will be sent messages to provide source data, paste destination
data, and help the data link manager keep links up-to-date.

initWithDelegate:

documentClosed

An application should send this message to the link manager to inform it that the manager's document has been closed.
Returns self.

documentEdited

An application should send this message to the link manager to inform it that the manager's document has been edited. If
the delegate doesn't track source links individually, this method marks all source links as dirty, indicating that the
dependent destination data will eventually need to be updated. Returns self.

dataLinkManagerTracksLinksIndividually: (NXDataLinkManager delegate)

documentReverted

An application should send this message to the link manager to inform it that the manager's document has been reverted
to the last saved copy. This method then restores the link manager and its links to their last saved state (from the last time
the link manager received a documentSaved or documentSavedAs: message). Returns self.

documentSaved

An application should send this message to the link manager to inform it that the manager's document has been saved.
This method stores the document's destination links and, if necessary, initiates updates of other documents dependent
upon the document's source links. Returns self.

documentSavedAs:(const char *)path

An application should send this message to the link manager to inform it that the manager's document has been saved as
the file specified by the full pathname path. This method stores the document's destination links. It also discards the
manager's source links, since the documents for those links are not dependent upon the newly saved file. Returns self.

documentSavedTo:(const char *)path

An application should send this message to the link manager to inform it that a copy of the manager's document has been
saved to the file specified by the full pathname path. This method stores the appropriate link information along with the
file, and returns self.

(const char *)filename

Returns the name of the file for the link manager's document. This is the name that was set with the initWithDelegate:
fromFile: or documentSavedAs: method.



(NXDataLink *)findDestinationLinkWithSelection:(NXSelection *)destSel

Returns the destination link for the selection destSel, or nil if the document has no link for that selection. This method
will tell you if the given selection is linked to a source.

free

Notifies the link managers of dependent documents that the link manager is going away, and frees the objects and storage
held by the link manager.

init

There is no need to call this method use one of the other init... methods to initialize a newly allocated
NXDataLinkManager instance for a new document.

initWithDelegate:fromFile:

initWithDelegate:anObject

Initializes and returns a newly allocated NXDataLinkManager instance for a new document. The link manager's
delegate, specified by anObject, will be expected to provide source data, paste destination data, and help the data link
manager keep links up-to-date. Before data in the document can be linked to, the document will have to be saved and the
link manager will have to be informed of the document's name by a documentSavedAs: message.

initWithDelegate:fromFile:

initWithDelegate:anObject fromFile:(const char *)path

Initializes a newly allocated NXDataLinkManager instance for a new document. The link manager's delegate, specified
by anObject, will be expected to to provide source data, paste destination data, and help the data link manager keep links
up-to-date. The document's file is specified by the full path path. The file must exist or initialization will fail.

See ªMethods Implemented by the Delegateº at the end of this class specification for information about the methods the
delegate should implement to assist the link manager.

Returns the new link manager upon success frees the allocated storage and returns nil if initialization fails.

initWithDelegate:fromFile:

(BOOL)interactsWithUser

Returns YES if the link manager should display alert panels when problems with links occur, NO if the displays are to be
suppressed. This value is set with the setInteractsWithUser: method the default value is YES.

(BOOL)isEdited

Returns YES if the document has been edited since the last save, or NO if the file for the document is up-to-date. The
document's edited state is set by the documentEdited method, and cleared by documentSaved and related methods.

(NXDataLink *)nextLinkUsing:(NXLinkEnumerationState *)state



Returns the link manager's next link based on state. state must be initially prepared using prepareEnumerationState:
forLinksOfType: to allow the caller to retrieve each of the application's destination or source links in turn. This method
return nil if there are no more links.

prepareEnumerationState:(NXLinkEnumerationState *)state
forLinksOfType:(NXDataLinkDisposition)srcOrDest

Prepares the variable indicated by state to allow the application to retrieve each of the link manager's links, one at a time,
with later invocations of nextLinkUsing:. srcOrDest must be either NX_LinkInDestination or NX_LinkInSource to
indicate whether the nextLinkUsing: method is to return the next destination link or the next source link, respectively.
Returns self if there is one or more links of the requested type, or nil if there is none.

setInteractsWithUser:(BOOL)flag

Instructs the link manager as to whether it should display alert panels when problems with links occur. If flag is YES (the
default value), alert panels will be displayed. Returns self.

interactsWithUser

setLinkOutlinesVisible:(BOOL)flag

Sets the internal flag indicating to the link manager's delegate whether link outlines ought to be displayed this value can
be returned by areLinkOutlinesVisible.

If the link manager's delegate implements the dataLinkManagerRedrawLinkOutlines: method, this message will be sent
to the delegate and it should either display link outlines using NXFrameLinkRect() or erase link outlines if they were
previously displayed, based on the return value of areLinkOutlinesVisible.

Returns self.

setLinksVerifiedByDelegate:(BOOL)flag

Sets whether the update status of links will be individually verified by the link manager's delegate. If flag is YES, the
delegate must implement the dataLinkManager:isUpdateNeededForLink: method to tell the link manager if data based on
a source link needs to be updated.

By default, the update status of an individual link isn't verified by the delegate, so the link manager verifies a link based
on its last update time. An example where this verification could be incorrect might be a link to a database query if the
query itself doesn't change, the link manager might return that data is up-to-date, even though the database referred to by
the query might have changed.

areLinksVerifiedByDelegate

writeLinksToPasteboard:(Pasteboard *)pasteboard

Writes all the link manager's links to the pasteboard pasteboard in preparation for an invocation of addLinkPreviouslyAt:
fromPasteboard:at:, which will expect to find one link matching its specified selection.

The links are written with Pasteboard's addTypes:num:owner: method, which doesn't change the pasteboard's owner or
change count, using a private pasteboard type.

copyToPasteboard:(Pasteboard *)pasteboard
at:(NXSelection *)selection



cheapCopyAllowed:(BOOL)flag

Implemented by the link manager's delegate to supply the source data described by selection on the pasteboard
pasteboard. selection was previously provided by the application when it created an NXDataLink using
initLinkedToSourceSelection:managedBy:supportingTypes:count:.

Since the Pasteboard works lazily, the delegate doesn't have to provide all data representations at this time it simply has
to declare the pasteboard types it's willing to provide for selection. Normally, the delegate must put at least one
representation on the pasteboard in order to generate any of the specified types when one is requested. However, if flag is
YES, the system guarantees that no events will be processed by the application before the delegate is requested to provide
the specified data in this case, the application doesn't necessarily have to write any data representations to the pasteboard.
This method should return self upon success, or nil if the selection can't be resolved.

pasteFromPasteboard:at: (NXDataLinkManager delegate), declareTypes:num:owner: (Pasteboard), pasteboard:
provideData: (Pasteboard owner)

(NXSelection *)createSelection

Never invoked by the system.

dataLinkManager:(NXDataLinkManager *)sender
didBreakLink:(NXDataLink *)link

If this method is implemented by the delegate, it will be invoked to inform the delegate that the destination link link was
broken and thus data based on link's destination selection will no longer be updated.

The link shouldn't be be sent a free message at this time, because the method that invoked dataLinkManager:
didBreakLink: may still reference the link. However, the link can be freed with Application's delayedFree: method.
Alternatively, the link could be kept around for a while in order to allow the break operation to be undone if this is
requested, the link could be re-added with addLink:at:.

break (NXDataLink), destinationSelection (NXDataLink)

(BOOL)dataLinkManager:(NXDataLinkManager *)sender
isUpdateNeededForLink:(NXDataLink *)link

A delegate that sends a setLinksVerifiedByDelegate: message to the link manager (indicating that the update status for
individual links will be verified by the delegate) should implement this method and return YES if the source data
identified by link's source selection has been modified since the link's last update time.

lastUpdateTime (NXDataLink)

dataLinkManager:(NXDataLinkManager *)sender
startTrackingLink:(NXDataLink *)link

Informs the delegate that another document has established a data link to the link manager's document. The delegate
need only implement this method if it returns YES in response to a dataLinkManagerTracksLinksIndividually: message.
link is a newly added source link the data that it applies to is identified by link's source selection.

dataLinkManagerTracksLinksIndividually:

dataLinkManager:(NXDataLinkManager *)sender
stopTrackingLink:(NXDataLink *)link

Informs the delegate that the former source link link is no longer linked to the document. There are many reasons that a
link might be removed the destination document could get closed, the link could be explicitly broken, or the destination
application might have died.

dataLinkManagerTracksLinksIndividually:



dataLinkManagerCloseDocument:(NXDataLinkManager *)sender

Never invoked by the system.

dataLinkManagerDidEditLinks:(NXDataLinkManager *)sender

Informs the delegate that link data has been modified. Since the link data is stored alongside the document's data and
should be considered part of the document, the delegate should use this notification to mark the document as edited.

dataLinkManagerRedrawLinkOutlines:(NXDataLinkManager *)sender

If the delegate implements this method, it will be invoked any time the manager is instructed to show or hide link outlines
through setLinkOutlinesVisible:. This method should query the link manager with areLinkOutlinesVisible to find out if
link outlines should be displayed. If so, it should invoke NXFrameLinkRect() to draw a distinctive outline around the
linked data otherwise it should display the data without outlines.

(BOOL)dataLinkManagerTracksLinksIndividually:
(NXDataLinkManager *)sender

If the delegate implements this method it should return whether it's willing to track links individually. If the delegate
doesn't implement this method, links are not individually tracked. If the delegate implements this method and returns
YES, it should also implement dataLinkManager:startTrackingLink: and dataLinkManager:stopTrackingLink: to follow
the links in use.

Many applications do not need to track links individually, but there are several situations where it can be useful to know
when a link is used. For example, the delegate may want to individually track links in order to continually update
destination documents each time data for a link's source selection is modified an individual link can be sent an
updateDestination message whenever a modification is made that affects the destination.

Additionally, many links may be placed on the pasteboard when data is copied, but few of those links will actually ever
get used. If the application must store selection-state information in the document, it should only do so for selections (and
their associated links) that actually get used this method is used to find out if the delegate wants to be informed when a
link gets used.

importFile:(const char *)filename at:(NXSelection *)selection

If the application has added a link based on an entire file (that is, used addLink:at: to incorporate a link created by
initLinkedToFile:), the delegate must implement this method to import the filename file at the destination described by
selection. This method should return self upon success, or nil if the selection can't be resolved.

pasteFromPasteboard:(Pasteboard *)pasteboard at:(NXSelection *)selection

If the application has added an ordinary destination link (that is, used addLink:at: to incorporate a link created by
initFromPasteboard: or a related method), the delegate must implement this method to paste the updated data that has
been made available on the pasteboard. The destination for the data is described by selection, which was supplied to the
link manager as an argument to the addLink:at: method.

The data is read from the pasteboard just as it is for any ordinary paste see the Pasteboard class specification for more
information on reading data from a pasteboard. This method should return self upon success, or nil if the selection can't
be resolved.



setSelection:(NXSelection *)selection

Never invoked by the system.

showSelection:(NXSelection *)selection

In an application that serves as a link source, the delegate should implement this method to show the source data for the
specified selection selection. This method should scroll the document so the selected data is visible. It might additionally
highlight the selected data using the function NXFrameLinkRect() with the argument isDestination set to NO. This
method should return self upon success, or nil if the selection can't be resolved.

windowForSelection:(NXSelection *)selection

In an application that serves as a link source, the delegate should implement this method to return the Window object for
the given selection, or nil if the selection can't be resolved.


