


init
initForDatabase:withProperties:andQualifier:
free

Connecting to a database database
setDatabase:

Managing properties getProperties:
setProperties:
addProperty:



removePropertyAt:
Managing the qualifier qualifier

setQualifier:
Managing the container container

setContainer:
setFlushEnabled:
isFlushEnabled
setFreeObjectsOnFlush:
areObjectsFreedOnFlush

Managing the record prototype+ setDynamicRecordSuperclassName:
+ setDynamicRecordClassName:
setRecordPrototype:
createRecordPrototype
ownsRecordPrototype
recordPrototype
associateRecordIvar:withProperty:
associateRecordSelectors::withProperty:
valueForProperty:

Ordering and ignoring records addRetrieveOrder:for:
removeRetrieveOrderFor:
retrieveOrderFor:
positionInOrderingsFor:
ignoresDuplicateResults
setIgnoresDuplicateResults:

Accessing the database fetch
select
selectWithoutFetching
insert
update
delete
evaluateString:
adaptorWillEvaluateString:

Fetching in a thread fetchInThread
cancelFetch
checkThreadedFetchCompletion:

Limiting a fetch setMaximumRecordsPerFetch:
maximumRecordsPerFetch
recordLimitReached

Using the shared cursor for several binders
setSharesContext:
sharesContext

Managing general resources reset
flush
scratchZone

Appointing a delegate delegate
setDelegate:

Archiving read:
write:

setRecordPrototype:



setRecordPrototype:

(BOOL)adaptorWillEvaluateString:(const unsigned char *)aString

Returns YES if the adaptor associated with the DBBinder's DBDatabase object will accept the given string for evaluation
(as determined by sending bionder:willEvaluateString: to the DBBinder's delegate), otherwise returns NO.

binder:willEvaluateString: (DBBinder delegate)

addProperty:anObject

Adds the given object (which should conform to the DBProperties protocol) to the DBBinder's list of properties that it's
interested in. The list can't contain duplicates if the property is already present, the addition isn't performed. The return
value should be ignored.

Typically, you only use this method if you're building the DBBinder's property list incrementally, and so will rely on the
DBBinder to create a record class dynamically. If you're setting your own prototype record object (through
setRecordPrototype:), you should, rather than use this method, inform the DBBinder of its properties all at once, through
initForDatabase:withProperties:andQualifier: or setProperties:.

setProperties:, getProperties:, removePropertyAt:

addRetrieveOrder:(DBRetrieveOrder)anOrder for:(id <DBProperties>)aProperty

Establishes the order in which records are retrieved from the database (and stored in the DBBinder's container). Using
the value of the aProperty property as a retrieval ªkey, º records are retrieved in least-to-greatest or greatest-to-least order,
as anOrder is DB_AscendingOrder or DB_DescendingOrder. If anOrder is DB_NoOrder, the default, the property is
removed from the retrieval order scheme. Returns self.

You can invoke this method for as many properties as you choose, but the order in which the invocations are performed is
important: The first invocation establishes the primary retrieval order property, the second establishes the secondary such
property, and so on. If two or more records have the same value for their primary properties, their order is determined
according to the values of their secondary properties. If they still can't be distinguished, the decision falls to the tertiary
properties, and so on.

Note well that it's the adaptorÐnot the DBBinderÐthat retrieves records. If the adaptor that you're using doesn't
support the notion of an ordered retrieval, then this method is for naught.

retrieveOrderFor:, removeRetrieveOrderFor:, positionInOrderingsFor:

(BOOL)areObjectsFreedOnFlush

Returns YES if the objects in the DBBinder's container are freed when the DBBinder is flushed, otherwise returns NO.
Flushing is explained in the description of the flush method. By default, the objects are freed.

setFreeObjectsOnFlush:, setFlushEnabled:

associateRecordIvar:(const char *)variableName
withProperty:(id <DBProperties>)aProperty

Associates the record object instance variable named variableName with the given property such that when a record is
fetched from the database, the value of the named instance variable (in the record object that's created to hold the record)



is set to the value at the property. The property's value is coerced, if possible, to match the data type of the instance
variable. If aProperty isn't in the DBBinder's list of properties, the association isn't made and nil is returned, otherwise
non-nil is returned.

You should only invoke this method if you're setting your own prototype record object (through the setRecordPrototype:
method). Furthermore, the prototype record must already be set when you invoke this method, and it must contain an
instance variable with the given name. Failing these, the association isn't made (although the return value will still be
non-nil).

Rather than associate a property with an instance variable, you can associate it with a pair of instance methods, through
the associateRecordSelectors:withProperty: method. However, a single property can be associated with only one instance
variable or one method pair invoking this method with a particular property undoes the effect of a previous invocation of
this or of the associateRecordSelectors:withProperty: method for that property.

associateRecordSelectors::withProperty:

associateRecordSelectors:(SEL)set
:(SEL)get
withProperty:(id <DBProperties>)aProperty

Associates the record object instance methods set and get with the given property such that when a record is fetched from
the database, the value at the property is set through the set method, and when the record is written back to the database,
the value is retrieved through the get method. Either or both of the selector arguments may be NULL. If non-NULL, the
set method must take exactly one argument, the value that's being set the get method must take no arguments. The data
type of the value returned by the get method should match that of the set method's argument.

You should only invoke this method if you're setting your own prototype record object (through the setRecordPrototype:
method). Furthermore, the prototype record must have already been set, and the object must respond to the set and get
methods (if they're non-NULL). If it doesn't respond, or if aProperty isn't in the DBBinder's list of properties, the
association isn't made and nil is returned. Otherwise, the method returns non-nil.

Rather than associate a property with a pair of methods, you can associate it with an instance variable, through the
associateRecordIvar:withProperty: method. However, a single property can be associated with only one instance variable
or one method pair invoking this method with a particular property undoes the effect of a previous invocation of this or of
the associateRecordIvar:withProperty: method for that property.

associateRecordIvar:withProperty:

cancelFetch

Interrupts an asynchronous fetch. You can also use this method after a successful synchronous fetch to ensure that idle
resources are reclaimed.

fetchInThread, fetch, fetchDone: (DBDatabase)

checkThreadedFetchCompletion:(double)timeout

If you're performing an asynchronous fetch but you're not using the Application Kit's event loopÐwhich is generally not
a particularly safe thing to doÐyou should invoke this message (after invoking fetchInThread) to ensure that the delegate
message binderDidFetch: is sent. The argument is the maximum amount of time, in seconds, to wait before returning.
Returns nil (and the message isn't sent) if the time limit expires before the fetch completes, otherwise returns self.

fetchInThread

(id <DBContainers>)container

Returns the DBBinder's container object, as set through setContainer:. The container, which must conform to the
DBContainers protocol, holds the record objects that are created when the DBBinder fetches data. A DBBinder has no
default container and can operate without one, although this impedes some of the object's functionality. Lacking a
container, a DBBinder can't perform an asynchronous fetch, and its cursor can only be positioned through the setNext
method.



setContainer:

createRecordPrototype

Creates and assembles a class that's used to create record objects. The class is given sufficient instance variables to hold
the DBBinder's properties (one instance variable per property). By default, the name of the class that's created is
arbitrary and unique and its superclass is Object. You can change these settings through the setDynamicRecordClass: and
setDynamicRecordSuperclass: class methods. This method has no effect and returns nil under the following conditions:

·If the DBBinder's current prototype record object isn't nil.
·If the DBBinder has no properties.
·If the name set through setDynamicRecordClass: names an existing class.
·If the class named by setDynamicRecordSuperclass: doesn't exist.

Upon success, this method returns the class that it created.

This method is automatically invoked when the DBBinder fetches data, thus you needn't invoke it directly. In general,
it's a good idea to never invoke this method however, if you doÐfor example, to examine the return valueÐyou should
send a setRecordPrototype:nil message to the DBBinder before the next fetch to ensure that the correct class will be
assembled.

(DBDatabase *)database

Returns the DBDatabase object that's associated with the DBBinder.

initForDatabase:withProperties:andQualifier:, setDatabase:

delegate

Returns the object that will receive notification messages for the DBBinder.

setDelegate:

delete

Deletes from the database each of the DBBinder's record objects.

Before the operation begins, a binderWillDelete: message is sent to the DBBinder's delegate (with the DBBinder as the
argument) if the delegate message returns NO, then the deletion isn't performed and this method returns nil. After all the
records have been processed, the DBBinder is flushed. If the records were successfully deleted, a binderDidDelete:
message is sent to the delegate and self is returned, otherwise the delegate message isn't sent and nil is returned.

As each record is deleted, one of two messages is sent to the container's delegate (if the DBBinder has a container, if the
container has a delegate, and if the delegate implements the method):

·binder:didAcceptObject: if the record was deleted.
·binder:didRejectObject: is sent if the record couldn't be deleted.

For both methods, the first argument is the DBBinder and the second is the record object. The values returned by these
methods are ignored.

(BOOL)evaluateString:(const unsigned char *)aString

Tells the adaptor to evaluate and execute the commands that are encoded in aString. The DBBinder's qualifier isn't
applied to the evaluation.



Before the evaluation is performed, a binder:willEvaluateString: message is sent to the DBBinder's delegate. If the
delegate message returns NO, then the evaluation isn't performed and this method immediately returns NO.

The DBBinder is then flushed, and the evaluation is performed by sending an evaluateString: message to the
DBDatabase, passing aString as the argument. If the DBDatabase message returns NO, then this method returns NO,
otherwise a binder:didEvaluateString: message is sent to the delegate and YES is returned.

fetch

Fetches records from the database, forms a record object for each, and places the record objects in the DBBinder's
container. If the binder has no container, you should use the setNext method, rather than this one, to fetch data.

Before the fetch begins, the DBBinder's delegate is sent a binderWillFetch: message after, it's sent binderDidFetch:. If
binderWillFetch: returns NO, the fetch isn't performed and this method immediately returns nil.

As each record of data is fetched, a copy of the DBBinder's prototype record object is created to hold the data. If the
DBBinder's prototype record hasn't been set, a class is dynamically assembled to fill the need, as explained in the
description of createRecordPrototype.

The fetch continues until there's no more data to retrieve, or until the record limit (as set through the
setMaximumRecordsPerFetch: method) has been reached.

After the fetch has ended, the DBBinder's cursor is set to the first record in the container (or to the single fetched record if
there is no container) and self is returned. If there was no data to fetch, or if there's a fetch in progress (and the DBBinder
has a container), the cursor isn't set and nil is returned.

If the fetch ended by exhausting the source dataÐin other words, it didn't end because the record limit was reachedÐyou
should then invoke cancelFetch to reclaim resources that were used during the fetch. Use the recordLimitReached
method to test whether the fetch ended because it reached the limit while there was more data to fetch.

fetchInThread

Fetches data asynchronously from the database by performing the fetch in a separate thread. The general mechanism and
conditions are as described in the fetch method, but with these differences:

·An asynchronous fetch only works if the DBBinder has a container.

·You shouldn't invoke cancelFetch after invoking this method unless you actually want to abort the fetch.

·The record limit set through setMaximumRecordsPerFetch:has no effect on an asynchronous fetch.

If there is no container, or if the binderWillFetch: delegate message returns NO, then the fetch isn't performed and this
method returns nil. Otherwise, this method returns self while the fetch proceeds in the background. When the fetch is
complete, the binderDidFetch: method is sent to the delegate.

If you're not using the Application Kit's main event loop, then you probably don't want to fetch asynchronouslyÐthere
are any number of things that you can do, in this situation, that will make your application hang. But if you're feeling
lucky you should note that this method, when run without the App Kit, should be followed by an invocation of
checkThreadedFetchCompletion:. This synchronizes the fetch thread with the main thread, and ensures that the
binderDidFetch: message is sent. Good luck.

To be used in an asynchronous fetch, the DBBinder's container must be thread-safe (it must be re-entrant). Alternatively,
if you limit yourself to DBCursorPositioning methods, such as setTo: and setNext:, you can access the container
regardless of the type of fetch employed.

fetch, cancelFetch, checkThreadedFetchCompletion:

(BOOL)flush

If flushing is enabled, this empties the DBBinder's container. Furthermore, if the DBBinder has been told to free-on-
flush, the records that were in the container are freed and the prototype record object is set to nil. By default, both
flushing and free-on-flush are enabled. Returns YES if flushing is enabled, NO if not.

This method always interrupts a fetch, if one is in progress, whether or not flushing is enabled.

The following DBBinder methods may cause flush to be invoked:



evaluateString:
selectWithoutFetching
insert
update
delete
setProperties:
reset
free

setFlushEnabled:, setFreeOnFlush:

free

Frees the DBBinder and its records. If the DBBinder owns the prototype record object, it too is freed.

(List *)getProperties:(List *)aList

Fills aList with the DBBinder's properties, then returns the List directly and by reference. The order of the properties in
the List is that by which they were added to the DBBinder. You mustn't free the contents of aList, although you may free
the List itself.

initForDatabase:withProperties:andQualifier:, setProperties:, addProperty

(BOOL)ignoresDuplicateResults

Returns YES if the DBBinder is set to ignore duplicate records during a select. The default is NO. It's up to the adaptor
to support this (the Oracle and Sybase adapters supplied with the Database Kit do).

setIgnoresDuplicateResults:

init

The designated initializer for the DBBinder class, init initializes and returns the DBBinder. All the objects that the
DBBinder owns or knows of, such as its container, properties, DBDatabase, and DBQualifier are set to nil. Its boolean
attributes are set as follows:

initForDatabase:withProperties:andQualifier

initForDatabase:aDBDatabase
withProperties:(List *)propertyList
andQualifier:(DBQualifier *)aDBQualifier

Invokes init and then sets the DBBinder's DBDatabase, properties, and DBQualifier as given by the arguments. The
properties in propertyList are added to the DBBinder's own List, thus the argument may be freed.

init

insert



Inserts into the database each of the DBBinder's record objects.

Before the operation begins, a binderWillInsert: message is sent to the DBBinder's delegate (with the DBBinder as the
argument) if the delegate message returns NO then the insertion isn't performed and nil is immediately returned by this
method. After all the records have been processed, the DBBinder is flushed. If the records were successfully inserted, a
binderDidInsert: message is sent to the delegate and self is returned, otherwise the delegate message isn't sent and nil is
returned.

As each record is inserted, one of two messages is sent to the container's delegate (if the DBBinder has a container, if the
container has a delegate, and if the delegate implements the appropriate method):

·binder:didAcceptObject: if the record was inserted.
·binder:didRejectObject: is sent if the record couldn't be inserted.

For both methods, the first argument is the DBBinder and the second is the record object. The values returned by these
methods are ignored.

(BOOL)isFlushEnabled

Returns YES if the DBBinder has flushing enabled, otherwise return NO. The default is YES. See the description of the
flush method for more information. (Note that sharing a cursor is incompatible with flushing, so setSharesContext: has
the side effect of disabling flushing.)

flush, setFlushEnabled:, setSharesContext:

(unsigned int)maximumRecordsPerFetch

Returns the maximum number of records that will be retrieved during a synchronous fetch, as set through the
setMaximumRecordsPerFetch: method. By default, this limit is set to DB_NoIndex, which imposes no limit.

setMaximumRecordsPerFetch:, recordLimitReached, fetch

(BOOL)ownsRecordPrototype

Returns YES if the DBBinder owns its prototype record objectÐin other words, if it will create a record class for you
(when createRecordPrototype is invoked). If you've set the prototype record object yourself, through
setRecordPrototype:, then this returns NO.

(unsigned int)positionInOrderingsFor:(id <DBProperties>)aProperty

Returns an integer that indicates the level (primary, secondary, tertiary, and so on) at which the given property is used to
order the records that are retrieved from the database. The ordering position of a particular property is the order in which
it was added to the ordering mechanism (amongst the currently ªactiveº ordering properties) through the
addRetrieveOrder:for: method. A return of DB_NoIndex means that the property isn't used in the ordering mechanism.

addRetrieveOrder:For:

(DBQualifier *)qualifier

Returns the DBQualifier object that was set through setQualifier: or initForDatabase: withProperties:andQualifier:. The
qualifier is used to qualify values during a select.

setQualifier:, initForDatabase:withProperties:andQualifier:

read:(NXTypedStream *)stream



Reads the DBBinder from the typed stream stream. Returns self.

(BOOL)recordLimitReached

If the previous fetch was stopped because the DBBinder's record limit (as set through the setMaximumRecordsPerFetch:
method) was reached, then this returns YES. By default, this returns NO the flush method will also set this to return NO,
whether or not flushing is enabled. See the description of the fetch method for an example of the use this method.

setMaximumRecordsPerFetch:, maximumRecordsPerFetch, fetch

recordPrototype

Returns the DBBinder's prototype record object. If you've set the object yourself, through setRecordPrototype:, then that
object is returned. Otherwise, this returns nil unless you've previously invoked createRecordPrototype directly, or unless
this is called from within a subclass implementation of fetch.

setRecordPrototype, createRecordPrototype

removePropertyAt:(unsigned int)index

Removes the property at the given index. To find the index of a particular property, get the DBBinder's List of properties
through the getProperties: method, and then ask for the index by sending indexOf: to the List, passing the property as the
argument. Returns the property (or nil if there was none).

setProperties:, addProperty:

removeRetrieveOrderFor:(id <DBProperties>)aProperty

Removes the given property from the list of properties that are used to sort records as they're being fetched. The
property's retrieve order constant is set to DB_NoOrder. Returns nil if the property hadn't previously been added to the
record-sorting list (if it hadn't previously received an addRetrieveOrderFor: message), otherwise self is returned.

addRetrieveOrderFor:, positionInOrderingsFor:

reset

Restores the DBBinder to a virgin state. The DBBinder is first flushed (which cancels a fetch, if one is in progress), then
the objects that it has allocated, and any that you've allocated in the scratch zone, are freed. The setProperties: and free
methods automatically cause a reset.

flush, scratchZone

(DBRetrieveOrder)retrieveOrderFor:(id <DBProperties>)aProperty

Returns a constant that indicates the order in which records are retrieved when aProperty is used as a retrieval key (see the
addRetrieveOrder:for: method for a further explanation). The retrieval order constants are:

addRetrieveOrder:for:, positionInOrderingsFor:



(NXZone *)scratchZone

Returns the zone in which the DBBinder allocates the objects that it owns. The objects in the zone are freed during a reset
the zone is made public so you can use it to allocate your own supporting objects and have them freed during a reset as
well. Note that the zone may be different after each reset.

reset

select

Selects and fetches data from the database. First, selectWithoutFetching is invoked if that returns nil, then this returns nil.
If the method was successful, then fetch is invoked the value returned by fetch is returned by this method.

selectWithoutFetching, fetch

selectWithoutFetching

Selects records from the database, using the DBBinder's qualifier (as set through setQualifier: or initForDatabase:
withProperties:andQualifier:) to qualify the records that are selected.

Before the operation begins, a binderWillSelect: message is sent to the DBBinder's delegate (with the DBBinder as the
argument) if the delegate message returns NO, then the select isn't performed and nil is immediately returned by this
method. Otherwise, the DBBinder is flushed and the data is selected. If the select was successful, a binderDidSelect:
message is sent to the delegate and self is returned, otherwise the delegate message isn't sent and nil is returned.

If the DBBinder is set to ignore duplicate results, only the first of duplicate records will be selected.

select, setIgnoreDuplicateResults

setContainer:(id <DBContainers>)anObject

Sets the container that's used to store record objects. The argument must either adopt the DBContainers protocol, or it
can be a List objectÐDBBinder defines a category of List that allows its instances, and those of its subclasses, to pose as
DBContainers-conforming objects. Most DBBinders are well served using a List as a container. For more on the theory
and practice of containment, see the class description, above.

Returns the previous container.

setDatabase:(DBDatabase *)aDatabase

Sets the DBBinder's database. Returns the previous DBDatabase object.

setDelegate:anObject

Sets the object that receives notification messages for the DBBinder.

setFlushEnabled:(BOOL)flag

Establishes whether the DBBinder is capable of being flushed, as explained in the description of the flush method. The
default is YES.

flush, setFreeObjectOnFlush:



setFreeObjectsOnFlush:(BOOL)flag

Establishes whether the DBBinder will free its records when it's flushed. Setting this to YES is effective only if the
DBBinder is capable of being flushed, as established by the setFlushEnabled: method. The default is YES (the default
flush-enablement is also YES).

flush, setFlushEnabled:

setIgnoresDuplicateResults:(BOOL)flag

Establishes whether duplicate records are ignored during a select. The default is NO. It's up the adaptor to support this
the Oracle and Sybase adapters supplied with the Database Kit do.

ignoresDuplicateRecords, selectWithoutFetching

setMaximumRecordsPerFetch:(unsigned int)limit

Sets, to limit, the maximum number of records that will be retrieved during a fetch. The limit only applies to synchronous
fetches the asynchronous fetch method fetchInThread ignores the record limit.

maximumRecordsPerFetch, recordLimitReached, fetch

(List *)setProperties:(List *)aList

Resets the DBBinder and then adds to it the properties in aList. Returns the argument.

getProperties:, addProperty:, removePropertyAt:

setQualifier:(DBQualifier *)aQualifier

Sets the qualifier that's used during a select. Returns self.

qualifier

setRecordPrototype:anObject

Sets the object that's copied to store the results of a fetch. See the class description for a full explanation of the record
prototype object.

recordPrototype, createRecordPrototype

setSharesContext:(BOOL)flag

Establishes whether the DBBinder shares its cursor with other DBBinder objects. The default is NO. Making a
DBBinder share its cursor disables flushing. Returns self.

Shared cursor behavior depends on the implementation of the adaptor rather than the database it's provided in both the
Oracle and the Sybase adaptors as a way of achieving atomic updates. Sharing the cursor also provides a slightly more
efficient use of memory.

sharesContext

(BOOL)sharesContext



Returns YES if the DBBinder shares its cursor with other DBBinders, otherwise returns NO.

setSharesContext:

update

Copies the values in the DBBinder's record objects into the appropriate records in the database.

Before the operation begins, a binderWillUpdate: message is sent to the DBBinder's delegate (with the DBBinder as the
argument) if the delegate message returns NO, then the update isn't performed and nil is immediately returned by this
method. After all the records have been processed, the DBBinder is flushed. If the records were successfully updated, a
binderDidUpdate: message is sent to the delegate and self is returned, otherwise the delegate message isn't sent and nil is
returned.

As each record is updated, one of two messages is sent to the container's delegate (if the DBBinder has a container, if the
container has a delegate, and if the delegate implements the appropriate method):

·binder:didAcceptObject: if the record was updated.
·binder:didRejectObject: is sent if the record couldn't be updated.

For both methods, the first argument is the DBBinder and the second is the record object. The values returned by these
methods are ignored.

(DBValue *)valueForProperty:(id <DBProperties>)aProperty

Returns a DBValue object for the given property of the currently pointed-to record. Use the DBCursorPositioning
methods, such as setNext and setTo:, to set the cursor to point to a particular record. The object that's returned is owned
by the DBBinder and shouldn't be freed.

write:(NXTypedStream *)stream

Writes the DBBinder to the typed stream stream. Returns self.

binder:aBinder didEvaluateString:(const unsigned char *)aString

Invoked after the given string has been successfully evaluated by DBBinder's evaluateString: method. The return value is
ignored.

(BOOL)binder:aBinder willEvaluateString:(const unsigned char *)aString

Invoked before the given string is evaluated by DBBinder's evaluateString: method. A return of NO will thwart the
evaluation.

binderDidDelete:aBinder

Invoked after the DBBinder has successfully deleted records through the delete method. The return value is ignored.

binderDidFetch:aBinder



Invoked after the DBBinder has successfully fetched records through the fetch or fetchInThread method. The return value
is ignored.

binderDidInsert:aBinder

Invoked after the DBBinder has successfully inserted records through the insert method. The return value is ignored.

binderDidSelect:aBinder

Invoked after the DBBinder has successfully selected data through the selectWithoutFetching method. The return value is
ignored.

binderDidUpdate:aBinder

Invoked after the DBBinder has successfully updated the database through the update method. The return value is
ignored.

(BOOL)binderWillDelete:aBinder

Invoked before the DBBinder attempts to delete records from the database through the delete method. A return of NO
will thwart the attempt.

(BOOL)binderWillFetch:aBinder

Invoked before the DBBinder attempts to fetch data through the fetch or fetchInThread method. A return of NO will
thwart the attempt.

(BOOL)binderWillInsert:aBinder

Invoked before the DBBinder attempts to insert records into the database through the insert method. A return of NO will
thwart the attempt.

(BOOL)binderWillSelect:aBinder

Invoked before the DBBinder attempts to select data from the database through the selectWithoutFetching method. A
return of NO will thwart the attempt.

(BOOL)binderWillUpdate:aBinder

Invoked before the DBBinder attempts to update the database through the update method. A return of NO will thwart the
attempt.


