
OPENSTEP Release 4.2    Copyright ã1997 by Apple Computer, Inc.    All Rights Reserved.

Converting Your Code to OPENSTEP

This document describes how to convert your code from NEXTSTEP Release
3.x to OPENSTEP for Mach Release 4.x.

Release 4.0 is NeXT's first OpenStep-compliant release. OpenStep is an API
that enables platform-independent development of client/server applications. The
OpenStep API includes the Application Kit, the DPSClient library, and a new kit
called the Foundation Framework, which provides an operating system
independence layer. The OpenStep Application Kit is functionally equivalent to
the NEXTSTEP Release 3 Application Kit, but its API has been reworked to
make use of the Foundation Framework. Because Release 4.0 is OpenStep
compliant, converting your code to it is a good way to make your application an
OpenStep application.

To convert your code, you run a series of scripts. These scripts use tops, a tool
that performs in-place substitutions on source files according to a set of rules.
The script files contain the rules that tops applies to your code. Most of the

scripts are provided in the release, but you must generate some of them before
you start converting because they work directly on the custom classes in your
code. OPENSTEP for Mach provides a tool that allows you to generate these
scripts.

The scripts convert most of the NEXTSTEP API to the new OpenStep API. Some
methods, classes, and functions have been altered in such a way that an
automated conversion is not possible. For these, the conversion scripts produce
an error message that identifies the obsolete code and tells you how to convert it.

You run the conversion in six stages. Each stage runs a different set of scripts.
After each stage, you compile your code to identify places where the conversion
was not automatic. It is recommended that you run some additional scripts to
replace the Common classes with OpenStep API, making your code even more
portable.

This document tells you how to set up your project for conversion and how to run
the conversion scripts. A separate document, the    OpenStep Conversion Guide,
describes the changes made during each of the conversion stages and the
reason for those changes.    Its location on-line is
/NextLibrary/Documentation/NextDev/Conversion/ConversionGuide. Read
the first chapter of this guide (00_Intro.rtfd) for an overview of the differences
between NEXTSTEP 3.X and OpenStep and for a discussion of the different
strategies you might use when converting.

The Conversion Process

To convert your code, do the following:

1. Convert your project to a 4.0 project.
2. Generate the conversion scripts.
3. Run the six-stage conversion process and any optional conversions.
4. Convert your nib files.
5. Debug your application.

These steps are described further below.

Converting Your Project to a 4.x Project

Before you start the conversion process, you need to change your project and
makefiles so that they use the new Release 4.0 development environment. The
4.0 development environment has many significant improvements over the 3.3
development environment. In particular, Project Builder has changed
significantly. To convert your project, perform the following steps:

1. Read    OPENSTEP Development: Tools and Techniques and the release
notes for Project Builder and Interface Builder to learn about changes to the
environment.

The document you are reading now does not describe how to use the new
Project Builder.    The book OPENSTEP Development: Tools and Techniques is
on-line in the directory
/NextLibrary/Documentation/NextDev/TasksAndConcepts/DevGuide. The
release notes are in the directory
/NextLibrary/Documentation/NextDev/ReleaseNotes.

2. Make sure your code compiles cleanly without warnings.

Perform this step so that any warnings that show up during conversion won't
become mixed in with pre-existing warnings. Make sure the -Wall compiler
option is being used.

Before you compile your 3.3 code on a 4.0 system, you need to change the
search path for header files to the directory   
/NextDeveloper/OpenStepConversion/3.3Headers. To do this in the new
Project Builder:

1.Choose Inspector from the Tools menu to bring up the project inspector.

2. From the inspector pop-up list, choose Build Attributes.
3. Choose Header Search Order from the pop-up list in the Build Attributes

inspector.
4. Type /NextDeveloper/OpenStepConversion/3.3Headers and click Add.

3. Back up your project directory.

The conversion scripts modify your code in-place, and they do not create
backups for you. It is strongly recommended that you back up your project
after each conversion stage in addition to backing up before you begin,
provided you have enough space.

4. Delete the NeXT-provided libraries (such as libNext) from your project, and
add the corresponding frameworks (such as
/NextLibrary/Frameworks/AppKit.framework).

All NeXT-provided libraries are replaced with frameworks in 4.0. A frameworks'
executable code is a dynamic shared library. To add the Application Kit
framework, in Project Builder choose Add File from the Project menu, select
/NextLibrary/Frameworks/AppKit.framework from the Add File panel, and
choose Frameworks from the file type pop-up list on the Add File panel. Add
the Foundation Framework in the same way.

Frameworks are bundled differently than shared libraries. All of the support
files for a framework are contained in the same directory, so you no longer

have to know that the library itself resides in one place, its header files another
place, and its documentation still a third place.

When you add a framework to your project, it doesn't appear in the Libraries
suitcase. Instead, it appears in the Frameworks suitcase. You are able to see
that framework's header files and documentation underneath that suitcase.

5. Change the application class in Project Builder.

In OpenStep, all keywords are prefixed with "NS", so the Application class is
now NSApplication. If you are converting an application project, you need to
change the class in Project Builder so that it will use the appropriate class
when updating your main function. To do this, bring up the project inspector by
choosing Inspector from the Tools menu. In the inspector, choose Project
Attributes. Finally, type NSApplication in the field labelled Application Class.

6. Convert your makefiles.

The new Project Builder comes with new Makefile.postamble and
Makefile.preamble files. Convert your preamble and postamble files if you
performed some customization on them. You can find copies of the new
templates in the directory /NextDeveloper/Makefiles/project. Rename your
existing preamble and postamble files, copy the new templates into your
project directory, rename the template (remove the .template extension), and
merge any customizations you would like to keep into the new templates.

Most of the changes to the makefiles are additions made to support
frameworks, however some makefile variables are now obsolete. The
additions are documented in the comments in the preamble and postamble
files. The following table lists the obsolete makefile variables and what you
should use as a replacement.

Obsolete Makefile Variable Possible Replacement

BUNDLELDFLAGS OTHER_LDFLAGS

PALLETTELDFLAGS OTHER_LDFLAGS

COMMON_CFLAGS OPTIMIZATION_CFLAG,
WARNING_CFLAGS

NORMAL_CFLAGS OPTIMIZATION_CFLAG,
WARNING_CFLAGS

DEBUG_CFLAGS Use DEBUG_BUILD_CFLAGS.

PROFILE_CFLAGS Use PROFILE_BUILD_CFLAGS.

DYLD_APP_STRIP_OPTS LIBRARY_STRIP_OPTS (-S by
default)

RELOCATABLE_STRIP_OPTS DYNAMIC_STRIP_OPTS (-S by
default)

OTHER_DEBUG_LIBS Add libraries using Project Builder.

OTHER_PROFILE_LIBS Add libraries using Project Builder.

OTHER_JAPANESE_DEBUG_LIB Add libraries using Project Builder.

OTHER_JAPANESE_PROFILE_LIBS Add libraries using Project Builder.

BUNDLE_LIBS Add libraries using Project Builder.

PRECOMPS Use Project Builder Inspector to
mark headers for precompiling.

In addition, the following are some other changes to makefiles of which you
should be aware:

· If your project is a library shared by several other projects, consider
converting it to a framework. For more information, see the book OPENSTEP
Development: Tools and Techniques.

· Many things that you used to have to set using the Makefile preamble and
postamble files you can now set using Project Builder. For example, you can
set search paths and simple compiler flags. You should minimize your use of
the preamble and postamble files and use the Project Builder interface
instead. For more information, see the development environment release
notes.

· The build process now uses gnumake instead of make.

· If you wrote any top-level double-colon targets that are also implemented by
Project Builder, such as app::, install::, all::, now is a good time to rename

them. It is likely that the variables passed to these rules and the order in
which they are executed has changed. Consider using after_install::,
before_install::, OTHER_INITIAL_TARGETS, or
OTHER_PRODUCT_DEPENDS.

· Once you save your project in 4.0, it uses the new makefile behavior. If your
project must use the 3.3 makefile behavior, set MAKEFILEDIR in
Makefile.preamble to /NextDeveloper/Makefiles/app.

Generating the Conversion Scripts

Some of the conversion scripts need to understand your application's class
hierarchy and how you implemented certain methods. For this reason, you must
generate some of the conversion scripts yourself.

To generate conversion scripts, do the following:

1. Add /NextDeveloper/OpenStepConversion/UtilityScripts/shellscripts to
your PATH environment variable. The convert command, which you use to
convert your code, is in this directory.

2. In a Terminal window, enter these commands to create files that will be used to
generate the conversion scripts:

% cd project_directory
% convert -preprocess

3. Modify the files StringMethods, StringDefines, RectMethods, and
VoidMethods, which are used to generate the conversion scripts. Carefully
read "Modifying the Files Used to Generate Conversion Scripts" below for
instructions on how to do this.    Once you perform step 4, you cannot return to
this step.

WARNING: Do not move on to step 4 until you have fully completed step 3.

4. Generate the optional conversion scripts with this command:

% convert -makescripts

Modifying the Files Used to Generate Conversion Scripts

The convert -preprocess command creates a CONVERSION directory under
your project directory and stores in it files that describe your application. These
files and their contents are described in the table below.

File Description

ClassHierarchy1 Describes the class hierarchy before conversion
in a format tops can understand.

ClassHierarchy2 Describes the class hierarchy after conversion
in a format tops can understand.

StringMethods Lists methods that have (char *) or (const char
*) as either a parameter type or return type.

StringDefines Lists #defines that were determined to be of
type (const char *).

RectMethods Lists methods that use pointers to NXRects,
NXSizes, or NXPoints as either a parameter or
a return type.

VoidMethods Lists methods that did not specify a return type.

In order to generate conversion scripts that will convert your code properly, you
need to modify all of the files produced by convert -preprocess except the class
hierarchy files. The following sections provide instructions on this step.

After you modify these files and run convert -makescripts, some additional
conversion scripts appear in the CONVERSION directory. These scripts are
executed during the conversion process.

StringMethods

OpenStep provides a new object called NSString. NSString allows you to
perform character manipulation on strings without requiring that you know which
character encoding is being used. Using NSStrings, you can write truly portable
and internationalized code, code that will work with any writing system supported
by the Unicode standard.    The Application Kit now uses NSStrings where it used
to use C strings in method and function arguments and return values. Because of
this and because of the advantages of NSStrings, you may want to convert all of
the C strings in your application so that they use NSStrings.

The StringMethods file contains a list of every method in your application that
takes a C string as an argument or returns a C string. It does not list overrides of
Application Kit methods; those are taken care of by the conversion scripts
provided in the release. All of the methods listed in this file will have their C string
arguments and return values converted to NSStrings.

Only methods that don't modify the string should have their C strings converted.
Look at the implementation of every method listed in the StringMethods file. If
the method modifies its C strings, remove its name from the file. To skip the
optional conversion of C strings to NSStrings entirely, delete all of the methods
from this file. (You may want to save them in a different file.) Before you decide,
you may want to read about the conversion of C strings to NSStrings in the
OpenStep Conversion Guide. See the chapter "Converting the Common

Classes."

You can locate a method's implementation easily in Project Builder by doing the
following (for more information, see the development environment release
notes):

1. Choose Find from the Tools menu to display the Project Find panel.
2. In the Project Find panel, enter the name of the method in the text field.
3. Make sure Definition is selected in the pop-up list.
4. Click the Find button.

StringDefines

This StringDefines file contains #define macros that are string constants or
NXLocalizedString... function calls. These macros will be converted so that they
create NSString objects instead of C strings. If this file lists macros that you want
to remain C strings, delete the line naming that macro from the StringDefines
file.

RectMethods

All Application Kit functions and methods that used to take the address of an
NXRect or an NXSize now take the value of the structure. Similarly, all

Application Kit functions and methods that used to return a pointer to an NXRect
or NXSize now return the structure itself. This change was made to eliminate the
aliasing problems that can occur when you pass pointers and to allow these
methods to work better with the Distributed Objects system.

The RectMethods file contains a list of every one of your application's methods
that takes a pointer to an NXRect, NXSize, or NXPoint structure or returns a
pointer to one of these structures. (It does not list overrides of Application Kit
methods.) All of the methods listed in this file will have their structure pointer
arguments and return values converted to the actual structure.

Only methods that don't modify the structures should have their arguments and
return types modified.    Look at the implementation of every method listed in the
RectMethods file. If the method modifies an NXRect, NXPoint, or NXSize
structure, remove its name from the file. To skip the optional conversion of
structure pointers entirely, delete all of the methods from this file. (You may want
to save them in a different file.) Before you decide, you may want to read about
the NXRect, NXPoint, and NXSize conversions in the OpenStep Conversion
Guide. See the chapter "Converting the Common Classes."

VoidMethods

Previously, methods returned self by convention. Some methods return self to

indicate success and nil to indicate failure. Returning self to indicate a Boolean
value or returning self without any associated meaning made the API more
confusing. In OpenStep, when a method has no real value to return, its return
type is void. Where a method returned self or nil, it now returns BOOL. In
addition to being cleaner API, returning void and BOOL helps you avoid creating
unnecessary proxies if you're distributing objects. The VoidMethods file contains
a list of every method in your application that has no return type specified (except
for overrides of Application Kit methods).

Look at both the implementation and the uses of each of the methods listed in
the VoidMethods file and perform the action listed below. (To look at all of the
uses of a method, enter its name in Project Builder's Project Find panel, choose
References from the pop-up list, and click Find. The bottom half of the Find panel
lists all of the places the method is invoked.)

· If the method returns either self or nil and invocations of the method test the
return value, change the prefix for that method in the VoidMethods file to
SELFNIL-BOOL. This will convert the method to return BOOL. (By default, all
methods in the file are prefixed with SELF-VOID, which means they will be
converted to return void.)

· Delete the method from the VoidMethods file if its return type is ever used in
any of the places where it is invoked (and it should not be converted to return
BOOL).

· init... methods do not appear in the VoidMethods file because it is correct for
them to return type id. If you have a method that starts with init... but is not a
initialization method for its class, add it to the VoidMethods file if it should
return void.

· Leave all +initialize methods in the file. The +initialize method now returns
void.

· If the method returns a value other than self and that value is never used
anywhere the method is invoked, change its prefix to OBJ-VOID.

· To skip the optional void conversion, delete all of the methods from the
VoidMethods file. (You may want to save them to a different file.)

For example, consider the methods shown in the following code fragment. All of
these methods except newCount would be listed in the VoidMethods file
because they don't specify a return type. However, the countingObject method
has a meaningful return value because countSomething expects it to return an
object. countSomething is is the only method that should truly be converted to
return void because it is invoked as if it already did return void. Thus, in the
VoidMethods file, you would delete countingObject but leave
countSomething.

- countingObject
{

return countingObject;

}

- countSomething
{

[[self countingObject] incrementCount];
return self;

}

- (int)newCount
{

[self countSomething];
return [countingObject currentCount];

}

Before you decide which methods should be converted to return void, you may
want to read about the void conversion in the OpenStep Conversion Guide. See
the chapter titled "Global API and Style Changes."

Running the Conversions

The conversion process is organized into six stages. Each stage runs a series of
scripts on your code and makes changes based on the information in those
scripts. When converting code for the first time, you should perform the
conversion in stages. Here's the recommended procedure:

1. Back up the project directory.

2. In Project Builder, close all of the source files.

The convert script, which you run in the next step, changes your source files.
If you have looked at these same source files in Project Builder before you run
the script, the file displayed by Project Builder won't reflect the changes that   
convert makes. To make sure that you are always looking at the latest version
of your files, close all of the files in Project Builder before you run the script.

You can see which files you have loaded in Project Builder using the Loaded
Files panel. Choose Loaded Files from the Tools menu to bring up the Loaded
Files panel. Select a file in the Loaded Files panel, then choose Close from the
File menu to close it.

If you don't perform this step, convert will still work properly, but when you
look at the source files after it is complete, they won't reflect the changes. To
see the changes that convert made, press Command-u.

3. In a Terminal window, enter:

% cd project_directory
% convert -stagex

where x is the number (1 through 6) of the conversion stage you want to

perform. If you don't specify source files on the command line, they will be
identified with the pattern:

        *.[hcmCM] *.psw* *.*proj/*.[hcmCM] *.*proj/*.psw*

In other words, all code files in your current directory and in the first level of
subproject directories will be converted. If this is not sufficient, specify the
appropriate file list after the -stage option:

convert -stagex file1 file2 ...

Each conversion stage takes several minutes to complete. Stage 1 is the
longest stage.

WARNING: The conversion scripts should not be run out of order, and it is not
recommended that they be run on the same file more than once.    In general, it's
a good idea to save a copy of your files after each stage.

4. Once the conversion is complete, use FileMerge to compare your project with
the backup of your project. This is a good way to learn about the differences
between NEXTSTEP and OpenStep. (To learn how to use FileMerge, see the
development environment release notes.)

5. Open the project in Project Builder and use the Inspector panel to add
/NextDeveloper/OpenStepConversion/IntermediateFrameworksx to the
search path for frameworks, where x is the number of the conversion stage.   

(For stages 2 through 6, remove the IntermediateFrameworks directory for
the previous step.)

In Project Builder, you change the search paths for frameworks from the Build
Options inspector. Choose Inspector from the Tools menu to bring up the
inspector panel, and choose Build Options from the inspector's pop-up list. In
the Build Options inspector, there is another pop-up list. Choose Framework
Search Order from that list. Type the new search path for frameworks, then
click Add.

In between the first conversion stage and the last conversion stage, your code
is in an interim state and will not compile successfully with either the
NEXTSTEP 3.X headers or the OPENSTEP for MachOS Release 4.0 headers.
The IntermediateFrameworks directories have NEXTSTEP headers at the
intermediate stages of conversion so that your code will compile. Your code
will not link successfully until after the sixth stage.

There is no IntermediateFrameworks directory for stage 6. After stage 6, you
should use the default search path for frameworks
(/NextLibrary/Frameworks).

NOTE: Be sure you change the Framework Search Order, not the Header
Search Order.

7. Build your project and work through any error messages.

The conversion process places #error messages in places where automated
conversion was not possible and #warning messages in places where the
conversion might not be correct. You will see these messages when you
compile. Once your code compiles successfully, back up your project again,
and run the next stage.

If you need help deciding how to correct an error, see the OpenStep
Conversion Guide. It describes how to correct most of the errors that occur. If
you need more information about a particular class or function, look in the
Foundation Framework Reference in
/NextLibrary/Frameworks/Foundation.framework/Resources/English.lproj
/Documentation or the Application Kit Reference in
/NextLibrary/Frameworks/Foundation.framework/Resources/English.lproj
/Documentation. If the class has no documentation yet, see the OpenStep
Specification in /NextLibrary/Documentation/OpenStepSpec.

NOTE: If Project Builder is not showing you the updated source files (the
source code does not match the warning you see), type Command-u. Be sure
to close all files in Project Builder as described in Step 3 before you run the
next conversion stage.

You may want to set the Continue After Error preference to Project Builder. If
you do, Project Builder will continue to build even after it finds an error. You
can find the Continue After Error preference in the Preferences panel, under
Build.

8. If you're converting an application project, convert your nib files. To do this,
use this command:

% convert -nib

Running All Conversions At Once

After you have converted at least one    project and    you are more familiar with   
the conversion, you may want to run all conversions at once.    To do this, enter
this command in the terminal window:

convert -all

This command runs all six conversion stages one by one, then converts any nib
files. Before you enter this command, you still must generate the conversion
scripts for the project as described earlier in this document. Remember to be
very careful when modifying the files used to generate the conversion scripts. It
will save you time in the end.

Running the Optional Conversions

After you have completed all of the conversion stages you may wish to run
remaining optional conversions. The optional conversions are listed below.

Conversion Script Purposes
CustomIBAPI.tops Converts Interface Builder API for palettes.
ListToMutableArray.tops Converts List objects.
HashAndStringTableConversion.topsConverts HashTable and NXStringTable

objects.
StringConversion2.tops Converts more C strings to NSStrings.
StreamToMutableData.tops Converts streams to NSMutableData

objects.
StreamToString.tops Converts streams to NSString objects.
TableView.tops Converts NXTableView objects to

NSTableView objects.
VMConversion.tops Converts MachOS virtual memory functions

to Foundation functions.

To run a single script on your source code, use this command:

tops -scriptfile scriptFile *.[hcmCM] *.psw* *.*proj/*.[hcmCM]
*.*proj/*.psw*

Where scriptFile is the complete path for the script
(/NextDeveloper/OpenStepConversion/ConversionScripts/scriptName). See

the OpenStep Conversion Guide for information on these scripts.

NOTE: Because the API changes between C strings and NSStrings and between
NXTableViews and NSTableViews are significant, the usefulness of the scripts
StringConversion2.tops and TableView.tops vary. You may want to run them
on a copy of your code first to see if they help you.

