
OPENSTEP 4.2    Copyright1997 by Apple Computer, Inc.    All Rights Reserved.

4.2 Release Notes:
Application Kit

This document contains the following sections:

New Features in 4.2: High-level description of the changes in the Application Kit and related software between 4.1 and
4.2
New Features in 4.1: High-level description of the changes between 4.0 and 4.1
New Features in 4.0: High-level description of the changes between 3.3 and 4.0

Known Problems in This Release: List of important bugs in the Application Kit and related software in 4.2

Changes since 4.1: API and functionality changes in the Application Kit and related software between 4.1 and 4.2
Changes since 4.0: API and functionality changes between 4.0 and 4.1
Changes before 4.0: API and functionality changes between the prereleases of 4.0 and 4.0

New Features in 4.2

Vertical SplitView

NSSplitView now supports vertical splits as well as horizontal splits.

ToolTips

It's now possible to add "tooltips" (short help messages which pop up as the user holds the mouse cursor over an item)
to views. You can do this programmatically or via Interface Builder's Help panel.

Text Hyphenation & Justification

The text object now supports full justification & hyphenation. See the section "Changes since 4.1" for details.

ComboBoxCell

There is now a public NSComboBoxCell class. This allows you to use combo boxes in tableviews, among other things.

New Features in 4.1

ComboBox

The NSComboBox class has been added to the Application Kit. It offers similar functionality to the Combo Box control
defined in the Microsoft° Windowsâ user interface.

Splash Screen

OPENSTEP for Windows now provides support for a "splash" screen in applicationsÐbasically a panel that comes up
with a static image as the application is being launched. To use this feature, simply provide an 8-bit uncompressed bmp
image named Splash.bmp as a resource in your application. You can make it localizable if you wish. (Thus the image
will be either in appname.app/Resources or appname.app/Resources/language.lproj.) At launch time, the image will be
loaded and displayed before any other initialization in the application, and will be removed from the screen before the
first window is displayed.

For other changes in 4.1 please refer to the "Changes since 4.0" section below.

New Features in 4.0

OpenStep

OpenStep brings numerous API changes to the AppKit relative to Release 3.3.    These changes and the tools provided
for applications to convert to OpenStep are described in
/NextLibrary/Documentation/NextDev/Conversion/ConversionGuide, available on OPENSTEP for Mach.

New Text System

4.0 includes a new text system composed of several different classes: NSTextView (front-end UI), NSTextStorage and
NSAttributedString (back-end text storage), NSLayoutManager (management of text layout process and info), and
NSTextContainer (description of text flow areas).    These classes provide an open, powerful interface and allow text
editing in multiple languages, using the Unicode standard. Please refer to the documentation for detailed info. An
overview can be found in /NextLibrary/Documentation/NextDev/TasksAndConcepts/ProgrammingTopics/
TextOverview.rtfd (Mach) or in the /NextLibrary/Documentation/NextDev/TasksAndConcepts/Topics.hlp
(Windows). There is also a programming topic which describes some of the defaults that can be used to customize the
new text system and how to remap or add to the standard supported keybindings. In addition to these notes, the source
code to several text-specific examples, including the full source to TextEdit, can be found in the
/NextDeveloper/Examples/AppKit directory.

TableView

TableView has been completely rewritten and moved into the AppKit.    All four classes making up the new TableView are
public and fully subclassable.

Keyboard UI

Keyboard access is now provided to most of the controls in the AppKit.    For more information, see the separate
Keyboard UI Release Notes.

Formatting and Validation

Cells may now be assigned arbitrary object values, which are converted into presentation strings by associated formatter
objects.    This allows the developer to directly set an NSDate, for instance, as the value of a cell.    The cell's associated
date formatter will present a localized string representation of the date to the user.    The formatter objects, along with
control delegates, can also perform validation on user-entered data, thereby restricting entries to valid ranges or
quantities, for instance only allowing dates between January 1, 1995 and June 30, 1995.

Rich Text in Cells

NSCell and subclasses can now display and edit rich text. The rich text is specified via instances of NSAttributedString.
The new formatting/validation API also includes support for attributed strings.

RulerView

NSRulerView is designed as a general-purpose ruler that can be associated with any scroll view and used by any view
that's in the scroll view. It supports both horizontal and vertical rulers, allows arbitrary markers along the rule, and can
accept an accessory view.

System Colors

New API has been added to access system-defined colors, such as the color of buttons, controls, text and text selection
colors. On Windows, where the user can change the system colors at any point, these colors will change at runtime to
match the user's selection.

Help System

The AppKit's Help API has changed significantly.    NSHelpPanel has been obsoleted in favor of a new class,
NSHelpManager, which provides a more platform-independent approach to presenting help.

Known Problems in This Release

NSComboBox

Reference: 71826
 

Problem: NSComboBox should support keyboard interface
 

Description: NSComboBox does not support keyboard accelerators to open, dismiss, or navigate its popup list.
 

Workaround: None.

NSTableView

TableView does not yet have printing support.

Reference: 51731
 

Problem: TableView does not fully support keyboard ui
 

Description: Only simple tabbing between editable cells is implemted in TableView.    Arrow keys do not affect selection.
 

Workaround: Override keyDown: in a subclass or in the owning window and change the selection accordingly.

Reference: 63967
 

Problem: Header and row height do not change relative to font size
 

Description: When the developer changes the font size of the header view cells or data cells in a TableView, the heights of
the header view and rows do not change appropriately.

 

Workaround: Manually change the height of the header view and row height.

NSCell

Reference: 52511
 

Problem: setUpFieldEditorAttributes: called only when editing
 

Description: setUpFieldEditorAttributes: is not called when non-editable text is displayed in cells. This makes it difficult to
change colors in custom subclasses of NSCell.

 

Workaround: To display colored text in cells, text fields or attributed string values may be used.

NSImage

Reference: 60413
 

Problem: JPEG TIFFs don't work on Windows.
 

Description: Because the imageserver process is not yet available under Windows, JPEG TIFFs cannot be loaded in.
 

Workaround: None. The images can be compressed using another compression scheme using tiffutil on OpenStep for Mach.

New Text System

Reference: 58479
 

Problem: Rotated text views don't do selection very well
 

Description: The selection drawing (at least) in a rotated NSTextView needs work.    The selection is generally drawn too
large and leaves pixels around.

 

Workaround: None.    Avoid editable rotated NSTextViews for now.

Reference: 50123
 

Problem: Some features are currently unimplemented
 

Description: The following features are currently unimplemented: Tabs other than left, certain paragraph style attributes,
scaled images.

 

Workaround: None.

Reference: 54951
 

Problem: Screen fragments in containers with holes
 

Description: If you attempt to create an NSTextContainer with holes such that one physical line can have multiple line
fragments, there are still problems with erasing old drawing below the hole when text is deleted.

 

Workaround: None.

Reference: 49744
 

Problem: Images are not scaled in scaled text
 

Description: Using the standard NSTextAttachment class, the images appear at 100%.
 

Workaround: This problem can be fixed by using a custom attachment cell.

NSWindow

Reference: 71648
 

Problem: Closing a modal window or panel does not always end the modal session
 

Description: Closing a modal window or panel by clicking on the close box will not always end the modal session, leaving the
application in a state where mouse clicks and key strokes are ignored.    On Windows, modal panels often have
a close box.    This acts the same as a cancel button and, by default, clicking the close box while running modal
will stop the modal session with the NSCancelButton return code.    However, if the Window's delegate decides
to control when the window should close by implementing windowShouldClose:, then it is also up to the
delegate to stop the modal session in windowWillClose:.    On Mach, modal windows and panels rarely have a
close box; if they do they must stop modal in windowWillClose:.

 

Workaround: On Windows, a window delegate implementing windowShouldClose should stop the modal session in
windowWillClose:.    On Mach, any modal window or panel with a close box should stop the modal session in

windowWillClose:

Reference: 64988
 

Problem: NSBackingStoreNonretained don't work under Windows
 

Description: Under Windows, nonretained windows aren't implemented.

Workaround: Use retained or buffered windows instead.

Reference: 69973
 

Problem: Miniaturizing and then restoring a window under WindowsNT causes first responder to be lost
 

Description: When a window is miniaturized it loses track of its current first responder.    When it is restored again, the first
responder is not restored.

Workaround: You can use makeFirstResponder to set a first responder yourself or just make the user click something.

 

Drag/Drop

Reference: 60829
 

Problem: On Windows, ignoreModifierKeysWhileDragging is never invoked on drag source

Workaround: None.

Reference: 67620
 

Problem: On Windows draggedImage always returns nil.

Description: During a dragging session, the DraggingInfo will always return nil when queried for its draggedImage.

Workaround: None.

Reference: 63466
 

Problem: On Windows, the drag source's image offset is ignored
 

Description: Currently the dragged image will appear to the lower right of the cursor's hot spot.

Workaround: None.

NSFont

Reference: 61824
 

Problem: Microsoft's WingDings font is not supported well under OPENSTEP for Windows
 

Description: There isn't currently a Unicode mapping for any of the glyphs in it, even into the User Zone, so it works as any
other "unknown" font (i.e., characters 0-255 are mapped directly to glyphs    0-255).

 

Workaround: None.

Keybord UI

Reference: 51182
 

Problem: AccesoryViews are not added to keyView loop
 

Description: When a panel supporting accessory views, such as the SavePanel, is brought on screen, the accessory views
are not automatically added to the keyView loop.

 

Workaround: Add the accessory view to the keyView loop by hand using setNextKeyView: before brining the panel on screen.

Accessory Views

On Windows, the PageLayout panel does not yet support application supplied accessory views.    Also on Windows,

accessory views in the Open, Save and Print panels work only on NT 4.0, not NT 3.51.

Changes since 4.1

The following lists all the API changes and some of the bug fixes that were done in the Application Kit between 4.1 and
4.2.

Note that in your application if you use any API which was added in 4.2, your application might not run under 4.0 or 4.1.
(If you are not deploying under a previous release, then this is not an issue.) You can catch some of the potential
problems by defining STRICT_40 or STRICT_41 at compile time. These #defines are used in the Application and
Foundation Kits to mark new API.

Similarly, if you rely on a bug fix done in 4.2, your application may not function correctly under 4.0 or 4.1. Make sure you
test on your intended deployment platform.

NSSplitView

NSSplitView now supports vertical splits as well as horizontal splits:

- (void)setVertical:(BOOL)flag;
- (BOOL)isVertical;

In 4.2, splitview look & feel has been changed to be more Windows-like when running with the Windows interface style.
There's no dimple, the split bar is thinner, and you get a resize cursor. The method dividerThickness returns the correct
thickness of the bar.

ToolTips

Use the following API to set a tooltip on a view:

- (void)setToolTip:(NSString *)string;
- (NSString *)toolTip;

Specify a nil tooltip to cancel it.

Note that tooltips are currently not archived with views. However, if you set a tooltip in IB, they will be correctly saved in
the nib file, so this is not a serious issue.

NSComboBox

setFont: will now correctly change the font of the items in the drop down box. It will also call setItemHeight: to set the
height of the items depending on the font size. If you wish to change the item height independently, you should call
setItemHeight: after setFont:.

selectItemAtIndex: will now correctly set the item in the text field. It didn't do so in 4.1.

The formatter on a combo box will now be used in formatting items in the combo box in addition to the item in the text
field.

NSApplication

Applications will now be properly terminated on Windows upon logoff or shutdown. This means the application delegate
will get applicationShouldTerminate:, and if it answers NO, the shutdown will be cancelled.

Support for "hide" has been added to OPENSTEP for Windows. The default menu item for this is "Minimize All" under the
"Windows" menu (with ctrl-h as the key equivalent). It is added there automatically by the kit (if not there). You can
prevent this with the NSDontAddMinimizeAllMenuItem default. If you need to do this for your application, simply
register this default at startup. Otherwise, like all defaults, users can also set this themselves.

In 4.0 and 4.1, the Application Kit erroneously called setlocale() to cause all C library functions to work in an localized
way. The main impact of this was in European Windows systems, where primitives such as sprintf() started working in a

localized fashion (expecting "," as decimal separator, for instance).    This broke NSScanner's parsing of floating point
numbers, and caused the infamous "red Project Builder windows on European Windows in certain cases" problem.

In 4.2, this bug has been fixed; the Application Kit no longer calls setlocale().    This should have no impact on Mach
(where the operations of these functions were independent of the setlocale() call). On Windows this change means that
sprintf(), etc will no longer by default work in a localized fashion. OPENSTEP-based objects will keep on working
correctly with the appropriate locale info, so this hopefully has very little impact. Note that developers should avoid calling
setlocale() themselves (or if they do, they should do it temporarily and restore the setting once they're done).

NSLayoutManager

The following API has been added to support hyphenation:

- (void)setHyphenationFactor:(float)factor;
- (float)hyphenationFactor;

Factor should be a float in the range 0.0-1.0. Whenever (width of the real contents of the line) / (the line fragment width)
is below this value, hyphenation will be attempted when laying out the line. By default, the value is 0, meaning
hyphenation is off. 1.0 causes hyphenation to be always attempted. Note that hyphenation will slow down text layout and
increase memory usage, so it should be used sparingly.

You can save the hyphenation factor in an RTF file by specifying a value for @"HyphenationFactor" in the document
attributes dictionary.

NSTextView

The following method has been added as the default target of the "Justify" menu item to allow full justification:

- (void)alignJustified:(id)sender;

NSOpenPanel

The open and save panels now allow directory selection on Windows. In addition, the open panel will correctly filter files
to display only those with the specified extension (the "All Files" option lets the user override this).

NSView

In 4.2, tracking rects can be assigned to a view even if the window the view is in is deferred and has not been created
yet.    Note that this already worked on OPENSTEP for Windows in 4.1 but didn't on OPENSTEP for Mach. If you have a
4.2 application which uses tracking rects and it needs to run under 4.1, you should test it under 4.1 to make sure it does
work. If not, you might have to delay your tracking rect creation or make your windows non-deferred.

Tracking rects now work in non-key windows on Windows. This was the case on Mach already.

NSColor

A bug in decodeNXColor which caused CMYK colors from 3.x archives to be read incorrectly in 4.0 and 4.1 has been
fixed. (The colors were way off; instead of C, M, Y, K, the values 1-C, 1-M, 1-Y, and 1-K would be used.)

NSWindow

A bug causing certain windows on Windows to grow everytime they were brought on screen has been fixed.

On Windows in some cases mouse drag events could come before the mouse down; this has been fixed.

Ordering windows front would cause NSWindowDidResizeNotification to be sent on Windows. This is now done only
when the window is resized.

Windows freed while minimized would leak their content views on Windows. This is no longer the case.

Changes since 4.0

The following list all the API changes and some of the bug fixes that were done in the Application Kit between 4.0 and
4.1.

NSApplication

IBOutlet and IBAction are now defined in the kit and automatically imported if you import AppKit.h. You can remove
your own custom definitions of these (if you had any).

The hide: method has been changed to do nothing on Windows.

On Windows,    [NSApplication init] (called by sharedApplication) changes the current directory to the root of the drive
from which the application is launched. This is done in order to avoid problems associated with the application starting off
in random places (such as the directory of a file-wrapper, when launched by double-clicking on a file in a file-wrapper).
On consequence of this is that if your application changes the current directory in the main() function, this change will be
overridden as soon as you call sharedApplication.

The default value of the NSUseRunningCopy command line option has been changed to YES. This means that anytime
you cause a second copy of the application to be launched, it will connect you to the already running copy. You should
also If you wish to run multiple copies of an application, you should use "-NSUseRunningCopy NO". You might need this
if you need to debug a new instance of the application while it's already running.

Another change is that all command line options which are not defaults options (meaning a pair of arguments where the
first one starts with a "-") are now treated as file names to be opened, as if they were prefixed with -NSOpen.

As a result of these two changes, you can now associate documents with OPENSTEP apps on Windows simply by
providing the location of the app. The default command line provided by the Explorer will be enough to open documents
and also connect to a running copy of the application, if there is one.

NSWindow

In OPENSTEP for Windows, document edited state is now indicated in the title bar by prefixing the title with an asterisk.
OPENSTEP for Mach still uses a broken "X".

Tracking rects are now implemented on Windows.

The following are not actually changes since 4.1, but are a couple things to be aware of concerning NSWindows in
OPENSTEP for Windows.

· Under Windows, the frameRect and contentRect are currently the same size.    The frameRect of an NSWindow under
OPENSTEP for WIndows NT does NOT include the title bar, menu bar, resize border, etc...

· Under Windows, the contentView while a window is miniaturized is a NSImageView, not the original contentView.    The
contentView is restored when the window is deminiaturized.    This is necessary because under some versions of
Windows NT, the same actual window is used when the window is full size or miniaturized.    It is just moved and resized
when miniaturing or restoring.    Since most content views are not prepared to size themselves that small, the content
view is removed from the window while it miniaturizes and is restored when the window is restored.

NSTableView

A new notification, NSTableViewSelectionIsChangingNotification, and a corresponding delegate method,
tableViewSelectionIsChanging:, have been added to NSTableView. The existing
NSTableViewSelectionDidChangeNotification is only sent after the user has moused up when changing a selection.   
The new notification is sent while the selection is changing.

NSSavePanel

The save panel will now put up an alert letting you confirm before you replace an existing file.

NSInputServer

The following methods were added to NSInputServer. They are sent by current input manager when the application
changes state so that the server can update its concept of who's current.    The actually "active" sender is the last one to
have sent a senderDidBecomeActive: message.    These methods may not arrive in the expected order.

- (void)senderDidBecomeActive:(id)sender;
- (void)senderDidResignActive:(id)sender;

This method is sent by input manager when the conversation within a particular sender changes:

- (void)activeConversationWillChange:(id)sender oldConversation:(long)conv newConversation:(long)new;

NSTextView

To allow entering a character without an appropriate keyboard, you can now use the Alt key in conjunction with the digit
keys from the keypad.    While holding down the Alt key, type the index of the desired character in the encoding of the
current font (in most cases this will be the NEXTSTEP encoding). The appropriate character will be inserted into the text
when the Alt key is released.

NSWorkspace

The openFile:withApplication: will now correctly open the file with the specified application. In 4.0 this method always
returned NO when an application name was supplied.

OPENSTEP for Window now contains an "open" command.    Like on Mach, "open filename" will open the specified file in
its registered application. You can also use the "-e" flag to open the file in TextEdit or the "-a" flag to launch an
application.

NSAttributedString

If supplied a plain text file, the initWithPath:documentAttributes: method will now go ahead and still create an
attributed string from the plain text contents. Note that if the file looks like an RTF file (has the appropriate magic header),

but fails to open, the method will still return nil.

NSColor

Unarchived NSColors and NSColors created with colorWithCalibratedRed:green:blue:alpha: and
colorWithCalibratedWhite:alpha: will be replaced by the cached and uniqued colors returned by methods such as
[NSColor whiteColor] if they are exactly the same. In some cases this will greatly reduce the number of colors created at
runtime and speed up certain operations. However, in the unlikely event that this causes problems in your application, or
prevents your 4.0 application from running correctly under 4.1, you can set the NSCachedColorConversion default to
NO.

System colors (such as those returned by [NSColor controlColor]) have been improved to generate colors which match
those used by Windows. Under 8-bit color this should result in a visible improvement in certain color schemes.

Changes before 4.0

There are tops scripts to assist PR1 to PR2 and PR2 to 4.0 migration.    Many of the API changes that    have
happened between prereleases can be automatically applied to your code with these commands:

tops -semiverbose -scriptfile /NextDeveloper/OpenStepConversion/ConversionScripts/PR1toPR2.tops *.
[mchCM] *.psw *.pswm

tops -semiverbose -scriptfile /NextDeveloper/OpenStepConversion/ConversionScripts/PR2to40.tops *.[mchCM]
*.psw *.pswm

Formatting and Validation

NSFormatter and NSDateFormatter have moved into the Foundation Kit. FoundationKit now also includes a number
formatter. Imports of <AppKit/NSFormatter.h> or <AppKit/NSDateFormatter.h> will need to be changed to import the
corresponding file from Foundation; imports of <AppKit/AppKit.h> don't need to be changed. The tops script mentioned

above takes care of this.    Also, a new NSNumberFormatter has been added.

The control delegate message control:validateObject: has been changed to control:isValidObject:.

 NSApplication

NSApplication defines a new delegate method similar to -application:openFile: called

-(void)application:(NSApplication *)app printFile:(NSString *)path

Upon launching, an application scans its command line arguments for -NSOpen and, now, -NSPrint arguments.    These
arguments are followed by the path to a file to open or print respectively.    NSApplication sends the above messages to
its delegate if it responds in this way for the files specified on the command line.    These messages are also invoked in
response to Speaker/Listener interaction, but this aspect is perhaps less interesting to developers.

This new message (and the new command-line argument -NSPrint) is supported on both Mach and Windows.

Under Windows NT, when you install OPENSTEP, Explorer associations are automatically created for each file extension
that the OPENSTEP applications claim.    The file-type's icon is associated with its extension and Open and Print
commands are registered as well.    These commands work through the new command-line options, and can be
accessed through Explorer's right-mouse context menu.    So, for example, right clicking an RTF file in Explorer will give
you a menu that includes both Open and Print as well as some other stuff.    Choosing Open or Print will cause TextEdit
to open or print the file.    Open is registered as the default command for these file extensions, so double-clicking an RTF
file will open it in TextEdit.

A new notification, NSApplicationWillTerminateNotification, has been added to OpenStep.    It is sent before the
Application's terminate method after applicationShouldTerminate is queried.

A Windows-specific method has been added to allow access to the Windows application handle.    This will only be of
interest to developers calling the Win32 API directly.    (Arguments that varioius types of Windows handles are declared
as void currently to avoid polluting the namespace with the vast amount of un-prefixed names in the Windows system

headers.)

- (void * /*HINSTANCE*/)applicationHandle;

A Windows-specific method has been added to allow developers to look up an NSWindow object given a Windows
HWND handle.    This will only be of interest to developers calling the Win32 API directly.

- (NSWindow *)windowWithWindowHandle:(void * /*HWND*/)hWnd;

A Windows-specific method has been added for developers who choose to implement their own WinMain() function    If
you do so, call the method below before doing any other AppKit calls.    The arguments are those passed to WinMain()
from the system.

+ (void)setApplicationHandle:(void * /*HINSTANCE*/)hInstance
previousHandle:(void * /*HINSTANCE*/)PrevInstance
commandLine:(NSString *)cmdLine
show:(int)cmdShow;

NSTableView

The table view has a new mode where it resizes all the columns, not just the last one, to fill the scroll view.    In this mode,
if the table view fits exactly into its scroll view, and is then grown, it will grow all of its resizable columns to keep itself the
size of the scroll view.    Here are the new methods to enable this:

- (void)setAutoresizesAllColumnsToFit:(BOOL)flag;
- (BOOL)autoresizesAllColumnsToFit;

While tracking a cell or performing the table view's action, one may discover what cell was clicked on to cause the action
to perform with these additional methods:

- (int)clickedColumn;
- (int)clickedRow;

NSAttributedString

Parts of NSAttributedString and NSMutableAttributedString have moved into the Foundation Kit.    Just using Foundation,
without the Application Kit, you can create and manipulate attributed strings; however you do not have access to the
standard attribute types such as color, font, and paragraph style. The rest of the attributed string functionality is provided
by categories in Application Kit.

The following names have changed in NSAttributedString:

NSAttributedStringEditedAttributes -> NSTextStorageEditedAttributes
NSAttributedStringEditedCharacters -> NSTextStorageEditedCharacters

The following methods to read RTF:

+ (NSAttributedString *)attributedStringFromRTF:(NSData *)rtfData;
+ (NSAttributedString *)attributedStringFromRTFD:(NSData *)rtfData;
+ (NSAttributedString *)attributedStringFromRTFDFile:(NSString *)rtfdPath;

have been replaced by:

- (id)initWithRTF:(NSData *)data documentAttributes:(NSDictionary **)dict;
- (id)initWithRTFD:(NSData *)data documentAttributes:(NSDictionary **)dict;
- (id)initWithPath:(NSString *)path documentAttributes:(NSDictionary **)dict;
- (id)initWithRTFDFileWrapper:(NSFileWrapper *)wrapper documentAttributes:(NSDictionary **)dict;

The optional dict argument is for returning document-wide attributes, which currently include "PaperSize", "LeftMargin",
"RightMargin", "TopMargin", and "BottomMargin". Pass NULL for dict if you don't care about these.

The following methods to write RTF:

- (NSData *)RTFFromRange:(NSRange)range;
- (NSData *)RTFDFromRange:(NSRange)range;
- (BOOL)writeRTFDToFile:(NSString *)path atomically:(BOOL)flag;

have been replaced by:

- (NSData *)RTFFromRange:(NSRange)range documentAttributes:(NSDictionary *)dict;
- (NSData *)RTFDFromRange:(NSRange)range documentAttributes:(NSDictionary *)dict;
- (NSFileWrapper *)RTFDFileWrapperFromRange:(NSRange)range documentAttributes:(NSDictionary *)dict;

Pass nil for dict if you don't want to specify any of the document attributes.

To write RTFD to file you will need to send writeToFile:atomically:updateFilenames: to the NSFileWrapper you get
back from RTFDFileWrapperFromRange:documentAttributes:. The updateFilenames: flag should usually be YES
(unless you are doing a "Save To").

The following method names are changed in NSMutableAttributedString:

Before:
- (void)fixAttributesAfterEditingRange:(NSRange)range;
- (void)fixFontAttributeAfterEditingRange:(NSRange)range;
- (void)fixParagraphStyleAfterEditingRange:(NSRange)range;
- (void)fixAttachmentAfterEditingRange:(NSRange)range;

After:
- (void)fixAttributesInRange:(NSRange)range;
- (void)fixFontAttributeInRange:(NSRange)range;
- (void)fixParagraphStyleAttributeInRange:(NSRange)range;
- (void)fixAttachmentAttributeInRange:(NSRange)range;

The value of NSAttachmentCharacter has been changed from 0xF6FF to 0xFFFC to match the one proposed in the
Unicode standard. Code which uses this value will need to be recompiled; places where this value is archived explicitly
might need to check for the old value. (RTF files did archive this value, so no need for changes there.) If the old value
ever appears in an attributed string at runtime, the new value will be used, and a warning will be generated (single
warning per app session).

The method updateAttachmentsFromPath: has been added to NSMutableAttributedString to allow updating the file
name information in all the attachments in the attributed string.

NSImage

NSImage now understands the bmp, ico, and cur image formats. ico and cur files with multiple images will be loaded as
images with multiple representations. Typically these representations will have different sizes (unlike multiple-
representation tiffs, which have different depths); by default, NSImage will choose the largest image when compositing.

Windows-specific methods have been added to NSImage and NSBitmapImageRep which allow creation of these objects
from a Windows icon handle or bitmap handle.    These will only be of interest to developers calling the Win32 API
directly.

- (id)initWithIconHandle:(void * /* HICON */)icon;
- (id)initWithBitmapHandle:(void * /* HBITMAP */)bitmap;

setFlipped: and flipped have been brought back into the API.

Compositing Operation name changes

Some of the constants declared by DPSClient for various compositing operations have had their names corrected:

Old Name New Name
NSCompositeDataOver NSCompositeDestinationOver
NSCompositeDataInreplace NSCompositeDestinationIn
NSCompositeDataOut NSCompositeDestinationOut
NSCompositeDataAtop NSCompositeDestinationAtop

NSCursor

In order to make NSCursor immutable, the following methods:

- (id)initWithImage:(NSImage *)newImage;

- (void)setImage:(NSImage *)newImage;
- (void)setHotSpot:(NSPoint)spot;

have been replaced by:

- (id)initWithImage:(NSImage *)newImage hotSpot:(NSPoint)aPoint;
- (id)initWithImage:(NSImage *)newImage
 foregroundColorHint:(NSColor *)fg
 backgroundColorHint:(NSColor *)bg
 hotSpot:(NSPoint)hotSpot;

The color hints in the latter method are ignored in OPENSTEP for Windows and for Mach.

The initWithImage: and setImage: methods are somewhat generic and hard to detect, so the tops script might fail to
catch all your uses.

Another change in NSCursor since PR2 is the support for custom cursor selections on Windows. OPENSTEP
applications will use the correct arrow and I-beam cursors where applicable. If you ask for the image of one of these
standard cursors on OPENSTEP for Windows, you will get back the correct image used by the system. You should note
that the size of this image may be different than the traditional 16x16 used on Mach. For animated cursors you will simply
get back the first frame.

NSText

The following method names are changed in the NSText API:

Before:
- (NSString *)text;
- (void)setText:(NSString *)string;
- (void)setText:(NSString *)string range:(NSRange)range;
- (void)replaceRange:(NSRange)range withRTF:(NSData *)rtfData;
- (void)replaceRange:(NSRange)range withRTFD:(NSData *)rtfdData;
- (void)setColor:(NSColor *)color ofRange:(NSRange)range;
- (void)setFont:(NSFont *)font ofRange:(NSRange)range;

After:
- (NSString *)string;
- (void)setString:(NSString *)string;
- (void)replaceCharactersInRange:(NSRange)range withString:(NSString *)aString;
- (void)replaceCharactersInRange:(NSRange)range withRTF:(NSData *)rtfData;
- (void)replaceCharactersInRange:(NSRange)range withRTFD:(NSData *)rtfdData;
- (void)setTextColor:(NSColor *)color range:(NSRange)range;
- (void)setFont:(NSFont *)font range:(NSRange)range;

NSTextView

The following methods are added to NSTextView:

- (void)pasteAsPlainText:(id)sender;
- (void)pasteAsRichText:(id)sender;

- (NSPoint)textContainerOrigin;
- (void)invalidateTextContainerOrigin;

- (NSRange)rangeForUserTextChange;
- (NSRange)rangeForUserCharacterAttributeChange;
- (NSRange)rangeForUserParagraphAttributeChange;

- (BOOL)smartInsertDeleteEnabled;
- (void)setSmartInsertDeleteEnabled:(BOOL)flag;
- (NSRange)smartDeleteRangeForProposedRange:(NSRange)proposedCharRange;
- (void)smartInsertForString:(NSString *)pasteString replacingRange:(NSRange)charRangeToReplace
 beforeString:(NSString **)beforeString afterString:(NSString **)afterString;

The following method names are changed in the NSTextView API to allow richer specification of selected text attributes:

Before:
- (void)setSelectionColor:(NSColor *)color;
- (NSColor *)selectionColor;

After:
- (void)setSelectedTextAttributes:(NSDictionary *)attributeDictionary;
- (NSDictionary *)selectedTextAttributes;

Underlining is now supported in the new text system; NSSingleUnderlineStyle has been added as a possible value for
the NSUnderlineStyleAttributeName attribute.

The delegate method textView:clickedOnCell:inRect: has been added to indicate single-clicks on text attachments.

The method attachmentForDraggedFilename: has been removed from the API.

NSTextStorage

NSTextStorage now sends out notification messages after edits:

NSTextStorageWillProcessEditingNotification
NSTextStorageDidProcessEditingNotification

It also has a delegate who gets the following messages:

- (void)textStorageWillProcessEditing:(NSNotification *)notification;
- (void)textStorageDidProcessEditing:(NSNotification *)notification;

These methods are called during post-edit processing (basically after endEditing has been called, or, if endEditing was
not in effect, after each edit that causes edited:range:changeInLength:). The first notification is sent before attributes
are fixed, the second is sent after the attributes are fixed, but before the layout managers are notified. During the
execution of textStorageWillProcessEditing: the delegate can change the attributed string all it wants; during
textStorageDidProcessEditing: it should refrain from changing the character contents. The changes done by the
delegate will not cause further notifications to be sent. However, during the execution of these methods and notifications
the delegate and the observers can obtain information about what's changed via the following methods:

- (unsigned)editedMask;

- (NSRange)editedRange;
- (int)changeInLength;

NSTextStorage now also has a clear funnel point for all post-edit processing:

- (void)processEditing;

This method sends the above notification methods, calls fixAttributesInRange:, and informs the layout managers of the
changes.

The following methods, now much less useful, have been removed from the API:

- (void)verifyEdited:(unsigned)mask range:(NSRange)range changeInLength:(int)delta;
- (void)notifyEdited:(unsigned)mask range:(NSRange)range changeInLength:(int)delta
 invalidatedRange:(NSRange)invRange;

Subclassers, note: NSTextStorage is now a semi-abstract class. It implements change management
(beginEditing/endEditing), verification of attributes, and layout management notification. The one aspect it does not
implement is the actual attributed string storage--this is left up to the subclassers, which need to override the two
NSMutableAttributedString primitives replaceCharactersInRange:withString: and setAttributes:range:. These
primitives should perform the change then call edited:range:changeInLength: to get everything else to happen.

Here is a sample NSTextStorage subclasser:

@implementation SimpleTextStorage

/* Provide your own init methods, whatever you wish... Here we provide one (initWithAttributedString:)
and override the DI from super (init). */

- (id)initWithAttributedString:(NSAttributedString *)attrStr {
 if (self = [super init]) {
 contents = attrStr ? [attrStr mutableCopyWithZone:[self zone]] :
 [[NSMutableAttributedString allocWithZone:[self zone]] init];
 }

 return self;
}

- init {
 return [self initWithAttributedString:nil];
}

- (void)dealloc {
 [contents release];
 [super dealloc];
}

/* The next set of methods are the primitives for attributed and mutable attributed string... */

- (NSString *)string {
 return [contents string];
}

- (NSDictionary *)attributesAtIndex:(unsigned)location effectiveRange:(NSRange *)range {
 return [contents attributesAtIndex:location effectiveRange:range];
}

/* In the mutable primitives (and any non-primitives which are overridden and which don't go through the
primitives), we need to call edited:range:changeInLength: to allow the text storage change management to
do its job. */

- (void)replaceCharactersInRange:(NSRange)range withString:(NSString *)str {
 [contents replaceCharactersInRange:range withString:str];
 [self edited:NSAttributedStringEditedCharacters
 range:range
 changeInLength:(int)[str length] - (int)range.length];
}

- (void)setAttributes:(NSDictionary *)attrs range:(NSRange)range {
 [contents setAttributes:attrs range:range];
 [self edited:NSAttributedStringEditedAttributes range:range changeInLength:0];
}

@end

NSFileWrapper

A new public class has been added to the AppKit.    NSFileWrapper provides support for the concept of a document
wrapper (like a .rtfd, .nib, or many other NEXTSTEP file types).    The new text system uses this class to handle RTFD
documents, but it is designed to be generally useful.    It handles reading and writing file packages in the file system as
well as serializing them for use with the Pasteboard.    See the General Reference for details.

NSTextAttachment

The following changes in NSTextAttachment take advantage of NSFileWrapper:

Before:
- (id)initWithContentsOfFile:(NSString *)path;
- (BOOL)writeToFile:(NSString *)path atomically:(BOOL)flag;

After:
- (id)initWithFileWrapper:(NSFileWrapper *)fileWrapper; /* Designated initializer */
- (void)setFileWrapper:(NSFileWrapper *)fileWrapper;
- (NSFileWrapper *)fileWrapper;

The name and setName: methods have also been removed from the API.

NSParagraphStyle

Subclassers, note: NSParagraphStyle and NSMutableParagraphStyle used to be abstract; they are now concrete.

setParagraphStyle: has been added to NSMutableParagraphStyle to allow setting all the values with one call.

NSRulerView/NSRulerMarker

The delegate method rulerView:willSetClientView: has been added to NSRulerView to give the existing client a chance
to clean up.

The following method names are changed in NSRulerMarker:

Before:
- (void)setLocation:(float)location;
- (float)location;
- (id)initWithRulerView:(NSRulerView *)ruler location:(float)location image:(NSImage *)image
imageOrigin:(NSPoint)imageOrigin;

After:
- (void)setMarkerLocation:(float)location;
- (float)markerLocation;
- (id)initWithRulerView:(NSRulerView *)ruler location:(float)location image:(NSImage *)image
imageOrigin:(NSPoint)imageOrigin;

NSWorkspace

The following NSWorkspace methods will raise under OPENSTEP for Windows to indicate that they are not implemented
(and the return value, being wrong, shouldn't be relied upon):

- (BOOL)fileSystemChanged;
- (BOOL)userDefaultsChanged;
- (NSArray *)mountedRemovableMedia;
- (NSArray *)mountNewRemovableMedia;

The following methods are no-ops:

- (void)checkForRemovableMedia;
- (void)findApplications;
- (void)hideOtherApplications;

- (void)noteUserDefaultsChanged;
- (void)noteFileSystemChanged;
- (BOOL)getFileSystemInfoForPath:isRemovable:isWritable:isUnmountable:description:type:;
- (int)extendPowerOffBy;
- (void)slideImage:(NSImage *)image from:(NSPoint)fromPoint to:(NSPoint)toPoint;

In addition, note that the NSWorkspaceRecycleOperation will currently remove the files in OPENSTEP for Windows.

NSBrowser

The width of columns are now dealt with as floats rather than ints to be consistent with the rest of the AppKit:

Before:
- (void)setMinColumnWidth:(int)columnWidth;
- (int)minColumnWidth;

After:
- (void)setMinColumnWidth:(float)columnWidth;
- (float)minColumnWidth;

A couple other api items changed names:

Before:
- (void)drawTitle:(NSString *)title inRect:(NSRect)aRect ofColumn:(int)column;
- (BOOL)browser:(NSBrowser *)sender selectCell:(NSString *)title inColumn:(int)column;

After:
- (void)drawTitleOfColumn:(int)column inRect:(NSRect)aRect;
- (BOOL)browser:(NSBrowser *)sender selectCellWithString:(NSString *)title inColumn:(int)column;

Selection may now be done by index as well as path.    Previously the developer was forced to resort to NSMatrix apis

when trying to select a row in a browser column by index.    Now she may use:

- (void)selectRow:(int)row inColumn:(int)column;
- (int)selectedRowInColumn:(int)column;

And the following delegate method was added in parallel to allow the delegate to perform the selection:

- (BOOL)browser:(NSBrowser *)sender selectRow:(int)row inColumn:(int)column;

Alerts

Two pairs of new functions have been added to support the alert styles found in the Windows UI.
NSRunInformationalAlertPanel() and NSRunCriticalAlertPanel() take the same paramenters as NSRunAlertPanel(),
but on Windows they present an alert with the "informational" or "critcal" icons, respectively.    On Windows
NSRunAlertPanel() presents an alert with the "warning" icon.    On Mach calling any of the three functions produces the
same UI.    Also note that on Windows alerts have no title, so the title argument to these functions is not displayed in the
UI.    In addition, NSGetInformationalAlertPanel() and NSGetCriticalAlertPanel() have been added, which have the
same relationship to the existing NSGetAlertPanel().

The function NSRunLocalizedAlertPanel() is removed from the API; use NSRunAlertPanel() with explicitly localized
arguments instead.

Services

The API involved in vending services has changed in PR2.    The need for two names to resolve a service provider has
been removed.    In PR1, services were advertised in the Info.plist using a combination of NSExecutable, and
NSProviderName.    The provider name is now obsolete, so you simply advertise a single name under the entry
NSPortName.    This entry has the same meaning as in 3.3 services.    Usually NSPortName will be the name of your
application as NSExecutable was (e.g. "Webster").    The following API changes have also been made:

·    registerServiceProvider:withName: has been obsoleted.    Use setServicesProvider:.
·    unregisterServiceProviderNamed: has been obsolete.    Use setServicesProvider:nil.

Two new functions, NSRegisterServiceProvider() and NSUnregisterServicesProvider() can be used to register
service providers under a given name.    These functions should only be used by service providers not creating an
application object (filter services often fall into this category).    The name argument should be the same as that specified
by the NSPortName entry of the Info.plist.    See the Services documentation for more details.

NSWindow

The following new methods control the resizing behavior of the window.    The first pair are used to make a window resize
in fixed increments.    The second pair are used to make a window resize such that it maintains an aspect ratio.

- (void)setResizeIncrements:(NSSize)increments;
- (NSSize)resizeIncrements;
- (void)setAspectRatio:(NSSize)ratio;
- (NSSize)aspectRatio;

The following new methods provide an OpenStep alternative to the NEXTSTEP-specific feature of instance drawing.   
The first method saves away a part of the window's image.    Typically after this step, some temporary drawing is done.   
The second method restores the previously saved image, undoing any drawing that has happened since it was saved.   
The third method releases the memory used to hold the saved image.

- (void)cacheImageInRect:(NSRect)aRect;
- (void)restoreCachedImage;
- (void)discardCachedImage;

The fax: method has been removed from the OpenStep specification, and is now specific to the Mach platform.

A Windows-specific method has been added to allow access to the Windows window handle of an NSWindow object.   
This will only be of interest to developers calling the Win32 API directly.

- (void * /*HWND*/)windowHandle;

NSView

The following new method removes a view from its view hierarchy, without marking that the now exposed region in its
superview needs redisplay.    This can be useful when a view is temporaily swapped in so as to draw something on behalf
of its superview.

- (void)removeFromSuperviewWithoutNeedingDisplay;

The following method was added in order to preserve the utility of panels that "become key only if needed" (the Font
Panel, for example).    This feature was defeated by the advent of increased keyboard accessibility to the UI, as nearly all
widgets now accept becoming the first responder, which meant the panel would become key almost no matter where the
user clicked.    The following method is implemented by a widget to return YES if clicking on it should cause one of these
panels to become key (which is the same role acceptsFirstResponder used to play in these panels).

- (BOOL)needsPanelToBecomeKey;

The fax: method has been removed from the OpenStep spec, and is now specific to the Mach platform.

The following API was removed because it was unused in any of the OPENSTEP products.

@interface NSView(NSRIBPrinting)
- (BOOL)canPrintRIB;
@end

typedef enum _NSPosition {
 NSNoPosition = 0,
 NSLeft = 1,
 NSRight = 2,
 NSTop = 3,
 NSBottom = 4
} NSPosition;

A new method has been added to NSView, which is to be overridden by subclassers to find when their view is installed in
a new superview.

- (void)viewWillMoveToSuperview:(NSView *)newSuperview;

Two new display methods have been added to round out the existing set.

- (void)displayIfNeededInRect:(NSRect)rect;
- (void)displayIfNeededInRectIgnoringOpacity:(NSRect)rect;

The NSViewBoundsChangedNotification notification present in PR1 has been added to the OpenStep spec.

Updating in NSApplication, NSWindow and DPSClient

Various updating mechanisms in the Application Kit are now driven by a new Foundation feature, where NSRunLoop will
perform selectors registered by clients in a given order during it's next cycle. (See
performSelector:target:argument:order:modes: in NSRunLoop.)    The following constants represent these uses
within the Application Kit:

NSUpdateWindowsRunLoopOrdering (500000)
All Windows are sent the update message.    This is also the time when menu items are enabled
and disabled.

NSDisplayWindowRunLoopOrdering (600000)
All Windows holding Views needing redisplay are given the chance to redraw.

NSResetCursorRectsRunLoopOrdering (700000)
If needed, cursor rectangles are reestablished.

DPSFlushContextRunLoopOrdering (800000)
The IPC channel to the Window Server is flushed, ensuring any buffered data is executed.

NSResponder

The insertNewLine: method was renamed to insertNewline:.

NSApplicationMain

The AppKit now provides a function NSApplicationMain() to take care of the initialization and startup of your application.
This function is declared in NSApplication.h.    Because of this, ProjectBuilder will now generate a trivial main function for
your application:

#import <AppKit/NSApplication.h>

int main(int argc, const char *argv[]) {
 NSApplicationMain(argc, argv);
}

Although developer's should not need access to the body of NSApplicationMain(), it is documented here in the rare case
that it is necessary.    If at all possible, avoid copying this code, as doing so may prevent your application from
automatically inheriting features added in future releases.

int NSApplicationMain(int argc, const char *argv[]) {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 NSDictionary *info = [[NSBundle mainBundle] infoDictionary];
 NSString *principalClassName = [info objectForKey: @"NSPrincipalClass"];
 NSString *mainNibFile = [info objectForKey: @"NSMainNibFile"];

 if (principalClassName) {
Class principalClass = NSClassFromString(principalClassName);
if (principalClass) {
 [principalClass sharedApplication];
 if ([NSBundle loadNibNamed: mainNibFile owner: NSApp]) {

[pool release];
[(NSApplication *)NSApp run];
[NSApp release];
exit(0);

 }
 else NSLog(@"Unable to load nib file: %@, exiting", mainNibFile);

}
else NSLog(@"Unable to find class: %@, exiting", principalClassName);

 }
 else NSLog(@"No NSPrincipalClass specified in info dictionary, exiting");
 [NSApp release];
 [pool release];
 exit(1);
 return 0;
}

NSHost

NSHost (or NXHost)'ing is supported only between OPENSTEP for Mach machines or from NEXTSTEP 3.x machines to
OPENSTEP for Mach.    You cannot run an OPENSTEP application NSHost'ed to a 3.x machine. NSHost'ing is also not
supported on OPENSTEP for Windows.

ObjectLinks

ObjectLinks have been removed from the OpenStep specification, and in general the feature is not supported in
OPENSTEP for Mach or Windows.    The exception is that the following subset of the API may be used on either platform
to walk through the linked data from documents written in NEXTSTEP 3.X:

@interface NSDataLinkManager : NSObject <NSCoding> {
- (id)initWithDelegate:(id)obj fromFile:(NSString *)path;
- (NSEnumerator *)sourceLinkEnumerator;
- (NSEnumerator *)destinationLinkEnumerator;
@end

@interface NSDataLink : NSObject <NSCopying, NSCoding>
- (NSArray *)types;
- (NSSelection *)sourceSelection;
- (NSSelection *)destinationSelection;
- (NSString *)sourceFilename;
- (NSString *)currentSourceFilename; - (NSString *)destinationFilename;

- (NSString *)sourceApplicationName;
- (NSString *)destinationApplicationName;
- (NSDataLinkManager *)manager;
- (NSDate *)lastUpdateTime;
- (NSDataLinkNumber)linkNumber;
- (NSDataLinkDisposition)disposition;
@end

@interface NSSelection : NSObject <NSCopying, NSCoding>
+ (NSSelection *)emptySelection;
+ (NSSelection *)allSelection;
+ (NSSelection *)currentSelection;
- (NSData *)descriptionData;
- (BOOL)isWellKnownSelection;
@end

Note that this API is a subset of the previously provided ObjectLinks API, with one exception:    The
currentSourceFilename method has been added to NSDataLink to allow the application to query the current location of
the source file (whereas the sourceFilename method returns the original name).

-NSShowPS

On Windows NT, when apps are run with the arguments "-NSShowPS YES", they will produce a dump of their PostScript
output in the file $TEMP\showps.txt (where $TEMP is an environment variable usually containing "C:\temp".

NSColor

The following methods have been added to NSColor:

@interface NSColor (NSDynamicSystemColors) // OpenStep/Mach: Windows Name:
+ (NSColor *)controlShadowColor; // darkGrayColor COLOR_3DSHADOW
+ (NSColor *)controlDarkShadowColor; // blackColor COLOR_3DDKSHADOW

+ (NSColor *)controlColor; // lightGrayColor COLOR_3DFACE
+ (NSColor *)controlHighlightColor; // lightGrayColor COLOR_3DLIGHT
+ (NSColor *)controlLightHighlightColor; // whiteColor COLOR_3DHILIGHT
+ (NSColor *)textColor; // blackColor COLOR_WINDOWTEXT
+ (NSColor *)textBackgroundColor; // whiteColor COLOR_WINDOW
+ (NSColor *)selectedTextColor; // blackColor COLOR_HIGHLIGHTTEXT
+ (NSColor *)selectedTextBackgroundColor; // lightGrayColor COLOR_HIGHLIGHT
+ (NSColor *)controlBackgroundColor; // lightGrayColor COLOR_WINDOW
+ (NSColor *)controlTextColor; // blackColor COLOR_BTNTEXT
+ (NSColor *)selectedControlTextColor; // blackColor COLOR_HIGHLIGHTTEXT
+ (NSColor *)selectedControlColor; // whiteColor COLOR_HIGHLIGHT
+ (NSColor *)scrollBarColor; // grayColor COLOR_SCROLLBAR
+ (NSColor *)gridColor; // grayColor COLOR_3DFACE

@end

These colors should be used by developers who want to create custom controls or subclass existing controls which
honor the user's color preferences.    For example, where

PSsetgray(NX_LTGRAY);

was used,

[[NSColor controlColor] set];

is now used.

These colors belong to their own color space, namely:

extern NSString *NSDynamicSystemColorSpace;

Since these colors may change dynamically, they do not respond to the component accessor methods declared in
NSColor.h.    To extract the components of a system color, you must use NSColor's colorUsingColorSpaceName:
method to convert the color to a color space known to respond to the component accessor methods you need.

The following notification has been added which is sent when the system colors have been changed (such as through a
system control panel interface):

extern NSString *NSSystemColorsDidChangeNotification;

The default NSCMYKAdjust is now YES by default. This basically enables the WindowServer's ability to use an
enhanced algorithm for rendering device-dependent CMYK colors on an RGB device, resulting in a greater accuracy in
the on-screen appearance of CMYK colors.

Applications can turn this off by registering this default with a NO value at startup time.

Platform specific resources

Under PR1 and PR2 including platform-specific versions of resource files (nibs, for instance), required Makefile kludgery
and/or source changes. This is no longer necessary.

NSBundle has been changed so that when it fetches a resource, it will look in the directory where the resource was
found one additional time to check for a platform-specific version. The platform specific versions are indicated by
appending "-platformname" to the base name of the resource. Valid platform names include winnt and nextstep.

For example, to include a Windows-specific version of Doc.draw in your project, simply add it as Doc-winnt.draw. The call
[bundle pathForResource:@"Doc" ofType:@"draw"] will find the latter under OPENSTEP for Windows. Similarly a
Windows-specific version of Edit.nib can be added as Edit-winnt.nib.

Note that ProjectBuilder also provides ways to specify platform-specific app and document icons, paths, and build
options.

NSMenu

The OpenStep spec was amended to make NSMenu a subclass of NSObject, not NSPanel, and to replace NSMenuCell

with the NSMenuItem protocol.    NeXT's OPENSTEP products also provide an NSMenuItem class which conforms to the
NSMenuItem protocol.

NSMenu and NSMenuItem provide almost all of the functionality of the old classes, but some window and cell specific
features are no longer available.    This change was motivated by the very different ways menus are handled on different
operating systems (such as Microsoft Windows).    See the headers for more detail.

The NSWindow and NSView have additional support for menus to support Microsoft Windows conventions.    Each
NSWindow can have its own menu bar or no menu bar at all.    By default NSWindow objects have the application's main
menu as their menu bar while NSPanels have no menu bar.    Use -[NSWindow setMenu:] to set a different NSMenu to
be used as the    menu bar in an NSWindow.    setMenu: in NSWindow only has an affect in OPENSTEP for Windows
since on Mach, windows do not have menu bars, but the API does exist on both platforms.

NSViews can now have menus associated with them as well.    An NSView's menu is used as a contextual popup menu
accessed by right-clicking the view (this should be a familiar feature to users of Windows 95).    By default an NSView has
no contextual menu, but some AppKit objects will provide default context menus.    Currently only NSTextView (and
therefore also editable controls) have a default menu, but this is likely to change.    You can set a menu to be used as the
context menu for a view through -[NSView setMenu:].    Context menus currently only work on OPENSTEP for Windows.

Setting a menu for either a window or view on Mach has no affect, so there is no need to do this conditionally inside an
#ifdef WIN32 or anything.    Context menus for views may even be supported on Mach in a later release.

Interface Style

Some aspects of the new support for multiple interface styles (or UIs) have been made public.

The header NSInterfaceStyle.h is now public and can be used by developers writing classes that need to tailor their
appearance to the current interface style    (usually NSControl or NSView subclasses, but not always).    The function
NSInterfaceStyleForKey() can be used to determine which style is in effect at a given time.    This API should be used
instead of relying on #ifdef WIN32 so that your drawing will be correct in all cases.    For instance, InterfaceBuilder lets
the user specify what interface style to show when editing nibs so that you can see what your interface will look like on

any supported platform without actually having to be running on that platform.

The default NSInterfaceStyle can be used to control what style to use.    By default the native interface style will be used,
but you can override that with this default.    Currently supported values are Windows95 and Mach.    Not everything can
obey this setting, but most AppKit objects do.

NSPopUpButton

NSPopUpButtons no longer have NSButtonCells for items, the items in a popup now have the type (id <NSMenuItem>).
Also, The -(NSMatrix *)itemMatrix method has been replaced with -(NSArray *)itemArray which returns an NSArray
instead of an NSMatrix.

NSButton and NSButtonCell

The setType: method in NSButton and NSButtonCell has been renamed to setButtonType:, because the old name
overloaded a method inherited from NSCell.

NSMatrix

Two new convenience methods have been added to NSMatrix:

- (int)numberOfRows;
- (int)numberOfColumns;

NSSavePanel

NSSavePanel now inherits from NSObject in the OpenStep specification to gain greater portability.    This means that
although on Mach NSSavePanel is implemented as a subclass of NSPanel, methods inherited from NSPanel and
NSWindow are not considered part of the spec.    In fact, on Windows NSSavePanel is implemented as subclass of
NSObject since we are using the native UI.

A new method has been added to the SavePanel to validate the visible columns.    For instance, say your filtering criteria
have changed.    Call this method to get the correct files displayed:

- (void)validateVisibleColumns;

NSScrollView

Methods have been added to access the content view of the ScrollView.    The content view is the scroll view's clip view:

- (void)setContentView:(NSClipView *)contentView;
- (NSClipView *)contentView;

Windows application lifetime issues

Applications under Windows introduce some interesting life cycle issues.    One issue is that because the menus are only
present inside of windows, an application with no open windows has no UI.    Another issue is that when you double-click
a file, Windows generally starts a fresh copy of the associated application to open it even if there's another copy already
running.    In OPENSTEP we have addressed these issues by defining some default behaviors and providing some new
API to ensure that developers can control the behaviors if necessary.

By default, on Windows, an Application will terminate when the last menu-bearing window is closed.    In general, this is
the right thing to do.    Sometimes, however, you may need to do something different.    A new NSApplication delegate
message has been added to allow you to override this default behavior.    When NSApplication notices the last menu-
bearing window has been closed, it will send -(BOOL)applicationShouldTerminateAfterLastWindowClosed:
(NSApplication *)sender to the application's delegate if it responds.    This message is sent on both Mach and Windows
so it may be necessary to tailor your app's response for the platform.    On Mach, application do not, by default, terminate
when windows are closed.    If you implement this method you should return YES if the application should terminate and
NO if it should not.    If you return YES you will shortly receive an -applicationShouldTerminate: messageas well.    If you
return NO you should also have arranged for some UI to remain.    If you return NO and do nothing else, you are likely to
lose all UI to your app and leave the user with no way to quit or do anything else.

On the other end of the life cycle, a new Windows-only feature has been added to NSApplication.    If the arguments to

the application on the command line includes the argument pair "-NSUseRunningCopy YES" then the app will check to
see if a copy of itself is already running, and if it is, it will hand off to the running copy and exit.    Any -NSOpen or
-NSPrint requests will be forwarded on to the existing copy.    When file associations are made for OpenStep apps, these
arguments are included in the association.    Therefore, double-clicking multiple .draw documents should end up opening
them in a single copy of Draw.    This feature is supported through a single NSApplication method.    +
(void)useRunningCopyOfApplication is called from the default implementation of the WinMain function.    Apps that
never want to use this feature can implement their own WinMain and avoid calling this method, but there should be very
few good reasons to want to do that.

 NSPasteboard and the NSFileContentsPboardType

NSFileContentsPboardType has been modified slightly to be the same as NSFileWrapper's serializedRepresentation.   
We expect this change to make the type much more useful.    Among other things this means that
NSFileContentsPboardType and NSRTFDPboardType use identical formats.    There is still a semantic difference
between the two, however.    NSRTFDPboardType is used only for RTFD text and it must satisfy certain constraints on
the actual file contents written (eg there must be a file inside called TXT.rtf and so forth).

In support of this change, and to make it easier to use NSFileContentsPboardType in your applications, NSPasteboard
has some new API for dealing with this type.    In the past you had to write this type onto the pasteboard from the
filesystem.    And when you read it from the pasteboard you had to write it to the file system.    Now it is possible to wirte
this type from an NSFileWrapper instance and to read it out and get a new NSFileWrapper instance.    The disk need not
be involved anymore.    The new API is:

- (BOOL)writeFileWrapper:(NSFileWrapper *)wrapper;
- (NSFileWrapper *)readFileWrapper;

Notification name changes

Some of the names of AppKit notifications have changed to follow the general naming guidelines.

Old Name New Name
NSColorListChangedNotification NSColorListDidChangeNotification

NSColorPanelColorChangedNotification NSColorPanelColorDidChangeNotification
NSImageRepRegistryChangedNotification NSImageRepRegistryDidChangeNotification
NSViewFocusChangedNotification NSViewFocusDidChangeNotification
NSViewFrameChangedNotification NSViewFrameDidChangeNotification
NSViewBoundsChangedNotification NSViewBoundsDidChangeNotification

NSDragOperation removed

The NSDragOperation typedef has been removed from the API, and all uses are replaced by unsigned int, since the
values used for this type must be often or'ed together.

NSPageLayout

NSPageLayout now inherits from NSObject in the OpenStep specification to gain greater portability.    This means that
although on Mach NSPageLayout is implemented as a subclass of NSPanel, methods inherited from NSPanel and
NSWindow are not considered part of the spec.    In fact, on Windows NSPageLayout is implemented as subclass of
NSObject since we are using the native UI.

In addition, the following methods and types have been removed from the OpenStep specification, but are still available
on the Mach platform:

- (void)convertOldFactor:(float *)old newFactor:(float *)new
- (void)pickedButton:(id)sender.
- (void)pickedOrientation:(id)sender
- (void)pickedPaperSize:(id)sender
- (void)pickedUnits:(id)sender

enum {
NSPLImageButton, NSPLTitleField,
NSPLPaperNameButton,
NSPLUnitsButton,
NSPLWidthForm,
NSPLHeightForm,
NSPLOrientationMatrix,

NSPLCancelButton,
NSPLOKButton

};

The runModal and runModalWithPrintInfo: methods now return NSOKButton or NSCancelButton on all platforms.
NSPrintInfo

There are two new keys available in the NSPrintInfo dictionary on the Windows platform:

NSPrintMustCollate
NSPrintFormName

NSPrintMustCollate indicates whether collation occurs when multiple copies are printed. NSPrintFormName is the form
name associated with the current print request, which might be different from the NSPrintPaperName.

NSPrinter

A new method has been added to return the names of configured printers available to the system.    This name can then
be passed to printerWithName: to create an NSPrinter.    If no printers are available, an empty array is returned. If an
error occurs, nil is returned.

+ (NSArray *)printerNames

NSPrintPanel

The NSPrintPanel class has been removed from the OpenStep specification. In addition, these related methods in
NSPrintOperation have been removed from the specification :

- (void)setPrintPanel:(NSPrintPanel *)panel;
- (NSPrintPanel *)printPanel;

NSPrintPanel is still available as a platform specific interface; however, it now inherits from NSObject rather than
NSPanel.

NSPrintOperation

The following methods were added to NSPrintOperation in the OpenStep specification to allow the accessory view to be
set in the print panel:

- (void)setAccessoryView:(NSView *)aView;
- (NSView *)accessoryView;

The following methods have also been added to the specification. These methods are sent to the accessory view passed
to the above methods if it responds to them.

- (void)updateFromPrintInfo;
- (void)finalWritePrintInfo;

New Graphics functions

Four new functions have been added to support conformance to the Windows UI look:

void NSRectFillListWithColors(const NSRect *rects, NSColor *colors, int count);

Fills each rectangle in the array rects with the color whose value is stored at the corresponding location in the array
colors. Both arrays must be count elements long. Avoid rectangles that overlap, because the order in which they'll be
filled can't be guaranteed.

void NSDrawDarkBezel(NSRect aRect, NSRect clipRect)
Draws a bordered rectangle with the appearance of a pushed-in button, clipped by intersecting with clipRect.

NSRect NSDrawColorTiledRects(NSRect boundsRect, NSRect clipRect, const NSRectEdge *sides,
NSColor *colors, int count)

Draws an unfilled rectangle, clipped by clipRect, whose border is defined by the parallel arrays sides and colors, both of

length count. Each element of sides specifies an edge of the rectangle, which is drawn with a width of 1.0 using the
corresponding color from colors. If the edges array contains recurrences of the same edge, each is inset within the   
previous edge.

void NSDrawLightBezel(NSRect aRect, NSRect clipRect)

Draws a rectangle with the appearance of an editable text field. Only the area that intersects clipRect is drawn.

NSFont

The method maximumAdvancement was added to the API to return the advancement of the widest glyph in the given
font.    If the font is fixed-pitch, this is the advancement of all the glyphs.

The following API additions (which are not in OPENSTEP) allow one to get/set a list of the user's "preferred" fonts, which
are checked (in order) before any other fonts when searching for a font to render some character that cannot be
rendered in a pre-given or specified font.    The list should typically contain fonts with different encodings and glyph
complements, as available.

 + (NSArray *)preferredFontNames;
 + (void)setPreferredFontNames:(NSArray *)array;

API has also been added to access the Windows system fonts.

+ (NSFont *)menuFontOfSize:(float)fontSize;
+ (NSFont *)titleBarFontOfSize:(float)fontSize;
+ (NSFont *)messageFontOfSize:(float)fontSize;
+ (NSFont *)paletteFontOfSize:(float)fontSize;
+ (NSFont *)toolTipsFontOfSize:(float)fontSize;

The existing NSFont methods systemFontOfSize: and boldSystemFontOfSize: now return the same as
messageFontOfSize: and titleBarFontOfSize: respectively.    This API is valid on Mach and Windows.    On Mach it returns
the standard system or bold system fonts.    On WIndows it will return the user's font settings from the Display options
control panel if the user's chosen fonts can be supported (currently bitmap fonts are not supported, but TrueType fonts

are).

NSFontManager

NSFixedPitchFontMask mask was added so that the font manager can determine whether or not a font is fixed-pitch.   
It may be used in trait queries.

The method fontNamed:hasTraits: was added to help in searching for fonts with specified traits.    The available traits
are specified by the trait masks.

The new method availableFontNamesWithTraits: uses the given mask (which may contain several one bits) in testing
the available fonts.    The names of all fonts matching the given bits are returned in an array.

NSInputManager/NSInputServer

The method doCommandByName: was removed from the API and from the NSTextInput protocol in favor of
doCommandBySelector:.    (The latter was already in the API, but has been added to the NSTextInput protocol.) Along
the same lines the NSInputServer method doCommandByName:sender:conversation: was also obsoleted.

The method localizedInputManagerName replaces the method inputManagerName.

Dead Keys

Dead key handling in DPSClient is now off by default. The new text object and keyboard UI rely on the input
management layer to simulate dead keys. NSCStringText will turn dead key handling on and off as it gains and loses first
responder status. Other custom views which need dead keys to be handled by DPSClient should also use the same
approach.

Help System

The AppKit's Help API has changed significantly.    NSHelpPanel has been obsoleted in favor of a new class,
NSHelpManager.    NSHelpManager provides a more platform-independent approach to presenting help.

Previously, the only way for your application to present help was through the NEXTSTEP Help panel.    Context-sensitive
help and all other help for your application was displayed in the Help panel.    This made sense when NEXTSTEP was
the only platform for your application.

OpenStep applications, however, can run on multiple platforms, and each platform provides its own support for online
help.    It's important to users that applications use the native online help system (on Windows, for instance, users want
the Windows help system and don't want to have to learn how to use a different help system), so NSHelpManager does
not provide a comprehensive solution for presenting help.    Instead, it provides cross-platform support for context-
sensitive help, and allows you to present more comprehensive help (conceptual and task-based help) in any way you
choose.

Context Help

Context-sensitive help (also referred to as context help) gives the user a small amount of information when they help-
click on an interface item.    For example, if the user help-clicks on a menu item called "Copy", they should get context
help that says something like "Copies the currently selected text to the pasteboard."    This text appears in a small
window near where the user help-clicked, and the window disappears when the user clicks anywhere else in the
application.

To provide context help for your application, follow these steps:

1. For each interface item that needs context help, create an .rtf or .rtfd file containing the text and any images you want
to appear when the user help-clicks on that interface item.    Try to keep the text as brief as possible and the images
as small as possible.

2. If you don't need to localize your context help files, in Project Builder simply add these files to the Context Help
suitcase of your project.

If you do need to localize your context help files, first copy the files into the appropriate .lproj directory of your project,
then use Project Builder to add them to the Context Help suitcase of your project.

3.    In Interface Builder,    connect each interface item to its context help file by doing the following:
a. Bring up the Interface Builder inspector and choose the Help display.    The Help display lists all the context help

files associated with your application.
b. Select an interface item.
c. In the inspector, choose the appropriate help file.

When you compile your application, /usr/bin/compileHelp packages your help files into a property list named Help.plist.
NSHelpManager knows how to extract context help from an Help.plist file.

Comprehensive Help

Most applications provide some form of online help that is more comprehensive and detailed than context-sensitive help,
such as conceptual or task help.    NSHelpManager allows you to provide this sort of comprehensive help in any way you
choose.    Some help authors prefer to provide comprehensive help in HTML using a World-Wide Web browser; others
use tools such as Digital Librarian or Concurrence; on Windows a full-featured native help system is available.    Given
the availability of rich tools like Digital Librarian and HTML browsers, OpenStep on Mach no longer supplies a native help
system for comprehensive help.

When the user chooses the Help menu item, NSHelpManager simply asks the Workspace Manager to open the help file
you have specified for your application.    That file should be the starting point of your help, and should allow users to
access whatever information they might need.

To specify a help file for your application, do one of the following:

· The simplest approach, not requiring you to specify the help file anywhere in your application, is to place the help file
in your app wrapper and name it after your application.    If you haven't specified a help file, NSHelpManager looks in
the app wrapper for an appropriately named file.

On Mach, it must be an rtf file called <appName>.rtf.

On Windows, it must be a Windows help file called <appName>.hlp.

· To specify a help file that applies to all platforms, define the NSHelpFile key in your project's CustomInfo.plist file:
 {

NSHelpFile = "ApplicationHelp.rtfd";
}

If your project does not have a CustomInfo.plist, simply create one (as in the example), and add it to your project's
"Supporting Files" file category.    When you build your project, the contents of CustomInfo.plist will be merged into
your application's Info.plist

The specified value for the NSHelpFile key can be a full or relative path, and if it is relative, it is assummed to be a
bundle resource (resolved using [[NSBundle mainBundle] pathForResource:<NSHelpFile value> ofType:nil]).

pswrap - new flags

pswrap supports some new flags which you may need to use in various circumstances.

-H <dir> This flag tells pswrap where to look for the dpsfriends.h file which needs to be included in the generated
source.    Passing '-H AppKit' will pick up the file from the OPENSTEP AppKit.

-I <include> This flag tells pswrap to emit an extra import statement.    This flag in conjunction with the -e flag
described below can be used by framework developers who need to export pswraps from their
frameworks on Windows.    Passing '-I \"MyFrameworkDefines.h\"' will cause '#import
"MyFrameworkDefines.h"' to the generated source.

-e <extern decl> This flag tells pswrap how to declare extern functions in the generated headers.    If your pswraps need
to be exported from a framework project, you will need to supply an appropriate declaration for
exporting the functions.    Passing '-e MYFRAMEWORK_EXTERN' will cause
"MYFRAMEWORK_EXTERN" to be used instead of "extern" when declaring external function
prototypes.

The AppKit exports many pswraps.    In order for those wraps to be truly exported on Windows, the AppKit has something

like this in its Makefile.preamble:

PSWFLAGS = -I \"AppKitDefines.h\" -e APPKIT_EXTERN

Look at the AppKitDefines.h header file in $NEXT_ROOT/NextLibrary/Frameworks/AppKit.framework/Headers to see
how this works.    All Framework projects that have any functions in them should have a similar header file with a similar
macro.    Just remember to add these flags to pswrap if you need to export the wraps from your framework.

Localization

There are several localization features that are not documented elsewhere:

· It's possible to change the order of the arguments in a localized string by using the "$" modifier and the argument
number:

 /* Message in alert panel when something fails */
 "Oh %@! %@ failed!" = "%2$@ blah blah, %1$@ oh!";

· The default NSShowNonLocalizableStrings can be used to catch strings which are not localizable.    The strings will
be logged and also displayed in the UI in upper case. Note that there will be some false positives, but this is still
useful.

· The default NSShowNonLocalizedStrings will indicate strings which were meant to be localized but could not be
found in the strings files. This can be used to catch problems with out-of-date localizations.

