
Copyright ã1996 by NeXT Software, Inc.    All Rights Reserved.

A

Utilities for Loadable Kernel€Servers

This appendix describes the syntax of several of the commands that operate on loadable kernel servers:

· The kernel-server loader, kern_loader, is the program that loads servers into the kernel.    It's also discussed in
Chapter 5, ªOverview of Loadable Kernel€Servers.º

· The kernel-server linker, kl_ld, links object files and command scripts into a relocatable object file.    The format
of command scripts is discussed in detail in this appendix.    An example of using kl_ld is in Chapter 9,
ªBuilding, Loading, and€Debugging Loadable Kernel€Servers.º

· The kernel-server utility, kl_util, is useful for loading and unloading servers, as well as getting information about
servers.    It's also discussed briefly in Chapter 9.

· The kernel-server log command, kl_log, lets you see log messages from a server.    Log messages are discussed
in Chapter 6, ªDesigning Loadable Kernel Servers.º

Kernel-Server Loader (kern_loader)
The kernel-server loader, kern_loader, is the task that adds loadable kernel servers to the kernel.    The kernel-server
loader works by listening to the ports of known loadable kernel servers.    When it intercepts a request for a loadable
kernel server, it loads the server and initializes it to respond to this request and subsequent requests.

The kernel-server loader also listens on its own port for requests made through the kernel-server loader functions, a
group of user-level functions.    The kernel-server loader functions can be used to add and delete known servers, to
load servers into the kernel and unload running servers from the kernel, and to get status information.    You can use
the kernel-server utility, kl_util, to communicate with the kernel-server loader (as described later in this appendix),
or you can write your own program using the kernel-server loader functions.    The kernel-server loader functions are
documented in Chapter 3, ªUsing Loadable Kernel Servers.º

When invoked, the kernel-server loader reads its configuration file, /etc/kern_loader.conf.    This file contains a list
of relocatable object files, one for each kernel server that is to be prepared for loading into the kernel.    Here's a
sample kern_loader.conf file:

/usr/lib/kern_loader/Midi/mididriver_reloc
/usr/local/lib/kern_loader/Mydriver/mydriver_reloc

Starting kern_loader
The kern_loader daemon is called automatically during system startup.    If it's killed, you€normally can't restart it
because the Bootstrap Server won't let any process except mach_init register the ªserver_loaderº service.    However,
if you change a couple of lines€in€the Bootstrap Server configuration file and then reboot, the Bootstrap Server will

let you reinvoke kern_loader in the future.    Specifically, you should change the following lines in
/etc/bootstrap.conf:

services NetMessage . . .;
. . .
server "/usr/etc/kern_loader -n" services server_loader;

to the following:

services NetMessage . . . server_loader;
. . .
server "/usr/etc/kern_loader -n";

After you make that change to /etc/bootstrap.conf and reboot, you can reinvoke kern_loader at any time, as
follows:

/usr/etc/kern_loader [-d] [-n] [-v] [relocatable ...]

The command-line options are:

-d Don't detach from the invoking terminal; stay in the foreground.

-n Don't fork another process to be kern_loader.    This is necessary in the Bootstrap Server
configuration file because the Bootstrap Server keeps track of all its servers.

-v Display debugging information.

relocatable ... The name of one or more relocatable object files to be read (before those listed in
/etc/kern_loader.conf).

Kernel-Server Linker (kl_ld)
The relocatable object file of your loadable kernel server must contain certain information:    the name of your
server, which functions to call to initialize the server, the names of message-handling functions, the name of your
server's instance variable, and so on.    You put this information into the relocatable object file by using kl_ld to link
your server.

The syntax for using kl_ld follows:

kl_ld -n server_name -i instance_var -l load_cmds_file [-u€unload_cmds_file] [-d€loadable_name]
-o€output_file input_file ...

where:

-n server_name Specifies the name of the kernel server.    This name is used in calls to the kernel-server
loader functions (such as kern_loader_load_server()) and in the kl_util and kl_log
command lines.

-i instance_var Specifies the name of the kernel server's instance variable.    This variable's structure
must start with a field of type kern_server_t (defined in the header file
kernserv/kern_server_types.h).

-l load_cmds_file Specifies the name of the script that contains commands that kern_loader must
execute when it loads your server.    This file is read into the relocatable object file
when you create it.    If you want to change the load commands, you must recreate the
relocatable object file.

-u unload_cmds_file Specifies the name of the script that contains commands that kern_loader must
execute when it unloads your server.    Like load commands, unload commands are read
into the relocatable object file when you create it.    Thus, you must recreate the

relocatable object file if you want to change the unload commands.

-d loadable_name Specifies the pathname of the loadable object file that kern_loader creates from the
relocatable object file.    This pathname can be either absolute or relative to the
directory containing the relocatable object file.    Use this option to make kern_loader
put the loadable object file in a place where the GNU source level debugger, GDB, can
easily find and use it.

-o output_file Specifies the name of the relocatable object file that is created.    The kern_loader will
later relocate this file against the kernel.

input_file ... The object files to be linked into the relocatable object file.

The following example shows a makefile that creates a relocatable object file.

Note:    On the last line of the command for the ª$(NAME)_relocº target, ª$@º refers to ª$(NAME)_relocº.

NAME=slot
OFILES= slot_server.o slot_handler.o
CFLAGS= -g -DKERNEL -DKERNEL_FEATURES -DMACH
.
.
.
$(NAME)_reloc: $(OFILES) Load_Commands Unload_Commands
 kl_ld -n $(NAME) -i instance -l Load_Commands \
 -u Unload_Commands -o $@ $(OFILES)

.c.o:
$(CC) $(CFLAGS) -c $*.c -o $*.o

Load Commands
The load commands script can have the commands described in this section.    The script must have at least one of
the following commands:    HMAP, SMAP, or START.

ADVERTISE Specifies the name of a port that is to be allocated and advertised with the Network Name
Server.    When kern_loader receives messages on any advertised port, the kernel server
will be loaded into the kernel and initialized.    As part of the initialization sequence, receive
rights for the advertised port are forwarded to the kernel server.    The message will then be
forwarded by kern_loader to the loaded kernel server.

Syntax:    ADVERTISE port

CALL Specifies the name of a function to be called with the specified integer argument as part of
the server initialization sequence.    If the script has multiple CALL commands, they'll be
executed in order.

Syntax:    CALL function integer

DETACH Specifies that the server should never be unloaded.    The DETACH command makes
kern_loader treat any request to unload the server as an error.    Requests to deallocate the
server will appear to succeed, but although kern_loader stops keeping track of it, the server
will remain loaded in kernel memory.    The DETACH command is necessary for the
correctness of some network protocols.

HMAP Specifies the mapping of a port to a message-handling function in the kernel server.    When
kern_loader receives a message on this port, it calls the function with the global variable or
integer argument you specify.    This function must have a handler interface, as opposed to a
server interface (see Chapter 6, ªDesigning Loadable Kernel Serversº).    To advertise this
port with the Network Name Server, use the ADVERTISE command, as described
previously in this section.

Syntax:    HMAP port_name handler_function argument

PORT_DEATH Specifies a function in the server to be called when a port death message is received on its
behalf.

Syntax:    PORT_DEATH function_name

SMAP Specifies the mapping of a port to a message-handling function within the kernel server.   
When kern_loader receives a message on this port, it calls the function with the integer
argument you specify.    This function must have a server interface, as opposed to a handler
interface (see Chapter 6).    To advertise this port with the Network Name Server, use the
ADVERTISE command, as described previously in this section.

Syntax:    SMAP port_name server_function integer

START Causes the kernel server to be started immediately, rather than waiting for a message to be
received on one of its advertised ports.    This is most appropriate for kernel servers that
don't listen on any ports, or are wired into kernel data structures for nonserver-style access.

Syntax:    START

WIRE Causes the text and data of the loaded kernel server to be wired down (memory resident),
making the kernel server immune from unexpected page faults.    You must use WIRE if any
part of your kernel server can be called from an interrupt handler.    If you use WIRE, your
kernel server is wired down before any other load commands are executed.

Syntax:    WIRE

Here's an example of a load commands script.

CALL slot_init 0

PORT_DEATH slot_port_death

Associate ports with proc/arg
SMAP slot0 slot_msg 0
SMAP slot2 slot_msg 1
SMAP slot4 slot_msg 2
SMAP slot6 slot_msg 3

Server contains interrupt handler code, and so must be wired down
WIRE

Start this server up immediately
START

Unload Commands
The unload commands script can have only CALL commands:

CALL Specifies the name of a function to be called as part of server shutdown.    The function will
be passed the specified integer.

Syntax:    CALL function integer

Here's an example of an unload commands script.

Termination

CALL slot_signoff 0

Kernel-Server Utility (kl_util)
The kernel-server utility /usr/etc/kl_util lets you communicate with the kernel-server loader.    Various options allow
you to query the kernel loader for the status of all registered kernel servers, load a kernel server into the kernel, and
remove one or more kernel servers from the kernel.

The command-line options to kl_util are as follows:

-a server_reloc_file_name ...
Causes kern_loader to allocate resources for the specified kernel server or servers.    Each added
server will have kernel space allocated for it and will be initialized to load at that location when
referenced.

-A Causes kern_loader to shut down; all existing kernel servers are unloaded and deallocated, and the
running kern_loader task exits.

-d server_name ...
Causes kern_loader to deallocate the specified kernel server or servers; all physical and virtual
resources associated with the kernel server are freed.

-l server_name ...
Causes kern_loader to load the specified kernel server or servers into the kernel.    If you don't use this
option, loading is normally done either when the kernel server is allocated (if START is specified in the
load commands), or when it receives its first message.

-L Causes kl_util not to terminate at the end of its operation, so that further kern_loader activity can be
monitored.    As long as kl_util is running, anything logged by kern_loader is displayed.

-r Causes kern_loader to deallocate all its servers and set itself up from scratch by rereading its
configuration file.    This is similar to specifying the -A option and then restarting kern_loader, except
that kern_loader never actually exits.

-s [server_name ...]
Causes kern_loader to return information about the status of registered kernel servers.    If a server
name isn't specified, a list of all known servers is displayed.    If a server name is specified, detailed
information about that server is displayed.

The following example shows the status of the MIDI driver:

/usr/etc/kl_util -s mididriver
SERVER: mididriver
RELOCATABLE: /usr/lib/kern_loader/Midi/mididriver_reloc
STATUS: Allocated at address 0x10f70000 for 0xa000 bytes
PORTS: mididriver(advertised)
#

-u server_name ...
Causes kern_loader to unload the specified kernel server or servers.    (Loaded kernel servers remain
in the kernel until they're explicitly unloaded.)    Unloading the server causes any wired pages to be
unwired; thus, this can be used as a mechanism to free up resources in the system when the server is no
longer needed.

Kernel-Server Log Command (kl_log)
You can use the kernel-server log command, kl_log, to see log messages from a loadable kernel server.    You can

also write your own program that calls the kern_loader_log_level() and kern_loader_get_log() functions to get log
messages.    The kern_loader_log_level() and kern_loader_get_log() functions are discussed in Chapter 3, ªUsing
Loadable Kernel Servers.º

You must be superuser to call kl_log.    It has the following syntax:

/usr/etc/kl_log [-l log_level] server_name

where:

server_name Specifies the loadable kernel server for which you're getting or setting log information.    This
server must already be loaded.

-l log_level Specifies the priority of messages that should be kept.    By default, the log level is zero, and
no log messages are printed.    By setting log_level to a positive value, you ensure that log
messages from the server will be printed to stdout if they have a priority equal to or greater
than log_level.

You might use kl_log as follows:

slave# kl_log -l 1 mydriver&
.
.
.
slave# kl_log -l 0 mydriver
slave# jobs
[1] + Running kl_log -l 1 mydriver
slave# kill %1
slave#

Before you stop collecting messages from a kernel server, you should shut off logging by setting its log level to zero.
If you don't set the log level to zero, log messages will accumulate even though no process is collecting the
messages.

