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Designing Loadable Kernel Servers

This chapter provides the basic information required to design loadable kernel servers.    It describes the code that 
every server must have to be integrated into the kernel and to provide services to its clients.    It also discusses the 
functions that loadable kernel servers can call, and it gives tips to help you write correct code that makes debugging 
easier.

Besides this chapter, you should also read either Chapter 7, ªNeXTbus Device Drivers,º or€Chapter 8, ªNetwork 
Modules,º for detailed information about the type of server you're€writing.

Choosing an Interface for Your Server
Before you can start writing your server, you have to decide whether it needs a message-based interface or a UNIX-
style interface.    Network modules such as network protocols primarily use a third kind of interface (called a 
network interface, which is described in Chapter 8).    However most network modules have additional interface 
functions that are provided through either a message-based or a UNIX-style interface.

It is recommended that you use the Mach Interface Generator (MiG) to write a message-based interface.    One 
advantage of using a message-based interface is that your server can stay unloaded until the moment it's needed.    
Message-based servers, besides having more intuitive interfaces than UNIX-style servers, also have the advantage of 
MiG's network independence.    For example, a graphics device with a message-based server could easily be 
accessed from any computer on the network.    MiG and Mach messages are described in detail in Chapter 2, ªUsing 
Mach Messages.º

Unfortunately, some servers can't use message-based interfaces.    For example, servers that interact with the UNIX 
file systemÐsuch as disk driversÐneed to supply a UNIX-style interface with UNIX entry points (xxx_open(), 
xxx_close(), and so on).

Tips for Writing Server Code
When developing your server, you should start by designing your server's interface.    When you're ready to start 
writing code, use a skeleton or sample server as the framework, and then add functionality a little at a time.    You 
might want to put all the major interface functions in place, but just have each one print a message that says it's been 
called.    This approach will make debugging your server much easier than if you implement large amounts of code 
at once.

As you write the code for your server, keep the following in mind:

· Using register isn't necessary.    It's easier and often better to let the compiler decide what to put into registers.

· You must use volatile for variables that refer to hardware addresses, or that can be modified by interrupt 



functions or other threads.

· Beware of hardware registers that have side effects when accessed, or that contain different information when 
you read them than when you write to them.

· Don't declare large variables in functions.    Instead, if you need a large variable, declare a pointer to it and then 
dynamically allocate space with kalloc() or kget().    (Automatic variables are allocated on the kernel stack.    
Since the kernel stack is only 4 KB, large variables can easily cause stack overflow and result in system panics 
that aren't easily debugged.)

· Don't recursively call functions.    (Like large automatic variables, recursion can cause stack overflow.)

Functions Your Server Can Call
Your loadable kernel server can use the functions described in Chapter 10, ªKernel Support Functions.º    In addition, 
it can use almost all Mach kernel functions, which are listed in Chapter 4, ªMach Functions.º 

However, loadable kernel servers can't use functions that are not defined in the Mach kernel.    For example, a few 
Mach kernel functions don't work because they rely on data that's only available at user level.    For example, 
mach_error() can't be used in loadable kernel servers because it prints to stderr, which the Mach kernel doesn't 
have access to. 

Note:    You can't use C Thread, Network Name Server, Bootstrap Server, or Kernel-Server Loader functions or 
macros in your server, because they aren't part of the Mach kernel.

Warning: Loadable kernel servers run outside of the kernel task, even though they use the kernel address map.    Be sure to 
specify the correct task and map to Mach kernel functions.

Executing as the Result of an Interrupt
When a function in your server is called as the direct result of an interrupt, the computer stops all normal processing 
until the function exits.    Even if your server doesn't handle hardware interrupts, it can run as the result of a software 
interrupt.    Specifically, functions that run because they were scheduled by a call to ns_timeout() or 
ns_abstimeout() (as described in Chapter 10) are running as the result of a software interrupt. 

A server that's executing as the result of an interrupt must take certain precautions:

· It must not sleep.
· It must not call any functions that might sleep.
· If it needs to allocate memory, it should use kget() (which can fail but never sleeps).
· It shouldn't perform any I/O, unless the I/O is guaranteed not to block.

For information on handling hardware interrupts, see Chapter 7, ªNeXTbus Device Drivers.º 

Building In Debugging Code 
This section discusses functions that can help you debug in two ways:    by displaying information while your server 
runs and by checking assumptions in your server.    The functions and macros discussed in this section are explained 
further in Chapter 10.

Displaying Debugging Information



To display debugging information while your server runs, you have two choices:    kern_serv_log() and the kernel 
printf() function.    You should use kern_serv_log() instead of printf() whenever possible, since printf() slows the 
system and affects the timing of your server.    You should use printf() only for unusual events that you need to see 
as soon as they occur and for events that are likely to result in a system panic. 

Using kern_serv_log()

kern_serv_log() logs a message that a user process can later pick up and print out.    The main advantages of 
kern_serv_log() are its quickness and reliability, even when called from an interrupt handler.    However, if the 
system panics before the user process can pick up a log message, that message will be lost.

Your server supplies to kern_serv_log() the string to be logged and the priority at which it should be logged.    
Higher numbers correspond to higher priorities, but the exact interpretation of priority numbers is up to you.

Messages logged using kern_serv_log() can be obtained using either the kernel-server log command, kl_log, or any 
other user-level program that calls the functions kern_loader_log_level() and kern_loader_get_log().    By default, 
logging is off; you must set the log level before you can obtain any log messages.    The kl_log utility is described in 
Appendix€A, ªUtilities for Loadable Kernel€Serversº; kern_loader_log_level() and kern_loader_get_log() are 
described in Chapter 3, ªUsing Loadable Kernel Servers.º 

Using printf()

The kernel printf() function has the advantage that you can easily view its output.    All you have to do is keep the 
console window open.    However, printf() can greatly slow the system because nothing except hardware interrupt 
handling can happen during a call to printf().    Although printf() doesn't sleep, it's unreliable when called from an 
interrupt handler because messages can be garbled. 

The kernel printf() function is best used when you have a short message that you want to see as soon as it happens. 
You can see printf() messages not only in the console window, but also in /usr/adm/messages and from a msg 
command in the NMI mini-monitor or Panic window.    Your message is guaranteed to make it to the msg buffer 
(although it might be garbled) even if the kernel panics.

Checking Assumptions
To check assumptions in your server, you can use ASSERT() and probe_rb().

Using ASSERT()

ASSERT() evaluates the expression you pass to it.    If the result of the expression is 0, ASSERT() prints a message 
describing the line and file that the assertion failed on, and then calls panic().

Note:    ASSERT() doesn't do anything unless your server is compiled with the DEBUG€C preprocessor macro 
defined.    Other recommended compile flags are discussed in Chapter€9, ªBuilding, Loading, and€Debugging 
Loadable Kernel€Servers.º

Using probe_rb()

Use probe_rb() whenever you need to make sure that an address is valid.    For example, to check whether a 
NeXTbus board is in a certain slot, you can call probe_rb(), passing the virtual address of one of the board registers.



Kernel-Server Loader Requirements 
Your server must supply an instance variable to the kernel-server loader, kern_loader.    You can also supply 
functions that kern_loader will call under certain circumstances, such as server initialization or shutdown.

You inform kern_loader of the instance variable name and of any functions to be called when you compile your 
server.    This information goes into sections of your server's object file.    See Appendix A for details on specifying 
information during compile time.    The following sections first describe how to declare the instance variable in your 
code and then describe the types of functions you can write for kern_loader to call.

Instance Variable
Your server's instance variable is an ordinary C variable of type kern_server_t (defined in€the header file 
kernserv/kern_server_types.h) that kern_loader uses to keep track of your server. 

You can make the instance variable contain other information as well.    Do this by defining a structure that begins 
with a field of type kern_server_t, followed by fields of your choice.    For example, you might declare your 
instance variable in a header file as follows:

#import <kernserv/kern_server_types.h>

typedef struct my_instance_var
{
    kern_server_t  kern_server;  /* generic instance info */
    struct         my_dev;       /* per-device info */
    {
        int  field1;
        int  field2;
    } dev[MAX_MINE]
} my_instance_var_t;

my_instance_var_t  instance;

Writing Functions for kern_loader to Call
Your server can supply the following kinds of functions to kern_loader:

Kind of Function Called When
Initialization Your server is loaded.
Shutdown Your server is unloaded.
Port server Your server receives a message on a certain port.
Port death A port for which your server has send rights dies.

Some servers might not require all or any of these functions.    However, a server that doesn't start until it receives a 
message must supply kern_loader with the names and port servers of all ports that the server might receive its first 
message on.

Initialization functions can't be debugged with GDB.    (You can't set a breakpoint in your server until it's fully 
loaded, and initialization functions are executed before then.)    One way to get around this debugging problem is to 
have a message-based interface for initialization until your server is debugged.    You can write a simple port server 
that initializes the server whenever it receives a message.    You also have to write a simple program that sends this 
message.    After you've finished debugging the initialization sequence, you can move it into the initialization 
functions called by kern_loader. 

Shutdown functions are often used to free kernel resources.    When the server is unloaded, no other part of the 
kernel can contain a reference to any code or data contained within the loadable server.    If the kernel tries to refer to 



any code or data in an unloaded server, the system panics. 

Considerations for Message-Based Servers 
Message-based loadable kernel servers are built using the Mach Interface Generator (MiG).    Examples of using 
MiG are in Chapter 2 of this manual, as well as under /NextLibrary/Documentation/NextDev/Examples.    Under 
the Examples directory, the MiG example contains only user-level code, but it's a good starting place if you're 
unfamiliar with MiG.    The Log example features a loadable kernel server that can receive only one type of request. 
The ServerVsHandler example has two versions of a loadable kernel server that can receive two types of requests.

Server versus Handler Interfaces
A message-based loadable kernel server can have one of two interfaces:    a server interface or a handler interface.    
MiG automatically produces a server interface, but if requested it can produce most of the code for a handler 
interface.    You have to write just a little more code to complete a MiG-generated handler interface.    Handler 
interfaces have a performance advantage because they can use much less wired kernel memory if the loadable kernel 
server never returns much data.

For example, for a loadable kernel server with a server interface, MiG allocates reply messages that are 
MAX_SIZE_BYTES (currently 8192) bytes long.    If the server returns only a little dataÐfor example, if it has ten 
interface functions, each returning only an integer indicating the call's successÐthen a lot of kernel memory is being 
wasted.    If the same server has a handler interface, MiG allocates only 32 bytes for each reply message (24 bytes 
for the header, and 8 bytes for the message body). 

The difference in memory usage happens because MiG always generates large messages to return server data, but 
for handlers, it allocates just enough space to hold the largest message that's returned.

Note:    From the caller's point of view and from the point of view of the loadable kernel server function that the 
MiG-generated interface calls, handler and server interfaces look identical.    The difference between them is visible 
only in the options you specify to MiG, the files that MiG generates, and the extra bit of code you must write, as 
described in the following procedure.

To convert a server to a handler, while keeping the exact same interface to user processes, follow these steps 
(substituting the name of your server for name and ªmydriverº): 

1. Copy your loadable kernel server's ª.defsº file to another directory and enter the following command at a UNIX 
shell prompt:    mig name.defs -handler nameHandler.c -sheader nameHandler.h -user nameUser.c -header 
name.h.    For example:

mymachine> mig mydriver.defs -handler mydriverHandler.c -sheader mydriverHandler.h -user 
mydriverUser.c -header mydriver.h

2. This creates a group of files.    Look in the nameHandler.h file for the name_t structure.    Here's an example of 
what it looks like:

typedef struct mydriver {
    void    *arg;      /* argument to pass to function */
    int      timeout;  /* timeout for RPC return msg_send */
  
    /* Routine mydriver_do_log */
    kern_return_t (*mydriver_do_log) (
    void *server);
} mydriver_t;

3. Import nameHandler.h to your server and add a global variable of type name_t that maps user functions to the 
corresponding function in your server.    The kernel and the kernel loader will use this structure to call your 
server's functions.    For example, for a ª.defsº file that has the line ªroutine mydriver_do_log(server: port_t);º, 



you might have the following:

#import "mydriverHandler.h"
kern_return_t mydriver_do_log(port_t server);

mydriver_t mydriver_funcs = {
    0,
    100,            /* in milliseconds */
    (kern_return_t (*)(void *))mydriver_do_log 
};

4. In the load commands script, change all instances of SMAP to HMAP, and change each function argument to the 
name of the mapping structure.    For example:

SMAP          mydriver0 mydriver_server 0

becomes:

HMAP          mydriver0 mydriver_handler mydriver_funcs

5. Change your server's makefile so that it performs the MiG command described above and has the correct 
dependencies.    For example:

MIGOUTPUT=mydriverUser.c mydriverServer.c mydriver.h
SERVER_OBJ= mydriver_main.o mydriverServer.o
.
.
.
mydriver_reloc: ${SERVER_OBJ} LoadCommands UnloadCommands
    kl_ld -n mydriver -l LoadCommands -u UnloadCommands -i instance \
    -d mydriver_loadable -o $@ ${SERVER_OBJ}

${MIGOUTPUT}: mydriver.defs
    mig mydriver.defs 

might become:

MIGOUTPUT=mydriverUser.c mydriverHandler.c mydriverHandler.h \
          mydriver.h
SERVER_OBJ= mydriver_main.o mydriverHandler.o
.
.
.
mydriver_reloc: ${SERVER_OBJ} LoadCommands UnloadCommands
    kl_ld -n mydriver -l LoadCommands -u UnloadCommands -i instance \

    -d mydriver_loadable -o $@ ${SERVER_OBJ}

${MIGOUTPUT}: mydriver.defs
    mig mydriver.defs -handler mydriverHandler.c \
    -sheader mydriverHandler.h -user mydriverUser.c \
    -header mydriver.h

${SERVER_OBJ}:    mydriverHandler.h

For another example of converting a server to a handler, see the files under 
/NextLibrary/Documentation/NextDev/Examples/ServerVsHandler. 

Sending and Receiving Out-of-Line Data
A message-based server that receives out-of-line data doesn't have direct access to the data.    The data is inaccessible 
because it appears in the address map of the server's task, but loadable kernel servers use the kernel's address map 
instead of their own task's map.    To read out-of-line data, your server must use vm_write() to map all or part of the 
data into the kernel map.    Similarly, to send out-of-line data, your server must first call vm_read() to map the data 
into the address map of the server's task.    Both vm_write() and vm_read() work on entire pages, so the data sent 



out-of-line must be page-aligned.    However, as long as none of the data is wired down, the data isn't copied until it's 
written to.

Note:    Don't use copyin() and copyout() in message-based servers.    They work only in UNIX-style servers.

Considerations for UNIX-Based Servers 
For a UNIX-based server, you must provide the proper entry points and insert the server into the appropriate device 
switch tables.    This section lists the entry points you need, but doesn't cover most entry points in detail.    If an entry 
point is not sufficiently covered here, see Egan and Teixeira's Writing a UNIX Device Driver. 

Note:    You should call NeXT Technical Support to receive the device major number to use.    Getting the major 
number from NeXT will help ensure that your server works with other NeXT-supplied and third-party servers.

UNIX Device Entry Points
This section shows all the entry points that a character or block driver can provide. 

Character-Device Entry Points

Entry points for character devices are defined in the header file sys/conf.h as shown below.

struct cdevsw
{
    int  (*d_open)();
    int  (*d_close)();
    int  (*d_read)();
    int  (*d_write)();
    int  (*d_ioctl)();
    int  (*d_stop)();
    int  (*d_reset)();
    int  (*d_select)();
    int  (*d_mmap)();
    int  (*d_getc)();
    int  (*d_putc)();
};
extern struct  cdevsw cdevsw[];

Field Description
d_open A pointer to the server function that handles an open() system call.

d_close A pointer to the server function that handles a close() system call.

d_read A pointer to the server function that handles a read() system call.

d_write A pointer to the server function that handles a write() system call.

d_ioctl A pointer to the server function that handles an ioctl() system call.

d_stop Not supported for user-written servers.

d_reset Not used.

d_select A pointer to the server function that handles a select() system call.    If your device is ready for 
reading or writing, this function should return true.    If your device is always ready for 
reading and writing, you can specify seltrue() in the cdevsw table, which will make the kernel 
return true without calling your server. 



d_mmap A pointer to the server function that handles memory mapping of device space to user space. 
This function, which is typically found in frame buffers, must return the page number of the 
passed offset.

d_getc Not supported for user-written servers; used for console devices.

d_putc Not supported for user-written servers; used for console devices.

If your driver implements the d_select entry point, it usually handles the case that no data is immediately available. 
In this case, your driver must remember that someone is interested in the data, as well as whether more than one 
party is interested.    In typical UNIX systems, a pointer to the proc structure of the interested party is saved.    In 
NeXT systems, however, the driver must save a pointer to a thread.    The selthreadcache() function stores this 
thread pointer and ensures that the thread won't go away before selthreadclear() is called.    The selthreadclear() 
function should be called when the awaited device activity has taken place or when the device is closed.    The 
following example illustrates how to use selthreadcache() and selthreadclear().

typedef struct {
    ...
    void    *selread;
    void    *selwrite;
    void    *selexcep;
    int      collision : 1;
    ...
} Mystruct;

xyzselect(dev, flag) 
{
    Mystruct *myinfo = Myinfo[minor(dev)];

    switch (flag) {
    case FREAD:
        if ( data not available ) {
            if ( selthreadcache(&myinfo->selread) ) 
                // more than one party...
                myinfo->collision = 1;
        }
        ...
        break;
    ...
    }
    ...
}

xyzint(dev)
{
    ...
    if (  read data && myinfo->selread )
        xyzwakeup(myinfo, FREAD);
    ...
}

xyzwakeup(myinfo, flag)
Mystruct *myinfo;
{
    if (flag & FREAD) {
        int oldpri = splxyz();    // may not be necessary

        if (myinfo->selread) {
            selwakeup(myinfo->selread, myinfo->collision);
            selthreadclear(&myinfo->selread);
            myinfo->collision = 0;
        }
        splx(oldpri);
    }
    ...
}



xyzclose()
{
    ...
    if (myinfo->selread)
        selthreadclear(&myinfo->selread);
    ...
}

Block-Device Entry Points

Entry points for block devices are defined in the header file sys/conf.h as shown below.

struct bdevsw
{
    int  (*d_open)();
    int  (*d_close)();
    int  (*d_strategy)();
    int  (*d_dump)();
    int  (*d_psize)();
    int  d_flags;
};
extern struct  bdevsw bdevsw[];

Field Description
d_open A pointer to the server function that handles an open() system call.

d_close A pointer to the server function that handles a close() system call.

d_strategy A pointer to the server function that eventually handles read() and write() system calls.

d_dump A pointer to the server function that dumps physical memory to the swap device when the 
system is going down.    Used only for devices that can be used for swapping.

d_psize A pointer to the server function that returns the size of the swap partition for swap devices.    
Used only for devices that can be used for swapping.

d_flags Contains flags that give more information about the device to the kernel.    The only defined 
flag is B_TAPE, which tells the kernel that it can't reorder I/O to this server.

Inserting UNIX Servers into Device Switch Tables
If your server is entered through UNIX system calls, you must insert it into the appropriate device switch tables 
during your server's initialization.    While debugging, you should do this through a message-based interface.    Later, 
you can transfer this to an initialization function called by kern_loader.

The following example illustrates a server inserting itself into switch tables.    Since the example is taken from a 
block driver, the server inserts itself into both the bdevsw and cdevsw tables.    Character drivers have to insert 
themselves only into the cdevsw table. 

Note:    In the following example, MY_BLOCK_MAJOR and MY_RAW_MAJOR are device major numbers, 
which you should obtain from NeXT Technical Support.

/* 
 * Example of a driver inserting itself into the block and character
 * device switch tables.
 */

#import <sys/conf.h> 

extern int nulldev();



extern int nodev();
extern int seltrue();
#define nullstr 0

struct bdevsw my_bdevsw =  { 
                 int (*myopen)(),
                 int (*myclose)(),
                 int (*mystrategy)(),
                 nodev,
                 nodev,
                 0 };
struct cdevsw my_cdevsw =  { 
                 int (*myopen)(),
                 int (*myclose)(),
                 int (*myread)(),
                 int (*mywrite)(),
                 int (*myioctl)(),
                 nodev,
                 nulldev,
                 seltrue,
                 nodev,
                 nodev,
                 nodev };

struct bdevsw my_saved_bdevsw;
struct cdevsw my_saved_cdevsw;

/* Save whatever entries were in the tables for our major numbers. */
my_saved_bdevsw = bdevsw[MY_BLOCK_MAJOR];
my_saved_cdevsw = cdevsw[MY_RAW_MAJOR];

/* Put my entries in the switch tables. */
bdevsw[MY_BLOCK_MAJOR]= my_bdevsw;
cdevsw[MY_RAW_MAJOR]  = my_cdevsw;


