
Copyright ã1996 by NeXT Software, Inc.    All Rights Reserved.

10

Kernel Support Functions

This chapter gives detailed descriptions of the C functions provided by the NeXT Mach kernel for loadable kernel
servers.    Also included are some macros that behave like functions.    For this chapter, the functions and macros are
divided into two groups:    general functions and network functions.

Network functions are those that are specifically for network modules.    All the other functions are under the
ªGeneral Functionsº section.

Note:    All functions described in this chapter work only in the kernel.    The few that have user-level equivalents
are noted.

Within each section, functions are subgrouped with other functions that perform related tasks.    These subgroups are
described in alphabetical order by the name of the first function listed in the subgroup.    Functions within subgroups
are also listed alphabetically, with a pointer to the subgroup's description.

For convenience, these functions are summarized in Appendix C, ªSummary of Kernel Support€Functions.º    The
summary lists functions by the same subgroups used in this chapter and combines several related subgroups under a
heading such as ªTime Functionsº or ªMemory Functions.º    For each function, the appendix shows the calling
sequence.

General Functions

ASSERT()

SUMMARY Panic if an assumption isn't true

SYNOPSIS #import <kernserv/prototypes.h>

void ASSERT(int expression)

ARGUMENTS expression:    A C expression that's 0 when the assumption isn't true.

DESCRIPTION ASSERT() is a macro that works only if you specify the DEBUG C preprocessor macro when you
compile your server.    If expression is 0, ASSERT() calls panic() after printing the line and file that the assertion
failed in.

EXAMPLE In your makefile:

CFLAGS = ... -DDEBUG

In your server:

ASSERT(ptr != NULL);

SEE ALSO panic(), kern_serv_panic()

assert_wait()

SUMMARY Arrange for a thread to sleep on an event

SYNOPSIS #import <kernserv/prototypes.h>

void assert_wait(int event, boolean_t interruptible)

ARGUMENTS event:    An integer that identifies the event.    Typically, this is the address of a structure.    If€event is
zero, then thread_wakeup() won't work on the thread; only clear_wait() and thread_set_timeout() will be able to
wake it up.

interruptible:    Used by clear_wait().    If interruptible is false and the interrupt_only argument to a later call to
clear_wait() is true, then this thread won't be waked up by that call to clear_wait().

DESCRIPTION Use this function before calling thread_block().    This function sets up the event that the thread wants to
wait for, but the thread doesn't start sleeping until it executes thread_block().

EXAMPLE extern hz;

assert_wait(0, FALSE);
thread_set_timeout(hz*2);
thread_block();

SEE ALSO clear_wait(), thread_block(), thread_set_timeout(), thread_wakeup(), biowait()

bcopy()

SUMMARY Copy data into a buffer

SYNOPSIS #import <kernserv/prototypes.h>

void bcopy(void *from, void *to, int length)

ARGUMENTS from:    Start of buffer to be copied from.

to:    Start of buffer to be copied to.

length:    Number of bytes to copy.

DESCRIPTION Like the C library bcopy() function, this function copies bytes from one buffer to another buffer in the
same virtual space.    This function can't be used to copy data between user space and kernel space.    The caller of
this function must have already checked the access rights to this memory and wired it down.

Important:    Use bytecopy() instead of bcopy() if you're copying to or from hardware device space that's only 8 or
16 bits wide.    (bcopy() often uses 32-bit accesses for efficiency, but the 68040 processor doesn't allow 32-bit
accesses to 8-bit or 16-bit hardware.)

SEE ALSO bytecopy(), strcpy(), copyin(), copyout()

biodone()

SUMMARY Wake up the function doing a biowait() on a buffer

SYNOPSIS #import <kernserv/prototypes.h>

void biodone(struct buf *bp)

ARGUMENTS bp:    The address of a buf structure.    This structure is defined in the header file sys/buf.h.

DESCRIPTION This function marks the buffer as done and wakes up any threads waiting for it.    If the B_DONE flag is
already set, biodone() panics.    Otherwise, if B_CALL is set, biodone() clears it and calls the function pointed to by
*bp->b_iodone.    Next, if B_ASYNC is set, biodone() releases the buffer pointed to by bp; if B_ASYNC isn't set,
biodone() clears the B_WANTED flag and wakes up all threads that had called biowait() on bp.

EXAMPLE one_thread(void)
{
 struct buf mybuf;
 . . .
 biowait (&mybuf);
 . . .
}

other_thread(struct buf *bp)
{
 . . .
 biodone(bp)
 . . .
}

SEE ALSO biowait()

biowait()

SUMMARY Wait until a function calls biodone() on a buffer

SYNOPSIS #import <kernserv/prototypes.h>

void biowait(struct buf *bp)

ARGUMENTS bp:    The address of a buf structure.    This structure is defined in the header file sys/buf.h.

DESCRIPTION If the B_DONE flag in the buffer pointed to by bp is already set, this function won't sleep.    Otherwise,
this function sleeps until another thread calls biodone() on bp.

EXAMPLE one_thread(void)
{
 struct buf mybuf;
 . . .
 biowait (&mybuf);
 . . .
}

other_thread(struct buf *bp)
{
 . . .
 biodone(bp)
 . . .
}

SEE ALSO biodone(), assert_wait()

bytecopy()

SUMMARY Copy bytes into a buffer

SYNOPSIS void bytecopy(void *from, void *to, int length)

ARGUMENTS from:    Start of buffer to be copied from.

to:    Start of buffer to be copied to.

length:    Number of bytes to copy.

DESCRIPTION This function is like bcopy(), except that it uses only 8-bit instructions to copy data.    The bytecopy()
function, like bcopy() and the C library bcopy() function, copies bytes from one buffer to another buffer in the same
virtual space.    The bytecopy() function can't be used to copy data between user space and kernel space.    The caller
of this function must have already checked the access rights to this memory and wired it down.

Note:    This function is less efficient than bcopy(), so you should use bcopy() unless you're copying to or from
hardware device space that's only 8 or 16 bits wide.

SEE ALSO bcopy(), strcpy(), copyin(), copyout()

bzero()

SUMMARY Zero out a region of memory

SYNOPSIS #import <kernserv/prototypes.h>

void bzero(void *address, int length)

ARGUMENTS address:    The address of the first byte of the region of memory.

length:    The number of bytes to write zeros to.

DESCRIPTION This acts the same as the bzero() C library function.

SEE ALSO bzero(3) UNIX manual page

clear_wait()

SUMMARY Stop a thread from waiting for an event

SYNOPSIS #import <kernserv/prototypes.h>
#import <kernserv/sched_prim.h>

void clear_wait(thread_t thread, int result, boolean_t interrupt_only)

ARGUMENTS thread:    The thread to wake up.

result:    The wakeup result the thread should see.

interrupt_only:    If true, don't wake up the thread unless assert_wait() was called with interruptible set to true.

DESCRIPTION Use this function to wake up a thread that's waiting for an event (as the result of assert_wait() and

thread_block()), whether or not the event has happened.    If interrupt_only is false or if assert_wait() was called
with interruptible set to false, then the thread is guaranteed to wake up.    The thread will receive result when it calls
thread_wait_result().

EXAMPLE void new_thread(void);
extern hz;
char data;
thread_t thread1;
. . .
{
 . . .
 thread1 = (thread_t)current_thread();
 kernel_thread(current_task(), new_thread);
 assert_wait(&data, FALSE);
 thread_block();
 printf("Wait result: %d\n", thread_wait_result());
}

void new_thread()
{
 . . .
 clear_wait(thread1, THREAD_AWAKENED, FALSE);
 . . .
} /* new_thread */

SEE ALSO assert_wait(), thread_block(), thread_wait_result(), thread_wakeup(), us_untimeout()

clock_attributes()

SUMMARY Get information about a clock

SYNOPSIS #import <kernserv/clock_timer.h>

chrono_attributes_t clock_attributes(clock_types_t which_clock)

ARGUMENTS which_clock:    Either Calendar or System.

DESCRIPTION This function lets you get information about the system and calendar clocks, such as what their accuracy
is and what their maximum value is.

EXAMPLE char *s;
chrono_attributes_t attr;

if (which_clock == System)
 s = SYSTEMSTRING;
else
 s = CALENDARSTRING;
attr = clock_attributes(which_clock);
printf("%s clock has a max value of %d:%d ns and an accuracy of %d ns\n",
 s,
 ((int) &attr->max_value), *((int *) &attr->max_value + 1),
 *((int *) &attr->resolution + 1));

Note that the kernel version of printf() does not interpret unsigned integers or long long integers.    This means that
printing an ns_time_t value results in numbers that are difficult to interpret and sometimes negative, as shown in the
following printout.    If you need to print time values, you can perform one of the conversions shown in the example
for clock_value(), later in this chapter.

System clock has a max value of -1:-1 ns and an accuracy of 1000 ns.

SEE ALSO clock_value(), ns_time_to_timeval(), set_clock()

clock_value()

SUMMARY Get the current time

SYNOPSIS #import <kernserv/clock_timer.h>

ns_time_t clock_value(clock_types_t which_clock)

ARGUMENTS which_clock:    Either Calendar or System.

DESCRIPTION This function returns the value of either the system clock (which starts over when the machine is booted)
or the calendar clock (which continues to keep time between reboots), depending on the value of which_clock.

EXAMPLE unsigned int ms_time;
struct timeval tv_time;
ns_time_t now;

now = clock_value(System);
printf("Time since boot: %d:%d ns == ",
 ((int) &now), *((int *) &now + 1));

/* Since the value printed above is fairly useless, convert it */
ms_time = now / 1000000ULL; /* convert to millisecs */
printf("%u ms == ", ms_time);
ns_time_to_timeval(now, &tv_time);
printf("%u seconds and %d microseconds.\n", tv_time.tv_sec,
 tv_time.tv_usec);

A typical printout:

Time since boot: 8942:-283072128 ns == 38409609 ms == 38409 seconds and 609456
microseconds.

SEE ALSO clock_attributes(), set_clock()

copyin()

SUMMARY Copy bytes from user to kernel space

SYNOPSIS #import <kernserv/prototypes.h>

int copyin(void *from, void *to, int length)

ARGUMENTS from:    The start of the region in user space.

to:    The start of the region in kernel space.

length:    The number of bytes to copy from user to kernel space.

DESCRIPTION This function works only in UNIX-style servers.    It returns 0 if successful, -1 otherwise.

SEE ALSO bcopy(), copyout()

copyout()

SUMMARY Copy bytes from kernel to user space

SYNOPSIS #import <kernserv/prototypes.h>

int copyout(void *from, void *to, int length)

ARGUMENTS from:    The start of the region in kernel space.

to:    The start of the region in user space.

length:    The number of bytes to copy from kernel to user space.

DESCRIPTION The same as copyin(), except the direction of the copy is reversed.

SEE ALSO bcopy(), copyin()

curipl()

SUMMARY Get the current interrupt level

SYNOPSIS int curipl(void)

DESCRIPTION This function returns the CPU interrupt level, which is a number between 0 and 7.

EXAMPLE #define panic(s) (curipl() == 0 ? \
 kern_serv_panic((kern_serv_bootstrap_port(&instance), s) \
 : printf("Can't panic: %s\n", s))

SEE ALSO spln(), splx()

current_task()

SUMMARY Get the current task

SYNOPSIS #import <kernserv/prototypes.h>

task_t current_task(void)

DESCRIPTION This macro returns the task structure for the current task.    Use current_task() whenever you need to
refer to the task in which your loadable kernel server executes.    Don't use current_task() to refer to memory unless
you specifically want the task's native memory map, and not the kernel map that your server uses.

EXAMPLE kernel_thread(current_task(), new_thread);

SEE ALSO kernel_thread()

DELAY()

SUMMARY Busy-wait for a certain number of microseconds

SYNOPSIS #import <machine/machparam.h>

void DELAY(unsigned int usecs)

ARGUMENTS usecs:    The number of microseconds to delay.

DESCRIPTION This macro makes the processor loop for the number of microseconds specified in the argument.   
Interrupts are not disabled by this function, so surround DELAY() with spln() and splx() if interrupts need to be
disabled.    Because the microsecond resolution clock is used to count the spin interval, the delay is independent of
CPU instruction clock speed.

This macro doesn't sleep, so it's safe to use in interrupt handlers.    It's often used to wait for the hardware.

EXAMPLE /* set the hardware register for at least 100 microseconds */
hardware_register = 1;
DELAY(100);
hardware_register = 0;

SEE ALSO us_timeout(), us_abstimeout(), us_untimeout(), microtime(), microboot(), spln(), splx()

install_polled_intr()

SUMMARY Install an interrupt handler for a polled device

SYNOPSIS #import <kernserv/prototypes.h>

int install_polled_intr(int which, int (*my_intr)(void))

ARGUMENTS which:    Specifies the device and interrupt level.    For devices attached through the NeXTbus interface,
this should be the constant I_BUS.

my_intr:    The function in your server that handles this interrupt.

DESCRIPTION This function installs an interrupt handler; you can later remove this interrupt handler by calling
uninstall_polled_intr().

This function returns 0 if the call is successful, or -1 if the interrupt level specified by which isn't capable of interrupt
polling.

EXAMPLE device_interrupt(void) {
 if (interrupt_is_for_us) {
 /* -process interrupt- */
 return (1); /* say interrupt was for us */
 }
 else
 return (0); /* it must be for someone else */
}

device_initialize(void) {
 install_polled_intr(I_BUS, device_interrupt);
 . . .
}

SEE ALSO uninstall_polled_intr()

kalloc()

SUMMARY Allocate wired-down kernel memory

SYNOPSIS #import <kernserv/prototypes.h>

void *kalloc(int size)

ARGUMENTS size:    The size in bytes to be allocated.

DESCRIPTION This function is guaranteed to return wired-down memory of the requested size.    The returned memory
might not contain all zeros.    You can't call kalloc() from an interrupt handler because it might sleep.

Memory returned isn't guaranteed to be aligned in any way unless size is a multiple of the page size (in which case
the memory is page-aligned).    If you need to ensure alignment, you should allocate twice what you need and align
the address you start with to the boundary you want.    Memory isn't guaranteed to be contained on the same physical
page unless you allocate in multiples of the page size and keep track of the page location of addresses you use.    The
page size is dynamic; there's currently no way to get its value from inside the kernel.    However, on 680x0-based
machines, 8192 is guaranteed to be an integer multiple of the page size in bytes.

EXAMPLE my_data_t *arg;

arg = (my_data_t *)kalloc(sizeof (my_data_t));
. . .
kfree(arg, sizeof (my_data_t));

SEE ALSO kfree(), kget()

kern_serv_bootstrap_port()

SUMMARY Get the port used to initialize your server

SYNOPSIS #import <kernserv/kern_server_types.h>

port_t kern_serv_bootstrap_port(kern_server_t *ksp)

ARGUMENTS ksp:    The address of the first field (which must be of type kern_server_t) in the server's instance
variable.

DESCRIPTION This function returns the port that the kernel uses to initialize (or ªbootstrapº) your server when loading
it.    Normally, the only reason to use this port is as an argument to kern_serv_panic().

EXAMPLE bootstrap_port=kern_serv_bootstrap_port(&instance);
kern_serv_panic(bootstrap_port, "Couldn't send message");

SEE ALSO kern_serv_panic(), kern_serv_local_port(), kern_serv_notify_port(), kern_serv_port_set()

kern_serv_callout()

SUMMARY Run a function in the loadable kernel server's main thread

SYNOPSIS #import <kernserv/kern_server_types.h>

kern_return_t kern_serv_callout(kern_server_t *ksp, void (*func)(void *), void *arg)

ARGUMENTS ksp:    The address of the first field (which must be of type kern_server_t) in the server's instance
variable.

func:    The function to be called.

arg:    The argument to be passed to func.

DESCRIPTION This function provides a way for interrupt handlers to call functions in the same loadable kernel server
that may sleep or deal with a user context.    The function func is called with argument arg at some point in the
future.

EXAMPLE void mydriver_func(mydriver_data_t data)
{
 . . .
}

kern_serv_callout ((kern_server_t *)&instance, mydriver_func, (void *)arg);

RETURN KERN_SUCCESS:    The callout was scheduled successfully.

KERN_RESOURCE_SHORTAGE:    The callout couldn't be scheduled.

kern_serv_kernel_task_port()

SUMMARY Get the kernel's task port

SYNOPSIS #import <kernserv/kern_server_types.h>

port_t kern_serv_kernel_task_port(void)

DESCRIPTION This function returns the kernel's task port.    You need to specify this port when copying out-of-line data
to or from a message, as shown in the following example.

EXAMPLE log_data_t tmp, local_data;
local_data = (log_data_t)kalloc(8192);

printf("Calling vm_write\n");
r = vm_write((vm_task_t)kernel_task, (vm_address_t)local_data,
 (pointer_t)log_data, 8192);
if (r != KERN_SUCCESS)
 printf("Call to vm_write failed \n");
else {
 tmp = (log_data_t)kalloc(length+1);
 (void)strncpy(tmp, local_data, length);
 printf("Contents of data are: %s\n", tmp);
}

kern_serv_local_port()

SUMMARY Determine on which port the kernel just received a message

SYNOPSIS #import <kernserv/kern_server_types.h>

port_t kern_serv_local_port(kern_server_t *ksp)

ARGUMENTS ksp:    The address of the first field (which must be of type kern_server_t) in the server's instance
variable.

DESCRIPTION This function returns the port on which the kernel just received a message in your server's behalf.    The
only time this function is useful is when your server was just loaded as the result of a message to one of its ports.

EXAMPLE port=kern_serv_local_port(&instance);
if (port==debug_port)
 debug=TRUE;

SEE ALSO kern_serv_notify_port(), kern_serv_port_set()

kern_serv_log()

SUMMARY Put a message in the loadable kernel server's error log

SYNOPSIS #import <kernserv/kern_server_types.h>

void kern_serv_log(kern_server_t *ksp, int log_level, char *format, arg1, ..., arg5)

ARGUMENTS ksp:    The address of the first field (which must be of type kern_server_t) in the server's instance
variable.

log_level:    A number indicating the urgency of this log entry.    Higher numbers indicate greater urgency, but the
particular range of numbers used in a loadable kernel server is up to the writer of that server.

format:    A string containing formatting information.    See printf().

arg1, ..., arg5:    Arguments to be printed.    (If you don't specify all five arguments, the compiler will display a
warning, but the call will still succeed.)    See printf().

DESCRIPTION This function puts a message in the error log.    The message can be retrieved by a user process that calls
kern_loader_get_log(), or by the command kl_log.

EXAMPLE kern_serv_log(&instance, 5, "Reset value of timeout to %d\n", time, 0, 0,
 0, 0);

SEE ALSO log(), printf()

kern_serv_notify()

SUMMARY Ask to receive notification messages about a certain port

SYNOPSIS #import <kernserv/kern_server_types.h>

kern_return_t kern_serv_notify(kern_server_t *ksp, port_t reply_port, port_t€request_port)

ARGUMENTS ksp:    The address of the first field (which must be of type kern_server_t) in the server's instance
variable.

reply_port:    The port that should receive the notification messages.    This should normally be the value returned by
kern_serv_notify_port().

request_port:    The port you want to be notified about.

DESCRIPTION This function requests that notification messages about request_port be sent to reply_port.    The types of
notification messages are defined in the header file mach/notify.h.

EXAMPLE notify_port=kern_serv_notify_port(&instance);
kern_serv_notify(&instance, notify_port, bootstrap_port);

RETURN KERN_SUCCESS:    The call succeeded.

KERN_FAILURE:    The same reply_port-request_port pair has already been entered.

SEE ALSO kern_serv_notify_port()

kern_serv_notify_port()

SUMMARY Get the notify port of this server

SYNOPSIS #import <kernserv/kern_server_types.h>

port_t kern_serv_notify_port(kern_server_t *ksp)

ARGUMENTS ksp:    The address of the first field (which must be of type kern_server_t) in the server's instance
variable.

DESCRIPTION This function returns this server's notify port, which can be used in calls to kern_serv_notify().

EXAMPLE notify_port=kern_serv_notify_port(&instance);
kern_serv_notify(&instance, notify_port, bootstrap_port);

SEE ALSO kern_serv_notify()

kern_serv_panic()

SUMMARY Unload this server without panicking the system

SYNOPSIS #import <kernserv/kern_server_reply.h>

kern_return_t kern_serv_panic(port_t bootstrap_port, panic_msg_t message)

ARGUMENTS bootstrap_port:    This server's bootstrap port, which is returned by kern_serv_bootstrap_port().

message:    A string to be added to the panic message that's logged.

DESCRIPTION This function unloads the server after logging a message in the kernel-server loader's log.    The message
is logged at the priority LOG_WARNING and contains the name of the server that called this function, followed by
message.

This function should not be called when the CPU interrupt level is greater than 0.

This function can return, so your server should avoid doing further work after calling it.    After kern_serv_panic()
is called, the kernel attempts to call the server's unload functions.

EXAMPLE kern_serv_panic(bootstrap_port,
 "my_server_main: received bad return from msg_receive");

RETURN KERN_SUCCESS:    The server will be unloaded.

SEE ALSO ASSERT(), panic(), kern_serv_bootstrap_port()

kern_serv_port_gone()

SUMMARY Notify the kernel that a port will be deleted

SYNOPSIS #import <kernserv/kern_server_types.h>

void kern_serv_port_gone(kern_server_t *ksp, port_name_t port)

ARGUMENTS ksp:    The address of the first field (which must be of type kern_server_t) in the server's instance
variable.

port:    The port that will be deleted.

DESCRIPTION Use this function to make sure that the kernel won't send any more messages to a certain€port.

EXAMPLE /*
 * Deallocate transmit port.
 */
kern_serv_port_gone(&instance, my_dev->xmit_port);
(void)port_deallocate((task_t)task_self(), my_dev->xmit_port);
my_dev->xmit_port = PORT_NULL;

SEE ALSO kern_serv_port_proc(), kern_serv_port_serv()

kern_serv_port_proc()

SUMMARY Set which function is a port's handler

SYNOPSIS #import <kernserv/kern_server_types.h>

kern_return_t kern_serv_port_proc(kern_server_t *ksp, port_all_t port, port_map_proc_t€function, int arg)

ARGUMENTS ksp:    The address of the first field (which must be of type kern_server_t) in the server's instance
variable.

port:    The port that the function should be associated with.

function:    The function that handles messages sent to port.

arg:    An integer to be passed in the call to function whenever port receives a message.

DESCRIPTION Use this function to register a message-receiving function in a handler-style (not server-style) loadable
kernel server.    This function provides the functionality of the HMAP load command to your server.

EXAMPLE /* Create the port. */
r = port_allocate((task_t)task_self(), &port_name);
if (r != KERN_SUCCESS)
 kern_serv_panic(&instance, "couldn't allocate a port");
else printf("Created port %d\n", port_name);

/* Specify which function is its handler. */
r = kern_serv_port_proc(&instance, port_name,
 (port_map_proc_t)myhandler, 0);
if (r != KERN_SUCCESS) {
 kern_serv_panic("port_allocate failed (%d)\n", r);
 exit(1);
}

/* . . . */

kern_serv_port_gone(&instance, port_name);
port_deallocate((task_t)task_self(), port_name);
port_name = PORT_NULL;

RETURN KERN_SUCCESS:    The call succeeded.

KERN_RESOURCE_SHORTAGE:    No more port-to-function mappings are available for your loadable kernel
server.

KERN_NOT_RECEIVER:    You don't have receive rights for port.

KERN_INVALID_ARGUMENT:    port isn't a valid port.

SEE ALSO kern_serv_port_gone(), kern_serv_port_serv()

kern_serv_port_serv()

SUMMARY Set which function is a port's message server

SYNOPSIS #import <kernserv/kern_server_types.h>

kern_return_t kern_serv_port_serv(kern_server_t *ksp, port_all_t port, port_map_proc_t€function, int arg)

ARGUMENTS ksp:    The address of the first field (which must be of type kern_server_t) in the server's instance
variable.

port:    The port that the function should be associated with.

function:    The function that handles messages sent to port.

arg:    An integer to be passed in the call to function whenever port receives a message.

DESCRIPTION This function is just like kern_serv_port_proc() except that it registers a function with a server-style, as
opposed to a handler-style, interface.    This function performs the same function as the SMAP load command.

EXAMPLE /* Create the port. */
r = port_allocate((task_t)task_self(), &port_name);
if (r != KERN_SUCCESS)
 kern_serv_panic(&instance, "couldn't allocate a port");
else printf("Created port %d\n", port_name);

/* Specify which function is its server. */
r = kern_serv_port_serv(&instance, port_name, (port_map_proc_t)myserv, 0);
if (r != KERN_SUCCESS) {
 kern_serv_panic("port_allocate failed (%d)\n", r);
 exit(1);
}

/* . . . */

kern_serv_port_gone(&instance, port_name);
port_deallocate((task_t)task_self(), port_name);
port_name = PORT_NULL;

RETURN KERN_SUCCESS:    The call succeeded.

KERN_RESOURCE_SHORTAGE:    No more port-to-function mappings are available for your loadable kernel
server.

KERN_NOT_RECEIVER:    You don't have receive rights for port.

KERN_INVALID_ARGUMENT:    port isn't a valid port.

SEE ALSO kern_serv_port_gone(), kern_serv_port_proc()

kern_serv_port_set()

SUMMARY Get the port set

SYNOPSIS #import <kernserv/kern_server_types.h>

port_set_name_t kern_serv_port_set(kern_server_t *ksp)

ARGUMENTS ksp:    The address of the first field (which must be of type kern_server_t) in the server's instance

variable.

DESCRIPTION This function returns the name of the port set on which messages to the loadable kernel server arrive.   
The kernel listens to this port set on behalf of your server.    Usually, this function is used after you've temporarily
removed a port from the port set, and you need the name of the port set as an argument to port_set_add() so you
can put the port back into the port set.

EXAMPLE /* Don't accept any more requests until we get rid of the old ones. */
port_set_remove((task_t)task_self(), dev->xmit_port);

. . . /* Get rid of some old requests. */

/* Re-enable listening on the port. */
port_set_add((task_t)task_self, kern_serv_port_set(&instance),
 dev->xmit_port);

SEE ALSO kern_serv_port_gone(), kern_serv_port_proc(), kern_serv_port_serv()

kern_serv_unwire_range()

SUMMARY Unwire the specified range of memory in the kernel map

SYNOPSIS #import <kernserv/kern_server_types.h>

kern_return_t kern_serv_unwire_range(kern_server_t *ksp, vm_address_t address, vm_size_t size)

ARGUMENTS ksp:    The address of the first field (which must be of type kern_server_t) in the server's instance
variable.

address:    A virtual address in the kernel map.

size:    The size in bytes to be wired down.

DESCRIPTION This function makes a region of kernel memory subject to swapping.    Usually, you call it when you're
preparing to deallocate the memory with vm_deallocate().

RETURN KERN_SUCCESS:    The call succeeded.

KERN_INVALID_ARGUMENT:    The range of memory wasn't wired down.

SEE ALSO kalloc(), kfree(), kget(), kern_serv_wire_range()

kern_serv_wire_range()

SUMMARY Wire down the specified range of memory in the kernel map

SYNOPSIS #import <kernserv/kern_server_types.h>

kern_return_t kern_serv_wire_range(kern_server_t *ksp, vm_address_t address, vm_size_t size)

ARGUMENTS ksp:    The address of the first field (which must be of type kern_server_t) in the server's instance
variable.

address:    A virtual address in the kernel map.

size:    The size in bytes to be wired down.

DESCRIPTION This function wires down a range of kernel memory.    Usually you call it after you've copied out-of-line
data into the kernel map.

RETURN KERN_SUCCESS:    The call succeeded.

SEE ALSO kalloc(), kget(), kern_serv_unwire_range()

kernel_thread()

SUMMARY Start a new kernel thread in the specified task

SYNOPSIS #import <kernserv/prototypes.h>

thread_t kernel_thread(task_t task, void (*start)(void))

ARGUMENTS task:    For loadable kernel servers, this must be current_task().

start:    The first function to be called by the new thread.

DESCRIPTION This function can sleep, so don't call it from an interrupt handler.    The new thread uses the kernel
address map, but the loadable kernel server's task.

EXAMPLE void new_thread(void);

kernel_thread(current_task(), new_thread);

void new_thread(void)
{
 /* Do something, then (if necessary) shut down */
 thread_terminate(current_thread());
 thread_halt_self();
} /* new_thread */

SEE ALSO current_task()

kfree()

SUMMARY Free memory that was allocated using kalloc() or kget()

SYNOPSIS #import <kernserv/prototypes.h>

void kfree(void *address, int size)

ARGUMENTS address:    The memory to be freed.    This must be exactly the same address as was returned by kalloc()
or kget().

size:    The size in bytes to be freed.    This must be the same size as was specified in the call to kalloc() or kget().

DESCRIPTION The memory freed will be available for subsequent kalloc() and kget() calls only if the size they specify
is the same as size.

EXAMPLE my_data_t *arg;

arg = (my_data_t *)kalloc(sizeof (my_data_t));
. . .
kfree(arg, sizeof (my_data_t));

SEE ALSO kalloc(), kget()

kget()

SUMMARY Try to quickly allocate wired-down kernel memory

SYNOPSIS #import <kernserv/prototypes.h>

void *kget(int size)

ARGUMENTS size:    The size in bytes to be allocated.    This size, rounded up to the nearest power of 2, must be less
than the page size (default 8192 bytes), or the kernel will panic.

DESCRIPTION Use this function in interrupt handlers to try to get kernel memory.    If no memory of the appropriate size
can be allocated without blocking, kget() returns 0.    Otherwise, it returns the address of the chunk of memory.

EXAMPLE my_data_t *arg;

arg = (my_data_t *)kget(sizeof (my_data_t));
if (arg != 0)
{ . . .
 kfree(arg, sizeof (my_data_t));
}

SEE ALSO kalloc(), kfree()

lock_alloc(), lock_free()

SUMMARY Create or destroy a lock

SYNOPSIS #import <kernserv/prototypes.h>

lock_t lock_alloc(void)
void lock_free(lock_t lock)

ARGUMENTS lock:    The lock to be freed.

DESCRIPTION The function lock_alloc() returns a pointer to a new lock.    Before you use the lock, you should initialize
it by calling lock_init().

The function lock_free() frees the lock structure pointed to by lock.

See lock_done() for information on using locks.

SEE ALSO lock_done(), lock_init(), lock_read(), lock_write(), simple_lock_alloc(), simple_lock_free()

lock_done()

SUMMARY Release a read or write lock

SYNOPSIS #import <kernserv/prototypes.h>

void lock_done(lock_t lock)

ARGUMENTS lock:    A pointer to the lock that the reader or writer wants to release.

DESCRIPTION The lock_xxx() functions provide reader/writer synchronization.    Any number of readers can read, as
long as no one has a lock for writing.    A writer can get a lock only if no reader or writer locks exist.    Once a writer
tries to get a lock, no more readers can get the lock, and the writer gets the lock as soon as the last reader releases its
lock.    The writer sleeps or busy-waits until it can get a lock; you determine which it does when you initialize the
lock.

Use the lock_done() function to relinquish a read or write lock.

EXAMPLE lock_write(lock1);
/* write to the protected data */
lock_done(lock1);

SEE ALSO lock_alloc(), lock_free(), lock_init(), lock_read(), lock_write(), simple_lock_unlock()

lock_init()

SUMMARY Initialize a lock

SYNOPSIS #import <kernserv/prototypes.h>

void lock_init(lock_t lock, boolean_t can_sleep)

ARGUMENTS lock:    A pointer to the lock that the reader or writer wants to initialize.

can_sleep:    If true, threads waiting to acquire a lock can sleep.    If false, threads will busy-wait while trying to
acquire a lock.    This should usually be true.

DESCRIPTION Use this function to initialize a lock when you first create it.    See lock_done() for a description of how
locking works.    Use lock_alloc() to create the lock.

EXAMPLE lock_t lock1 = lock_alloc();
lock_init(lock1, TRUE);

/*. . .*/

lock_free(lock1);

SEE ALSO lock_alloc(), lock_done(), lock_free(), lock_read(), lock_write(), simple_lock_init()

lock_read()

SUMMARY Get a lock for reading

SYNOPSIS #import <kernserv/prototypes.h>

void lock_read(lock_t lock)

ARGUMENTS lock:    A pointer to the lock that the reader wants to get.

DESCRIPTION Use this function to get a lock for reading some data.    If a writer holds or is waiting for a lock, you
won't get the lock until the writer is done.    Otherwise, you'll get the lock, even if other readers have it locked.

EXAMPLE lock_t lock1 = lock_alloc();

lock_init(lock1, TRUE);
.

.

.
lock_read(lock1);
if (DONE_READING)
 lock_done(lock1);

SEE ALSO lock_alloc(), lock_done(), lock_free(), lock_init(), lock_write(), simple_lock

lock_write()

SUMMARY Get a lock for writing

SYNOPSIS #import <kernserv/prototypes.h>

void lock_write(lock_t lock)

ARGUMENTS lock:    A pointer to the lock that the writer wants to get.

DESCRIPTION Use this function to get a lock for writing some data.    If another writer has or is waiting for a lock, you
won't get the lock until the writer is done.    If any readers have locks, you won't get the lock until every reader
releases its lock.

EXAMPLE lock_t lock1;

lock1 = lock_alloc();
lock_init(lock1, TRUE);
.
.
.
lock_write(lock1);
if (DONE_WRITING)
 lock_done(lock1);

SEE ALSO lock_alloc(), lock_done(), lock_free(), lock_init(), lock_read(), simple_lock

log()

SUMMARY Write a message in the system log buffer

SYNOPSIS #import <sys/syslog.h>
#import <kernserv/prototypes.h>

int log(int level, char *format, arg, ...)

ARGUMENTS level:    The priority of the information.    These priorities are defined in the header file sys/syslog.h.

format:    A string containing formatting information.    See printf().

arg, ...:    Arguments to be printed.    See printf().

DESCRIPTION Prints the time of day and who sent the message (for loadable kernel servers, it's usually sent by Mach).
This function doesn't sleep, so it can be called by interrupt functions.    If no process is currently reading the system
log, log() also writes to the console.    This function always returns zero.

EXAMPLE log(LOG_INFO, "My driver: device %s attached\n", device_type);

SEE ALSO kern_serv_log(); printf(); UNIX manual pages for syslog() and syslogd

map_addr()

SUMMARY Convert a physical address to a virtual address

SYNOPSIS #import <kernserv/prototypes.h>

caddr_t map_addr(caddr_t address, int size)

ARGUMENTS address:    The physical address.

size:    The number of bytes to map.

DESCRIPTION This function returns a virtual address that corresponds to address.    At least size bytes of hardware
addresses are mapped into virtual memory.    (Currently, map_addr() maps in multiples of the page size, nominally
8192 bytes.)

If you aren't sure whether a hardware address is implemented, you should use map_addr() to get a virtual address
for it, and then call probe_rb() on the virtual address.

EXAMPLE volatile unsigned int *my_reg;

my_reg = (unsigned int *)map_addr(REG_ADDRESS, 4);
if (probe_rb (my_reg))
 *my_reg |= A_FLAG;
else
 printf("Hardware at physical address 0x%x caused bus error\n",
 REG_ADDRESS);

SEE ALSO probe_rb()

ns_abstimeout(), ns_timeout()

SUMMARY Schedule the execution of a function at a specific time in the future

SYNOPSIS #import <sys/callout.h>
#import <kernserv/ns_timer.h>

void ns_abstimeout(func function, vm_address_t arg, ns_time_t deadline, int priority)
void ns_timeout(func function, vm_address_t arg, ns_time_t time, int priority)

ARGUMENTS function:    The function to call.

arg:    The argument to pass to function.

time:    The number of nanoseconds from the time ns_timeout() is called to the time function should be called.

deadline:    The time, in nanoseconds since system boot time, when function is to be called.

priority:    The priority at which to execute function.    This should almost always be the value
CALLOUT_PRI_SOFTINT0 (defined in the header file sys/callout.h).    Other values might not be supported by
future releases.

DESCRIPTION The function ns_timeout() schedules the function to be executed at a time relative to the current time;
ns_abstimeout() schedules at a time relative to when the system booted.    Although these functions allow
nanosecond resolution to be specified, the time is rounded up to the system clock tick interval (one microsecond on
68030-based and 68040-based NeXT computers).    Your driver should not rely on function running at exactly the
specified time, since it takes an unpredictable amount of time to interrupt the current task and start the execution of

function.

The priority argument specifies how the function will be executed.    The value CALLOUT_PRI_SOFTINT0 means
that the function will be run from a software interrupt rather than at the interrupt level of the system clock.    This
prevents the function from delaying interrupts at or below the system clock level.

The function is executed only once per call to ns_timeout() or ns_abstimeout().    Use ns_untimeout() to
unschedule the execution of the function before it has been run.

EXAMPLE #define ONE_SECOND 1000000000ULL
/* . . . */
/* Schedule initial execution in one second. */
ns_timeout(every_second, (void *)0, ONE_SECOND, CALLOUT_PRI_SOFTINT0);
/* . . . */

void every_second (void *arg)
{
 /* Do something. */

 /* Reschedule execution for one second from now. */
 ns_timeout(every_second, (void *)0, ONE_SECOND, CALLOUT_PRI_SOFTINT0);
}

/* mydriver_signoff: Called when mydriver is unloaded. */
void mydriver_signoff(void)
{
 if (ns_untimeout(every_second, (void *)0))
 printf("Unscheduled every_second.\n");
 else
 printf("every_second wasn't found.\n");

 printf("My driver unloaded\n\n");
}

SEE ALSO ns_untimeout(), DELAY(), clock_value(), timeval_to_ns_time()

ns_time_to_timeval(), timeval_to_ns_time()

SUMMARY Convert between timeval and ns_time_t time formats

SYNOPSIS #import <kernserv/ns_timer.h>

void ns_time_to_timeval(ns_time_t ns, struct timeval *tv)
ns_time_t timeval_to_ns_time(struct timeval *tv)

ARGUMENTS ns:    The time in nanoseconds to be converted.

tv:    The equivalent time in struct timeval format.

DESCRIPTION The timeval_to_ns_time() function converts a value from struct timeval format (seconds and
microseconds) to ns_time_t (nanoseconds).

The ns_time_to_timeval() function does the opposite conversionÐfrom nanoseconds to seconds and microseconds.
This conversion might be useful when printing a value returned by clock_value(), as shown in the following
example.

EXAMPLE unsigned int ms_time;
struct timeval tv_time;
ns_time_t now;

now = clock_value(System);
printf("Time since boot: %d:%d ns == ",

 ((int) &now), *((int *) &now + 1));

/* Since the value printed above is fairly useless, convert it */
ms_time = now / 1000000ULL; /* convert to millisecs */
printf("%u ms == ", ms_time);
ns_time_to_timeval(now, &tv_time);
printf("%u seconds and %d microseconds.\n", tv_time.tv_sec,
 tv_time.tv_usec);

ns_untimeout()

SUMMARY Unschedule a timeout

SYNOPSIS #import <kernserv/ns_timer.h>

boolean_t ns_untimeout(func function, vm_address_t arg)

ARGUMENTS function:    The function that was to be called.

arg:    The argument that was to be passed to function.

DESCRIPTION This function is used to unschedule a call to a function previously arranged by ns_timeout() or
ns_abstimeout().    Only one instance of the function-arg pair is removed, so it may be necessary to call
ns_untimeout() multiple times.    The function has no effect if the function-arg pair isn't found or if the function is
already being executed.    The ns_untimeout() function returns true if the timeout was found and unscheduled;
otherwise it returns false.

EXAMPLE #define ONE_SECOND 1000000000ULL
/* . . . */
/* Schedule execution in five seconds. */
ns_timeout(call_me, (void *)0, 5ULL*ONE_SECOND, CALLOUT_PRI_SOFTINT0);
/* . . . */

void call_me (void *arg)
{
 /* do something */
}

/* mydriver_signoff: Called when mydriver is unloaded. */
void mydriver_signoff(void)
{
 if (ns_untimeout(call_me, (void *)0))
 printf("Unscheduled call_me.\n");
 else
 printf("call_me already executed.\n");

 printf("My driver unloaded\n\n");
}

SEE ALSO ns_timeout(), ns_abstimeout()

panic()

SUMMARY Hang the system and bring up the Panic window

SYNOPSIS #import <kernserv/prototypes.h>

void panic(char *string)

ARGUMENTS string:    The message to be printed to the console, message log, and /usr/adm/messages.

DESCRIPTION Calling panic() brings up the Panic window (similar to the NMI mini-monitor window) and either hangs
or reboots the system, depending on whether you booted with the -p option.    See Chapter 9, ªBuilding, Loading,
and€Debugging Loadable Kernel€Servers,º for information on the Panic window.

Instead of using panic(), you should use kern_serv_panic() when possible, since it doesn't cause the whole system
to panic.    However, kern_serv_panic() can't be called when the interrupt level is greater than 0.

EXAMPLE if (curipl() == 0)
 kern_serv_panic(bootstrap_port, "Couldn't get resource");
else
 panic("mydriver: Couldn't get resource");

SEE ALSO ASSERT(), kern_serv_panic()

printf()

SUMMARY Display a message on the console

SYNOPSIS #import <kernserv/prototypes.h>

int printf(char *format, arg, ...)

ARGUMENTS format:    The format string.    It's just like the C library printf() function's format string, except that the
only conversions available are %s, %c, %x, %d, and %o.    (%X, %D, %u, and %O are recognized but are
treated like %x, %d, %d, and %o, respectively.)

arg, ...:    Optional arguments, to be formatted according to the format string.

DESCRIPTION This function is a scaled-down version of the C library printf() function.    Output goes not only to the
console, but also to the message buffer and to /usr/adm/messages.    Since printf() disables interrupts while printing
messages, all system activities are suspended while it writes to the console.

Although printf() is safe to call in interrupt handlers, its output isn't guaranteed to print on the console.    The
message buffer, however, should be up-to-date.    You can read the message buffer using the msg command in the
NMI mini-monitor.

printf() always returns zero.

SEE ALSO sprintf(), kern_serv_log(), log()

probe_rb()

SUMMARY Check whether an address exists

SYNOPSIS #import <kernserv/prototypes.h>

int probe_rb(void *address)

ARGUMENTS address:    A virtual address that refers to a physical address.

DESCRIPTION This function returns 1 if address refers to a valid hardware address, 0 otherwise.

EXAMPLE volatile unsigned int *my_reg;

my_reg = (unsigned int *)map_addr(REG_ADDRESS, 4);

if (probe_rb (my_reg))
 *my_reg |= A_FLAG;
else
 printf("Hardware at physical address 0x%x caused bus error\n",
 REG_ADDRESS);

SEE ALSO map_addr()

selthreadcache(), selthreadclear(), selwakeup()

SUMMARY Help for handling the select() system call

SYNOPSIS #import <kernserv/prototypes.h>

int selthreadcache(void **waiterPtr)
void selthreadclear(void **waiterPtr)
int selwakeup(void *waiter, int collided)

ARGUMENTS waiterPtr:    A pointer to a handle for the thread that's waiting for device activity.    This handle should be
initialized to 0 before calling selthreadcache() for the first time.    After the waited-for device activity occurs and the
thread handle is no longer needed, the handle should be cleared by a call to selthreadclear().

waiter:    A handle for a thread that's waiting for the device; this value is obtained by calling selthreadcache().

collided:    Should be 0 if only one thread is waiting for the device; otherwise, 1.

DESCRIPTION These functions let a UNIX-style driver handle the select() system call.    Chapter 6 has more information
and examples on how to use these functions.

The selthreadcache() function returns in waiterPtr a handle for the thread that's waiting for device activity.    This
function returns 0 if no other thread is waiting for the device activity; otherwise, it returns a nonzero value.

The selthreadclear() function clears the handle pointed to by waiterPtr.

If collided is 0, selwakeup() wakes up the thread represented by waiter.    If collided is nonzero, selwakeup() wakes
up all parties that are sleeping as the result of a select() system call.    The selwakeup() function returns no
meaningful value.

set_clock()

SUMMARY Sets the current time of the calendar clock

SYNOPSIS #import <kernserv/clock_timer.h>

void set_clock(clock_types_t which_clock, ns_time_t ns)

ARGUMENTS which_clock: Must be Calendar.

ns:    The time in nanoseconds (since midnight, January 1, 1970, Greenwich Mean Time) to set the clock to.

DESCRIPTION This function lets you set the current time of the calendar clock.    Because the time is normally set by the
Network Time Server or by the Preferences application, you don't usually need to call set_clock() directly.

EXAMPLE unsigned int ms_time;
ns_time_t now;

now = clock_value(Calendar);
ms_time = now / 1000000ULL; /* convert to millisecs */

printf("The current calendar clock time is %d ms.\n", ms_time);

set_clock(Calendar, now + timeToAdd);

now = clock_value(Calendar);
ms_time = now / 1000000ULL; /* convert to millisecs */
printf("The new calendar clock time is %d ms.\n", ms_time);

SEE ALSO clock_attributes(), clock_value(), timeval_to_ns_time(), settimeofday(2) UNIX manual€page

simple_lock()

SUMMARY Get a simple lock

SYNOPSIS #import <kernserv/prototypes.h>

void simple_lock(simple_lock_t lock)

ARGUMENTS lock:    A pointer to the simple lock.

DESCRIPTION Simple locks are simple spin-loops that implement exclusive locks.    They're designed to be used when
you plan to hold the lock for only a short time and/or when you can't sleep.

If someone else already has the lock, this function will busy-wait until it gets the lock.

Note:    Simple locks are most useful on multiprocessor systems.

EXAMPLE simple_lock_t slock;

slock = simple_lock_alloc();
simple_lock_init(slock);
/* . . . */

/* Set a lock before manipulating a data structure */
simple_lock(slock);
mydriver->data1 = VALUE;
simple_unlock(slock);

/* . . . */
simple_lock_free(lock1);

SEE ALSO simple_lock_alloc(), simple_lock_free(), simple_lock_init(), simple_unlock(), lock_read(),
lock_write()

simple_lock_alloc(), simple_lock_free()

SUMMARY Allocate or free a simple lock

SYNOPSIS #import <kernserv/prototypes.h>

simple_lock_t simple_lock_alloc(void)
void simple_lock_free(simple_lock_t lock)

ARGUMENTS lock:    The simple lock to be freed.

DESCRIPTION The simple_lock_alloc() function returns a pointer to a new simple lock.    Before you use the simple
lock, you should initialize it by calling simple_lock_init().

The simple_lock_free() function frees the structure pointed to by lock.

See simple_lock() for information on how to use simple locks.

EXAMPLE simple_lock_t slock;

slock = simple_lock_alloc();
simple_lock_init(slock);

/* . . . */
simple_lock_free(lock1);

SEE ALSO simple_lock(), simple_lock_init(), simple_unlock(), lock_alloc(), lock_free()

simple_lock_init()

SUMMARY Initialize a simple lock

SYNOPSIS #import <kernserv/prototypes.h>

void simple_lock_init(simple_lock_t lock)

ARGUMENTS lock:    A pointer to the simple lock to be initialized.

DESCRIPTION Use this function to initialize a new simple lock.    You should use simple_lock_alloc() to create the lock.

EXAMPLE simple_lock_t slock;

slock = simple_lock_alloc();
simple_lock_init(slock);

/* . . . */
simple_lock_free(lock1);

SEE ALSO simple_lock(), simple_lock_alloc(), simple_lock_free(), simple_unlock(), lock_init()

simple_unlock()

SUMMARY Release a simple lock

SYNOPSIS #import <kernserv/prototypes.h>

void simple_unlock(simple_lock_t lock)

ARGUMENTS lock:    A pointer to the simple lock to be released.

EXAMPLE simple_lock_t slock;

slock = simple_lock_alloc();
simple_lock_init(slock);
/* . . . */

/* Set a lock before manipulating a data structure */
simple_lock(slock);
mydriver->data1 = VALUE;
simple_unlock(slock);

/* . . . */
simple_lock_free(lock1);

SEE ALSO simple_lock(), simple_lock_alloc(), simple_lock_free(), simple_lock_init(), lock_done()

spln()

SUMMARY Set the CPU interrupt level to n

SYNOPSIS #import <kernserv/architecture/spl.h>

int spl0(void), spl1(void), spl2(void), spl3(void), spl4(void), spl5(void), spl6(void), spl7(void)

DESCRIPTION The spln() macros set the hardware interrupt level of the CPU to level n.    This means that devices
whose hardware interrupt level is greater than n will be serviced immediately on an interrupt.    Devices with
interrupt levels equal to or less than n will not be serviced until the CPU interrupt level drops below the device
interrupt level.    The spl0() macro sets the CPU interrupt level to the lowest level, enabling all interrupts.

The spln() macros return an integer suitable for use with splx() to reset the CPU interrupt level.

The following table shows the interrupts that occur at each hardware interrupt level.    Because the NMI and power
fail interrupts are always serviced, spl6() has the same effect as spl7() on NeXT computers.

Interrupt Level Interrupts at This Level
7 NMI (non-maskable interrupt) key sequence

Power-fail interrupt (non-maskable)

6 System-clock timeout interrupt
All DMA-completion interrupts except video out

5 RS-422 (serial) device interrupt
NeXTbus interrupts

4 DSP-device interrupt

3 Disk-device interrupt
SCSI-device interrupt
Laser-printer device interrupt
Ethernet transmit/receive device interrupts (not DMA)
Sound-out underrun or sound-in overrun
Video-out DMA completion interrupt
Monitor-control interrupt
Keyboard or mouse event
Power-on switch
Network-device interrupts

2 Network-related software interrupts
Software interrupt 1

1 Software clock interrupts (timeouts)
Software interrupt 0

EXAMPLE #define spl_NB() spl5() /* NeXTbus interrupt level */
int s;

s = spl_NB(); /* Lock out all NeXTbus interrupts. */
/* Do something that requires that we not be interrupted. */
splx(s); /* Return to the previous interrupt level */

SEE ALSO curipl(), splx()

splx()

SUMMARY Reset the CPU interrupt level

SYNOPSIS #import <kernserv/architecture/spl.h>

void splx(int priority)

ARGUMENTS priority:    The value returned from the previous call to spln().

DESCRIPTION This macro returns the hardware priority interrupt level to the level that it was before issuing the last
spln() command.    You must set priority to the value returned from the previous call to spln(); setting it to anything
else doesn't work.

EXAMPLE #define spl_NB() spl5() /* NeXTbus interrupt level */
int s;

s = spl_NB(); /* Lock out all NeXTbus interrupts. */
/* Do something that requires that we not be interrupted. */
splx(s); /* Return to the previous interrupt level */

SEE ALSO curipl(), spln()

sprintf()

SUMMARY Put characters into a string

SYNOPSIS #import <kernserv/prototypes.h>

int sprintf(char *string, char *format, arg, ...)

ARGUMENTS string:    The string that you want to put the characters in.

format:    The format string.    It's just like the C library printf() function's format string, except that the only
conversions available are %s, %c, %x, %d, and %o.    (%X, %D, %u, and %O are recognized but are treated like
%x, %d, %d, and %o, respectively.)

arg, ...:    Optional arguments, to be formatted according to the format string.

DESCRIPTION This works like the C library function sprintf(), except that it handles only the formats allowed by the
kernel printf() function.

SEE ALSO printf(), strcat(), strcpy()

strcat()

SUMMARY Concatenate two strings

SYNOPSIS #import <kernserv/prototypes.h>

char *strcat(char *string1, char *string2)

ARGUMENTS string1:    The string to add the second string to.    It must have enough space for string2 plus a null
character.

string2:    The string to copy to the end of string1.

DESCRIPTION This acts the same as the strcat() C library function.    It returns a pointer to string1.

SEE ALSO sprintf(), strcpy(), strlen()

strcmp(), strncmp()

SUMMARY Compare two strings

SYNOPSIS #import <kernserv/prototypes.h>

int strcmp(char *string1, char *string2)
int strncmp(char *string1, char *string2, unsigned long length)

ARGUMENTS string1:    The string to be compared to string2.

string2:    The string being compared against.

length:    The number of characters to compare.

DESCRIPTION These functions act the same as the strcmp() and strncmp() C library functions.    They return an integer
greater than, equal to, or less than 0, depending on whether string1 is lexicographically greater than, equal to, or less
than string2.

SEE ALSO strlen()

strcpy(), strncpy()

SUMMARY Copy one string to another

SYNOPSIS #import <kernserv/prototypes.h>

char *strcpy(char *to, char *from)
char *strncpy(char *to, char *from, unsigned long length)

ARGUMENTS to:    The string to copy from to.    For strcpy(), it must have enough space to hold all of from, including
the null character.    For strncpy(), it must be able to hold length + 1 characters.

from:    The string to copy to to.

length:    The number of characters to copy.

DESCRIPTION These functions act the same as the strcpy() and strncpy() C library functions.    They return a pointer to
to.

SEE ALSO sprintf(), strcat(), strlen()

strlen()

SUMMARY Get the length of a string

SYNOPSIS #import <kernserv/prototypes.h>

int strlen(char *string)

ARGUMENTS string:    The string you want the length of.

DESCRIPTION This acts the same as the strlen() C library function.    It returns the number of non-null characters in
string.

SEE ALSO strcmp()

suser()

SUMMARY Check whether the user is the superuser

SYNOPSIS #import <kernserv/prototypes.h>

int suser(void)

DESCRIPTION This function is valid only for UNIX-style servers because message-based servers don't have access to
user process information.    If the user is the superuser, this returns 1 and sets a flag bit indicating that the process has
used superuser privileges.    Otherwise, it returns 0 and sets u.u_error to EPERM.

thread_block()

SUMMARY Put the current thread to sleep

SYNOPSIS #import <kernserv/prototypes.h>

void thread_block(void)

DESCRIPTION This function blocks the current thread from execution.    You must call assert_wait() before calling
thread_block().    This thread can be waked up by a timeout (set using thread_set_timeout()), by a call to
clear_wait(), or by a call to thread_wakeup().

EXAMPLE extern hz;
. . .
splx(s);
assert_wait(0, FALSE);
thread_set_timeout(hz/2);
thread_block();

SEE ALSO assert_wait(), clear_wait(), thread_set_timeout(), thread_sleep(), thread_wakeup()

thread_halt_self()

SUMMARY Stop the current thread

SYNOPSIS #import <kernserv/prototypes.h>

void thread_halt_self(void)

DESCRIPTION This makes the current thread stop running.    You must first call thread_terminate() on the current
thread.

EXAMPLE thread_terminate(current_thread());
thread_halt_self();

SEE ALSO thread_terminate()

thread_set_timeout()

SUMMARY Set a timer before calling thread_block()

SYNOPSIS #import <kernserv/prototypes.h>

void thread_set_timeout(int ticks)

ARGUMENTS ticks:    The number of ticks to wait for.    To wait for n seconds, this value should be n multiplied by the
external variable hz.

DESCRIPTION This function sets a timer for the current thread.    If you use it, you must call it between assert_wait()
and thread_block().    Use the external variable hz (ticks per second) to convert from seconds into ticks.    The
thread will be waked up in ticks/hz seconds with a value of THREAD_TIMED_OUT as its wait result (obtained by
calling thread_wait_result()).

EXAMPLE splx(s);
assert_wait(0, FALSE);
thread_set_timeout(hz*2); /* set the timer to 2 seconds */
thread_block();

SEE ALSO thread_block(), thread_wait_result(), us_timeout(), us_abs_timeout()

thread_sleep()

SUMMARY Sleep until the specified event occurs

SYNOPSIS #import <kernserv/prototypes.h>

void thread_sleep(int event, simple_lock_t lock, boolean_t interruptible)

ARGUMENTS event:    The event to wait for.    This should be a unique integer, such as the address of a buffer.    If event
is zero, then thread_wakeup() won't work on the thread; only clear_wait() and thread_set_timeout() will be able
to wake it up.

lock:    The simple lock to unlock before calling thread_block().

interruptible:    Used by clear_wait().    If interruptible is false and the interrupt_only argument to a later call to
clear_wait() is true, then this thread won't be waked up by that call to clear_wait().

DESCRIPTION This is a convenient way to sleep without manually calling assert_wait().    This function causes the
current thread to wait until the specified event occurs.    The specified lock is unlocked before releasing the CPU.

This function is equivalent to:

assert_wait(event, interruptible); /* assert event */
simple_unlock(lock); /* release the lock */
thread_block(); /* block ourselves */

EXAMPLE extern void thread_wakeup();
struct timeval tv = {1, 0};

s = splmine();
simple_lock(data.slock);
if (SOME_CONDITION) {

 /* wait */
 us_timeout(thread_wakeup, (int)&data, &tv, CALLOUT_PRI_SOFTINT0);
 thread_sleep((int)&data, data.slock, TRUE);
}
simple_unlock(data.slock);
splx(s);

SEE ALSO assert_wait(), simple_unlock(), thread_block(), thread_wakeup()

thread_wait_result()

SUMMARY Get the wait result of the current thread

SYNOPSIS #import <kernserv/prototypes.h>
#import <kernserv/sched_prim.h>

int thread_wait_result(void)

DESCRIPTION A thread that wakes up for any reason has a result in its thread structure; thread_wait_result() returns
this result.    Possible return values are defined in the header file kernserv/sched_prim.h as
THREAD_AWAKENED, THREAD_TIMED_OUT, THREAD_INTERRUPTED,
THREAD_SHOULD_TERMINATE, and THREAD_RESTART.

EXAMPLE assert_wait(&data, FALSE);
thread_block();
printf("Wait result: %d\n", thread_wait_result());

SEE ALSO thread_set_timeout(), thread_wakeup()

thread_wakeup()

SUMMARY Wake up all threads that are waiting for the specified event

SYNOPSIS void thread_wakeup(int event)

ARGUMENTS event:    The event that was specified in the matching assert_wait() or thread_sleep() call.    This should
not be zero, since this function can't wake up threads that were put to sleep with an event of zero.

DESCRIPTION The threads that this macro wakes up have THREAD_AWAKENED in their wait result (obtainable by
calling thread_wait_result()).

Warning:    This function must be called at an interrupt level of IPLSCHED or below.    You can use curipl() to
determine what the interrupt level is.

EXAMPLE extern void thread_wakeup();
struct timeval tv = {1, 0}; /* 1-second timeout */

s = splmine();
simple_lock(data.slock);
if (SOME_CONDITION) {
 /* wait */
 us_timeout(thread_wakeup, (int)&data, &tv, CALLOUT_PRI_SOFTINT0);
 thread_sleep((int)&data, data.slock, TRUE);
}
simple_unlock(data.slock);
splx(s);

In an interrupt handler for a NeXTbus driver:

if ((sp->flags & SERVER_THREAD_PAUSED) != 0)
{
 kern_serv_callout(&instance, thread_wakeup,
 (void *)&sp->server_thread);
}

SEE ALSO assert_wait(), thread_sleep()

uninstall_polled_intr()

SUMMARY Remove an interrupt handler for a polled device

SYNOPSIS #import <kernserv/prototypes.h>

int uninstall_polled_intr(int which, int (*my_intr)())

ARGUMENTS which:    Specifies the device and interrupt level.    For devices attached through the NeXTbus interface,
this should be the constant I_BUS, which is defined in the header file architecture/m68k/intr.h.

my_intr:    The function in your server that handles this interrupt.

DESCRIPTION This function removes my_intr from the list of functions that are called when an interrupt occurs at
interrupt level which.

This function returns 0 if the call is successful.    It returns -1 if the interrupt level specified by which isn't capable of
interrupt polling, or if my_intr isn't found.

EXAMPLE device_cleanup()
{
 /* . . . */
 uninstall_polled_intr(I_BUS, device_interrupt);
 /* . . . */
}

SEE ALSO install_polled_intr()

