Copyright ©1996 by NeXT Software, Inc. All Rights Reserved.

Kernel-Server Loader Functions

To use these functions, you must compile with the kernload library. For example:

cc myprog.c -lkernload

kern_loader_abort()
SUMMARY Shut down or reconfigure kern_loader

SYNOPSIS #import <mach/mach.h>
#import <kernserv/kern_loader.h>

kern return t kern_loader_abort(port t loader port, port t priv_port, boolean_t€restart)

ARGUMENTS [oader port. Kern_loader port, obtained from kern_loader look up().

priv_port. The privileged port for this host, returned by host_priv_self().

restart: If true, reconfigure kern_loader.

DESCRIPTION This function unloads and deallocates all loadable kernel servers and then, depending on the value of
restart, kills or reconfigures the kernel-server loader. If restart is true, then kern_loader rereads its configuration

file (etc/kern_loader.conf) to determine which servers it should allocate and load.

EXAMPLE /* Get kern loader's port. */
error=kern loader look up(&loader port);
if (error != KERN SUCCESS) {

kern loader error ("Couldn't find kern loader's port", error);

exit (1) ;
}

/* Reconfigure kern loader. */
error=kern loader abort(loader port, host priv self (), TRUE);

if (error != KERN SUCCESS)

kern loader error ("Couldn't stop kern loader", error);

RETURN KERN SUCCESS: The call was successful.
KERN LOADER NO PERMISSION: priv_port isn't the host's privileged port. (Make sure host priv_self() is

called by a process with superuser permission.)

SEE ALSO kern_loader_delete server(), kern_loader _look up(), kern_loader_unload_server()

kern_loader_add_server()
SUMMARY Allocate a loadable kernel server

SYNOPSIS #import <mach/mach.h>
#import <kernserv/kern_loader.h>
kern return t kern_loader _add_server(port t loader port, port t task port, server reloc t server reloc)

ARGUMENTS loader port: kern_loader port, obtained from calling kern_loader_look up().
task_port. The kernel's task port, obtained using task by unix_pid().

server reloc: The server's relocatable object file. For example, the relocatable object file of the MIDI driver is
/ust/lib/kern_loader/Midi/mididriver reloc®.

DESCRIPTION This function prepares the loadable kernel server to be loaded into the kernel. The server isn't loaded
unless it automatically loads when allocated.

If the server is already loaded or allocated, then the server is unloaded (if necessary) and allocated again from
scratch.

EXAMPLE /* Get kern loader's port. */
r = kern loader look up(&loader port);
if (r != KERN SUCCESS) {
kern loader error ("Couldn't get loader port", r);
exit (1) ;

}

/* Get the kernel's task port. */
r = task by unix pid(task self (), 0, &kernel task);

if (r != KERN SUCCESS) {
kern loader error ("Couldn't get kernel task", r);
exit (2);

}

/* Add the server. */

r = kern loader add server (loader port, kernel task,
"/usr/lib/kern loader/Midi/midi reloc");

if (r != KERN SUCCESS) {
kern loader error("Call to kern loader abort failed", r);
exit (3);

}

RETURN KERN SUCCESS: The server has been successfully allocated.

KERN LOADER NO PERMISSION: task port wasn't the kernel's task port. (Make sure task by unix_pid()
is called by a process with superuser permission.)

KERN LOADER SERVER WONT LOAD: The kernel-server loader couldn't use server reloc to build an
loadable object file, or it couldn't understand the load or unload commands, or it couldn't link the loadable object file
against /mach.

SEE ALSO kern_loader_delete server(), kern _loader look up()

kern_loader_delete_server()
SUMMARY Delete a loadable kernel server

SYNOPSIS #import <mach/mach.h>
#import <kernserv/kern_loader.h>

kern return t kern_loader delete server(port t loader port, port t task port, server name t server name)

ARGUMENTS loader port: kern_loader port, obtained from calling kern_loader_look up().
task_port. The kernel's task port, obtained using task by unix_pid().

server name: The string associated with the server. For example, the name of the MIDI driver is *mididriver®.

DESCRIPTION This function removes the loadable kernel server from kern_loader control. If the server is currently
loaded, then it's unloaded.

EXAMPLE /* Get kern loader's port. */
error=kern loader look up(&loader port);
if (error != KERN SUCCESS) {
kern loader error ("Couldn't find kern loader's port", error);

exit (1) ;
}

/* Get the kernel's task port. */
error=task by unix pid(task self(), 0, &kern port);

if (error != KERN SUCCESS) {
mach error ("Error looking up kernel port", error);
exit(2);

}

/* Delete the server. */
error=kern loader delete server (loader port, kern port, "mididriver");

if (error != KERN SUCCESS) {
kern loader error ("Couldn't delete mididriver", error);
exit (3):;

RETURN KERN SUCCESS: The call succeeded.

KERN LOADER NO PERMISSION: fask port wasn't the kernel's task port. (Make sure task by unix_pid()
1s called by a process with superuser permission.)

KERN LOADER UNKNOWN _ SERVER: server name wasn't recognized.

SEE ALSO kern _loader add_server(), kern_loader look up()

kern_loader_error(), kern_loader_error_string()
SUMMARY Display or return an error message

SYNOPSIS #import <mach/mach.h>
#import <kernserv/kern_loader error.h>

void kern_loader_error(const char *string, kern_return_t error)
const char *kern_loader_error_string(kern _return_t error)

ARGUMENTS string: The string to be printed along with the error message.

error: The value returned by a Mach function.

DESCRIPTION These functions act like mach_error() and mach_error_string(), except that they also understand errors
from the kernel-server loader functions.

The kern_loader_error() function prints to stderr the string, followed by the string corresponding to error,
followed by error in parentheses. The kern_loader_error_string() function returns the string that corresponds to
error.

EXAMPLE error=kern loader delete server (loader port, kern port, "mididriver");
if (error != KERN SUCCESS) {
kern loader error ("Couldn't delete mididriver", error);

exit (3);

SEE ALSO mach_error(), mach_error_string()

kern_loader_get_log()
SUMMARY Request a message containing kernel log data

SYNOPSIS #import <mach/mach.h>
#import <kernserv/kern_loader_types.h>

kern return t kern_loader_get log(port t loader port, port _t server com_port, port_t€reply port)
ARGUMENTS loader port. kern_loader port, obtained from kern_loader look up().

server_com_port. The loadable kernel server's communication port, obtained from
kern_loader_server_com_port().

reply port: The port to which kern_loader should send the reply message.

DESCRIPTION This function requests a reply message containing data logged by a loadable kernel server. Before
calling this function for the first time on a server, you should turn the server's logging on by calling
kern_loader log level().

You must supply the implementation of the reply message, as described in Chapter 3, *“Using Loadable Kernel
Servers.?

Each item of logged data is preceded by a time stamp. The time stamp is a relative indicator of when the data was
logged by the loadable kernel server.

EXAMPLE r = kern loader look up(&kl port);
if (r != KERN SUCCESS) {
mach error ("Can't find kernel loader", r);
exit (1) ;

r = port allocate(task self (), &reply port);

if (r != KERN SUCCESS) {
mach error ("Can't allocate reply port", r);
exit (1) ;

}

/* Get the server's communication port. */
r = task by unix pid(task self (), 0, &kern port);

if (r != KERN SUCCESS) {
mach error ("Error looking up kernel's port", r);
exit(1l);

}
r = kern loader server com port(kl port, kern port, MYDRIVER NAME,
&server com port);

if (r != KERN SUCCESS) {
kern loader error ("Error looking up server com port", r);
exit(1l);

}

/* Set the log level so we'll get log messages. */
r = kern loader log level (kl port, server com port, LOG NOTICE);

if (r != KERN SUCCESS) {
kern loader error("Can't change log level", r);
exit (1) ;

}

/* Get the first log message. */
r = kern loader get log(kl port, server com port, reply port);
if (r != KERN SUCCESS) {

kern loader error ("Error calling kern loader get log", r);

exit (1),
}

/* Listen for the asynchronous reply message. */
listen (reply port);
}

kern loader reply t kern loader reply = {

0, /* argument to pass to function */

0, /* timeout for rpc return msg send */
0, /* string function */

0, /* ping function */

log data /* log data function */

}s

void listen(port name t port)

{
char msg_buf[kern loader replyMaxRequestSize];
msg header t *msg = (msg header t *)msg buf;
kern return t r;

while (1) {
/* Receilve the next message in the queue. */
msg->msg_size = kern loader replyMaxRequestSize;
msg->msg_local port = port;
r = msg receive (msg, MSG OPTION NONE, O0);

if (r != KERN SUCCESS) {
mach error ("listen msg receive", r);
exit(1);

}

/* Handle the message we Jjust received. */
kern loader reply handler (msg, &kern loader reply);

}

kern return t log data(void *arg, printf data t log data, unsigned int log data count)

{

kern return t r;

/* Print the string we were passed, with our prefix. */
printf ("log data: %s", log data);

/* Deallocate the memory used for the string. */
vm deallocate(task self (), (vm address t)log data,

log data count*sizeof (*log data));

/* Get another log message. */

r = kern loader get log(kl port, server com port, reply port);
if (r != KERN SUCCESS) {
kern loader error ("Error calling kern loader get log", r);
exit (1) ;

}
return KERN SUCCESS;

RETURN KERN SUCCESS: The call succeeded.
KERN LOADER UNKNOWN SERVER: The server is either unknown or has been€deallocated.
KERN LOADER SERVER UNLOADED: The server is only allocated, not loaded.

KERN LOADER PORT EXISTS: Someone is already receiving log messages for this€server.

SEE ALSO kern_loader log level(), kern_loader look up(), kern_loader reply handler(),

kern_loader _server com_port()

kern_loader_load_server()
SUMMARY Load a loadable kernel server

SYNOPSIS #import <mach/mach.h>
#import <kernserv/kern_loader.h>

kern return t kern_loader load_server(port t loader port, server name t€server name)

ARGUMENTS loader port. kern_loader port, obtained from kern_loader look up().

server name: The string associated with the server. For example, the MIDI driver's name is *mididriver®.

DESCRIPTION This function loads a loadable kernel server that has already been allocated. If the server's relocatable
object file has changed since allocation, then the server is allocated again from scratch. This function has no effect
on servers that are already loaded; it simply returns KERN SUCCESS.

EXAMPLE /* Get kern loader's port. */
error=kern loader look up(&loader port);
if (error != KERN SUCCESS) {
kern loader error ("Couldn't find kern loader's port", error);

exit(1l);
}

/* Load the server. */
error=kern loader load server (loader port, "mididriver");

if (error != KERN SUCCESS) {
kern loader error("Couldn't load the server", error);
exit (2);

}

RETURN KERN SUCCESS: The server was successfully loaded.
KERN LOADER UNKNOWN SERVER: server name wasn't recognized.
KERN LOADER SERVER WONT LOAD: The server couldn't be loaded.

SEE ALSO kern_loader look up(), kern_loader unload_server()

kern_loader_log_level()
SUMMARY Set the level of data being logged by a loadable kernel server

SYNOPSIS #import <mach/mach.h>
#import <kernserv/kern_loader.h>

kern return t kern_loader log_level(port t loader port, port t server com_port, int€log level)

ARGUMENTS loader port. kern_loader port, obtained from kern_loader look up().

server _com_port. The loadable kernel server's communication port, obtained from
kern_loader_server_com_port().

log level: An integer indicating the minimum priority of data to be logged. A value of zero turns logging off.

DESCRIPTION This function determines which data logged by a loadable kernel server gets kept. When the server is

first loaded, none of its log messages are kept since its log level is initialized to zero. If you set log level to a value
greater than zero, then messages logged at a priority equal to or higher than log level are kept. If you reset the log
level to zero, no more log messages are kept until the log level is once again set to a positive value.

Each server can have its own conventions for log priorities.

EXAMPLE r = kern loader look up (&kl port);
if (r != KERN SUCCESS) {
mach error ("Can't find kernel loader", r);
exit (1),

}

/* Get the server's communication port. */
r = task by unix pid(task self(), 0, &kern port);

if (r != KERN SUCCESS) {
mach error ("Error looking up kernel's port", r);
exit (1) ;

}
r = kern loader server com port(kl port, kern port, MYDRIVER NAME,
&server com port);

if (r != KERN SUCCESS) {
kern loader error ("Error looking up server com port", r);
exit (1) ;

}

/* Set the log level so we'll get log messages. */
r = kern loader log level (kl port, server com port, LOG NOTICE) ;

if (r != KERN SUCCESS) {
kern loader error ("Can't change log level", r);
exit (1) ;

RETURN KERN SUCCESS: The log level was successfully set.
KERN LOADER UNKNOWN _ SERVER: server com_ port wasn't valid.
KERN LOADER SERVER UNLOADED: The server isn't currently loaded.

SEE ALSO kern_loader_look _up(), kern_loader_server_com_port(), kern_loader_log level()

kern_loader_look_up()
SUMMARY Get the kern_loader port

SYNOPSIS #import <mach/mach.h>
#import <kernserv/kern_loader types.h>

kern return t kern_loader _look up(port t *loader port)

ARGUMENTS [oader port. Returns the port on which kern_loader receives messages.

DESCRIPTION This function returns the service port for the kernel-server loader.

EXAMPLE /* Get kern loader's port. */
error=kern loader look up(&loader port);
if (error != KERN SUCCESS) ({
kern loader error ("Couldn't find kern loader's port", error);

exit (1) ;

RETURN KERN SUCCESS: The call succeeded.

SEE ALSO kern_loader _server com_port()

kern_loader_ping()
SUMMARY Request a synchronization message

SYNOPSIS #import <mach/mach.h>
#import <kernserv/kern_loader_types.h>

kern return t kern_loader ping(port t loader port, port_t ping port, int id)
ARGUMENTS loader port: kern_loader port, obtained from calling kern_loader_look up().
ping port. The port to which the ping message should be sent.

id: A value to be sent in the message. You can use this as you wish.

DESCRIPTION You can use this function to make sure that all outstanding status messages have been sent to your
program. For example, if you call kern_loader_status port(), you might want to call kern_loader ping() at
some point afterward. When you receive the ping message, you'll know that you've received all status messages
that were queued before you called kern_loader_ping().

Another reason to call kern_loader_ping() is to check whether kern_loader has fallen into an unresponsive state.

You must implement the ping message yourself, as described in Chapter 3. The kern_loader_ping() function
returns a value indicating whether the message was successfully sent to ping port.

EXAMPLE r = kern loader look up(&kl port);
if (r != KERN SUCCESS) {
mach error ("kl util: can't find kernel loader", r);
exit (1),

r = port allocate(task self (), &reply port);

if (r != KERN SUCCESS) {
mach error ("kl util: can't allocate reply port", r);
exit (1),

}

/* Create a thread to listen on reply port. */
cthread detach (cthread fork((cthread fn t)ping thread,
(any_t)reply_ port));

VA

/* Get a ping message sent to the reply port. */
r=kern loader ping(kl port, reply port, 0);

/* Wait for ping() to kill us. Exit if we receive a signal. */
pause () ;
exit (0);

}

kern loader reply t kern loader reply = {

0, /* argument to pass to function */

0, /* timeout for rpc return msg _send */
0, /* string function */

ping, /* ping function */

0 /* log data function */

}s

void ping thread(port name t port)

}

char msg_buf[kern loader replyMaxRequestSize];
msg_header t *msg = (msg _header t *)msg buf;
kern return t r;

/* message handling loop */
while (TRUE) {
/* Receive the next message in the queue. */
msg->msg_size = kern loader replyMaxRequestSize;
msg->msg_local port = port;
r = msg receive (msg, MSG OPTION NONE, O0);
if (r != KERN SUCCESS)
break;

/* Handle the message we Jjust received. */
kern loader reply handler (msg, &kern loader reply);

}

/* We get here only if msg receive returned an error. */
mach error ("ping thread receive", r);
exit (1),

/* This function is called after a kern loader ping. */
kern return t ping (void *arg, int id)

{

}

exit (0); /* Kill this process. */

SEE ALSO kern_loader_reply handler()

kern_loader_reply_handler()

SUMMARY Handle a message from the kernel-server loader

SYNOPSIS #import <mach/mach.h>
#import <kernserv/kern_loader reply handler.h>

kern return t kern_loader_reply handler(msg header t *msg, kern loader reply t€*kern loader reply)

ARGUMENTS

kern_loader reply: A pointer to the structure that specifies which of your functions handle each type of reply from

msg: The message you just received from the kernel-server loader.

the kernel-server loader.

DESCRIPTION

ping func(), log func(), or string func() function.

This function returns the value that is returned by your ping func(), log func(), or string func() function. See

Chapter 3 for more information on implementing these functions.

EXAMPLE kern loader reply t kern loader reply = {
0, /* argument to pass to function */
0, /* timeout for rpc return msg send */
0, /* string function */
0, /* ping function */
log data /* log data function */

}s

void listen (port name t port)

You must use this function if you use kern_loader ping(), kern_loader_get log(), or
kern_loader_status port(). Those routines cause an asynchronous reply message from the kernel-server loader;
this reply message must be passed to kern_loader_reply handler(), which forwards the message data to your

char msg_buf[kern loader replyMaxRequestSize];
msg_header t *msg = (msg _header t *)msg buf;
kern return t r;

while (1) {
/* Receive the next message in the queue. */
msg->msg_size = kern loader replyMaxRequestSize;
msg->msg_local port = port;
r = msg receive (msg, MSG OPTION NONE, O0);

if (r != KERN SUCCESS) {
mach error("listen msg receive", r);
exit (1);

}

/* Handle the message we Jjust received. */
kern loader reply handler (msg, &kern loader reply);

SEE ALSO kern_loader_get _log(), kern_loader_ping(), kern_loader_status_port()

kern_loader_server_com_port()
SUMMARY Get a loadable kernel server's communication port

SYNOPSIS #import <mach/mach.h>
#import <kernserv/kern_loader.h>

kern return t kern_loader_server com_port(port t loader port, port ttask port, server name t server name,
port_t *server com_port)

ARGUMENTS [oader port. Kern_loader port, obtained from calling kern_loader look up().

task_port: The kernel port for the task in which the loadable kernel server is executing. This is returned by
kern_loader_server_task port().

server_name: The string associated with the server. For example, the name of the MIDI driver is *mididriver®.

server_com_port. Returns the server's communication port.

DESCRIPTION A loadable kernel server's communication port is used for logging-related functions, such as
kern_loader_get log() and kern_loader_log_level().

EXAMPLE /* Get kern loader's port. */
r = kern loader look up(&kl port);
if (r != KERN SUCCESS) {
mach error("Can't find kernel loader", r);
exit (1),

}

/* Get the kernel's task port. */
r = task by unix pid(task self(), 0, &kern port);

if (r != KERN SUCCESS) {
mach error ("Error looking up kernel's port", r);
exit (1) ;

}

/* Get the server's com port. */

r = kern loader server com port(kl port, kern port, MYDRIVER NAME,
&server com port);

if (r != KERN SUCCESS) {

kern loader error ("Error looking up server com port", r);

exit (1),
}

RETURN KERN SUCCESS: The call succeeded.
KERN LOADER NO_PERMISSION: task port wasn't the server's task port.
KERN LOADER UNKNOWN SERVER: server name wasn't recognized.

SEE ALSO kern_loader get log(), kern_loader log level(), kern loader look up()

kern_loader_server_info()
SUMMARY Get information about a loadable kernel server

SYNOPSIS #import <mach/mach.h>
#import <kernserv/kern_loader_reply.h>

kern return t kern_loader_server_info(port t loader port, port t task port, server name t server name,
server_state t *server state, vim_address t€*load address, vin_size t *load size, server reloc t relocatable,
server_reloc t loadable, port name array t *port list, unsigned€int€*port list count, port name_string array t
*port_names, unsigned€int *port names count, boolean_array t *advertised, unsigned€int€*advertised count)

ARGUMENTS loader port: kern_loader port, obtained from calling kern_loader_look up().

task _port. The kernel's task port, obtained using task by unix_pid(). Specify PORT NULL if you don't want to
have data returned in port list.

server name:. The string associated with the server. For example, the name of the MIDI driver is *mididriver®.

server state: Returns the state of the loadable kernel server. The value is one of the following: Zombie,
Allocating, Allocated, Loading, Loaded, Unloading, Deallocated (as defined in the header file
kernserv/kern_loader types.h).

load address: Returns the address in the kernel address space where the server starts.

load size: Returns the number of bytes used by the server. load address€+€load size -1 is the last address in the
kernel map that's used by the server's text and data.

relocatable: Returns the location of the relocatable object file for the server.

loadable: Returns the location of the loadable object file (if any) for this server. This is a file created by
kern_loader from relocatable and then loaded against /mach.

port list: Returns the ports that the server has made available to kern_loader, using the HMAP or SMAP load
command. Ifyou don't pass in the correct task port, this list will consist of null ports.

port list count. Returns the number of ports that the server has made available to kern_loader. Even if task port
isn't valid, and nothing is returned in port list, this argument holds the number of ports that would have been
returned.

port names: Returns the strings associated with the ports in port list.
port_names_count. Returns the number of names in port names. This number is the same as port list count.
advertised: For each entry in port list, returns true if the port is advertised with the Network Name Server.

advertised count. Returns the number of entries in advertised. This number is the same as port list count.

DESCRIPTION kern_loader_server_info() returns information about a particular loadable kernel server.

EXAMPLE /* Get kern loader's port. */
error=kern loader look up(&loader port);

if (error != KERN SUCCESS) {
kern loader error ("Couldn't find kern loader's port", error);
exit (1);

}

/* Get the information. */

error=kern loader server info(loader port, PORT NULL, "mididriver",
&server state, &load addr, &load size, relocatable, loadable,
(port name array t *)é&scratch, &count, &port names, &count,
&advertised, &count);

1f (error != KERN SUCCESS)
kern loader error ("Couldn't get info on mididriver", error);
else
printf ("The relocatable object file is located at: %s\n",
relocatable) ;

RETURN KERN SUCCESS: The call succeeded.
KERN LOADER UNKNOWN SERVER: server name wasn't recognized.

SEE ALSO kern_loader_look up(), kern_loader_server_list()

kern_loader_server_list()
SUMMARY Get the names of all known loadable kernel servers

SYNOPSIS #import <mach/mach.h>
#import <kernserv/kern_loader.h>

kern return t kern_loader_server list(port t loader port, server name array t€*server names, unsigned int
*server _names_count)

ARGUMENTS [oader port. Kern_loader port, obtained from calling kern_loader look up().
server_names: Returns an array whose entries are the strings associated with all known€servers.

server_names_count: Returns the number of entries in server_names.

DESCRIPTION Use this function to get the string associated with each loadable kernel server that kern_loader is
keeping track of.

EXAMPLE r = kern loader look up(&loader port);
if (r != KERN SUCCESS) {
kern loader error ("Couldn't get loader port", r);
exit (1),
}
r = kern loader server list(loader port, &server names, &count);
if (r != KERN SUCCESS)
kern loader error("Couldn't get the list", r);
else
for (i=0; i<count; i++)
printf ("Server %d: %s\n", i, server names[i]);

RETURN KERN SUCCESS: The call succeeded.

SEE ALSO kern_loader look up(), kern_loader_server_info()

kern_loader_server_task_port()
SUMMARY Get the task port of a loadable kernel server

SYNOPSIS #import <mach/mach.h>
#import <kernserv/kern_loader.h>

kern return t kern_loader server_task port(port t loader port, port t kernel port, server name t server name,
port_t *server task port)

ARGUMENTS loader port: kern_loader port, obtained from calling kern_loader_look up().
kernel port: The kernel's task port.

server name: The string associated with a loaded server. For example, the name of the MIDI driver is
*mididriver®.

server task port. Returns the kernel port for the task in which the loadable kernel server is executing.

DESCRIPTION This function returns the task port of the server. Each loadable kernel server currently executes in its
own task, but uses the kernel address space. The port returned by kern_loader_server_task port() isn't necessary
for any other kernel-server loader functions, but might be useful for gathering debugging information.

EXAMPLE port t loader port, kernel task, server port;
kern return t r;
port name array t names;
unsigned int i, names count, types count;

port type array t types;

r = kern loader look up(&loader port);

if (r != KERN SUCCESS) {
kern loader error ("Couldn't get loader port", r);
exit (1);

r = task by unix pid(task self(), 0, &kernel task);

if (r != KERN SUCCESS) {
kern loader error ("Couldn't get kernel task", r);
exit (2);
}
r = kern loader server task port(loader port, kernel task, "mididriver",
&server port);
if (r != KERN SUCCESS)
kern loader error ("Couldn't get the server port", r);
else

printf ("Midi's task port is %d\n", server port);

r = port names ((task t)server port, &names, &names count, &types,
&types count);
if (r != KERN SUCCESS)
mach error ("Error calling port names()", r);
else
for (i=0; i<names count; i++)
printf ("Port %d has type %d\n", names[i], types[il):

RETURN KERN SUCCESS: The call succeeded.
KERN LOADER NO PERMISSION: task port wasn't the server's task port.
KERN LOADER UNKNOWN SERVER: server name wasn't recognized.

SEE ALSO kern_loader look up(), kern_loader_server com_port()

kern_loader_status_port()
SUMMARY Specify a port for kern_loader to send status to

SYNOPSIS #import <mach/mach.h>
#import <kernserv/kern_loader.h>

kern_return t kern_loader_status_port(port t loader port, port _t listen port)
ARGUMENTS loader port: kern_loader port, obtained from calling kern_loader_look up().

listen_port. The port we want to receive the status messages on.

DESCRIPTION Use this function to get general status from kern_loader. You can receive many reply messages as the
result of just one call to kern_loader_status port().

You must define the function that handles status reply messages, as described in Chapter 3. This function receives
the status string along with its priority, using the priorities defined in the header file sys/syslog.h (LOG_EMERG,
LOG_ALERT, and so on).

EXAMPLE r = kern loader look up(&kl port);
if (r != KERN SUCCESS) {
mach error ("kl util: can't find kernel loader"™, r);
exit (1) ;

r = port allocate(task self (), &status port);

if (r != KERN SUCCESS) {
mach error ("kl util: can't allocate reply port", r);
exit (1) ;

}

/* Get generic status messages on this port. */

r = kern loader status port(kl port, status port);
if (r != KERN SUCCESS) {
kern loader error("Couldn't specify status port", r);
exit (1) ;

}

/* Create a thread to listen on status port. */
cthread detach (cthread fork((cthread fn t)receive thread,
(any t)status port));

/*
* Sleep for a while so we can enter kl util commands at a shell
* window. The output of all commands (except status lines from
* kl util -s) will show up in both the window that's running this
* program and in the window that's running kl util. (k1 util
* also has a status port registered.)
*/

sleep (30);

exit (0);

}

kern loader reply t kern loader reply = {
/* argument to pass to function */

0,

0, /* timeout for rpc return msg send */
print string, /* string function */

0, /* reply ping function */

0 /* log data function */

}s

void receive thread(port name t port)

{

char msg_buf[kern loader replyMaxRequestSize];
msg_header t *msg = (msg _header t *)msg buf;
kern return t r;

/* message handling loop */
while (TRUE) {
/* Receive the next message in the queue. */
msg->msg_size = kern loader replyMaxRequestSize;
msg->msg_local port = port;
r = msg receive (msg, MSG OPTION NONE, O0);
if (r != KERN SUCCESS)
break;

/* Handle the message we Jjust received. */
kern loader reply handler (msg, &kern loader reply);

}

/* We get here only if msg receive returned an error. */
mach error ("receive thread receive", r);
exit (1),

}

/* Called every time kern loader has status to report. */
kern return t print string(void *arg, printf data t string,
u _int string count, int level)

{
/* If the string is empty, return. */
i1f (string count == 0 || !string)
return KERN SUCCESS;

/* Print the string we were passed, with our prefix. */
printf ("print string: %s", string);

return KERN SUCCESS;

RETURN KERN SUCCESS: The call succeeded.
SEND_ INVALID PORT: /[isten portisn't a valid port.

SEE ALSO kern_loader_look up(), kern_loader_reply handler()

kern_loader_unload_server()
SUMMARY Unload a loadable kernel server

SYNOPSIS #import <mach/mach.h>
#import <kernserv/kern_loader.h>

kern return t kern_loader unload_server(port t loader port, port t task port, server name t server name)

ARGUMENTS [oader port. Kern_loader port, obtained from calling kern_loader look up().
task port. The kernel's task port, obtained using task by unix_pid().

server_name:. The string associated with the server. For example, the name of the MIDI driver is *mididriver®.

DESCRIPTION Use this function to unload a running loadable kernel server, leaving it allocated.

EXAMPLE r = kern loader look up(&loader port);

if (r != KERN SUCCESS) {
kern loader error ("Couldn't get loader port", r);
exit (1);

}

r = task by unix pid(task self(), 0, &kernel task);

if (r != KERN SUCCESS) {
kern loader error ("Couldn't get kernel task", r);
exit (2);

}

r = kern loader unload server (loader port, kernel task,
"NextDimension") ;

if (r != KERN SUCCESS)

kern loader error ("Couldn't unload the server", r);

RETURN KERN SUCCESS: The server was successfully unloaded.
KERN LOADER SERVER UNLOADED: The server was already unloaded.

KERN LOADER NO PERMISSION: task port wasn't the kernel's task port. (Make sure task by unix_pid()
is called by a process with superuser permission.)

KERN LOADER UNKNOWN SERVER: server name wasn't recognized.

SEE ALSO kern_loader load server(), kern_loader look up()

