
Copyright ã1996 by NeXT Software, Inc.    All Rights Reserved.

Chapter 5

Debugging Tips

Once you have finished running the required conversion scripts and you have run any optional conversions
that you'd like, debug your program. The conversion scripts are not totally automatic, and you will find bugs in
your application after running them. This chapter provides some tips for debugging your newly converted
program.

Before you debug, convert your nib files as described in the first chapter of this guide. After you convert your
nib files, build your program. Be sure that you have added AppKit.framework and Foundation.framework and
saved your project before you build.

Debugging Object Allocation and Deallocation

It's likely that object allocation and deallocation will cause most of the new problems in your application. Two
common problems are using an object after it's been deallocated and releasing an object too many times.

You may want to debug the rest of your program first, saving the release problems until later. The
enableRelease: convenience method defined in the Foundation NSAutoreleasePool class helps you ignore
autorelease errors. NSAutoreleasePool defines the application's autorelease pool. When an object is
autoreleased, it is added to the autorelease pool. At the top of the event loop, all objects in the pool are sent a
release message, which decrements the reference count and potentially deallocates the object.
NSAutoreleasePool allows you to control that pool.

If you receive messages from the debugger indicating that you are sending messages to deallocated objects,

enter this command:

(gdb) call [NSAutoreleasePool enableRelease:NO]

This message disables the deallocation of all autoreleased objects in your program. (It does not affect objects
to which you send release directly.) You now can debug the rest of your program ignoring autorelease errors.

When you are ready to debug the autorelease errors, there are several ways you can go about it. All of them
make your program run much slower than normal.

Debugging Autorelease Errors in gdb
If you are releasing an object too many times, enter these commands while your program is running in gdb:

(gdb) call [NSAutoreleasePool enableFreedObjectCheck:YES]
(gdb) break _NSAutoreleaseFreedObject

After you use enableFreedObjectCheck:, all autorelease and release messages first check to see if the object is
already in an autorelease pool. If it is, they won't deallocate the object.

When the program hits the breakpoint, you can do a backtrace command to see what method was releasing
the object. If you do an up at each stack frame until you get back to your own code, you can see the actual
line where an object was released.

Using the oh Command
Another way to debug the autorelease and release errors is to use the oh command in conjunction with gdb.

1. Set this environment variable:

% setenv NSZombieEnabled YES

When this variable is set, the memory for deallocated objects is not reclaimed. Released objects are
instead turned into ªzombies.º The advantage to setting this variable is that you can ensure that an object's
address is unique.

2. Start your application in gdb.

3. From a different Terminal window, use ps to find out the ID of the process you are debugging and then
perform this command:

% oh pid start

The start option tells oh to start recording allocation and deallocation events.

4. Go back to the first Terminal window and continue debugging your program in gdb. When you receive an
autorelease error, it tells you the address of the object that is being released twice.

5. When you receive an autorelease error, perform the following command in the second Terminal window:

% oh pid address

where address is address of the object that is being released twice. oh will produce a report showing you
the stack frame each time that object is allocated, copied, retained, or released, like the one shown below.

== Stacks for address 0x332114, in temporal order (oldest first):
(
 _NSAllocateObject,
 "+[NSNotification notificationWithName:object:]",
 "-[NSWindow _postWindowNeedsDisplay]",
 "-[NSWindow setViewsNeedDisplay:]",
 "-[NSView _setWindow:]",
 "-[NSView addSubview:]",
 "-[NSImage _focusOnCache:]",
 "-[NSImage _cacheRepresentation:stayFocused:]",
 "-[NSImage _lockFocusOnRep:]",
 "-[NSImage lockFocus]",
 "-[NSCursor set]",
 "-[NSApplication sendEvent:]",

 __NXFinishActivation,
 __NXDoDelayedWindowOrdering,
 "-[NSWindow sendEvent:]",
 "-[NSApplication sendEvent:]",
 "-[NSApplication run]",
 _main,
 start
)
(
 "-[NSObject autorelease]",
 "+[NSNotification notificationWithName:object:]",
 "-[NSWindow _postWindowNeedsDisplay]",
 "-[NSWindow setViewsNeedDisplay:]",
 "-[NSView _setWindow:]",
 "-[NSView addSubview:]",
 "-[NSImage _focusOnCache:]",
 "-[NSImage _cacheRepresentation:stayFocused:]",
 "-[NSImage _lockFocusOnRep:]",
 "-[NSImage lockFocus]",
 "-[NSCursor set]",
 "-[NSApplication sendEvent:]",
 __NXFinishActivation,
 __NXDoDelayedWindowOrdering,
 "-[NSWindow sendEvent:]",
 "-[NSApplication sendEvent:]",
 "-[NSApplication run]",
 _main,
 start
)

Keeping Memory Allocation Statistics

Another command, AnalyzeAllocation, lets you look at memory allocation after your program has finished
executing. To use AnalyzeAllocation:

1. Set this environment variable:

% setenv NSKeepAllocationStatistics YES

The NSKeepAllocationStatistics variable tells your program to record information about memory allocation in
a file named /tmp/alloc_stats_name_pid.

2. Run a specific task in your application.The allocation statistics file becomes very large very quickly, so it is
important not to run too much of your program at once with NSKeepAllocationStatistics turned on.

3. Turn off the environment variable:

% unsetenv NSKeepAllocationStatistics

4. Perform this command in a Terminal window:

% AnalyzeAllocation -v /tmp/alloc_stats_name_pid

Common Autorelease Mistakes
Once you find the object with the autorelease error, look for the following:

592373_SquareBullet.eps ¬ For every autorelease and release message in your application, make sure there
is a corresponding alloc, copy, mutableCopy, or retain message sent to the same object. As stated in
Chapter€Chapter 1, autorelease and release decrement an object's reference count. alloc, copy,
mutableCopy, and retain increment the reference count. The number of increments and decrements for an
object must be equal. Another way of thinking about this is: If you don't allocate, copy, or retain an object,
you're not responsible for releasing it.

592373_SquareBullet.eps ¬ When an NSArray, NSDictionary, or NSSet (known as the collection classes) is
deallocated, the objects stored in the collection are released as well. If you need to access an object you
stored in a collection after the collection is released, you must retain that object before you release the

collection.

592373_SquareBullet.eps ¬ Superviews retain subviews as you add them to the hierarchy and release
subviews as you remove them from the hierarchy. If you swap views in and out of the hierarchy, you should
retain the views that are not in the hierarchy.

592373_SquareBullet.eps ¬ When you change a window's content view, the window releases the old
content view and retains the new content view.

592373_SquareBullet.eps ¬ Objects do not retain their delegates (to avoid retain cycles).

592373_SquareBullet.eps ¬ decodeValuesOfObjCTypes: returns a retained object. decodeObject returns an
autoreleased object. If you unarchive an instance variable with decodeObject, send it the retain message.

592373_SquareBullet.eps ¬ You don't have to release an object unless you've explicitly allocated, copied,
or retained it. Some methods in previous versions returned an object that you had to free. For example,
Matrix's selectedCells method returned a List that the receiving object had to free. If you used such a
method, look for unnecessary releases in your code.

For more information about object allocation and deallocation, see ªNSObject Conversionº in the chapter
ªGlobal API and Style Changes.º

Trouble Loading a Nib File

If your application can't load a nib file, it may be one of two problems:

592373_SquareBullet.eps ¬ Your nib file may not have been converted properly. Try opening it in Release
4.0 Interface Builder. When you do so, Interface Builder automatically converts the nib file.

592373_SquareBullet.eps ¬ If you still have problems after opening the nib in Interface Builder, there may
be an error in one of your initWithCoder: methods. In particular, if you archive a color, make sure you are
invoking the correct method. Use decodeNXColor to retrieve an old NXColor structure. Use decodeObject to

retrieve an NSColor object. Remember that decodeObject requires that you retain the object,
decodeValuesOfObjCTypes: does not. For more complete information on unarchiving, see ªArchiver
Conversionº in ªConverting the Common Classes.º

description Methods

The debugger's print-object command (po) invokes the object's description method. Every OpenStep object
responds to this method. The default description, implemented in NSObject, simply gives the object's class
and address. Some classes implement different descriptions. For example, performing po on an NSString
prints out the string. NSArrays and NSDictionary objects print out the descriptions of each of their elements.
You might find it useful to implement a description method for some of your classes.

Exceptions

If your program raises an exception that you don't recognize, set a breakpoint on the raise method in
NSException. All exceptions are raised using this method. When the program encounters this breakpoint, use
the backtrace command to find where the exception is being raised.

Keeping Notification Statistics

You can have your program keeps notification statistics, similar to the way it keeps memory allocation
statistics. To keep notification statistics, set this environment variable

% setenv NSKeepNotificationStatistics YES

and then run your program. Information about observer objects added to the notification center, observer
objects removed from the notification center, and notifications sent are recorded in the file
/tmp/note_stats_name_pid. One entry in this file looks like this:

-170202445.213512 bffff570 1800d039 ADD NSNotificationCenter fe738 _bundleLoaded:
NSBundleLoaded Nil 0

This entry gives you the time at which the event occurred (in seconds relative to the absolute reference date),
the stack frame, the program counter, and what type of event it was: ADD, which means an observer was
added to the notification center, POST, which means a notification was posted, and SUB, which means an
observer was removed. If your program invokes:

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(windowMoved:)
 name:NSWindowDidMoveNotification
 object:importantWindow];

the log records an ADD event with the class and address of the observer added (self), the selector to be
invoked (windowMoved:), the name of the notification to be observed (NSWindowDidMoveNotification), and the
class and address of the object that will post the notification (NSWindow).

For POST events:

[[NSNotificationCenter defaultCenter]
 postNotificationName:aNotification
 object:self
 userInfo:aDictionary];
 object:importantWindow];

the log records the notification name (aNotification) and the number of observers the notification was sent to.

For SUB events:

[[NSNotificationCenter defaultCenter] removeObserver:self
 name:NSWindowDidMoveNotification
 object:importantWindow];

the log records the class name and address of the observer (self), the notification no longer being observed
(NSWindowDidMoveNotification), and the class and address of the object that sends the notification
(NSWindow).

Gotchas

This section lists a few tricky areas the compiler does not flag. Each of these areas has been described in
more detail in earlier chapters in this guide. They are listed here as a convenience. Each of the sections
below provides a reference to the chapter in this guide where you can find more information on the subject. If
you need still more information, see the Foundation Framework Reference, the Application Kit Reference,
and the OpenStep Specification.

Dereferencing Objects
Many items that were previously structures, for example events and colors, are now objects. You might have
used the & operator to pass the address of one of these structures to a method or function. Now that the
structures have become objects, the & operator returns an invalid address.

NSStrings
For NSString, nil represents an invalid value and @"" represents an empty string. In general, you should use
@"" where you used to use NULL. For example, you should never send setStringValue:nil; always
setStringValue:@"". The message setStringValue:nil produces a run-time error.

For more information about NSStrings, see the chapter ªConverting the Common Classes.º

NSPopUpButtons
If you sent target to an NSPopUpButton, remember that this is now the target of the list rather than the target
of the trigger button. You should change the target in the nib file accordingly.

For more information about NSPopUpButtons, see the chapter ªConverting Application Kit Classes.º

Obtaining Icons
If your application accesses a named image that it cannot find but the image exists in the MachO section, you
will receive an error. If you are using imageNamed: to retrieve the icon, you should store the icon in the
application's wrapper.

For more information about images and icons, see the chapter ªConverting Application Kit Classes.º

Background Colors
Your code might use the setBackgroundGray: method to disable the background by passing it a value of -1.0.
In OpenStep, gray values and color values are no longer separate, so the setBackgroundGray: method is
obsolete. The conversion process changed it to setBackgroundColor:. Because you are passing
setBackgroundColor: the value -1.0, an illegal color value, you receive an error. Use setDrawsBackground:NO
instead to disable the background.

For more information on working with color, see ªConverting Application Kit Classes.º

Giving up First Responder Status
The NSText delegate method textShouldEndEditing: returns YES if the NSText object should end editingÐthat
is, it should give up its first responder status. The NEXTSTEP delegate method that textShouldEndEditing:
replaces returned YES if the Text object should not give up first responder status.

NeXT's implementation of OpenStep provides a keyboard interface feature that allows users to use the
keyboard instead of the mouse. Because of the way this feature works, first responder might be taken from
objects when the user clicks in a button in the same window. To implement an object that takes advantage of
this feature, you must implement acceptsFirstResponder rather than rely on receiving an initial
makeFirstResponder message.

For more information on the NSText object, see ªConverting Application Kit Classes.º

