
Copyright ã1996 by NeXT Software, Inc.    All Rights Reserved.

Chapter 2

Converting the Common Classes

OpenStep introduces a new kit, the Foundation Framework, which replaces the Common classes (such as
Object, List, and HashTable) and provides operating-system independence. This Foundation Framework is a
superset of the Foundation Framework in NEXTSTEP Release 3.3. The OpenStep Application Kit uses
classes from the new Foundation Framework instead of the Common classes it once used. That is, instance
variables and method return values that were instances of a Common class are now instances of a
Foundation class. For example, wherever an Application Kit class once returned a List object, it now returns
an NSArray object. This chapter describes the Foundation classes and those places where they are
introduced into your code.

Foundation Classes

Like the Common classes, the Foundation Framework provides classes for collections, storage, and data
types. However, the Foundation Framework moves beyond the Common classes to provide an operating-
system independence layer and to support distributed objects. In addition, the classes that provide basic
support for the Objective-C language are now in the Foundation Framework. The following table lists these
classes by function.

Type of Objects Classes

TableHeadRule.eps ¬
Objective-C language support NSObject, NSBundle, NSException,

NSAssertionHandler, NSInvocation,
NSMethodSignature, NSAutoreleasePool

TableRule.eps ¬
Basic data types NSData, NSMutableData, NSNumber, NSValue
TableRule.eps ¬
String data types NSString, NSMutableString, NSScanner,

NSCharacterSet, NSMutableCharacterSet
TableRule.eps ¬
Collections NSArray, NSMutableArray, NSSet, NSMutableSet,

NSCountedSet, NSDictionary, NSMutableDictionary,
NSEnumerator

TableRule.eps ¬
Object persistence NSArchiver, NSUnarchiver, NSCoder, NSSerializer,

NSDeserializer
TableRule.eps ¬
Date and time NSDate, NSCalendarDate, NSTimeZone,

NSTimeZoneDetail
TableRule.eps ¬
Interobject communication NSNotification, NSNotificationCenter,

NSNotificationQueue
TableRule.eps ¬
Operating-system NSThread, NSLock, NSConditionLock,
independence NSRecursiveLock, NSRunLoop, NSTimer,

NSProcessInfo, NSUserDefaults
TableRule.eps ¬
Distributed objects system NSProxy, NSDistantObject, NSConnection
TableRule.eps ¬

Class Clusters

Some of the classes listed above (for example, NSNumber) are actually class clusters. Class clusters group
several private, concrete subclasses under a public, abstract superclass. For example, NSNumber is an
abstract superclass. It has one subclass for each of the basic C types that store numbers (int, unsigned int,
long, short, float, double, long double, and so on). When you create an instance of NSNumber, you actually
receive an instance of one of these subclasses.

Class clusters simplify the interface. Having one class for numbers is much easier to manage than it would be
if all of NSNumber's subclasses were public (NSInt, NSLongInt, NSShortInt, etc.). You use an instance of a
class cluster the same way you use any other object. The only reason you need to know about class clusters
is that there are some differences in subclassing a class cluster. If you don't want to subclass a class cluster,
and in all likelihood you won't need to, then you don't have to be concerned about this new concept.

Some class clusters have more than one public superclass. For example, NSArray is a class cluster with two
public superclasses: NSArray and NSMutableArray. An NSArray object cannot be modified, but an
NSMutableArray object can. So if you want to create an array that can't be modified or won't be modified, you
instantiate NSArray. If you want to modify the array, you instantiate NSMutableArray.

See the introduction to the Foundation Framework Reference for more information on this topic. Within the
Foundation Framework Reference, any public superclass of a class cluster is documented as a class cluster.
That is, the NSArray class specification is titled ªNSArray Class Cluster.º

Archiver Conversion
Stage 2

The new root object, NSObject, introduces major changes to the archiving scheme. First, NXTypedStreams

are obsolete in OpenStep, so archives are written to NSData objects instead. NSData is a new class cluster
in the Foundation Framework. It defines objects that are generic data buffers. It has two public superclasses,
NSData, which contains unmodifiable data, and NSMutableData, which contains modifiable data.

Second, two new objects in the Foundation Framework, NSArchiver and NSUnarchiver, archive your
application's objects and remove your objects from the archive, respectively. Both NSArchiver and
NSUnarchiver are subclasses of the same abstract superclass, NSCoder.

NSCoders are objects that know how to represent an object in a different format: a format for archiving to a
file, a format for shipping an object to another process, or any other format you might identify. In OpenStep,
both the archiving system and the distributed objects system use NSCoders, so you no longer have to write
two sets of methods if you want to both archive and distribute copies of your object. However, writing one set
of methods to do both operations also means that you need to pay attention to a few more details in the
single set of methods you do write. This is described in more detail later in this section.

Archiving and Unarchiving Objects
When you archive a set of objects in OpenStep, the following sequence of events occurs:

1. You create an instance of the NSArchiver class.

2. You send either encodeRootObject: or archiveRootObject:toFile: to the NSArchiver.

3. The NSArchiver sends the root object an encodeWithCoder:self message.

4. Each object in the object graph is eventually sent an encodeWithCoder: message.

encodeWithCoder: replaces the write: method. In the body of each encodeWithCoder: method, the NSArchiver is
called upon to archive that object's instance variables. It does so by writing them to an NSMutableData object.
The following example shows how you previously archived all objects in an object graph and how you perform
the same task using OpenStep API.

Old Code

- (BOOL) archiveThisObject:(Object *)object
{

NXTypedStream *stream;
char archivePath[MAXPATHLEN+1];
...
stream = NXOpenTypedStreamForFile(archivePath, NX_WRITEONLY);
NXWriteRootObject(stream, object);
NXCloseTypedStream(stream);
return YES;

}

New Code

- (BOOL) archiveThisObject:(NSObject *)object
{

BOOL b;
NSString *archivePath;
...
b = [NSArchiver archiveRootObject:object toFile:archivePath];
return b;

}

When you unarchive a set of objects, a similar sequence of events occurs:

1. You create an instance of the NSUnarchiver class, usually configuring it with the NSData object or the file
to which you wrote the archive.

2. You send either unarchiveObjectWithFile: or decodeObject to the NSUnarchiver.

3. The NSUnarchiver sends the first object in the archive the message initWithCoder:self.

4. Each object in the graph is eventually sent the initWithCoder: message. (This method replaces the read:
method.)

The following example shows how you might have previously unarchived all objects in an object graph and
how you perform the same task using OpenStep API.

Old Code

-(Object *)unarchiveObject
{

NXTypedStream *stream;
Object *object;
char archivePath[MAXPATHLEN+1];
...
stream = NXOpenTypedStreamForFile(archivePath, NX_READONLY);

 object = NXReadObject(stream);
 NXCloseTypedStream(stream);

return object;
}

New Code

- (NSObject *) unarchiveObject
{

NSObject *object;
NSString *archivePath;
...

 object = [NSUnarchiver unarchiveObjectWithFile:archivePath];
 return object;

}

The conversion process converts as much of the archiving code as possible. However, you will need to
perform some of the conversion yourself. The following table lists the changes you may need to make within
the code that starts the archiving and unarchiving processes. You may also need to make some changes in
the implementation of encodeWithCoder: and initWithCoder:. Those changes are described in the section
ªConverting the read: and write: Methodsº in this chapter.

Obsolete Item Replacement
TableHeadRule.eps ¬
NXTypedStream variables Change to NSMutableData or NSData.
TableRule.eps ¬
NXOpenTypedStreamForFile(NX_WRITEONLY) Change to [NSArchiver archiveRootObject:toFile:].
TableRule.eps ¬
NXOpenTypedStreamForFile(NX_READONLY) Change to [NSUnarchiver unarchiveObjectWithFile:].
TableRule.eps ¬
NXFlushTypedStream() None necessary. Remove this function.
TableRule.eps ¬
NXFreeObjectBuffer() None necessary. Remove this function.
TableRule.eps ¬
NXReadObjectFromBuffer() Use NSUnarchiver object as described above.
TableRule.eps ¬
NXReadObjectFromBufferWithZone() Use NSUnarchiver object as described above.
TableRule.eps ¬
NXWriteObjectFromBuffer() Use NSArchiver object as described above.
TableRule.eps ¬

Converting the read: and write: Methods
In OpenStep, read: and write: are replaced by initWithCoder: and encodeWithCoder:. The method initWithCoder:
reads values from an NSUnarchiver object and assigns them to the object's instance variables. Conversely,
encodeWithCoder: writes the object's instance variables to an NSArchiver object. These methods are defined
in the NSCoding protocol.

Note: If you have an object that you want to archive, it must conform to the NSCoding protocol.

In initWithCoder: and encodeWithCoder:, you must follow many of the same rules you followed in the read: and
write: methods:

SquareBullet.eps ¬encodeWithCoder: is invoked twice, so it must not have side effects that cannot happen
twice. Also, you need to be sure that the object you write is the exact same object each time.

SquareBullet.eps ¬ initWithCoder: and encodeWithCoder: must invoke parallel methods, just as read: and write:
must call parallel functions. So if you use encodeValuesOfObjCTypes:"@" to archive an object, you must use
decodeValuesOfObjCTypes:"@" to unarchive it, not decodeObject.

SquareBullet.eps ¬You must retrieve data from the archive in the same order in which you placed it in the
archive.

For example, if your encodeWithCoder: method looks like the one shown below, your initWithCoder: method
must look like the one shown below as well.

New Code

- (void)encodeWithCoder:(NSCoder *)aCoder
{

[super encodeWithCoder:aCoder];
[aCoder encodeObject:authorID];
[aCoder encodeValuesOfObjCTypes:"@", &phone];
[aCoder encodeValuesOfObjCTypes:"i", &contract];

}

- initWithCoder:(NSCoder *)aDecoder
{

[super initWithCoder:aDecoder];
authorID = [[aDecoder decodeObject] retain];
[aDecoder decodeValuesOfObjCTypes:"@", &phone];
[aDecoder decodeValuesOfObjCTypes:"i", &contract];
return self;

}

The conversion process automatically converts your read: and write: methods to encodeWithCoder: and
initWithCoder:. It also changes the function calls inside these methods to the appropriate NSCoder messages.
When the conversion process is complete, you must look at the implementation of these methods and verify
that they are correct. The following sections help you determine if the implementations of encodeWithCoder:
and initWithCoder: are correct.

decodeObject and decodeValuesOfObjCTypes:

For backward compatibility, when decodeValuesOfObjCTypes: is used to unarchive an object, it returns an
object that is already retained. decodeObject does not retain the object it unarchives. So if you use
decodeObject to unarchive an instance variable, you must send the object the retain message.

Because it is unusual for a method to return a retained object as decodeValuesOfObjCTypes: does, you may
find it easier to always use decodeObject to unarchive instance variables. This way, you do not have to
remember that there is an implicit retain message in the method you have used. You can think of this as a rule
that your init methods must always explicitly retain instance variables. Because initWithCoder: is an init
method, it must follow this rule.

Remember that you must use the analogous method to archive the object. If you use decodeObject to

unarchive an instance variable, you must use encodeObject: to archive it.

Archiving Objects You Don't Retain

Sometimes two objects have instance variables that refer to each other. This often occurs when there is a
hierarchical order to objects in your application: Each object keeps track of a ªparentº object and one or more
ªchildº objects. In general, parent objects retain their children, but to ensure that all objects will eventually be
deallocated, children don't retain their parents. Just as you want to make sure the parent object isn't retained
too many times, you also should make sure the parent object isn't archived too often.

The general rule for archiving in such a situation is this: Use encodeObject: to archive all objects that your
object retains (its children in this example), and use encodeConditionalObject: to archive objects you do not
retain (the parent in this example). encodeConditionalObject: encodes an object only if another object archives
it unconditionally. Otherwise, it makes the object nil. The conversion process changes all
NXWriteObjectReference() calls to encodeConditionalObject: messages.

Archiving Objects That You Also Distribute

Use encodeBycopyObject: to encode an object for both archiving and distribution. As stated previously, your
encodeWithCoder: method is used both by the archiving system and the distributed objects system. When the
object is distributed, it is distributed as a proxy. (Proxies inherit from the NSProxy class instead of NSObject.)
encodeBycopyObject: encodes the object in such a way that when it is decoded, a copy of the object is
returned rather than the proxy.

In NSArchiver, encodeBycopyObject: simply invokes encodeObject: and returns. This way, if encodeWithCoder: is
passed an NSArchiver as the coder, it archives the object in the usual way. You may find places where you
want to use encodeConditionalObject: when archiving and use encodeBycopyObject: when encoding for
distribution. If so, your encodeWithCoder: method can check to see if the class of the coder passed to it is an
NSArchiver before the method does the encoding.

If you use encodeBycopyObject: to archive an object, use decodeObject to unarchive it.

Obsolete Archiving Methods
The following table lists obsolete methods you may have implemented to archive or unarchive your objects.
The table tells you how to replace these methods if you implemented them.

Obsolete Method Possible Replacements
TableHeadRule.eps ¬
awake Append code from awake to initWithCoder:.
TableRule.eps ¬
finishUnarchiving awakeAfterUsingCoder: (in NSObject)
TableRule.eps ¬
startArchiving: classForCoder: (in NSObject)

replacementObjectForCoder: (in NSObject)
Prepend code from startArchiving: to encodeWithCoder:.

TableRule.eps ¬

Archiving Mixed Object Graphs
The conversion process changes all of your objects to inherit from NSObject, but your objects might still
contain instance variables that inherit from Object. For example, List, HashTable, NXStringTable, and Storage
objects may still appear in your code. All of these classes still inherit from Object. This presents a problem for
archiving; Objects are archived with NXWriteObject() within a write: method, but NSObjects are archived with
encodeObject: within an encodeWithCoder: method. Which should you use? The best solution is to perform a
deep conversion so that all of the objects in your code inherit from NSObject. If this is not possible, NeXT
provides some compatibility methods and functions for you to use when archiving and unarchiving in these
situations.

If you have an NSObject subclass with instance variables that inherit from the Object class, use the
encodeNXObject: and decodeNXObject methods to archive and unarchive those objects, as shown in the

following example.

New Code

- (void)encodeWithCoder:(NSCoder *)aCoder
{
 [super encodeWithCoder:aCoder];
 [aCoder encodeObject:authorID];
 [aCoder encodeObject:firstName];
 [aCoder encodeObject:lastName];
 [aCoder encodeObject:address];
 [aCoder encodeObject:city];
 [aCoder encodeObject:state];
€€€€[aCoder encodeValuesOfObjCTypes:"i", &contract];
 [aCoder encodeNXObject:titles];
}

- initWithCoder:(NSCoder *)aDecoder
{
 [super initWithCoder:aDecoder];
 authorID €= [[aDecoder decodeObject] retain];
 firstName = [[aDecoder decodeObject] retain];
 lastName €= [[aDecoder decodeObject] retain];
 address €€= [[aDecoder decodeObject] retain];
 city €€€€=€[[aDecoder decodeObject] retain];
 state €€€= [[aDecoder decodeObject] retain];
€€€€[aDecoder decodeValuesOfObjCTypes:"i", &contract];
 titles €€€= [[aDecoder decodeNXObject] retain];

 return self;
}

Suppose you create a class that inherits from Object and declare some instance variables that are instances
of NSObject or one of its subclasses. In this situation, use the NXWriteNSObject() and NXReadNSObject()
functions within the write: and read: methods, respectively, as shown below.

New Code

- write:(NXTypedStream *)stream;
{
 [super write:stream];
 NXWriteNSObject(stream, authorID);
 NXWriteNSObject(stream, firstName);
 NXWriteNSObject(stream, lastName);
 NXWriteNSObject(stream, address);
 NXWriteNSObject(stream, city);
 NXWriteNSObject(stream, state);
€€€€NXWriteTypes(stream, "i", &contract);
 NXWriteObject(stream, titles);
 return self;
}

- read:(NXTypedStream *)stream;
{
 [super read:stream];
 authorID €= [(NSString *)NXReadNSObject(stream) retain];
 firstName = [(NSString *)NXReadNSObject(stream) retain];
 lastName €= [(NSString *)NXReadNSObject(stream) retain];
 address €€= [(NSString *)NXReadNSObject(stream) retain];
 city €€€€€= [(NSString *)NXReadNSObject(stream) retain];
 state €€€€= [(NSString *)NXReadNSObject(stream) retain];

€€€€NXReadTypes(stream, "i", &contract);
 titles €€€= [NXReadObject(stream) retain];
 return self;
}

Restrictions

There are two significant restrictions when archiving objects from both the Object and NSObject world. These
are:

SquareBullet.eps ¬There is no sharing of information between the two worlds. Normally, if you archive a
complex graph that has cycles where several objects reference a single object, enough information is kept
about the objects so that the cycles are detected and objects that are pointed to by many other objects are
archived only once. This is still true as long as the graph of objects being archived resides entirely in the
Object world or in the NSObject world. In a mixed environment, though, there is no sharing of object
information across worlds. Care must be taken not to have cycles in a graph of objects that transcends
both worlds.

SquareBullet.eps ¬Container objects (NSArray, NSDictionary, NSValue, etc.) cannot be archived if they
contain objects from the other world. Thus, an NSArray cannot be archived if it contains a descendant of
Object. Similarly, a List cannot be archived if it contains a descendant of NSObject.

Whenever possible, you should not mix objects from both worlds in your object graphs. Archiving a mixed-
world graph of objects will be much slower, take up more space, and be less reliable (due to the lack of object
sharing) when compared to archiving a similar graph of objects that all inherit from the same root class.

Summary of Convenience Methods and Functions

The following table summarizes the convenience methods and functions that allow you to archive mixed
object graphs.

Function/Method Purpose
TableHeadRule.eps ¬
encodeNXObject: To archive an Object appearing in an NSObject.
TableRule.eps ¬
NXWriteNSObject() To archive an NSObject appearing in an Object.
TableRule.eps ¬
decodeNXObject To unarchive an Object appearing in an NSObject.
TableRule.eps ¬
NXReadNSObject() To unarchive an NSObject appearing in an Object.
TableRule.eps ¬

Archiving Gotchas
After the archiving conversion, watch out for the following:

SquareBullet.eps ¬Always retain all instance variables that are unarchived using decodeObject. Never retain
any instance variable that is unarchived using the method decodeValuesOfObjCTypes:"@".

SquareBullet.eps ¬Make sure objects that you archive conform to the NSCoding protocol.

SquareBullet.eps ¬NXColor structures are replaced by NSColor objects in OpenStep. (If you're converting in
stages, this won't happen until stage 3.) Use decodeNXColor to unarchive NXColor structures and
decodeObject to unarchive NSColor objects. For more information, see the section ªColor Conversionº in the
chapter ªConverting Application Kit Classes.º

Defaults Conversion
Stage 5

The Foundation Framework provides a new user defaults system managed by an object of class
NSUserDefaults. This section provides a brief overview of the new system. You can learn more by reading the
NSUserDefaults class specification in the Foundation Framework Reference.

In this new system, defaults are stored in separate domains. Within each domain, the defaults are stored in
NSDictionary objects. Basically, you perform two functions with NSUserDefaults:

SquareBullet.eps ¬To add a default or to change a default already in the system, you use a method such as
setObject:forKey:. NSUserDefaults provides several methods to add or change a value. You choose a
method based on the type of value you want to store (array, integer, and so on). Saving the default values
is automatic.

SquareBullet.eps ¬To retrieve the value for a default, use a method such as objectForKey:. Again,
NSUserDefaults provides several methods to perform this function, and you choose which one to use
based on the type of value you want to retrieve.

When you request a default value, the NSUserDefaults object searches the domains in its search list in the
order defined by the search list. When it finds the first occurrence, it stops the search. You can add to, remove
from, or rearrange the order of the domains in the search list. The default search list is:

1. The argument domain, which contains defaults parsed from the application's command-line arguments

2. The application's domain

3. The domains for each of the user's preferred languages

4. The global domain, which contains defaults seen by all applications

5. The registration domain, which contains temporary defaults whose values can be set by the application to
ensure that searches will always be successful

In most cases, the conversion process changes all accesses to the defaults database automatically. If you
use any of the functions shown in the following table, you may have to perform some conversion yourself. For
these functions, the conversion process displays warning messages that will help you decide what to do. The
table gives you a basic idea of what to replace your function call with.

Obsolete Function Possible Replacement
TableHeadRule.eps ¬
NXWriteDefaults() setObject:forKey:
TableRule.eps ¬
NXRegisterDefaults() registerDefaults:
TableRule.eps ¬
NXSetDefaultsUser() initWithUser:
TableRule.eps ¬

Defaults Gotchas
After the Defaults Conversion, watch out for the following:

NXSetDefaultsUser()

The conversion process changes your call to NXSetDefaultsUser() to the initWithUser: method. When you call
NXSetDefaultsUser(), it changes the defaults database that is affected when you call any other defaults
functions. However, initWithUser: does not. initWithUser: is sent only to your own instance of NSUserDefaults;
if you then invoke standardUserDefaults, it returns the globally shared instance of NSUserDefaults. The shared
instance does not reflect the changes you made to the instance initialized with initWithUser:.

Foundation Conversion
Stage 1

The Foundation conversion introduces the basic Foundation classes into your code: notably NSArrays and
NSExceptions.

NSArray Replaces List
Wherever you used to see a List object in the Application Kit, you now see either an NSArray or an
NSMutableArray object. For example, the View class's subviews, Matrix's cellList, and Application's
windowList are now stored as NSArrays. (Since they are no longer Lists, the names cellList and windowList
have changed to cells and windows, respectively.)

As described previously in the section ªClass Clusters,º NSArray is a class cluster defined in the Foundation
Framework. NSArray objects can't be modified, but NSMutableArray objects can.

The Foundation conversion converts only Lists returned by the Application Kit or passed to the Application Kit.
If your application has a List that does not interact with an Application Kit object, it will remain a List. After all
six required conversions are complete, you may choose to run the ListToMutableArray.tops conversion script to
eliminate all List objects from your code. For more information, see the section ªList To MutableArray
Conversion.º

NSArrays are essentially the same as Lists. There are some important differences, though. To learn about
these differences, see the section ªList To MutableArray Conversion.º

Changes to Exception Handling
The Foundation Framework has a new class, NSException, which you use during exception handling. The
NSException object describes the exceptional condition. Exception handlers are similar to the old exception
handlers, but you raise an exception differently. (The names of macros and functions have changed slightly,

but those are taken care of automatically.) The NX_RAISE() macro is now obsolete. When you compile your
code after this conversion, each occurrence of NX_RAISE() will be flagged with a message telling you to use
an NSException object instead.

The NSException class introduces these changes to the way you used to define an exception:

SquareBullet.eps ¬NSException uses names rather than numbers to identify exceptions.
SquareBullet.eps ¬You always associate an error message with an NSException.
SquareBullet.eps ¬You provide any necessary application-specific data through an NSDictionary.
SquareBullet.eps ¬You use the variable localException where you used to use NXLocalHandler.
SquareBullet.eps ¬You pass a single argument, the NSException object, to functions such as

NSSetUncaughtExceptionHandler().

NSDictionary is a new class in Foundation that stores key-value pairs. Like NSArray, NSDictionary is a class
cluster with two public superclasses: NSDictionary (unmodifiable) and NSMutableDictionary (modifiable).

To create an NSException object, send the exceptionWithName:reason:userInfo: message to the NSException
class object. The first argument to this method is an NSString containing the name of the exception. The
second argument is an NSString containing an error message that states the reason why the exception
occurred. The third argument takes an NSDictionary object in which you supply any necessary information to
the exception.

You should convert all calls to NX_RAISE() to code that creates an NSException object and raises the
exception it represents as shown in the following example.

Old Code

int returnValue;
float variable;
...
returnValue = aFunction(variable);
if (returnValue)
 NX_RAISE(AFUNCTON_ERROR, returnValue, variable);

New Code

int returnValue;
float variable;
...
returnValue = aFunction(variable);
if (returnValue) {
 NSException *theException = [[NSException
 exceptionWithName:@"aFunctionException"
 reason:@"Error during aFunction"
 userInfo:[NSDictionary dictionaryWithObjectsAndKeys:

[NSNumber numberWithInt:returnValue], @"Return Value",
[NSNumber numberWithFloat:variable], @"Argument",
nil]] raise];

}

This message supplies the same information to the exception as the NX_RAISE() macro did. To be able to
store the values of returnValue and variable in an NSDictionary, you need to convert them to objects.
NSNumber, described previously, was created for just this purpose. Within the error handler itself, you use the
localException variable to refer to the exception. Use the message [[localException userInfo]
objectForKey:@"Return Value"] to retrieve the return value from the dictionary.

The macro that performs assertions (NX_ASSERT(), now NSAssert1()) has been modified as well. Previously,
NX_ASSERT() just printed a message if the assertion failed. Now it raises the
NSInternalInconsistencyException. It raises this exception by first sending a message to an object of type
NSAssertionHandler, which is a new class in Foundation Framework. You can use NSAssertionHandler
directly if you want to provide more detailed control over failed assertions, specifically for multithreaded
applications. For more information, see the NSAssertionHandler class specification in the Foundation
Framework Reference.

The following table summarizes the changes to exception handling.

Obsolete Macro or Variable Replacement
TableHeadRule.eps ¬
NX_RAISE() macro exceptionWithName:reason:userInfo: (or any other NSException +classname method)
TableRule.eps ¬
NXLocalHandler constant localException constant
TableRule.eps ¬

Foundation Conversion Gotchas
After the Foundation conversion has been run on your code, look out for the following things:

Link Enumerators in DataLinkManager

Foundation's NSEnumerator object replaces DataLinkManager's link enumerator type. The NSEnumerator
object numerates collections of objects. It provides an easy way to step through each item in an unordered
collection, such as an NSDictionary. You no longer have to prepare the link enumerator's state, so the
methods prepareEnumerationState:forLinksOfType: and nextLinkUsing: are obsolete. To retrieve an
NSEnumerator from the NSDataLinkManager, use either sourceLinkEnumerator or destinationLinkEnumerator.
You can walk through the list of links using NSEnumerator's nextObject method.

Another change is NXDataLink's lastUpdateTime method. This method now returns an NSDate object instead
of time_t. NSDate is a new class that represents specific point in time, both a date and a time. Like NSString,
NSDate was created to be operating-system-independent and to make internationalization easier. For more
information on NSDate, see the Foundation Framework Reference.

Finding the Path for Resources in NSBundle

A bundle's resources are now one level deeper inside the bundle than they previously were. All bundles now
have a Resources directory that contains all resources, including localized resources. If you used the
bundlePath method to return the location of a resource, your code is now incorrect. Replace the bundlePath
message with resourcePath.

Hash And String Table Conversion
Optional

Run the HashAndStringTableConversion.tops script to convert your HashTable and NXStringTable objects to
NSDictionary objects. This script is optional; if you don't use this conversion, your program will still compile
and run. If you're performing a shallow conversion and you want to keep your HashTable objects, be sure to
explicitly import <objc/HashTable.h>. AppKit.h no longer imports HashTable.h.

Note: To learn how to run a single tops script, see the on-line release note
/NextLibrary/Documentation/NextDev/ReleaseNotes/ConvertingYourCode.rtf. Don't run the
HashAndStringTableConversion.tops script until all six conversion stages are complete.

An NSDictionary is an object that stores key-value pairs. An NSDictionary differs from a HashTable in the
following ways:

SquareBullet.eps ¬The key and the value must be objects.
SquareBullet.eps ¬You can store values of different classes in an NSDictionary object.
SquareBullet.eps ¬You cannot add nil keys or nil values to NSDictionary objects.

All of these differences have consequences when converting. Especially for HashTable objects, you may
need to perform some conversion yourself after you run the script.

There are actually two constructs in OpenStep that you may use in place of a HashTable object. One is an
NSDictionary object, and the other is an NSMapTable structure. If your HashTable uses C strings, NXAtoms,

or objects as keys, you can easily convert it to an NSDictionary, and the conversion script helps you do this. If
you use another type of key, convert the HashTable to an NSMapTable structure as described in the section
ªConverting HashTables to NSMapTables.º The conversion script does not help you convert HashTables to
NSMapTables. Like all objects, NSDictionary objects can be archived and distributed, and they use the
OpenStep memory allocation and deallocation scheme. For these reasons, you will probably want to use
NSDictionary objects instead of NSMapTable structures wherever possible.

Creating NSDictionary Objects
The conversion script will change the initialization method you use to a corresponding initialization method for
NSDictionary. It is recommended that you change this to a +classname method so that the NSDictionary will
be autoreleased as well as allocated and initialized. The following table lists and describes the +classname
methods that create NSDictionary objects.

NSDictionary Method Creates:
TableHeadRule.eps ¬
dictionary An empty NSDictionary.
TableRule.eps ¬
dictionaryWithContentsOfFile: An NSDictionary with the contents of the specified ASCII property-list file.
TableRule.eps ¬
dictionaryWithObjectsAndKeys: An NSDictionary with keys and values listed in a comma-separated, nil-terminated list

of key-value pairs.
TableRule.eps ¬
dictionaryWithObjects:forKeys: An NSDictionary with values listed in the first argument corresponding to the keys

listed in the second argument.
TableRule.eps ¬
dictionaryWithObjects:forKeys:count: Like dictionaryWithObjects:forKeys:, but you specify a count for efficiency.
TableRule.eps ¬
dictionaryWithCapacity: An empty NSMutableDictionary with enough space to store the specified number of

key-value pairs. (NSMutableDictionary only).

TableRule.eps ¬

Reading NXStringTables from a .strings File
Previously, you stored the entries for the NXStringTable in a .strings file on disk and read that into the
NXStringTable object with the method readFromFile: or newFromFile:. In OpenStep, .strings files are read into
NSString objects and then converted to NSDictionary objects with the propertyListFromStringsFileFormat
method. The NSDictionary is converted back to an NSString before it is written out to the .strings file. The
following example illustrates this conversion.

Old Code

myStringTable = [NXStringTable newFromFile:"myFile.strings"];
...
[myStringTable writeToFile:"myFile.strings"];

New Code

myStringTable = [[NSString
stringWithContentsOfFile:@"myFile.strings"]
propertyListFromStringsFileFormat];

...
[[myStringTable descriptionInStringsFileFormat]

writeToFile:@"myFile.strings" atomically:YES];

Converting HashTables to NSDictionary
If your HashTable's keys are C strings, NXAtoms, or objects, convert the HashTable to an NSDictionary. You
need to convert the values to objects manually if you were not already using objects.

If the values were C strings or NXAtoms, convert them to NSStrings. If you used another type of value,
convert them to NSNumber or NSValue objects. NSNumber and NSValue are Foundation classes that allow
you to store Objective-C types in objects. Use NSNumber for simple number types (such as int, float, or
BOOL). Use NSValue for complex types such as structures. To learn more about these classes, see the
Foundation Framework Reference.

Old Code

int intValue;
void *ptrValue;
...
intHash = [[HashTable alloc] initKeyDesc:"*"

valueDesc:"i"];
ptrHash = [[HashTable alloc] initKeyDesc:"*"

valueDesc:"!"];
...
[intHash insertKey:"int1"

value:&intValue];
[ptrHash insertKey:"ptr1"

value:&ptrValue];

New Code

int intValue;
void *ptrValue;
...
intHash = [NSMutableDictionary dictionary];
ptrHash = [NSMutableDictionary dictionary];
...
[intHash setObject:[NSNumber numberWithInt:intValue]

forKey:[NSString stringWithCString:"int1"]];

[ptrHash setObject:[NSValue value:ptrValue
withObjCType:@encode(void *)]
forKey:[NSString stringWithCString:"ptr1"]];

Converting HashTables to NSMapTables
The HashAndStringTableConversion.tops works well only for objects that use strings or objects for keys. If you
use something else for keys, convert the HashTable manually to an NSMapTable structure. Like a HashTable,
the NSMapTable structure stores key-value pairs and it lets you specify the types of keys and values you are
going to store. You can choose among integers, pointers, and objects. There are functions that perform
essentially the same operations on the NSMapTable as the HashTable methods perform. The following
example shows how a HashTable using integer keys would look before and after conversion.

Old Code

int intValue;
id anObject;
...
intKeyHash = [[HashTable alloc] initKeyDesc:"i"];
...
[intHash insertKey:(void *)intValue value:anObject];
...
[intKeyHash free];

New Code

int intValue;
id anObject;
...
intKeyHash = NSCreateMapTable(NSIntMapKeyCallBacks,

NSObjectMapValueCallBacks, NULL);
...
NSMapInsert(intKeyHash, (void *)intValue, anObject);
...
NSFreeMapTable(intKeyHash);

Removing and Freeing Objects in an NSMutableDictionary
A HashTable lets you free the objects it was storing using freeObjects or freeKeys:values:. These methods
remove the specified objects from the HashTable and then free them, leaving the HashTable still allocated.

To perform the analogous function with an NSMutableDictionary, simply remove the object from the
NSMutableDictionary. When you add an object to the NSMutableDictionary, it makes a copy of the key and
retains the object used as the value. When you remove the key-value pair from the NSMutableDictionary, it
releases both the key and the value. When an object is released, its reference count is decremented. The
object is deallocated when its reference count is 0.

The following table shows the methods that remove and free objects from a HashTable, shows the analogous
methods for NSMutableDictionary, and explains what's different about the NSMutableDictionary method.

HashTable Method NSMutableDictionary Method Differences
TableHeadRule.eps ¬
empty removeAllObjects Keys and values are released and

therefore may be deallocated as a
side effect of this method.

TableRule.eps ¬
removeKey: removeObjectForKey: Both key and value are released

and therefore may be deallocated
as a side effect of this method.

TableRule.eps ¬
freeObject: removeObjectForKey: Both key and value are released.

Releasing does not necessarily
deallocate the object.

TableRule.eps ¬
freeKeys:values: removeAllObjects Both the keys and their values are

released. Releasing does not
necessarily deallocate the
objects.

TableRule.eps ¬

Stepping Through an NSDictionary
If you want to access each entry in a HashTable one by one, you create an NXHashState variable and use
that variable to retrieve the next key-value pair in the HashTable.

To access each entry in a NSDictionary, you use an NSEnumerator object. The NSEnumerator can access
each key in the NSDictionary. To step through each entry in the dictionary, you send the NSEnumerator the
message nextObject and use objectForKey: to retrieve the value.

If you have a function or method that merges two HashTables, you could convert it to a function that merges
two NSMutableDictionary objects as shown in the example below. (The conversion script makes some of
these changes for you.)

Old Code

void mergeHashs(HashTable *hash1, HashTable *hash2)
{

NXHashState state = [hash1 initState];
void *key, *value;
while([hash1 nextState:&state key:&key value:&value])

[hash2 insertKey: key value: value];
}

New Code

void mergeHashs(NSDictionary *hash1,
NSMutableDictionary *hash2)

{
NSEnumerator *state = [hash1 keyEnumerator];
NSString *key;
key = [state nextObject];
while(key) {

[hash2 setObject:[hash1 objectForKey:key] forKey:key];
key = [state nextObject];

}
}

readFromFile: Conversion
The HashAndStringTableConversion.tops script makes the following conversion for the NXStringTable method
readFromFile:.

Old Code

[anyVar readFromFile:aFile];

New Code

[anyVar addEntriesFromDictionary:[[NSString
stringWithContentsOfFile:[NSString stringWithCString:aFile]]

propertyListFromStringsFileFormat]];

The script does not first check to make sure anyVar is an NXStringTable object. If you defined readFromFile: in
a custom class, you will need to look for occurrences of this message and change it back.

List To MutableArray Conversion
Optional

Run the conversion script ListToMutableArray.tops to change all occurrences of Lists in your code to
NSMutableArrays. As explained previously, the Foundation conversion changes only Lists that interact with
Application Kit objects. Run this script to convert all remaining List objects. This script is optional; if you don't
use it, your code will still compile and run. If you're performing a shallow conversion and you want to keep
your List objects, be sure to explicitly import <objc/List.h>. AppKit.h does not import this header anymore.

Note: To learn how to run a single tops script, see the on-line release note
/NextLibrary/Documentation/NextDev/ReleaseNotes/ConvertingYourCode.rtf. Don't run this script until all six
conversion stages are complete.

The main differences between List and NSArray objects are:

SquareBullet.eps ¬Adding nil to an NSArray raises an exception.
SquareBullet.eps ¬Indexing an NSArray out of bounds raises an exception.

These and other differences are explained in this section.

Invalid Indexes
When NSArray receives an invalid index, it raises an exception rather than returning nil. Therefore, you

should never test that the return value of a method such as objectAtIndex: is nil. For example, you might have
a loop that accesses each object in a List, as shown below. After this code is converted, it raises an exception
where you want it to exit the loop. To access each object in an NSArray one by one, you should instead use
the for loop shown below.

Old Code

int i;
List *myList = [myForm cellList];
id anObject;
...
i = 0;
while (anObject = [myList objectAt:i]) {

/* do something here */
i++;

}

New Code

int i, cellCount;
NSArray *myList = [myForm cells];
id anObject;
...
for (i = 0, cellCount = [myList count]; i < cellCount; i++) {

anObject = [myList objectAtIndex:i];
/* do something here */

}

Deallocating NSArrays

Previously, when you freed a List, the objects contained in the List were not freed. When you release an
NSArray (or any other Foundation collection object), the objects contained in the array are released as well as
the NSArray itself. If you have code that accesses a list element after the List is freed, it will produce a run-
time error after the conversion. You should change it as shown below.

Old Code

anObject = [myList objectAt:0];
[myList free];
if ([anObject intValue] == 0)

...

Bad New Code

anObject = [myList objectAtIndex:0];
[myList release]; /* myList is now an NSArray */
if ([anObject intValue] == 0)

/* Runtime error! anObject was released */
...

Good New Code

anObject = [[myList objectAtIndex:0] retain];
[myList release];
if ([anObject intValue] == 0)

...

Creating NSArrays
When you create a List, you use either the new method or alloc and init. As explained previously, the

recommended way to create an OpenStep object is to use the +classname method. +classname methods
allocate, initialize, and autorelease the object. NSArray and NSMutableArray offer the methods listed in the
following table to allocate and initialize autoreleased instances. Change your alloc and init or new method to
one of these.

NSArray Method Creates:
TableHeadRule.eps ¬
array An empty NSArray.
TableRule.eps ¬
arrayWithObject: An NSArray containing one object.
TableRule.eps ¬
arrayWithObjects: An NSArray containing the specified list of objects. The list must be terminated with nil.
TableRule.eps ¬
arrayWithContentsOfFile: An NSArray containing the objects in the specific file.
TableRule.eps ¬
arrayWithCapacity: An empty NSMutableArray with enough space for the specified number of objects.

(NSMutableArray only.)
TableRule.eps ¬

Setting the Capacity
The List class provides methods that allow you to set a List's capacity. NSMutableArray does not provide
such a method. However, with the arrayWithCapacity: method, you can specify an initial size when you create
the NSMutableArray. You can use this method to allocate all or most of the memory at one time, which is
more efficient than allocating memory each time an object is added.

List Method Possible Replacement in NSMutableArray

TableHeadRule.eps ¬
setAvailableCapacity: arrayWithCapacity: (to create the NSMutableArray)
TableRule.eps ¬
capacity count
TableRule.eps ¬

Void Methods
Like all other OpenStep objects, NSArrays return void when they have no meaningful value to return. The
conversion script does not catch all of the places where a List method returned a value but an NSArray
returns void. If you use the value returned by the List method, you'll receive a compiler error. You should split
the NSArray method in two as shown below.

Old Code

anObject = [myList removeLastObject];

Bad New Code

anObject = [[myList lastObject] retain];
[myList removeLastObject];

NSArray or NSMutableArray
The script ListToMutableArray.tops changes all List objects in your application to NSMutableArray objects.
Because NSArrays are more memory efficient than NSMutableArrays, you should use NSArrays wherever
possible. You should examine each NSMutableArray in your application. If you never send it addObject: or
removeObject: (or you can consolidate all addObject: messages into an arrayWithObjects: message), you should

change the NSMutableArray into an NSArray.

Archiving NSArrays
NSArray and other container objects cannot be archived if they contain objects that inherit from Object rather
than NSObject. Similarly, a List cannot be archived if it contains a descendant of NSObject.

Notification Conversion
Stage 5

The Foundation Framework introduces a notification system, which is a way for objects that don't know about
each other to communicate. Every application now has a notification center (an instance of the class
NSNotificationCenter). One object tells the notification center that a particular event has occurred, and the
notification center broadcasts that event to all interested objects.

The notification system is similar to using delegates, but it has these notable advantages:

SquareBullet.eps ¬Any number of objects may receive the notification, not just the delegate object.
SquareBullet.eps ¬An object may receive any message you like from the notification center, not just the

predefined delegate methods.
SquareBullet.eps ¬The object posting the notification does not even have to know that the other object exists.

Some Application Kit objects that use delegates now use the notification system to inform delegates that an
event occurred. Because there may be many objects receiving the same notification, none of the receiving
objects can pass a value back to the object that posted the notification. If the Application Kit object must
receive a value back from the delegate, it still sends a message directly to the delegate.

Objects with delegates are not the only objects that post notifications. Any object can post a notification. The
rest of this section explains how you use the notification system in your application and how the use of the

notification system affects your existing delegate methods.

Using the Notification System
If you want an object to receive a notification about a particular event, you register that object with the
notification center. To register the object, have it send this message to an NSNotificationCenter (typically, the
application's default notification center):

- (void)addObserver:(id)recipient selector:(SEL)message
€€€€€€€€€€€€€€€€name:(NSString€*)notification object:(id)anObject

Once you send this message, whenever the center receives a notification notification from object anObject, it
sends recipient the message message. You can specify nil for anObject, which means that any time the
notification center receives notification (from any object), it should notify recipient.

In the example below, the sending object will receive the windowMoved: message whenever the object
importantWindow posts NSWindowDidMoveNotification to the application's default notification center.

New Code

[[NSNotificationCenter defaultCenter]
addObserver:self
selector:@selector(windowMoved:)
name:NSWindowDidMoveNotification
object:importantWindow];

The message that the notification center sends to your object (windowMoved: in this example) must take an
NSNotification object as an argument. An NSNotification object is the only type of object you can post to a
notification center. The NSNotification object contains a name (which objects use to identify the notification
when they post it and when they register to receive it), an associated object, and sometimes extra information
stored in a userInfo dictionary. Your method can use the [notification object] message to retrieve the

associated object, which is typically the object that posted the notification, and can retrieve other necessary
information from the userInfo dictionary using [notification userInfo].

For more information, see the NSNotificationCenter and NSNotification class specifications in the Foundation
Framework Reference.

Changes to Delegates
Although Application Kit objects that send messages to delegates now do so by posting notifications to the
notification center, you won't have to perform any extra steps to have your delegate work the same way it
always did. Delegates are registered to receive notifications automatically. Inside the delegate method itself,
there are some minor changes. This section describes those changes.

Delegate Methods Implementations

A delegate method now receives an NSNotification object as an argument where it used to receive the object
that sent the message (that is, the object for which it is a delegate). To retrieve the object that used to be the
sender of your delegate method, use the NSNotification method object, as shown in the following example.
The conversion process makes this change for you.

Old Code

- windowDidUpdate:sender
{
 if ([sender isMainWindow])

[view updateLinksPanel];
 return self;
}

New Code

- (void)windowDidUpdate:(NSNotification *)notification

{
NSWindow *theWindow = [notification object];

/* the "sender" */

 if ([theWindow isMainWindow])
[view updateLinksPanel];

}

Matrix and TextField Delegates

Previously, Matrix and TextField objects sometimes had a text delegate that responded to the actions that the
field editor took. (The field editor is the NSText object used to draw and edit text in a matrix or text field.)
These two objects now have their own delegates. Any field editor delegates defined in your application are
converted to NSMatrix or NSTextField delegates. Instead of responding to NSText delegate methods, these
new delegates implement the methods shown in the following table.

Old Delegate Method Replacement
TableHeadRule.eps ¬
textDidChange: controlTextDidBeginEditing:
TableRule.eps ¬
textDidEnd:endChar: controlTextDidEndEditing:
TableRule.eps ¬
textDidGetKeys:isEmpty: controlTextDidChange:
TableRule.eps ¬

Previously, the field editor delegate received a Text object as an argument to its delegate methods, and it was
very hard to find out which control sent the message. Now, the field editor delegate receives an

NSNotification object. The sending NSMatrix or NSTextField object can be retrieved with the message
[notification object]. You can retrieve the NSText object from the NSNotification's userInfo dictionary. The
following example shows how to retrieve the NSText object from the NSNotification.

Old Code

- textDidChange:sender
{

Text *fieldEditor = sender;
...

}

New Code

- (void)controlTextDidBeginEditing:(NSNotification *)notification
{

NSText *fieldEditor = [[notification userInfo]
objectForKey:@"NSFieldEditor"];

...
}

Subclasses of Classes with Delegates
Application Kit objects with delegates often have their own methods that correspond to and invoke the
delegate methods. For example, the windowMoved: method in Window was invoked when the user moved a
window, and it invoked the delegate method windowDidMove:. When you subclass an Application Kit object
with a delegate, you override such methods if you want your subclass to respond differently than the default
case.

Many such methods in the classes NSApplication, NSWindow, NSSplitView, and NSText are obsolete. The

conversion process marks these methods with a warning message that tells you what notification your
subclass should register to receive. The section ªUsing the Notification Systemº earlier in this chapter shows
you how to register to receive a notification.

Obsolete Delegate Methods
The disk mounting and power-off functions that used to be part of the Application class are now part of the
NSWorkspace class. (The NSWorkspace class is new in OpenStep.) NSWorkspace does not have a
delegate, but it does post notifications about these events.

If your application delegate responded to any of the methods listed in the following table, it should now
register to receive the corresponding notification. The section ªUsing the Notification Systemº earlier in this
chapter shows you how to register to receive a notification.

Obsolete Delegate Method Possible Replacement
TableHeadRule.eps ¬
app:applicationWillLaunch: Register for NSWorkspaceWillLaunchApplicationNotification.
TableRule.eps ¬
app:applicationDidTerminate: Register for NSWorkspaceDidTerminateApplicationNotification.
TableRule.eps ¬
app:fileOperationCompleted: Register for NSWorkspaceDidPerformFileOperationNotification.
TableRule.eps ¬
app:mounted: Register for NSWorkspaceDidMountNotification.
TableRule.eps ¬
app:powerOffIn:andSave: Register for NSWorkspaceWillPowerOffNotification.
TableRule.eps ¬
app:unmounting: Register for NSWorkspaceWillUnmountNotification.
TableRule.eps ¬
app:unmounted: Register for NSWorkspaceDidUnmountNotification.
TableRule.eps ¬

appAcceptsAnotherFile: None needed.
TableRule.eps ¬

Other Notifications Posted by Application Kit Objects
In addition to delegate methods, there are other places where Application Kit objects use notifications to notify
objects of events. In a few cases, the posting of a notification makes an Application Kit method obsolete. The
following table lists methods that are obsolete because the object now posts a notification and what you
should use as a replacement.

Obsolete Method Possible Replacement
TableHeadRule.eps ¬
colorListDidChange: (in NXColorList) Register for NSColorListDidChangeNotification.
TableRule.eps ¬
updateCustomColorList (in NXColorPanel) Register for NSColorListDidChangeNotification.
TableRule.eps ¬
updateColorList (in NXColorPicker) Register for NSColorListDidChangeNotification.
TableRule.eps ¬
descendantFrameChanged: (in NSView) Register for NSViewFrameDidChangeNotification.
TableRule.eps ¬
notifyAncestorWhenFrameChanged: (in NSView) Register for NSViewFrameDidChangeNotification.
TableRule.eps ¬
suspendNotifyAncestorWhenFrameChanged: (in NSView) setPostsFrameChangedNotifications:NO
TableRule.eps ¬
screenChanged: (in NSWindow) Register for NSWindowDidChangeScreenNotification.
TableRule.eps ¬
windowExposed: (in NSWindow) Register for NSWindowDidExposeNotification.
TableRule.eps ¬
windowMoved: (in NSWindow) Register for NSWindowDidMoveNotification.

TableRule.eps ¬

Notification Gotchas
After the notification conversion, look out for the following:

Pseudo-Delegates

The notification conversion changes any invocation of a delegate method to a message that posts the
notification that invokes the delegate method. If you implemented a ªpseudo-delegate,º this causes delayed
recursion, which you won't be able to detect until run time.

For example, suppose you have two objects that need to act as a Window's delegate. You assign one of the
objects to be the actual delegate, and inside its delegate methods, you invoke the second object's (the
ªpseudo-delegate'sº) methods. The code samples below show the code for the true delegate's
windowDidBecomeKey: method before and after conversion. Because this method is invoked every time
NSWindowDidBecomeKeyNotification is posted, it is now in an infinite loop.

Old Code

- windowDidBecomeKey: sender
{

...
[wannaBeDelegate windowDidBecomeKey: sender];
return self;

}

Bad New Code

- (void)windowDidBecomeKey:(NSNotification *)notification
{

NSWindow *theWindow = [notification object];
...
[[NSNotificationCenter defaultCenter] postNotificationName:

NSWindowDidBecomeKeyNotification object: theWindow];
/* BAD CODE! This message causes delayed recursion. */

}

To correct this problem, remove the postNotificationName:object: message from the windowDidBecomeKey:
method. Register wannaBeDelegate to receive the NSWindowDidBecomeKeyNotification in another place.
These fixes are shown below.

Good New Code

@implementation WannaBeDelegate
- init
{

...
[[NSNotificationCenter defaultCenter]

addObserver:self
selector:@selector(windowDidBecomeKey:)
name:NSWindowDidBecomeKeyNotification
object:nil];

...
}
...
@end

@implementation OfficialDelegate
...
- windowDidBecomeKey:(NSNotification *)notification
{

NSWindow *theWindow = [notification object];

...
}
...
@end

Rect Conversion
Stage 1

The NXRect and NXSize structures, now NSRect and NSSize, have moved to the Foundation Framework.
They are now defined in the header file NSGeometry.h. Other than this, the structures themselves remain the
same.

You will see two important differences in using these structures: All Application Kit functions and methods that
used to take the address of an NXRect or an NXSize now take the value of the structure. Similarly, all
Application Kit functions and methods that used to return a pointer to an NXRect or NXSize now return the
structure itself. This change was made to eliminate the aliasing problems that can occur when you pass the
address of a structure.

The conversion process makes these changes for you in most cases. (In places where you passed NULL for
one of these structures, the conversion process changes NULL to NSZeroRect or NSZeroSize.) The rest of this
section describes areas of the Application Kit where these changes require you to perform some of the
conversion yourself.

Functions That Draw Borders
The functions that draw borders, NXDrawButton(), NXDrawGrayBezel(), NXDrawGroove(), NXDrawTiledRects(), and
NXDrawWhiteBezel(), have changed slightly. You pass one of these functions two rectangles, the bounds

rectangle and the clipping rectangle. The function draws a border around the part of the bounds rectangle that
intersects with the clipping rectangle. Previously, to draw the border around the entire bounds rectangle, you
would pass NULL as the second argument. Now you can't do this, so you have to make sure the intersection
of the two rectangles is the bounds rectangle. A rectangle intersected with itself is that rectangle. Thus, to
have one of these functions draw a border around the entire bounds rectangle, you make the change shown
below. The conversion process makes this change for you, but it flags each case so that you can verify that
the invocations still make sense.

Old Code

NXDrawButton(&boundsRect, NULL);

New Code

NSDrawButton(boundsRect , boundsRect);

constrainFrameRect:toScreen: in Window
The Window class's constrainFrameRect:toScreen: method used to return a BOOL value that indicated whether
the first argument, the frame rectangle, was modified. It now returns the frame rectangle so that it conforms
with other methods that perform similar functions. You will need to change the variable that captured this
method's return value, and you will probably need to add code that checks whether this rectangle was
modified, as shown in the following example.

Old Code

NXRect *myFrameRect;
NXScreen *myScreen;
BOOL frameChanged;
...

frameChanged = [myWindow constrainFrameRect:myFrameRect
toScreen:myScreen];

if (frameChanged) ...

New Code

NSRect myFrameRect;
NSScreen *myScreen;
NSRect newFrameRect;
...
newFrameRect = [myWindow constrainFrameRect:myFrameRect

toScreen:myScreen];
if (!NSEqualRects(newFrameRect, myFrameRect)) ...

Boundary Rectangles in Cell
The Cell methods getIconRect:, getTitleRect:, getDrawRect:, and calcCellSize:inRect: have been changed to
drawingRectForBounds:, titleRectForBounds:, imageRectForBounds:, and cellSizeForBounds: in NSCell to be more
clear. Each of these new methods returns an NSRect, leaving the NSRect passed in as an argument
unchanged. The conversion process changes these messages as shown in the following example.

Old Code

[aCell getTitleRect:&titleRect];

New Code

titleRect = [aCell titleRectForBounds:titleRect];

Also in NSCell, you can no longer pass NULL as the NSRect for the method trackMouse:inRect:ofView:. The

conversion process flags places where you have done this, and you must change NULL to the cell's actual
boundary yourself.

Boundary Rectangles in View
Previously, if you wanted to redraw only a portion of a View, you passed an array of three NXRects to one of
the View's display methods. The first NXRect indicated the enclosing rectangle of the second and third
NXRects, and the method drew in the union of the last two NXRects. You used calcUpdateRects::: to calculate
the area to be redrawn. However, the usual use of the display methods was to redraw a single rectangle.

To simplify the API, the display methods now take a single NSRect that indicates the area to be redrawn. The
different display methods have been consolidated into three: display, displayRect:, and drawRect: (which
replaces drawSelf::). The calcUpdateRects::: method is obsolete because it is no longer necessary. If you have
subclassed View and overridden any of these methods, you must rewrite your code. The following table
summarizes the changes made to the View display methods.

View Method Replacement
TableHeadRule.eps ¬
calcUpdateRects::: None necessary
TableRule.eps ¬
display display
TableRule.eps ¬
display:: displayRect:
TableRule.eps ¬
display::: displayRect:
TableRule.eps ¬
displayFromOpaqueAncestor::: displayRect:
TableRule.eps ¬
drawSelf:: drawRect:
TableRule.eps ¬

Storage Conversion

None of the scripts converts Storage objects. If you use Storage objects in your application, you may choose
either not to convert them or to do the following:

1. Convert the Storage elements into objects. You can do this either by defining a new class or by using
NSValue objects.

2. Convert the Storage object itself into an NSArray object.

The following example shows how you might convert a Storage object into an NSMutableArray.

Old Code

Graph graph;
...
graphs = [Storage newCount:0

elementSize:sizeof(Graph)
description:@encode(Graph)];

...
[graphs addElement:&graph];

New Code

Graph graph;
...
graphs = [NSMutableArray array];
...

[graphs addObject:[NSValue value:&graph
withObjCType:@encode(Graph)]];

Stream Conversion
Stage 2

Application Kit objects and functions now use OpenStep objects where they used to use streams or void *
pointers. The Stream conversion replaces all Application Kit uses of streams or void * pointers with the objects
listed in the table below. You may have to complete the conversion by changing some of your variables from
typed streams to the appropriate object. You also may have to rewrite code that manipulates data previously
stored in a stream to use the methods provided by the object.

Streams for: Are replaced by:
TableHeadRule.eps ¬
Archiving/Typed streams NSArchiver, NSUnarchiver
TableRule.eps ¬
ASCII text NSString
TableRule.eps ¬
NSCell NSString
TableRule.eps ¬
NSGetWindowServerMemory NSString
TableRule.eps ¬
NSPasteboard filenames NSArray of NSStrings
TableRule.eps ¬
NSPasteboard other data NSData
TableRule.eps ¬

NSSelection NSData
TableRule.eps ¬
NSText NSString
TableRule.eps ¬
PostScript or EPS code NSData
TableRule.eps ¬
RTF and RTFD text NSData
TableRule.eps ¬
Word tables NSData
TableRule.eps ¬

This script converts only streams returned by the Application Kit or passed to the Application Kit. If your
application has a stream that does not interact with an Application Kit object, it will not be changed. After all
six required conversions are complete, you may choose to run the StreamToMutableData.tops or
StreamToString.tops conversion script to eliminate all streams from your code. For more information, see the
section ªOptional Stream Conversions.º

Optional Stream Conversions
Optional

To remove the use of streams from your code, you have two choices of scripts to run. If your streams contain
textual information, run StreamToString.tops, which converts your streams to NSString objects. If your streams
are not textual, run StreamToMutableData.tops, which converts streams to NSMutableData objects.

You may have to complete the conversion by changing some of your variables from streams to the
appropriate object. You also may have to rewrite code that manipulates data previously stored in a stream to
use the methods provided by the object.

Note: To learn how to run a single tops script, see the on-line release note
/NextLibrary/Documentation/NextDev/ReleaseNotes/ConvertingYourCode.rtf. Don't run these scripts until all six
conversion stages are complete.

String Conversion
Stage 1

In the Application Kit, functions and methods that previously took C string arguments now take NSString
objects. The NSString class comes from the Foundation Framework. Like NSArray, NSString is a class cluster
with two public superclasses: NSString (not modifiable) and NSMutableString (modifiable).

The Application Kit uses NSStrings because they make internationalization easier and make your code more
portable. NSStrings store character strings in a representation-independent format, which means you don't
have to know about your string's encoding when you are programming. In addition, NSStrings are allocated
and deallocated the same way that other OpenStep objects are, which makes memory allocation for strings
much less error prone.

Although the actual representation of character strings stored in NSStrings is independent of any particular
implementation, in general you can think of the contents of NSString objects as being, canonically, Unicode
characters (defined by the unichar data type). Methods that use the terms ªcharacter,º ªrange,º and ªlength,º
refer to strings of unichars and ranges and lengths of unichar stringsÐthis is important, because conversion
between unichars and other character encodings is not necessarily one to one. For instance, a NEXTSTEP
encoded string of a given length might contain fewer or more characters when encoded as unichars. Another
important point is that unichars don't necessarily correspond one to one with what is normally thought of as
ªlettersº in a string; if you need to go through a string in terms of ªletters,º use the NSString method
rangeOfComposedCharacterSequenceAtIndex:.

Any function that you are able to perform on a C string you can now perform with an NSString method. An

associated class, NSScanner, lets you extract numbers and strings from an NSString, just as the sscanf()
function lets you extract values from a C string. In addition, NSString has many convenient methods that
make it easy to work with UNIX pathnames.

The NSString class cluster description in the Foundation Framework Reference contains a complete
description of how to use NSStrings. The rest of this section describes the differences you'll see regarding
strings and NSStrings once the string conversion is complete.

Automatic NSString Conversion
The following table shows examples of the basic changes that the required String conversion makes to your
strings. The conversion process preserves your C string variables using the NSString methods
stringWithCString: and cString so you don't have to convert the variables to NSStrings. The stringWithCString:
method creates an NSString object with the same value as the C string variable supplied to it. Conversely, the
cString method creates a C string from an NSString object.

Old Code Converted Code
TableHeadRule.eps ¬
[NXApp loadNibSection:nibString...] [NSApp loadNibSection:

€€€€€[NSString stringWithCString:nibString]...]
TableRule.eps ¬
[NXApp loadNibSection:"My.nib"...] [NSApp loadNibSection:@"My.nib"] ...];
TableRule.eps ¬
titleString = [window title]; titleString = [[window title] cString];
TableRule.eps ¬

After you have completed all six required conversion stages, you may choose to run the script
StringConversion2.tops. This script eliminates some of the excess stringWithCString: and cString messages by

converting the C string in question to an NSString. For more information, see the section ªOptional String
Conversion.º

The cString method converts the NSString to a C string using the system's default encoding. If it can't create a
C string in the default encoding, it raises an exception. You should look at each occurrence of cString in your
code after the conversion to see if this is a potential problem. If it is, you have a choice of how to fix it:

SquareBullet.eps ¬You can convert the char * variable to an NSString, thus eliminating the need for the cString
method. NeXT provides some extensions to the OpenStep specification to allow you to keep some
information as an NSString. For example, if you are performing file manipulations, you can use the
NSFileManager object, which is a NeXT extension, so that you can store filenames in NSString objects
instead of passing C string arguments to UNIX system calls. NSFileManager is discussed more in the
section ªConverting for Complete Localizability.º

SquareBullet.eps ¬You can use the lossyCString method in place of cString. When lossyCString encounters a
character that can't be represented, it converts it to a character that can be represented. For example, it
might convert an em dash (Ð) to a dash (-) or a bullet (·) to an asterisk (*). Use lossyCString when you need
to convert to a C string and you don't need the conversion to be absolutely correct.

String Variables
The conversion process takes care of much of the transformation from using C strings to NSStrings for you,
but there are still places where you need to perform some of the conversion by hand. In most of these cases,
you must change the type of the variable that captures a return value. The following table lists places in the
Application Kit where a return value has changed to NSString, and you will need to change your variable's
type.

Application Kit Classes Items That Are Now NSStrings
TableHeadRule.eps ¬
Button, Cell, Menu command key equivalents

TableRule.eps ¬
NXBrowser path separators
TableRule.eps ¬

Other parts of the Application Kit now use NSArrays of NSStrings where they used to use arrays of C strings.
The following table lists these areas. Again, you may need to change the declaration of a variable in your
code accordingly.

Application Kit Classes Items That Are Now NSArrays of NSStrings
TableHeadRule.eps ¬
Application services types
TableRule.eps ¬
NXImage, NXImageRep image file types
TableRule.eps ¬
NXWorkspaceRequest Protocol removable media
TableRule.eps ¬
OpenPanel open panel types
TableRule.eps ¬
Pasteboard pasteboard types
TableRule.eps ¬
Printer printer types
TableRule.eps ¬
View, Window dragged types
TableRule.eps ¬

Pasteboard Types

Pasteboard's data types are now NSStrings instead of NXAtoms. To compare pasteboard data types, use the
isEqualToString: method instead of the C == operator. The conversion process will flag the relevant code for
you, and you should change it as shown in the following example.

Old Code

const NXAtom *myTypes = [aPasteboard types];
if (*myTypes[0] == NXFontPboardType) ...

New Code

NSArray *myTypes = [aPasteboard types];
if ([[myTypes objectAtIndex:0]

isEqualToString:NSFontPboardType]) ...

The Empty String
The NSString constant @"" is the empty string. Although NULL is a valid C string, nil is not a valid NSString.
Methods that return NSStrings return an empty string in place of NULL. You also should use the empty string
where there is no NSString.

ButtonCell's stringValue method used to return "" if the state was 1 and NULL otherwise. Because Application
Kit methods cannot return nil for NSString objects, this has changed as shown in the following table, and you
must change code that tests the return value of stringValue.

Current Code Replace With:
TableHeadRule.eps ¬
strcmp([myButton stringValue], "") [[myButton stringValue] isEqualToString:@"1"]
TableRule.eps ¬

strcmp([myButton stringValue], NULL) [[myButton stringValue] isEqualToString:@"0"]
TableRule.eps ¬

NXCType.h Functions
NEXTSTEP Release 3 provided functions (for example, NXToLower(), NXIsSpace(), and NXIsAlNum()) that are
similar to the ANSI C functions in the header file ctype.h. The NEXTSTEP versions of these functions are
declared in the header file NXCType.h. The difference between the NXCType functions and their ANSI
counterparts is that the NXCType functions take a NEXTSTEP-encoded character as input. The ANSI
functions work only on ASCII characters.

The NXCType functions are not in OpenStep. The required string conversion changes them to their ASCII
equivalents as shown below.

Old Code

char x = 'A';
char y;

if (NXIsUpper(x))
y = NXToLower(x);

New Code

char x = 'A';
char y;

if (isupper(x))
y = tolower(x);

A Foundation class, NSCharacterSet, defines character sets analogous to many of the functions in ctype.h, in
addition to providing for the definition of customized sets. If you need to test non-ASCII characters or if you
intend to localize the application you are converting, you should use NSCharacterSet instead of the ctype.h
functions. After all six required conversion stages are complete, run the conversion script
StringConversion2.tops, which helps you make this change. For more information, see the section ªOptional
String Conversion.º

Service Providers
Service providers must now use NSStrings in the method that implements the service. You must convert
these methods by hand. If your application provides a service, the method that performs that service should
be declared like this:

-€serviceMethod:(NSPasteboard€*)pasteboard userData:(NSString€*)userData
€€€€€€€€€€€€€€€€error:(NSString€**)errorString;

Note: For more information, see the on-line document Services.rtf under
/NextLibrary/Documentation/TasksAndConcepts/ProgrammingTopics.

String Conversion Gotchas
After the required string conversion, look out for the following:

Formatted Strings

The conversion process sometimes gives the incorrect formatting argument for NSString objects and C
strings. Sometimes an NSString is provided for a %s argument or a C string is provided for a %@ (NSString)
argument, as shown below. You must either change the control character or change the parameter.

Bad New Code

NSRunAlertPanel(...@"%s"...,
[NSString stringWithCString:aString]...);

NSRunAlertPanel(...@"%@"..., [stringObject cString]...);

Good New Code

NSRunAlertPanel(...@"%s"..., aString...);
NSRunAlertPanel(...@"%@"..., stringObject...);

Specifying File Extensions

Previously, when you specified a file extension as an argument to a method such as
pathForResource:extension:, you could begin the extension with the dot. When you specify a file extension in
OpenStep, it is expected that you won't include the dot. The conversion process does not find these for you.

Old Code

[NXBundle pathForResource:"Employee" ofType:".eomodel"]

New Code

[NSBundle pathForResource:@"Employee" ofType:@"eomodel"]

Optional String Conversion
Optional

Perform the optional string conversion (StringConversion2.tops) to eliminate occurrences of NSString's cString
and stringWithCString: methods in your code. The required string conversion put these methods in your code.

In many cases, the C strings supplied as arguments to the stringWithCString: methods can be converted to
NSStrings, eliminating the need for these two messages.

The usefulness of this script varies; run it on a copy of your code first to see if it will help you. If you perform a
lot of character manipulation, this script requires that you manually rewrite much of the code that performs
character manipulation. If this is the case, and your application will not be localized, you may want to skip this
conversion. If you do localize your application, even if you perform a lot of character manipulation, this script
will help you because it increases your use of NSStrings.

Note: To learn how to run a single Tops script, see the on-line release note
/NextLibrary/Documentation/NextDev/ReleaseNotes/ConvertingYourCode.rtf. Don't run this script until all six
conversion stages are complete.

Character Manipulation
After conversion, you may have to rewrite code that accesses individual characters in a string. The
conversion script assumes you are not trying to perform character manipulation on a C string, and it does not
distinguish between a C string and a character pointer. For example, if you have a method like the following to
extract the extension from a filename, it will be converted as shown below.

Old Code

char *extension = rindex(filename,'.');
if (extension) {

*extension = 0;
extension++;

}

Bad New Code

NSString *extension = [NSString stringWithCString:
rindex(filename,'.')];

if (extension) {

*extension = [NSString stringWithCString:0];
[extension cString]++;

}

See the NSString class cluster description in the Foundation Framework Reference for guidance on
converting code that accesses individual characters in a string. To solve this particular problem, NSString
provides many methods that let you manipulate UNIX pathnames. You can extract the extension from a
filename with one message, as shown below.

Good New Code

NSString *extension = [[NSString stringWithCString:filename]
pathExtension];

The next example shows a more general case of accessing characters in a string. (It removes all occurrences
of the letter `o' from a string.) To access individual characters in a C string, you use an array index. Accessing
characters by index in an NSStrings is not desirable because it is slow and the string may contain non-ASCII
characters that make sense only in a sequence. For example, the Unicode representation of ªÝº may be two
characters long, ªeº and ªÂº. Instead, it is better to use ranges to locate characters, as shown below.

Old Code

char *aString;
int to, from;
int length = strlen(aString);

for (to = from = 0; from < length; from++) {
 if (aString[from] != 'o') {

aString[to] = aString[from];

to++;
 }
}
if (to < (length - 1)) aString[to] = '\0';

New Code

NSMutableString *aString;
NSRange rangeOfO;
...
rangeOfO = [aString rangeOfString:@"o"];
while (rangeOfO.length) {

[aString deleteCharactersInRange:rangeOfO];
rangeOfO = [aString rangeOfString:@"o"];

}

Converting ctype.h Functions
During the required string conversion, the functions defined in NXCType.h (for example, NXToLower(),
NXIsSpace(), and NSIsAlNum()) are converted to their ANSI C equivalents (defined in ctype.h). Mostly, these
functions return whether a character has a particular property (is uppercase or lowercase, and so on). The
ANSI C functions work on ASCII characters, whereas their NEXTSTEP counterparts work on characters in the
NEXTSTEP encoding.

OpenStep also has the ability to handle such operations. It has a class named NSCharacterSet (in the
Foundation Framework) that defines character sets. For example, the set of uppercase characters is a
character set. To find out if a character has a particular property, you determine if it is a member of the
appropriate character set with the method characterIsMember:. Some of the functions in ctype.h convert a
character. In OpenStep, you use NSString methods to perform such operations.

The optional string conversion script flags all occurrences of a ctype.h function in your code with a warning. If
you are going to internationalize the character or string in question, you should change the function into a
characterIsMember: message sent to the NSCharacterSet mentioned in the warning message (or to the
NSString method specified in the message). The following code shows an example.

Old Code

char x = 'Z';
char *y;
int i;
...
i = strlen(y) - 1;
if (isupper(x))

y[i] = tolower(x);

New Code

unichar x = (unichar)'Z';
NSMutableString *y;
...
if ([[NSCharacterSet uppercaseLetterCharacterSet]

characterIsMember:x])
[y appendString:[[NSString stringWithCharacters:&x length:1]
 lowercaseString]];

Converting for Complete Localizability

One of the goals of OpenStep is to make it easier to write international applications. If you use NSString
objects for all external strings (that is, strings that the user will see), you won't have to worry about the string's
encoding when you are programming. In addition to NSString, OpenStep provides these classes and
functions to help with localization. If you're converting a localized application, you'll want to use these classes
and functions.

Even if you're not converting a localized application, these classes and functions may improve the portability
of your code. If you want your application to run on the Microsoft Windowsâplatform, using NSStrings for
such items window titles and file names can protect you from having to worry about the different character
encodings used on Mach and Microsoft Windows.

NSDate
NSDate is a class cluster that stores dates in a localizable format. Use it in place of C functions such as those
in the following table.

Function NSDate Method
TableHeadRule.eps ¬
time date
TableRule.eps ¬
ctime, strftime descriptionWithCalendarFormat:timeZone:locale:
TableRule.eps ¬

NSLog()
NSLog() is a function defined in the Foundation Framework that writes a formatted string to standard error.
Replace all uses of syslog() in your code with NSLog().

NSScanner
NSScanner scans an NSString for data. If you're using sscanf() or fscanf() to scan localized strings, you should
replace those functions with NSScanner methods. See the description of NSScanner in the Foundation
Framework Reference for more information.

NSFileManager
NSFileManager is an extension to the OpenStep API. It performs file manipulations for you, and it converts
localized strings to a format acceptable to the file system. Use it in place of C functions such as those in the
following table.

Function NSFileManager Method
TableHeadRule.eps ¬
getwd, getcwd currentDirectoryPath
TableRule.eps ¬
chown, chmod changeFileAttributes:atPath:
TableRule.eps ¬
stat, lstat fileAttributesAtPath:traverseLink:
TableRule.eps ¬
statfs fileSystemAttributesAtPath:
TableRule.eps ¬
readLink pathContentOfSymbolicLinkAtPath:pathContent:
TableRule.eps ¬
symlink createSymbolicLinkAtPath:pathContent:
TableRule.eps ¬
mkdir createDirectoryAtPath:attributes:
TableRule.eps ¬
creat, umask createFileAtPath:contents:attributes:
TableRule.eps ¬
fopen contentsAtPath:

TableRule.eps ¬
chdir changeCurrentDirectoryPath:
TableRule.eps ¬
link linkPath:toPath:handler:
TableRule.eps ¬
rmdir, unlink removeFileAtPath:handler:
TableRule.eps ¬
rename movePath:toPath:handler:
TableRule.eps ¬

