
Copyright ã1996 by NeXT Software, Inc.    All Rights Reserved.

Chapter 4

Converting Other Kits

This chapter describes conversions for kits other than the Application Kit and the Common classes. Many of
the conversions described here are optional in that you don't have to run these scripts unless your program
uses classes from the kit. (To learn how to run an optional conversion script, see the on-line document
Converting Your Code to OpenStep in /NextLibrary/Documentation/NextDev/ReleaseNotes.) Not all NEXTSTEP
kits have a conversion script.

Custom IB API Conversion
Optional

If you are converting a palette project, you must run the script CustomIBAPI.tops to convert public Interface
Builder API. Like the API declared in the Application Kit, the public API for Interface Builder is essentially the
same, but it has been modified to use the Foundation Framework and OpenStep programming conventions.

Note: It's probably best to perform a deep conversion if you're converting a palette project. Otherwise, the
conversion process won't catch things like List instance variables that are now NSArrays.

Changes to Protocols
If you've written a palette, you know that much of the Interface Builder API is declared in protocols that you
implement to accomplish certain tasks. Because of the extensive use of protocols, it's tricker to catch errors in

the conversion process. Many of the methods declared in protocols have had name changes, but if you still
implement the old version of the method, the compiler does not understand that you meant to implement a
method from the protocol, and it won't flag it as an error. For this reason, you'll have to look especially closely
at your use and implementation of Interface Builder protocol methods. The most problematic protocols are
listed here. You should verify that you're implementing the new version of each method in the protocol.

IBDocuments

The following table lists each of the methods in the IBDocuments protocol, that method's new name, and any
differences in the arguments or return values. If you implement the IBDocuments protocol, make sure you're
implementing the new versions of the methods. You may also need to change messages that you send to
[NSApp activeDocument].

Old Method New Method Differences
TableHeadRule.eps ¬
addConnector: addConnector: Returns void.
TableRule.eps ¬
attachObject:to: attachObject:toParent: Returns void.
TableRule.eps ¬
attachObjects:to: attachObjects:toParent: Objects list is NSArray. Returns void.
TableRule.eps ¬
copyObject:type:inPasteboard: copyObject:type:toPasteboard: Pasteboard type is NSString. Returns BOOL.
TableRule.eps ¬
copyObjects:type:inPasteboard: copyObjects:type:toPasteboard: Objects list is NSArray. Pasteboard type is

NSString. Returns BOOL.
TableRule.eps ¬
deleteObject: detachObject: Returns void.
TableRule.eps ¬
deleteObjects: detachObjects: Objects list is NSArray. Returns void.
TableRule.eps ¬
editorDidClose:for: editor:didCloseForObject: Returns void.
TableRule.eps ¬

getDocumentPathIn: documentPath Returns path as NSString.
TableRule.eps ¬
getEditor:for: editorForObject:create: Arguments are reversed.
TableRule.eps ¬
getNameIn: nameForObject: Returns name as NSString.
TableRule.eps ¬
getObjects: objects Returns object list as NSArray.
TableRule.eps ¬
getParentForObject: parentForObject:
TableRule.eps ¬
listConnectorsForDestionation: connectorsForDestination: Returns connector list as NSArray.
TableRule.eps ¬
listConnectorsForDestionation:filterClass: connectorsForDestination:ofClass: Returns connector list as NSArray.
TableRule.eps ¬
listConnectorsForSource: connectorsForDestination: Returns connector list as NSArray.
TableRule.eps ¬
listConnectorsForSource:filterClass: connectorsForDestination:ofClass: Returns connector list as NSArray.
TableRule.eps ¬
objectIsMember: containsObject:
TableRule.eps ¬
openEditorFor: openEditorForObject:
TableRule.eps ¬
removeConnector: removeConnector: Returns void.
TableRule.eps ¬
pasteType:fromPasteboard:parent: pasteType:fromPasteboard:parent: Returns NSArray of objects. Pasteboard type is

NSString.
TableRule.eps ¬
redrawObject: drawObject: Returns void.
TableRule.eps ¬
setName:for: setName:forObject: Name is an NSString.
TableRule.eps ¬
setSelectionFrom: setSelectionFromEditor: Returns void.

TableRule.eps ¬
touch touch Returns void.
TableRule.eps ¬

IBEditors

The following table lists the each changed method from the IBEditors protocol, its new name, and any
differences in the arguments or returns values for the new method.

Old Method New Method Differences
TableHeadRule.eps ¬
acceptsTypeFrom: acceptsTypeFromArray: Returns BOOL.

Type list is NSArray of
NSStrings.

TableRule.eps ¬
close close Returns void.

Must release editor in this
method.

TableRule.eps ¬
closeSubeditors closeSubeditors Returns void.
TableRule.eps ¬
makeSelectionVisible: makeSelectionVisible: Returns void.
TableRule.eps ¬
orderFront orderFront Returns void.
TableRule.eps ¬
resetObject: resetObject: Returns void.
TableRule.eps ¬
selectObjects: selectObjects: Returns void.

Object list is NSArray.
TableRule.eps ¬

IBSelectionOwners

IBSelectionOwners protocol has changed as summarized in the following table.

Old Method New Method Differences
TableHeadRule.eps ¬
selectionCount selectionCount No change
TableRule.eps ¬
getSelectionInto: selection Returns NSArray.
TableRule.eps ¬
redrawSelection drawSelection Returns void.
TableRule.eps ¬

IBConnectors

The changes to the IBConnectors protocol are very slight. However, there is one new method declared in this
protocol that you should implement:

- (NSString *)label

This method is used to label the connection when it is displayed in the nib file window in outline mode.

IBInspectors

The IBInspectors protocol is obsolete. Its methods are now part of the IBInspector class. If you have a class
that specifically adopts the IBInspectors protocol, you can remove this from the declaration.

IBDocumentControllers

The IBDocumentControllers protocol is obsolete because its functionality is implemented through

notifications. Interface Builder's application object posts the following notifications under the following
circumstances, rather than sending messages directly to registered objects. If you implement the
IBDocumentControllers protocol, you should add your object as an observer of these notifications. (See
ªNotification Conversionº in ªConverting Other Kitsº for a detailed description of notifications.)

Notification Posted When
TableHeadRule.eps ¬
IBDidOpenDocumentNotification A document has been opened.
TableRule.eps ¬
IBDidSaveDocumentNotification A document has been saved.
TableRule.eps ¬
IBWillCloseDocumentNotification A document is about to be closed.
TableRule.eps ¬
IBWillSaveDocumentNotification A document is about to be saved.
TableRule.eps ¬

Obsolete Method Replacement
TableHeadRule.eps ¬
didOpenDocument: Register to receive IBDidOpenDocumentNotification.
TableRule.eps ¬
didSaveDocument: Register to receive IBDidSaveDocumentNotification.
TableRule.eps ¬
willSaveDocument: Register to receive IBWillSaveDocumentNotification.
TableRule.eps ¬
registerController: Register to receive individual notifications.
TableRule.eps ¬
unregisterController: [[NSNotificationCenter defaultCenter] removeObserver:]
TableRule.eps ¬

Old Code

@interface MyController : NSObject <IBDocumentControllers>
...
@end

@implementation MyController
- init
{

...
[NXApp registerController:self];

}

- didOpenDocument:theDocument {...}
- didSaveDocument:theDocument {...}
- willSaveDocument:theDocument {... }

- free
{

[NXApp unregisterController:self];
...

}
...
@end

New Code

@interface MyController : NSObject

...
@end

@implementation MyController
- init
{

...
[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(didOpenDocument:)
name:IBDidOpenDocumentNotification object:NSApp];

/* also add yourself as an observer of
IBDidSaveDocumentNotification and
IBWillSaveDocumentNotification

*/
}
- (void)didOpenDocument:(NSNotification *)theNotification
{

IBDocument *theDocument = [theNotification object];
...

}
- (void)didSaveDocument:(NSNotification *)theNotification {...}
- (void)willSaveDocument:(NSNotification *)theNotification {...}
- (void)dealloc
{

[[NSNotificationCenter defaultCenter] removeObserver:self];
...

}
...
@end

Changes to View Additions
If you implement getMinSize:maxSize:from:, you should remove that method from your code. This method has
been replaced by two methods: minimumSizeFromKnobPosition: and maximumSizeFromKnobPosition:. Both of
these methods take an argument of type IBKnobPosition, which is an enumerated type. All of the knob position
constants are now part of the IBKnobPosition enum.

In addition, the category on NSView now declares the method allowsAltDragging. Implement allowsAltDragging
and have it return YES if your NSView subclass can be Alternate-dragged to create a matrix.

Also, there is now a category on NSCell that allows you to control resizing and Alternate-dragging of cells as
well as views.The NSCell additions are declared in the header file NSViewAdditions.h.

More Additions to NSObject
The category on NSObject has the following new method:

- (NSString *)classInspectorClassName

This method returns the class name for the custom class inspector. The custom class inspector is new in this
release of Interface Builder. (It looks like the attributes inspector for custom objects.) Using the custom class
inspector, you can create subclasses of NSView subclasses like NSButton without losing the attributes
inspector for the button. The default custom class inspector should be sufficient in most cases.

An additional category on NSObject declares this method:

+ (BOOL)canSubstituteForClass:(Class)originalObjectClass

You implement this method to have your class not be displayed in the Custom Class inspector of its
superclass. This is necessary in rare instances only. For example, NSForm is a subclass of NSMatrix, but it is
so specialized that it wouldn't be appropriate for a programmer to create an NSMatrix and assign it the
NSForm class. Thus, NSForm overrides +canSubstituteForClass: as shown.

New Code

@implementation NSForm (IBCustomClassInspector)

+ (BOOL)canSubstituteForClass:(Class)originalObjectClass
{

return (originalObjectClass == [NSMatrix class]) ? NO : YES;
}

New Notifications
In addition to the notifications that replace the IBDocumentControllers protocol, the new Interface Builder API
now uses these notifications:

Notification Posted when
TableHeadRule.eps ¬
IBWillAddConnectorNotification A connection is about to be made.
TableRule.eps ¬
IBDidAddConnectorNotification A connection has been made.
TableRule.eps ¬
IBWillRemoveConnectorNotification A connection is about to be removed.
TableRule.eps ¬
IBDidRemoveConnectorNotification A connection has been removed.
TableRule.eps ¬
IBSelectionChangedNotification The selection has changed.
TableRule.eps ¬
IBInspectorDidModifyObjectNotification The user has changed values on the inspector.
TableRule.eps ¬

Obsolete Methods
The header file InterfaceBuilder.h used to declare methods that were used in previously releases of Interface
Builder, but have been obsolete since release 3. InterfaceBuilder.h no longer declares these methods, and you
should no longer use them in your code.

Obsolete Method Replacement
TableHeadRule.eps ¬
disableUpdate (in IB protocol) None
TableRule.eps ¬
reenableUpdate (in IB protocol) None
TableRule.eps ¬
updateFor: (in IBInspector) None
TableRule.eps ¬

DO Conversion
Stage 1

As mentioned at the beginning of this guide, the Distributed Objects system is now part of the Foundation
Framework. OpenStep uses the same encoding scheme to distribute objects as it does to archive them, so
the NXTransport protocol is no longer necessary. The changes to the Distributed Objects API are summarized
here.

Class or Protocol Replacement
TableHeadRule.eps ¬
NXConnection NSConnection
TableRule.eps ¬
NXProxy NSDistantObject
TableRule.eps ¬
NXPort NSPort (not part of OpenStep)
TableRule.eps ¬
NXTransport NSCoding
TableRule.eps ¬

Encoding for Distribution
As mentioned previously, OpenStep uses the same encoding scheme to distribute objects as it does to
archive them. You should be able to implement just one encodeWithCoder: and one initWithCoder: method that
both the archiving system and the distributed objects system can use.

As you'll recall, the NSCoder class, which defines the interface for objects that encode and decode objects, is
an abstract class. For archiving, NSArchiver and NSUnarchiver objects do the real work. There is no
OpenStep class that encodes objects for distribution, but NeXT provides the NSPortCoder class to perform
this function. Where you have referenced an encoding object specifically in your code, the conversion script
will change it to an instance of NSPortCoder.

Changes to NXConnection
These few changes have been made to the NXConnection class. The changes made to your code are
summarized in the table below.

SquareBullet.eps ¬NSConnection doesn't support the notion of placing all connections in a zone.

SquareBullet.eps ¬There's no way to unexport an object, as with [NXConnection removeObject]. The proxies for
connected objects go away when the connection goes away.

SquareBullet.eps ¬Timeout values are given in seconds rather than milliseconds. Input and output timeouts
are now set with two different methods.

Obsolete Method Possible Replacement
TableHeadRule.eps ¬
setDefaultZone: Use allocWithZone: to create connections
TableRule.eps ¬
defaultZone: Reference zone used to allocate the connections.
TableRule.eps ¬
removeObject None
TableRule.eps ¬
setDefaultTimeOut: setRequestTimeout: and setReplyTimeout: (instance methods)
TableRule.eps ¬

Connecting to Ports
There are no OpenStep equivalents to the connectToPort:... methods; however NeXT has extended the
NSConnection class description to include methods that connect using NSPort objects. The DO conversion
converts your connectToPort:... messages to their NeXT equivalents.

Running a Connection
NXConnection had its own internal run loop to run a connection. You could send the connection run,
runFromAppKit (to use the Application Kit's run loop), or runInNewThread. NSConnection and the Application Kit
now use the same run loop. To run it, you send [[NSRunLoop currentRunLoop] run]. If you want to allow timers
or Application Kit objects to run while the connection is waiting for a response, run the loop in

NSConnectionReplyMode:

[NSRunLoop currentRunLoop] runMode:NSConnectionReplyMode
€€€€€beforeDate:[NSDate distantFuture]];

To run the connection in a different thread, use NSThread. Create a method that performs the work you want
to do in a new thread, then use detachNewThreadSelector:toTarget:withObject: to detach the thread.

Old Code

[aConnection runInNewThread];

New Code

[NSThread detachNewThreadSelector:@selector(runMe) toTarget:self
withObject:nil];

...
- (void)runMe
{

[[NSRunLoop currentRunLoop] run];
}

Retrieving the Number of Messages Received
The messagesReceived class method is obsolete. Each NSConnection instance keeps track of statistics about
itself in an NSDictionary returned by the statistics method. Send the description message to this NSDictionary
to see the type of statistics kept.

DPS Conversion
Stage 3

The extensions to the DPS client library now use objects wherever possible. Where the use of objects was
not possible, the API has changed to conform more closely with the Adobe naming conventions. The new
OpenStep interfaces are in the header file dpsOpenStep.h. It and all other DPS header files are now in
AppKit.framework.

The biggest change is the new NSDPSContext class. You now create a DPS context by creating an
NSDPSContext object. This object provides methods that perform any operation you typically perform on a
context. If you are more familiar with the C function interface, you can use the method DPSContext to retrieve
the object's DPSContext record. You can then operate on this context record using any of the functions or
single operator functions defined in the DPS client library. The object and the record are always synchronized
with each other; if you change one, the other is always automatically updated.

Also, to conform to the rest of OpenStep, the DPS system now uses NSRunLoop objects. Conversion to
NSRunLoops requires some manual conversion if you are creating timed entries, accessing ports, or
accessing file descriptors.

DPSAddTimedEntry(), DPSRemoveTimedEntry()

Timed entries are handled with NSTimer objects in OpenStep. NSTimer is a Foundation class that defines
timer objects that work with NSRunLoop objects. During this conversion, the DPSAddTimedEntry() and
DPSRemoveTimedEntry() functions are changed as shown in the following example.

Old Code

void myHandler(DPSTimedEntry teNumber, double now, void *who)
{

[(id)who tick];
}

...
- setRefreshSpeed:(double)theSpeed
{

refreshSpeed = theSpeed;
if (mvFlags.running) {

DPSRemoveTimedEntry(timedEntry);
timedEntry = DPSAddTimedEntry(refreshSpeed, myHandler,

self, NX_BASETHRESHOLD);
}
return self;

}

Bad New Code

void myHandler(NSTimer *teNumber, double now, void *who)
{

[(id)who tick];
}
...
- setRefreshSpeed:(double)theSpeed
{

refreshSpeed = theSpeed;
if (mvFlags.running) {

[timedEntry invalidate]; [timedEntry release];
timedEntry = [[NSTimer

scheduledTimerWithTimeInterval:refreshSpeed
target:<target> selector:myHandler
userInfo:self repeats:YES] retain];

}
return self;

}

The timerWithTimeInterval:target:selector:userInfo:repeats: method creates a timer object that repeatedly
schedules itself to fire after refreshSpeed seconds. When the NSTimer created in this example fires, it sends
the message [<target> myHandler:self].

You must complete the conversion by doing the following:

SquareBullet.eps ¬Change the selector argument in timerWithTimeInterval:target:selector:userInfo:repeats: to a
method selector. The method must return void and take an NSTimer object as an argument.

SquareBullet.eps ¬Change the target argument to the object that defines the method you specified for the
selector argument.

SquareBullet.eps ¬If your method needs more information than just the timer object, pass that information
through the userInfo argument. Then, in the method's implementation, send the message [timer userInfo] to
extract that information from the timer.

In the above example, the myHandler function can be removed, the tick method used as the selector, and self
used as the target. The tick method must be changed so that it takes an NSTimer object as an argument. The
following code shows these changes.

Good New Code

- setRefreshSpeed:(double)theSpeed
{

refreshSpeed = theSpeed;
if (mvFlags.running) {

[timedEntry invalidate]; [timedEntry release];
timedEntry = [[NSTimer scheduledTimerWithTimeInterval:

(NSTimeInterval)refreshSpeed
target:self selector:@selector(tick:)
userInfo:nil repeats:YES] retain];

}
return self;

}

Ports and File Descriptors

The OpenStep specification does not contain API for listening to ports or file descriptors as part of the
NSRunLoop because ports and file descriptors are operating-system specific. If you have code that performs
these operations, it will not be portable. The conversion process changes these functions to API provided by
NeXT that is not part of the OpenStep specification.

Previously, you called DPSAddPort() or DPSAddFD() to add a port or file descriptor and to register a function
that would handle events involving that port or file descriptor. You used DPSRemovePort() and DPSRemoveFD()
to remove the port or file descriptor. All four of these functions are now obsolete. You must now perform these
steps instead:

1. Create an NSPort or NSPosixFileDescriptor object and associate it with the port or file descriptor.

2. In the case of file descriptor, have the NSPosixFileDescriptor monitor activity by invoking the method
monitorActivity:.

3. Set a delegate for the NSPort or NSPosixFileDescriptor. The delegate will handle the events involving that
port or file descriptor.

4. Register the NSPort or NSPosixFileDescriptor with the current NSRunLoop.

5. When you're done with the port or file descriptor, remove it from the NSRunLoop.

The table below summarizes the changes.

Obsolete Function Replacement in NeXT's implementation of OpenStep
TableHeadRule.eps ¬
DPSAddPort() [[NSPort portWithMachPort:] retain]

[nsport setDelegate:]
[nsrunLoop addPort:forMode:]

TableRule.eps ¬
DPSRemovePort() [nsrunLoop removePort:forMode:]
TableRule.eps ¬
DPSAddFD() [[NSPosixFileDescriptor alloc] initWithFileDescriptor:]

[nsposixFileDescriptor monitorActivity:]
[nsposixFileDescriptor setDelegate:]
[nsrunLoop addPosixFileDescriptor:forMode:]

TableRule.eps ¬
DPSRemoveFD() [nsrunLoop removePosixFileDescriptor:forMode:]
TableRule.eps ¬

Old Code

DPSAddFD(fromChild, (DPSFDProc)fdHandler,
(id)self, NX_BASETHRESHOLD);

New Code

NSPosixFileDescriptor *filed = [[NSPosixFileDescriptor alloc]
initWithFileDescriptor:fromChild];

[filed monitorActivity:NSPosixWritableActivity];
[filed setDelegate:self];
[[NSRunLoop currentRunLoop] addPosixFileDescriptor:filed

forMode:NSDefaultRunLoopMode];
/* Implementation of fdHandler function from old code becomes
 implementation of the delegate method
 posixFileDescriptor:currentActivity: */

Miscellaneous Functions to Convert

You must also convert the functions listed in the table below by hand, as shown.

Obsolete Function Possible Replacement
TableHeadRule.eps ¬
DPSAsynchronousWaitContext [nsdpsContext notifyObjectWhenFinishedExecuting:]
TableRule.eps ¬
DPSPrintError(error) [NSString stringForDPSError:error]
TableRule.eps ¬
DPSPrintErrorToStream(error) [NSString stringForDPSError:error]
TableRule.eps ¬

Image View Conversion
Optional

The NeXT Application Kit provides a new class called NSImageView, which displays an NSImage. If you have
an application based on the Enterprise Objects Framework that uses an NXImageView, run the
ImageViewConversion.tops script to convert it to an NSImageView object.

There are two significant differences between NXImageView and NSImageView:

SquareBullet.eps ¬Instead of the style and setStyle: methods, NSImageView defines imageFrameStyle and
setImageFrameStyle:. This difference is significant only in that the conversion script will change all
occurrences of style and setStyle: in your code to the new NSImageView methods. NSFont and NSWindow
define style and setStyle: methods. You should examine your code after this conversion and make sure that
the script did not change a method name incorrectly.

SquareBullet.eps ¬NSImageView adds the ability to set the alignment of the image within the view and the
ability to scale the image. See the NSImageView class specification in the Application Kit Reference for
more information on these additions.

Table View Conversion
Optional

The NeXT Application Kit provides a new class called NSTableView, which displays data in a table. If you
have an application based on the Enterprise Objects Framework or the DBKit that uses an NXTableView or a
DBTableView, run the TableViewConversion.tops script to convert it to an NSTableView object. Because there
have been significant architectural changes between NXTableView and NSTableView, the usefulness of this
script varies.

Changes in Architecture
NXTableView inherited from ScrollView and was made up of these components: an NXTableVector for each
statically added row or column, a data source (conforming to the NXTableDataSources informal protocol) if
rows or columns were dynamically added, and an NXFormatter object that drew each field along a static axis.

NSTableViews are constructed a bit differently. They inherit from NSControl, but are typically displayed in an
NSScrollView. An NSTableHeaderView displays the column headings. (Rows never have headings.) Rows
are always dynamically added, and columns are always statically added. An NSTableColumn object
represents each column in the table view (NSTableView keeps an array of NSTableColumns). Also, each field
in the NSTableView is an NSCell. Similar to NXTableView, one NSCell controls how each field in a column is
drawn. The NSCell may have an NSFormatter object associated with it that specifies how the NSCell is to
appear. You can use the setDataCell: method of NSTableColumn to set the NSCell object for that column and
the setFormatter: method of NSCell to set the NSFormatter for the NSCell. NXFormatter is obsolete.

Selection Modes
NXTableView had a setMode: method that allowed you to set the selection mode: whether the user could
select any of the rows or columns and whether they could select more than one at a time. With
NSTableViews, users are always allowed to select rows, and you can use various methods to control whether
empty selection is allowed, whether multiple selection is allowed, and whether the user can select columns
too.

The setMode: and mode methods are obsolete. Because of the ubiquitousness of setMode: and mode methods
in the Application Kit, the conversion script is not able to change these for you. You must look through your
code to see if you send mode or setMode: or mode to an NXTableView, and if so, change it as summarized in
the following table.

Obsolete Method Possible Replacement
TableHeadRule.eps ¬
[tableView mode] == NX_LISTMODE [tableView allowsMutlipleSelection] == YES
TableRule.eps ¬
[tableView mode] == NX_RADIOMODE [tableView allowsMultipleSelection] == NO
TableRule.eps ¬
[tableView mode] == NX_NOSELECT [tableView allowsEmptySelection] == YES
TableRule.eps ¬
[tableView setMode:NX_LISTMODE] [tableView setAllowsMultipleSelection:YES]
TableRule.eps ¬
[tableView setMode:NX_RADIOMODE] [tableView setAllowsMultipleSelection:NO]
TableRule.eps ¬
[tableView setMode:NX_NOSELECT] [tableView setAllowsEmptySelection:YES]
TableRule.eps ¬

Getting and Setting Values
You access data in the NSTableView by sending methods to the object that implements the
NSTableDataSource informal protocol. Because columns are always static and rows are always dynamic, the
information is retrieved by sending an NSTableColumn object representing the table column and an index for
the row.

Obsolete Method Possible Replacement
TableHeadRule.eps ¬
getValue::into: tableView:objectValueForTableColumn:row:
TableRule.eps ¬
setValueFor::from: tableView:setObjectValue:forTableColumn:
TableRule.eps ¬

Changes to Formatting
Because NXFormatters are obsolete, the following methods are obsolete. As explained previously, each
NSTableColumn has an NSCell object that controls the look of the fields in that column. Unlike the
NXFormatter, the NSCell does not set any values for the field; the NSTableDataSource object does that
instead.

Obsolete Method Possible Replacement
TableHeadRule.eps ¬
beginBatching None
TableRule.eps ¬
drawFieldAt::inside:inView: [[[[tableView tableColumns] objectAtIndex:j]
withAttributes::usePositions: €€€€€€dataCell] displayRect:]
TableRule.eps ¬

editFieldAt:: editColumn:row:withEvent:select:
TableRule.eps ¬
endBatching None
TableRule.eps ¬
endEditing [[tableView window] makeFirstResponder:tableView]
TableRule.eps ¬
formatterAt:i:j [[[tableView tableColumns] objectAtIndex:j] dataCell]
TableRule.eps ¬
formatterDidChangeValueFor:at:to:sender: None
TableRule.eps ¬
formatterDidChangeValueFor::to:sender: None
TableRule.eps ¬
formatterWillChangeValueFor::sender: tableView:shouldEditTableColumn:row: to allow editing

control:isValidObject: to allow a new object
TableRule.eps ¬
formatterWillChangeValueFor:at:sender: tableView:shouldEditTableColumn:row: to allow editing

control:isValidObject: to allow a new object
TableRule.eps ¬
formatterWillChangeValueFor:at:to:sender:NSFormatter, control:isValidObject:
TableRule.eps ¬
formatterWillChangeValueFor::to:sender: NSFormatter, control:isValidObject:
TableRule.eps ¬
formatterDidEndEditing:endChar: control:textDidEndEditing:
TableRule.eps ¬
getValueAt::withAttributes::usePositions:: tableView:objectValueForTableColumn:row:
TableRule.eps ¬
resetBatching None
TableRule.eps ¬

Changes to Rows

In NXTableView, if you added rows statically, an NXTableVector represented each row. NSTableViews only
supported dynamically added rows. The data source controls the number of rows and which values are
displayed where. The NSTableView keeps track of the current number of rows and can return the index of the
selected row or the row inside a particular rectangle or containing a particular point. However, there's never
an object representing the row. You can access each field in the row by sending
tableView:objectValueForTableColumn:row: once for each column, but other than that, you never work on rows
as an entity.

Obsolete Method Possible Replacement
TableHeadRule.eps ¬
addRow:at: Use the data source to add rows and send reloadData.
TableRule.eps ¬
addRow:withFormatter:andTitle:at: Use the data source to add rows and send reloadData.
TableRule.eps ¬
addRow:withTitle: Use the data source to add rows and send reloadData.
TableRule.eps ¬
dynamicRows None necessary.
TableRule.eps ¬
isRowHeadingVisible None
TableRule.eps ¬
moveRowFrom:to: Use the data source to move rows and send setNeedsDisplay.
TableRule.eps ¬
rowAt: None
TableRule.eps ¬
rowList None
TableRule.eps ¬
removeRowAt: None
TableRule.eps ¬
rowsChangedFrom:to: [tableView setNeedsDisplayInRect:[tableView rectOfRow:row]]
TableRule.eps ¬

rowHeading None
TableRule.eps ¬
selectRowAfter: [[tableView selectedRowEnumerator] nextObject]
TableRule.eps ¬
sendAction:to:forSelectedRows: None
TableRule.eps ¬
setRowHeading: None
TableRule.eps ¬
setRowHeadingVisible: None
TableRule.eps ¬
setRowSelectionOn::to: selectRow:byExtendingSelection:
TableRule.eps ¬
tableView:movedRowFrom:to: None
TableRule.eps ¬

Changes to Columns
NSTableView supports only statically added columns. An NSTableColumn represents each table. Each
NSTableColumn has an NSCell object that controls how each field in the column is displayed. The
NSTableHeaderView displays the column's header.

Obsolete Method Possible Replacement
TableHeadRule.eps ¬
addColumn:... addTableColumn:
TableRule.eps ¬
columnAt: [[tableView tableColumns] objectAtIndex:]
TableRule.eps ¬
columnCount [[tableView tableColumns] count]
TableRule.eps ¬
columnsChangedFrom:to: [tableView setNeedsDisplayInRect:[tableView rectOfColumn:column]]
TableRule.eps ¬

dynamicColumns None
TableRule.eps ¬
getValue::into: tableView:objectValueForTableColumn:row:
TableRule.eps ¬
isColumnHeadingVisible headerView != nil
TableRule.eps ¬
removeColumnAt: removeTableColumn:[[tableView tableColumns] objectAtIndex:]
TableRule.eps ¬
selectedColumnAfter: [[tableView selectedColumnEnumerator] nextObject]
TableRule.eps ¬
sendAction:to:forSelectedColumns: None
TableRule.eps ¬
setColumnHeadingVisible: setHeaderView:
TableRule.eps ¬
setColumnSelectionOn::to: selectColumn:byExtendingSelection:
TableRule.eps ¬
setValueFor::from: tableView:setObjectValue:forTableColumn:
TableRule.eps ¬

VM Conversion
Optional

Run VMConversion.tops if you use Mach virtual memory functions that you would like to remove from your
code. The Foundation Framework provides several memory functions that you can use in place of vm_allocate
and vm_copy if you sent these functions to the current task.

Obsolete Function Possible Replacement
TableHeadRule.eps ¬
round_page(size) NSRoundUpToMultipleOfPageSize(size)

TableRule.eps ¬
trunc_page(size) NSRoundDownToMultipleOfPageSize(size)
TableRule.eps ¬
vm_allocate(task, address, size, bool)address = NSAllocateMemoryPages(size)
TableRule.eps ¬
vm_copy(task, src, size, dest) NSCopyMemoryPages(src, dest, size)
TableRule.eps ¬
vm_deallocate(task, address, size) NSDeallocateMemoryPages(address, size)
TableRule.eps ¬
vm_page_size NSPageSize()
TableRule.eps ¬

