
Copyright ã1996 by NeXT Software, Inc.    All Rights Reserved.

Chapter 3

Converting Application Kit Classes

This chapter describes changes to the Application Kit that affect only the Application Kit. The changes to the
Application Kit are many and varied: there are stylistic changes, which are described in the chapter ªGlobal
API and Style Changes,º and Application Kit objects now use Foundation objects where they used to use
Common objects, which is described in the chapter ªConverting the Common Classes.º Look in this chapter
for changes that affect only the Application Kit itself and not its interaction with other frameworks.

Application Conversion
Stage 5

There are two big changes at the workspace and application levels:

SquareBullet.eps ¬The workspace is now represented by an NSWorkspace object, which replaces the
NXWorkspaceRequestProtocol protocol. You access the workspace with the message [NSWorkspace
sharedWorkspace].

SquareBullet.eps ¬The NSApplication object is decentralized. Many Application methods are obsolete and
replaced by methods in other classes. The table below provides the details of this change, although the
conversion process makes most of these substitutions for you. The rest of this section describes
conversions you must perform yourself.

Action Moved to Class Obsolete Application Methods
TableHeadRule.eps ¬
Loading nib files NSBundle (NSBundleAdditions) loadNibFile:...

loadNibSection:....
TableRule.eps ¬
Setting global color NSColor setImportAlpha:
transparency doesImportAlpha
TableRule.eps ¬
Finding out host of DPS NSDPSContext hostName
Server
TableRule.eps ¬
Accessing the shared NSPrintInfo printInfo
NSPrintInfo object setPrintInfo:
TableRule.eps ¬
Accessing screens NSScreen mainScreen

colorScreen
getScreens:count:
getScreenSize:

TableRule.eps ¬
Retrieving user languages NSUserDefaults systemLanguages
TableRule.eps ¬
Finding the focus view NSView focusView
TableRule.eps ¬
Controlling automatic NSWindow autoUpdate
display updating setAutoUpdate:
TableRule.eps ¬
Accessing the workspace NSWorkspace workspace
TableRule.eps ¬
Mounting and NSWorkspace mounted:
unmounting disks unmounted:
TableRule.eps ¬

Performing file NSWorkspace openFile:ok:
operations openTempFile:ok:

fileOperationCompleted:
TableRule.eps ¬

Loading nib Files
As shown in the table above, NSBundle now loads nib files. To do so, it uses the following methods:

+ (BOOL)loadNibFile:(NSString€*)fileName
€€€€€externalNameTable:(NSDictionary€*)context withZone:(NSZone€*)zone

+ (BOOL)loadNibNamed:(NSString€*)aNibName owner:(id)owner

Notice that these two methods return BOOL. You should inspect places where your application loads nib files
and make sure that the return type is tested appropriately.

Setting the Application Icon
Previously, Application's appIcon method returned a Window object, allowing you to treat the application icon
as a window. Now, the NSApplication object only allows you to set the image on the icon. Use the
replacement for appIcon shown in the following table.

Obsolete Application Method Possible Replacement
TableHeadRule.eps ¬
appIcon setApplicationIconImage:
TableRule.eps ¬

Application Name
NSApplication objects cannot give you their application name. Instead of asking for the application name, you
ask for the name of the process from a new Foundation Framework object, NSProcessInfo. NSProcessInfo
objects store information about a process. The methods in the following table are obsolete.

Obsolete Application Method Possible Replacement
TableHeadRule.eps ¬
appName [[NSProcessInfo processInfo] processName]
TableRule.eps ¬
setAppName: [[NSProcessInfo processInfo] setProcessName:]
TableRule.eps ¬

Speakers, Listeners, and Journalers
The classes Speaker, Listener, and NXJournaler are obsolete. The Speaker and Listener implementations are
still provided for compatibility, but they will not be available in the next release, and they are not in the
OpenStep specification. As a result of this change, the Application methods shown in the following table are
obsolete.

Obsolete Application Method Possible Replacement
TableHeadRule.eps ¬
isJournalable None.
masterJournaler
slaveJournaler

setJournalable:
TableRule.eps ¬
appListener Use DO.
appListenerPortName
setAppListener:
TableRule.eps ¬
appSpeaker Use DO.
replyPort:
setAppSpeaker:
TableRule.eps ¬

If you are doing a shallow conversion and you want to keep your Speaker and Listener, use the -n option to
msgwrap to generate the Speaker and Listener subclasses. The -n option generates code that compiles in this
release.

Aborting Processes
Users can no longer use Command-period to abort a process, making the functions in the following table
obsolete.

Obsolete Function Possible Replacement
TableHeadRule.eps ¬
NXUserAborted() None
TableRule.eps ¬
NXResetUserAbort None
TableRule.eps ¬

Naming Objects
Because of global namespace issues, you can no longer name objects in Interface Builder. The following
table lists functions that are obsolete because of this change.

Obsolete Function Possible Replacement
TableHeadRule.eps ¬
NXGetNamedObject() Use outlets in Interface Builder.
TableRule.eps ¬
NXGetObjectName() Use outlets in Interface Builder.
TableRule.eps ¬
NXNameObject() Use outlets in Interface Builder.
TableRule.eps ¬
NXUnnameObject() Use outlets in Interface Builder.
TableRule.eps ¬

Application-Level Events
The NSApplication methods applicationDefined: and powerOff: are obsolete. OpenStep has no application-
defined event type or power-off event type. For power-off events, you can register to receive the
NSWorkspaceWillPowerOffNotification.

Miscellaneous Obsolete Methods
The methods listed in the table below are now obsolete because they aren't portable to other window
systems.

Obsolete Application Method Possible Replacement

TableHeadRule.eps ¬
activeApp None.
TableRule.eps ¬
activate: None.
TableRule.eps ¬
getWindowNumbers:count: [NSApp windows] returns an NSArray of NSWindows.

If you are not using the strict OpenStep definition, use the functions NSCountWindow() and
NSWindowList().

TableRule.eps ¬

Application Gotchas
After the Application conversion, look out for the following:

Importing Application Kit Headers

If you import individual Application Kit header files rather than importing AppKit.h, you may receive compiler
errors after this conversion because many of the Application methods have been moved to other classes. If
you didn't already import the appropriate header file, the conversion process cannot do it for you. If
necessary, consult the table shown at the beginning of this section to find out which header to import. You
may want to consider importing AppKit.h instead of individual header files to reduce your compile time
because AppKit.h is precompiled.

Animating the Application Icon

Previously, to animate your application's icon, you drew inside the Window that represented the icon. This
Window no longer exists in OpenStep. To animate the icon, you repeatedly send setApplicationIconImage:. As
a result, animation is much slower, and on some platforms, might not even be possible. You will probably
want to limit the amount of animation your icon performs.

Browser Conversion
Stage 5

NXBrowser had three different types of delegates: normal, lazy, and very lazy. Normal delegates created and
loaded cells into the browser an entire column at a time. Lazy delegates created cells a column at a time but
loaded them only as the browser requested them. Very lazy delegates only told the browser how many cells
there were to be in the column and loaded them as the browser requested them.

The new NSBrowser eliminates the lazy class of delegate, allowing only normal and very lazy delegates. Both
delegates should implement browser:willDisplayCell:atRow:column:. A normal delegate implements
browser:createRowsForColumn:inMatrix:. (This method now returns void.) A very lazy browser implements
browser:numberOfRowsInColumn:. Browser delegates no longer have to send setLoaded: to a cell at any time
because the NSBrowser can determine that state by itself. The following table summarizes the changes to
browser delegate methods.

Old Method Name New Method Name
TableHeadRule.eps ¬
browser:fillMatrix:inColumn: browser:createRowsForColumn:inMatrix:
TableRule.eps ¬
browser:loadCell:atRow:inColumn: browser:willDisplayCell:atRow:column:
TableRule.eps ¬

Color Conversion
Stage 3

In OpenStep, colors are represented by NSColor objects rather than NXColor structures. NSColor objects are
constant objects that can't be changed; when you modify a color, you create a new NSColor object out of an
existing one. However, don't confuse NSColor objects with shared objects. Identical colors are not guaranteed
to be the same NSColor instance. This section describes the changes to working with colors where you may
need to perform some of the conversion yourself.

Colors as Instance Variables
If you have an NXColor instance variable, you will need to perform some of the conversion yourself, as
described here.

1. Change the instance variable from a color structure to an NSColor object. Remember to retain the NSColor
object when it is initialized and to release it in the dealloc method.

2. If you archived and unarchived the color structure, you will also need to convert that code by hand. The
conversion process will change code that unarchives a color structure to this:

myColor = [[theUnarchiver decodeNXColor] retain];

You may leave the above message alone if you are truly unarchiving an NXColor structure. If you have
changed the structure to the NSColor object, though, you should change the message to:

myColor = [[theUnarchiver decodeObject] retain];

Gray Values
Application Kit objects no longer define a separate gray value and color value. You used to be able to specify
a color for an object and a separate gray value to be used only on 2-bit grayscale screens. Now, you set only
the color of the object. Methods such as setBackgroundGray: are obsolete; the conversion process replaces it

with setBackgroundColor:. If your application sets both a gray value and a color for an object, you may see two
setBackgroundColor: messages in a row after this conversion is complete.

The Application Kit used to allow you to set the background gray value to -1.0 to disable the drawing of the
background. As a consequence of removing the gray values, Application Kit objects now have the methods
setDrawsBackground: and setDrawsCellBackground: to set whether the background is drawn. The conversion
process changes setBackgroundGray:-1.0 to setDrawsBackground:NO. If you stored -1.0 in a variable and
passed that variable to setBackgroundGray:, the conversion process changes it to setBackgroundColor:.
Because -1.0 is an illegal color value, this message will be flagged at run time. You will need to change
setBackgroundColor: to setDrawsBackground:NO yourself.

Obsolete Method Replacement
TableHeadRule.eps ¬
setBackgroundGray: setBackgroundColor: or delete if you have already set a separate color
TableRule.eps ¬
setBackgroundGray:-1.0 setDrawsBackground:NO
TableRule.eps ¬

Alpha Components
All NSColors now have an alpha component. Any instances of NX_NOALPHA in your code (now obsolete) are
converted to the value 1.0, which indicates complete opaqueness. You can use the NSColor setIgnoresAlpha:
method to enable or disable the use of the alpha component.

Old Code

NXColor *myColor = NXConvertRGBAToColor(a, b, c, NX_NOALPHA);

New Code

NSColor *myColor;
[NSColor setIgnoresAlpha:YES];
myColor = [NSColor colorWithCalibratedRed:a green:b

blue:c alpha:1.0]

Finding a Color Component
You can only ask for a color component that makes sense in the color's colorspace. For example, if the color
is in the RGB colorspace, you can ask only for red, green, or blue components. If you need to ask for a
component that is not in the color's colorspace, convert it to another colorspace with the method
colorUsingColorSpaceName:. This method returns a new NSColor object whose color is the same as the
receiver's (if possible) but is in a different colorspace. Having to explicitly convert colors to a new colorspace
gives you a chance to find out if the conversion is possible and flags the spots where colors are converted.

The conversion process will change all requests for color components automatically. If it needs to use
colorUsingColorSpaceName:, it will flag that message. You should make sure that you really do want to convert
to a new colorspace.

Changing Color Components
NSColor objects are constant objects that cannot be changed, so you cannot change an NSColor object's
color component. If you use one of the functions that changes a color component, instead create a separate
NSColor object using one of the several NSColor creation methods. For example, suppose you created a
brown that has more red than the standard brown. You would convert your code as shown below.

Old Code

NXColor redBrown = NXChangeRedComponent(NX_COLORBROWN, 0.9);

New Code

NSColor *redBrown;
NSColor *brown;
float greenComponent, blueComponent, alphaComponent;

/* Find out the usual components of brown */
brown = [[NSColor brownColor]

colorUsingColorSpaceName:NSCalibratedRGBColorSpace];
[brown getRed:NULL green:&greenComponent blue:&blueComponent

alpha:&alphaComponent];

/* Create a brown with more red in it than the usual brown */
redBrown = [NSColor colorWithCalibratedRed:0.9

green:greenComponent blue:blueComponent
alpha:alphaComponent];

Color Names
NSColor objects can keep track of their own names, which means that NSColorList (formerly NXColorList)
objects don't have to. NSColorList instead deals with color keys. The allKeys method returns an NSArray
object containing all of the keys in the NSColorList. You can use the NSArray objectAtIndex: method to retrieve
a single key from the allKeys array. The following table lists the methods that are now obsolete because of this
change and what you should use as a replacement.

Obsolete NXColorList Method Possible Replacement
TableHeadRule.eps ¬
colorCount [[colorList allKeys] count]
TableRule.eps ¬

generatesNamedColors None necessary
TableRule.eps ¬
localizedNameForColorNamed: localizedColorNameComponent (in NSColor)

localizedCatalogNameComponent (in NSColor)
TableRule.eps ¬
nameOfColorAt: [[colorList allKeys] objectAtIndex:]
TableRule.eps ¬

Miscellaneous Obsolete Methods
In addition to the methods that handled color names, the NXColorList and NXColorWell methods in the
following table are obsolete. The table shows how you can convert your code.

Obsolete Method Replacement
TableHeadRule.eps ¬
deactivateAllWells (NXColorWell) Deactivate each color well individually.
TableRule.eps ¬
freeAndRemoveFile (NXColorList) [myColorList removeFile]; [myColorList autorelease];
TableRule.eps ¬
saveTo: (NXColorList) writeToFile:
TableRule.eps ¬

Event Conversion
Stage 3

You can now access your application's event loop using two new classes of objects, NSRunLoop and

NSEvent. NSRunLoop defines objects that manage input sources. Applications use NSRunLoop objects to
manage event loops, so you no longer have to use DPS functions to manage the event loop. An NSEvent
object represents a user-generated event from the queue.

An NSRunLoop object is automatically created for each thread of the application; you generally don't need to
create or to explicitly manage the run loop. Typically, the only thing you do regarding the run loop is to specify
a run loop mode when retrieving events from the event queue. The run loop mode replaces the application's
threshold value as shown in the following table. Like the threshold value, the run loop modes are used to
block out all but events of a certain type.

For: Use NSRunLoop mode: To replace threshold:
TableHeadRule.eps ¬
Normal operation NSDefaultRunLoopMode NX_BASETHRESHOLD
TableRule.eps ¬
Modal panels NSModalPanelRunLoopMode NX_RUNMODALTHRESHOLD
TableRule.eps ¬
Event-tracking loop NSEventTrackingRunLoopMode NX_MODALRESPTHRESHOLD
TableRule.eps ¬

A fourth run loop mode, NSConnectionReplyMode is used if you're distributing objects; it lets you run
Application Kit objects while the NSConnection object waits for a response.

Managing the Event Loop
You typically request events from a window rather than from the application. Windows can also post and
discard events, though all of these functions are still supported by the NSApplication object too. The next
three sections describe the new API for retrieving, posting, and discarding events in the event loop.

Retrieving Events

The conversion process changes methods that retrieve events from the event queue to this NSWindow
method:

-€(NSEvent€*)nextEventMatchingMask:(unsigned€int)mask untilDate:(NSDate€*)expiration inMode:
(NSString€*)mode dequeue:(BOOL)flag

mask identifies the event type to watch for, expiration is an NSDate object that provides the timeout value,
mode is one of these NSRunLoop modes, and flag indicates whether the event should be removed from the
queue. NSWindow also defines a simpler version of this method, nextEventMatchingMask:, that takes only the
event mask argument.

This message is to be sent to a window. In some cases, the conversion process isn't able to find a window.
These cases are flagged so that you can either provide an NSWindow object or send the identical message
to NSApp.

The conversion process flags all of the DPS functions that retrieve events. You must convert these functions
to the NSWindow method or the NSApplication method yourself.

Posting Events

To post an event, you send postEvent:atStart: to a window or to NSApp. The first argument to this method is an
NSEvent, which you will need to create yourself. See the NSEvent class description in the Application Kit
Reference for a list of the methods that create an NSEvent object. The second argument takes a boolean;
specify YES if you want the event posted at the start of the event queue.

Discarding Events

To discard events, you send discardEventsMatchingMask:beforeEvent: to a window or to NSApp. The first
argument is a mask of event identifiers, and the second argument is an NSEvent object. This method
discards all of the events matching those in the mask until it reaches the event specified by the NSEvent
object. Typically, you want to send this method the last NSEvent you received.

Allowing Windows to Receive Events
Previously, if you wanted a window to be able to receive mouse-dragged events, you had to specifically
enable them for that window. You did this by adding the mouse-dragged event to the mask of the events the
window could receive. Now, NSWindows receive the mouse-dragged events by default. They do not have
event masks. The only event that you disable and enable for a window is a mouse-moved event. You do this
through the setAcceptsMouseMovedEvents: method.

You might also have used the window's event mask to prevent it from becoming the key window by disabling
the key-up and key-down events. Now to prevent a window from becoming key, you must do one of the
following:

SquareBullet.eps ¬Turn the window into an NSPanel and send it the setBecomesKeyOnlyIfNeeded: message
with YES as the argument.

SquareBullet.eps ¬Subclass NSWindow and override the canBecomeKeyWindow method.

Accessing Event Information
Any information you used to receive by accessing the members of an NXEvent structure you now receive by
sending messages to an NSEvent object. The conversion process will convert your code to use NSEvents
instead of NXEvents. Each NXEvent field has an analogous method in NSEvent except for the character set,
event.data.key.charSet. The character set attribute was removed because the character code is now an
NSString, and NSStrings know about their character encodings. Use the canBeConvertedToEncoding: method
to find out the character code's character set, as shown in the following example.

Old Code

if (event.data.key.charSet == NX_ASCIISET) {
...
} else if (event.data.key.charSet == NX_SYMBOLSET) {
...

}

New Code

NSString *characterCode = [event characters];

if ([characterCode
canBeConvertedToEncoding:NSASCIIStringEncoding])
...

else if ([characterCode
canBeConvertedToEncoding:NSSymbolStringEncoding])
...

Using Timer Events
To create a timer event, you now use NSEvent objects, not NXTrackingTimer structures. If you use timer
events, change your code as shown below. (The conversion process takes care of much of this for you.)

Old Code

NXTrackingTimer myTimer;
NXBeginTimer(&myTimer, 3.0, 5.0);
...
NXEndTimer(&myTimer);

New Code

[NSEvent startPeriodicEventsAfterDelay:3.0 withPeriod:5.0];
....
[NSEvent stopPeriodicEvents];

Keyboard Events
If your application looks for arrow keys, you will have to convert this code by hand. Arrow keys are now
represented as Unicode characters rather than characters from the Symbol font encoding (codes AC through
AF). The following table shows what to replace the arrow key constants with, and the example following the
table shows how to change your code.

Obsolete Arrow Key New Arrow Key
TableHeadRule.eps ¬
NX_LEFT NSLeftArrowFunctionKey
TableRule.eps ¬
NX_RIGHT NSRightArrowFunctionKey
TableRule.eps ¬
NX_UP NSUpArrowFunctionKey
TableRule.eps ¬
NX_DOWN NSDownArrowFunctionKey
TableRule.eps ¬

Old Code

NXEvent *theEvent;
...
if ((theEvent->data.key.charSet == NX_SYMBOLSET) &&

(theEvent->data.key.charCode == NX_LEFT))
...

New Code

NSEvent *theEvent;
NSString *eventCharacters = [theEvent characters];
...
if (![eventCharacters isEqualToString:@""] &&

([eventCharacters characterAtIndex:0] == NSLeftArrowFunctionKey))
...

Font Conversion
Stage 3

The Font class is now named NSFont. Like its predecessor, an NSFont object stores the attributes of a font.
Because NSFont is a subclass of NSObject, it is now deallocated in the same way that other subclasses of
NSObject are deallocated. Two major improvements are introduced in NSFont: an easier way to work with
font metrics and automatic handling of flipped matrices.

Font Metrics
NSFont has an easier way to handle font metrics. The metrics and readMetrics methods are obsolete. Instead,
NSFont provides separate methods that you can use to find out different values. For example,
advancementForGlyph: returns the scaled dimensions of a glyph in the font. You must convert the code that
reads the font metrics by hand.

Font Matrices
The flipped matrix is obsolete. Previously, if you wanted to create a font that you drew in a view, you had to
flip the font using the flipped matrix so that it would appear right side up on the screen. NSFonts can correctly
orient themselves with the view, so you don't have to worry about flipping the font.

Because flipped matrices are gone, the only time you need to use font matrices is if you want to perform
some nonlinear function on the font. To create a normal font, you now just specify a name and a size. Most
methods no longer take a matrix argument. If you do use a nonlinear matrix, you will have to change your
code as summarized in the table below.

Obsolete Font Method Replacement for Nonlinear Matrixes
TableHeadRule.eps ¬
newFont:size:matrix: fontWithName:matrix:

Factor the size into the matrix.
TableRule.eps ¬
boldSystemFontOfSize:matrix: fontWithName:[[NSFont boldSystemFontOfSize:] fontName] matrix:
TableRule.eps ¬
userFixedPitchFontOfSize:matrix: fontWithName:[[NSFont userFixedPitchFontOfSize:] fontName] matrix:
TableRule.eps ¬
userFontOfSize:matrix: fontWithName:[[NSFont userFontOfSize:] fontName] matrix:
TableRule.eps ¬
systemFontOfSize:matrix: fontWithName:[[NSFont systemFontOfSize:] fontName] matrix:
TableRule.eps ¬

Other Font Changes
The table below summarizes other changes to the Font class and to the FontManager class.

Obsolete Method Possible Replacement
TableHeadRule.eps ¬
name (in Font) fontName
TableRule.eps ¬

fontNum (in Font) None
TableRule.eps ¬
hasMatrix (in Font) None necessary
TableRule.eps ¬
getFamily:traits:weight:size:ofFont: (in FontManager) familyName

pointSize
traitsOfFont:
weightOfFont:

TableRule.eps ¬

Icon and Image Conversions
Stage 2

The differences between using images and icons in NEXTSTEP Release 3 and using images and icons in
OpenStep are relatively minor. This section summarizes the changes to images and icons, focusing on the
changes you might need to perform yourself.

Referring to Images and Icons in Code
The major change to image and icon support is that you now refer to icons in your application as NSImages.
You no longer use the icon name. This change is shown in the following example.

Old Code

[appButton setIcon: iconName];

New Code

[appButton setImage:[NSImage

imageNamed:[NSString stringWithCString:iconName]]];

Initializing Scalable Images
NXImage had one initialization method that used the contents of a file, initFromFile:. NSImage has two such
methods: initWithContentsOfFile: and initByReferencingFile:. For scalable images, the correct method to use is
initByReferencingFile: because it assumes that the file will persist and can be referenced later if the image is
resized. The conversion process examines your NXImages and tries to choose the correct initialization
method, but you should verify that it has chosen the right one.

Swapping Functionality Between Classes
Some of the functionality that used to be in one of the NSImage or NSImageRep classes has been moved to
another class.

SquareBullet.eps ¬You now register NSImageRep subclasses with the NSImageRep class object.

SquareBullet.eps ¬Retrieving information about a TIFF file has been moved to the NSBitmapImageRep class.

Other Changes
The following are other changes to NSImage methods that you may have to make yourself. The conversion
process takes care of all other changes.

SquareBullet.eps ¬The initFromSection: method is obsolete and is replaced with imageNamed:. The conversion
process makes this change and uses the argument you passed to initFromSection:, which identified the
section, as the image's name. You may want to change this.

SquareBullet.eps ¬The lastRepresentation method is obsolete. Instead, you can use the message [[myImage
representations] lastObject]. The representations method returns an NSArray. As before, though, if multiple
representations are added at the same time, you can't predict which image will be returned by lastObject.

SquareBullet.eps ¬The lockFocus method now raises an exception to indicate an error rather than returning a
BOOL. If you used to check the return type of lockFocus to make sure there were no errors, you should now
use isValid instead.

Icon and Image Gotchas
After the icon and image conversions, look out for the following:

Highlighted Buttons

Previously, when a button contained an image with a gray background, the entire image was highlighted when
the button was highlighted. In the NeXT implementation of OpenStep, the gray background of the image will
be highlighted only if the image has alpha.

initWithSize: in NSImage

If you're converting in stages and you use the initWithSize: method to initialize an NSImage, you may receive a
compiler error after stage 2. The initWithSize: method now takes an NSSize structure, so it conflicts with
NXData's initWithSize: method, which takes an unsigned integer as an argument. Because the NSSize
structure is larger than an unsigned integer, this statement produces an error. To avoid the error message so
that you can continue with the conversion, put the alloc and initWithSize: methods in separate statements as
shown in the following example. NXData is obsolete, and it will be converted in a later stage.

Old Code

NXImage *foo;
NSSize mySize;
foo = [[NXImage alloc] initSize:&mySize];

New Code

NSImage *foo;

NSSize mySize;

foo = [NSImage alloc];
foo = [foo initWithSize:mySize];

imageNamed: Methods

You can no longer obtain icons that are in a MachO segment with the imageNamed: method. Instead, you
should store icons in the application's wrapper. If your application accesses a named image that it cannot find
but the image exists in the MachO section, this will be logged at run time. If you receive such a run-time error,
move the icon into the application wrapper.

Creating Multi-Image TIFFS

If your code creates multi-image TIFFs, you can now use the NSImageRep method
TIFFRepresentationOfImageRepsInArray: to do this. For more information, see the Application Kit Reference.

Matrix And Cell Conversion
Stage 5

The changes to Controls and Cells in OpenStep are very minor; not much about the existing functionality has
changed. There are some new features, however, and you might want to take advantage of them.

SquareBullet.eps ¬You can attach any object to a cell with the method setRepresentedObject:. This method
saves you from having to subclass a cell in many cases.

SquareBullet.eps ¬An NSMatrix can sort its cells.

SquareBullet.eps ¬Keyboard equivalents for button cells can use any modifier key, not just the Command key.

For more information, see the Application Kit Reference. The rest of this section tells you the changes to
Controls and Cells you may have to make yourself.

Modifying a Cell
Matrix and Form objects used to be able to modify their cell's tags, targets, actions, and values. Now
NSMatrix and NSForm can modify only the cell's physical attributes and state. To modify a cell's tag, target,
action, or value, you must first retrieve the cell and then modify it.

Old Code

const char *empName = [aForm stringValueAt:0];

New Code

NSString *empName = [[aForm cellAtIndex:0] stringValue];

Overriding the Cell State
Previously, you could send a Matrix the setReaction:NO message so that a cell would not change states if the
cell's action method deleted the cell or completely changed the physical appearance of the cell. This is no
longer necessary with the changes to NSView. The method in the following table is obsolete.

Obsolete Matrix Method Possible Replacement
TableHeadRule.eps ¬
setReaction: None necessary
TableRule.eps ¬

PopUp Conversion
Stage 5

Previously, the Application Kit provided a PopUpList class that defined pop-up and pull-down lists. Both types
of lists were controlled by a trigger button whose target was the PopUpList object. When you created a list in
Interface Builder, you actually created the button. To access the PopUpList, you sent the button a target
message. The new Application Kit has simplified the API for pop-up and pull-down lists. You now maintain a
single object, NSPopUpButton, which defines both the trigger button and the pop-up list. The conversion
process changes your PopUpList objects to NSPopUpButtons.

Accessing Items in the Matrix
PopUpList had a Matrix object containing MenuCell objects, which represented the items in the list. To access
individual items in the list, you first retrieved the matrix with itemList and then used Matrix methods to access
the items.

NSPopUpButton has methods that allow you to access the items in the list directly. The itemList method still
exists (renamed itemArray), but you shouldn't have to use this array to access individual items in the list.

Old Code

int index = [[imagePopUp itemList] selectedRow];

New Code

int index = [imagePopUp indexOfSelectedItem];

Targets and Actions of NSPopUpButtons
You typically gained access to a PopUpList object by invoking the target method on its trigger Button object.
Now that there a a single object defining both the list and the button, target returns the target of that object. In
most cases, you can remove the target message and set the NSPopUpButton's target in Interface Builder.
(See the chapter ªDebugging Tipsº for instructions on converting your nib file.)

Also, the NSPopUpButton sends its action message directly to the target, whereas previously the sender of
PopUpList's action message was its Matrix. You will have to inspect your action method to make sure you are
sending appropriate messages to the new sender, NSPopUpButton.

Obsolete Items
The methods and functions shown in the following table are now obsolete because of the changes to the way
pop-up lists and pull-down lists are created.

Obsolete Item Possible Replacement
TableHeadRule.eps ¬
count method numberOfItems method
TableRule.eps ¬
getButtonFrame: method frame method
TableRule.eps ¬
NXAttachPopUpList() Create an NSPopUpButton instance. The list is automatically attached.
TableRule.eps ¬
NXCreatePopUpListButton()Create an NSPopUpButton instance. The list is automatically attached.
TableRule.eps ¬
popUp: None needed. This action is now automatic.
TableRule.eps ¬

Printing Conversion
Stage 4

The Application Kit has a new class to handle printing, NSPrintOperation. NSPrintOperation objects represent
print jobs and EPS code-generation operations. Whenever a user prints a document or copies EPS data, an

NSPrintOperation object is created to oversee the generation of PostScript°code. When the operation is
complete, the object is released.

Previously, applications (except document-oriented applications) had a shared PrintInfo object that kept track
of everything about a print operation: the status of the operation, the job-specific attributes, and the page
layout attributes. Whenever a new print job was requested, the attributes stored in the shared PrintInfo had to
be reset to their default values.

Now, the shared NSPrintInfo holds only the page layout attributes. The NSPrintOperation runs the Print panel
and keeps track of the operation's status. The NSPrintOperation takes the page layout information from the
shared NSPrintInfo and the job-specific information from the Print panel to create a new NSPrintInfo object
that contains all of the attributes specific to this print operation. In this way, the shared NSPrintInfo never has
to be reset. The NSPrintOperation does not itself perform the printing; instead, it sends a message to the
NSView object.

The following figure shows what happens now during a typical print operation. Almost all of the changes to the
printing mechanism take place automatically. You have to rewrite code only if your application tries to control
a print operation.

PrintingModel.eps ¬

Accessing the Shared NSPrintInfo

NSPrintInfo has a new method, sharedPrintInfo, which replaces Application's printInfo method. The conversion
process make this change for you. However, the shared NSPrintInfo now contains only the page layout
attributes that will be applied to every print operation; it does not contain any other attributes. Because of this
change, the conversion process flags each occurrence of the message [NSPrintInfo sharedPrintInfo] to make
sure that you truly want the shared NSPrintInfo object. To access an NSPrintInfo object, you have the choices
shown in the following table.

Use This Method: If You Want To:
TableHeadRule.eps ¬
sharedPrintInfo (in NSPrintInfo) Find out or change the default page layout attributes for the application.
TableRule.eps ¬
printInfo (in NSPrintOperation) Find out the attributes being used for a specific operation.
TableRule.eps ¬

Changes to NSPrintInfo Methods
To improve the API, the NSPrintInfo methods in the following table have changed as shown.

Possible
Obsolete PrintInfo Method Replacement Notes
TableHeadRule.eps ¬
setPaperRect: setPaperSize: Change the type of the argument

to NSSize.
TableRule.eps ¬
getMarginLeft:right:top:bottom: leftMargin You may be able to delete some code.

rightMargin
topMargin
bottomMargin

TableRule.eps ¬
setMarginLeft:right:top:bottom: setLeftMargin: You may be able to delete some code.

setRightMargin:
setTopMargin:
setBottomMargin:

TableRule.eps ¬

For example, to set the left and right margins to 50 and leave the top and bottom margins alone, you used to
have to retrieve all four margins first. Now all you have to do is set the left and right margins.

Old Code

float left, right, top, bottom;

[printInfo getMarginLeft:&left right:&right top:&top
bottom:&bottom];

[printInfo setMarginLeft:50 right:50 top:top bottom:bottom];

New Code

[printInfo setLeftMargin:50];
[printInfo setRightmargin:50];

Changing Print-Job Attributes in NSPrintInfo
NSPrintInfo no longer defines methods that change print-job attributes because typically only
NSPrintOperation objects set them. NSPrintInfo still stores print-job attributes, but now these attributes and all
other printing attributes are stored in an NSMutableDictionary rather than in separate instance variables. Use
the dictionary method to access this dictionary, and use setObject:forKey: to change a value stored in the

dictionary. The file NSPrintInfo.h lists all of the possible dictionary keys.

The following example shows how to convert code that changes the scaling attribute.

Old Code

[myPrintInfo setScalingFactor:1.4];

New Code

[[myPrintInfo dictionary]
setObject:[NSNumber numberWithFloat:1.4]
forKey:NSPrintScalingFactor];

Subclassing NSPrintInfo
If you subclass NSPrintInfo, you might need to do the following:

SquareBullet.eps ¬To add new attributes to an NSPrintInfo, you can add them to its dictionary. Use dictionary
to retrieve the dictionary, and send it setObject:forKey: to add your attributes.

SquareBullet.eps ¬Override the method setUpPrintOperationDefaultValues. NSPrintOperation invokes this
method when the print operation starts so that it can set the default values for attributes that aren't set on
the Print panel or the Page Layout panel. If you subclass NSPrintInfo, you may need to override this
method to set default values for custom keys.

Creating an NSPrintOperation
In any method that tries to control a printing operation or generation of EPS code, you need to do the
following:

1. If the operation is not going to use the shared NSPrintInfo, create an NSPrintInfo object and set the
appropriate attributes.

2. Create an NSPrintOperation object to oversee the operation. The method you use to do this depends upon
what type of operation you need to perform (EPS code generation or printing) and whether the operation is
to use the shared NSPrintInfo. See the Application Kit Reference for a complete list.

3. Start the operation by sending the message runOperation. This method invokes the appropriate NSView
method.

For example, suppose one of the objects in your application implements a method that is the target for the
Print command. You would convert it as shown below.

Old Code

- print:sender
{

if (document && ![document isEmpty]) {
 [NXApp setPrintInfo:[document printInfo]];
 [[document view] printPSCode:self];
}
...
return self;

}

New Code

- print:sender
{

BOOL printSuccess;
if (document && ![[document view] isEmpty]) {
 printSuccess = [[NSPrintOperation

printOperationWithView:[document view]
printInfo:[document printInfo]]
runOperation];

}
...
return self;

}

PrintPanel
There is no PrintPanel class in the OpenStep specification. It's NSPrintOperation's responsibility to run the
standard Print panel and to retrieve job-specific information from it. In OpenStep, if you want to change the
look of the Print panel, you send setAccessoryView: to the NSPrintOperation. The methods updateFromPrintInfo
and finalWritePrintInfo are sent to this accessory view.

NeXT provides an NSPrintPanel object as an extension to the specification. Other than the removal of the
three methods mentioned here, this class's API is similar to the Release 3 PrintPanel's API.

Printing Windows
The Window class defined numerous printing methods. Almost all of these methods have been removed
because they duplicate functionality in NSView. As a result, the API is simpler, but there is less flexibility in
printing a window. If you really need the flexibility, you can create an EPS version of the window, place it in a
view, and print the view. The printing methods shown in the following table remain in NSWindow.

Obsolete Window Method New Name in NSWindow
TableHeadRule.eps ¬
smartPrintPSCode: print:
TableRule.eps ¬

copyPSCodeInside:to: dataWithEPSInsideRect:
TableRule.eps ¬

Printing Views
The View method printPSCode: has been renamed print:. If you define a print: method for an object, you might
receive duplicate definition warnings at compile time. Because of this, the conversion process flags all of the
print: methods in your code and asks you if you want to rename them to avoid the duplicate definitions
warning.

Similarly, the faxPSCode: method has been renamed fax:. (This method is a NeXT extension to the OpenStep
specification. OpenStep does not support faxing.) The
faxPSCode:toList:numberList:sendAt:wantsCover:wantsNotify:wantsHires:faxName: method has been removed
from the NSView class. Instead of using this method, set up an NSPrintInfo with the attributes you used to
specify in this method, and create an NSPrintOperation to perform the faxing. The conversion process makes
this change for you.

The following table summarizes the changes to the printing and faxing methods.

Obsolete View Method Possible Replacement
TableHeadRule.eps ¬
printPSCode: print:
TableRule.eps ¬
faxPSCode: fax: (NeXT extension)
TableRule.eps ¬
faxPSCode:... fax:    (NeXT extension)
TableRule.eps ¬

Overriding Printing Methods in NSView Subclasses
Some methods in the View API were invoked by the printPSCode: method. You might have subclassed View to
override these methods and create a custom print operation. These methods are obsolete because the
NSPrintOperation object sets up the print operation now. If you overrode any of the methods shown in the
following table, you must now subclass NSPrintOperation and override the corresponding methods. The print:
method in your NSView subclass should use your NSPrintOperation subclass.

Obsolete View Method Possible Replacement
TableHeadRule.eps ¬
beginPSOutput Override createContext (in NSPrintOperation).
TableRule.eps ¬
endPSOutput Override deliverResult (in NSPrintOperation).
TableRule.eps ¬
openSpoolFile: Override createContext (in NSPrintOperation).
TableRule.eps ¬
spoolFile Override deliverResult (in NSPrintOperation).
TableRule.eps ¬

Printing Gotchas
After the Printing conversion, look out for the following:

NXDrawingState

The NSDPSContext method isDrawingToScreen replaces the NXDrawingStatus global variable. (There is also

an isEPSOperation method in NSPrintOperation.) In this way, the drawing context is switched with every
context switch. The conversion process changes the uses of the NXDrawingStatus variable for you, but you
should delete any place where you changed its value.

Be certain to check that the current context is not nil before you send isDrawingToScreen. If the currentContext
is nil, you will receive NO if you send the message [[NSDPSContext currentContext] isDrawingToScreen].

NXMeasurementUnit

The NXMeasurementUnit enum previously defined in PageLayout.h is obsolete. If you want to find out the user's
choice for the units that the page size is specified in, check the NSMeasurementUnit user default in the
NSGlobalDomain. For more information on user defaults in OpenStep, see the section ªDefaults Conversionº in
the chapter ªConverting the Common Classes.º

NXPrintingUserInterface Protocol

The NXPrintingUserInterface protocol is obsolete. Instead of implementing this protocol, use the
NSPrintOperation setShowPanels: method.

Screen Conversion
Stage 4

In OpenStep, screens are represented by NSScreen objects rather than NXScreen structures, and screens
are no longer identified by screen numbers. This affects the Window methods that place windows on specific
screens. Instead of specifying an NXScreen structure for these methods, you use the NSScreen method
frame to retrieve the screen's size and location, then place the window inside that frame. The following table
lists the obsolete Window methods and shows what to use as a replacement.

Obsolete Window Method Possible Replacement
TableHeadRule.eps ¬
getFrame:andScreen: screen, frame
TableRule.eps ¬
moveTo::screen: setFrame:display:
TableRule.eps ¬
moveTopLeftTo:screen: setFrame:display:
TableRule.eps ¬
placeWindow:screen: setFrame:display:
TableRule.eps ¬

Spell Checker Conversion
Stage 2

Previously, you performed spell checking on any object that conformed to the NXReadOnlyTextStream and
NXSelectText protocols. In OpenStep, you can perform spell checking on any NSString. The biggest change
to spell checking is that the spell-checking methods no longer select the misspelled word in the text and
display it in the Spelling panel; they now just return the range of the first misspelled word they find. If you want
the text selected and the misspelled word displayed, you must write this code yourself using methods from
the NSSpellChecker class. The following table summarizes the protocols, types, and methods that are
obsolete due to changes in the spell-checking scheme. For more information, see the NSSpellChecker class
specification in the Application Kit Reference.

Obsolete Item Replacement
TableHeadRule.eps ¬
NXReadOnlyTextStream protocolYou can now perform spell checking on any NSString.
TableRule.eps ¬

NXSelectText protocol You can now perform spell checking on any NSString.
TableRule.eps ¬
NXSpellCheckMode type Spell-checking methods always stop at the first misspelled word.
TableRule.eps ¬
addGuess The spellServer:suggestGuessesForWord:inLanguage: delegate method returns the guesses.
TableRule.eps ¬

Text Conversion
Stage 2

In OpenStep, there is a new Text object, NSText, with a much simpler API. NSText uses NSStrings, so it
allows for internationalization. The conversion process changes all instances of Text in your code to NSText.

In simplifying the API, some functionality was removed from NSText. You can still use RTF and RTFD formats,
import graphics, and manage the font and alignment, so this won't affect most applications. However, if you
need to perform some specialized operations (such as using your own drawing function, managing the text
runs, or using different paragraph styles within a single object) or if you need to create a subclass, you should
use NSCStringText instead. NSCStringText is simply the old Text object renamed to remind you that it
understands only 8-bit character encodings and can't be fully internationalized.

This section describes the changes to the Text object that you need to know about during the conversion. In
some cases, you may have to perform some conversion yourself.

Text Length, Character Positions, and Ranges of Characters
NSText has a new method, string, which returns its contents in an NSString. Many of the methods that Text
used to implement are replaced with methods sent to the NSString returned by string. The following table lists
the obsolete methods and shows possible replacements for them.

Obsolete Text Method Possible Replacement
TableHeadRule.eps ¬
byteLength [[myText string] cStringLength]
TableRule.eps ¬
charLength [[myText string] length]
TableRule.eps ¬
getSubstring:start:length: [[myText string] substringWithRange:]
TableRule.eps ¬
textLength [[myText string] length]
TableRule.eps ¬
offsetFromPosition: [[myText string] rangeOfComposedCharacterSequenceAtIndex:]
TableRule.eps ¬
positionFromOffset: [[myText string] rangeOfComposedCharacterSequenceAtIndex:]
TableRule.eps ¬
Note: The conversion between byteLength and cStringLength is not a one-to-one correspondence. If the text in
your object cannot be represented as a C string, cStringLength returns 0. Consider changing byteLength to
something else.

Retrieving the Selection Range
Previously, the method getSel:: returned two selection points, which you could use to retrieve information
about the range of the selected text. Although this method is still implemented in NSCStringText (renamed
getSelectionStart:end:), it is not implemented in NSText. To perform a similar function, use selectedRange to
receive an NSRange that indicates the starting point and the length of the range. You can use the
NSMaxRange() function to determine the ending point of the selection if necessary. The following example
illustrates this change.

Old Code

- changeSelectionToPlatypus:sender

{
/* This method changes the selected text to "Platypus" only
€€€if doing so will not increase the length of the text. */

NXSelPt start, end;
int allowedLength = strlen("Platypus");

[myText getSel:&start:&end];
if ((end.cp - start.cp + 1) >= allowedLength)

[myText replaceSel:"Platypus"];

 return self;
}

New Code

-(void)changeSelectionToPlatypus:sender
{
 NSRange selectedRange;
 int allowedLength = [@"Platypus" length];

 selectedRange = [myText selectedRange];
 if (selectedRange.length >= allowedLength)

[myText setCharactersInRange:selectedRange
withString:@"Platypus"];

}

Using RTF and RTFD Formatted Text
All of the methods that used to read and write RTF and RTFD text from and to a stream are obsolete. They
have been condensed into four methods to read and write RTF and RTFD text. The following table lists the
obsolete methods and shows which method you should use as a replacement. As stated previously, in some
cases you may need to change the declaration of a variable from a stream to an NSData object.

Obsolete Text Method Replacement
TableHeadRule.eps ¬
readRichText: replaceCharactersInRange:withRTF: (last argument is NSData object)
TableRule.eps ¬
readRichText:atPosition: replaceCharactersInRange:withRTF:
TableRule.eps ¬
readRTFDFrom: replaceCharactersInRange:withRTFD:

(last argument is NSData object)
TableRule.eps ¬
replaceSelWithRichText: replaceCharactersInRange:withRTF:
TableRule.eps ¬
replaceSelWithRTFD: replaceCharactersInRange:withRTFD:
TableRule.eps ¬
writeRichText: RTFFromRange: (returns NSData)
TableRule.eps ¬
writeRichText:from:to: RTFFromRange:
TableRule.eps ¬
writeRTFDTo: RTFDFromRange: (returns NSData)
TableRule.eps ¬
writeRTFDSelectionTo: RTFDFromRange:
TableRule.eps ¬
readText: setString:
TableRule.eps ¬

In addition to these changes, the NXRTFDError enumerated type and the NXRTFDErrorHandler protocol are
obsolete. Methods that used to return an NXRTFDError now return BOOL. The attemptOverwrite: method
defined in the protocol is no longer used when writing RTFD data to a file.

Text Gotchas
After the Text conversion, look out for the following:

string Method

The string method returns a pointer to the contents of the NSText, meaning the value inside the returned
NSString changes as the NSText changes. For example, suppose you have an NSText object that contains
the string ªNEXTSTEPº and you assign a temporary variable myString to the NSString returned by that
NSText's string method. myString contains ªNEXTSTEP.º Now suppose the user changes the contents of the
NSText to ªOPENSTEP.º myString's value is now ªOPENSTEPº as well.

If you want a snapshot of the NSText's contents rather than a pointer to the NSText's contents, send the copy
message to the NSString returned by string.

textWillEnd:

The delegate method textWillEnd: is replaced by textShouldEndEditing:. Like textWillEnd:, textShouldEndEditing:
is invoked when the NSText object is about to give up first responder status. However, the return value is
interpreted differently. textWillEnd: returned YES to prevent the Text object from giving up first responder
status. textShouldEndEditing: returns YES to allow the NSText object to give up first responder status. Examine
the values your delegate method is returning very closely.

NXCharFilterFunc

If you implemented a character filter function, you must change it manually. (Character filter functions are
valid only for NSCStringText.) The new template for character filter functions is:

typedef€unsigned€short (*NSCharFilterFunc)
(unsigned€short€charCode, int€flags,
NSStringEncoding€theEncoding);

NSStringEncoding is an enumerated type that identifies the character encoding used on your system. You
may want to use [NSString defaultCStringEncoding] (which returns the default encoding for your system) for this
parameter.

View Conversion
Stage 4

The API for Views has been simplified in many areas, making many of the existing View methods obsolete.
Most of the changes in this area involve removing View and Window methods that are no longer necessary. If
you use an obsolete View method, the conversion process changes it for you. If you subclass View and
override an obsolete method, the conversion process flags it, and you need to either change the
implementation or delete the method. This section describes the View conversions that you may need to
perform yourself.

Drawing Views
This section describes changes to View drawing methods.

Clipping

To simplify drawing API, NSViews cannot draw outside their bounds; they always clip to their bounds

rectangle, which makes methods in the following table obsolete. Use the replacements listed in the table.

Obsolete View Method Possible Replacement
TableHeadRule.eps ¬
display:andClip: displayRect:
TableRule.eps ¬
clipToFrame: For nonrectangular views, use display to draw the view. Override isOpaque: so that it always

returns NO.
TableRule.eps ¬

Opaqueness

Previously, you could send the message displayFromOpaqueAncestor::: to redraw a transparent view using its
first opaque ancestor. The transparent view would go up its view hierarchy until it found an opaque view, and
then each view from the opaque view down to the transparent view in question would be redrawn.

In OpenStep, this is the default behavior; all transparent views use their first opaque ancestors to redraw
themselves. If you have a transparent view that doesn't need to use its first opaque ancestor, send it the
message displayIfNeededIgnoringOpacity.

Previously, View provided the setOpaque: method, which set whether it was opaque or not. You really could
use this method only in subclasses of view; other objects could not send setOpaque: to a view to request that
it become opaque. To clean up the API, this method is now obsolete. If you sent setOpaque: to the Text object
to eliminate the background gray, change it to setDrawsBackground:NO. If you subclassed View, override the
isOpaque method to return whether your view is opaque or not. The default is that the view is not opaque (is
transparent). Because transparent views are redrawn from their first opaque ancestor, they take longer to
redraw. For this reason, it's important that you override isOpaque to return YES if your NSView subclass is
opaque.

Obsolete View Method Possible Replacement
TableHeadRule.eps ¬
displayFromOpaqueAncestor::: display
TableRule.eps ¬
setOpaque: setDrawsBackground:NO if sent to Text

Override isOpaque to return YES.
TableRule.eps ¬

Focusing

To make the API more clear, all focusing methods have been moved to NSView. The following methods are
obsolete.

Obsolete Method Possible Replacement
TableHeadRule.eps ¬
focusView (in Application) focusView (NSView class method)
TableRule.eps ¬
isFocusView (in View) [NSView focusView] == myView

If you override isFocusView, remove your implementation.
TableRule.eps ¬

Drawing Optimizations

Some rarely used methods that performed the same operations as some PostScript functions did are
obsolete. The following table lists these functions and what to use as a replacement.

Obsolete View Method Possible Replacement
TableHeadRule.eps ¬
drawInSuperview allocateGstate
TableRule.eps ¬
setClipping:, doesClip allocateGstate
TableRule.eps ¬

Flipped Coordinate Systems
Previously, View provided the setFlipped: method, which set whether the view used a flipped coordinate
system. You really could use this method only in subclasses of view; another object could not use setFlipped:
to request that a view's coordinate system become flipped. To clean up the API, this method and other
methods that handled flipped coordinate systems are obsolete. The following table lists the obsolete methods
and what to use as a replacement. Note that you can still flip an NSImage.

Obsolete View Method Possible Replacement
TableHeadRule.eps ¬
descendantFlipped: Not needed. The flipped property cannot change.
TableRule.eps ¬
notifyWhenFlipped: isFlipped
TableRule.eps ¬
setFlipped: None. If you override this method, instead override isFlipped: to always

return YES.
TableRule.eps ¬

Accepting Mouse Events
The acceptsFirstMouse method now receives an NSEvent object representing the mouse event in question.
You can now base the return value of this method on the location of the mouse.

Miscellaneous Obsolete Methods
In addition to the methods mentioned previously, the following methods have been removed from NSView to
make the API cleaner and simpler.

Obsolete View Method Replacement
TableHeadRule.eps ¬
convertPointToSuperview convertPoint:toView:
TableRule.eps ¬
convertPointFromSuperviewconvertPoint:fromView:
TableRule.eps ¬
convertRectToSuperview convertRect:toView:
TableRule.eps ¬
convertRectFromSuperview convertRect:fromView:
TableRule.eps ¬
findAncestorSharedWith: None.
TableRule.eps ¬
notifyToInitGstate None necessary. Views are always given a chance to initialize their gstates.
TableRule.eps ¬

Automatically Updating the Display
In OpenStep, the mechanism that automatically updates the display has been greatly simplified. When you
make a change that affects a view's appearance, the following sequence of events occurs:

1. When a view needs to be redrawn, you set its needsDisplay flag. If the entire view needs redrawing, use
setNeedsDisplay:. If only a portion of the view needs redrawing, use setNeedsDisplayInRect:.

2. The setNeedsDisplay... message posts an asynchronous notification. The view's window receives this
notification after the current user event has completed.

3. The window sends it border view a displayIfNeeded message. The border view checks all of the views in the
view hierarchy. If a view's needsDisplay flag is set, the portion of the view that needs to be redrawn is
redrawn.

You can disable this automatic updating of the display with NSWindow's setAutodisplay: method. When this
mechanism is disabled, the setNeedsDisplay... message neither sets the needsDisplay flag nor posts the
notification. If autodisplay is disabled, you can still use the NSView's display method to redraw the view. You
can also use the display method any time you want to redraw the view immediately without waiting for the
event to complete.

Previously, there were a number of mechanisms that updated the display, and many different classes
provided various degrees of control over them. All of these mechanisms have been condensed into the one
described here, which is much easier to use. There is only one way to have the display automatically
updated, and there is only one way to turn it off. The following table lists the Application, View, and Window
methods that are obsolete because of this change and what you should use as a replacement.

Obsolete Method Possible Replacement
TableHeadRule.eps ¬
setAutoupdate: (in Application) setAutodisplay: (in NSWindow)
TableRule.eps ¬
disableDisplay (in Window) None
TableRule.eps ¬
enableDisplay (in Window) None
TableRule.eps ¬

isDisplayEnabled (in Window) None
TableRule.eps ¬
invalidate:: (in View) setNeedsDisplay:YES
TableRule.eps ¬
isAutodisplay (in View) None
TableRule.eps ¬
setAutodisplay: (in View) None (use display directly)
TableRule.eps ¬
setsDisplayOnScroll: (in ClipView) None
TableRule.eps ¬
update (in View) displayIfNeeded, displayIfNeededInRect:
TableRule.eps ¬

Similarly, the scheme for automatically enabling and disabling menu commands has changed. Previously, if
you wanted a menu cell to be automatically updated, you implemented a method that determined whether the
menu cell should be enabled or disabled, and you sent the name of that method to the MenuCell in a
setUpdateAction:forMenu: message.

In OpenStep, all menu items are automatically updated by default. The scheme for enabling and disabling
menus is simplified. For each item in the menu, the NSMenu object looks for an object in the responder chain
that responds to the item's action message. If it finds an object that responds to the message, the item is
enabled. If not, the item is disabled.

In many cases, this menu updating scheme is sufficient, and you can delete your code that updated menu
items. In a few instances, you may still need to control whether an item is enabled or disabled yourself. For
example, if your object implements the item's action method but the method should only be invoked if a
certain type of item is selected, you can implement the method validateMenuItem: in that object to disable the
item. Before NSMenu enables the item, it looks to see if the object that implements the action method also
implements validateMenuItem:. If so, it invokes that method to determine whether it should enable the item.
validateMenuItem: is defined in the NSMenuValidation informal protocol. See its specification sheet in the

Application Kit Reference for more information. The following table summarizes the effect this change has
had on the MenuCell methods for enabling and disabling a menu cell.

Obsolete MenuCell Method Possible Replacement
TableHeadRule.eps ¬
setUpdateAction:forMenu: None necessary.
TableRule.eps ¬
updateAction None necessary. The updateAction, if it exists, is always validateMenuItem:.
TableRule.eps ¬

View Gotchas
After the View conversion, look out for the following:

Redrawing Transparent Views

By default, OpenStep views return NO for isOpaque, meaning that by default, OpenStep views are
transparent. Redrawing transparent views is much slower than redrawing opaque views. When a transparent
view needs to be redrawn (that is, its needsDisplay flag is set), the first opaque ancestor of the view must be
redrawn as well as the view itself and all of the views in between.

If your view is opaque, be sure you are overriding isOpaque to return YES. The automatic display-updating
mechanism uses isOpaque to check whether to redraw the superview as well as the view itself. If all of your
opaque views return YES for isOpaque, display updating will be much faster.

Releasing Views

Superviews retain all subviews as they are added to the hierarchy and release them as they are removed. If
you swap views in and out of the hierarchy, you should retain the views that are not in the hierarchy (and
release them after you add them to the hierarchy).

Previously, sending the free message to a view had the side effect of removing it from the view hierarchy. This
message is converted to a release message, which does not remove the view from the hierarchy because the
superview has retained it. To get the same effect, you must first remove the view from the hierarchy and then
release it.

Window Conversion
Stage 4

Like NSView, NSWindow is essentially the same as its NEXTSTEP Release 3 counterpart. However, many
portions of its API have been simplified, so you may find yourself deleting many messages. This section
describes the parts of the Window conversion that you may have to perform yourself.

Represented Filenames
Previously, you could use setTitleAsFilename: to set the title of the window to the name of the file that appears
inside the window. In OpenStep, you can now set the name of the file that the window represents
independent of having it appear in the titlebar. This allows you to have the document dragging icon (which you
get if you Alternate-drag from the miniaturize button) represent something meaningful without having to
change the name of the window. setRepresentedFilename: sets the file that the window represents, but it does
not change the window's title. setTitleWithRepresentedFilename: uses setRepresentedFilename: to set the
represented file and also changes the title of the window.

Obsolete Window Method Replacement
TableHeadRule.eps ¬
setTitleAsFilename: setTitleWithRepresentedFilename:
TableRule.eps ¬

Tracking Rectangles
The API for tracking rectangles has been simplified to allow greater window system independence. You now
create and delete tracking rectangles in an NSView object. The tag is returned when you create a tracking
rectangle, so you no longer have to create your own tags.

The following table lists the tracking rectangle Window methods that are now obsolete and what their
replacements are in NSView.

Obsolete Window Method Possible Replacement
TableHeadRule.eps ¬
discardTrackingRect: removeTrackingRect: (in NSView)
TableRule.eps ¬
setTrackingRect:inside:owner:tag:left:right: addTrackingRect:owner:assumeInside: (in NSView)
TableRule.eps ¬

Style Masks
To simplify specifying a window's style, the window button mask has been merged with the style mask. In
addition, several window styles that were rarely used are now obsolete. The following table summarizes the
changes.

Obsolete Window Items Possible Replacement
TableHeadRule.eps ¬
buttonMask method styleMask method

TableRule.eps ¬
NX_MENUSTYLE mask None
TableRule.eps ¬
NX_MINIWINDOWSTYLE mask None
TableRule.eps ¬
NX_MINIWORLDSTYLE mask None
TableRule.eps ¬
NX_TOKENSTYLE mask None
TableRule.eps ¬
NX_FIRSTWINSTYLE mask None
TableRule.eps ¬
NX_LASTWINSTYLE mask None
TableRule.eps ¬
NX_NUMWINSTYLES mask None
TableRule.eps ¬

Miscellaneous Obsolete Window Methods
The following table lists methods that have been removed because they were rarely used and what you can
use as a replacement.

Obsolete Window Method Possible Replacement
TableHeadRule.eps ¬
counterpart miniWindowImage
TableRule.eps ¬
addCursorRect:forView: addCursorRect (in NSView)
TableRule.eps ¬
removeCursorRect:forView: removeCursorRect (in NSView)
TableRule.eps ¬

avoidsActivation None
TableRule.eps ¬
setAvoidsActivations: None
TableRule.eps ¬

Releasing Windows
Windows created in Interface Builder are not released until the user quits the application. If you want a
window to be released when the user closes it, you can do one of the following:

SquareBullet.eps ¬Set the ªRelease when closedº attribute in Interface Builder.
SquareBullet.eps ¬Send the window a setReleasedWhenClosed:YES message in your code.
SquareBullet.eps ¬Have the delegate release the window in its windowShouldClose: method.

