
Copyright ã1996 by NeXT Software, Inc.    All Rights Reserved.

Chapter 1

Global API and Style Changes

The conversion scripts described in this chapter perform API style changes. If you're converting in stages,
you'll see a portion of these changes after stage 1 and the rest of them after stage 6.

Factory Methods Conversion
Stage 1

As stated in the introduction, OpenStep introduces a new scheme for automatically deallocating objects when
they are no longer needed. This scheme, which is described in detail later (in the section ªNSObject
Conversionº), changes the typical way an object is created.

Where you used to use alloc and init to allocate a new object, you typically now use a +classname method.
These methods are called +classname methods because their names begin with the name of the class minus
the NS prefix. They are also called factory methods. By convention, the +classname methods always perform
allocation, initialization, and autorelease. (The autorelease method is described in ªNSObject Conversion.º It
makes sure the object is deallocated when you no longer need it.) The +classname methods essentially
replace new methods, which you used to perform both allocation and initialization.

For example, the Foundation Framework contains the NSNumber class, which defines a number object. You
can allocate an NSNumber instance, initialize it to have a specific integer value, and release it at the top of

the event loop by sending NSNumber this one message:

New Code

NSNumber *intObject = [NSNumber numberWithInt:anInt];

Wherever possible, any alloc and init or new messages sent to an Application Kit class are converted to a
+classname method so the object will be released at the top of the event loop without your having to perform
any extra steps. However, most Application Kit objects don't define a +classname method because you
typically want them to stick around for more than one event cycle. If you've used a new method to create an
Application Kit object, this conversion replaces it with the appropriate alloc and init messages.

Two examples of Application Kit classes with +classname methods are NSOpenPanel and NSSavePanel.
When you use openPanel or savePanel to request an open or a save panel, the class checks to see if a panel
has previously been created. If so, the class returns the previously created panel, but first it removes any
changes you made to the panel.

Because of this change to the open and save panels, you might have to complete the conversion manually if
your application makes changes to these panels. Previously, your application would have to remove the
changes it made to a modal panel before the panel was used again. Now, removing such changes is done for
you, so that you always receive the default panel each time you use its +classname method. If you have code
to return a modal panel to its default state, you may delete it. For more information, see the class specification
for each of the modal panels in the Application Kit Reference.

General Naming Conversion
Stage 6

The general naming conversion performs the trivial name changes. In many cases, only the name has
changed, but the class or method still operates in the same manner. For example, conformsTo: has changed
to conformsToProtocol: so that its purpose is more easily understood. Most of the changes that this conversion
makes require no intervention; however, some may require you to inspect an argument's type and make sure
that its still valid. The conversion flags these changes with a warning or error message.

Validating and Filtering Files for Open and Save Panels
A few changes have been made to the way Open and Save panels handle filenames. The table below
summarizes these changes.

Old Method Name New Method Name Other Changes
TableHeadRule.eps ¬
filenames filenames Now returns absolute paths for each

file. If you were forced to construct
absolute paths from the return value,
you may be able to remove some code.

TableRule.eps ¬
panel:filterFile:inDirectory:panel:shouldShowFilename:The filename argument is now an

absolute path.
TableRule.eps ¬
panelValidateFilenames: panel:isValidFilename: Files are validated one at a time. The

new method is invoked as many times
as necessary to validate all selected
files.

TableRule.eps ¬

NXMeasurementUnit

The NXMeasurementUnit enum previously defined in PageLayout.h is obsolete. If you want to find out the user's
choice for the units that the page size is specified in, check the NSMeasurementUnit user default in the
NSGlobalDomain. For more information on user defaults in OpenStep, see ªDefaults Conversionº in the
chapter ªConverting the Common Classes.º

NX_ZONEMALLOC and NX_ZONEREALLOC
The Application Kit macros NX_ZONEMALLOC and NX_ZONEREALLOC are replaced by the Foundation
Framework functions NSZoneMalloc() and NSZoneRealloc(). Sometimes, the conversion process is unable to
convert your use of these macros. In these cases, it will print an error, and you must perform the conversion
manually. The definitions of NSZoneMalloc() and NSZoneRealloc() are:

void€*NSZoneMalloc(NSZone€*zone, unsigned€size);
void *NSZoneRealloc(NSZone€*zone, void€*pointer, unsigned€size);

Ivar Conversion
Stage 6

All instance variables are private in OpenStep. Allowing direct access to instance variables violates
encapsulation. Hiding instance variables not only protects them better from inadvertent changes, but also
makes it easier for objects to change without breaking subclasses.

Because all instance variables are private, if you subclass an Application Kit class, you must now use
accessor methods to access the superclass's instance variables. The ivar conversion makes this change for
you. (Methods have been added to query and set all instance variables where they did not previously exist.)

Old Code

originalWidth = bounds.size.width;

New Code

originalWidth = [self bounds].size.width;

The conversion process assumes that you never set an inherited instance variable's value directly through an
assignment statement, because this was not supported in Release 3.3. If you do, you may see the following
in your code after this conversion is complete.

Old Code

bounds.size.width = 7.5;

Bad New Code

[self bounds].size.width = 7.5; /* Compile Time Error! */

To correct this, use the appropriate superclass method to set the instance variable's value, as shown here.

Good New Code

NSSize newSize;

newSize.height = [self bounds].size.height;
newSize.width = 7.5;
[self setBoundsSize:newSize];

NSName Conversion
Stage 1

The NSName conversion does two things:

SquareBullet.eps ¬Adds the prefix ªNSº to all keywords except method names. For example, View is now
NSView. This prefix distinguishes these keywords from their old implementations and from keywords you
create.

SquareBullet.eps ¬Capitalizes the main header files to distinguish them from the old implementations. For
example <appkit/appkit.h> is converted to <AppKit/AppKit.h>.

These name changes are the most immediately visible differences after stage 1. In many cases, the name
has changed, but the class operates in the same manner. However, this conversion catches many of the
class, types, and functions that are obsolete. Some of these have no replacement in OpenStep. If the
conversion finds an obsolete item in your code, it prints an error that tells you why the item is obsolete.

NXZone and Shallow Conversions
The NSName conversion changes all NXZone references to NSZone. NSZone is a structure defined in the
Foundation Framework. If you're performing a shallow conversion, you'll still have instances of the Common
classes in your code (such as List and Storage), and those classes still use the NXZone structure defined in
objc/zone.h. The definitions of NSZone and NXZone are identical. You can safely cast the NSZone structure
returned by the NSObject zone method, for example, to an NXZone structure.

NSObject Conversion
Stage 1

All objects now inherit from NSObject, the new root class that is part of the Foundation Framework. All of the
classes included in OpenStep inherit from NSObject, and they all begin with the prefix ªNS.º So if the classes
defined in your application now inherit from a class beginning with ªNS,º they ultimately inherit from NSObject.

NSObject replaces Object. It provides all of the mechanisms that Object did. Some of these mechanisms, for
example object allocation and deallocation, have changed. However, the basis for object allocation and
deallocation is still provided by the root class.

Object Allocation and Deallocation
NSObject introduces a new scheme for object allocation and deallocation. In converting your code to use this
new scheme, the NSObject conversion replaces many invocations of the alloc, init, new, and free methods.
From outward appearances, it may seem like not much has changed except for the names of the methods
you use to allocate and deallocate objects. In reality, these methods operate in a very different way, and it is
very important to understand how they work.

Note: For more information about object allocation and deallocation, see the introduction to the Foundation
Framework Reference.

In the new scheme, each object keeps track of the number of objects that refer to it. This number is called the
object's reference count. An object can't be deallocated unless its reference count is 0Ðthat is, any objects
that referred to it are finished with it.

The methods in the following table increment an object's reference count.

Method Name Purpose
TableHeadRule.eps ¬
alloc Allocates a new object.
TableRule.eps ¬
copy Creates a copy of an existing object.
TableRule.eps ¬
mutableCopy Creates a modifiable copy of an existing object.
TableRule.eps ¬
retain Increases the reference count to ensure that an object does not get deallocated.
TableRule.eps ¬

The methods in the following table decrement the reference count.

Method Name Purpose
TableHeadRule.eps ¬
release Decrements reference count. If count becomes 0, invokes dealloc to deallocate the object.
TableRule.eps ¬
autorelease Indirectly decrements the reference count by sending the object the release message at the top of

the event loop.
TableRule.eps ¬

Previously, you used alloc to create an object and when you were done with the object, you sent it the free
message. In OpenStep, you can still create an object with alloc, but when you are done with it, you send it
release or autorelease. As stated in the table, release decrements the reference count, and if the reference
count becomes 0, it invokes the object's dealloc method (dealloc replaces free). autorelease adds the object to
a pool of objects in the application called the autorelease pool. At the top of the event loop, each object in the

autorelease pool is sent the release message. Again, if the reference count becomes 0 as a result of the
release message, the object is deallocated.

The free method is replaced by dealloc. You never invoke dealloc directly; it is always invoked indirectly
through release. The conversion process replaces all free messages with release messages and replaces all
overrides of the free method with the dealloc method.

Automatically Releasing Objects

You usually use autorelease instead of release because it ensures that the object will not be deallocated until
the end of the current event. For example, you can send autorelease anywhere inside a method
implementation and continue to use the object, because the object won't be released until the method has
completed.

Just as you typically put the alloc and init methods in the same message to make sure that you never use an
uninitialized object, you also typically autorelease the object on that same line to make sure you never forget to
decrement its reference count. The following shows how the typical object creation statement has changed.
The new code shown below creates an object that will automatically be deallocated at the top of the event
loop.

Old Code

id myObject = [[Object alloc] init];

New Code

id myObject = [[[NSObject alloc] init] autorelease];

Making Sure Objects Are Not Automatically Deallocated

The +classname methods return an object with a reference count of 1, but the reference count automatically
becomes 0 after the current event has completed because +classname invokes autorelease. If you are creating
an object as an instance variable, you need to increment its reference count so that it is not deallocated until
your object is deallocated.

If you create an instance variable with a +classname method, use the retain method to increment its reference
count. In your object's dealloc method, you send these instance variables the release message so that their
reference counts become 0 and they are immediately deallocated. The following example illustrates this
change.

New Code

- init
{
...

oneIVar = [[NSNumber numberWithInt:1] retain];
...
}

-(void)dealloc
{
...
 [oneIVar release];
...
}

Objects Created in Interface Builder

If you created an instance variable in Interface Builder, you don't have to do anything different from what you

used to do. Custom objects unarchived from a nib file have a reference count of 1. If you have a custom
object that you use as an instance variable of another object, release that instance variable in the dealloc
method of the other object. Views created in Interface Builder are retained and released automatically.
Windows are not released until the user quits the application unless you specify otherwise.

Releasing Views

Superviews retain all subviews as they are added to the hierarchy and release them as they are removed. If
you swap views in and out of the hierarchy, you should retain the views that are not in the hierarchy (and
release them after you add them to the hierarchy).

Previously, sending the free message to a view had the side effect of removing it from the view hierarchy. This
message is converted to a release message, which does not remove the view from the hierarchy because the
superview has retained it. To get the same effect, you must first remove the view from the hierarchy and then
release it.

Releasing Windows

Windows created in Interface Builder are not released until the user quits the application. If you want a
window to be released when the user closes it, you can do one of the following:

SquareBullet.eps ¬Set the ªRelease when closedº attribute in Interface Builder.
SquareBullet.eps ¬Send the window a setReleasedWhenClosed:YES message in your code.
SquareBullet.eps ¬Have the delegate release the window in its windowShouldClose: method.

NSObject Gotchas
After the NSObject conversion, watch out for the following:

Retain Cycles

In general, you retain all instance variables you create in code. Sometimes you have two objects with

instance variables that refer to each other. For example, consider the architecture for a text document shown
in the figure. The Document object creates a Page object instance variable for each page in the document.
Each Page object has an instance variable that keeps track of which document it's in. If the Document object
retained the Page object and the Page object retained the Document object, neither object would ever be
released. The Document's reference count can't become 0 until the Page object is released, and the Page
object won't be released until the Document object is deallocated.

As a rule of thumb, if your application has a similar object hierarchy, the ªparentº object should retain its
ªchildren,º but the children should not retain their parents. This follows the same pattern as the view hierarchy
Ð superviews retain their subviews as they are added to the hierarchy and release them as they are removed.

RetainCycles.eps ¬

Autorelease Memory Leaks
For the autorelease method to release and eventually deallocate an object, you must have an autorelease pool
in place. If you're converting an application that uses NSApplication, you automatically get an autorelease
pool. If you have an NSApplication subclass that overrides init or run or if you are converting a program that
doesn't use the Application Kit (for example, a UNIX command-line tool), you must create your own
autorelease pool. The easiest way to do this is to allocate an NSAutoreleasePool object as the first statement
of your main() function and release it as the last statement before main() exits. If you don't have an autorelease
pool, you receive warning messages at run time when the program sends an autorelease message.

You may want autorelease pools in other parts of your program as well, for example, in loops that allocate a
lot of objects. For more information see the NSAutoreleasePool class specification in the Foundation
Framework Reference.

New Code

void main (int argc, char *argv[])
{

NSAutoreleasePool *myPool = [[NSAutoreleasePool alloc] init];

/* other declarations go here. */
...
[myPool release];
exit (0);

}

Retrieving the Class Name

The Object class defined the name method, which returned the class name of the object as a C string. This
method is obsolete in OpenStep. The conversion process doesn't catch the name method for you. You must
change it manually.

In most cases, the proper replacement for name is class, which returns the class object. The OpenStep API
never requires you to know the name of the class object; instead, it uses the class object. For example,
isKindOfClass: and isMemberOfClass: both take class objects as arguments rather than strings. However, if you
do need the name of the class, you can use the method NSStringFromClass() to retrieve it from the class object
returned by the class method.

Old Code

printf("The class name is: %s\n", [myObject name]);

New Code

printf("The class name is: %s\n",
[NSStringFromClass([myObject class]) cString]);

forward::

The forward:: method used to take a selector and a pointer to that selector's arguments as its arguments. This
method is replaced by forwardInvocation:, which takes an NSInvocation object as its argument. If you
implement the forward:: method, the conversion process flags it with an error. You should replace forward::
with forwardInvocation: and replace the selector and arguments list with an NSInvocation object. For more
information about NSInvocation, see its class specification in the Foundation Framework Reference.

Static Typing Conversion
Stage 6

To catch more errors at compile time, almost all method arguments are now statically typed. Static typing also
makes it easier for you to learn how to use a method. The static typing conversion makes this change for you.

Old Code

- (int)browser:sender numberOfRowsInColumn:(int)column ...

New Code

- (int)browser:(NSBrowser *)sender
numberOfRowsInColumn:(int)column ...

Void Conversion
Stage 6

Previously, methods that had no other information to return returned self by convention. Some methods
returned self to indicate success and nil to indicate failure. Returning self to indicate a Boolean value or
returning self without any associated meaning made the API more confusing. Now, when a method has no
real value to return, its return type is void. Where a method returned self or nil, it now returns BOOL.

During this conversion, both Application Kit methods and methods that you wrote are converted to return void.
(When you set up your project to be converted, the conversion process scanned your code for methods that
always returned self and built a script to convert them to void. For more information, see the on-line release
note Converting Your Code to OpenStep in /NextLibrary/Documentation/NextDev/ReleaseNotes.) When a method
is converted to return void, its definition is changed, and the return self statement at the end of its
implementation is removed. In addition, because the return type is now void, the conversion process changes
invocations of the method in the following places.

Return Statements

Old Code

return [aWindow makeKeyAndOrderFront:self];

New Code

[aWindow makeKeyAndOrderFront:self];
return aWindow;

Assignment Statements

Old Code

keyWindow = [aWindow makeKeyAndOrderFront:self];

New Code

keyWindow = aWindow;
[keyWindow makeKeyAndOrderFront:self];

Nested Messages

Old Code

[[aWindow reenableFlushWindow] flushWindow]; /* easy case */
[[[aView window] reenableFlushWindow] flushWindow]; /* hard case */

New Code

[aWindow enableFlushWindow]; /* easy case */
[aWindow flushWindow];

id newVar = [aView window]; /* hard case */
[newVar enableFlushWindow];
[newVar flushWindow];

Message Arguments

Old Code

[NXApp runModalFor:[aWindow makeKeyAndOrderFront:self]];

New Code

[aWindow makeKeyAndOrderFront:self];
[NSApp runModalForWindow:aWindow];

