
encodeRemotelyFor:freeAfterEncoding:isBycopy:
encodeUsing:
decodeUsing:

initWithSize:
initWithData:size:dealloc:
free

Getting the object's data data
Getting the data's size size
Copying the object copyFromZone:

copyFromZone:(NXZone *)zone

Returns a newly allocated NXData instance containing a copy of the receiver's data. The new object's data will be
deallocated when the new object gets freed.

(void *)data

Returns a pointer to the data contained in the object.

encodeRemotelyFor: (NXConnection *)conn
freeAfterEncoding:(BOOL *)flagPointer
isBycopy:(BOOL)isBycopy

Returns self to indicate that a copy of the NXData object (and not a proxy to it) is to be copied across a connection any
time the object is vended to a remote object. The data for the remote copy will be freed when the copy is freed. If you
want the local NXData to be freed after being sent across the connection, you will need to override this method to set the
boolean indicated by flagPointer to YES.



free

Deallocates the receiver's storage, including the data if it was initialized to do so, and returns nil.

initWithData:size:dealloc:, initWithSize:

initWithData:(void *)data
size:(unsigned int)size
dealloc:(BOOL)flag

Initializes the receiver, a new NXData object, with data, which must be at most size bytes long. If flag is YES, then data
will be deallocated when the NXData object is freed. data could have been allocated with vm_allocate() or a malloc()
variant. Returns self.

initWithSize:, free

initWithSize:(unsigned int)size

Initializes the receiver, a new NXData object, so that it can contain at most size bytes of data. The memory will be
allocated directly from the virtual memory system if it is one page or greater in size (though applications shouldn't care
where the memory came from) otherwise the data will be allocated from the object's zone. The data will be freed when
the NXData object is freed. Returns self.

initWithData:size:dealloc:, free

(unsigned int)size

Returns the size of the data that the object holds.


