
Change 

INHERITS FROM Object

DECLARED IN Change.h

CLASS DESCRIPTION

The Change class is an abstract superclass that is part of the undo 
mechanism. Create subclasses of Change to represent user actions that 
should be undoable. Each time the user performs one of these actions, your 
application should create a change object (an instance of a subclass of 
Change).

INSTANCE VARIABLES

Inherited from Object Class isa;

Declared in Change struct {
unsigned int disabled:1;
unsigned int hasBeenDone:1;
unsigned int changeInProgress:1;
unsigned int padding:29;

} _changeFlags;
id _changeManager;



_changeFlags.disabled YES if this change should not be 
remembered.

_changeFlags.hasBeenDone YES after the change has been 
originally made or redone.

_changeFlags.changeInProgress YES if the change has not yet been 
done the first time.

_changeManager The id of the ChangeManager that owns 
this change.

METHOD TYPES

Initializing a Change - init

Called by application code ± startChange
± startChangeIn:
± endChange
± changeManager

Called by ChangeManager ± disable
± disabled
± hasBeenDone
± changeInProgress
± changeName

Used exclusively by ChangeManager ± saveBefoRWCange
± saveAfterChange



± undoChange
± redoChange
± subsumeChange:
± incorporateChange:
± finishChange

INSTANCE METHODS

changeInProgress
- (BOOL)changeInProgress

Returns YES if the receiving Change has been sent a startChange or 
startChangeIn: message but has not yet received an endChange 
message. You should not need to override this method.

See also:    ± startChange, ± endChange

changeManager
- changeManager

Returns the ChangeManager responsible for handling the receiving Change. 
This method will return nil until either a startChange or startChangeIn: 
message has been sent to the Change, at which point the Change will find 
the responsible ChangeManager by searching up the responder chain for 
the nearest ChangeManager. You should not need to override this method.

See also:    ± startChange

changeName
- (const char *)changeName

Override this method to return the name to be used by the ChangeManager 



in the Undo and Redo menu items. This method is called by 
validateCommand: in the ChangeManager class.

See also:    ± validateCommand: (ChangeManager)

disable
- disable

This method is called to tell the receiving Change that it won't be recorded 
as an explicit change, and won't ever be asked to undoChange or 
redoChange. The actual changes represented by the change object will still 
take place, but the ChangeManager won't record them aRWDseparate 
action. ChangeManager does not send saveBeforeChange and 
saveAfterChange messages to disabled Change objects. A Change object 
will be disabled by its ChangeManager if any of the following conditions are 
true: changes have been explicitly disabled in the ChangeManager; the 
Change was initiated while another Change was already in progress and the 
Change in progress declined to incorporateChange: the new change; or 
the previous (complete) Change elects to subsumeChange: the new 
Change. You should not need to override this method.

See also:    ± saveBeforeChange, ± saveAfterChange, ± 
incorporateChange:, ± subsumeChange:, ± disableChanges: 
(ChangeManager)

disabled
- (BOOL)disabled

Returns YES if the change object has received a disable message.

See also:    ± disable

endChange



- endChange

Signals that a change is complete. This method should be called after the 
startChange method or startChangeIn: method has been sent to the same 
Change. If the receiver has not been disabled, the endChange method will 
send a changeComplete: message to the receiver's ChangeManager. 
Before this method returns, the ChangeManager will send a 
saveAfterChange message back to the Change. If the receiver has been 
disabled or was unable to find a ChangeManager when it started then 
endChange will cause the receiver to free itself. You should not need to 
override this method.

See also:    ± saveAfterChange, ± startChange, ± changeComplete: 
(ChangeManager)

finishChange
- finishChange

The vast majority of all subclasses of Change will not need to use this 
method. The finishChange method is intended to be overridden only in 
subclasses who's insRWEes subsume other Change instances, and only 
then by subclasses that need to perform some special action after the last 
subsumable Change has been subsumed. ChangeManager sends 
finishChange just before the receiving Change is asked to undoChange or 
just after the receiving Change declines to subsumeChange: another 
Change. If a change is repeatedly undone and redone, the ChangeManager 
will repeatedly send the finishChange message to the same Change, so it 
is important that the Change keep track of whether this method has already 
been called.

See also:    ± subsumeChange:

hasBeenDone



- (BOOL)hasBeenDone

Returns YES if the Change has been done for the first time or if the change 
has been redone. Specifically, hasBeenDone returns NO if the receiver has 
never been sent an endChange message or if the receiver has been sent 
an undoChange message more recently than a redoChange message.

incorporateChange:
- (BOOL)incorporateChange:change

The incorporateChange: method is called by the ChangeManager if the 
receiving Change is in progress when a new change is initiated. The 
receiving Change is given the opportunity to incorporate the new change. 
This mechanism can be used when one user action would create multiple 
Change objects. For example, a paste command might implemented using 
two independent, Change producing methods, one for deleting the current 
selection and one for creating the new selection. In this case, both the 
deletion Change and the creation Change should really be part of a single 
paste Change, which will incorporate them as sub-changes. Unlike 
subsumeChange:, this method is called only when a Change is in progress. 

Most subclasses of Change will not need to use this method. You should 
never need to call this method directly, although you may occasionally want 
to override it. Your impRWFntation should return YES if the specified change 
should be incorporated into the receiving Change. By returning YES, the 
receiving Change accepts responsibility for the incorporated change, and the 
ChangeManager will not keep track of it nor free it. Your implementation 
should return NO when change can't or shouldn't be incorporated in the 
receiving Change. In this case, change will be disabled and ignored. The 
default implementation always returns NO. Note that in either case the 
receiving Change must still be able to undo any changes in state that 
happen from the time it receives a startChange message until it receives an 



endChange message. 
See also:    ± disable, ± subsumeChange:

init
- init

Initializes the receiver, a newly allocated Change object.

redoChange
- redoChange

Called by the change manager to re-issue a change after it has been 
undone. This is accomplished by restoring the state of the application using 
the state information recorded by saveAfterChange. You should not need to 
call this method directly. When overriding this method you should end your 
method with ªreturn [super redoChange]º.

See also:    ± undoChange, ± saveAfterChange

saveAfterChange
- saveAfterChange

Called by the ChangeManager after the receiving Change is sent an 
endChange message, provided the Change is not disabled. Override this 
method to save any state information modified during the course of the 
change. This state information can be used by the redoChange method to 
redo a change after it has been undone. You should not need to call this 
method directly. 

See also:    ± saveBeforeChange, ± redoChange

saveBeforeRWGge
- saveBeforeChange



Called by the ChangeManager after the receiving Change is sent a 
startChange or startChangeIn: message, provided the Change is not 
disabled. Override this method to save any state information necessary to 
undo the change later on. For example, if a change causes a variable to be 
updated, the saveBeforeChange method could save the current value of 
the variable for later use by undoChange. You should not need to call this 
method directly.

See also:    ± saveAfterChange, ± undoChange

startChange
- startChange

This method, or its sibling method startChangeIn:, is called once per 
Change by your application code to signal that a change is about to take 
place. The Change will open a connection to the nearest ChangeManager 
on the responder chain. The id of this ChangeManager will be saved in the 
changeManager instance variable. If the application is not active 
startChange will fail to find a ChangeManager. Use startChangeIn: instead 
of startChange if the application is not active. The startChange method will 
return nil if no ChangeManager is found. If a ChangeManager is found, it will 
be sent a changeInProgress: message and it will either send the Change 
either a disable message or a saveBeforeChange message before 
startChange returns. The code for causing the change should follow a call 
to startChange and should be followed directly by a call to endChange. You 
should not need to override this method.

See also:    ± endChange, ± saveBeforeChange, ± startChangeIn:, ± 
isActive (Application)

startChangeIn:



- startChangeIn:aView

This method is identical to the startChange method, except that 
startChangeIn: may successfully locate a ChangeManager even if the 
application is not the active application, which startChangewill not. In 
order to find a ChangeManager startChangeIn: must be passed aView in 
which the change is occurring, which it will use to find the beginning of the 
responder chain. You should not need to override this method.

See also:    ± endChange, ± saveBeforeChange, ± startChange, ± 
isActive (Application)

subsumeChange:
- (BOOL)subsumeChange:change

This method is called by the ChangeManager to offer the receiver (which is 
the last completed Change) the opportunity to subsume the next Change 
about to be performed by the application. Override this method when you 
want to coalesce a series of similar Changes into one large Change. For 
example, a series of cursor movements could be collapsed into a single 
Change. The first Change created by cursor movement would subsume all 
cursor Changes following it directly. The ChangeManager only calls this 
method on completed Changes.

Most subclasses of Change will not need to use this method. You should 
never need to call this method directly, although you may occasionally want 
to override it. Your implementation should return YES if you wish to signal 
that change should be subsumed. In this case, change will be disabled and 
will be freed as soon as it receives an endChange message. Note that the 
current change is expected to be able to undo any changes in state that 
occur before change receives the endChange message. You should return 
NO when change cannot be subsumed by the current change. When this 



happens, the ChangeManager will send the receiver a finishChange 
message and then record change as an independent change The default 
implementation always returns NO.

See also:    ± disable, ± incorporateChange:

undoChange
- undoChange

This method tells the receiving Change to restore the state information first 
saved when saveBeforeChange was called. This information should be 
suffRWInt to restore the state of the application to the way it was before the 
change took place. This method may either be called to undo the Change 
after the first time the Change was made, or after a Change has been 
redone. You should not need to call this method directly. When overriding 
this method you should end your method with ªreturn [super undoChange]º.

See also:    ± redoChange, ± saveBeforeChange


