
Release 4.0 Copyright ã1996 by NeXT Software, Inc.    All Rights Reserved.

D The sendmail Program

From a user's perspective, sending a mail message is a simple procedure. Actually getting the message to its
destination can be, as you might know or suspect, fairly complicated. An integral part of the mail system is the
sendmail program, a message routing facility. It gathers mail from user-level mail sending programs, such as
NeXT's Mail.app, and distributes it to mail forwarding or delivery facilities, such as UUCP.

In order to understand sendmail, you need to understand sendmail configuration files and how they relate to the
environment in which they are interpreted (possibly including NetInfo, NIS, and DNS). This appendix presents
some background information about the operation of sendmail, discusses the configuration files, and gives
some debugging examples. The sendmail facility is notoriously complex. This appendix covers the basics, and
isn't intended as a complete description. See Appendix H, ªSuggested Reading,º for a list of references covering
sendmail.

Note:    The information in this appendix, particularly the tables, is adapted from ªSendmail Installation and
Operation Guideº by Eric Allman. This paper is contained in UNIX System Manager's Manual, 4.3 Berkeley
Software Distribution (see Appendix H).

Warning: The sendmail system is designed to handle general electronic mail addressing and forwarding, which is
extremely complicated. Don't undertake modifications to the existing configuration files unless you're absolutely
sure it's necessary and you're confident you know what you're doing. Be sure to make backup copies of the
existing files in case something goes wrong.

Background

The sendmail program does four things:

· Determines how to dispose of a messageÐhow to forward it to a mail sending program.

· Rewrites parts of the message header so addresses have the correct format and content.

· Performs alias resolution (converts aliases into user names) and processes .forward files for local delivery.

· Forwards mail using SMTP (Simple Mail Transfer Protocol, the TCP/IP network protocol for mail transfer).

Notice that sendmail does not by itself deliver mail, and, with the exception of mail forwarded over SMTP, it does
not forward mail. Instead, sendmail depends on other programs (/bin/mail or uux, for example) to deliver and
forward mail messages.

The sendmail program functions as a traffic director. It takes messages from programs which send mail, such as
NeXT's Mail.app, determines how to forward the message, and passes the message along to a forwarding or
delivery agent. The forwarding agent might be another computer's sendmail using SMTP, or another computer's
rmail program using UUCP. The delivery agent might be /bin/mail for local delivery. The instructions that specify
how to determine what to do with a given message are in the sendmail configuration file.

Configuration Files
In addition to the instructions regarding what to do with a particular mail message, the configuration file also
contains information unique to the network running sendmail. Each computer can have its own configuration file,
but the configuration files on most of the computers in a given network are usually identical. Typically, the

configuration file on the mail server is different from the files on the mail clients, but the files on the clients are the
same.

By default, the sendmail configuration file is /etc/sendmail/sendmail.cf. This might be a symbolic link to
another file in /etc/sendmail, such as sendmail.mailhost.cf. In addition, the location of the configuration file can
be stored in the NetInfo database as the value of the sendmail.cf property in the /locations/sendmail NetInfo
directory. For more information, see Chapter 6, ªManaging Electronic Mail.º

Note:    Entries in the NetInfo /locations directory override /etc/sendmail/sendmail.cf.

Note:    Some implementations of sendmail support a ªfrozenº configuration file, sendmail.cf. This file is not
supported on NeXT computers, and the ability to create a frozen configuration file has been removed.

Headers and Envelopes
Mail messages contain addresses in two places: the header of the message (the From:, To:, and Cc: lines, for
example) and the envelope of the message, which includes the return address and the current destination
addresses (for this copy of the message). Messages are delivered to the destination addresses contained in the
envelope. The envelope addresses are those specified on the command line. When you use NeXT's Mail.app,
these are hidden. See ªTricks of the Tradeº later in this chapter.

Not all recipients are always shown in the headers. For exam[ple, if you send a ªblindº copy to somone, their
address won't be lited anywhere in the received message.    Recipients won't see all of the envelope addresses
(that's the whole point of a ªblindº copy). The envelope return address can be found in the From line (the
ªFrom<space>º line as opposed to From: line) and Return-Path: header lines of a delivered message.

Note:    The ªfrom<space>º lines aren't header lines, but rather they separate messages in UNIX mailboxes.

Configuration File Components

The sendmail configuration file consists of five basic components. In increasing order of importance and
complexity, they are: options, macros, classes, maps, mailers, and rulesets and rewriting rules.

Warning: Modifying your sendmail configuration files should be a last resort. First, try to find an existing configuration file
(or set of files) known to work for your situation. If you do modify the sendmail configuration file, be sure to have
a backup copy in case your modifications don't do quite what you intend. It's extremely easy to render your mail
system inoperative with an inappropriate modification to a sendmail configuration file.

Options
Options control various simple aspects of sendmail operation. Options can be set both in the configuration file
and on the command line used to invoke sendmail (usually executed from /etc/rc).

In the configuration file, options are set using the O directive. Here's an example:

OT3d

This option says to return mail if it hasn't been delivered within 3 days. Other options control such things as the
permissions (ªmodeº) of temporary files, the locations of the aliases file and the spool directory, and the SMTP
timeout. For more information, see the UNIX manual page for sendmail.

Macros
Macros are simple variables. Some macros are defined by sendmail itself, such as the current date and the

sender's host name. Others can be defined in the sendmail configuration file. Such macros might include the
name of a computer to which mail should be sent if it can't be delivered locally. Macro names consist of a single
letter.

A number of built-in macros are available. All have lowercase names. By convention, macros with uppercase
names are reserved for user definition.

Macros are defined with the D directive:

DMetherl

This example defines the M macro to contain the string etherl.

Classes
Classes define collections of equivalent strings (or names, or tokens). This is typically used to indicate that a
group of hosts or host names should be treated the same way. For example, all the computers that are UUCP
partners might be in a class, as might all the different names for the current computer.

Classes are defined with the C and F directives. With C, you explicitly list the members of the class; with F, the
members are obtained from a file or from the standard output of a command. Here's an example of each:

CRmailhost mail-relay mail-server
FV|/usr/bin/uuname
FA/etc/sysadmins

The first line defines the R class to contain the strings mailhost, mail-relay, and mail-server. The second
defines the V class to hold the output of the command /usr/bin/uuname. The final example defines the A class
to hold the contents of the file /etc/sysadmins.

Maps
A map can be used to look up a token or sequence of tokens in a database, and translate that token or those
tokens into something else. For example, a map can be used to translate a user's login name (for example,
tracy) to some canonical alias (for example, Tracy_Roykirk). Maps are used with the $(¼$) metasymbol,
described below.

Three types of maps are supported: NetInfo, NIS, and dbm. To define a map, you use the K directive, whose
syntax is:

Kmapname maptype mapname [arguments]

Here, mapname is a single-letter name for this map, and maptype is either netinfo, nis, or dbm. The syntax of
both mapname and the optional arguments depend on the maptype, as follows:

Map Type Map Name Arguments
netinfo [domain:]directory propertykey

nis map name

dbm dbm file    (without extension)

Here are examples of each definition type, NetInfo, NIS, and dbm, respectively. In each case, the Z map is
defined; in each case, the intent is to use this map to translate a login name to a canonical alias (known as
ªinverse alias translationº).

KZnetinfo localhost/network:/users email
KZnis mail.byaddr
KZdbm /etc/sendmail/inverse_aliases

Let's examine the arguments for the first map definition more carefully. The mapname specification,
localhost/network:/users, has two portions: the domain name (localhost/network), and the directory (/users).
This particular domain name uses tagged domain specification, for efficiency. The assumption here is that this

configuration file's sendmail process will be running on a machine which also runs a NetInfo server for a domain
tagged network. There's also an assumption that we're not willing to look for another server of the domain if, for
some reason, the local netinfod network is slow to respond. More on this in a moment.

If no domain portion is specified, a standard search up the domain hierarchy will be performed, starting with the
local domain. If full domain path notation is usedÐfor example, / or /salesÐa connection will be made to an
available server for the domain.    (Note that both no domain specification and a full domain path specification
might be expensive in a large domain hierarchy: the domain hierarchy will have to be traversed for each
invocation message sent.) A relative domain path can also be used (for example, . or .. or even ../..); this has the
advantage of being able to contact servers on other computers, but still being relatively efficient.

The directory portion specifies the parent of the directory to be accessed, or the directory itself. For example, if
the directory portion is /users and the token to be translated is tracy, then the NetInfo directory /users/tracy will
be accessed. The token can be included as other than the last component of the directory path, by using the
notation %s. For example, if the directory portion is /users/%s/info and tracy is to be translated, then
/users/tracy/info will be examined. (One way to think about this is that if there's no explicit %s in the directory
portion specification, there's an implicit /%s at the end of the specification.)

The PropertyKey denotes the key of the property whose first value should be substituted for the token(s) being
translated. In our example, where we're looking up tracy in the NetInfo map shown above, the first value of the
email property in /users/tracy will be substituted.

Using a Map

We've been discussing maps in a rather abstract manner. Let's take a very specific example: actually
implementing inverse alias translation for the addresses of people sending messages. You might want to reread
this section after completing the rest of this appendix: we'll be using some information explained in later sections.

The first step in implementing inverse alias translation is to define the appropriate information in NetInfo. You
could add a new property, alias, to each user's record in /users in the root domain, for example. Or, you could
add such a property to each user's info subdirectory. Let's take the latter approach; using NetInfoManager or an

appropriate script with niutil, add all the canonical aliases.    Also, be sure that you've defined an appropriate
alias in the /aliases directory to handle the forward translation of, for example, Tracy_Roykirk into tracy.

We have a few choices regarding which messages are subject to inverse alias translation. It could be just
messages being delivered locally, or just messages going out over the Internet, or just messages being
forwarded using UUCP. Or, we could perform inverse alias translation on all messages.    Let's take this latter
option.

As described in ªRuleset Flow and Application,º all sender addresses are translated by Ruleset 1, the Sender
Preprocessing ruleset.    This is a good place to put inverse alias translation. In the configuration files shipped in
NEXTSTEP, Ruleset 1 is empty.

We're going to make two more assumptions here. First, the mailhost machineÐthe machine (or machines)
providing centralized mail servicesÐrun a server for the root NetInfo domain, which is tagged Rhino. Second, if
the NetInfo server for the root domain running on the mailhost doesn't respond, we're willing not to look for
another server for the domain.

Let's define the map, and add a rule to Ruleset 1. A good place to define the map is just above Ruleset 1; you
only need to modify the configuration file for the mailhost.    Here's the map definition, along with the new Ruleset
1.

KZnetinfo localhost/Rhino:/users/%s/info alias

Sender Field Pre-rewriting
S1
R$- $:$>3$(Z$1$) invert account to alias

The Z map is of type netinfo, and will query the netinfod Rhino running on the local computer. The first value of
the alias property in the info subdirectory of the appropriate user directory will be substituted for the word to be
translated.

In Ruleset 1, if there's exactly one token in the sender's address, that token will be translated using the Z map.
The resulting adddress will be sent back through Ruleset 3 for canicalization.    Thus, a sender address of tracy

will result in the value of the alias property in /users/tracy/infoÐfor example, Tracy_RoykirkÐbeing substituted
for tracy.

Debugging NetInfo Lookups

If you invoke sendmail in address test mode (see ªUsing sendmail in Address Test Modeº), you can see the
results of the NetInfo lookups. If you want to get some specific, detailed information, you can run sendmail in
debug mode by specifying the -d flag, and giving it the argument 60 (for example, -d60).    See the section
ªAddress Test on a Mail Serverº for an example.

Mailers
A mailer defines the program and options used to forward or deliver mail. Different mailers are used for reasons
such as the following:

· Forwarding over different media or using different protocols (UUCP versus SMTP, for example)

· Using different options (such as maximum message length) for different circumstances

· Using different sorts of rewriting for the sender and recipient addresses

Mailers can be named anything, except for three names which have special meaning to sendmail: local, prog,
and error.

Mailers are defined with the M directive:

Muucp, P=/usr/bin/uux, F=msDFMhuU, S=13, R=23, E=\n
 A=uux - -r $h!rmail ($u)

This example defines the uucp mailer. Here's a breakdown of the components:

· P (path)ÐDefines the program to be invoked, in this case, /usr/bin/uux.

· F (flags)ÐDefines the mailer flags, which control details of the execution of and arguments to the program
invoked for this mailer. A complete description can be found in Eric Allman's paper.

· S (sender)ÐSpecifies the ruleset used for rewriting sender addresses of messages sent to this mailer. See
ªRuleset Flow and Application,º later in this chapter, for further information.

· R (recipient)ÐSame as S, but for recipient addresses.

· E (eol)ÐSpecifies the end-of-line string, in this case, \n (a newline character).

· A (argv)ÐDefines the argument vector sent to the program. It begins with a restatement of the program (often
in shortened form), and continues with the arguments you would provide to the program on the command line.

Not used in this example is the M (maxsize) option, which defines the maximum message length (in bytes). If this
maximum size is exceeded, the message is not delivered and an error message is returned to the sender.

The local Mailer

The mailer called local must be defined in the configuration file. The local mailer is used for final delivery of
messages destined for users on the local computer. Alias resolution will only be performed for mail that will be
processed by the local mailer.

Typically, the local mailer will invoke /bin/mail, which actually writes a copy of the message to the user's mail
spool file:

Mlocal, P=/bin/mail, F=rlsDFMmnu; see below for a discussion of sender domain additionP, S=10,
R=20, A=mail -d $u

The prog Mailer

The mailer called prog also must be defined in the configuration file. This mailer is used for final message
delivery when the address specifies a program as the recipient. For example, the following mail alias specifies
that the program /usr/local/bin/ambigmail should receive the incoming message:

"|/usr/local/bin/ambigmail"

The prog mailer is invoked in place of the local mailer for such addresses. Typically, the prog mailer will invoke
/bin/sh:

Mprog, P=/bin/sh, F=lsDFMeup, S=10, R=20, A=sh -c $u

The error Mailer

The error mailer is built into sendmail, and shouldn't be defined in the configuration file. This mailer is used to
report errors, such as an unknown local host, to the sender and possibly to postmaster, an alias for the users
responsible for the mail installation. For an example using the error mailer, see the next section.

Error messages can also be generated from other sources. For example, if the local mailer determines that a
user doesn't exist locally, an error will be generated, but the error mailer isn't used to report it.

Rulesets and Rewriting Rules
Much of a sendmail.cf file consists of instructions for interpreting and modifying mail addresses. These
instructions are called rewriting rules, and they're grouped together into rulesets. A ruleset contains a collection of
rules to perform a certain function. For example, one ruleset transforms addresses into a standard (canonical)
format which is easier for the other rulesets to parse.

Rulesets are named with a number, and are defined using the S directive:

S30

A ruleset is followed immediately by the rewriting rules that make up that ruleset. Rewriting rules are defined with
the R directive:

R$+@$+ $:$1<@$2> focus on domain

This rule is made up of three components, separated by tab characters: the left-hand side, the right-hand side,
and a comment.

Left-hand Side

The pattern contained in the left-hand side of a rule is compared to an address. The pattern is similar to a regular
expression, except that it compares tokens, or words, rather than characters. For example, the following address
has five tokens:

amm@Tute.EDU

The five tokens are amm, @, Tute, ., and EDU.

The following table describes the metasymbols used in left-hand side patterns:

Metasymbol Meaning
$* Match zero or more tokens.
$+ Match one or more tokens.
$- Match exactly one token.
$=c Match any token in Class c.
$~c Match any token not in Class c.

Here's the example rewriting rule again:

R$+@$+ $:$1<@$2> focus on domain

The left-hand side of this rule matches one or more tokens ($+), followed by the token @, and one or more
additional tokens ($+).

Right-hand Side

The right-hand side of a rule specifies what to do with an address if the left-hand side of the rule matches it. The
following table describes the metasymbols used in the right-hand side of a rewriting rule:

Metasymbol Meaning
$n Substitute the tokens that match metasymbol number n from the left-hand side.

$[name$] Transform host name (or address) name into standard form (canonicalize).

$>n Call ruleset number n.

$#name Resolve the address to the mailer name.

$@name Specify the host as name.

$:name Specify the user as name.

${m name$} Look up name in the NIS map specified in the macro m [obsolete; superceded by $
(¼$)].

$(m word$) Look up word in the map specified by m (m is defined using the Km directive, below).

Note:    The $# and the $@ and the $: metasymbols are used together in the form $#mailer $@host $:user.

In addition to these metasymbols, there are two prefixes which can be used to modify the behavior of the rule or
ruleset, as described in the following table:

Prefix Meaning
$: Terminate this rule immediately, but allow the ruleset to continue.

$@ Return from this ruleset with the remainder of the right-hand side as the result of the
ruleset.

Note:    The two above prefix usages apply only when they appear first on the Right Hand Side.

Here's the example rewriting rule again:

R$+@$+ $:$1<@$2> focus on domain

The right-hand side rewrites the address into the following form:

Tokens1<@Tokens2>

If this rule were applied to the address amm@Tute.EDU, Tokens1 would match amm, and Tokens2 would match
Tute.EDU. The right-hand side of the rule transforms the address into the following:

amm<@Tute.EDU>

By putting the domain portion of the address between angle brackets (<>), it's more easily identified by other
rules (this is called focusing).

The right-hand side prefix $: causes the rule to terminate, preventing application of the rule to the rewritten
address. (The rewritten address might still match the left-hand side, which would otherwise cause the rule to be
applied to the rewritten address.)

Here's an example of a rewriting rule that invokes the error mailer:

R$*<@$*.LOCAL>$* $#error $:Never heard of host $2 in domain $m

If the left-hand side matches the address, the error mailer is called to return the indicated error message
(everything after $:). Tab characters can't be used in the text of the error message since a tab separates the
right-hand side of a rewriting rule from the comment.

Note:    The error mailer should only be invoked in Ruleset 0 (see the next section).

Translating Addresses

Perhaps the most important aspect of sendmail configuration files is how the rulesets are used to translate a
mail address.

Address Syntax
Electronic mail addresses have many different formsÐthat's why sendmail configuration files are so complex.

A mail address is usually in one of three forms:

· Simple user name or alias, such as suser, Sandy_User, or all_sales
· User name or alias at some other computer, such as suser@Rhino.COM
· User name or alias on another computer reached using UUCP, such as rhino!suser

Other address forms are possible, including combining address forms. The following table describes some
sample mail addresses:

Address Interpretation
amm Local user or alias amm

amm@rhino amm on the computer rhino in the local domain

rhino!amm amm on the computer rhino reached using UUCP

amm@rhino.UUCP amm on the computer rhino reached using UUCP

rhino!hippo!conure!amm amm on the computer conure reached with UUCP through rhino and
then hippo

amm@Rhino.COM amm in the domain Rhino.COM

amm@flyer.Rhino.COM amm in the domain flyer.Rhino.COM; often, this is the computer flyer
in the domain Rhino.COM

<@Rhino.COM:amm@Tute.EDU> amm in the domain Tute.EDU, reached through the domain
Rhino.COM

amm%rhino.UUCP@Tute.EDU amm on the computer rhino.UUCP reached through the domain
Tute.EDU

amm%Rhino.COM@Tute.EDU amm at Rhino.COM reached through Tute.EDU

The sendmail configuration file translates all addresses into conforming addresses, called domain-style
addresses. A simple domain-style address is user@domain, where domain is the name of a computer or
collection of computers (a network, for example). If domain is a collection of computers, one of those computers
will be designated to handle the incoming mail for the collection. The sendmail program (or its equivalent) on the
computer that handles mail for domain interprets user.

For example, the address rhino!suser, which isn't a domain-style address, will be translated to
suser@rhino.uucp. In this case, rhino.uucp is a notation used for convenience: there isn't really a uucp
domain, and therefore no subdomain called rhino.uucp. The translation into a standard, or canonical, domain-
style address is called canonicalization.

In general, mail addresses aren't case-sensitiveÐthe address amm@rhino is the same as amm@Rhino. The
exception to this is UUCP addressesÐamm@rhino.uucp is not the same as amm@Rhino.uucp.

Ruleset Flow and Application
Rulesets are applied to an address in a specific order. This section describes which rulesets are applied to

different kinds of addresses. The rulesets themselves are described in the next    section.

The following figure shows the rulesets used during mailer resolutionÐdetermining what to do with a message
being sent to a given address.

F0.eps ,

The envelope address (which might be different from the addresses in the message itself, or might not appear in
the message) is processed first by Ruleset 3, and then by Ruleset 0. The function of Ruleset 3 is to convert the
address into standard (canonical) form, and to ªfocusº sendmail on the domain part of the address by placing it
in angle brackets (<>). Ruleset 0 determines what to do with the message sent to that address.

The next figure shows the rulesets used to rewrite sender addresses in the message header, such as the From:
line.

F1.eps ,

Ruleset 3 is called first, possibly followed by a process called sender domain addition (represented here by the
box labeled D). Sender domain addition adds a domain portion to the address, if necessary; it is explained below.
Next, Ruleset 1 is invoked, which performs general sender address preprocessing, such as translating a login
name to an alias. Then, the ruleset specified by the S option in the mailer definition is invoked, followed by
Ruleset 4, which performs general postprocessing, including undoing some of the focusing performed by Ruleset
3.

The next figure shows the rulesets used to rewrite recipient addresses in the message header, such as the To:
line.

F2.eps ,

Here, Ruleset 3 and D are as before. Ruleset 2 performs general recipient address processing (frequently not

required, so Ruleset 2 is often empty). Then, the ruleset specified by the R option in the mailer definition is
invoked, followed by Ruleset 4, which performs general postprocessing.

The following figure is a combination of the previous three figures, showing how the various rulesets are used
when processing an address. Which path an address takes through the rulesets depends on the type of address.
This diagram is adapted from the paper by Eric Allman, cited earlier, and appears in many sendmail references.

F3.eps ,

Specific Rulesets
This section describes in detail the various rulesets introduced in the previous section.

Ruleset 3ÐCanonicalize and Focus

Ruleset 3 translates an address into standard form (canonicalization), and encloses the domain portion of the
address between angle brackets (focusing). The example rewriting rule used earlier is a sample from Ruleset 3.

Here are a couple examples of how addresses are translated by Ruleset 3:

Original Address After Translation
amm@Rhino.COM amm<@Rhino.COM>
rhino!amm amm<@rhino.uucp>

Ruleset 0ÐMailer Resolution

Ruleset 0 determines what to do with the message for an address: which mailer should be used to forward or

deliver the mail, which host receives the message if it's to be forwarded, and which address should be given to
the forwarding or delivery agent. This process is called resolving the address. The output of Ruleset 0 contains
three things:

· Mailer to be used to forward or deliver the mail (ddn, for example)
· Host to which the message should be sent (Tute.EDU, for example)
· Address of the user receiving the mail (amm@Tute.EDU, for example)

If the mail is to be delivered locally, the host will be empty.

The next table shows the result of applying Ruleset 0 to a number of addresses. This table assumes that
address resolution is occurring on the mail server (the computer responsible for delivering local mail and
forwarding remote mail), and that mail destined for off-site delivery is forwarded over the Internet.

Address Mailer Host User
suser local suser
suser@rhino ether rhino suser@rhino
suser@Tute.EDU ddn Tute.EDU suser@Tute.EDU
rhino!suser uucp rhino suser
suser@rhino.uucp uucp rhino suser
rhino!conure!suser uucp rhino conure!suser
suser%Rhino.COM@Tute.EDU ddn Tute.EDU suser%Rhino.COM@Tute.EDU

If you want to use some other mailer to forward off-site mail, you need to define that mailer with the M directive,
as described earlier. Additionally, the M macro should be defined as the name of that mailer, the R macro as the
preferred name of the remote forwarding computer, and the R class as the preferred name and any aliases for
the remote forwarding computer.

Ruleset DÐSender Domain Addition

There really isn't a Ruleset D; it's actually a built-in process called sender domain addition. The sender's address

is run through the mailer resolution sequence (Ruleset 3, then Ruleset 0), then sendmail checks to see if the C
mailer flag is present for the mailer that the message was received from. If the flag is present, the domain portion
of the sender's address is added to any addresses in the header that don't already have a domain portion (that
is, that appear to be local addresses). This makes sure that any replies to the message are delivered to the
correct address. For example, if the message is sent from the user amm, sender domain addition might convert
the address to amm@Rhino.COM.

Ruleset 1ÐStandard Sender Address Preprocessing

Ruleset 1 provides an opportunity to do site-wide processing of a sender's address. For example, a site might
implement a standard format for mail addresses, so that, regardless of a user's actual login name, mail from that
user would appear to come from this standard address. Specifically, you might want to translate a login name like
rkabir to Randy_Kabir.

Ruleset 2ÐStandard Recipient Address Preprocessing

Just as you can do standard preprocessing of sender addresses with Ruleset 1, you can perform standard
preprocessing for recipient addresses with Ruleset 2. For example, you might perform host name translation for
some of the computers on your local network. Usually, little if any recipient address preprocessing is required.

Ruleset 4ÐFinal Address Postprocessing

Ruleset 4 undoes some of the address translation performed by Ruleset 3. It also defocuses the address by
removing the angle brackets around the domain portion. For example, it might convert amm<@rhino.uucp>
back into rhino!amm.

Information Services

Depending on how the system is configured, sendmail uses various sources for network-wide information,
including NetInfo, DNS, NIS, and some UNIX flat files. How these are used depends on the information needed.

· User NamesÐWhen sendmail looks for a user name, NetInfo is checked first. If the name is not found in
NetInfo, and if NIS is enabled, the appropriate UNIX file will be examined, and then the NIS map will be
checked.

· Host NamesÐIn addition to NetInfo and NIS, the DNS is searched for host names. Once a message's
destination has been determined, the DNS is searched to determine if a mail exchanger exists for the
destination computer. A mail exchanger is a computer that handles all the mail destined for another computer.
Mail exchanger records in the DNS are called MX records.

If an MX record is found for the destination domain, that computer is used for the destination in the mail
transmission (but not in the message headers). The information in the MX record includes the address of the
mail exchanger, so no further reference to NetInfo or NIS is made to resolve the address of the mail
exchanger.

The order of search is NetInfo, DNS, NIS, then DNS for MX records.

· AliasesÐAliases are translated only for messages being delivered with the local mailer. To resolve an alias,
sendmail looks for the address in three places, in this order: the /aliases NetInfo directory, the mail.aliases
NIS map (if NIS is running), and the file specified by the A option in the sendmail configuration file (usually
/etc/sendmail/aliases). The latter locations are only checked if the address isn't found in an earlier one. If the
address is not found in any of these places, it's left as is. Note that this is independent of the l mailer flag.

After alias resolution, sendmail looks for a file called .forward in the recipient's home directory. This file, if
present, specifies that the mail should be forwarded: to another user (not necessarily local), a file, or a program.

The following table describes examples of each of the variations of the .forward file.

Type Format Example
User Mail address amm@Tute.EDU
Literal user Escaped address \amm
File Full path /Net/rhino/Users/amm/.maillog
Program | program "|/usr/local/bin/answermail -a"

Important:    If a file is specified, it must already exist in order for mail to be written to itÐsendmail will not create
a new file.

If a command is specified in a .forward file, the command is run in the mail queue spool directory as if executed
by the mail recipient. The mail queue spool directory is specified by the Q option (usually /usr/spool/mqueue). If
the command is a shell script, the user's .profile or .cshrc is run. If arguments are provided to the command, the
entire command line must be enclosed in quotes, as in the previous example.

To forward the mail to multiple recipients (for example, to a file and to a program), specify each entry on a
separate line in the .forward file.

Warning: In order to resolve forwarding, sendmail attempts to access the recipient's home directory. If the home directory
is on an imported file system and the file server is unavailable, the sendmail process might have to wait until the
server becomes available.

Debugging

Debugging sendmail problems can be a complex, frustrating experience. The suggestions in this section are a
starting point.

The mail and sendmail -v Option
The -v (verbose) option to the Berkeley mail command displays the sendmail conversation or actions as the
mail is sent. What follows is an example of this command. The example shows user input in boldface and
comments in a different typeface.

rhino [~]-175% mail -v rkabir
Send mail in verbose mode to rkabir.

Subject: Testing
This is a test
.

Enter a message, ending with a period on a line by itself.
Cc:

No copies to anyone.
rkabir... Connecting to mailhost via etherl...

Local computer attempts to send mail to rkabir. Since this computer is a mail client, mail is sent to the mail
server (mailhost) using the etherl mailer.

Trying 192.42.172.66... connected.
192.42.172.66 is the Internet address of the mail server.

220 cockatoo.Rhino.COM Sendmail NX5.67c/NX3.0M ready at Wed, 15 Jul 92 09:14:18 -0700
The greeting from the mail server (cockatoo).

>>> HELO conure.Rhino.COM
250 cockatoo.Rhino.COM Hello conure.rhino.com, pleased to meet you

Both computers identify themselves to each other.
>>> MAIL From:<amm>
250 <amm>... Sender ok

Mail is being sent from the user amm; the sender address is accepted.
>>> RCPT To:<rkabir>
250 <rkabir>... Recipient ok

Mail is being sent to rkabir; the recipient address is accepted. If there were some problem with the address,
an error message would be printed.

>>> DATA
354 Enter mail, end with "." on a line by itself

>>> .
250 Mail accepted

Mail message sent and received.
>>> QUIT
221 cockatoo.Rhino.COM delivering mail
rkabir... Sent

You can also invoke sendmail directly with the verbose option. The output is identical to that from a verbose
mail session. When you run sendmail directly, you must supply all the headers that your mail sending program
provides for you (usually including From:, To:, Cc:, and Subject:). Delivery will be attempted to the addresses
provided on the command line regardless of the headers.

Using sendmail in Address Test Mode
You can run sendmail in address test mode, which displays the results of processing an address by the various
rulesets in the configuration file. In address test mode, you can specify the rulesets to be applied to a specific
address. You specify a ruleset by number, with a sequence of rulesets separated by commas and the rulesets
separated from the address by a space. To see how a specific address would be processed by sendmail,
specify the sequence of rulesets according to the information in ªRuleset Flow and Applicationº earlier in this
chapter.

Normally, the address is resolved to a mailer first. Run the envelope recipient address (the address of the actual
recipient) through Ruleset 0 to resolve it to a mailer. The envelope address might be different from the address in
the header. For example, the address of a recipient of a blind copy of a message will not show up in the
message header, but will be on the envelope. However, a recipient's header address and envelope address will
usually be the same.

After invoking Ruleset 0 on an address, check the definition of the resulting mailer to determine which sequence
of rulesets to use for the sender address, and which to use for the recipient address. Remember, the S and R
macros in a mailer definition specify the rulesets for sender and recipient addresses.

Note:    When mail is being delivered, sendmail normally performs sender domain addition. In address test
mode, however, sendmail doesn't perform sender domain addition. Remember to add the sender domain
yourself to any addresses that apply when running sendmail in address test mode. See ªRuleset DÐSender
Domain Additionº earlier in this chapter for details.

What follows is a series of annotated sessions with sendmail in address test mode, both on a mail client and a
mail server. The examples show user input in boldface and comments in a different typeface.

Address Test on a Mail Client

The first session examines sendmail ruleset processing on a mail client. This example assumes you're sending
mail from cockatoo, in the domain Rhino.COM. Other computers on the local network include the mail server
(mailbox, with the alias mailhost) and the computer conure.

Remember that mail clients know nothing about mail delivery. Instead, they depend on the mail server for
forwarding services.

Here's the definition of the etherl mailer from the file sendmail.sharedsubsidiary.cf:

Metherl, P=[TCP], F=msDFuXn, S=12, R=22, A=TCP $h

Local Address

cockatoo [~]-329% /usr/lib/sendmail -bt
Run sendmail in address test mode.

ADDRESS TEST MODE
Enter <ruleset> <address>
[Note: No automatic ruleset 3 call]

A greeting is printed. Unlike some other sendmails, we don't automatically run Ruleset 3; this allows you to
test individual rulesets without interference from Ruleset 3.

> 3,0 amm

Run Rulesets 3 and 0 on amm to resolve the address to a mailer.
rewrite: ruleset 3 input: "amm"
rewrite: ruleset 3 returns: "amm"
rewrite: ruleset 0 input: "amm"
rewrite: ruleset 9 input: "amm"
rewrite: ruleset 9 returns: "amm"
rewrite: ruleset 0 returns: $# "etherl" $@ "mailhost" $: "amm"

Ruleset 3 is invoked, followed by Ruleset 0, according to the instructions. Ruleset 0, in turn, calls Ruleset 9 as
a subroutine. The input and output of each ruleset are shown. Ruleset 0 returns the values etherl (mailer),
mailhost (host to which the message should be sent), and amm (the user to receive the mail). The strings $#,
$@, and $: indicate that the words following are the mailer, the host, and the user.

> 3,1,12,4 tracy
Run the sender's address (tracy) through the appropriate ruleset sequence. The etherl mailer definition
specifies sender Ruleset 12 (S=12).

rewrite: ruleset 3 input: "tracy"
rewrite: ruleset 3 returns: "tracy"

Execution of Ruleset 3.
rewrite: ruleset 1 input: "tracy"
rewrite: ruleset 1 returns: "tracy"

Ruleset 1 doesn't modify the address.
rewrite: ruleset 12 input: "tracy"
rewrite: ruleset 12 returns: "tracy"

Neither does Ruleset 12, the mailer-specific ruleset.
rewrite: ruleset 4 input: "tracy"
rewrite: ruleset 9 input: "tracy"
rewrite: ruleset 9 returns: "tracy"

Ruleset 4 calls Ruleset 9.
rewrite: ruleset 4 returns: "tracy"

No changes made to the address.

> 3,2,22,4 amm
Run the recipient address (amm) through the appropriate ruleset sequence. The etherl mailer definition
specifies recipient Ruleset 22 (R=22).

rewrite: ruleset 3 input: "amm"

rewrite: ruleset 3 returns: "amm"
rewrite: ruleset 2 input: "amm"
rewrite: ruleset 2 returns: "amm"
rewrite: ruleset 22 input: "amm"
rewrite: ruleset 22 returns: "amm"
rewrite: ruleset 4 input: "amm"
rewrite: ruleset 9 input: "amm"
rewrite: ruleset 9 returns: "amm"
rewrite: ruleset 4 returns: "amm"

As with the sender's address, no changes were needed.

Simple Remote Address

Next, mail to be sent to a remote address is examined (amm at the site Tute.EDU). This is still a mail client, so
the sendmail configuration file is the same, including the definition of the etherl mailer.

> 3,0 amm@Tute.EDU
Run the recipient address through Rulesets 3 and 0 to resolve to a mailer.

rewrite: ruleset 3 input: "amm" "@" "Tute" "." "EDU"
rewrite: ruleset 6 input: "amm" "<" "@" "Tute" "." "EDU" ">"

Ruleset 3 accomplishes focusing before calling Ruleset 6.
rewrite: ruleset 6 returns: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 3 returns: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 0 input: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 9 input: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 9 returns: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 0 returns: $# "etherl" $@ "mailhost" $: "amm" "<" "@" "tute" "." "edu" ">"

The address is resolved to the etherl mailer. The message would be sent to mailhost, to be sent along to
amm@tute.edu.

> 3,1,12,4 tracy
Run the sender address through the appropriate ruleset sequence. Again, Ruleset 12 is defined as the mailer-
specific sender ruleset (S=12).

rewrite: ruleset 3 input: "tracy"

rewrite: ruleset 3 returns: "tracy"
rewrite: ruleset 1 input: "tracy"
rewrite: ruleset 1 returns: "tracy"
rewrite: ruleset 12 input: "tracy"
rewrite: ruleset 12 returns: "tracy"
rewrite: ruleset 4 input: "tracy"
rewrite: ruleset 9 input: "tracy"
rewrite: ruleset 9 returns: "tracy"
rewrite: ruleset 4 returns: "tracy"

No changesÐmail is forwarded to the mail server, where changes might be made.

> 3,2,22,4 amm@tute.edu
Send the recipient address through the ruleset sequence. Ruleset 22 is specified in the etherl mailer definition
(R=22).

rewrite: ruleset 3 input: "amm" "@" "tute" "." "edu"
rewrite: ruleset 6 input: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 6 returns: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 3 returns: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 2 input: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 2 returns: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 22 input: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 22 returns: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 4 input: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 9 input: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 9 returns: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 4 returns: "amm" "@" "tute" "." "edu"

Again, the address is unchanged.

Notice that mail sent to the mail server will never have its header addresses rewritten.

UUCP Address with Local Connection

Now examine the transformations that occur to a message address when sent over UUCP, from amm to ranger!
sandy This example assumes the computer ranger is a UUCP partner of cockatoo. Here's the uucp mailer

definition from sendmail.sharedsubsidiary.cf:

Muucp, P=/usr/bin/uux, F=msDFMhuU, S=13, R=23, E=\n,
 A=uux - -r $h!rmail ($u)

> 3,0 ranger!sandy
Resolve the recipient address to a mailer.

rewrite: ruleset 3 input: "ranger" "!" "sandy"
rewrite: ruleset 6 input: "sandy" "<" "@" "ranger" "." "uucp" ">"
rewrite: ruleset 6 returns: "sandy" "<" "@" "ranger" "." "uucp" ">"

Canonicalization and focusing accomplished.
rewrite: ruleset 3 returns: "sandy" "<" "@" "ranger" "." "uucp" ">"
rewrite: ruleset 0 input: "sandy" "<" "@" "ranger" "." "uucp" ">"
rewrite: ruleset 0 returns: $# "uucp" $@ "ranger" $: "sandy"

This address is resolved to the uucp mailer, rather than being forwarded to mailhost. The assumption is that
even mail clients can have their own UUCP partners.

> 3,1,13,4 amm
Run the sender adress through the appropriate ruleset sequence; the uucp mailer definition specifies Ruleset
13 for sender addresses (S=13).

rewrite: ruleset 3 input: "amm"
rewrite: ruleset 3 returns: "amm"

Ruleset 3 canonicalization and focusing (no changes needed here).
rewrite: ruleset 1 input: "amm"
rewrite: ruleset 1 returns: "amm"

No changes by Ruleset 1.
rewrite: ruleset 13 input: "amm"
rewrite: ruleset 5 input: "amm"

Ruleset 13 calls Ruleset 5, which does UUCP address conversion.
rewrite: ruleset 5 returns: "amm"
rewrite: ruleset 13 returns: "cockatoo" "!" "amm"

Ruleset 13 added cockatoo! to the front of the address, to indicate that the sender's address, relative to the
receiving computer, is cockatoo!amm.

rewrite: ruleset 4 input: "cockatoo" "!" "amm"
rewrite: ruleset 9 input: "cockatoo" "!" "amm"

rewrite: ruleset 9 returns: "cockatoo" "!" "amm"
rewrite: ruleset 4 returns: "cockatoo" "!" "amm"

Since the address started off as a local address, no focusing was necessary. So there's nothing to do in
Ruleset 4 for unfocusing. In addition, the address is already in canonical form.

> 3,2,23,4 ranger!sandy
Translate the recipient's address; the uucp mailer definition includes R=23.

rewrite: ruleset 3 input: "ranger" "!" "sandy"
rewrite: ruleset 6 input: "sandy" "<" "@" "ranger" "." "uucp" ">"
rewrite: ruleset 6 returns: "sandy" "<" "@" "ranger" "." "uucp" ">"
rewrite: ruleset 3 returns: "sandy" "<" "@" "ranger" "." "uucp" ">"

A canonical, focused address is returned.
rewrite: ruleset 2 input: "sandy" "<" "@" "ranger" "." "uucp" ">"
rewrite: ruleset 2 returns: "sandy" "<" "@" "ranger" "." "uucp" ">"
rewrite: ruleset 23 input: "sandy" "<" "@" "ranger" "." "uucp" ">"
rewrite: ruleset 5 input: "sandy" "<" "@" "ranger" "." "uucp" ">"
rewrite: ruleset 5 returns: "ranger" "!" "sandy"
rewrite: ruleset 23 returns: "ranger" "!" "sandy"
rewrite: ruleset 4 input: "ranger" "!" "sandy"
rewrite: ruleset 9 input: "ranger" "!" "sandy"
rewrite: ruleset 9 returns: "ranger" "!" "sandy"
rewrite: ruleset 4 returns: "ranger" "!" "sandy"

Nothing else to do with this address.

Remote Address on the Local Network

As a further example, examine what happens when mail is sent directly to a computer other than the mail server
on the local network. Here's the definition of the etherl mailer from the file sendmail.sharedsubsidiary.cf again:

Metherl, P=[TCP], F=msDFuXn, S=12, R=22, A=TCP $h

> 3,0 amm@cockatoo
rewrite: ruleset 3 input: "amm" "@" "cockatoo"
rewrite: ruleset 6 input: "amm" "<" "@" "cockatoo" ">"

Focus on the host part.
rewrite: ruleset 6 returns: "amm" "<" "@" "cockatoo" "." "LOCAL" ">"

Canonicalize: indicate that the address is local.
rewrite: ruleset 3 returns: "amm" "<" "@" "cockatoo" "." "LOCAL" ">"
rewrite: ruleset 0 input: "amm" "<" "@" "cockatoo" "." "LOCAL" ">"
rewrite: ruleset 30 input: "amm"

Ruleset 30 simply invokes Ruleset 3 and then Ruleset 0. There is redundant routing information in this local
address; this is handled in Ruleset 0. Since you're on a network with a shared mail server, the assumption is
that all mail destined for local addresses goes to the mail server. Any other routing on the local network is
superfluous.

rewrite: ruleset 3 input: "amm"
Restart the address resolution, now with a local address.

rewrite: ruleset 3 returns: "amm"
rewrite: ruleset 0 input: "amm"
rewrite: ruleset 9 input: "amm"
rewrite: ruleset 9 returns: "amm"
rewrite: ruleset 0 returns: $# "etherl" $@ "mailhost" $: "amm"
rewrite: ruleset 30 returns: $# "etherl" $@ "mailhost" $: "amm"
rewrite: ruleset 0 returns: $# "etherl" $@ "mailhost" $: "amm"

Resolved to the etherl mailer.

If you run the header addresses through the appropriate rulesets, you find that no changes are made, just as
with the other examples where the address was resolved to use the etherl mailer.

Here's what happens if you address mail to a user specifically at the mail server:

> 3,0 amm@mailhost
rewrite: ruleset 3 input: "amm" "@" "mailhost"
rewrite: ruleset 6 input: "amm" "<" "@" "mailhost" ">"
rewrite: ruleset 6 returns: "amm" "<" "@" "LOCAL" ">"

Ruleset 6 sees that mailhost is an alias for the local mail server, and indicates that the address is a local one.
rewrite: ruleset 3 returns: "amm" "<" "@" "LOCAL" ">"
rewrite: ruleset 0 input: "amm" "<" "@" "LOCAL" ">"
rewrite: ruleset 9 input: "amm" "<" "@" "rhino" "." "com" ">"

Ruleset 0 invokes Ruleset 9 after having converted LOCAL to rhino.com, this computer's domain.

rewrite: ruleset 9 returns: "amm" "<" "@" "rhino" "." "com" ">"
rewrite: ruleset 0 returns: $# "etherl" $@ "mailhost" $: "amm" "<" "@" "rhino" "." "com" ">"

As expected, the mail goes to the mail server. Notice, though, that the envelope address will be
amm@rhino.com. You might assume that the mail server will recognize an address like this as a local
address.

If you examine the header addresses, you'll see that the sender address is unchanged, but the recipient address
is modified:

> 3,2,22,4 amm@mailhost
Run the recipient address through the ruleset sequence.

rewrite: ruleset 3 input: "amm" "@" "mailhost"
rewrite: ruleset 6 input: "amm" "<" "@" "mailhost" ">"
rewrite: ruleset 6 returns: "amm" "<" "@" "LOCAL" ">"
rewrite: ruleset 3 returns: "amm" "<" "@" "LOCAL" ">"

The address is now focused and canonicalized.
rewrite: ruleset 2 input: "amm" "<" "@" "LOCAL" ">"
rewrite: ruleset 2 returns: "amm" "<" "@" "LOCAL" ">"
rewrite: ruleset 22 input: "amm" "<" "@" "LOCAL" ">"
rewrite: ruleset 22 returns: "amm"

Ruleset 22, the mailer-specific ruleset, does something in this case. It converts amm@LOCAL to amm, thus
making the header address appear to be local.

rewrite: ruleset 4 input: "amm"
rewrite: ruleset 9 input: "amm"
rewrite: ruleset 9 returns: "amm"
rewrite: ruleset 4 returns: "amm"

Address Test on a Mail Server

Now that you've seen what happens to messages and addresses on a mail client, here's what happens with
some similar addresses on a mail server. The examples assume that the server is connected to the Internet, and
is both the local mail server and the Internet mail gateway. Again, the name of the mail client is cockatoo; the
name of the mail server is mailbox.

Here's the local mailer definition from sendmail.mailhost.cf:

Mlocal, P=/bin/mail, F=rlsDFMmnP, S=10, R=20, A=mail -d $u

Local Address

mailbox [~]-20% /usr/lib/sendmail -bt
ADDRESS TEST MODE
Enter <ruleset> <address>
[Note: No automatic ruleset 3 call]
> 3,0 amm
rewrite: ruleset 3 input: "amm"
rewrite: ruleset 3 returns: "amm"
rewrite: ruleset 0 input: "amm"
rewrite: ruleset 9 input: "amm"
rewrite: ruleset 9 returns: "amm"
rewrite: ruleset 0 returns: $# "local" $: "amm"

The address is resolved to the local mailer.

> 3,1,10,4 tracy
The local mailer defines its sender ruleset (S=) as 10.

rewrite: ruleset 3 input: "tracy"
rewrite: ruleset 3 returns: "tracy"
rewrite: ruleset 1 input: "tracy"
rewrite: ruleset 1 returns: "tracy"
rewrite: ruleset 10 input: "tracy"
rewrite: ruleset 10 returns: "tracy"
rewrite: ruleset 4 input: "tracy"
rewrite: ruleset 9 input: "tracy"
rewrite: ruleset 9 returns: "tracy"
rewrite: ruleset 4 returns: "tracy"

> 3,2,20,4 amm
The local mailer defines its recipient ruleset (R=) as 20.

rewrite: ruleset 3 input: "amm"
rewrite: ruleset 3 returns: "amm"
rewrite: ruleset 2 input: "amm"
rewrite: ruleset 2 returns: "amm"
rewrite: ruleset 20 input: "amm"
rewrite: ruleset 20 returns: "amm"
rewrite: ruleset 4 input: "amm"
rewrite: ruleset 9 input: "amm"
rewrite: ruleset 9 returns: "amm"
rewrite: ruleset 4 returns: "amm"

Not surprisingly, no changes were made to either the sender or the recipient addresses.

Debugging Inverse Alias Translation

Let's take a look at the output from running address test mode with NetInfo lookup debugging turned on.

cockatoo [~]-330% /usr/lib/sendmail -bt -d60 -Cinvert.cf
Invoke sendmail in address test mode with NetInfo debugging output.    Use the configuration file invert.cf.

Version NX5.67e
defining map Z: netinfo localhost/Rhino:/users/%s/info alias

Define a NetInfo map called Z, accessing netinfod Rhino on the local computer.    Use the value of the alias
property in the info subdirectory of the sender's /user directory.

ADDRESS TEST MODE
Enter <ruleset> <address>
[Note: No automatic ruleset 3 call]
> 3,1 tracy

Let's assume the user tracy is sending this message
rewrite: ruleset 3 input: "tracy"
rewrite: ruleset 3 returns: "tracy"
rewrite: ruleset 1 input: "tracy"

Ruleset 1 is where inverse alias translation is implemented.
looking up map Z: tracy (NULL)

Accessing the Z map, to translate tracy.
lookup result: Tracy_Roykirk

Tracy_Roykirk is the first value of the alias property in /users/tracy/info.
rewrite: ruleset 3 input: "Tracy_Roykirk"
rewrite: ruleset 3 returns: "Tracy_Roykirk"
rewrite: ruleset 1 returns: "Tracy_Roykirk"

The preferred sender's address is Tracy_Roykirk.

Simple Remote Address

Here, mail is sent to a remote computer, with a sender address of amm, this time at Tute.EDU. Here's the ddn
mailer definition from sendmail.mailhost.cf:

Mddn, P=[TCP], F=msDFMuCX, S=22, R=22, A=TCP $h, E=\r\n

> 3,0 amm@Tute.EDU
rewrite: ruleset 3 input: "amm" "@" "Tute" "." "EDU"
rewrite: ruleset 6 input: "amm" "<" "@" "Tute" "." "EDU" ">"
rewrite: ruleset 6 returns: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 3 returns: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 0 input: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 9 input: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 9 returns: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 0 returns: $# "ddn" $@ "tute" "." "edu" $: "amm" "<" "@" "tute" "." "edu" ">"

The address is resolved to the ddn mailer.
> 3,1,22,4 tracy

The ddn mailer defines its sender ruleset as 22.
rewrite: ruleset 3 input: "tracy"
rewrite: ruleset 3 returns: "tracy"
rewrite: ruleset 1 input: "tracy"
rewrite: ruleset 1 returns: "tracy"

If Ruleset 1 implemented a translation to a standard (canonical) mail address such as Tracy_Roykirk, then its
output here would be tracy_roykirk instead.

rewrite: ruleset 22 input: "tracy"
rewrite: ruleset 22 returns: "tracy" "<" "@" "mailbox" "." "rhino" "." "com" ">"

Ruleset 22 adds the fully-qualified host name. It also performs the standard (canonical) address translation

just mentioned (see sendmail.mailhost.cf for details). Here, the assumption is that the standard translation
should be done only for messages being sent to remote computers. You might also choose not to include the
host name of the mail server and use only rhino.com as your return site. (This would require ensuring that the
external network understands that rhino.com means mailbox.rhino.com.)

rewrite: ruleset 4 input: "tracy" "<" "@" "mailbox" "." "rhino" "." "com" ">"
rewrite: ruleset 9 input: "tracy" "<" "@" "mailbox" "." "rhino" "." "com" ">"
rewrite: ruleset 9 returns: "tracy" "<" "@" "mailbox" "." "rhino" "." "com" ">"
rewrite: ruleset 4 returns: "tracy" "@" "mailbox" "." "rhino" "." "com"

> 3,2,22,4 amm@Tute.EDU
The ddn mailer defines its recipient ruleset as 22, the same as the sender ruleset.

rewrite: ruleset 3 input: "amm" "@" "Tute" "." "EDU"
rewrite: ruleset 6 input: "amm" "<" "@" "Tute" "." "EDU" ">"
rewrite: ruleset 6 returns: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 3 returns: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 2 input: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 2 returns: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 22 input: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 22 returns: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 4 input: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 9 input: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 9 returns: "amm" "<" "@" "tute" "." "edu" ">"
rewrite: ruleset 4 returns: "amm" "@" "tute" "." "edu"

No change to the recipient's address.

Remote Address on the Local Network

Things aren't quite as straightforward on a mail server, even with simple remote addresses. These examples
show sending mail explicitly to the mail server (from the mail server), and sending mail explicitly to another local
host. Here's the ether mailer definition from sendmail.mailhost.cf:

Mether, P=[TCP], F=msDFMuX, S=11, R=21, A=TCP $h

> 3,0 amm@mailhost

Use the host alias mailhost, rather than explicitly using the host name of this mail server. Either has the same
effect.

rewrite: ruleset 3 input: "amm" "@" "mailhost"
rewrite: ruleset 6 input: "amm" "<" "@" "mailhost" ">"
rewrite: ruleset 6 returns: "amm" "<" "@" "LOCAL" ">"
rewrite: ruleset 3 returns: "amm" "<" "@" "LOCAL" ">"
rewrite: ruleset 0 input: "amm" "<" "@" "LOCAL" ">"
rewrite: ruleset 30 input: "amm"
rewrite: ruleset 3 input: "amm"
rewrite: ruleset 3 returns: "amm"
rewrite: ruleset 0 input: "amm"
rewrite: ruleset 9 input: "amm"
rewrite: ruleset 9 returns: "amm"
rewrite: ruleset 0 returns: $# "local" $: "amm"
rewrite: ruleset 30 returns: $# "local" $: "amm"
rewrite: ruleset 0 returns: $# "local" $: "amm"

sendmail recognizes that mailhost is a name for the current computer. It removes the @mailhost
specification and runs the address back through Rulesets 3 and 0, resolving the address to the local mailer.

> 3,0 amm@cockatoo
Recipient address explicitly to another host on the network.

rewrite: ruleset 3 input: "amm" "@" "cockatoo"
rewrite: ruleset 6 input: "amm" "<" "@" "cockatoo" ">"
rewrite: ruleset 6 returns: "amm" "<" "@" "cockatoo" "." "LOCAL" ">"
rewrite: ruleset 3 returns: "amm" "<" "@" "cockatoo" "." "LOCAL" ">"
rewrite: ruleset 0 input: "amm" "<" "@" "cockatoo" "." "LOCAL" ">"
rewrite: ruleset 0 returns: $# "ether" $@ "cockatoo" $: "amm" "<" "@" "cockatoo" ">"

The mail is sent to cockatoo using the ether mailer.

> 3,1,11,4 tracy
The ether mailer defines the sender ruleset as 11.

rewrite: ruleset 3 input: "tracy"
rewrite: ruleset 3 returns: "tracy"
rewrite: ruleset 1 input: "tracy"
rewrite: ruleset 1 returns: "tracy"

rewrite: ruleset 11 input: "tracy"
rewrite: ruleset 11 returns: "tracy" "<" "@" "mailbox" ">"

Ruleset 11 adds the host name of this computer.
rewrite: ruleset 4 input: "tracy" "<" "@" "mailbox" ">"
rewrite: ruleset 9 input: "tracy" "<" "@" "mailbox" ">"
rewrite: ruleset 9 returns: "tracy" "<" "@" "mailbox" ">"
rewrite: ruleset 4 returns: "tracy" "@" "mailbox"

Since you used an explicit host name in the message address, the return address (the sender's address)
should have the explicit host name of the sending computer.

> 3,2,21,4 amm@cockatoo
Ruleset 21 is specified as the reipient address ruleset in the ether mailer definition.

rewrite: ruleset 3 input: "amm" "@" "cockatoo"
rewrite: ruleset 6 input: "amm" "<" "@" "cockatoo" ">"
rewrite: ruleset 6 returns: "amm" "<" "@" "cockatoo" "." "LOCAL" ">"

Known computer on the local network recognized, and .LOCAL appended.
rewrite: ruleset 3 returns: "amm" "<" "@" "cockatoo" "." "LOCAL" ">"
rewrite: ruleset 2 input: "amm" "<" "@" "cockatoo" "." "LOCAL" ">"
rewrite: ruleset 2 returns: "amm" "<" "@" "cockatoo" "." "LOCAL" ">"
rewrite: ruleset 21 input: "amm" "<" "@" "cockatoo" "." "LOCAL" ">"
rewrite: ruleset 21 returns: "amm" "<" "@" "cockatoo" "." "LOCAL" ">"
rewrite: ruleset 4 input: "amm" "<" "@" "cockatoo" "." "LOCAL" ">"
rewrite: ruleset 9 input: "amm" "<" "@" "cockatoo" "." "LOCAL" ">"
rewrite: ruleset 9 returns: "amm" "<" "@" "cockatoo" "." "rhino" "." "com" ">"

Ruleset 9 converts the LOCAL pseudodomain to the actual domain.
rewrite: ruleset 4 returns: "amm" "@" "cockatoo" "." "rhino" "." "com"

Configuration Files on NeXT Computers

Three different sendmail configuration files are shipped with NeXT computers. Each is used in a different

situation:

· sendmail.subsidiary.cfÐFor use on a computer that has local mail spool storage but doesn't have complete
mail routing information; it isn't a mail client or mail server. This is the default configuration file.

· sendmail.mailhost.cfÐFor use on a mail server.

· sendmail.sharedsubsidiary.cfÐFor use on client computers that import the /usr/spool/mail directory from a
server.

Macros
The following table describes how macros are defined and used in the standard sendmail configuration files on
NeXT computers.

Macro Use Definition Where Used
M Relay mailer uucp mailhost

ether subsidiary
etherl sharedsubsidiary

R Relay hostmail-relay mailhost
mailhost subsidiary
mailhost sharedsubsidiary

V Configuration file version NX3.0M mailhost
NX3.0S subsidiary
NX3.0X sharedsubsidiary

Z Canonical address map mail.byaddr mailhost

e SMTP greeting $j Sendmail $v/$V ready at $b All

j Host name $?m $w.$m $| $w $. All

l From header format From $g $d All

n Mailer agent name Mailer-Agent All

o Operators in addresses .:%@!^=/[] All

q Format of sender's address Dq$?x$x $.<$g> All

Some of these macros are defined the same way in all the configuration files, some are defined differently in
each file, and others are only defined in some files.

Note:    The $? metasymbol denotes an if statement; the $. metasymbol denotes the end of an if statement; the
$| metasymbol denotes an else statement. Thus Dq$?x$x $.<$g> can be read ªdefine the sender's address
(Dq), if the full name is present ($?x), put in the full name with a space character ($x), end of the if construct
($.), put in a begin angle bracket (<), put in the sender's address ($g), put in the end angle bracket (>)º.   
Similarly, the construct $?x$x$|$g$. reads ªif there's a full name ($?x), put it in ($x), else ($|) put in the sender's
address ($g), end of the if-else construct ($.)º.

The Z macro lists the name of an NIS map to be used for ªreverse aliasº translation. For example, if a user with
the login name rkabir sends mail, the map referenced by the Z macro will contain an entry translating rkabir to
another name, such as Randy_Kabir. If NIS is not running, or the referenced map isn't defined, no translation
will occur (and no error will result).

The o macro defines the operators used in addresses. Operators separate tokens from each    other.

Tip:    If you change your configuration file, also make a small change to the definition of the V macro to indicate
that the file has been modified. This is a good way for you to track changes, and can help other people recognize

changes.

The next table describes sample values for those macros that are defined in terms of other macros.

Macro Sample Value
e rhino.Tute.EDU Sendmail NX5.67c/NX3.0X ready at Wed, 15 Jul 92 14:03:06 -0700

j rhino.Tute.EDU

l From amm Fri Jan 3 13:54:40 1992

q amm

Classes
The following table describes the classes defined in the configuration files. Remember that a macro and a class
may have the same name but have completely different values and they are used in completely different ways.
However, it's much easier to understand a configuration file if macros and classes with the same name are used
in similar ways.

Class Use Definition Where Used
R Relay host mail-relay mailhost

mailhost subsidiary
mailhost sharedsubsidiary

V UUCP partners Output of /usr/bin/uuname All

Notice that the R class is defined with the same value as the R macro. Both store the name (or names, in the
case of the class) of the mail relay host. The R class defines all the names of the relay host, including aliases,
and the R macro defines the preferred name of the relay host. Both are needed, because each is used
differentlyÐclasses are lists of equivalent things, macros are variables used for simple substitution.

You can use the R class to determine whether a host is ªequivalentº to the relay host by using the $=
metasymbol in the left-hand side of a rule. If the host is equivalent, you might want to process the mail differently.
(Note that the R class, though defined, is not used in the default configuration files.)

Address Resolution
Mail addresses can be purely local (for example, user), can explicitly name another local host (for example,
user@host), or can be remote (for example, user@host.domain). The following table shows how the various
addresses are resolved for each of the three configuration files.

Address mailhost subsidiary sharedsubsidiary
user local local etherl to mailhost
user@host ether ether etherl to mailhost
user@host.domain ddn ether to mailhost ether to mailhost

Examine the line for user@host.domain. If this address is resolved on the mail server (using
sendmail.mailhost.cf), the ddn mailer will be used. If the address is resolved on a computer using
sendmail.subsidiary.cf, it will be forwarded using the ether mailer to the computer called mailhost. It will also
be sent using the ether mailer to mailhost if resolved on a mail client using sendmail.sharedsubsidiary.cf.

Rulesets
The configuration files on a NeXT computer use the various rulesets in a consistent mannerÐRuleset 5 in
sendmail.mailhost.cf does the same thing as Ruleset 5 in sendmail.sharedsubsidiary.cf. The following three
tables summarize the uses of the various rulesets. The rulesets are divided into three groups: the standard
rulesets, the nonstandard rulesets that aren't mailer-specific rewriting rulesets, and the mailer-specific rewriting

rulesets. The following table describes the standard rulesets.

Ruleset Purpose
0 Mailer resolution
1 Standard sender header address preprocessing
2 Standard recipient header address preprocessing
3 Canonicalization and focusing
4 Standard header address postprocessing

The following table shows rulesets that aren't standard rulesets and aren't used by any of the mailers for address
rewriting. These rulesets are usually called by other rulesets to perform frequently used operations.

Ruleset Purpose
5 Converts user@host.uucp to host!user
6 Implementation of various local conventions
9 Address cleanup prior to passing address to a mailer
30 Runs Ruleset 3 followed by Ruleset 0

The next table summarizes the mailer-specific rewriting rulesets. Ruleset 12 is used only by mail clients, and
Ruleset 22 is used only by mail servers and mail clients (it isn't used in sendmail.subsidiary.cf).

Ruleset Purpose
10 Sender address rewriting ruleset for local and prog mailers

20 Recipient address rewriting ruleset for local and prog mailers

11 Sender address rewriting ruleset for ether mailer

21 Recipient address rewriting ruleset for ether mailer

12 Sender address rewriting ruleset for etherl mailer

22 Recipient address rewriting ruleset for etherl mailer (mail client)
Sender and recipient address rewriting ruleset for ddn mailer (mail server)

13 Sender address rewriting ruleset for uucp mailer

23 Recipient address rewriting ruleset for uucp mailer

Tricks of the Trade

Supporting sendmail is a challenging task not to be undertaken by the fainthearted. This section provides some
general suggestions for sendmail success.

General Tricks
· Consider finding a mentor to help you learn about sendmail. Look for someone who has experience with

sendmail and wouldn't mind answering questions.

· If you want to explore sendmail in depth, source code is potentially available by anonymous FTP from, for
example, uunet.uu.net (in /mail/sendmail).

Warning: Any general sendmail source code available from the archives is unlikely to work as is on a NeXT computer.
Various NeXT-specific modifications have been made, particularly to support NetInfo.

· You might find some of the discussions that occur on the UseNet newsgroup comp.mail.sendmail helpful. In
addition, other readers might be able to answer your questions or provide assistance.

Operational Tricks
There are three important operational tricks that can come in handy in specific situations.

Mail to Aliases Including the Sender

When a user sends mail to a mail alias that, when resolved, includes the sender's account name, the sender
normally doesn't receive a copy of the mail. However, if the m option is set in the sendmail configuration file, the
sender will receive a copy of the message in this situation. It's important to note that the setting in the sendmail
configuration file on a mail client isn't significantÐit's the setting in the configuration file on the mail server that
determines whether the sender will receive a copy of the mail message.

Including realname in the From: Address

The definition of the q macro in the sender's configuration file determines the format of the From: address in the
header. The definition in sendmail.sharedsubsidiary.cf does not include the realname field. If you want to
include the realname field in the From: address, modify the definition to match the following:

Dq$?x$x <$g>$|g.

With this definition, the format of the return address will be similar to the following, assuming the realname field
value is present):

Tracy Q. Roykirk <troykirk>

If the full name is not present, the format of the return address will be similar to the following:

Tracy Q. Roykirk <troykirk>

If you want to begin with the sender's address and then include the realname field in the From: address, modify
the definition to match the following:

Dqg?x ($x)$.

With this definition, the format of the return address will be similar to the following:

troykirk (Tracy Q. Roykirk)

Mail to Unknown Domains

As described earlier, the M macro, R class, and R macro are used to define the relay mailer and relay computer.
In the configuration file sendmail.mailhost.cf, these are defined as uucp, mail-relay, and mail-relay. By
default, these values aren't used. Instead, mail to an unknown domain is sent to the ddn mailer, directly to the
unknown domain. If your mail server isn't connected to that domain, the mail will be returned as undeliverable.

If you want mail to an unknown domain to be handled differently, define the M macro, R class, and R macro with
appropriate values in sendmail.mailhost.cf. Then, in the same file, modify Ruleset 0. The lines to be changed
begin at line 338 in version NX3.0M:

If you want to pass all other explicit domain names up the ladder
to our forwarder then uncomment the following line.
#R$*<@$*.$+>$* $#$M $@$R $:$1<@$2.$3>$4 user@any.domain
and comment out this one.
R$*<@$+.$->$* $#ddn $@ $2.$3 $:$1<@$2.$3>$4 user@any.domain

Make the changes described in the comments. The result will look like this:

If you want to pass all other explicit domain names up the ladder
to our forwarder then uncomment the following line.
R$*<@$*.$+>$* $#$M $@$R $:$1<@$2.$3>$4 user@any.domain
and comment out this one.
#R$*<@$+.$->$* $#ddn $@ $2.$3 $:$1<@$2.$3>$4 user@any.domain

Debugging Tricks
When debugging a sendmail configuration problem, you might want to examine the values of various macros in
order to determine exactly what's defined and how. You can make additions to your configuration files specifically
for this purpose.

Adding a Ruleset to Examine Macros

The following definition for Ruleset 16 uses the error mailer to display the values of the j and m macros.

S16
R$* $#error $:j=$j, m=$m

Run sendmail in address test mode and invoke Ruleset 16:

> 16 test
rewrite: ruleset 16 input: "test"
rewrite: ruleset 16 returns: $# "error" $: "j" "=" "cockatoo" "." "rhino" "." "com" "," "m"
"=" "rhino" "." "com"

Normally, the error mailer is only invoked in Ruleset 0. However, in this case it provides a simple message
printing mechanism. The j macro has the value cockatoo.rhino.com, and the m macro has rhino.com as its
value.

Adding Header Lines to Examine Macros

Some macros don't have meaningful values until a message has been processed, such as u (the recipient's
address), or q (the format of a sender address). Using a ruleset to examine these macros won't work. Instead,
you can modify the headers to display these values.

Add the following lines to the collection of header definitions:

HX-Test1: j=$j, m=$m
HX-Test2: u=$u, q=$q

Preceding the name of a nonstandard header line with X- follows mail header format conventions, and makes
sure that your message complies with all relevant standards.

Send a small test message to yourself. You'll see two extra header lines, like this:

X-Test1: j=cockatoo.rhino.com, m=rhino.com
X-Test2: u=tr, q=tracy

The message was sent to the alias tr by the user tracy.

Viewing All the Headers

NeXT's Mail.app application shows only some of the header lines in a message. If you're using the Mail
application from Release 3.3 or later, you can use the Show All Headers command from the Message menu to
examine all the headers.    If you're using a previous version of Mail and the headers you want to see are not
visible in the message window, you can view the full headers of the message by performing the following.

1. Click the message heading in the mailbox window.

2. Copy the message with Command-c without clicking in the message area.

3. Paste the message into, for example, a new Edit window.

If the message was just ASCII text, you'll see the complete message in the Edit window. You'll see only the
headers if the message contained rich text, an attached document, voice, or an image.

Here's an example of the complete headers of a message that was sent by Tracy Roykirk from the computer
cockatoo. It was forwarded to mailbox, and there delivered to the user amm.

From Tracy_Roykirk Wed Jul 15 13:57:41 1992
Next-Reference: Testing.attach, 1/1

Return-Path: <Tracy_Roykirk>
Received: from cockatoo.Rhino.COM (cockatoo) by mailbox.Rhino.COM (NX5.67c/NX3.0M)
        id AA00320; Wed, 15 Jul 92 13:57:35 -0700
From: Tracy_Roykirk (Tracy Q. Roykirk - SysAdmin)
Message-Id: <9112270031.AA00320@mailbox.Rhino.COM>
Received: by cockatoo.rhino.com (NX5.67c/NX3.0X)
        id AA00937; Wed, 15 Jul 92 13:57:30 -0700
Date: Wed, 15 Jul 92 13:57:35 -0700
Received: by NeXT.Mailer (1.85)
Received: by NeXT Mailer (1.85)
To: amm
Subject: Testing

