
amiga_lib

amiga_lib ii

COLLABORATORS

TITLE :

amiga_lib

ACTION NAME DATE SIGNATURE

WRITTEN BY July 23, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

amiga_lib iii

Contents

1 amiga_lib 1

1.1 amiga_lib.doc . 1

1.2 amiga.lib/ACrypt . 2

1.3 amiga.lib/AddTOF . 3

1.4 amiga.lib/afp . 3

1.5 amiga.lib/ArgArrayDone . 4

1.6 amiga.lib/ArgArrayInit . 5

1.7 amiga.lib/ArgInt . 6

1.8 amiga.lib/ArgString . 7

1.9 amiga.lib/arnd . 7

1.10 amiga.lib/BeginIO . 8

1.11 amiga.lib/CallHook . 8

1.12 amiga.lib/CallHookA . 9

1.13 amiga.lib/CheckRexxMsg . 10

1.14 amiga.lib/CoerceMethod . 11

1.15 amiga.lib/CoerceMethodA . 11

1.16 amiga.lib/CreateExtIO . 12

1.17 amiga.lib/CreatePort . 12

1.18 amiga.lib/CreateStdIO . 13

1.19 amiga.lib/CreateTask . 14

1.20 amiga.lib/CxCustom . 15

1.21 amiga.lib/CxDebug . 16

1.22 amiga.lib/CxFilter . 16

1.23 amiga.lib/CxSender . 17

1.24 amiga.lib/CxSignal . 18

1.25 amiga.lib/CxTranslate . 19

1.26 amiga.lib/dbf . 19

1.27 amiga.lib/DeleteExtIO . 20

1.28 amiga.lib/DeletePort . 20

1.29 amiga.lib/DeleteStdIO . 21

amiga_lib iv

1.30 amiga.lib/DeleteTask . 21

1.31 amiga.lib/DoMethod . 22

1.32 amiga.lib/DoMethodA . 22

1.33 amiga.lib/DoSuperMethod . 23

1.34 amiga.lib/DoSuperMethodA . 24

1.35 amiga.lib/FastRand . 24

1.36 amiga.lib/fpa . 25

1.37 amiga.lib/FreeIEvents . 25

1.38 amiga.lib/GetRexxVar . 26

1.39 amiga.lib/HookEntry . 27

1.40 amiga.lib/HotKey . 28

1.41 amiga.lib/InvertString . 29

1.42 amiga.lib/NewList . 29

1.43 amiga.lib/printf . 30

1.44 amiga.lib/RangeRand . 31

1.45 amiga.lib/RemTOF . 31

1.46 amiga.lib/SetRexxVar . 32

1.47 amiga.lib/SetSuperAttrs . 33

1.48 amiga.lib/sprintf . 34

1.49 amiga.lib/stdio . 34

1.50 amiga.lib/TimeDelay . 35

1.51 pools.lib/LibAllocPooled . 36

1.52 pools.lib/LibCreatePool . 37

1.53 pools.lib/LibDeletePool . 38

1.54 pools.lib/LibFreePooled . 39

amiga_lib 1 / 40

Chapter 1

amiga_lib

1.1 amiga_lib.doc

ACrypt()
AddTOF()
afp()
ArgArrayDone()
ArgArrayInit()
ArgInt()
ArgString()
arnd()
BeginIO()
CallHook()
CallHookA()
CheckRexxMsg()
CoerceMethod()
CoerceMethodA()
CreateExtIO()
CreatePort()
CreateStdIO()
CreateTask()
CxCustom()
CxDebug()
CxFilter()
CxSender()
CxSignal()
CxTranslate()
dbf()
DeleteExtIO()
DeletePort()
DeleteStdIO()
DeleteTask()
DoMethod()
DoMethodA()
DoSuperMethod()
DoSuperMethodA()
FastRand()
fpa()
FreeIEvents()
GetRexxVar()
HookEntry()

amiga_lib 2 / 40

HotKey()
InvertString()
NewList()
printf()
RangeRand()
RemTOF()
SetRexxVar()
SetSuperAttrs()
sprintf()
stdio()
TimeDelay()
LibAllocPooled()
LibCreatePool()
LibDeletePool()
LibFreePooled()

1.2 amiga.lib/ACrypt

NAME
ACrypt -- Encrypt a password (V37)

SYNOPSIS
newpass = ACcrypt(buffer, password, username)

STRPTR ACrypt(STRPTR, STRPTR, STRPTR);

FUNCTION
This function takes a buffer of at least 12 characters in length,
an unencrypted password and the user’s name (as known to the host
system) and returns an encrypted password in the passed buffer.
This is a one-way encryption. Normally, the user’s encrypted
password is stored in a file for future password comparison.

INPUTS
buffer - a pointer to a buffer at least 12 bytes in length.
password - a pointer to an unencrypted password string.
username - a pointer to the user’s name.

RESULT
newpass - a pointer to the passed buffer if successful, NULL

upon failure. The encrypted password placed in the
buffer will be be eleven (11) characters in length
and will be NULL-terminated.

EXAMPLE

UBYTE *pw, *getpassword() ;
UBYTE *user = "alf"
UBYTE *newpass ;
UBYTE buffer[16] ; /* size >= 12 */

pw = getpassword() ; /* your own function */

if((newpass = ACrypt(buffer, pw, user)) != NULL)
{

amiga_lib 3 / 40

printf("pw = %s\n", newpass) ; /* newpass = &buffer[0] */
}
else
{

printf("ACrypt failed\n") ;
}

NOTES
This function first appeared in later V39 versions of amiga.lib,
but works under V37 and up.

1.3 amiga.lib/AddTOF

NAME
AddTOF - add a task to the VBlank interrupt server chain.

SYNOPSIS
AddTOF(i,p,a);

VOID AddTOF(struct Isrvstr *, APTR, APTR);

FUNCTION
Adds a task to the vertical-blanking interval interrupt server
chain. This prevents C programmers from needing to write an
assembly language stub to do this function.

INPUTS
i - pointer to an initialized Isrvstr structure
p - pointer to the C-code routine that this server is to call each

time TOF happens
a - pointer to the first longword in an array of longwords that

is to be used as the arguments passed to your routine
pointed to by p.

SEE ALSO
RemTOF(), <graphics/graphint.h>

1.4 amiga.lib/afp

NAME
afp - Convert ASCII string variable into fast floating point

SYNOPSIS
ffp_value = afp(string);

FUNCTION
Accepts the address of the ASCII string in C format that is
converted into an FFP floating point number.

The string is expected in this Format:
{S}{digits}{’.’}{digits}{’E’}{S}{digits}
<*******MANTISSA*******><***EXPONENT***>

amiga_lib 4 / 40

Syntax rules:
Both signs are optional and are ’+’ or ’-’. The mantissa must be
present. The exponent need not be present. The mantissa may lead
with a decimal point. The mantissa need not have a decimal point.
Examples: All of these values represent the number fourty-two.

42 .042e3
42. +.042e+03

+42. 0.000042e6
0000042.00 420000e-4

420000.00e-0004

Floating point range:
Fast floating point supports the value zero and non-zero values
within the following bounds -

18 20
9.22337177 x 10 > +number > 5.42101070 x 10

18 -20
-9.22337177 x 10 > -number > -2.71050535 x 10

Precision:
This conversion results in a 24 bit precision with guaranteed
error less than or equal to one-half least significant bit.

INPUTS
string - Pointer to the ASCII string to be converted.

OUTPUTS
string - points to the character which terminated the scan
equ - fast floating point equivalent

1.5 amiga.lib/ArgArrayDone

NAME
ArgArrayDone -- release the memory allocated by a previous call

to ArgArrayInit(). (V36)

SYNOPSIS
ArgArrayDone();

VOID ArgArrayDone(VOID);

FUNCTION
This function frees memory and does cleanup required after a
call to ArgArrayInit(). Don’t call this until you are done using
the ToolTypes argument strings.

SEE ALSO
ArgArrayInit()

amiga_lib 5 / 40

1.6 amiga.lib/ArgArrayInit

NAME
ArgArrayInit -- allocate and initialize a tooltype array. (V36)

SYNOPSIS
ttypes = ArgArrayInit(argc,argv);

UBYTE **ArgArrayInit(LONG,UBYTE **);

FUNCTION
This function returns a null-terminated array of strings
suitable for sending to icon.library/FindToolType(). This array will
be the ToolTypes array of the program’s icon, if it was started from
Workbench. It will just be ’argv’ if the program was started from
a shell.

Pass ArgArrayInit() your startup arguments received by main().

ArgArrayInit() requires that icon.library be open (even if the caller
was started from a shell, so that the function FindToolType() can be
used) and may call GetDiskObject(), so clean up is necessary when
the strings are no longer needed. The function ArgArrayDone() does
just that.

INPUTS
argc - the number of arguments in argv, 0 when started from Workbench
argv - an array of pointers to the program’s arguments, or the

Workbench startup message when started from WB.

RESULTS
ttypes - the initialized argument array or NULL if it could not be

allocated

EXAMPLE
Use of these routines facilitates the use of ToolTypes or command-
line arguments to control end-user parameters in Commodities
applications. For example, a filter used to trap a keystroke for
popping up a window might be created by something like this:

char *ttypes = ArgArrayInit(argc, argv);
CxObj *filter = UserFilter(ttypes, "POPWINDOW", "alt f1");

... with ...

CxObj *UserFilter(char **tt, char *action_name,
char *default_descr)

{
char *desc;

desc = FindToolType(tt,action_name);

return(CxFilter((ULONG)(desc? desc: default_descr)));
}

In this way the user can assign "alt f2" to the action by

amiga_lib 6 / 40

entering a tooltype in the program’s icon of the form:

POPWINDOW=alt f2

or by starting the program from the CLI like so:

myprogram "POPWINDOW=alt f2"

NOTE
Your program must open icon.library and set up IconBase before calling
this routine. In addition IconBase must remain valid until after
ArgArrayDone() has been called!

SEE ALSO
ArgArrayDone(), ArgString(), ArgInt(), icon.library/FindToolType()

1.7 amiga.lib/ArgInt

NAME
ArgInt -- return an integer value from a ToolTypes array. (V36)

SYNOPSIS
value = ArgInt(tt,entry,defaultval)

LONG ArgInt(UBYTE **,STRPTR,LONG);

FUNCTION
This function looks in the ToolTypes array ’tt’ returned
by ArgArrayInit() for ’entry’ and returns the value associated
with it. ’tt’ is in standard ToolTypes format such as:

ENTRY=Value

The Value string is passed to atoi() and the result is returned by
this function.

If ’entry’ is not found, the integer ’defaultval’ is returned.

INPUTS
tt - a ToolTypes array as returned by ArgArrayInit()
entry - the entry in the ToolTypes array to search for
defaultval - the value to return in case ’entry’ is not found within

the ToolTypes array

RESULTS
value - the value associated with ’entry’, or defaultval if ’entry’

is not in the ToolTypes array

NOTES
This function requires that dos.library V36 or higher be opened.

SEE ALSO
ArgArrayInit()

amiga_lib 7 / 40

1.8 amiga.lib/ArgString

NAME
ArgString -- return a string pointer from a ToolTypes array. (V36)

SYNOPSIS
string = ArgString(tt,entry,defaultstring)

STRPTR ArgString(UBYTE **,STRPTR,STRPTR);

FUNCTION
This function looks in the ToolTypes array ’tt’ returned
by ArgArrayInit() for ’entry’ and returns the value associated
with it. ’tt’ is in standard ToolTypes format such as:

ENTRY=Value

This function returns a pointer to the Value string.

If ’entry’ is not found, ’defaultstring’ is returned.

INPUTS
tt - a ToolTypes array as returned by ArgArrayInit()
entry - the entry in the ToolTypes array to search for
defaultstring - the value to return in case ’entry’ is not found within

the ToolTypes array

RESULTS
value - the value associated with ’entry’, or defaultstring if ’entry’

is not in the ToolTypes array

SEE ALSO
ArgArrayInit()

1.9 amiga.lib/arnd

NAME
arnd - ASCII round of the provided floating point string

SYNOPSIS
arnd(place, exp, &string[0]);

FUNCTION
Accepts an ASCII string representing an FFP floating point
number, the binary representation of the exponent of said
floating point number and the number of places to round to.
A rounding process is initiated, either to the left or right
of the decimal place and the result placed back at the
input address defined by &string[0].

INPUTS
place - integer representing number of decimal places to round to
exp - integer representing exponent value of the ASCII string
&string[0] - address where rounded ASCII string is to be placed

amiga_lib 8 / 40

(16 bytes)

RESULT
&string[0] - rounded ASCII string

BUGS
None

1.10 amiga.lib/BeginIO

NAME
BeginIO -- initiate asynchronous device I/O

SYNOPSIS
BeginIO(ioReq)

VOID BeginIO(struct IORequest *);

FUNCTION
This function takes an IORequest, and passes it directly to the
"BeginIO" vector of the proper device. This is equivalent to
SendIO(), except that io_Flags is not cleared. A good understanding
of Exec device I/O is required to properly use this function.

This function does not wait for the I/O to complete.

INPUTS
ioReq - an initialized and opened IORequest structure with the

io_Flags field set to a reasonable value (set to 0 if you do
not require io_Flags).

SEE ALSO
exec.library/DoIO(), exec.library/SendIO(), exec.library/WaitIO()

1.11 amiga.lib/CallHook

NAME
CallHook -- Invoke a hook given a message on the stack.

SYNOPSIS
result = CallHook(hookPtr, obj, ...)

ULONG CallHook(struct Hook *, Object *, ...);

FUNCTION
Like CallHookA(), CallHook() invoke a hook on the supplied
hook-specific data (an "object") and a parameter packet ("message").
However, CallHook() allows you to build the message on your stack.

INPUTS
hookPtr - A system-standard hook
obj - hook-specific data object

amiga_lib 9 / 40

... - The hook-specific message you wish to send. The hook is
expecting a pointer to the message, so a pointer into your
stack will be sent.

RESULT
result - a hook-specific result.

NOTES
This function first appeared in the V37 release of amiga.lib.
However, it does not depend on any particular version of the OS,
and works fine even in V34.

EXAMPLE
If your hook’s message was

struct myMessage
{

ULONG mm_FirstGuy;
ULONG mm_SecondGuy;
ULONG mm_ThirdGuy;

};

You could write:

result = CallHook(hook, obj, firstguy, secondguy, thirdguy);

as a shorthand for:

struct myMessage msg;

msg.mm_FirstGuy = firstguy;
msg.mm_SecondGuy = secondguy;
msg.mm_ThirdGuy = thirdguy;

result = CallHookA(hook, obj, &msg);

SEE ALSO
CallHookA(), utility.library/CallHookPkt(), <utility/hooks.h>

1.12 amiga.lib/CallHookA

NAME
CallHookA -- Invoke a hook given a pointer to a message.

SYNOPSIS
result = CallHookA(hookPtr, obj, message)

ULONG CallHook(struct Hook *, Object *, APTR);

FUNCTION
Invoke a hook on the supplied hook-specific data (an "object")
and a parameter packet ("message"). This function is equivalent
to utility.library/CallHookPkt().

INPUTS

amiga_lib 10 / 40

hookPtr - A system-standard hook
obj - hook-specific data object
message - The hook-specific message you wish to send

RESULT
result - a hook-specific result.

NOTES
This function first appeared in the V37 release of amiga.lib.
However, it does not depend on any particular version of the OS,
and works fine even in V34.

SEE ALSO
CallHook(), utility.library/CallHookPkt(), <utility/hooks.h>

1.13 amiga.lib/CheckRexxMsg

NAME
CheckRexxMsg - Check if a RexxMsg is from ARexx

SYNOPSIS
result = CheckRexxMsg(message)
D0 A0

BOOL CheckRexxMsg(struct RexxMsg *);

FUNCTION
This function checks to make sure that the message is from ARexx
directly. It is required when using the Rexx Variable Interface
routines (RVI) that the message be from ARexx.

While this function is new in the V37 amiga.lib, it is safe to
call it in all versions of the operating system. It is also
PURE code, thus usable in resident/pure executables.

NOTE
This is a stub in amiga.lib. It is only available via amiga.lib.
The stub has two labels. One, _CheckRexxMsg, takes the arguments
from the stack. The other, CheckRexxMsg, takes the arguments in
registers.

EXAMPLE
if (CheckRexxMsg(rxmsg))
{

/* Message is one from ARexx */
}

INPUTS
message A pointer to the RexxMsg in question

RESULTS
result A boolean - TRUE if message is from ARexx.

SEE ALSO

amiga_lib 11 / 40

GetRexxVar(), SetRexxVar()

1.14 amiga.lib/CoerceMethod

NAME
CoerceMethod -- Perform method on coerced object.

SYNOPSIS
result = CoerceMethod(cl, obj, MethodID, ...)

ULONG CoerceMethod(struct IClass *, Object *, ULONG, ...);

FUNCTION
Boopsi support function that invokes the supplied message
on the specified object, as though it were the specified
class. Equivalent to CoerceMethodA(), but allows you to
build the message on the stack.

INPUTS
cl - pointer to boopsi class to receive the message
obj - pointer to boopsi object
... - method-specific message built on the stack

RESULT
result - class and message-specific result.

NOTES
This function first appears in the V37 release of amiga.lib.
While it intrinsically does not require any particular release
of the system software to operate, it is designed to work with
the boopsi subsystem of Intuition, which was only introduced
in V36.

SEE ALSO
CoerceMethodA(), DoMethodA(), DoSuperMethodA(), <intuition/classusr.h>
ROM Kernel Manual boopsi section

1.15 amiga.lib/CoerceMethodA

NAME
CoerceMethodA -- Perform method on coerced object.

SYNOPSIS
result = CoerceMethodA(cl, obj, msg)

ULONG CoerceMethodA(struct IClass *, Object *, Msg);

FUNCTION
Boopsi support function that invokes the supplied message
on the specified object, as though it were the specified
class.

amiga_lib 12 / 40

INPUTS
cl - pointer to boopsi class to receive the message
obj - pointer to boopsi object
msg - pointer to method-specific message to send

RESULT
result - class and message-specific result.

NOTES
This function first appears in the V37 release of amiga.lib.
While it intrinsically does not require any particular release
of the system software to operate, it is designed to work with
the boopsi subsystem of Intuition, which was only introduced
in V36.
Some early example code may refer to this function as CM().

SEE ALSO
CoerceMethod(), DoMethodA(), DoSuperMethodA(), <intuition/classusr.h>
ROM Kernel Manual boopsi section

1.16 amiga.lib/CreateExtIO

NAME
CreateExtIO -- create an IORequest structure

SYNOPSIS
ioReq = CreateExtIO(port,ioSize);

struct IORequest *CreateExtIO(struct MsgPort *, ULONG);

FUNCTION
Allocates memory for and initializes a new IO request block
of a user-specified number of bytes. The number of bytes
MUST be the size of a legal IORequest (or extended IORequest)
or very nasty things will happen.

INPUTS
port - an already initialized message port to be used for this IO

request’s reply port. If this is NULL this function fails.
ioSize - the size of the IO request to be created.

RESULT
ioReq - a new IO Request block, or NULL if there was not enough memory

EXAMPLE
if (ioReq = CreateExtIO(CreatePort(NULL,0),sizeof(struct IOExtTD)))

SEE ALSO
DeleteExtIO(), CreatePort(), exec.library/CreateMsgPort()

1.17 amiga.lib/CreatePort

amiga_lib 13 / 40

NAME
CreatePort - Allocate and initialize a new message port

SYNOPSIS
port = CreatePort(name,pri)

struct MsgPort *CreatePort(STRPTR,LONG);

FUNCTION
Allocates and initializes a new message port. The message list
of the new port will be prepared for use (via NewList). A signal
bit will be allocated, and the port will be set to signal your
task when a message arrives (PA_SIGNAL).

You *must* use DeletePort() to delete ports created with
CreatePort()!

INPUTS
name - public name of the port, or NULL if the port is not named.

The name string is not copied. Most ports do not need names,
see notes below on this.

pri - Priority used for insertion into the public port list,
normally 0.

RESULT
port - a new MsgPort structure ready for use, or NULL if the port

could not be created due to not enough memory or no available
signal bit.

NOTE
In most cases, ports should not be named. Named ports are used for
rendez-vous between tasks. Everytime a named port needs to be located,
the list of all named ports must be traversed. The more named
ports there are, the longer this list traversal takes. Thus, unless
you really need to, do not name your ports, which will keep them off
of the named port list and improve system performance.

BUGS
With versions of amiga.lib prior to V37.14, this function would
not fail even though it couldn’t allocate a signal bit. The port
would be returned with no signal allocated.

SEE ALSO
DeletePort(), exec.library/FindPort(), <exec/ports.h>,
exec.library/CreateMsgPort()

1.18 amiga.lib/CreateStdIO

NAME
CreateStdIO -- create an IOStdReq structure

SYNOPSIS
ioReq = CreateStdIO(port);

amiga_lib 14 / 40

struct IOStdReq *CreateStdIO(struct MsgPort *)

FUNCTION
Allocates memory for and initializes a new IOStdReq structure.

INPUTS
port - an already initialized message port to be used for this IO

request’s reply port. If this is NULL this function fails.

RESULT
ioReq - a new IOStdReq structure, or NULL if there was not enough

memory

SEE ALSO
DeleteStdIO(), CreateExtIO(), exec.library/CreateIORequest()

1.19 amiga.lib/CreateTask

NAME
CreateTask -- Create task with given name, priority, stacksize

SYNOPSIS
task = CreateTask(name,pri,initPC,stackSize)

struct Task *CreateTask(STRPTR,LONG,funcEntry,ULONG);

FUNCTION
This function simplifies program creation of sub-tasks by
dynamically allocating and initializing required structures
and stack space, and adding the task to Exec’s task list
with the given name and priority. A tc_MemEntry list is provided
so that all stack and structure memory allocated by CreateTask()
is automatically deallocated when the task is removed.

An Exec task may not call dos.library functions or any function
which might cause the loading of a disk-resident library, device,
or file (since such functions are indirectly calls to dos.library).
Only AmigaDOS Processes may call AmigaDOS; see the
dos.library/CreateProc() or the dos.library/CreateNewProc()
functions for more information.

If other tasks or processes will need to find this task by name,
provide a complex and unique name to avoid conflicts.

If your compiler provides automatic insertion of stack-checking
code, you may need to disable this feature when compiling sub-task
code since the stack for the subtask is at a dynamically allocated
location. If your compiler requires 68000 registers to contain
particular values for base relative addressing, you may need to
save these registers from your main process, and restore them
in your initial subtask code.

The function entry initPC is generally provided as follows:

In C:

amiga_lib 15 / 40

extern void functionName();
char *tname = "unique name";
task = CreateTask(tname, 0L, functionName, 4000L);

In assembler:
PEA startLabel

INPUTS
name - a null-terminated name string
pri - an Exec task priority between -128 and 127, normally 0
funcEntry - the address of the first executable instruction

of the subtask code
stackSize - size in bytes of stack for the subtask. Don’t cut it

too close - system function stack usage may change.

RESULT
task - a pointer to the newly created task, or NULL if there was not

enough memory.

BUGS
Under exec.library V37 or beyond, the AddTask() function used
internally by CreateTask() can fail whereas it couldn’t fail in
previous versions of Exec. Prior to amiga.lib V37.14, this function
did not check for failure of AddTask() and thus might return a
pointer to a task structure even though the task was not actually
added to the system.

SEE ALSO
DeleteTask(), exec/FindTask()

1.20 amiga.lib/CxCustom

NAME
CxCustom -- create a custom commodity object. (V36)

SYNOPSIS
customObj = CxCustom(action,id);

CxObj *CxCustom(LONG(*)(),LONG);

FUNCTION
This function creates a custom commodity object. The action
of this object on receiving a commodity message is to call a
function of the application programmer’s choice.

The function provided (’action’) will be passed a pointer to
the actual commodities message (in commodities private data
space), and will actually execute as part of the input handler
system task. Among other things, the value of ’id’ can be
recovered from the message by using the function CxMsgID().

The purpose of this function is two-fold. First, it allows
programmers to create Commodities Exchange objects with
functionality that was not imagined or chosen for inclusion
by the designers. Secondly, this is the only way to act

amiga_lib 16 / 40

synchronously with Commodities.

This function is a C-language macro for CreateCxObj(), defined
in <libraries/commodities.h>.

INPUTS
action - a function to call whenever a message reaches the object
id - a message id to assign to the object

RESULTS
customObj - a pointer to the new custom object, or NULL if it could

not be created.

SEE ALSO
commodities.library/CreateCxObj(), commodities.library/CxMsgID()

1.21 amiga.lib/CxDebug

NAME
CxDebug -- create a commodity debug object. (V36)

SYNOPSIS
debugObj = CxDebug(id);

CxObj *CxDebug(LONG);

FUNCTION
This function creates a Commodities debug object. The action of this
object on receiving a Commodities message is to print out information
about the Commodities message through the serial port (using the
kprintf() routine). The value of ’id’ will also be displayed.

Note that this is a synchronous occurrence (the printing is done by
the input device task). If screen or file output is desired, using a
sender object instead of a debug object is necessary, since such
output is best done by your application process.

This function is a C-language macro for CreateCxObj(), defined
in <libraries/commodities.h>.

INPUTS
id - the id to assign to the debug object, this value is output

whenever the debug object sends data to the serial port.

RESULTS
debugObj - a pointer to the debug object, or NULL if it could

not be created.

SEE ALSO
commodities.library/CreateCxObj(), CxSender(), debug.lib/kprintf()

1.22 amiga.lib/CxFilter

amiga_lib 17 / 40

NAME
CxFilter -- create a commodity filter object. (V36)

SYNOPSIS
filterObj = CxFilter(description);

CxObj *CxFilter(STRPTR)

FUNCTION
Creates an input event filter object that matches the
’description’ string. If ’description’ is NULL, the filter will not
match any messages.

A filter may be modified by the functions SetFilter(), using
a description string, and SetFilterIX(), which takes a
binary Input Expression as a parameter.

This function is a C-language macro for CreateCxObj(), defined
in <libraries/commodities.h>.

INPUTS
description - the description string in the same format as strings

expected by commodities.library/SetFilter()

RESULTS
filterObj - a pointer to the filter object, or NULL if there

was not enough memory. If there is a problem in the
description string, the internal error code of the filter
object will be set to so indicate. This error code may be
interrogated using the function CxObjError().

SEE ALSO
commodities.library/CreateCxObj(), commodities.library/SetFilter(),
commodities.library/SetFilterIX(), commodities.library/CxObjError()

1.23 amiga.lib/CxSender

NAME
CxSender -- create a commodity sender object. (V36)

SYNOPSIS
senderObj = CxSender(port,id)

CxObj *CxSender(struct MsgPort *,LONG);

FUNCTION
This function creates a Commodities sender object. The action
of this object on receiving a Commodities message is to copy the
Commodities message into a standard Exec Message, to put the value
’id’ in the message as well, and to send the message off to the
message port ’port’.

The value ’id’ is used so that an application can monitor
messages from several senders at a single port. It can be retrieved

amiga_lib 18 / 40

from the Exec message by using the function CxMsgID(). The value can
be a simple integer ID, or a pointer to some application data
structure.

Note that Exec messages sent by sender objects arrive
asynchronously at the destination port. Do not assume anything about
the status of the Commodities message which was copied into the Exec
message you received.

All Exec messages sent to your ports must be replied. Messages may be
replied after the sender object has been deleted.

This function is a C-language macro for CreateCxObj(), defined
in <libraries/commodities.h>.

INPUTS
port - the port for the sender to send messages to
id - the id of the messages sent by the sender

RESULTS
senderObj - a pointer to the sender object, or NULL if it could

not be created.

SEE ALSO
commodities.library/CreateCxObj(), commodities.library/CxMsgID(),
exec.library/PutMsg(), exec.library/ReplyMsg()

1.24 amiga.lib/CxSignal

NAME
CxSignal -- create a commodity signaller object. (V36)

SYNOPSIS
signalerObj = CxSignal(task,signal);

CxObj *CxSignal(struct Task *,LONG);

FUNCTION
This function creates a Commodities signal object. The action
of this object on receiving a Commodities message is to
send the ’signal’ to the ’task’. The caller is responsible
for allocating the signal and determining the proper task ID.

Note that ’signal’ is the signal value as returned by AllocSignal(),
not the mask made from that value.

This function is a C-language macro for CreateCxObj(), defined
in <libraries/commodities.h>.

INPUTS
task - the task for the signaller to signal
signal - the signal bit number for the signaller to send

RESULTS
signallerObj - a pointer to the signaller object, or NULL if it could

amiga_lib 19 / 40

not be created.

SEE ALSO
commodities.library/CreateCxObj(), exec.library/FindTask()
exec.library/Signal(), exec.library/AllocSignal(),

1.25 amiga.lib/CxTranslate

NAME
CxTranslate -- create a commodity translator object. (V36)

SYNOPSIS
translatorObj = CxTranslate(ie);

CxObj *CxTranslate(struct InputEvent *);

FUNCTION
This function creates a Commodities ’translator’ object.
The action of this object on receiving a Commodities message is to
replace that message in the commodities network with a chain of
Commodities input messages.

There is one new Commodities input message generated for each input
event in the linked list starting at ’ie’ (and NULL terminated). The
routing information of the new input messages is copied from the input
message they replace.

The linked list of input events associated with a translator object
can be changed using the SetTranslate() function.

If ’ie’ is NULL, the null translation occurs: that is, the original
commodities input message is disposed, and no others are created to
take its place.

This function is a C-language macro for CreateCxObj(), defined
in <libraries/commodities.h>.

INPUTS
ie - the input event list used as replacement by the translator

RESULTS
translatorObj - a pointer to the translator object, or NULL if it could

not be created.

SEE ALSO
commodities.library/CreateCxObj(), commodities.library/SetTranslate()

1.26 amiga.lib/dbf

NAME
dbf - convert FFP dual-binary number to FFP format

amiga_lib 20 / 40

SYNOPSIS
fnum = dbf(exp, mant);

FUNCTION
Accepts a dual-binary format (described below) floating point
number and converts it to an FFP format floating point number.
The dual-binary format is defined as:

exp bit 16 = sign (0=>positive, 1=>negative)
exp bits 15-0 = binary integer representing the base

ten (10) exponent
man = binary integer mantissa

INPUTS
exp - binary integer representing sign and exponent
mant - binary integer representing the mantissa

RESULT
fnum - converted FFP floating point format number

BUGS
None

1.27 amiga.lib/DeleteExtIO

NAME
DeleteExtIO - return memory allocated for extended IO request

SYNOPSIS
DeleteExtIO(ioReq);

VOID DeleteExtIO(struct IORequest *);

FUNCTION
Frees up an IO request as allocated by CreateExtIO().

INPUTS
ioReq - the IORequest block to be freed, or NULL.

SEE ALSO
CreateExtIO()

1.28 amiga.lib/DeletePort

NAME
DeletePort - free a message port created by CreatePort()

SYNOPSIS
DeletePort(port)

VOID DeletePort(struct MsgPort *);

amiga_lib 21 / 40

FUNCTION
Frees a message port created by CreatePort. All messages that
may have been attached to this port must have already been
replied before this function is called.

INPUTS
port - message port to delete

SEE ALSO
CreatePort()

1.29 amiga.lib/DeleteStdIO

NAME
DeleteStdIO - return memory allocated for IOStdReq

SYNOPSIS
DeleteStdIO(ioReq);

VOID DeleteStdIO(struct IOStdReq *);

FUNCTION
Frees up an IOStdReq as allocated by CreateStdIO().

INPUTS
ioReq - the IORequest block to be freed, or NULL.

SEE ALSO
CreateStdIO(), DeleteExtIO(), exec.library/CreateIORequest()

1.30 amiga.lib/DeleteTask

NAME
DeleteTask -- delete a task created with CreateTask()

SYNOPSIS
DeleteTask(task)

VOID DeleteTask(struct Task *);

FUNCTION
This function simply calls exec.library/RemTask(), deleting a task
from the Exec task lists and automatically freeing any stack and
structure memory allocated for it by CreateTask().

Before deleting a task, you must first make sure that the task is
not currently executing any system code which might try to signal
the task after it is gone.

This can be accomplished by stopping all sources that might reference
the doomed task, then causing the subtask to execute a Wait(0L).
Another option is to have the task call DeleteTask()/RemTask() on

amiga_lib 22 / 40

itself.

INPUTS
task - task to remove from the system

NOTE
This function simply calls exec.library/RemTask(), so you can call
RemTask() directly instead of calling this function.

SEE ALSO
CreateTask(), exec.library/RemTask()

1.31 amiga.lib/DoMethod

NAME
DoMethod -- Perform method on object.

SYNOPSIS
result = DoMethod(obj, MethodID, ...)

ULONG DoMethod(Object *, ULONG, ...);

FUNCTION
Boopsi support function that invokes the supplied message
on the specified object. The message is invoked on the
object’s true class. Equivalent to DoMethodA(), but allows
you to build the message on the stack.

INPUTS
obj - pointer to boopsi object
MethodID - which method to send (see <intuition/classusr.h>)
... - method-specific message built on the stack

RESULT
result - specific to the message and the object’s class.

NOTES
This function first appears in the V37 release of amiga.lib.
While it intrinsically does not require any particular release
of the system software to operate, it is designed to work with
the boopsi subsystem of Intuition, which was only introduced
in V36.

SEE ALSO
DoMethodA(), CoerceMethodA(), DoSuperMethodA(), <intuition/classusr.h>
ROM Kernel Manual boopsi section

1.32 amiga.lib/DoMethodA

NAME
DoMethodA -- Perform method on object.

amiga_lib 23 / 40

SYNOPSIS
result = DoMethodA(obj, msg)

ULONG DoMethodA(Object *, Msg);

FUNCTION
Boopsi support function that invokes the supplied message
on the specified object. The message is invoked on the
object’s true class.

INPUTS
obj - pointer to boopsi object
msg - pointer to method-specific message to send

RESULT
result - specific to the message and the object’s class.

NOTES
This function first appears in the V37 release of amiga.lib.
While it intrinsically does not require any particular release
of the system software to operate, it is designed to work with
the boopsi subsystem of Intuition, which was only introduced
in V36.
Some early example code may refer to this function as DM().

SEE ALSO
DoMethod(), CoerceMethodA(), DoSuperMethodA(), <intuition/classusr.h>
ROM Kernel Manual boopsi section

1.33 amiga.lib/DoSuperMethod

NAME
DoSuperMethod -- Perform method on object coerced to superclass.

SYNOPSIS
result = DoSuperMethod(cl, obj, MethodID, ...)

ULONG DoSuperMethod(struct IClass *, Object *, ULONG, ...);

FUNCTION
Boopsi support function that invokes the supplied message
on the specified object, as though it were the superclass
of the specified class. Equivalent to DoSuperMethodA(),
but allows you to build the message on the stack.

INPUTS
cl - pointer to boopsi class whose superclass is to

receive the message
obj - pointer to boopsi object
... - method-specific message built on the stack

RESULT
result - class and message-specific result.

NOTES

amiga_lib 24 / 40

This function first appears in the V37 release of amiga.lib.
While it intrinsically does not require any particular release
of the system software to operate, it is designed to work with
the boopsi subsystem of Intuition, which was only introduced
in V36.

SEE ALSO
CoerceMethodA(), DoMethodA(), DoSuperMethodA(), <intuition/classusr.h>
ROM Kernel Manual boopsi section

1.34 amiga.lib/DoSuperMethodA

NAME
DoSuperMethodA -- Perform method on object coerced to superclass.

SYNOPSIS
result = DoSuperMethodA(cl, obj, msg)

ULONG DoSuperMethodA(struct IClass *, Object *, Msg);

FUNCTION
Boopsi support function that invokes the supplied message
on the specified object, as though it were the superclass
of the specified class.

INPUTS
cl - pointer to boopsi class whose superclass is to

receive the message
obj - pointer to boopsi object
msg - pointer to method-specific message to send

RESULT
result - class and message-specific result.

NOTES
This function first appears in the V37 release of amiga.lib.
While it intrinsically does not require any particular release
of the system software to operate, it is designed to work with
the boopsi subsystem of Intuition, which was only introduced
in V36.
Some early example code may refer to this function as DSM().

SEE ALSO
CoerceMethodA(), DoMethodA(), DoSuperMethod(), <intuition/classusr.h>
ROM Kernel Manual boopsi section

1.35 amiga.lib/FastRand

NAME
FastRand - quickly generate a somewhat random integer

SYNOPSIS

amiga_lib 25 / 40

number = FastRand(seed);

ULONG FastRand(ULONG);

FUNCTION
Seed value is taken from stack, shifted left one position,
exclusive-or’ed with hex value $1D872B41 and returned.

INPUTS
seed - a 32-bit integer

RESULT
number - new random seed, a 32-bit value

SEE ALSO
RangeRand()

1.36 amiga.lib/fpa

NAME
fpa - convert fast floating point into ASCII string equivalent

SYNOPSIS
exp = fpa(fnum, &string[0]);

FUNCTION
Accepts an FFP number and the address of the ASCII string where it’s
converted output is to be stored. The number is converted to a NULL
terminated ASCII string in and stored at the address provided.
Additionally, the base ten (10) exponent in binary form is returned.

INPUTS
fnum - Motorola Fast Floating Point number
&string[0] - address for output of converted ASCII character string

(16 bytes)

RESULT
&string[0] - converted ASCII character string
exp - integer exponent value in binary form

BUGS
None

1.37 amiga.lib/FreeIEvents

NAME
FreeIEvents -- free a chain of input events allocated by

InvertString(). (V36)

SYNOPSIS
FreeIEvents(events)

amiga_lib 26 / 40

VOID FreeIEvents(struct InputEvent *);

FUNCTION
This function frees a linked list of input events as obtained from
InvertString().

INPUTS
events - the list of input events to free, may be NULL.

SEE ALSO
InvertString()

1.38 amiga.lib/GetRexxVar

NAME
GetRexxVar - Gets the value of a variable from a running ARexx program

SYNOPSIS
error = GetRexxVar(message,varname,bufpointer)
D0,A1 A0 A1 (C-only)

LONG GetRexxVar(struct RexxMsg *,char *,char **);

FUNCTION
This function will attempt to extract the value of the symbol
varname from the ARexx script that sent the message. When called
from C, a pointer to the extracted value will be placed in the
pointer pointed to by bufpointer. (*bufpointer will be the pointer
to the value)

When called from assembly, the pointer will be returned in A1.

The value string returned *MUST* *NOT* be modified.

While this function is new in the V37 amiga.lib, it is safe to
call it in all versions of the operating system. It is also
PURE code, thus usable in resident/pure executables.

NOTE
This is a stub in amiga.lib. It is only available via amiga.lib.
The stub has two labels. One, _GetRexxVar, takes the arguments
from the stack. The other, GetRexxVar, takes the arguments in
registers.

This routine does a CheckRexxMsg() on the message.

EXAMPLE

char *value;

/* Message is one from ARexx */
if (!GetRexxVar(rxmsg,"TheVar",&value))
{

/* The value was gotten and now is pointed to by value */
printf("Value of TheVar is %s\n",value);

amiga_lib 27 / 40

}

INPUTS
message A message gotten from an ARexx script
varname The name of the variable to extract
bufpointer (For C only) A pointer to a string pointer.

RESULTS
error 0 for success, otherwise an error code.

(Other codes may exists, these are documented)
3 == Insufficient Storage
9 == String too long
10 == invalid message

A1 (Assembly only) Pointer to the string.

SEE ALSO
SetRexxVar(), CheckRexxMsg()

1.39 amiga.lib/HookEntry

NAME
HookEntry -- Assembler to HLL conversion stub for hook entry.

SYNOPSIS
result = HookEntry(struct Hook *, Object *, APTR)
D0 A0 A2 A1

FUNCTION
By definition, a standard hook entry-point must receive the
hook in A0, the object in A2, and the message in A1. If your
hook entry-point is written in a high-level language and is
expecting its parameters on the stack, then HookEntry() will
put the three parameters on the stack and invoke the function
stored in the hook h_SubEntry field.

This function is only useful to hook implementers, and is
never called from C.

INPUTS
hook - pointer to hook being invoked
object - pointer to hook-specific data
msg - pointer to hook-specific message

RESULT
result - a hook-specific result.

NOTES
This function first appeared in the V37 release of amiga.lib.
However, it does not depend on any particular version of the OS,
and works fine even in V34.

EXAMPLE
If your hook dispatcher is this:

amiga_lib 28 / 40

dispatch(struct Hook *hookPtr, Object *obj, APTR msg)
{

...
}

Then when you initialize your hook, you would say:

myhook.h_Entry = HookEntry; /* amiga.lib stub */
myhook.h_SubEntry = dispatch; /* HLL entry */

SEE ALSO
CallHook(), CallHookA(), <utility/hooks.h>

1.40 amiga.lib/HotKey

NAME
HotKey -- create a commodity triad. (V36)

SYNOPSIS
filterObj = Hotkey(description,port,id);

CxObj *HotKey(STRPTR,struct MsgPort *,LONG);

FUNCTION
This function creates a triad of commodity objects to accomplish a
high-level function.

The three objects are a filter, which is created to match by the call
CxFilter(description), a sender created by the call CxSender(port,id),
and a translator which is created by CxTranslate(NULL), so that it
swallows any commodity input event messages that are passed down by
the filter.

This is the simple way to get a message sent to your program when the
user performs a particular input action.

It is strongly recommended that the ToolTypes environment be used to
allow the user to specify the input descriptions for your application’s
hotkeys.

INPUTS
description - the description string to use for the filter in the same

format as accepted by commodities.library/SetFilter()
port - port for the sender to send messages to.
id - id of the messages sent by the sender

RESULTS
filterObj - a pointer to a filter object, or NULL if it could

not be created.

SEE ALSO
CxFilter(), CxSender(), CxTranslate(),
commodities.library/CxObjError(), commodities.library/SetFilter()

amiga_lib 29 / 40

1.41 amiga.lib/InvertString

NAME
InvertString -- produce input events that would generate the

given string. (V36)

SYNOPSIS
events = InvertString(str,km)

struct InputEvent *InvertString(STRPTR,struct KeyMap *);

FUNCTION
This function returns a linked list of input events which would
translate into the string using the supplied keymap (or the system
default keymap if ’km’ is NULL).

’str’ is null-terminated and may contain:
- ANSI character codes
- backslash escaped characters:
\n - CR
\r - CR
\t - TAB
\0 - illegal, do not use!
\ - backslash
- a text description of an input event as used by ParseIX(),

enclosed in angle brackets.

An example is:
abc<alt f1>\nhi there.

INPUTS
str - null-terminated string to convert to input events
km - keymap to use for the conversion, or NULL to use the default

keymap.

RESULTS
events - a chain of input events, or NULL if there was a problem. The

most likely cause of failure is an illegal description
enclosed in angled brackets.

This chain should eventually be freed using FreeIEvents().

SEE ALSO
commodities.library/ParseIX(), FreeIEvents()

1.42 amiga.lib/NewList

NAME
NewList -- prepare a list structure for use

SYNOPSIS
NewList(list)

VOID NewList(struct List *);

amiga_lib 30 / 40

VOID NewList(struct MinList *);

FUNCTION
Perform the magic needed to prepare a List header structure for
use; the list will be empty and ready to use. (If the list is the
full featured type, you may need to initialize lh_Type afterwards)

Assembly programmers may want to use the NEWLIST macro instead.

INPUTS
list - pointer to a List or MinList.

SEE ALSO
<exec/lists.h>

1.43 amiga.lib/printf

NAME
printf - print a formatted output line to the standard output.

SYNOPSIS
printf(formatstring [,value [,values]]);

FUNCTION
Format the output in accordance with specifications in the format
string.

INPUTS
formatString - a C-language-like NULL-terminated format string,

with the following supported % options:

%[flags][width][.limit][length]type

$ - must follow the arg_pos value, if specified
flags - only one allowed. ’-’ specifies left justification.
width - field width. If the first character is a ’0’, the

field is padded with leading 0s.
. - must precede the field width value, if specified

limit - maximum number of characters to output from a string.
(only valid for %s or %b).

length - size of input data defaults to word (16-bit) for types c,
d, u and x, ’l’ changes this to long (32-bit).

type - supported types are:
b - BSTR, data is 32-bit BPTR to byte count followed

by a byte string. A NULL BPTR is treated as an
empty string. (V36)

d - signed decimal
u - unsigned decimal

x - hexadecimal with hex digits in uppercase
X - hexadecimal with hex digits in lowercase

s - string, a 32-bit pointer to a NULL-terminated
byte string. A NULL pointer is treated
as an empty string.

c - character

amiga_lib 31 / 40

value(s) - numeric variables or addresses of null-terminated strings
to be added to the format information.

NOTE
The global "_stdout" must be defined, and contain a pointer to
a legal AmigaDOS file handle. Using the standard Amiga startup
module sets this up. In other cases you will need to define
stdout, and assign it to some reasonable value (like what the
dos.library/Output() call returns). This code would set it up:

ULONG stdout;
stdout=Output();

BUGS
This function will crash if the resulting stream after
parameter substitution is longer than 140 bytes.

1.44 amiga.lib/RangeRand

NAME
RangeRand - generate a random number within a specific integer range

SYNOPSIS
number = RangeRand(maxValue);

UWORD RangeRand(UWORD);

FUNCTION
RangeRand() accepts a value from 0 to 65535, and returns a value
within that range.

maxValue is passed on stack as a 32-bit integer but used as though
it is only a 16-bit integer. Variable named RangeSeed is available
beginning with V33 that contains the global seed value passed from
call to call and thus can be changed in a program by declaring:

extern ULONG RangeSeed;

INPUTS
maxValue - the returned random number will be in the range

[0..maxValue-1]

RESULT
number - pseudo random number in the range of [0..maxValue-1].

SEE ALSO
FastRand()

1.45 amiga.lib/RemTOF

NAME
RemTOF - remove a task from the VBlank interrupt server chain.

amiga_lib 32 / 40

SYNOPSIS
RemTOF(i);

VOID RemTOF(struct Isrvstr *);

FUNCTION
Removes a task from the vertical-blanking interval interrupt server
chain.

INPUTS
i - pointer to an Isrvstr structure

SEE ALSO
AddTOF(), <graphics/graphint.h>

1.46 amiga.lib/SetRexxVar

NAME
SetRexxVar - Sets the value of a variable of a running ARexx program

SYNOPSIS
error = SetRexxVar(message,varname,value,length)
D0 A0 A1 D0 D1

LONG SetRexxVar(struct RexxMsg *,char *,char *,ULONG);

FUNCTION
This function will attempt to the the value of the symbol
varname in the ARexx script that sent the message.

While this function is new in the V37 amiga.lib, it is safe to
call it in all versions of the operating system. It is also
PURE code, thus usable in resident/pure executables.

NOTE
This is a stub in amiga.lib. It is only available via amiga.lib.
The stub has two labels. One, _SetRexxVar, takes the arguments
from the stack. The other, SetRexxVar, takes the arguments in
registers.

This routine does a CheckRexxMsg() on the message.

EXAMPLE

char *value;

/* Message is one from ARexx */
if (!SetRexxVar(rxmsg,"TheVar","25 Dollars",10))
{

/* The value of TheVar will now be "25 Dollars" */
}

INPUTS
message A message gotten from an ARexx script

amiga_lib 33 / 40

varname The name of the variable to set
value A string that will be the new value of the variable
length The length of the value string

RESULTS
error 0 for success, otherwise an error code.

(Other codes may exists, these are documented)
3 == Insufficient Storage
9 == String too long
10 == invalid message

SEE ALSO
SetRexxVar(), CheckRexxMsg()

1.47 amiga.lib/SetSuperAttrs

NAME
SetSuperAttrs -- Invoke OM_SET method on superclass with varargs.

SYNOPSIS
result = SetSuperAttrs(cl, obj, tag, ...)

ULONG SetSuperAttrs(struct IClass *, Object *, ULONG, ...);

FUNCTION
Boopsi support function which invokes the OM_SET method on the
superclass of the supplied class for the supplied object. Allows
the ops_AttrList to be supplied on the stack (i.e. in a varargs
way). The equivalent non-varargs function would simply be

DoSuperMethod(cl, obj, OM_SET, taglist, NULL);

INPUTS
cl - pointer to boopsi class whose superclass is to

receive the OM_SET message
obj - pointer to boopsi object
tag - list of tag-attribute pairs, ending in TAG_DONE

RESULT
result - class and message-specific result.

NOTES
This function first appears in the V37 release of amiga.lib.
While it intrinsically does not require any particular release
of the system software to operate, it is designed to work with
the boopsi subsystem of Intuition, which was only introduced
in V36.

SEE ALSO
CoerceMethodA(), DoMethodA(), DoSuperMethodA(), <intuition/classusr.h>
ROM Kernel Manual boopsi section

amiga_lib 34 / 40

1.48 amiga.lib/sprintf

NAME
sprintf - format a C-like string into a string buffer.

SYNOPSIS
sprintf(destination formatstring [,value [, values]]);

FUNCTION
Performs string formatting identical to printf, but directs the output
into a specific destination in memory. This uses the ROM version
of printf (exec.library/RawDoFmt()), so it is very small.

Assembly programmers can call this by placing values on the
stack, followed by a pointer to the formatstring, followed
by a pointer to the destination string.

INPUTS
destination - the address of an area in memory into which the

formatted output is to be placed.
formatstring - pointer to a null terminated string describing the

desired output formatting (see printf() for a
description of this string).

value(s) - numeric information to be formatted into the output
stream.

SEE ALSO
printf(), exec.library/RawDoFmt()

1.49 amiga.lib/stdio

NAMES
fclose - close a file
fgetc - get a character from a file
fprintf - format data to file (see printf())
fputc - put character to file
fputs - write string to file
getchar - get a character from stdin
printf - put format data to stdout (see exec.library/RawDoFmt)
putchar - put character to stdout
puts - put string to stdout, followed by newline

FUNCTION
These functions work much like the standard C functions of the same
names. The file I/O functions all use non-buffered AmigaDOS
files, and must not be mixed with the file I/O of any C
compiler. The names of these functions match those found in many
standard C libraries, when a name conflict occurs, the function is
generally taken from the FIRST library that was specified on the
linker’s command line. Thus to use these functions, specify
the amiga.lib library first.

To get a suitable AmigaDOS FileHandle, the dos.library/Open() or
dos.library/Output() functions must be used.

amiga_lib 35 / 40

All of the functions that write to stdout expect an appropriate
FileHandle to have been set up ahead of time. Depending on
your C compiler and options, this may have been done by the
startup code. Or it can be done manually

From C:
extern ULONG stdout;
/* Remove the extern if startup code did not define stdout */
stdout=Output();

From assembly:
XDEF _stdout
DC.L _stdout ;<- Place result of dos.library/Output() here.

1.50 amiga.lib/TimeDelay

NAME
TimeDelay -- Return after a period of time has elapsed.

SYNOPSIS
Error = TimeDelay(Unit, Seconds, MicroSeconds)
D0 D0 D1 D2

LONG TimeDelay(LONG, ULONG, ULONG);

FUNCTION
Waits for the period of time specified before returning to the
the caller.

INPUTS
Unit -- timer.device unit to open for this command.
Seconds -- The seconds field of a timerequest is filled with

this value. Check the documentation for what a particular
timer.device unit expects there.

MicroSeconds -- The microseconds field of a timerequest is
filled with this value. Check the documentation for what
a particular timer.device units expects there.

RESULTS
Error -- will be zero if all went well; otherwise, non-zero.

NOTES
Two likely reasons for failures are invalid unit numbers or
no more free signal bits for this task.

While this function first appears in V37 amiga.lib, it works
on Kickstart V33 and higher.

SEE ALSO
timer.device/TR_ADDREQUEST,
timer.device/TR_WAITUNTIL,
timer.device/WaitUnitl()

amiga_lib 36 / 40

BUGS

1.51 pools.lib/LibAllocPooled

NAME
LibAllocPooled -- Allocate memory with the pool manager (V33)

SYNOPSIS
memory=LibAllocPooled(poolHeader,memSize)
d0 a0 d0

void *LibAllocPooled(void *,ULONG);

FUNCTION
This function is a copy of the pool functions in V39 and up of
EXEC. In fact, if you are running in V39, this function will
notice and call the EXEC function. This function works in
V33 and up (1.2) Amiga system.

The C code interface is _LibAllocPooled() and takes its arguments
from the stack just like the C code interface for AllocPooled()
in amiga.lib. The assembly code interface is with the symbol
_AsmAllocPooled: and takes the parameters in registers with the
additional parameter of ExecBase being in a6 which can be used
from SAS/C 6 by a prototype of:

void * __asm AsmAllocPooled(register __a0 void *,
register __d0 ULONG,
register __a6 struct ExecBase *);

Allocate memSize bytes of memory, and return a pointer. NULL is
returned if the allocation fails.

Doing a LibDeletePool() on the pool will free all of the puddles
and thus all of the allocations done with LibAllocPooled() in that
pool. (No need to LibFreePooled() each allocation)

INPUTS
memSize - the number of bytes to allocate
poolHeader - a specific private pool header.

RESULT
A pointer to the memory, or NULL.
The memory block returned is long word aligned.

NOTES
The pool function do not protect an individual pool from
multiple accesses. The reason is that in most cases the pools
will be used by a single task. If your pool is going to
be used by more than one task you must Semaphore protect
the pool from having more than one task trying to allocate
within the same pool at the same time. Warning: Forbid()
protection *will not work* in the future. *Do NOT* assume
that we will be able to make it work in the future. LibAllocPooled()
may well break a Forbid() and as such can only be protected

amiga_lib 37 / 40

by a semaphore.

To track sizes yourself, the following code can be used:

Assumes a6=ExecBase

;
; Function to do AllocVecPooled(Pool,memSize)
;
AllocVecPooled: addq.l #4,d0 ; Get space for tracking

move.l d0,-(sp) ; Save the size
jsr LibAllocPooled ; Call pool...
move.l (sp)+,d1 ; Get size back...
tst.l d0 ; Check for error
beq.s avp_fail ; If NULL, failed!
move.l d0,a0 ; Get pointer...
move.l d1,(a0)+ ; Store size
move.l a0,d0 ; Get result

avp_fail: rts ; return

;
; Function to do LibFreeVecPooled(pool,memory)
;
FreeVecPooled: move.l -(a1),d0 ; Get size / ajust pointer

jmp LibFreePooled

SEE ALSO
FreePooled(), CreatePool(), DeletePool(),
LibFreePooled(), LibCreatePool(), LibDeletePool()

1.52 pools.lib/LibCreatePool

NAME
LibCreatePool -- Generate a private memory pool header (V33)

SYNOPSIS
newPool=LibCreatePool(memFlags,puddleSize,threshSize)
a0 d0 d1 d2

void *LibCreatePool(ULONG,ULONG,ULONG);

FUNCTION
This function is a copy of the pool functions in V39 and up of
EXEC. In fact, if you are running in V39, this function will
notice and call the EXEC function. This function works in
V33 and up (1.2) Amiga system.

The C code interface is _LibCreatePool() and takes its arguments
from the stack just like the C code interface for CreatePool()
in amiga.lib. The assembly code interface is with the symbol
_AsmCreatePool: and takes the parameters in registers with the
additional parameter of ExecBase being in a6 which can be used
from SAS/C 6 by a prototype of:

void * __asm AsmCreatePool(register __d0 ULONG,
register __d1 ULONG,

amiga_lib 38 / 40

register __d2 ULONG,
register __a6 struct ExecBase *);

Allocate and prepare a new memory pool header. Each pool is a
separate tracking system for memory of a specific type. Any number
of pools may exist in the system.

Pools automatically expand and shrink based on demand. Fixed sized
"puddles" are allocated by the pool manager when more total memory
is needed. Many small allocations can fit in a single puddle.
Allocations larger than the threshSize are allocation in their own
puddles.

At any time individual allocations may be freed. Or, the entire
pool may be removed in a single step.

INPUTS
memFlags - a memory flags specifier, as taken by AllocMem.
puddleSize - the size of Puddles...
threshSize - the largest allocation that goes into normal puddles

This *MUST* be less than or equal to puddleSize
(LibCreatePool() will fail if it is not)

RESULT
The address of a new pool header, or NULL for error.

SEE ALSO
DeletePool(), AllocPooled(), FreePooled(), exec/memory.i,
LibDeletePool(), LibAllocPooled(), LibFreePooled()

1.53 pools.lib/LibDeletePool

NAME
LibDeletePool -- Drain an entire memory pool (V33)

SYNOPSIS
LibDeletePool(poolHeader)

a0

void LibDeletePool(void *);

FUNCTION
This function is a copy of the pool functions in V39 and up of
EXEC. In fact, if you are running in V39, this function will
notice and call the EXEC function. This function works in
V33 and up (1.2) Amiga system.

The C code interface is _LibDeletePool() and takes its arguments
from the stack just like the C code interface for DeletePool()
in amiga.lib. The assembly code interface is with the symbol
_AsmDeletePool: and takes the parameters in registers with the
additional parameter of ExecBase being in a6 which can be used
from SAS/C 6 by a prototype of:

void __asm AsmDeletePool(register __a0 void *,

amiga_lib 39 / 40

register __a6 struct ExecBase *);

Frees all memory in all puddles of the specified pool header, then
deletes the pool header. Individual free calls are not needed.

INPUTS
poolHeader - as returned by LibCreatePool().

SEE ALSO
CreatePool(), AllocPooled(), FreePooled(),
LibCreatePool(), LibAllocPooled(), LibFreePooled()

1.54 pools.lib/LibFreePooled

NAME
LibFreePooled -- Free pooled memory (V33)

SYNOPSIS
LibFreePooled(poolHeader,memory,memSize)

a0 a1 d0

void LibFreePooled(void *,void *,ULONG);

FUNCTION
This function is a copy of the pool functions in V39 and up of
EXEC. In fact, if you are running in V39, this function will
notice and call the EXEC function. This function works in
V33 and up (1.2) Amiga system.

The C code interface is _LibFreePooled() and takes its arguments
from the stack just like the C code interface for FreePooled()
in amiga.lib. The assembly code interface is with the symbol
_AsmFreePooled: and takes the parameters in registers with the
additional parameter of ExecBase being in a6 which can be used
from SAS/C 6 by a prototype of:

void __asm AsmFreePooled(register __a0 void *,
register __a1 void *,
register __d0 ULONG,
register __a6 struct ExecBase *);

Deallocates memory allocated by LibAllocPooled(). The size of the
allocation *MUST* match the size given to LibAllocPooled().
The reason the pool functions do not track individual allocation
sizes is because many of the uses of pools have small allocation
sizes and the tracking of the size would be a large overhead.

Only memory allocated by LibAllocPooled() may be freed with this
function!

Doing a LibDeletePool() on the pool will free all of the puddles
and thus all of the allocations done with LibAllocPooled() in that
pool. (No need to LibFreePooled() each allocation)

INPUTS

amiga_lib 40 / 40

memory - pointer to memory allocated by AllocPooled.
poolHeader - a specific private pool header.

NOTES
The pool function do not protect an individual pool from
multiple accesses. The reason is that in most cases the pools
will be used by a single task. If your pool is going to
be used by more than one task you must Semaphore protect
the pool from having more than one task trying to allocate
within the same pool at the same time. Warning: Forbid()
protection *will not work* in the future. *Do NOT* assume
that we will be able to make it work in the future. LibFreePooled()
may well break a Forbid() and as such can only be protected
by a semaphore.

To track sizes yourself, the following code can be used:

Assumes a6=ExecBase

;
; Function to do AllocVecPooled(Pool,memSize)
;
AllocVecPooled: addq.l #4,d0 ; Get space for tracking

move.l d0,-(sp) ; Save the size
jsr LibAllocPooled ; Call pool...
move.l (sp)+,d1 ; Get size back...
tst.l d0 ; Check for error
beq.s avp_fail ; If NULL, failed!
move.l d0,a0 ; Get pointer...
move.l d1,(a0)+ ; Store size
move.l a0,d0 ; Get result

avp_fail: rts ; return

;
; Function to do LibFreeVecPooled(pool,memory)
;
FreeVecPooled: move.l -(a1),d0 ; Get size / ajust pointer

jmp LibFreePooled

SEE ALSO
AllocPooled(), CreatePool(), DeletePool(),
LibAllocPooled(), LibCreatePool(), LibDeletePool()

	amiga_lib
	amiga_lib.doc
	amiga.lib/ACrypt
	amiga.lib/AddTOF
	amiga.lib/afp
	amiga.lib/ArgArrayDone
	amiga.lib/ArgArrayInit
	amiga.lib/ArgInt
	amiga.lib/ArgString
	amiga.lib/arnd
	amiga.lib/BeginIO
	amiga.lib/CallHook
	amiga.lib/CallHookA
	amiga.lib/CheckRexxMsg
	amiga.lib/CoerceMethod
	amiga.lib/CoerceMethodA
	amiga.lib/CreateExtIO
	amiga.lib/CreatePort
	amiga.lib/CreateStdIO
	amiga.lib/CreateTask
	amiga.lib/CxCustom
	amiga.lib/CxDebug
	amiga.lib/CxFilter
	amiga.lib/CxSender
	amiga.lib/CxSignal
	amiga.lib/CxTranslate
	amiga.lib/dbf
	amiga.lib/DeleteExtIO
	amiga.lib/DeletePort
	amiga.lib/DeleteStdIO
	amiga.lib/DeleteTask
	amiga.lib/DoMethod
	amiga.lib/DoMethodA
	amiga.lib/DoSuperMethod
	amiga.lib/DoSuperMethodA
	amiga.lib/FastRand
	amiga.lib/fpa
	amiga.lib/FreeIEvents
	amiga.lib/GetRexxVar
	amiga.lib/HookEntry
	amiga.lib/HotKey
	amiga.lib/InvertString
	amiga.lib/NewList
	amiga.lib/printf
	amiga.lib/RangeRand
	amiga.lib/RemTOF
	amiga.lib/SetRexxVar
	amiga.lib/SetSuperAttrs
	amiga.lib/sprintf
	amiga.lib/stdio
	amiga.lib/TimeDelay
	pools.lib/LibAllocPooled
	pools.lib/LibCreatePool
	pools.lib/LibDeletePool
	pools.lib/LibFreePooled

