utility

utility

COLLABORATORS
TITLE :
utility
ACTION NAME DATE SIGNATURE
WRITTEN BY July 23, 2024
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

utility i

Contents

1 utility 1
1.1 utility.doc o 1
1.2 utility.library/AddNamedObject 2
1.3 utility.library/AllocateTagltems e 2
1.4 utility.library/AllocNamedObjectA e 3
1.5 utility.library/Amiga2Date e e e e 4
1.6 utility.library/ApplyTagChanges e e 4
1.7 utility.library/AttemptRemNamedObject e 5
1.8 utility.library/CallHOOKPKt e e e e e 5
1.9 utility.library/CheckDate L e 6
1.10 utility.library/CloneTagltems L . e 7
1.11 utility.library/Date2Amiga o o e e e e e e e e e e e e e e e 7
1.12 utility.library/FilterTagChanges e 8
1.13 utilitylibrary/FilterTagltems e 9
1.14 utility.library/FindNamedObject e e e 10
1.15 utility.library/FindTagltem e 10
1.16 utility.library/FreeNamedObject e 11
1.17 utility.library/FreeTagltems o e e e e e e 11
1.18 utility.library/GetTagData 12
1.19 utility.library/GetUniquelD L e e 12
1.20 utility.library/MapTags o o e e e 13
1.21 utility.library/NamedObjectName e e 14
1.22 utility.library/NextTagltem e e e e e 15
1.23 utilitylibrary/PackBoolTags e 16
1.24 utility.library/PackStructureTags e 17
1.25 utility.library/RefreshTagltemClones e e e e e 18
1.26 utility.library/ReleaseNamedObject e 18
1.27 utility.library/RemNamedObject e 19
1.28 utility.library/SDivMod32o 19
1.29 utility.library/SMult32 L 20

utility iv
1.30 utility.library/SMult64d L e e e 21
1.31 utility.library/Stricmp L e e e 21
1.32 utility.library/Strnicmp e e e e e e e 22
1.33 utility.library/TagInArray 23
1.34 utility.library/ToLowWer e e e 23
1.35 utility.library/ToUpper o o e e e e e e e e e e 24
1.36 utility.library/UDivMod32 e e e 24
1.37 utility.library/UMult32 e 25
1.38 utility.library/UMult64 e e 26
1.39 utility.library/UnpackStructureTags o e e e 26

utility

1/27

Chapter 1

utility

1.1 utility.doc

AddNamedObject ()
AllocateTagItems ()
AllocNamedObjectA ()
AmigaZ2Date ()
ApplyTagChanges ()
AttemptRemNamedObject ()
CallHookPkt ()
CheckDate ()
CloneTagItems ()
Date2Amiga ()
FilterTagChanges ()
FilterTagItems ()
FindNamedObject ()
FindTagItem()
FreeNamedObject ()
FreeTagItems ()
GetTagData ()
GetUniquelD ()
MapTags ()

NamedOb jectName ()
NextTagItem()
PackBoolTags ()
PackStructureTags ()
RefreshTagItemClones ()
ReleaseNamedObject ()
RemNamedObject ()
SDivMod32 ()
SMult32 ()

SMult64 ()

Stricmp ()
Strnicmp ()
TagInArray ()
ToLower ()

ToUpper ()
UDivMod32 ()
UMult32 ()

UMult64 ()

utility 2/27

UnpackStructureTags ()

1.2 utility.library/AddNamedObject

NAME

AddNamedObject —-- add a named object to the given namespace. (V39)
SYNOPSIS

success = AddNamedObject (nameSpace, object);

DO AO Al

BOOL AddNamedObject (struct NamedObject =*, struct NamedObject «x);

FUNCTION
Adds a new item to a NameSpace. If the NameSpace doesn’t support
duplicate names, a search for a duplicate will be made, and

0 (failure) will be returned. Otherwise, the entry will be
Enqueue ()ed to the NameSpace.

INPUTS
nameSpace — the name space to add to (NULL for root namespace)
object - the object to add (If NULL, will return failure)

RESULT
success — whether the operation succeeded. Check this always!

SEE ALSO
AttemptRemNamedObject (), RemNamedObject ()

1.3 utility.library/AllocateTagltems

NAME
AllocateTagItems —-- allocate a tag list. (V36)

SYNOPSIS
taglist = AllocateTagltems (numTags);
DO DO

struct TagItem xAllocateTagltems (ULONG) ;

FUNCTION
Allocates the specified number of usable TagItems slots.

Note that to access the TagItems in ’taglList’, you should use
the function NextTagItem(). This will insure you respect any
chaining (TAG_MORE) and secret hiding places (TAG_IGNORE) that
this function might generate.

INPUTS
numTags — the number of TaglItem slots you want to allocate.

RESULTS

utility

3/27

taglList - the allocated chain of TagItem structures, or NULL if

there was not enough memory. An allocated tag list must

eventually be freed using FreeTagltems () .

SEE ALSO

<utility/tagitem.h>, FreeTagItems(), CloneTagItems ()

1.4 utility.library/AllocNamedObjectA

NAME

AllocNamedObjectA —-—- allocate a named object. (V39)

SYNOPSIS

object = AllocNamedObjectA (name, taglList);

DO

struct NamedObject *AllocNamedObjectA (STRPTIR,

A0 Al

object = AllocNamedObject (name, Tagl, ...);

struct NamedObject xAllocNamedObject (STRPTR, ULONG, ...);

FUNCTION

Allocates a NamedObject and initializes it as needed to the
name given. This object can then be used as an object in the
namespaces. Tags can be given to make an object contain a
namespace such that nested namespaces can be built.

When the object is allocated, it automatically has one use.
If you later wish to release this object such that others may

remove it from the namespace you must do a ReleaseNamedObject ().

INPUTS

name - name for the object (must not be NULL)

taglist - tags with additional information for the allocation or NULL
TAGS

ANO_NameSpace

ANO_UserSpace

ANO_Priority

ANO_Flags

BOOL tag, default FALSE. If this tag is

TRUE, the named object will also have a

name space attached to it.

ULONG tag, default 0. TIf this tag is non-NULL
it defines the size (in bytes) of the user
space to be allocated with the named object
and that will be pointed to by the no_Object
pointer. This memory is long-word aligned.

If no space is defined, no_Object will be NULL.
BYTE tag, default 0. This tag lets you pick

a priority for the named object for when it is
placed into a name space.

ULONG tag, default 0. This tag lets you set
the flags of the NameSpace (if you allocated

one) There currently are only TWO flags.
Do *NOT* set xanyx other bits as they are for
future use!!! (You can’t read them anyway)

The flags are:
NSF_NODUPS - Name space must be unique.

struct Tagltem x*);

utility

4/27

NSF_CASE - Name space is case sensitive

RESULT
object - the object allocated, or NULL for failure. The object

is defined as a pointer to a pointer. You can do what you
wish with the pointer. (It may be NULL or contain a pointer

to memory that you had asked for in the tags.)

SEE ALSO
FreeNamedObject (), <utility/name.h>

1.5 utility.library/Amiga2Date

NAME
Amiga2Date —-- fill in a ClockData structure based on a system
time stamp (V36)

SYNOPSIS
AmigaZ2Date (seconds, result) ;
DO AQ

VOID Amiga2Date (ULONG, struct ClockData «x);

FUNCTION

Fills in a ClockData structure with the date and time calculated

from a ULONG containing the number of seconds from 01-Jan-1978
to the date.

INPUTS
seconds - the number of seconds from 01-Jan-1978.
result - a pointer to a ClockData structure that will be altered

by this function

SEE ALSO
CheckDate (), Date2Amiga ()

1.6 utility.library/ApplyTagChanges

NAME
ApplyTagChanges —- change a tag list based on a second tag list.
SYNOPSIS
ApplyTagChanges (list, changelList) ;
A0 Al

VOID ApplyTagChanges (struct Tagltem x, struct Tagltem x);

FUNCTION

For any tag that appears in both ’1list’ and ’'changelList’, this
function will change the ti_Data field of the tag in ’'list’ to
match the ti_Data field of the tag in ’changelist’. In effect,
"changelist’ contains a series of new values for tags already in

(V39)

utility

5/27

"list’. Any tag in ’'changelist’ that is not in ’list’ is ignored.
INPUTS

list - a list of existing tags (may be NULL)

changelist - a list of tags to modify ’‘list’ with (may be NULL)

SEE ALSO
<utility/tagitem.h>, FilterTagChanges ()

1.7 utility.library/AttemptRemNamedObject

NAME
AttemptRemNamedObject —-- attempt to remove a named object. (V39)
SYNOPSIS
result = AttemptRemNamedObject (object);
DO AQ

LONG AttemptRemNamedObject (struct NamedObject x);

FUNCTION
Attempts to remove an object from whatever NameSpace it’s in.

You must have found the object first (in order to get a use count)
before trying to remove it. If the object is in use or is

in the process of being removed, this function will return

a failure code. If the object is fully removed, the object will
then be available to be FreeNamedObiject ().

INPUTS
object - the object to attempt to remove The object must be valid

RESULT
success - FALSE if object is still in use (somewhere)
TRUE if object was removed
SEE ALSO

RemNamedObject (), AddNamedObject (), ReleaseNamedObject ()

1.8 utility.library/CallHookPkt

NAME
CallHookPkt —-- invoke a Hook function callback. (V36)
SYNOPSIS
return = CallHookPkt (hook, object,message);
DO AQ A2 Al

ULONG CallHookPkt (struct Hook =,APTR,APTR);

FUNCTION
Performs the callback standard defined by a Hook structure.
This function is really very simple; it effectively performs

utility 6/27

a JMP to Hook->h_Entry.

It is probably just as well to do this operation in an
assembly language function linked in to your program, possibly
from a compiler supplied library or a builtin function.

It is anticipated that C programs will often call a ’'varargs’
variant of this function which will be named CallHook. This
function must be provided in a compiler specific library, but
an example of use would be:

result = CallHook (hook,dataobject, COMMAND_ID, paraml,param?);

The function CallHook () can be implemented in many C compilers
like this:

ULONG CallHook (struct Hook =xhook, APTR object, ULONG command, ...)

{
return (CallHookPkt (hook, object, (APTR) &command)) ;

INPUTS
hook - pointer to an initialized Hook structure as defined in
<utility/hooks.h>
object - useful data structure in the particular context the hook is

being used for.
message - pointer to a message to be passed to the hook. This is not
an Exec Message structure, but is a message in the OOP sense.

RESULTS
return - the value returned by the hook function.

WARNING

The functions called through this function should follow normal
register conventions unless EXPLICITLY documented otherwise (and
they have a good reason too).

SEE ALSO
<utility/hooks.h>

1.9 utility.library/CheckDate

NAME
CheckDate —-- checks a ClockData structure for legal date. (V36)
SYNOPSIS
seconds = CheckDate (date);
DO A0

ULONG CheckDate (struct ClockData «*);

FUNCTION

Determines if the ClockData structure contains legal date information
and returns the number of seconds from 01-Jan-1978 to that date, or O
if the ClockData structure contains illegal data.

utility 7127

INPUTS
date — a filled-in ClockData structure

RESULTS
seconds — 0 if date is invalid, otherwise the number of seconds from

01-Jan-1978 to the date

BUGS
The wday field of the ClockData structure is not checked.

SEE ALSO
AmigaZDate (), Date2Amiga ()

1.10 utility.library/CloneTagltems

NAME
CloneTagltems —-- copy a tag list. (V36)
SYNOPSIS
clone = CloneTagltems (original);
DO AQ

struct Tagltem xCloneTagltems (struct Tagltem x);

FUNCTION
Copies the essential contents of a tag list into a new tag list.

The cloning is such that calling FindTagItem() with a given tag on
the original or cloned tag lists will always return the same
tag value. That is, the ordering of the tags is maintained.

INPUTS
original - tag list to clone. May be NULL, in which case an
empty tag list is returned.

RESULTS

clone - copy of the original tag list, or NULL if there was not enough
memory. This tag list must eventually by freed by calling
FreeTaglItems() .

SEE ALSO

<utility/tagitem.h>, AllocateTagltems (), FreeTagltems(),
RefreshTagItemClones ()

1.11 utility.library/Date2Amiga

NAME
Date2Amiga -- calculate seconds from 01-Jan-1978. (V36)

SYNOPSIS
seconds = Date2Amiga (date);

utility 8/27

DO AO
ULONG Date2Amiga (struct ClockData x);
FUNCTION

Calculates the number of seconds from 01-Jan-1978 to the date
specified in the ClockData structure.

INPUTS
date - pointer to a ClockData structure containing the date of
interest.
RESULTS
seconds - the number of seconds from 01-Jan-1978 to the date specified.
WARNING

This function does no sanity checking of the data in the ClockData
structure.

SEE ALSO
Amiga2Date (), CheckDate ()

1.12 utility.library/FilterTagChanges

NAME
FilterTagChanges —-- eliminate tags which specify no change. (V36)
SYNOPSIS
FilterTagChanges (changelist,originallist, apply);
AQ Al DO

VOID FilterTagChanges (struct TagItem *, struct Tagltem x, ULONG);

FUNCTION

This function goes through changelList. For each item found in
changelist, if the item is also present in originallist, and their
data values are identical, then the tag is removed from changelist.
If the two tag’s data values are different and the ’apply’ value is
non-zero, then the tag data in originallist will be updated to match
the value from changelist.

INPUTS

changelList - list of new tags (may be NULL)

originallist - a list of existing tags (may be NULL)

apply - boolean specification as to whether the data wvalues in
originallist are to be updated to the data wvalues in
changelist.

EXAMPLE
Assume you have an attribute list for an object (originallList)
which looks like this:

{ATTR_Size, "large"},
{ATTR_Color, "orange"},
{ATTR_Shape, "square"}

utility 9/27

If you receive a new tag list containing some changes (changelist),
which looks like this:

{ATTR_Size, "large"},
{ATTR_Shape, "triangle"}

If you call FilterTagChanges (), changelList will be modified to
contain only those attributes which are different from those

in originallist. All other items will have their tag values set to
TAG_IGNORE. The resulting changelist will become:

{TAG_IGNORE, "large"},
{ATTR_Shape, "triangle"}

If "apply’ was set to 0, originallist would be unchanged. If ’"apply’
was non-zero, originallist would be changed to:

{ATTR_Size, "large"},
{ATTR_Color, "orange"},
{ATTR_Shape, "triangle"}

SEE ALSO
<utility/tagitem.h>, ApplyTagChanges ()

1.13 utility.library/FilterTagltems

NAME
FilterTagltems —-- remove selected items from a tag list. (V36)
SYNOPSIS
numValid = FilterTagItems (tagList,filterArray, logic);
DO A0 Al DO

ULONG FilterTagltems (struct Tagltem *,Tag =*,ULONG) ;

FUNCTION

Removes tag items from a tag list (by changing ti_Tag to
TAG_IGNORE) depending on whether its ti_Tag value is
found in an array of tag wvalues.

If the ’"logic’ parameter is TAGFILTER_AND, then all items
not appearing in ’tagArray’ are excluded from ’'tagList’.

If ’"logic’ is TAGFILTER_NOT, then items not found in ’tagArray’
are preserved, and the ones in the array are cast out.

INPUTS
taglList - input list of tag items which is to be filtered by having
selected items changed to TAG_IGNORE.
filterArray - an array of tag values, terminated by TAG_DONE, as
specified in the documentation for TagInArray() .
logic - specification whether items in ’'tagArray’ are to be included
or excluded in the filtered result.

utility 10/27

RESULTS
numValid - number of valid items left in resulting filtered list.

SEE ALSO
<utility/tagitem.h>, TagInArray ()

1.14 utility.library/FindNamedObject

NAME
FindNamedObject —-- find the next object of a given name. (V39)
SYNOPSIS
object = FindNamedObject (nameSpace, name, lastObject);
DO AQ Al A2

struct NamedObject *xFindNamedObject (struct NamedObject x, STRPTR,
struct NamedObject x*);

FUNCTION
Finds an object and adds to the open count of the object. The
object is guaranteed not to be freed until ReleaseNamedObject () is

called. The name comparison is caseless, using the current
locale string comparison routines.

If name is NULL, then all objects will be matched.

If lastObject is non-NULL, it must be an object from the same
NameSpace found on a previous call to FindNamedObiject (). It
will not be freed by this call. The search will start at the
node after lastobject, if non-NULL.

nameSpace is the name space from the named object given
or the root name space if NULL is given.

INPUTS
nameSpace - the name space to search
name - the name of the object to search for
lastObject - the starting point for the search or NULL

RESULT
object - the first match found, or NULL for no match

SEE ALSO
ReleaseNamedObject (), <utility/name.h>

1.15 utility.library/FindTagltem

NAME
FindTagItem -- scan a tag list for a specific tag. (V36)

SYNOPSIS
tag = FindTagltem(tagValue,taglist);

utility 11/27

DO DO AQ
struct TagItem *FindTagItem(Tag,struct TagItem x);

FUNCTION
Scans a tag list and returns a pointer to the first item with
ti_Tag matching the ’"tagValue’ parameter.

INPUTS
tagValue - tag value to search for
taglist - tag item list to search (may be NULL)

RESULTS
tag - a pointer to the item with ti_Tag matching ’'tagValue’ or NULL

if no match was found.

SEE ALSO
<utility/tagitem.h>, GetTagData(), PackBoolTags (), NextTagItem()

1.16 utility.library/FreeNamedObject

NAME
FreeNamedObject —-- frees a name object. (V39)
SYNOPSIS
FreeNamedObject (object) ;
0

VOID FreeNamedObject (struct NamedObject «x);

FUNCTION

Free one of a number of structures used by utility.library.
The item must not be a member of any NameSpace, and no one
may have it open other than yourself. If the object also
contained a NameSpace, that namespace must be empty.
Any additional space allocated via the datasize parameter
for AllocNamedObject () is also released.

INPUTS
object - the object to be freed

SEE ALSO
AllocNamedObjectA ()

1.17 utility.library/FreeTagltems

NAME
FreeTagltems —-—- free an allocated tag list. (V36)

SYNOPSIS
FreeTagltems (tagList);
AQ

utility 12/27

VOID FreeTagltems (struct Tagltem x);

FUNCTION
Frees the memory of a Tagltem list allocated either by
AllocateTagltems () or CloneTagltems() .

INPUTS
tagList - list to free, must have been obtained from
AllocateTagItems () or CloneTagltems () (may be NULL)
SEE ALSO
<utility/tagitem.h>, AllocateTagItems (), CloneTagItems ()

1.18 utility.library/GetTagData

NAME
GetTagData —- obtain the data corresponding to a tag. (V36)
SYNOPSIS
value = GetTagData (tagValue,defaultVal,taglList);
DO DO D1 A0

ULONG GetTagData (Tag, ULONG, struct Tagltem x);

FUNCTION

Searches a tag list for a matching tag, and returns the
corresponding ti_Data value for the TagItem found. If no match is
found, this function returns the value passed in as ’default’.

INPUTS
tagValue - tag value to search for.
defaultVal - value to be returned if tagValue is not found.
taglList - the tag list to search.

RESULTS
value - the ti_Data value for the first matching TagItem, or ’‘default’

if a ti_Tag matching ’'Tag’ is not found.

SEE ALSO
<utility/tagitem.h>, FindTagItem(), PackBoolTags (), NextTagItem()

1.19 utility.library/GetUniquelD

NAME
GetUniqueID —-- return a relatively unique number. (V39)
SYNOPSIS
id = GetUniquelID();
DO

ULONG GetUniquelID (VOID);

utility 13/27

FUNCTION

Returns a unique value each time it is called. This is useful for
things that need unique ID such as the GadgetHelp ID, etc.
Note that this is only unique for 4,294,967,295 calls to this
function. Under normal use this is not a problem.

This function is safe in interrupts.

RESULT
id - a 32-bit value that is unique.

1.20 utility.library/MapTags

NAME

MapTags —- convert ti_Tag values in a list via map pairing. (V36)
SYNOPSIS

MapTags (tagList,mapList,mapType) ;
A0 Al DO

VOID MapTags (struct TagItem *,struct TagItem *,ULONG);

FUNCTION
Apply a "mapping list" mapList to tagList.

If the ti_Tag field of an item in taglList appears as ti_Tag in some
item in mapList, overwrite ti_Tag with the corresponding ti_Data
from the map list.

The mapType parameter specifies how the mapping operation is to
proceed, with the following available types:

MAP_REMOVE_NOT_FOUND
If a tag in taglList does not appear in the mapList, remove
it from taglList.

MAP_KEEP_NOT_FOUND
To have items which do not appear in the mapList survive the
mapping process as-is.

MapTags () is central to BOOPSI gadget interconnections where you want
to convert the tag values from one space (the sender) to another (the
receiver) .

The procedure will change the values of the input tag list
tagList (but not mapList).

You can "filter" a list by passing MAP_REMOVE_NOT_FOUND as mapType,
and having the data items in mapList equal the corresponding tags.

You can perform the inverse filter ("everything but") by passing

a mapType of MAP_KEEP_NOT_FOUND, and creating a map item for every tag
you want to filter out, pairing it with a mapped data value of
TAG_IGNORE.

utility 14/ 27

For safety and "order independence" of tag item arrays, if you
attempt to map some tag to the value TAG_DONE, the value TAG_IGNORE
will be substituted instead.

INPUTS

tagList - input list of tag items which is to be mapped to tag values
as specified in mapList.

mapList - a "mapping list" tag list which pairs tag values expected to
appear in tagList with new values to be substituted in the
ti_Tag fields of taglList (may be NULL)

mapType - one of the available mapping types as defined in
<utility/tagitem.h>

EXAMPLE
/* Consider this source list: =*/
struct TagItem list[] =
{
{MY_SIZE, 711},
{MY_WEIGHT, 200},
{TAG_DONE, }
}i

/+ And the mapping list: «/
struct Tagltem map[] =
{
{MY_SIZE, HIS_TALL},
{TAG_DONE, }
}i

/+ Then after MapTags (list,map,MAP_REMOVE_NOT_FOUND), ’list’ will
become: */
(HIS_TALL, 71},
{TAG_IGNORE, },
{TAG_DONE, }

/+ Or after MapTags (list,map,MAP_KEEP_NOT_FOUND), 'list’ will
become: */
{HIS_TALL, 71},
{MY_WEIGHT, 200},
{TAG_DONE, }

BUGS
Prior to V39, the mapType parameter did not work. The function

always behaved as if the parameter was set to MAP_KEEP_NOT_FOUND.

SEE ALSO
<utility/tagitem.h>, ApplyTagChanges (), FilterTagChanges ()

1.21 utility.library/NamedObjectName

NAME
NamedObjectName —-- return the name of the object. (V39)

SYNOPSIS
name = NamedObjectName (object);

utility 15/27

DO AQ
STRPTR NamedObjectName (struct NamedObject «);

FUNCTION

Returns the name of the object passed in...
Note that the name string is passed back as just a pointer to
a read-only name. If the object goes away, so does the name.

INPUTS
object - the object, may be NULL in which case this function
returns NULL.

RESULT
name - pointer to the name string, or NULL if ’object’ is NULL.

SEE ALSO
FindNamedObject (), RemNamedObject ()

1.22 utility.library/NextTagltem

NAME
NextTagltem —-- iterate through a tag list. (V36)
SYNOPSIS
tag = NextTagltem(tagItemPtr);
DO AQ

struct Tagltem *NextTagItem(struct Tagltem x*x*);

FUNCTION

Iterates through a tag list, skipping and chaining as dictated by
system tags. TAG_SKIP will cause it to skip the entry and a number

of following tags as specified in ti_Data. TAG_IGNORE ignores that
single entry, and TAG_MORE has a pointer to another array of tags (and
terminates the current array!). TAG_DONE also terminates the current
array. Each call returns either the next tagitem you should examine,
or NULL when the end of the list has been reached.

INPUTS
tagItemPtr - doubly-indirect reference to a Tagltem structure.
The pointer will be changed to keep track of the
iteration.

RESULTS

nextTag - each TaglItem in the array or chain of arrays that should be
processed according to system tag values defined in
<utility/tagitem.h>) is returned in turn with successive
calls.

EXAMPLE

Iterate (struct Tagltem xtags);
{

struct Tagltem =*tstate;

struct Tagltem *tag;

utility 16 /27

tstate = tags;
while (tag = NextTagltem(&tstate))
{
switch (tag->ti_Tag)
{
case TAGl:
break;

case TAG2:
break;

WARNING
Do NOT use the value of xtagItemPtr, but rather use the pointer
returned by NextTagItem() .

SEE ALSO
<utility/tagitem.h>, GetTagData(), PackBoolTags (), FindTagItem()

1.23 utility.library/PackBoolTags

NAME
PackBoolTags —-- builds a "flag" word from a tag list. (V36)
SYNOPSIS
flags = PackBoolTags (initialFlags,taglList,boolMap);
DO DO A0 Al

ULONG PackBoolTags (ULONG, struct Tagltem =*,struct Tagltem x);

FUNCTION

Picks out the boolean tag items in a tag list and converts

them into bit-flag representations according to a correspondence
defined by the tag list ’'boolMap’.

A boolean tag item is one where only the logical value of
the ti_Data is relevant. If this field is 0, the wvalue 1is
FALSE, otherwise TRUE.

INPUTS
initialFlags - a starting set of bit-flags which will be changed
by the processing of TRUE and FALSE boolean tags
in tagList.
taglList - a Tagltem list which may contain several tag items defined to
be boolean by their presence in boolMap. The logical value of
ti_Data determines whether a tag item causes the bit-flag
value related by boolMap to be set or cleared in the returned
flag longword.
boolMap - a tag list defining the boolean tags to be recognized, and
the bit (or bits) in the returned longword that are to be set

utility 17/27

or cleared when a boolean Tag is found to be TRUE or FALSE in
tagList.

RESULTS

flags - the accumulated longword of bit-flags, starting with
initialFlags and modified by each boolean tag item
encountered.

EXAMPLE
/* define some nice user tag values ... */
enum mytags { tagl = TAG_USER+1l, tag2, tag3, tag4, tagb };

/+ this TagItem list defines the correspondence between boolean tags
* and bit-flag values.

*/

struct TagItem boolMap[] =

{

{tagl, 0x0001},
{tag2, 0x0002},
{tag3, 0x0004},
{tag4, 0x0008},

{TAG_DONE, }
}i

/* You are probably passed these by some client, and you want
* to "collapse" the boolean content into a single longword.

*/

struct Tagltem boolExample[] =
{

{tagl, TRUE},
{tag2, FALSE},
{tagh, Irrelevant},
{tag3, TRUE},

{TAG_DONE, }
}i

/* Perhaps ’boolFlags’ already has a current value of 0x800002. =/
boolFlags = PackBoolTags (boolFlags,boolExample,boolMap) ;

/* The resulting new value of ’'boolFlags’ will be 0x80005. /=
WARNING
In a case where there is duplication of a tag in taglist, the

last of the identical tags will hold sway.

SEE ALSO
<utility/tagitem.h>, GetTagData (), FindTagItem(), NextTagItem()

1.24 utility.library/PackStructureTags

NAME
PackStructureTags —- pack a structure with values from taglist. (V39)

SYNOPSIS

utility 18/27

num = PackStructureTags (pack,packTable, taglList);
DO A0 Al A2

ULONG PackStructureTags (APTR,ULONG x, struct Tagltem x);

FUNCTION

For each table entry, a FindTaglItem() will be done and if the
matching tag is found in the taglist, the data field will be
packed into the given structure based on the packtable

definition.
INPUTS
pack - a pointer to the data area to fill in.
packTable - a pointer to the packing information table.

See <utility/pack.h> for definition and macros.
taglist - a pointer to the taglist to pack into the structure

RESULTS
num - the number of tag items packed

SEE ALSO
<utility/pack.h>, FindTagItem(), UnpackStructureTags ()

1.25 utility.library/RefreshTagltemClones

NAME
RefreshTagItemClones —-- rejuvenate a clone from the original. (V36)
SYNOPSIS
RefreshTagItemClones (clone,original)

AQ Al
VOID RefreshTagItemClones (struct Tagltem *,struct Tagltem x);

FUNCTION

If (and only if) the tag list ’‘clone’ was created from ’"original’ by
CloneTagItems (), and if ’'original’ has not been changed in any way,
you can reset the clone list to its original state by using this
function.

INPUTS

clone - return value from CloneTagItems (original)

original - a tag list that hasn’t changed since CloneTagItems ()
SEE ALSO

<utility/tagitem.h>, CloneTagItems (), AllocateTagItems(),
FreeTagltems (), ApplyTagChanges ()

1.26 utility.library/ReleaseNamedObject

NAME
ReleaseNamedObject —-- free a named object. (V39)

utility 19/27

SYNOPSIS
ReleaseNamedObject (object) ;
A0

VOID ReleaseNamedObject (struct NamedObject =) ;

FUNCTION

Decrements the open count of the object. If the object has been
removed, and the count goes to 0, the remover will be notified

that the object is now free.

INPUTS
object - the object to release. (No action if NULL)

SEE ALSO
FindNamedObject (), RemNamedObject ()

1.27 utility.library/RemNamedObiject

NAME
RemNamedObject —-- remove a named object. (V39)
SYNOPSIS
RemNamedObject (object, message);

A0 Al

VOID RemNamedObject (struct NamedObject *, struct Message x);

FUNCTION

This function will post a request to release the object

from whatever NameSpace it is in. It will reply the message
when the object is fully removed. The message.mn_Node.ln_Name

field will contain the object pointer or NULL if the object
was removed by another process.

This function will effectively do a ReleaseNamedObject ()
thus you must have "found" the object first.

INPUTS

object - the object to remove: Must be a valid NamedObiject.
message — message to ReplyMsg() (must be supplied)

RESULT

The message is replied with the 1n_Name field either being
the object or NULL. If it contains the object, the object
is completely removed.

SEE ALSO
AttemptRemNamedObject (), AddNamedObject (), ReleaseNamedObiject ()

1.28 utility.library/SDivMod32

utility 20/27

NAME
SDivMod32 —-- signed 32 by 32 bit division and modulus. (V36)
SYNOPSIS
quotient:remainder = SDivMod32 (dividend,divisor);
DO D1 DO D1

LONG:LONG SDivMod32 (LONG, LONG) ;

FUNCTION
Divides the signed 32 bit dividend by the signed 32 bit divisor
and returns a signed 32 bit quotient and remainder.

INPUTS
dividend - signed 32 bit dividend.
divisor - signed 32 bit divisor.

RESULTS
quotient - signed 32 quotient of the division.
remainder - signed 32 remainder of the division.
NOTES

Unlike other Amiga library function calls, the utility.library

32 bit math routines do NOT require A6 to be loaded with a

pointer to the library base. A6 can contain anything the application
wishes. This is in order to avoid overhead in calling them.

In addition, the utility.library math routines preserve all
address registers including A0 and Al

SEE ALSO
SMult32 (), UDivMod32(), UMult32(), SMult64(), UMulte4 ()

1.29 utility.library/SMult32

NAME
SMult32 -- signed 32 by 32 bit multiply with 32 bit result. (V36)
SYNOPSIS
result = SMult32 (argl,arg?);
DO DO D1

LONG SMult32 (LONG, LONG) ;

FUNCTION
Returns the signed 32 bit result of multiplying argl by arg2.

INPUTS
argl, arg2 - numbers to multiply

RESULTS
result - the signed 32 bit result of multiplying argl by arg2.

NOTES

utility 21/27

Unlike other Amiga library function calls, the utility.library

32 bit math routines do NOT require A6 to be loaded with a

pointer to the library base. A6 can contain anything the application
wishes. This is in order to avoid overhead in calling them.

In addition, the utility.library math routines preserve all
address registers including A0 and Al

SEE ALSO
SbivMod32 (), UDivMod32 (), UMult32(), SMult64d (), UMulté4 ()

1.30 utility.library/SMult64

NAME
SMult64 —-- signed 32 by 32 bit multiply with 64 bit result. (V39)
SYNOPSIS
result = SMulté64 (argl,arg2);
DO:D1 DO D1

LONG SMult64 (LONG, LONG) ;

FUNCTION
Returns the signed 64 bit result of multiplying argl by arg2.

INPUTS
argl, arg2 - numbers to multiply

RESULTS
result - the signed 64 bit result of multiplying argl by arg2.

NOTES

Unlike other Amiga library function calls, the utility.library

32 bit math routines do NOT require A6 to be loaded with a

pointer to the library base. A6 can contain anything the application
wishes. This is in order to avoid overhead in calling them.

In addition, the utility.library math routines preserve all
address registers including A0 and Al

SEE ALSO
SDivMod32 (), UDivMod32 (), UMult32(), UMult64 ()

1.31 utility.library/Stricmp

NAME

Stricmp —-- case-insensitive string comparison. (V37)
SYNOPSIS

result = Stricmp(stringl,string2);

DO AQ Al

utility 22/27

LONG Stricmp (STRPTR, STRPTR) ;

FUNCTION

This function compares two strings, ignoring case using a generic
case conversion routine. If the strings have different lengths,
the shorter is treated as if it were extended with zeros.

INPUTS
stringl, string2 - strings to be compared
RESULTS
result - relationship between stringl and string2

<0 means stringl < string2
=0 means stringl string2
>0 means stringl > string2

NOTES

Whenever locale.library is installed in a system, this function is
replaced by language-specific code. This means that depending on
which language the user has currently selected, identical pairs of
strings may return different values when passed to this function.
This fact must be taken into consideration when using this function.

SEE ALSO
Strnicmp (), locale.library/StrnCmp ()

1.32 utility.library/Strnicmp

NAME
Strnicmp -- length-limited case-insensitive string compare. (V37)
SYNOPSIS
result = Strnicmp(stringl,string2, length);
DO AQ Al DO

LONG Strnicmp (STRPTR, STRPTR, LONG) ;

FUNCTION

This function compares two strings, ignoring case using a generic

case conversion routine. If the strings have different lengths,

the shorter is treated as if it were extended with zeros. This function
never compares more than ’length’ characters.

INPUTS
stringl, string2 - strings to be compared
length - maximum number of characters to examine
RESULTS
result - relationship between stringl and string2
<0 means stringl < string2
=0 means stringl = string2

>0 means stringl > string2

NOTES
Whenever locale.library is installed in a system, this function is

utility 23/27

replaced by language-specific code. This means that depending on
which language the user has currently selected, identical pairs of
strings may return different values when passed to this function.
This fact must be taken into consideration when using this function.

SEE ALSO
Stricmp (), locale.library/StrnCmp ()

1.33 utility.library/TaginArray

NAME
TagInArray —- check if a tag value appears in an array of tag values.
(V36)
SYNOPSIS
result = TagInArray(tagValue,tagArray);
DO DO A0

BOOL TagInArray (Tag,Tag =*);

FUNCTION
Performs a quick scan to see if a tag value appears in an array
terminated with TAG_DONE. Returns TRUE if the wvalue is found.

The ’'tagArray’ must be terminated by TAG_DONE. Note that this is an
array of tag values, NOT an array of TagItems.

INPUTS
tagValue - tag value to search array for in array.

tagArray - a simple array of tag values terminated by TAG_DONE.

RESULTS
result - TRUE if tagValue was found in tagArray.

SEE ALSO
<utility/tagitem.h>, FilterTagItems ()

1.34 utility.library/ToLower

NAME
ToLower —-—- convert a character to lower case. (V37)
SYNOPSIS
char = ToLower (char);
DO DO

UBYTE ToLower (UBYTE) ;

FUNCTION
Converts a character to lower case, handling international character
sets.

utility

24127

INPUTS
char - character to be converted.

RESULTS
char - lower case version of the input character.

NOTES

Whenever locale.library is installed in a system, this function is
replaced by language-specific code. This means that depending on
which language the user has currently selected, a given character may
return different results when passed to this function. This fact must
be taken into consideration when using this function.

SEE ALSO
ToUpper (), locale.library/ConvToLower ()

1.35 utility.library/ToUpper

NAME
ToUpper —-- convert a character to upper case. (V37)
SYNOPSIS
char = ToUpper (char);
DO DO

UBYTE ToUpper (UBYTE) ;

FUNCTION
Converts a character to upper case, handling international character
sets.

INPUTS
char - character to be converted.

RESULTS
char - upper case version of input character.
NOTES

Whenever locale.library is installed in a system, this function is
replaced by language-specific code. This means that depending on
which language the user has currently selected, a given character may
return different results when passed to this function. This fact must
be taken into consideration when using this function.

SEE ALSO
ToUpper (), locale.library/ConvToLower ()

1.36 utility.library/UDivMod32

NAME
UDivMod32 —-- unsigned 32 by 32 bit division and modulus. (V36)

utility 25/27

SYNOPSIS
quotient:remainder = UDivMod32 (dividend,divisor);
DO D1 DO D1

ULONG:ULONG UDivMod32 (ULONG, ULONG) ;

FUNCTION
Divides the unsigned 32 bit dividend by the unsigned 32 bit divisor
and returns an unsigned 32 bit quotient and remainder.

INPUTS
dividend - unsigned 32 bit dividend.
divisor - unsigned 32 bit divisor.

RESULTS
quotient - unsigned 32 quotient of the division.
remainder - unsigned 32 remainder of the division.
NOTES

Unlike other Amiga library function calls, the utility.library

32 bit math routines do NOT require A6 to be loaded with a

pointer to the library base. A6 can contain anything the application
wishes. This is in order to avoid overhead in calling them.

In addition, the utility.library math routines preserve all
address registers including A0 and Al

SEE ALSO
SbivMod32 (), SMult32(), UMult32()

1.37 utility.library/UMult32

NAME
UMult32 —-- unsigned 32 by 32 bit multiply with 32 bit result. (V36)
SYNOPSIS
result = UMult32 (argl,arg2);
DO DO D1

ULONG UMult32 (ULONG, ULONG) ;

FUNCTION
Returns the unsigned 32 bit result of multiplying argl by arg2.

INPUTS
argl, arg2 - numbers to multiply

RESULTS
result - the unsigned 32 bit result of multiplying argl by arg2.

NOTES
Unlike other Amiga library function calls, the utility.library
32 bit math routines do NOT require A6 to be loaded with a
pointer to the library base. A6 can contain anything the application
wishes. This is in order to avoid overhead in calling them.

utility 26/27

In addition, the utility.library math routines preserve all
address registers including A0 and Al

SEE ALSO
SDivMod32 (), SMult32(), UDivMod32(), SMult64 (), UMultéd ()

1.38 utility.library/UMult64

NAME
UMult64 -- unsigned 32 by 32 bit multiply with 64 bit result. (V39)
SYNOPSIS
result = UMulté64 (argl,arg?);
DO:D1 DO D1

ULONG UMult64 (ULONG, ULONG) ;

FUNCTION
Returns the unsigned 64 bit result of multiplying argl by arg2.

INPUTS
argl, arg2 - numbers to multiply

RESULTS
result - the unsigned 64 bit result of multiplying argl by arg2.

NOTES

Unlike other Amiga library function calls, the utility.library

32 bit math routines do NOT require A6 to be loaded with a

pointer to the library base. A6 can contain anything the application
wishes. This is in order to avoid overhead in calling them.

In addition, the utility.library math routines preserve all
address registers including A0 and Al

SEE ALSO
SDivMod32 (), SMult32(), UDivMod32(), SMult64 ()

1.39 utility.library/UnpackStructureTags

NAME
UnpackStructureTags —-- unpack a structure to values in taglist. (V39)
SYNOPSIS
num = UnpackStructureTags (pack,packTable,taglist);
DO AQ Al A2

ULONG UnpackStructureTags (APTR,ULONG =*,struct Tagltem x);

FUNCTION
For each table entry, a FindTagItem() will be done and if the

utility 27/27

matching tag is found in the taglist, the data in the structure
will be placed into the memory pointed to by the tag’s ti_Data.
ti_Data xmust* point to a LONGWORD.

INPUTS
pack - a pointer to the data area to be unpacked
packTable - a pointer to the packing information table.

See <utility/pack.h> for definition and macros
taglList - a pointer to the taglist to unpack into

RESULTS
num - the number of tag items unpacked

SEE ALSO
<utility/pack.h>, FindTagItem(), PackStructureTags ()

	utility
	utility.doc
	utility.library/AddNamedObject
	utility.library/AllocateTagItems
	utility.library/AllocNamedObjectA
	utility.library/Amiga2Date
	utility.library/ApplyTagChanges
	utility.library/AttemptRemNamedObject
	utility.library/CallHookPkt
	utility.library/CheckDate
	utility.library/CloneTagItems
	utility.library/Date2Amiga
	utility.library/FilterTagChanges
	utility.library/FilterTagItems
	utility.library/FindNamedObject
	utility.library/FindTagItem
	utility.library/FreeNamedObject
	utility.library/FreeTagItems
	utility.library/GetTagData
	utility.library/GetUniqueID
	utility.library/MapTags
	utility.library/NamedObjectName
	utility.library/NextTagItem
	utility.library/PackBoolTags
	utility.library/PackStructureTags
	utility.library/RefreshTagItemClones
	utility.library/ReleaseNamedObject
	utility.library/RemNamedObject
	utility.library/SDivMod32
	utility.library/SMult32
	utility.library/SMult64
	utility.library/Stricmp
	utility.library/Strnicmp
	utility.library/TagInArray
	utility.library/ToLower
	utility.library/ToUpper
	utility.library/UDivMod32
	utility.library/UMult32
	utility.library/UMult64
	utility.library/UnpackStructureTags

