
cd

cd ii

COLLABORATORS

TITLE :

cd

ACTION NAME DATE SIGNATURE

WRITTEN BY July 23, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

cd iii

Contents

1 cd 1

1.1 cd.doc . 1

1.2 cd.device/CD_ADDCHANGEINT . 1

1.3 cd.device/CD_ADDFRAMEINT . 2

1.4 cd.device/CD_ATTENUATE . 3

1.5 cd.device/CD_CHANGENUM . 4

1.6 cd.device/CD_CHANGESTATE . 4

1.7 cd.device/CD_CONFIG . 5

1.8 cd.device/CD_EJECT . 7

1.9 cd.device/CD_GETGEOMETRY . 7

1.10 cd.device/CD_INFO . 8

1.11 cd.device/CD_MOTOR . 9

1.12 cd.device/CD_PAUSE . 9

1.13 cd.device/CD_PLAYLSN . 10

1.14 cd.device/CD_PLAYMSF . 11

1.15 cd.device/CD_PLAYTRACK . 12

1.16 cd.device/CD_PROTSTATUS . 12

1.17 cd.device/CD_QCODELSN . 13

1.18 cd.device/CD_QCODEMSF . 14

1.19 cd.device/CD_READ . 15

1.20 cd.device/CD_READXL . 16

1.21 cd.device/CD_REMCHANGEINT . 17

1.22 cd.device/CD_REMFRAMEINT . 18

1.23 cd.device/CD_SEARCH . 18

1.24 cd.device/CD_SEEK . 19

1.25 cd.device/CD_TOCLSN . 20

1.26 cd.device/CD_TOCMSF . 21

1.27 cd.device/CloseDevice . 22

1.28 cd.device/OpenDevice . 23

cd 1 / 23

Chapter 1

cd

1.1 cd.doc

CD_ADDCHANGEINT
CD_ADDFRAMEINT
CD_ATTENUATE
CD_CHANGENUM
CD_CHANGESTATE
CD_CONFIG
CD_EJECT
CD_GETGEOMETRY
CD_INFO
CD_MOTOR
CD_PAUSE
CD_PLAYLSN
CD_PLAYMSF
CD_PLAYTRACK
CD_PROTSTATUS
CD_QCODELSN
CD_QCODEMSF
CD_READ
CD_READXL
CD_REMCHANGEINT
CD_REMFRAMEINT
CD_SEARCH
CD_SEEK
CD_TOCLSN
CD_TOCMSF
CloseDevice()
OpenDevice()

1.2 cd.device/CD_ADDCHANGEINT

NAME
CD_ADDCHANGEINT -- add a disk change software interrupt handler.

FUNCTION
This command lets you add a software interrupt handler to the

cd 2 / 23

disk device that gets invoked whenever a disk insertion or removal
occurs.

You must pass in a properly initialized Exec Interrupt structure
and be prepared to deal with disk insertions/removals immediately.
The interrupt is generated by the exec Cause function, so you must
preserve A6.

To set up the handler, an Interrupt structure must be initialized.
This structure is supplied as the io_Data to the CD_ADDCHANGEINT
command. The handler then gets linked into the handler chain and
gets invoked whenever a disk change happens. You must eventually
remove the handler before you exit.

This command only returns when the handler is removed. That is,
the device holds onto the IO request until the CD_REMCHANGEINT command
is executed with that same IO request. Hence, you must use SendIO()
with this command.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_ADDCHANGEINT
io_Length sizeof(struct Interrupt)
io_Data pointer to Interrupt structure

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/cd.h>

SEE ALSO
CD_REMCHANGEINT, <devices/cd.h>, <exec/interrupts.h>,
exec.library/Cause()

1.3 cd.device/CD_ADDFRAMEINT

NAME
CD_ADDFRAMEINT -- add a CD-frame software interrupt handler.

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_ADDFRAMEINT
io_Length sizeof(struct Interrupt)
io_Data pointer to Interrupt structure

RESULTS
io_Error 0 for success, or an error code as defined in

<devices/cd.h>

FUNCTION
This command lets you add a software interrupt handler to the
disk device that gets invoked whenever a new frame is encountered
while CD audio is being played.

cd 3 / 23

You must pass in a properly initialized Exec Interrupt structure
and be prepared to deal with frame interrupts immediately.
The interrupt is generated by the exec Cause function, so you must
preserve A6.

To set up the handler, an Interrupt structure must be initialized.
This structure is supplied in io_Data of the CD_ADDFRAMEINT
command. The handler then gets linked into the handler chain and
gets invoked whenever a frame event occurs. You must eventually
remove the handler before you exit.

This command only returns when the handler is removed. That is,
the device holds onto the IO request until the CD_REMFRAMEINT command
is executed with that same IO request. Hence, you must use SendIO()
with this command.

NOTES
The interrupt handler can be added before or after a play command is
sent. Interrupts will only be generated while CD audio is playing.
Interrupts will not be generated when audio is paused.

SEE ALSO
CD_REMFRAMEINT, <devices/cd.h>, <exec/interrupts.h>,
exec.library/Cause()

1.4 cd.device/CD_ATTENUATE

NAME
CD_ATTENUATE -- Attenuate CD audio volume (immediately or gradually)

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_ATTENUATE
io_Data NULL
io_Length duration of volume fade in frames
io_Offset target volume level (0 - 0x7FFF) (-1 = status only)

RESULTS
io_Error Returns an error if drive does not support attenuation
io_Actual current volume level (fade may be monitored)

FUNCTION
This command will ramp the CD audio volume up or down from its
current value to the value contained in io_Offset. The range is 0
(silence) to 0x7FFF (full volume). If -1 is specified as the target,
the attenuation will not be modified; the current attenuation value
will be returned in io_Actual.

io_Length contains the duration of the fade. In seconds, this is
io_Length divided by the current frame rate (usually 75).

Note that this command returns before the fade has completed. Thus,
once started, a fade cannot be aborted. You can, however, send a
new CD_ATTENUATE command, which will immediately override any fade

cd 4 / 23

currently in progress. An io_Length of zero means attenuate
immediately.

If a gradual attenuation command is sent before the play command, the
fade will begin as soon as the play command is sent.

EXAMPLE

NOTES
This command has no effect on Amiga audio volume, only CD audio.

If the drive does not support volume attenuation, but does support
mute, a value of under $0800 should be considered mute, and equal
to or above should be full volume. If chunky attenuation is
supported, the drive should do the best it can. If the drive does
not support volume attenuation at all, an error should be returned.
Even if only mute is supported, if gradual attenuation is requested,
the device should still emulate the fade command and mute based on
the $0800 boundary.

BUGS

SEE ALSO
CD_INFO

1.5 cd.device/CD_CHANGENUM

NAME
CD_CHANGENUM -- return the current value of the disk-change counter.

FUNCTION
This command returns the current value of the disk-change counter
The disk change counter is incremented each time a disk is inserted
or removed from the cd unit.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_CHANGENUM

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/cd.h>
io_Actual - if io_Error is 0, this contains the current value of the

disk-change counter.

1.6 cd.device/CD_CHANGESTATE

NAME
CD_CHANGESTATE -- check if a "valid" disk is currently in a drive.

FUNCTION

cd 5 / 23

This command checks to see if there is a "valid" disk in a drive.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_CHANGESTATE

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/cd.h>
io_Actual - 0 means there is a disk while anything else indicates

there is no disk.

NOTES
A "valid" disk is a disk with a readable table of contents.

1.7 cd.device/CD_CONFIG

NAME
CD_CONFIG -- Set drive preferences

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_CONFIG
io_Data pointer to first entry of TagList
io_Length 0

RESULTS
io_Error 0 for success, or an error code as defined in

<devices/cd.h>

FUNCTION
This command sets one or more of the configuration items.
The configuration items are:

TAGCD_PLAYSPEED Default: 75
TAGCD_READSPEED Default: 75 (do not count on this)
TAGCD_READXLSPEED Default: 75
TAGCD_SECTORSIZE Default: 2048
TAGCD_XLECC Default: 1 (on)
TAGCD_EJECTRESET Default: can be 0 (off) or 1 (on)

The speed settings are described in the number of frames (sectors)
per second. All CD-ROM drives are capable of the 75 frames/second
rate. Some drives are capable of 150 frames/second, and some even
more. To determine the maximum frame rate of the drive, use the
CD_INFO command. Valid values for caddyless Commodore CD-ROM drives
are 75 and 150 (normal speed and double speed). All other values are
invalid. You should always make sure the drive is capable of the
configuration you are requesting by either using the CD_INFO command,
and/or by checking for an error condition after submitting your
request.

There are three different types of CD-ROM sectors. Mode 1 sectors

cd 6 / 23

(2048 bytes), mode 2 form 1 sectors (2048 bytes), and mode 2 form 2
sectors (2328 bytes). Normally, disks are encoded in Mode 1 format.
Mode 2 form 1 is basically the same as mode 1; however, the mode 2
form 2 sector format contains no CD-ROM error correction information.
In order to read information encoded in this sector format, the
drive’s sector size must be configured to 2328 byte sectors.

Error correction (ECC) of the READXL command can be turned off or
on with this command. Error correction can be implemented in either
hardware or software (depending on the CD-ROM drive). When ECC is
implemented in software, CPU usage can become bursty. Errors rarely
occur on CDs unless they have numerous scratches, but when they do
occur, they will cause a loss of CPU bandwith. When ECC is
implemented in hardware, no CPU bandwidth is lost -- in this case,
ECC will always be on no matter how you configure the drive because
it is free. The READXL command is used primarily for displaying
movie-like data. In this case, speed is essential and data integrety
is not; however, if the CPU is not being utilized during an XL
animation there is no need to disable ECC (since the bandwidth is
there to be used). The only time ECC should be disabled is when you
are doing intense calculations in the background of a READXL command,
AND your program is time-critical. Do not forget to change this back
when you are done!

To make the computer reset when a CD is ejected (for an application
that does not exit), use the TAGCD_EJECTRESET tag. When possible,
titles should be able to exit cleanly back to Workbench. Error
conditions should be monitored when doing disk I/O.

EXAMPLE
/* Configure ReadXL for double-speed reading and turn off ECC when */
/* the ReadXL command is used. */

struct TagItem ConfigList[] = {

{ TAGCD_READXLSPEED, 150 },
{ TAGCD_XLECC, 0 },
{ TAG_END, 0 }
};

ior->io_Command = CD_CONFIG;
ior->io_Data = (APTR)&ConfigList;
ior->io_Length = 0;
DoIO(ior);

if (ior->io_Error) printf("Could not be configured\n");

NOTES
Setting the configuration will not modify the behavior of a read or
play command already in progress.

This can be a very dangerous command. If for instance you set
TAGCD_SECTORSIZE to 2328, you will no longer be able to read any
data encoded at 2048 byte sectors (e.g. the file system will not be
able to read the disk anymore). After you read any data stored with
this sector format, you should immediately configure back to the
original default value (even if the read failed -- the disk could

cd 7 / 23

be removed in the middle of your read). You should NEVER use this
command if you are not the exclusive owner of your disk.

BUGS
TAG_IGNORE, TAG_MORE, and TAG_SKIP do not work. Do not use these.

When switching speeds from single to double (or double to single),
If the drive is prefetching in single-speed the data you are going
to use in double-speed, the drive will not switch to double-speed
(and visa versa). To avoid this problem, switch to the desired speed,
begin reading at least 4k into the data (just read two bytes), then
begin reading at the beginning. This will force the prefetch buffer
to clear and issue a new read command with the desired speed.
(Fixed in 40.24).

SEE ALSO
CD_INFO, <utility/tagitem.h>

1.8 cd.device/CD_EJECT

NAME
CD_EJECT -- Open or close the CD’s drive door

IO REQUEST
io_Command CD_EJECT
io_Data NULL
io_Length requested state of drive door (0 == close, 1 == open)
io_Offset 0

RESULTS
io_Error 0 for success, or an error code as defined in

<devices/cd.h>
io_Actual previous state of drive door

FUNCTION
This command causes the CD-ROM drive’s door to open or close.
The desired state of the drive door is placed in io_Length. The
previous state of the drive door is returned in io_Actual.

EXAMPLE

NOTES

BUGS

SEE ALSO

1.9 cd.device/CD_GETGEOMETRY

NAME
CD_GETGEOMETRY -- return the geometry of the drive.

cd 8 / 23

FUNCTION
This command returns a full set of information about the
layout of the drive. The information is returned in the
DriveGeometry structure pointed to by io_Data.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_GETGEOMETRY
io_Data pointer to a DriveGeometry structure
io_Length sizeof(struct DriveGeometry)

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/cd.h>
io_Actual - length of data transferred.

SEE ALSO
CD_GETNUMTRACKS, <devices/trackdisk.h>

1.10 cd.device/CD_INFO

NAME
CD_INFO -- Return information/status of device

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_INFO
io_Data pointer to CDInfo structure
io_Length sizeof(struct CDInfo)

RESULTS
io_Error 0 for success, or an error code as defined in

<devices/cd.h>
io_Actual length of data transferred

FUNCTION

This command returns current configurations and status of the device
driver.

EXAMPLE

struct CDInfo Info;

ior->io_Command = CD_INFO; /* Retrieve drive info. */
ior->io_Data = (APTR)Info; /* Here’s where we want it */
ior->io_Length = sizeof(struct CDInfo); /* Return whole structure */
DoIO(ior);

if (!ior->io_Error) { /* Command succeeded */

if (Info.Status & CDSTSF_PLAYING) printf("Audio is playing\n");
else printf("Audio not playing\n");

cd 9 / 23

}

NOTES

BUGS

SEE ALSO
<devices/cd.h>

1.11 cd.device/CD_MOTOR

NAME
CD_MOTOR -- control the on/off state of a drive motor.

FUNCTION
This command gives control over the spindle motor. The motor may be
turned on or off.

If the motor is just being turned on, the device will delay the
proper amount of time to allow the drive to come up to speed.
Turning the motor on or off manually is not necessary, the device does
this automatically if it receives a request when the motor is off.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_MOTOR
io_Length the requested state of the motor, 0 to turn the motor

off, and 1 to turn the motor on.

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/cd.h>
io_Actual - if io_Error is 0 this contains the previous state of the

drive motor.

1.12 cd.device/CD_PAUSE

NAME
CD_PAUSE -- Pause or unPause play command.

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_PAUSE
io_Data NULL
io_Length pausemode : 1 = pause play; 0 = do not pause play;
io_Offset 0

RESULTS
io_Actual - if io_Error is 0, this contains the previous pause state.

cd 10 / 23

FUNCTION
This command will place the CD in, or take the CD out of pause mode.
The desired pause state is placed in io_Length. This command only
effects play commands. When the audio is playing and the pausemode
is set, this command will immediately pause the audio output
suspending the play command until the play is unpaused. When audio
is not playing and the pausemode is set, this command will set the
pause mode (having no immediate effect). When a play command is
submitted, the laser will seek to the appropriate position and pause
at that spot. The play command will be suspended until the play is
unpaused (or the play is aborted).

EXAMPLE

NOTES

BUGS

SEE ALSO

1.13 cd.device/CD_PLAYLSN

NAME
CD_PLAYLSN -- Play a selected portion of CD audio (LSN form).

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_PLAYLSN
io_Data NULL
io_Length length of play
io_Offset starting position

RESULTS
io_Error 0 for success, or an error code as defined in

<devices/cd.h>

FUNCTION
This command causes the drive to start playing CD audio from the
specified position until the specified length has passed.

io_Offset specifies the starting position. io_Length contains
the amount of time to play. All data is specified in LSN format.

A DoIO() will not return until the requested number of sectors
have been played. A SendIO() will return as soon as the PLAY
has been started. At this time other commands can be sent (like
CD_PAUSE). To stop a play before the specified length has been
reached, use AbortIO().

EXAMPLE
/* Play two minutes, ten seconds of audio starting at 20 minutes, */
/* 58 seconds, and 10 frames. */

ior->io_Command = CD_PLAYLSN; /* Play CD audio */

cd 11 / 23

ior->io_Offset = 94360; /* 20*(60*75) + 58*75 + 10 */
ior->io_Length = 9750; /* 02*(60*75) + 10*75 + 00 */
DoIO (ior);

NOTES

BUGS

SEE ALSO
CD_PLAYTRACK, CD_PAUSE, CD_SEARCH, CD_ATTENUATE

1.14 cd.device/CD_PLAYMSF

NAME
CD_PLAYMSF -- Play a selected portion of CD audio (MSF form).

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_PLAYMSF
io_Data NULL
io_Length length of play
io_Offset starting position

RESULTS
io_Error 0 for success, or an error code as defined in

<devices/cd.h>

FUNCTION
This command causes the drive to start playing CD audio from the
specified position until the specified length has passed.

io_Offset specifies the starting position. io_Length contains
the amount of time to play. All data is specified in MSF format.

A DoIO() will not return until the requested number of sectors
have been played. A SendIO() will return as soon as the PLAY
has been started. At this time other commands can be sent (like
CD_PAUSE). To stop a play before the specified length has been
reached, use AbortIO().

EXAMPLE
/* Play two minutes, ten seconds of audio starting at 20 minutes, */
/* 58 seconds, and 10 frames. */

ior->io_Command = CD_PLAYMSF; /* Play CD audio */
ior->io_Offset = 0x00143A0A; /* $14=20, $3A=58, $0A=10 */
ior->io_Length = 0x00020A00; /* $02=02, $0A=10, $00=00 */
DoIO (ior);

NOTES

BUGS

SEE ALSO

cd 12 / 23

CD_PLAYTRACK, CD_PAUSE, CD_SEARCH, CD_ATTENUATE

1.15 cd.device/CD_PLAYTRACK

NAME
CD_PLAYTRACK -- Play one or more tracks of CD audio.

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_PLAYTRACK
io_Data NULL
io_Length number of tracks to play
io_Offset start playing at beginning of this track

RESULTS
io_Error 0 for success, or an error code as defined in

<devices/cd.h>
FUNCTION

This command causes the drive to play the specified audio track(s).
The command will return when the audio has completed.

io_Offset specifies the track number (starting from 1).

io_Length specifies the number of tracks to play (0 is invalid).

EXAMPLE

ior->io_Command = CD_PLAYTRACK; /* Play audio tracks */
ior->io_Offset = STARTTRACK; /* Start with this track */
ior->io_Length = 3; /* Play three tracks */
DoIO(ior);

NOTES

PLAY commands are asynchronous with many other CD commands.
Using a separate I/O request, other commands can be sent to the device
that can change the behavior of the PLAY command.

BUGS

SEE ALSO
CD_PLAYMSF, CD_PLAYLSN, CD_PAUSE, CD_SEARCH, CD_ATTENUATE

1.16 cd.device/CD_PROTSTATUS

NAME
CD_PROTSTATUS -- return whether the current disk is write-protected.

FUNCTION
This command is used to determine whether the current disk is
write-protected. Currently, this function always returns write-

cd 13 / 23

protected status. If write-once CDs are made available at some point,
this may change.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_PROTSTATUS

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/cd.h>
io_Actual - 0 means the disk is NOT write-protected, while any other

value indicates it is.

1.17 cd.device/CD_QCODELSN

NAME
CD_QCODELSN -- Report current disk position.

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_QCODELSN
io_Data pointer to QCode structure
io_Length 0 - MUST be zero (for future compatability)

RESULTS
io_Error 0 for success, or an error code as defined in

<devices/cd.h>

FUNCTION
This command reports current subcode Q channel time information. This
command only returns data when CD Audio is playing (or paused). At
any other time, an error is returned. The Q-Code packet consists of:

struct QCode {

UBYTE CtlAdr; /* Data type / QCode type */
UBYTE Track; /* Track number */
UBYTE Index; /* Track subindex number */
UBYTE Zero; /* The "Zero" byte of Q-Code packet */
union LSNMSF TrackPosition; /* Position from start of track */
union LSNMSF DiskPosition; /* Position from start of disk */
};

EXAMPLE

struct QCode qcode;

ior->io_Command = CD_QCODELSN; /* Retrieve TOC information */
ior->io_Length = 0; /* MUST be zero */
ior->io_Data = (APTR)qcode; /* Here’s where we want it */
DoIO (ior);

if (!ior->io_Error) { /* Command succeeded */

cd 14 / 23

printf("Current position is: %ld\n", qcode.DiskPosition.LSN);
}

NOTES
This function may not return immediately. It may take several frames
to pass by before a valid Q-Code packet can be returned. Use SendIO()
and CheckIO() if response time is critical, and the information is
not.

BUGS

SEE ALSO
CD_PLAYMSF, CD_PLAYLSN, CD_PLAYTRACK, <devices/cd.h>

1.18 cd.device/CD_QCODEMSF

NAME
CD_QCODEMSF -- Report current disk position.

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_QCODEMSF
io_Data pointer to QCode structure
io_Length 0 - MUST be zero (for future compatability)

RESULTS
io_Error 0 for success, or an error code as defined in

<devices/cd.h>

FUNCTION
This command reports current subcode Q channel time information. This
command only returns data when CD Audio is playing (or paused). At
any other time, an error is returned. The Q-Code packet consists of:

struct QCode {

UBYTE CtlAdr; /* Data type / QCode type */
UBYTE Track; /* Track number */
UBYTE Index; /* Track subindex number */
UBYTE Zero; /* The "Zero" byte of Q-Code packet */
union LSNMSF TrackPosition; /* Position from start of track */
union LSNMSF DiskPosition; /* Position from start of disk */
};

EXAMPLE

struct QCode qcode;

ior->io_Command = CD_QCODEMSF; /* Retrieve TOC information */
ior->io_Length = 0; /* MUST be zero */
ior->io_Data = (APTR)qcode; /* Here’s where we want it */
DoIO (ior);

cd 15 / 23

if (!ior->io_Error) { /* Command succeeded */

printf("Current position is: %02d:%02d:%02d\n",
qcode.DiskPosition.MSF.Minute,
qcode.DiskPosition.MSF.Second,
qcode.DiskPosition.MSF.Frame);

}

NOTES
This function may not return immediately. It may take several frames
to pass by before a valid Q-Code packet can be returned. Use SendIO()
and CheckIO() if response time is critical, and the information is
not.

BUGS

SEE ALSO
CD_PLAYMSF, CD_PLAYLSN, CD_PLAYTRACK, <devices/cd.h>

1.19 cd.device/CD_READ

NAME
CD_READ -- read data from disk.

FUNCTION
Reads data from the CD into memory. Data may be accessed on WORD
boundaries (you are not restricted to sector boundaries as with
normal disk devices). Data lengths can also be described in WORD
amounts.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_READ
io_Data pointer to the buffer where the data should be put
io_Length number of bytes to read, must be a WORD multiple.
io_Offset byte offset from the start of the disk describing

where to read data from, must be a WORD multiple.

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/cd.h>
io_Actual - if io_Error is 0, number of bytes actually transferred

NOTES
If an error occurs when attempting a CD_READ, the software will
retry up to 10 times before giving up on the request. If the
drive is in double-speed and an error occurs, the software will
retry once more in double-speed, and if this fails, will retry
the next 9 times in single-speed.

SEE ALSO
CD_READXL

cd 16 / 23

1.20 cd.device/CD_READXL

NAME
CD_READXL -- Read from CD-ROM into memory via transfer list.

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_READXL
io_Data pointer to transfer list (i.e. struct List *).
io_Length maximum transfer length (WORD multiple) or 0.
io_Offset byte offset from the start of the disk describing

where to read data from, must be a WORD multiple.

RESULTS
io_Error 0 for success, or an error code as described in

<devices/cd.h>
io_Actual if io_Error is 0, number of bytes actually transferred

FUNCTION
This command starts reading data off the disk at the specified
location and deposits it into memory according to the nodes in a
transfer list. The pointer to the list of transfer nodes is placed
in io_Data. If you have a non-circular transfer list, simply set
io_Length to 0 (0 is special and means ignore io_Length) -- your
transfer will end when your transfer list has been exhausted. If you
have a circular transfer list, the list will never end. In this case,
the transfer will terminate when io_Length bytes have been
transferred.

The fields in the CDXL node structure are:

struct CDXL {

struct MinNode Node; /* double linkage */
char *Buffer; /* data destination */
LONG Length; /* must be even # bytes */
LONG Actual; /* bytes transferred */
APTR IntData; /* interrupt server data segment */
VOID (*IntCode)(); /* interrupt server code entry */
};

The philosophy here is that you set up the buffers you want filled,
create CDXL nodes describing the locations and sizes of these
buffers, link all the nodes together in the order that you’d like
(even make a circular list for animations), and execute the command.
The data will be streamed into the appropriate buffers until the
list has been exhausted, an entry with a Length of zero is
encountered, io_Length bytes have been transferred (if io_Length is
non-zero), or the command is aborted with AbortIO().

If you fill in the (*IntCode)() field with a pointer to an interrupt
routine, your routine will be called when the transfer for the node
is complete. Your code will be called before the driver proceeds to
the next node. The interrupt should follow the same rules as standard
interrupts (see AddIntServer of Exec autodocs). Register A2 will

cd 17 / 23

contain a pointer to the node just completed. You may manipulate the
list from within the interrupt. Your code must be brief (this is an
interrupt). When returning from this interrupt, D0 should be cleared
and an RTS instruction should be used to return.

Servers are called with the following register conventions:

D0 - scratch
D1 - scratch

A0 - scratch
A1 - server is_Data pointer (scratch)
A2 - pointer to CDXL node just completed

A5 - jump vector register (scratch)

all other registers must be preserved

EXAMPLE

NOTES
Try to make sure that small buffers are not overused. Each time
a node is completed, an interrupt is generated. If you find that
your computer is acting sluggish, or the CD_READXL command is
aborting, you are probably generating too many interrupts. It is
not efficient to have more than a few of these interrupts generated
within a vertical blank.

Unlike the READ command, the READXL command will not retry a sector
if there is an error. Since the READXL command’s purpose is primarily
for animations, data streaming is considered more important than the
data itself. An error will be returned in io_Error if a data error
did occur. This command will never drop to a lower speed in the event
of an error.

BUGS

SEE ALSO
CMD_READ, CD_SEEK, Autodocs - AddIntServer

1.21 cd.device/CD_REMCHANGEINT

NAME
CD_REMCHANGEINT -- remove a disk change software interrupt handler.

FUNCTION
This command removes a disk change software interrupt added
by a previous use of CD_ADDCHANGEINT.

IO REQUEST INPUT
The same IO request used for CD_ADDCHANGEINT.

io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_REMCHANGEINT

cd 18 / 23

io_Length sizeof(struct Interrupt)
io_Data pointer to Interrupt structure

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/cd.h>

SEE ALSO
CD_ADDCHANGEINT, <devices/cd.h>

1.22 cd.device/CD_REMFRAMEINT

NAME
CD_REMFRAMEINT -- remove a CD-frame interrupt handler.

IO REQUEST
The same IO request used for CD_ADDFRAMEINT.

io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_REMFRAMEINT
io_Length sizeof(struct Interrupt)
io_Data pointer to Interrupt structure

RESULTS
io_Error 0 for success, or an error code as defined in

<devices/cd.h>

FUNCTION
This command removes a CD-frame software interrupt added
by a previous use of CD_ADDFRAMEINT.

BUGS

SEE ALSO
CD_ADDFRAMEINT, <devices/cd.h>

1.23 cd.device/CD_SEARCH

NAME
CD_SEARCH -- configure the mode in which PLAY commands play

IO REQUEST
io_Command CD_SEARCH
io_Data NULL
io_Length searchmode
io_Offset 0

RESULTS
io_Actual - if io_Error is 0, this contains the previous search mode.

FUNCTION

cd 19 / 23

This command causes a play command to play in fast-forward,
fast-reverse, or normal play mode. These modes are defined as:

CDMODE_NORMAL 0 Normal play (current speed setting)
CDMODE_FFWD 1 Play in fast forward mode
CDMODE_FREV 2 Play in fast reverse mode

The search mode can be set before the play command is sent, or during
a play. If CD_SEARCH is sent before a play command is sent, the
mode is set and the command immediately returns. If the mode is set
to REV mode, when the play command is sent the play will begin at the
requested end position and work backwards to the start position.

If CD_SEARCH is sent during a play, the play will automatically
switch to the desired mode and continue playing until the original
play command is completed. If REV mode is set and the beginning of
the play is encountered before switching back to forward play, the
play command will terminate with no error.

EXAMPLE
/* Search in fast forward mode. */
ior->io_Command = CD_SEARCH;
ior->io_Data = NULL;
ior->io_Offset = 0;
ior->io_Length = CDMODE_FFWD;
DoIO(ior);

NOTES

BUGS

SEE ALSO

1.24 cd.device/CD_SEEK

NAME
CD_SEEK -- position laser at specified location.

FUNCTION
CD_SEEK moves the laser to the approximate position specified. The
io_Offset field should be set to the offset to which the head is
to be positioned.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_SEEK
io_Offset position where head is to be moved (always LSN format)

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/cd.h>

cd 20 / 23

1.25 cd.device/CD_TOCLSN

NAME
CD_TOCLSN -- Return table of contents information from CD (LSN form).

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_TOCLSN
io_Data pointer to array where TOC is to be stored
io_Length number of CDTOC entries to be fetched
io_Offset entry to begin at (entry 0 is summary information)

RESULTS
io_Error 0 for success, or an error code as defined in

<devices/cd.h>
io_Actual Actual number of entries copied

FUNCTION
This command returns the table of contents of the disk currently in
the drive. The table of contents consists of up to 100 entries.
Entry zero is summary information describing the number of tracks
and the total number of minutes on the disk. Entries 1 through N
contain information about each individual track. All position
information will be in LSN format.

The io_Data field points to an array of CDTOC structures to receive
the TOC data.

The io_Length field specifies the total number of entries to be
fetched. The array pointed to by io_Data must be at least this many
elements in size.

The io_Offset field specifies the entry number at which to start
copying TOC data into *io_Data.

Entry zero (the summary entry) contains the following:

struct TOCSummary {

UBYTE FirstTrack; /* First track on disk (always 1) */
UBYTE LastTrack; /* Last track on disk */
union LSNMSF LeadOut; /* Beginning of lead-out track */
};

Track entries (entries 1 through number of tracks) contain:

struct TOCEntry {

UBYTE CtlAdr; /* Q-Code info */
UBYTE Track; /* Track number */
union LSNMSF Position; /* Start position of this track */
};

CDTOC is described as a union between these two structures:

cd 21 / 23

union CDTOC {

struct TOCSummary Summary; /* First entry is summary info. */
struct TOCEntry Entry; /* Entries 1-N are track entries */
};

EXAMPLE

union CDTOC tocarray[100];

ior->io_Command = CD_TOCLSN; /* Retrieve TOC information */
ior->io_Offset = 0; /* Start with summary info */
ior->io_Length = 100; /* Max 99 tracks + summary */
ior->io_Data = (APTR)tocarray; /* Here’s where we want it */
DoIO (ior);

if (!ior->io_Error) { /* Command succeeded */

firsttrack = tocarray[0].Summary.FirstTrack;
lasttrack = tocarray[0].Summary.LastTrack;
totalsectors = tocarray[0].Summary.LeadOut.LSN -

tocarray[1].Entry.Position.LSN;
}

NOTES

In the above example, the amount of data on the disk is calculated as
being equal to the location of the lead-out track minus the start of
the first track (which is never zero).

BUGS

SEE ALSO

1.26 cd.device/CD_TOCMSF

NAME
CD_TOCMSF -- Return table of contents information from CD (MSF form).

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_TOCMSF
io_Data pointer to array where TOC is to be stored
io_Length number of CDTOC entries to be fetched
io_Offset entry to begin at (entry 0 is summary information)

RESULTS
io_Error 0 for success, or an error code as defined in

<devices/cd.h>
io_Actual Actual number of entries copied

FUNCTION
This command returns the table of contents of the disk currently in

cd 22 / 23

the drive. The table of contents consists of up to 100 entries.
Entry zero is summary information describing the number of tracks
and the total number of minutes on the disk. Entries 1 through N
contain information about each individual track. All position
information will be in MSF format.

The io_Data field points to an array of CDTOC structures to receive
the TOC data.

The io_Length field specifies the total number of entries to be
fetched. The array pointed to by io_Data must be at least this many
elements in size.

The io_Offset field specifies the entry number at which to start
copying TOC data into *io_Data.

Entry zero (the summary entry) contains the following:

struct TOCSummary {

UBYTE FirstTrack; /* First track on disk (always 1) */
UBYTE LastTrack; /* Last track on disk */
union LSNMSF LeadOut; /* Beginning of lead-out track */
};

Track entries (entries 1 through number of tracks) contain:

struct TOCEntry {

UBYTE CtlAdr; /* Q-Code info */
UBYTE Track; /* Track number */
union LSNMSF Position; /* Start position of this track */
};

CDTOC is described as a union between these two structures:

union CDTOC {

struct TOCSummary Summary; /* First entry is summary info. */
struct TOCEntry Entry; /* Entries 1-N are track entries */
};

EXAMPLE

NOTES

BUGS

SEE ALSO

1.27 cd.device/CloseDevice

NAME
CloseDevice - terminate access to the CD

cd 23 / 23

SYNOPSIS
CloseDevice(IORequest);

A1

FUNCTION
This function will terminate access to the unit openned with
OpenDevice().

INPUTS
iORequest - pointer to a struct(IOStdReq)

RESULTS

NOTES

SEE ALSO
OpenDevice()

1.28 cd.device/OpenDevice

NAME
OpenDevice - Open a CD unit for access

SYNOPSIS
error = OpenDevice("cd.device", UnitNumber, IORequest, flags);
D0 A0 D0 A1 D1

FUNCTION
Opens the cd.device and creates an IORequest for use in accessing
the CD.

INPUTS
UnitNumber - Normally zero; however, this is described as:

Ones digit = Unit (SCSI unit number)
Tens digit = LUN (disk within disk changer)
Hundreds digit = Card number (SCSI card)
Thousands digit = Reserved (must be zero)

IORequest - Pointer to a struct(IOStdReq)
flags - Should be zero.

RESULTS
error 0 = success, otherwise this is an error.

NOTES

SEE ALSO
CloseDevice()

	cd
	cd.doc
	cd.device/CD_ADDCHANGEINT
	cd.device/CD_ADDFRAMEINT
	cd.device/CD_ATTENUATE
	cd.device/CD_CHANGENUM
	cd.device/CD_CHANGESTATE
	cd.device/CD_CONFIG
	cd.device/CD_EJECT
	cd.device/CD_GETGEOMETRY
	cd.device/CD_INFO
	cd.device/CD_MOTOR
	cd.device/CD_PAUSE
	cd.device/CD_PLAYLSN
	cd.device/CD_PLAYMSF
	cd.device/CD_PLAYTRACK
	cd.device/CD_PROTSTATUS
	cd.device/CD_QCODELSN
	cd.device/CD_QCODEMSF
	cd.device/CD_READ
	cd.device/CD_READXL
	cd.device/CD_REMCHANGEINT
	cd.device/CD_REMFRAMEINT
	cd.device/CD_SEARCH
	cd.device/CD_SEEK
	cd.device/CD_TOCLSN
	cd.device/CD_TOCMSF
	cd.device/CloseDevice
	cd.device/OpenDevice

