
AmigaMail

AmigaMail ii

COLLABORATORS

TITLE :

AmigaMail

ACTION NAME DATE SIGNATURE

WRITTEN BY July 23, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

AmigaMail iii

Contents

1 AmigaMail 1

1.1 VIII-17: Developing Network Applications for the Amiga . 1

1.2 Protocol Layers and the Berkeley Sockets Interface . 2

1.3 Network Applications . 5

1.4 Application Protocols . 5

1.5 Kinds of Servers . 6

1.6 Addresses . 6

1.7 Finding Servers . 7

1.8 Reserved Ports . 8

1.9 Skeleton for Applications Using TCP (connection-based) . 8

1.10 Skeleton for Applications Using UDP (connectionless) . 11

1.11 Which Protocol Is Right For My Application? . 12

1.12 The Shared Socket Library . 12

1.13 References . 14

AmigaMail 1 / 15

Chapter 1

AmigaMail

1.1 VIII-17: Developing Network Applications for the Amiga

by Dale Larson

When you run a wire between two or more computers, you have a network.
Big Deal. When your applications use that wire however, you have a
revolution. Although some of the following software is only internal or
experimental, these are things I can do now with my Amiga, with software
that I have now:

* From my Amiga, I can transparently access filesystems on Suns,
on the local Vax system (cbmvax), and on other Amigas.

* Whenever I print, I send my files to a network printer.

* I continuously receive mail on my Amiga--from as far as
Seattle, Sydney and Denmark, and near as a desk next to mine.

* Every night when I go home, my Amigas at work (and several
others) are used to do distributed graphics rendering. The
process is started over the network and all data is sent over
the network. A picture that would have taken a week can be
finished overnight.

In the scheme of what is possible, this is only the tip of the iceberg.

* In a high school environment, a network could allow students
to interactively participate in computer simulations. It could
allow them to collaborate electronically. It could allow
teachers to electronically monitor and assist students. It
could save schools money because peripherals such as printers,
hard-drives and CD-ROMs could be easily shared. Even the
computational power of one expensive machine could be shared by
the students.

* A small office can use a network for an email-like facility
for phone messages and other notes. Another application might
replace the intercom. Form letters can be kept in a central
database accessed by a word processor. A distributed

AmigaMail 2 / 15

appointment calendar could allow a secretary to add a new
appointment even as the boss is looking at what his afternoon
schedule is. A distributed database application would allow
access to such things as a central client database, outstanding
orders and the present inventory.

* Imagine multi-player games that use the computational power of
each machine connected by a high speed Local Area Network (LAN).

* In a software development environment, several programmers can
work on the same project, updating the same sources. Debugging
information could be sent over the network, or a debugger on one
machine could control the programs on others (For example, there
is a version of Wack that runs over a network).

* Multimedia applications might do any number of exciting things
with the network. A few of the applications which have been
experimented with on other machines are: real-time audio and
video conferencing, interactive demos for groups, and shared
electronic blackboards.

In much the same way as all applications are candidates for a GUI
interface, all applications are candidates for becoming network
applications. The GUI has only changed the ways in which people interact
with their computers. Networks will change the ways in which people
interact with each other.

This article introduces some of the principles of writing network programs
using the AS225’s Berkeley Socket interface. Even more so than in most of
software development, networking seems simple in theory, but, in reality,
gets complicated in a hurry. To develop network software for AS225, you
will need to obtain the Network Developer’s kit from CATS. It has all the
necessary include files and Autodocs to develop for the AS225’s
socket.library. Also, you should plan read at least some of the material
in the "References" section of this article.

Protocol Layers and the Berkeley Sockets Interface
Network Applications
Application Protocols
Kinds of Servers
Addresses
Finding Servers
Reserved Ports
Skeleton for Applications Using TCP (connection-based)
Skeleton for Applications Using UDP (connectionless)
Which Protocol Is Right For My Application?
The Shared Socket Library
References

1.2 Protocol Layers and the Berkeley Sockets Interface

Network applications should always be written to the Application
Programmer’s Interface (API) of a particular protocol, not to the network
hardware. Network standards usually include several protocols layered one
on top of another. These groups are often referred to as protocol stacks.

AmigaMail 3 / 15

At the lowest level, one of the protocols must interface to some network
hardware. Each layer adds some abstraction to using the network on a
lower level. This serves to make it easier to program network software as
the developer doesn’t have to deal with networking details that are well
below the level of the software under development.

The International Standards Organization (ISO) has created a reference
model on which to base new network layerings. The ISO 7-Layer Reference
Model of Open Systems Interconnection looks like this:

7 Application
6 Presentation

5 Session

4 Transport

3 Network

2 Data Link (Hardware Interface)

1 Physical Hardware Connection

ISO-7 Layer Reference Model

The only protocol stack for the Amiga which is currently available from
Commodore is TCP/IP. Our AS225 software package includes the standard
TCP/IP protocols and several standard Internet applications. It has the
same API as most Unix machines running TCP/IP using the Berkeley Sockets
interface.

Unix was designed to have a common method of accessing both files and
devices. Before a Unix application can perform any I/O operations on a
file, it has to open() it. The Unix open call returns an integer called a
file descriptor that corresponds to the open file. The application uses
this file descriptor to manipulate the file.

This method of I/O is not quite general enough for networking. Instead,
there is the Berkeley Sockets interface. A socket is an entity used to
send and receive data across a network. A socket can be "plugged in" or
bound directly to the socket of some other application on another machine
somewhere on the network. Like the Unix file system, applications access
their sockets using a file descriptor, although it is typically referred
to as a socket descriptor.

Thousands of network applications have been written to the socket
interface. AS225 has been shipping since December, 1990, and everything
needed to write network applications for AS225 is included on the 1991
DevCon disks and on the Network Developer’s Disk.

On the Amiga, layers 1 and 2 should always be the network hardware and
SANA-II Network Device Driver (SANA-II defines the lowest level software

AmigaMail 4 / 15

interface to networking hardware). In AS225, layer 3 is the IP and ICMP
protocols of the TCP/IP protocol stack. These protocols aren’t used
directly by application developers. Essentially, they handle machine to
machine communication. The transport layer uses the network layer (and
the layers below it) to provide communication between individual processes
on different machines. Most current network applications use transport
protocols. The transport protocols in TCP/IP are TCP and UDP.

The TCP transport protocol is a connection-oriented, stream protocol.
Basically, the socket of one application connects to the socket of another
application and they communicate across the network in data streams. The
two applications can be running on arbitrary machines on a network. The
big plus of using TCP is that it is a reliable protocol. If the data is
put in one end of a TCP stream, it either gets to the other end intact, or
not at all (which causes an error at the sender’s end). This makes it
easier to program applications because the application programmer does not
have to worry about packet corruption.

UDP is a connectionless, datagram protocol. An application using UDP
sends datagrams to some other application on the network. A datagram is a
fixed-length message. Because the sockets of UDP applications are not
connected, a datagram sent from a socket can be sent to an arbitrary UDP
socket. Unlike TCP, UDP is not a reliable protocol, so an application
that uses UDP has to account for errors that can occur during transmission.

The details of all the various protocols and how they behave are quite
complex and are beyond the scope of this article. This article deals with
the difference between connection-oriented stream protocols (sockets which
are obtained as type SOCK_STREAM) and connectionless datagram protocols
(type SOCK_DGRAM).

The Amiga Shared Socket Library (socket.library) is Commodore’s
implementation of the standard functions for manipulating, sending data
to, and receiving data from sockets. Other network APIs for TCP/IP have
been written for other platforms (most notably TLI on Unix SVR4 systems).
Programs written using sockets on one machine can communicate just fine
with programs written using another API (i.e., TLI) on another machine.
Sockets are not specific to TCP/IP. They can be used with different
"domains". TCP/IP is one domain, another network protocol is another
domain and local Inter-Process Communication (IPC) is yet another. Our
socket library currently supports only TCP/IP.

Layers 5 and 6 of the OSI model, the presentation and session layers, do
not exist in TCP/IP, or most other protocol stacks. So with TCP/IP on the
Amiga, the protocol stack looks like this:

Application
Transport (TCP, UDP)

Network (IP, ICMP)

Data Link (SANA-II Network Device Driver)

Hardware (ethernet, arcnet, ...)

AmigaMail 5 / 15

TCP/IP Protocol Stack

In spite of the fact that protocols come in a stack, your application will
only come into direct contact with a protocol at the top of the stack. In
the case of TCP/IP, this is the transport layer. In theory, you are not
required to know protocols below the one used for your application. In
practice, higher-level protocols are often described in terms of additions
to lower-level protocols.

1.3 Network Applications

Most network applications are built around a client/server model. In the
client/server model, a server application runs on one machine somewhere on
a network. That server waits for a request for a particular service it
provides. These requests come from client applications that are running on
other machines on the network. A service can be as simple as echoing back
text sent to the server or as complex as providing a remote login
facility. For example, the ftp (File Transfer Program) application copies
files between networked machines. Ftp actually consists of two programs,
a client and a server. The server waits around for a client to request
some service, like listing a directory or transferring a file.

On most networks, each machine is capable of running both client and
server programs simultaneously, but on some networks a machine is either a
client or a server and may only run programs of that type. The focus of
this article is peer-to-peer networks (the former), not client-server
networks (the latter).

1.4 Application Protocols

Every networked program must agree on how to send data across the network
and on what meaning to attach to that data. Therefore, the application
itself has a protocol. This is the application layer of the ISO reference
model and TCP/IP protocol stack. The application-specific protocol can
include such things as what transport protocol will be used, what
initialization takes place, how any security is implemented, what format
data will be in, etc.

For standard Internet applications (ftp for example), the application
protocols are specified in detail in one or more reference documents
called Requests for Comments, or RFCs. RFCs are the specifications for
Internet protocols and standard applications. Even if you aren’t
implementing a standard Internet application, the RFCs offer insight into
the complexities of application protocols and how they should be
specified. See the "References" section of this article for more
information on RFCs and standard Internet applications.

Normally application protocols are general enough that network
applications can be ported to any machine which supports the network

AmigaMail 6 / 15

protocol. Neither the client nor the server knows (or cares) what type of
machine is at the other end. Sometimes only one half of the application
(client or server) is available for a given machine. For example, the
currently released version of AS225 includes an NFS (Network File System)
client program, but no NFS server program. To use NFS with AS225 requires
access to any machine with an NFS server--it does not require any
particular type of machine.

1.5 Kinds of Servers

There are two kinds of servers. Those which process one request at a time
are called "iterative servers". Those which simultaneously service
multiple requests (often by spawning a process to handle each request) are
called "concurrent servers". Iterative servers are generally easier to
write, but are only suitable for services which can be handled quickly
and/or will not be accessed by multiple clients. Applications which use
connectionless protocols (UDP) frequently have iterative servers, while
applications with connection-oriented protocols (TCP) usually have
concurrent servers.

1.6 Addresses

All data on the network is sent to and from network addresses. There are
many different types of network addresses, at least one type for each
layer of the protocol stack. For example, the Network layer of the TCP/IP
protocol stack uses the IP and ICMP protocols which use 32-bit internet
addresses (which are usually represented in "dotted decimal notation"
e.g., 192.9.210.4) to talk to a specific machine at a specific
internet-style address. When applications communicate with each other,
they usually use a transport layer protocol, therefore the data is sent
from one transport address to another. A transport address generally
corresponds to a specific program running on a specific machine somewhere
on a network.

A transport address consists of three parts: a protocol, a host address,
and a process association. In AS225, the protocol in a transport address
is either TCP or UDP. The host address is dependent upon the protocol,
but in AS225, the host address is always the internet address of the host.
The process association is also protocol dependent, and in AS225, the
process association is a port number. TCP/IP port numbers are 16-bit
integers that are used by the transport protocols on each host to direct
network traffic to a specific process running on the machine at that
internet address.

The set of port numbers is unique to each protocol. For example, port
number 42 for UDP might belong to a different process than that which
belongs to port number 42 for TCP. Without port numbers, multiple network
programs could not run simultaneously.

Transport protocols are analogous in some ways to Amiga Exec devices. In
such an analogy, there is a TCP device and a UDP device. Each device has
about 65,000 units and none of the units can be opened in shared mode.

AmigaMail 7 / 15

Once a socket is created, it has to be bound to a transport address. An
application binds an address to a socket in one of two ways. The binding
can be made explicitly by the program to a specific transport address
(using the bind() call). Servers normally use this type of binding. In
this case, the server uses a preset, "well-known" port number in its
transport address. The port number is well-known because all of the
server’s possible clients know what that particular server’s port number
is. Because these clients know the server’s port number, the clients can
construct a transport address for that particular service on any machine
that runs that server. For example, the default, well-known port number
for ftp is 21. If a client wants to use ftp to transfer files from a
machine at the internet address 192.9.210.4, it can use ftp’s port number,
the machine’s internet address, and the protocol (ftp uses TCP) to find
the ftp server at 192.9.210.4. As long as there is an ftp server running
at 192.9.210.4, the client should have no problem finding the server. This
type of socket is analogous to a public message port.

The other way to bind a socket to a transport address is to let the socket
library arbitrarily choose a port number for the application. Normally
client applications bind this way because a client does not need a
well-known address. The client supplies the server with its transport
address when it sets up communication with the server. This type of
socket is analogous to a private Exec message port.

1.7 Finding Servers

A client "finds" its server by the server’s transport address. As was
mentioned eariler, the transport address consists of a protocol, a host
address, and a port number. For the TCP/IP protocol stack, the protocol
is either TCP or UDP.

The next thing the client needs to build after the transport address is an
internet address for the server’s machine. Normally the client obtains
that address from the user. The address can be in one of two forms, an
internet address (in dotted decimal notation), or a host name which is an
ASCII string that corresponds to the host’s internet address. If the
client gets a host name, it asks the socket.library what internet address
corresponds to the host name.

When a server starts, it opens a socket and bind()s that socket using the
server’s well-known port number. There are two ways for the server’s
well-known port to become well-known:

1) A server’s well-known port number can be hard-coded into both the
client and server. This is recommended for prototyping new programs,
but is a Very Bad Thing for programs which will be distributed. The
port number is arbitrary, but must not be one of the reserved ports
(see the next section) and must not conflict with a port number
already in use.

2) Port numbers can be configurable. All distributed network
applications should use configurable port numbers. In programs
written for AS225, you should use the inet:db/services file to
configure a port number. The function getservbyname() accepts a

AmigaMail 8 / 15

protocol (UDP or TCP) and the name of a well-known server and returns
the port number of that service. This requires you to configure your
application by adding an entry to the inet:db/services file on every
machine which will use the application. Many standard Internet
applications and Unix remote services are already in the
inet:db/services file that comes with AS225. If your application
isn’t already included, your installation scripts should add the
entry for your application to inet:db/services. Offer a default
value, but let your user actually pick the number since your port
number must not conflict with another (pre-existing) port number.

1.8 Reserved Ports

Port numbers 1-255 are reserved for standard Internet applications (like
ftp) and port numbers 256-1023 are reserved for standard Unix remote
services (which are often available for machines other than Unix). You
should never choose any of these port numbers for your application unless
it is an implementation of a standard for which the port number is
reserved. For more information on port numbering and reserved ports, see
the "References" section at the end of this article.

1.9 Skeleton for Applications Using TCP (connection-based)

Aside from the special quirks of the socket.library (which is discussed in
the "Shared Socket Library" section below), the basic outline of the core
of most client/server model applications written with TCP starts with the
server:

Create a socket:

int socket(int family, int type, int protocol)

Where family specifies the protocol family (which for the TCP/IP protocol
stack is AF_INET from <sys/socket.h>), type specifies the abstract type of
communication (either SOCK_STREAM for TCP or SOCK_DGRAM for UDP), and
protocol is not generally used in the TCP/IP protocol stack and should be
set to zero. If socket() fails, it returns a -1, otherwise it returns a
socket descriptor.

Next, get the well-known port number of the server’s service:

struct servent *getservbyname(char *family, char *service)

where family is one of two strings, "tcp" or "udp". The service argument
is the name of the service that this server provides. The function
returns a NULL if there was an error. Otherwise, it returns pointer to a
servent structure (from <netdb.h>):

struct servent {
char *s_name; /* official service name */
char **s_aliases; /* alias list */
int s_port; /* port # */

AmigaMail 9 / 15

char *s_proto; /* protocol to use */
};

Next, build a sockaddr_in (from <netinet/in.h>) structure using the port
number from the s_port field of the servent structure returned by
getservbyname():

struct in_addr {
u_long s_addr;

};

struct sockaddr_in {
short sin_family; /* address family. Make this

AF_INET for TCP/IP */
u_short sin_port; /* the port number (the value from

servent.s_port) */
struct in_addr sin_addr; /* internet address. For TCP/IP, make

sin_addr.s_addr INADDR_ANY. Bind
will know what to do with this. */

char sin_zero[8]; /* unused by TCP/IP */
};

The sockaddr_in structure is a TCP/IP specific version of the sockaddr
structure.

Now give the sockaddr_in to bind() in order to attach a specific address
to the socket:

int bind(int servsocket, struct sockaddr *name, int namelength)

where, servsocket is the socket descriptor of the socket that needs a
specific address, name is a pointer to the sockaddr structure (or, for
TCP/IP purposes, a sockaddr_in structure) that describes the address, and
namelength is the length of the sockaddr structure.

Once the socket is bound to an address, the server calls listen() to
indicate that it is waiting to receive connections.

The server is ready to start its main processing loop. The accept()
function waits for and accepts a new connection at a socket:

int accept(int servsocket, struct sockaddr *name, int namelength)

where, servsocket is the socket (descriptor) on which the server is
waiting for connections, name points to a buffer where accept() copies a
sockaddr structure describing the client that is trying to connect to the
server, and namelength is the length of the name buffer.

If accept() fails, it returns a negative value, otherwise accept() returns
a socket descriptor of a new socket that is connected to the client’s
socket.

The server can communicate with the client using the new socket while it
continues to listen to its original socket for new connections. The
server may serve one client at a time (an iterative server), or give the
new socket (the one returned by accept()) to a new process so it can
handle talking to the client (a concurrent server).

AmigaMail 10 / 15

Setting up the client is similar to setting up the server. You have to
create a socket, find the service’s well-known port number, and initialize
a sockaddr_in structure that refers to the server. Creating the socket
and finding the service’s port number are identical to the method
described above.

To initialize the sockaddr_in structure, fill in the sin_family (AF_INET)
and sin_port (service’s well-known port number) fields as in the server.
To fill in the sin_addr field, the client needs to find the internet
address of the server’s machine. The client has to find this from either
from an ASCII string of the IP address or the host name (either of which
the client will probably get from the user). The inet_addr() function
accepts an ASCII string of a numeric IP address and returns the internet
address to put in the sockaddr_in’s sin_addr.s_addr field. If the client
only has the host name, it has to call gethostbyname() to find out the
server’s machine address:

struct hostent *gethostbyname(char *hostname)

The parameter hostname is an ASCII string naming the host. This function
figures out the address of the host (usually by looking it up in the
inet:db/hosts file). This function returns a pointer to a hostent
structure:

struct hostent {
char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses from name server */

#define h_addr h_addr_list[0] /* address, for backward
compatibility */

};

The #defined field, h_addr, contains a pointer to an in_addr structure,
which contains the actual host address. Copy this value into the
sockaddr_in.sin_addr.s_addr field.

Now the client needs to establish a connection between itself and the
server. It does this with the connect() function():

int connect(int clientsocket, struct sockaddr *servname,
int namelength)

where, clientsocket is the socket the client created earlier, servname
points to the sockaddr_in structure the client just built, and namelength
is the length of that sockaddr_in structure.

The server and client communicate using the send() and recv() functions:

int send(int socket, char *buf, int buflength, int flags)
int recv(int socket, char *buf, int buflength, int flags)

where, socket is the socket to send to/receive from, buf is a buffer that
contains the data to transmit/is a place for recv() to put the data it
receives, buflength is the length of buf, and flags is beyond the scope of

AmigaMail 11 / 15

this article. For the moment, you can set it to zero.

The data is a continuous stream, with any meaning assigned by the
application protocol (not to be confused with the network protocol). The
data is always received either intact or not at all. The data almost
always gets there unless there is a serious network or host machine
problem. When the communications are finished, both sides s_close() the
sockets which were connected.

1.10 Skeleton for Applications Using UDP (connectionless)

The basic outline of most client/server model applications written with
UDP look something like this:

Server gets a socket with socket(), gets a port number with
getservbyname(), builds a sockaddr_in structure describing the server, and
gives that structure to bind() in order to attach a specific address to
the socket. It then loops, waiting to recvfrom() any incoming datagrams
and responding to any requests in those datagrams.

int recvfrom(int socket, char *buf, int buflength, int flags,
struct sockaddr *clientname, int namelength)

The recvfrom() function is similar to the recv() function except it has
two extra parameters. clientname is a buffer for a sockaddr_in structure.
When recvfrom() receives a datagram from some application on the network,
it fills in clientname with the transport address of that application.
The size of the structure is namelength.

The client gets a server hostname from the user, gets a socket(), gets the
server’s port number with getservbyname(), builds a sockaddr_in structure
describing the server, and sendto()s a datagram to the server’s well-known
address:

int sendto(int socket, char *buf, int buflength, int flags, struct
sockaddr *servername, int namelength) The client either waits for the
server to send back a datagram to the client’s socket, or give up because
the server took too much time to reply. The client does this by calling
select(). This function puts the client to sleep until either a
particular set of sockets is ready for reading, writing, or exception
processing, or after a timeout period has passed without any activity.

int select(int numsocks, fd_set *readsocks, fd_set *writesocks,
fd_set *exceptsocks, struct timeval *timeout)

The numsocks parameter is 1 plus the number of sockets select() is waiting
on. The readsocks, writesocks, and exceptsocks parameters are each a
bitmask which tells select() which socket (or sockets) to wait for
activity on. The fd_set structure (defined in <sys/types.h>), is
basically a handle to one of these bitmasks. Programs cannot directly
manipulate the bits in these masks. Instead, there are functions to do
this:

FD_ZERO(struct fd_set *mymask) /* clear all bits in
mymask */

AmigaMail 12 / 15

FD_SET(int mysocket, struct fd_set *mymask) /* turn on the bit for
mysocket in mymask */

FD_CLR(int mysocket, struct fd_set *mymask) /* turn off the bit for
mysocket in mymask */

FD_ISSET(int mysocket, struct fd_set *mymask) /* test if mysocket’s bit
in mymask is set */

For the purposes of this article, the only relevant mask is readsocks,
because the client is only waiting to read from a socket. Since the
client isn’t interested in the other masks, it makes writesocks and
exceptsocks NULL.

The last parameter, timeout, sets the maximum amount of time that select()
should wait for activity on the sockets it is watching.

When select() returns, its return value is either -1 if it failed, 0 if
there was a timeout, or a positive number, which is the number of sockets
that became ready. When select returns, it sets the bits in the bitmasks
according to which socket (or sockets) became ready.

When select() returns, if a socket became ready, the client calls
recvfrom() to get the datagram the server sent back. On timeout, the
client might try to re-send the datagram since it may have been lost or
corrupted. Datagrams can be also be received in an order different from
that in which they were sent and can be received in duplicate.

1.11 Which Protocol Is Right For My Application?

Generally, if your application requires moving bulk data to far away
places, you should be using TCP. For many other applications, TCP is also
appropriate just because its reliability makes it easy to use. TCP is so
easy to use because it provides so much functionality. The price paid for
ease of use is performance.

TCP does a good job of moving bulk data from one side of the planet to
another. For data which will only be sent across one physical network (one
LAN), or for data sent in small pieces, TCP doesn’t perform so well. A
much more specific set of functionality can always provide better
performance than the most general set can. For performance-critical
applications which don’t move bulk data, UDP is usually the protocol of
choice. Unfortunately, since UDP doesn’t provide reliability, the
application protocol must. This means a much more complicated application
protocol. It isn’t nearly as bad as it sounds, though, and Stevens (1990)
offers two examples.

1.12 The Shared Socket Library

The primary goal of the Shared Socket Library is to provide a network API
which is as compatible with standard Unix as possible. This makes porting
many applications much easier, but it also creates many little quirks that
cannot be "fixed". The justification behind this is: faithfully emulating
Unix’s quirks is better than creating new ones, since at least you can

AmigaMail 13 / 15

then write more portable software and only need to remember one set of
quirks. Remember this when you wish that some function returned *void
rather than *foo, etc. Expect to get a few spurious compiler warnings
from your nice ANSI ’C’ compiler.

Many functions in socket.library are only needed by those developers
porting standard Unix remote services and probably should not be used by
most Amiga applications. For example, all the functions dealing with user
and group IDs belong in this category.

To use the socket.library functions, the first thing you have to do, of
course, is open it. This library is a little unconventional because it
returns a different library base for each OpenLibrary() call. The Shared
Socket Library uses different library bases to keep track of some global
data for each process that opens it. If you start a new process with a
new context, the new process must open and initialize socket.library.
Tasks should not access the socket.library, only processes should.

Before using any other function in the socket.library, you must call its
function setup_sockets() to initialize the library:

ULONG retval = setup_sockets(UWORD max_sockets, int *errnop);

where max_sockets is the maximum number of sockets that can be open at
once and errnop points to errno, a global integer that provides details
about error conditions. This global value is used extensively by the
standard socket functions. The standard Amiga C startup code (c.o)
creates a global variable labelled "errno" which you can use as the global
pointer.

The setup_sockets() call must be matched with the cleanup_sockets() call.
This takes care of deallocating system resources that setup_sockets()
allocates.

The socket.library assumes that all ints are 32-bit values. If you are
using a compiler which doesn’t use 32-bit ints, you must make sure that
all ints are converted to longs by your code.

There are a couple of important differences between the AS225
socket.library and the standard Unix implementation. When writing
softwarefor AS225, you cannot use the read(), write(), close(), and
ioctl() functions on sockets. These functions come from Unix and apply
both to files and sockets. To avoid confusion, socket.library does not
contain these functions. Use the socket.library functions recv(), send(),
s_close(), and s_ioctl() instead.

The standard Unix implementation has a series of get*() functions. These
functions return a pointer to a static buffer. The buffer returned by a
call to getX*() is cleared on the next invocation of getX*(). For
example, the buffer pointed to by the return of gethostent() is cleared by
another call to gethostent(), gethostbyaddr() or gethostbyname(), but not
by a call to getprotoent(), etc. None of the get*ent(), set*ent() or
end*ent() functions should normally be used except for porting existing
programs.

The Shared Socket Library contains a function called selectwait(). This
function combines the select() function with the exec.library Wait()

AmigaMail 14 / 15

function so that an Amiga networked application can wait on both Amiga
events and network events at the same time.

This article, the examples from the Network Developer’s disk, and the
include files and the Autodocs should be enough to get you started.
Writing network applications can be very complex and difficult, but is
well worth the effort. This article only introduces you to writing network
applications for the Amiga with AS225, and has left a lot unsaid about the
socket interface and about networking in general. In addition to the
Shared Socket Library include files and Autodocs, the following books and
articles are all highly recommended. Several should be required reading
for anyone seriously developing any Amiga and/or Unix network applications
with TCP/IP:

1.13 References

Comer, D.E. (1991a), Internetworking with TCP/IP, Volume I, 2d:
Principles, Protocols, and Architecture. Prentice-Hall, ISBN 0-13-468505-9

If you want more detail on how the protocols work (especially how
they support internetworking), this is the place to look. Little
programming information is in this volume.

Comer, D.E. and Stevens, D.L. (1991b), Internetworking with TCP/IP, Volume
II: Design, Implementation and Internals. Prentice-Hall,
ISBM 0-13-472242-6.

There is more detail here than most application developers will want
or need, but some subjects (i.e., Out-Of-Band data) are covered here
better than in any other text. The text includes a complete TCP/IP
implementation for Xinu. It should be easily understandable by Amiga
developers, in part, because Xinu happens to have a rather Exec-like
IPC mechanism.

Stevens, W.R. (1990), Unix Network Programming. Prentice-Hall,
ISBN 0-13-949876-1.

This book starts at the beginning and methodically leads the reader
through many advanced topics. If it weren’t for the fact that it
serves as a reference and a tutorial, it could be thought of as the
RKMs for AS225 software development. It introduces network protocols
in some detail, and sockets in great detail. It includes source and
discussion of several real-world examples: ping, tftp, rlogin, lpr,
rcmd, rmt, etc. Everyone in the Amiga Networking group owns a copy.

RFCs

All Internet standards start life as Requests For Comments. They are
still called RFCs even if they become required, recommended, or elective.
If you wish to implement a standard Internet application, you should
obtain any currently applicable RFC(s) and study them closely. Here is
one way to obtain RFCs:

CSNET:

AmigaMail 15 / 15

CSNET Coordination and Information Center (CIC)
Hotline: (617) 873-2777

10 Moulton Street, Cambridge, MA 02138
Email: cic@sh.cs.net

Info-Server requests to: info-server@sh.cs.net

The CSNET Info-Server stocks all RFCs with numbers higher than 900, unless
(like RFC 900) they have been obsoleted by later RFCs. The Info-Server
also stocks selected RFCs with numbers lower than 900.

The CSNET Info-Server is an automatic program that delivers information by
electronic mail. To order a document from the Info-Server, send a message
to "info-server@sh.cs.net". You do not need a subject field. The text of
your message must be in a special format, such as:

REQUEST: rfc
TOPIC: heLP
Topic: RFC822

request: END

The text may any combination of upper-case and lower-case letters.

The above request asks for two documents "HELP" and "RFC822" from the
collection "RFC". Your message must have a "REQUEST" line, and one or
more "TOPIC:" lines to specify one or more documents. The optional
statement "REQUEST: END" terminates your specification. Any subsequent
text in the message is ignored by the Info-Server.

NOTICE:

The Topic: field must be of the form "rfc822", and NOT "822" or
"rfc822.txt".

	AmigaMail
	VIII-17: Developing Network Applications for the Amiga
	Protocol Layers and the Berkeley Sockets Interface
	Network Applications
	Application Protocols
	Kinds of Servers
	Addresses
	Finding Servers
	Reserved Ports
	Skeleton for Applications Using TCP (connection-based)
	Skeleton for Applications Using UDP (connectionless)
	Which Protocol Is Right For My Application?
	The Shared Socket Library
	References

