
console

console ii

COLLABORATORS

TITLE :

console

ACTION NAME DATE SIGNATURE

WRITTEN BY July 23, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

console iii

Contents

1 console 1

1.1 console.doc . 1

1.2 console.device/CD_ASKDEFAULTKEYMAP . 1

1.3 console.device/CD_ASKKEYMAP . 2

1.4 console.device/CD_SETDEFAULTKEYMAP . 2

1.5 console.device/CD_SETKEYMAP . 3

1.6 console.device/CDInputHandler . 3

1.7 console.device/CMD_CLEAR . 4

1.8 console.device/CMD_READ . 5

1.9 console.device/CMD_WRITE . 5

1.10 console.device/OpenDevice . 10

1.11 console.device/RawKeyConvert . 12

console 1 / 13

Chapter 1

console

1.1 console.doc

CD_ASKDEFAULTKEYMAP
CD_ASKKEYMAP
CD_SETDEFAULTKEYMAP
CD_SETKEYMAP
CDInputHandler()
CMD_CLEAR
CMD_READ
CMD_WRITE
OpenDevice()
RawKeyConvert()

1.2 console.device/CD_ASKDEFAULTKEYMAP

NAME
CD_ASKDEFAULTKEYMAP -- get the current default keymap

FUNCTION
Fill the io_Data buffer with the current console device
default keymap, which is used to initialize console unit
keymaps when opened, and by RawKeyConvert with a null
keyMap parameter.

IO REQUEST
io_Message mn_ReplyPort set if quick I/O is not possible
io_Device preset by the call to OpenDevice
io_Unit preset by the call to OpenDevice
io_Command CD_ASKDEFAULTKEYMAP
io_Flags IOF_QUICK if quick I/O possible, else zero
io_Length sizeof(*keyMap)
io_Data struct KeyMap *keyMap

pointer to a structure that describes
the raw keycode to byte stream conversion.

RESULTS
This function sets the io_Error field in the IOStdReq, and fills

console 2 / 13

the structure pointed to by io_Data with the current device
default key map.

BUGS

SEE ALSO
exec/io.h, devices/keymap.h, devices/console.h

1.3 console.device/CD_ASKKEYMAP

NAME
CD_ASKKEYMAP -- Get the current key map structure for this console.

FUNCTION
Fill the io_Data buffer with the current KeyMap structure in
use by this console unit.

IO REQUEST INPUT
io_Message mn_ReplyPort set if quick I/O is not possible
io_Device preset by the call to OpenDevice
io_Unit preset by the call to OpenDevice
io_Command CD_ASKKEYMAP
io_Flags IOF_QUICK if quick I/O possible, else zero
io_Length sizeof(*keyMap)
io_Data struct KeyMap *keyMap

pointer to a structure that describes
the raw keycode to byte stream conversion.

IO REQUEST RESULT
This function sets the io_Error field in the IOStdReq, and fills
the structure the structure pointed to by io_Data with the current
key map.

SEE ALSO
exec/io.h, devices/keymap.h, devices/console.h

1.4 console.device/CD_SETDEFAULTKEYMAP

NAME
CD_SETDEFAULTKEYMAP -- set the current default keymap

FUNCTION
This console command copies/uses the keyMap structure pointed to
by io_Data to the console device default keymap, which is used
to initialize console units when opened, and by RawKeyConvert
with a null keyMap parameter.

IO REQUEST
io_Message mn_ReplyPort set if quick I/O is not possible
io_Device preset by the call to OpenDevice
io_Unit preset by the call to OpenDevice
io_Command CD_SETDEFAULTKEYMAP

console 3 / 13

io_Flags IOF_QUICK if quick I/O possible, else zero
io_Length sizeof(*keyMap)
io_Data struct KeyMap *keyMap

pointer to a structure that describes
the raw keycode to byte stream conversion.

RESULTS
This function sets the io_Error field in the IOStdReq, and fills
the current device default key map from the structure pointed to
by io_Data.

BUGS
As of V36, this command no longer copies the keymap structure,
and the keymap must remain in memory until the default key map
is changed. In general there is no reason for applications to
use this command. The default key map will generally be set by
the user using a system provided command/tool.

SEE ALSO
exec/io.h, devices/keymap.h, devices/console.h

1.5 console.device/CD_SETKEYMAP

NAME
CD_SETKEYMAP -- set the current key map structure for this console

FUNCTION
Set the current KeyMap structure used by this console unit to
the structure pointed to by io_Data.

IO REQUEST
io_Message mn_ReplyPort set if quick I/O is not possible
io_Device preset by the call to OpenDevice
io_Unit preset by the call to OpenDevice
io_Command CD_SETKEYMAP
io_Flags IOF_QUICK if quick I/O possible, else zero
io_Length sizeof(*keyMap)
io_Data struct KeyMap *keyMap

pointer to a structure that describes
the raw keycode to byte stream conversion.

RESULTS
This function sets the io_Error field in the IOStdReq, and fills
the current key map from the structure pointed to by io_Data.

BUGS

SEE ALSO
exec/io.h, devices/keymap.h, devices/console.h

1.6 console.device/CDInputHandler

console 4 / 13

NAME
CDInputHandler -- handle an input event for the console device

SYNOPSIS
events = CDInputHandler(events, consoleDevice)

a0 a1

FUNCTION
Accept input events from the producer, which is usually the
rom input.task.

INPUTS
events - a pointer to a list of input events.
consoleDevice - a pointer to the library base address of the

console device. This has the same value as ConsoleDevice
described below.

RESULTS
events - a pointer to a list of input events not used by this

handler.

NOTES
This function is available for historical reasons. It is
preferred that input events be fed to the system via the
WriteEvent command of the input.device.

This function is different from standard device commands in
that it is a function in the console device library vectors.
In order to obtain a valid library base pointer for the
console device (a.k.a. ConsoleDevice) call
OpenDevice("console.device", -1, IOStdReq, 0),
and then grab the io_Device pointer field out of the IOStdReq
and use as ConsoleDevice.

BUGS

SEE ALSO
input.device

1.7 console.device/CMD_CLEAR

NAME
CMD_CLEAR -- Clear console input buffer.

FUNCTION
Remove from the console input buffer any reports waiting to
satisfy read requests.

IO REQUEST INPUT
io_Message mn_ReplyPort set if quick I/O is not possible
io_Device preset by the call to OpenDevice
io_Unit preset by the call to OpenDevice
io_Command CMD_CLEAR
io_Flags IOB_QUICK set if quick I/O is possible, else 0

console 5 / 13

SEE ALSO
exec/io.h, devices/console.h

1.8 console.device/CMD_READ

NAME
CMD_READ -- return the next input from the keyboard

FUNCTION
Read the next input, generally from the keyboard. The form of
this input is as an ANSI byte stream: i.e. either ASCII text
or control sequences. Raw input events received by the
console device can be selectively filtered via the aSRE and aRRE
control sequences (see the write command). Keys are converted
via the keymap associated with the unit, which is modified
with AskKeyMap and SetKeyMap

If, for example, raw keycodes had been enabled by writing
<CSI>1{ to the console (where <CSI> is $9B or Esc[), keys
would return raw keycode reports with the information from
the input event itself, in the form:
<CSI>1;0;<keycode>;<qualifiers>;0;0;<seconds>;<microseconds>q

If there is no pending input, this command will not be
satisfied, but if there is some input, but not as much as can
fill io_Length, the request will be satisfied with the input
currently available.

IO REQUEST
io_Message mn_ReplyPort set if quick I/O is not possible
io_Device preset by the call to OpenDevice
io_Unit preset by the call to OpenDevice
io_Command CMD_READ
io_Flags IOF_QUICK if quick I/O possible, else zero
io_Length sizeof(*buffer)
io_Data char buffer[]

a pointer to the destination for the characters to read
from the keyboard.

RESULTS
This function sets the error field in the IOStdReq, and fills

in the io_Data area with the next input, and io_Actual with
the number of bytes read.

BUGS

SEE ALSO
exec/io.h, devices/console.h

1.9 console.device/CMD_WRITE

console 6 / 13

NAME
CMD_WRITE -- Write ANSI text to the console display.

FUNCTION
Write a text record to the display. Interpret the ANSI
control characters in the data as described below. Note
that the RPort of the console window is in use while this
write command is pending.

IO REQUEST INPUT
io_Message mn_ReplyPort set if quick I/O is not possible
io_Device preset by the call to OpenDevice
io_Unit preset by the call to OpenDevice
io_Command CMD_WRITE
io_Flags IOF_QUICK if quick I/O possible, else zero
io_Length sizeof(*buffer), or -1 if io_Data is null

terminated
io_Data a pointer to a buffer containing the ANSI text

to write to the console device.

IO REQUEST RESULTS
io_Error the error result (no errors are reported as of V36)
io_Actual the number of bytes written from io_Data
io_Length zero
io_Data original io_Data plus io_Actual

ANSI CODES SUPPORTED

Codes are specified in the standard fashion for ANSI documents,
as the two 4 bit nibbles that comprise the character code,
high nibble first, separated by a slash. Thus 01/11 (ESC) is
a character with the hex value 1B (or the decimal value 27).

A character on the Amiga falls into one of the following four
ranges:
00/ 0-01/15 C0: ASCII control characters. See below.
02/ 0-07/15 G0: ASCII graphic characters. These characters

have an image that is displayed. Note that the
DEL character is displayed by the Console Device:
it is not treated as control character here.

08/ 0-09/15 C1: ANSI 3.41 control characters. See below.
10/ 0-15/15 G1: ECMA 94 Latin 1 graphic characters.

Independent Control Functions (no introducer) --
Code Name Definition
----- --- --
00/ 7 BEL BELL: actually an Intuition DisplayBeep()
00/ 8 BS BACKSPACE
00/ 9 HT HORIZONTAL TAB
00/10 LF LINE FEED
00/11 VT VERTICAL TAB
00/12 FF FORM FEED
00/13 CR CARRIAGE RETURN
00/14 SO SHIFT OUT: causes all subsequent G0 (ASCII)

characters to be shifted to G1 (ECMA 94/1)
characters.

console 7 / 13

00/15 SI SHIFT IN: cancels the effect of SHIFT OUT.
01/11 ESC ESCAPE

Code or Esc Name Definition
----- --- ---- ---
08/ 4 D IND INDEX: move the active position down one line.
08/ 5 E NEL NEXT LINE
08/ 8 H HTS HORIZONTAL TABULATION SET
08/13 M RI REVERSE INDEX
09/11 [CSI CONTROL SEQUENCE INTRODUCER: see next list

ISO Compatible Escape Sequences (introduced by Esc) --
Esc Name Definition
----- ---- ---
c RIS RESET TO INITIAL STATE: reset the console display.

Control Sequences, with the number of indicated parameters.
i.e. <CSI><parameters><control sequence letter(s)>. Note the
last entries consist of a space and a letter. CSI is either
9B or Esc[. A minus after the number of parameters (#p)
indicates less is valid. Parameters are separated by
semicolons, e.g. Esc[14;80H sets the cursor position to row
14, column 80.
CSI #p Name Definition
--- --- ---- ---
@ 1- ICH INSERT CHARACTER
A 1- CUU CURSOR UP
B 1- CUD CURSOR DOWN
C 1- CUF CURSOR FORWARD
D 1- CUB CURSOR BACKWARD
E 1- CNL CURSOR NEXT LINE
F 1- CPL CURSOR PRECEDING LINE
H 2- CUP CURSOR POSITION
I 1- CHT CURSOR HORIZONTAL TABULATION
J 1- ED ERASE IN DISPLAY (only to end of display)
K 1- EL ERASE IN LINE (only to end of line)
L 1- IL INSERT LINE
M 1- DL DELETE LINE
P 1- DCH DELETE CHARACTER
R 2 CPR CURSOR POSITION REPORT (in Read stream only)
S 1- SU SCROLL UP
T 1- SD SCROLL DOWN
W n CTC CURSOR TABULATION CONTROL
Z 1- CBT CURSOR BACKWARD TABULATION
f 2- HVP HORIZONTAL AND VERTICAL POSITION
g 1- TBC TABULATION CLEAR
h n SM SET MODE: see modes below.
l n RM RESET MODE: see modes below.
m n SGR SELECT GRAPHIC RENDITION
n 1- DSR DEVICE STATUS REPORT
t 1- aSLPP SET PAGE LENGTH (private Amiga sequence)
u 1- aSLL SET LINE LENGTH (private Amiga sequence)
x 1- aSLO SET LEFT OFFSET (private Amiga sequence)
y 1- aSTO SET TOP OFFSET (private Amiga sequence)
{ n aSRE SET RAW EVENTS (private Amiga sequence)
| 8 aIER INPUT EVENT REPORT (private Amiga Read sequence)
} n aRRE RESET RAW EVENTS (private Amiga sequence)

console 8 / 13

~ 1 aSKR SPECIAL KEY REPORT (private Amiga Read sequence)
p 1- aSCR SET CURSOR RENDITION (private Amiga sequence)
q 0 aWSR WINDOW STATUS REQUEST (private Amiga sequence)
r 4 aWBR WINDOW BOUNDS REPORT (private Amiga Read sequence)
s 0 aSDSS SET DEFAULT SGR SETTINGS (private Amiga sequence-V39)
v 1 aRAV RIGHT AMIGA V PRESS (private Amiga Read sequence-V37)

Modes, set with <CSI><mode-list>h, and cleared with
<CSI><mode-list>l, where the mode-list is one or more of the
following parameters, separated by semicolons --
Mode Name Definition
------- ---- ---
20 LNM LINEFEED NEWLINE MODE: if a linefeed is a newline
>1 ASM AUTO SCROLL MODE: if scroll at bottom of window
?7 AWM AUTO WRAP MODE: if wrap at right edge of window

NOTES
The console.device recognizes these SGR sequences.
Note that some of these are new to V36.

SGR (SELECT GRAPHICS RENDITION)
Selects colors, and other display characteristics
for text.

Syntax:
<ESC>[graphic-rendition...m

Example:
<ESC>[1;7m (sets bold, and reversed text)

Parameters:

0 - Normal colors, and attributes
1 - Set bold
2 - Set faint (secondary color)
3 - Set italic
4 - Set underscore
7 - Set reversed character/cell colors
8 - Set concealed mode.
22 - Set normal color, not bold (V36)
23 - Italic off (V36)
24 - Underscore off (V36)
27 - Reversed off (V36)
28 - Concealed off (V36)

30-37 - Set character color
39 - Reset to default character color

40-47 - Set character cell color
49 - Reset to default character cell color

>0-7 - Set background color (V36)
Used to set the background color before
any text is written. The numeric parameter
is prefixed by ">". This also means that if
you issue an SGR command with more than one
parameter, you must issue the digit only

console 9 / 13

parameters first, followed by any prefixed
parameters.

V39 console.device takes advantage of the ability to mask
bitplanes for faster scrolling, clearing, and rendering.
The actual number of bitplanes scrolled depends on which
colors you set via the SGR sequences. For those using
the defaults of PEN color 1, and cell color 0, console.device
only needs to scroll 1 bitplane. The actual number
of bitplanes scrolled is reset when ESCc is sent, and when
the console window is entirely cleared (e.g., FF). In
general this should cause no compatability problems, unless
you are mixing console rendering with graphic.library calls
in the same portions of your window. Console.device considers
the number of bitplanes it must scroll, and the screen display
depth so that interleaved bitplane scrolling can be taken
advantage of in cases where performance is not significantly
affected (interleaved scrolling, and masking are mutually
exclusive). The determination of how many planes to scroll
is undefined, and may change in the future.

V39 console.device supports a new private sequence (aSDSS)
intended for use by users who prefer to change their default
SGR settings. When this private Amiga sequence is sent to the
console, the current Pen color, Cell color, Text style, and
Reverse mode (on or off), are set as defaults. When ESC[0m
is issued, the settings are restored to the preferred settings.
ESC[39m, and ESC[49m are likewise affected. In general
applications should not make use of this private sequence as it
is intended for users who would normally include it as part of
their shell startup script. The normal defaults are reset
when ESCc is issued.

BUGS
Does not correctly display cursor in SuperBitMap layers for
versions prior to V36.

Concealed mode should not be used prior to V39 console.device.
Prior to V39 concealed mode masked all rastport output, the
effect of which varied. As of V39, text output is simply
hidden by setting the pen colors. Scrolling, clearing,
cursor rendering, etc., are unaffected. For maximum
compatability it is recommended you simply set the colors
yourself, and not used concealed mode.

V36-V37 character mapped mode console.device windows could
crash, or behave erratically if you scroll text DOWN more
than a full window’s worth of text. This bug has been fixed
in V39 console. The only work-around is to avoid sending
scroll down, or cursor up commands which exceed the window
rows (this is not a problem for unit 0 console windows).

SEE ALSO
ROM Kernel Manual (Volume 1), exec/io.h

console 10 / 13

1.10 console.device/OpenDevice

NAME
OpenDevice -- a request to open a Console device

SYNOPSIS
error = OpenDevice("console.device", unit, IOStdReq, flags)
d0 a0 d0 a1 d1

FUNCTION
The open routine grants access to a device. There are two
fields in the IOStdReq block that will be filled in: the
io_Device field and possibly the io_Unit field.

As of (V37) the flags field may also be filled in with
a value described below (see conunit.h or conunit.i).

This open command differs from most other device open commands
in that it requires some information to be supplied in the
io_Data field of the IOStdReq block. This initialization
information supplies the window that is used by the console
device for output.

The unit number that is a standard parameter for an open call
is used specially by this device. See conunit.h, or conunit.i
for defined valid unit numbers.

unit number: -1 (CONU_LIBRARY)

Used to get a pointer to the device library vector
which is returned in the io_Device field of the IOStdReq
block. No actual console is opened. You must still close
the device when you are done with it.

unit number: 0 (CONU_STANDARD)

A unit number of zero binds the supplied window to
a unique console. Sharing a console must be done at a level
higher than the device.

unit number: 1 (CONU_CHARMAP) (V36)

A unit number of one is similar to a unit number of
zero, but a console map is also created, and maintained by
the console.device. The character map is used by the console
device to restore obscured portions of windows which are
revealed, and to redraw a window after a resize. Character
mapped console.device windows must be opened as SIMPLE REFRESH
windows.

The character map is currently for internal use
only, and is not accessible by the programmer. The character
map stores characters, attributes, and style information for
each character written with the CMD_WRITE command.

console 11 / 13

unit number: 3 (CONU_SNIPMAP) (V36)

A unit number of three is similar to a unit number
of one, but also gives the user the ability to highlight
text with the mouse which can be copied by pressing
RIGHT AMIGA C. See NOTES below.

flags: 0 (CONFLAG_DEFAULT)

The flags field should be set to 0 under V34, or less.

flags: 1 (CONFLAG_NODRAW_ON_NEWSIZE) (V37)

The flags field can be set to 0, or 1 as of V37. The
flags field is ignored under V36, so can be set, though it
will have no effect. When set to 1, it means that you don’t
want the console.device to redraw the window when the window
size is changed (assuming you have opened the console.device
with a character map - unit numbers 1, or 3). This flag is
ignored if you have opened a console.device with a unit
number of 0. Typically you would use this flag when you
want to perform your own window refresh on a newsize, and
you want the benefits of a character mapped console.

IO REQUEST
io_Data struct Window *window

This is the window that will be used for this
console. It must be supplied if the unit in
the OpenDevice call is 0 (see above). The
RPort of this window is potentially in use by
the console whenever there is an outstanding
write command.

INPUTS
"console.device" - a pointer to the name of the device to be opened.
unit - the unit number to open on that device.
IOStdReq - a pointer to a standard request block
0 - a flag field of zero (CONFLAG_DEFAULT)
1 - a flag field of one (CONFLAG_NODRAW_ON_NEWSIZE) (V37)

RESULTS
error - zero if successful, else an error is returned.

NOTES
As noted above, opening the console.device with a unit number of 3
allows the user to drag select text, and copy the selection with
RIGHT AMIGA C. The snip is copied to a private buffered managed
by the console.device (as of V36). The snip can be copied to
any console.device window unless you are running a console to
clipboard utility such as that provided with V37.

The user pastes text into console.device windows by pressing
RIGHT AMIGA V. Both RIGHT AMIGA V, and RIGHT AMIGA C are swallowed
by the console.device (unless you have asked for key presses as
RAW INPUT EVENTS). Text pasted in this way appears in the
console read stream as if the user had typed all of the characters

console 12 / 13

manually. Additional input (e.g., user input, RAW INPUT EVENTS)
are queued up after pastes. Pastes can theoretically be quite
large, though they are no larger than the amount of text
which is visible in a console.device window.

When running the console to clipboard utility, text snips
are copied to the clipboard.device, and RIGHT AMIGA V key
presses are broadcast as an escape sequence as part of the
console.device read stream ("<CSI>0 v" - $9B,$30,$20,$76).

It is left up to the application to decide what to do when this
escape sequence is received. Ideally the application
will read the contents of the clipboard, and paste the text
by using successive writes to the console.device.

Because the contents of the clipboard.device can be quite
large, your program should limit the size of writes to something
reasonable (e.g., no more than 1K characters per CMD_WRITE, and
ideally no more than 256 characters per write). Your program
should continue to read events from the console.device looking
for user input, and possibly RAW INPUT EVENTS. How you decide
to deal with these events is left up to the application.

If you are using a character mapped console you should receive
Intuition events as RAW INPUT EVENTS from the console.device.
By doing this you will hear about these events after the console
device does. This allows the console.device to deal with events
such as window resizing, and refresh before your application.

BUGS

SEE ALSO
exec/io.h, intuition/intuition.h

1.11 console.device/RawKeyConvert

NAME
RawKeyConvert -- decode raw input classes

SYNOPSIS
actual = RawKeyConvert(event, buffer, length, keyMap)
D0 A0 A1 D1 A2

ConsoleDevice in A6 if called from Assembly Language.

FUNCTION
This console function converts input events of type
IECLASS_RAWKEY to ANSI bytes, based on the keyMap, and
places the result into the buffer.

INPUTS
event - an InputEvent structure pointer.
buffer - a byte buffer large enough to hold all anticipated

characters generated by this conversion.
length - maximum anticipation, i.e. the buffer size in bytes.

console 13 / 13

keyMap - a KeyMap structure pointer, or null if the default
console device key map is to be used.

RESULTS
actual - the number of characters in the buffer, or -1 if

a buffer overflow was about to occur.

ERRORS
if actual is -1, a buffer overflow condition was detected.
Not all of the characters in the buffer are valid.

NOTES
This function is different from standard device commands in
that it is a function in the console device library vectors.
In order to obtain a valid library base pointer for the
console device (a.k.a. ConsoleDevice) call
OpenDevice("console.device", -1, IOStdReq, 0),
and then grab the io_Device pointer field out of the IOStdReq
and use as ConsoleDevice.

BUGS

SEE ALSO
exec/io.h, devices/inputevent.h, devices/keymap.h

	console
	console.doc
	console.device/CD_ASKDEFAULTKEYMAP
	console.device/CD_ASKKEYMAP
	console.device/CD_SETDEFAULTKEYMAP
	console.device/CD_SETKEYMAP
	console.device/CDInputHandler
	console.device/CMD_CLEAR
	console.device/CMD_READ
	console.device/CMD_WRITE
	console.device/OpenDevice
	console.device/RawKeyConvert

