intuition

intuition

COLLABORATORS
TITLE -
intuition
ACTION NAME DATE SIGNATURE
WRITTEN BY July 23, 2024
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

intuition iii

Contents

1 intuition 1
1.1 intuition.doc e e 1
1.2 intuition.library/ActivateGadget L. e 3
1.3 intuition.library/ActivateWindow e e 4
1.4 intuitionlibrary/AddClass 5
1.5 intuitionlibrary/AddGadget. L e 6
1.6 intuition.ibrary/AddGList L e e e 7
1.7 intuition.library/AllocRemember L 8
1.8 intuition.library/AllocScreenBuffer 9
1.9 intuition.library/AutoRequest 11
1.10 intuition.library/BeginRefresh L 13
1.11 intuition.library/BuildEasyRequestArgs e e e e e e 15
1.12 intuition.library/BuildSysRequesto 16
1.13 intuition.library/ChangeScreenBuffer. L 19
1.14 intuition.library/ChangeWindowBox L e 20
1.15 intuition.library/ClearDMRequest e 21
1.16 intuition.library/ClearMenuStrip e e 22
1.17 intuition.library/ClearPointer L e e e 22
1.18 intuition.library/CloseScreen e e 23
1.19 intuition.library/CloseWindow L e e 24
1.20 intuition.library/CloseWorkBench L e 26
1.21 intuition.library/CurrentTime e 27
1.22 intuition.library/DisplayAlert e e e e e e e e e 27
1.23 intuition.library/DisplayBeep L e 29
1.24 intuition.library/DisposeObject L L e e e 30
1.25 intuition.library/DoGadgetMethodA L e 31
1.26 intuition.library/DoubleClick e 32
1.27 intuition.library/DrawBorder L 32
1.28 intuition.library/Drawlmageo e e e e e e 33
1.29 intuition.library/DrawlmageState oL e 34

intuition iv
1.30 intuition.library/EasyRequestArgs e e 35
1.31 intuition.library/EndRefresh L 38
1.32 intuition.library/EndRequest L 39
1.33 intuition.library/Eraselmage L. e e e e 40
1.34 intuition.library/FreeClass L 40
1.35 intuition.library/FreeRemember L e e 42
1.36 intuition.library/FreeScreenBuffer 42
1.37 intuition.library/FreeScreenDrawlInfo L e 43
1.38 intuition.library/FreeSysRequest 44
1.39 intuition.library/GadgetMouse e e e e e e e e 45
1.40 intuitiondibrary/GetAttr L e e 46
1.41 intuition.library/GetDefaultPubScreen L 46
1.42 intuition.library/GetDefPrefs 47
1.43 intuition.library/GetPrefs L L e 48
1.44 intuition.library/GetScreenData L L. e 49
1.45 intuition.library/GetScreenDrawInfo L e 51
1.46 intuition.library/HelpControl e 52
1.47 intuition.library/InitRequester e e e e e 52
1.48 intuition.library/IntuiTextLength L 53
1.49 intuition.library/ItemAddress L e e e e e e e 53
1.50 intuition.library/LendMenuso e 54
1.51 intuitionlibrary/LockIBase e e e e 55
1.52 intuition.library/LockPubScreen e 56
1.53 intuition.library/LockPubScreenlist L e e 57
1.54 intuition.library/MakeClass L 58
1.55 intuition.library/MakeScreen e e e e e e 59
1.56 intuition.library/ModifyIDCMP e 60
1.57 intuitionlibrary/ModifyProp L e e e e e 66
1.58 intuition.library/MoveScreen e 67
1.59 intuition.library/MoveWindow e e e e e e 68
1.60 intuition.library/MoveWindowInFrontOf oL 69
1.61 intuition.library/NewModifyProp e e 69
1.62 intuition.library/NewObject L e 70
1.63 intuition.library/NextObject e e e e e e e e e e 71
1.64 intuition.library/NextPubScreen L 72
1.65 intuition.library/ObtainGIRPort e e e 73
1.66 intuition.library/OffGadget e 73
1.67 intuition.library/OffMenuo e 74
1.68 intuition.library/OnGadget 75

intuition v

1.69 intuition.library/OnMenu e e 76
1.70 intuition.library/OpenScreen e e e e e e e e e 77
1.71 intuition.library/OpenScreenTagList L 86
1.72 intuition.library/OpenWindow L e e e 88
1.73 intuition.library/OpenWindowTagList 99
1.74 intuition.library/OpenWorkBench L 100
1.75 intuition.library/PointInlmage 101
1.76 intuition.library/PrintIText e e e e e e e e 101
1.77 intuition.library/PubScreenStatus L. e e 102
1.78 intuition.library/QueryOverscan e e e e e e e e e e e e 103
1.79 intuition.library/RefreshGadgets e 104
1.80 intuition.library/RefreshGList e e e e e 106
1.81 intuition.library/RefreshWindowFrame L 107
1.82 intuition.library/ReleaseGIRPort e e e 107
1.83 intuition.library/RemakeDisplay 108
1.84 intuition.library/RemoveClass e e e e 108
1.85 intuition.library/RemoveGadget L. e 109
1.86 intuition.library/RemoveGList e e e e e 110
1.87 intuition.library/ReportMouse e e 111
1.88 intuition.library/Request L L e e e e e e e 112
1.89 intuition.library/ResetMenuStrip e e 113
1.90 intuition.library/RethinkDisplay e e e 114
1.91 intuition.library/ScreenDepth 115
1.92 intuition.library/ScreenPosition e e e e e e 116
1.93 intuition.library/ScreenToBack L. oL 117
1.94 intuition.library/ScreenToFront e e 118
1.95 intuition.library/ScrollWindowRaster L o 118
1.96 intuition.library/SetAtIsA L e e e e e e e 119
1.97 intuition.library/SetDefaultPubScreeno oo 120
1.98 intuition.library/SetDMRequest e e e e e 121
1.99 intuition.library/SetEditHook 122
1.100intuition.library/SetGadgetAttrsA L e e e e e e e 123
1.10lintuition.library/SetMenuStrip L L 124
1.102intuition.library/SetMouseQUEeUE e e e e e e e e e e e 125
1.103intuition.library/SetPointer 125
1.104intuition.library/SetPrefs e e e e 126
1.105intuition.library/SetPubScreenModes oL 128
1.106intuition.library/SetWindowPointerA L 128

1.107intuition.library/SetWindowTitles L 130

intuition vi

1.108intuition.library/ShowTitle L 131
1.109intuition.library/SizeWindow L L e 131
1.110intuition.library/SysReqHandler L e 132
1.111intuition.library/TimedDisplayAlert e 135
1.112intuition.library/UnlockIBase e 136
1.113intuition.library/UnlockPubScreen e e 136
I.114intuition.library/UnlockPubScreenList L 137
1.1151intuition.Jibrary/ViewAddress L e 137
1.116intuition.library/ViewPortAddress 138
1.117intuition.library/WBenchToBack e 138
1.118intuition.library/WBenchToFront 139
1.119intuition.library/WindowLimits e 140
1.120intuition.library/WindowToBack e 141
1.121intuition.library/WindowToFront e 141

1.122intuition.library/ZipWindow L e 142

intuition

1/143

Chapter 1

intuition

1.1 intuition.doc

ActivateGadget ()
ActivateWindow ()
AddClass ()
AddGadget ()
AddGList ()
AllocRemember ()

AllocScreenBuffer ()

AutoRequest ()
BeginRefresh ()

BuildEasyRequestArgs ()
BuildSysRequest ()
ChangeScreenBuffer ()
ChangeWindowBox ()

ClearDMRequest ()
ClearMenuStrip ()
ClearPointer ()
CloseScreen ()
CloseWindow ()
CloseWorkBench ()
CurrentTime ()
DisplayAlert ()
DisplayBeep ()
DisposeObject ()

DoGadgetMethodA ()

DoubleClick ()
DrawBorder ()
DrawImage ()
DrawImageState ()

EasyRequestArgs ()

EndRefresh ()
EndRequest ()
EraseImage ()
FreeClass ()
FreeRemember ()

FreeScreenBuffer ()
FreeScreenDrawInfo ()

FreeSysRequest ()
GadgetMouse ()

intuition 2/143

GetAttr ()
GetDefaultPubScreen ()
GetDefPrefs ()
GetPrefs ()
GetScreenData ()
GetScreenDrawInfo ()
HelpControl ()
InitRequester ()
IntuiTextLength ()
ItemAddress ()
LendMenus ()
LockIBase ()
LockPubScreen ()
LockPubScreenList ()
MakeClass ()
MakeScreen ()
ModifyIDCMP ()
ModifyProp ()
MoveScreen ()
MoveWindow ()
MoveWindowInFrontOf ()
NewModifyProp ()
NewObject ()
NextObject ()
NextPubScreen ()
ObtainGIRPort ()
OffGadget ()
OffMenu ()
OnGadget ()

OnMenu ()
OpenScreen ()
OpenScreenTagList ()
OpenWindow ()
OpenWindowTagList ()
OpenWorkBench ()
PointInImage ()
PrintIText ()
PubScreenStatus ()
QueryOverscan ()
RefreshGadgets ()
RefreshGList ()
RefreshWindowFrame ()
ReleaseGIRPort ()
RemakeDisplay ()
RemoveClass ()
RemoveGadget ()
RemoveGList ()
ReportMouse ()
Request ()
ResetMenuStrip ()
RethinkDisplay ()
ScreenDepth ()
ScreenPosition ()
ScreenToBack ()
ScreenToFront ()
ScrollWindowRaster ()
SetAttrsA ()

intuition

3/143

1.2

SetDefaultPubScreen ()
SetDMRequest ()
SetEditHook ()
SetGadgetAttrsA()
SetMenuStrip ()
SetMouseQueue ()
SetPointer ()
SetPrefs ()
SetPubScreenModes ()
SetWindowPointerA ()
SetWindowTitles ()
ShowTitle ()
SizeWindow ()
SysReqgHandler ()
TimedDisplayAlert ()
UnlockIBase ()
UnlockPubScreen ()
UnlockPubScreenList ()
ViewAddress ()
ViewPortAddress ()
WBenchToBack ()
WBenchToFront ()
WindowLimits ()
WindowToBack ()
WindowToFront ()
ZipWindow ()

intuition.library/ActivateGadget
NAME
ActivateGadget -- Activate a (string or custom) gadget.
SYNOPSIS
Success = ActivateGadget (Gadget, Window, Request)
DO AQ Al A2

BOOL ActivateGadget (struct Gadget =, struct Window x,

struct Requester *);

FUNCTION

Activates a string or custom gadget. If successful, this means
that the user does not need to click in the gadget before typing.

The window parameter must point to the window which contains the gadget.

If the gadget is actually in a requester, the window must contain
the requester, and a pointer to the requester must also be
passed. The requester parameter must only be valid if the gadget

has the GTYP_REQGADGET flag set,
gadgets.

a requirement for all requester

The success of this function depends on a rather complex set

of conditions. The intent is that the user is never interrupted from

what interactions he may have underway.

The current set of conditions includes:

intuition 4/143

- The window must be active. If you are opening a new window
and want an active gadget in it, it is not sufficient to
assume that the WFLG_ACTIVATE flag has taken effect by the time
OpenWindow () returns, even if you insert a delay of some
finite amount of time. Use the IDCMP_ACTIVEWINDOW IntuiMessage
to tell when your window really becomes active. Many
programs use an event loop that calls ActivateGadget ()
whenever they receive the IDCMP_ACTIVEWINDOW message, and also
the IDCMP_MOUSEBUTTONS messages, and so on, to keep the
gadget active until it is used (or the user selects some
other "Cancel" gadget) .

- No other gadgets may be in use. This includes system gadgets,
such as those for window sizing, dragging, etc.

- If the gadget is in a requester, that requester must
be active. (Use IDCMP_REQSET and IDCMP_REQCLEAR) .

- The right mouse button cannot be held down (e.g. menus)

NOTE: Don’t try to activate a gadget which is disabled or
not attached to a window or requester.

INPUTS
Gadget = pointer to the gadget that you want activated.
Window = pointer to a window structure containing the gadget.

Requester = pointer to a requester (may by NULL if this isn’t
a requester gadget (i.e. GTYP_REQGADGET is not set)).

RESULT
If the conditions above are met, and the gadget is in fact a string
gadget, then this function will return TRUE, else FALSE.

BUGS
At present, this function will not return FALSE if a custom

gadget declines to be activated.

SEE ALSO

1.3 intuition.library/ActivateWindow

NAME

ActivateWindow —-—- Activate an Intuition window.
SYNOPSIS

ActivateWindow (Window)

AQ
VOID ActivateWindow (struct Window x);

FUNCTION
Activates an Intuition window.

Note that this call may have its action deferred: you cannot assume
that when this call is made the selected window has become active.
This action will be postponed while the user plays with gadgets and
menus, or sizes and drags windows. You may detect when the window

intuition 5/143

actually has become active by the IDCMP_ACTIVEWINDOW IDCMP message.

This call is intended to provide flexibility but not to confuse the
user. Please call this function synchronously with some action
by the user.

INPUTS
Window = a pointer to a Window structure

RESULT
None.

BUGS
Some versions of the documentation claimed that this function
had a meaningful return value under V36 and higher. That is
not true.

Calling this function in a tight loop can blow out Intuition’s
deferred action queue.

SEE ALSO
OpenWindow (), and the WFLG_ACTIVATE window flag

1.4 intuition.library/AddClass

NAME

AddClass —-—- Make a public class available (V36)
SYNOPSIS

AddClass (Class)

A0
VOID AddClass(struct IClass *);

FUNCTION
Adds a public boopsi class to the internal list of classes available
for public consumption.

You must call this function after you call MakeClass() .

INPUTS
Class = pointer returned by MakeClass ()

RESULT
Nothing returned.

NOTES

BUGS
Although there is some protection against creating classes
with the same name as an existing class, this function
does not do any checking or other dealings with like-named
classes. Until this is rectified, only officially registered
names can be used for public classes, and there is no
"class replacement" policy in effect.

intuition 6/143

SEE ALSO
MakeClass (), FreeClass (), RemoveClass ()
Document "Basic Object-Oriented Programming System for Intuition"
and the "boopsi Class Reference" document.

1.5 intuition.library/AddGadget

NAME

AddGadget —-- Add a gadget to the gadget list of a window.
SYNOPSIS

RealPosition = AddGadget (Window, Gadget, Position)

DO A0 Al DO

UWORD AddGadget (struct Window *, struct Gadget *, UWORD);

FUNCTION
Adds the specified gadget to the gadget list of the given window,
linked in at the position in the list specified by the position

argument (that is, if Position == 0, the gadget will be inserted
at the head of the list, and if Position == 1 then the gadget will
be inserted after the first gadget and before the second). If the

position you specify is greater than the number of gadgets in the
list, your gadget will be added to the end of the list.

Calling AddGadget () does not cause your gadget to be redisplayed.
The benefit of this is that you may add several gadgets without
having the gadget list redrawn every time.

This procedure returns the position at which your gadget was added.

NOTE: A relatively safe way to add the gadget to the end of the

list is to specify a position of -1 (i.e., (UWORD) ~0). That way,
only the 65536th (and multiples of it) will be inserted at the wrong
position. The return value of the procedure will tell you where it was

actually inserted.

NOTE: The system window gadgets are initially added to the

front of the gadget list. The reason for this is: If you position
your own gadgets in some way that interferes with the graphical
representation of the system gadgets, the system’s ones will be "hit"
first by user. If you then start adding gadgets to the front of the
list, you will disturb this plan, so beware. On the other hand, if
you don’t violate the design rule of never overlapping your gadgets,
there’s no problem.

NOTE: You may not add your own gadgets to a screen. Gadgets may
be added to backdrop windows, however, which can be visually similar,
but also provide an IDCMP channel for gadget input messages.

INPUTS
Window pointer to the window to get your gadget
Gadget = pointer to the new gadget
Position = integer position in the list for the new gadget (starting

intuition 7/143

from zero as the first position in the list)

RESULT
Returns the position of where the gadget was actually added.

BUGS

SEE ALSO
AddGList (), RemoveGadget (), RemoveGList ()

1.6 intuition.library/AddGList

NAME
AddGList —-- Add a linked list of gadgets to a window or requester.
SYNOPSIS
RealPosition = AddGList (Window, Gadget, Position, Numgad, Requester)
DO A0 Al DO D1 A2

UWORD AddGList (struct Window %, struct Gadget =%, UWORD, WORD,
struct Requester *);

FUNCTION
Adds the list of gadgets to the gadget list of the given window
or requester linked in at the position in the list specified by
the position argument.

See AddGadget () for more information about gadget list position,
and more information about gadgets in general.

The requester parameter will be ignored unless the GTYP_REQGADGET

bit is set in the GadgetType field of the first gadget in the list.

In that case, the gadget list is added to the requester gadgets.

NOTE: be sure that GTYP_REQGADGET is either set or cleared consistently
for all gadgets in the list. NOTE ALSO: The window parameter

should point to the window that the requester (will) appear in.

Will add 'Numgad’ gadgets from gadget list linked by the field
NextGadget, or until some NextGadget field is found to be NULL. Does
not assume that the Numgad’th gadget has NextGadget equal to NULL.

NOTE WELL: In order to link your gadget list in, the NextGadget

field of the Numgad’th (or last) gadget will be modified. Thus, if
you are adding the first 3 gadgets from a linked list of five gadgets,
this call will sever the connection between your third and fourth
gadgets.

INPUTS

Window = pointer to the window to get your gadget

Gadget pointer to the first gadget to be added

Position = integer position in the list for the new gadget
(starting from zero as the first position in the list)

Numgad = the number of gadgets from the linked list to be added
if Numgad equals -1, the entire null-terminated list of
gadgets will be added.

intuition 8/143

Requester = the requester the gadgets will be added to if the
GTYP_REQGADGET GadgetType flag is set for the first gadget
in the list

RESULT
Returns the position of where the first gadget in the list was actually
added.

BUGS

SEE ALSO
AddGadget (), RemoveGadget (), RemoveGList ()

1.7 intuition.library/AllocRemember

NAME

AllocRemember —-- AllocMem() with tracking to make freeing easy.
SYNOPSIS

MemBlock = AllocRemember (RememberKey, Size, Flags)

DO A0 DO D1

APTR AllocRemember (struct Remember %%, ULONG, ULONG);

FUNCTION
This routine calls the Exec AllocMem() function for you, but also links
the parameters of the allocation into a master list, so that
you can simply call the Intuition routine FreeRemember () at a later
time to deallocate all allocated memory without being required to
remember the details of the memory you’ve allocated.

This routine will have two primary uses:
- Let’s say that you’re doing a long series of allocations in a
procedure. If any one of the allocations fails, your program

may need to abort the procedure. Abandoning ship correctly
involves freeing up what memory you’ve already allocated. This
procedure allows you to free up that memory easily, without being
required to keep track of how many allocations you’ve already done,
what the sizes of the allocations were, or where the memory was
allocated.

- Also, in the more general case, you may do all of the allocations
in your entire program using this routine. Then, when your
program is exiting, you can free it all up at once with a
simple call to FreeRemember ().

You create the "anchor" for the allocation master list by creating
a variable that’s a pointer to struct Remember, and initializing
that pointer to NULL. This is called the RememberKey. Whenever
you call AllocRemember (), the routine actually does two memory
allocations, one for the memory you want and the other for a copy
of a Remember structure. The Remember structure is filled in

with data describing your memory allocation, and it’s linked

into the master list pointed to by your RememberKey. Then, to
free up any memory that’s been allocated, all you have to do is

intuition 9/143

call FreeRemember () with your RememberKey.

Please read the FreeRemember () function description, too. As you will
see, you can select either to free just the link nodes and keep all the
allocated memory for yourself, or to free both the nodes and your memory
buffers.

INPUTS
RememberKey = the address of a pointer to struct Remember. Before the
very first call to AllocRemember, initialize this pointer to NULL.

Size = the size in bytes of the memory allocation. Please refer to the
exec.library/AllocMem () function for details.
Flags = the specifications for the memory allocation. Please refer to

the exec.library/AllocMem() function for details.

EXAMPLE
struct Remember xRememberKey;
RememberKey = NULL;
buffer = AllocRemember (&§RememberKey, BUFSIZE, MEMF_CHIP);
if (buffer)
{
/+ Use the buffer =/

}
FreeRemember (&§RememberKey, TRUE) ;

RESULT
If the memory allocation is successful, this routine returns the byte
address of your requested memory block. Also, the node to your block
will be linked into the list pointed to by your RememberKey wvariable.
If the allocation fails, this routine returns NULL and the list pointed
to by RememberKey, if any, will be unchanged.

BUGS
This function makes two allocations for each memory buffer
you request. This is neither fast nor good for memory
fragmentation.
This function should use the exec AllocPool() function internally,

at least for the Remember headers.

SEE ALSO
FreeRemember (), exec.library/AllocMem ()

1.8 intuition.library/AllocScreenBuffer

NAME
AllocScreenBuffer -- Get a ScreenBuffer for double-buffering. (V39)

SYNOPSIS
sbuffer = AllocScreenBuffer(Screen, BitMap, flags)
DO A0 Al DO

intuition 10/ 143

struct ScreenBuffer xAllocScreenBuffer(struct Screen x,
struct BitMap %, ULONG);

FUNCTION
Allocates a ScreenBuffer structure and usually a BitMap. This
structure can be used for double (or multiple) buffering in
Intuition screens. You may use this call to obtain a ScreenBuffer
structure for the screen’s initial BitMap, or for other BitMaps
you intend to swap in.

AllocScreenBuffer () also allocates a graphics.library DBufInfo
structure. The ScreenBuffer structure this call returns contains
a pointer to that DBufInfo structure, which is free for your use.
See graphics.library/AllocDBufInfo() for full details on using
this structure to achieve notification of when it is safe to
render into an old buffer and when it is right to switch again.

INPUTS
Screen = pointer to the screen to double-buffer
BitMap = For CUSTOMBITMAP screens, you may pre-allocate
a BitMap matching the screen’s BitMap’s properties, and
pass that in, to get a ScreenBuffer referring to that
BitMap. Set this parameter to NULL if you’d prefer
that Intuition allocate the alternate buffer. This parameter
must be NULL for non-CUSTOMBITMAP screens.
Flags = Set a combination of these flags:

For non-CUSTOMBITMAP screens, set SB_SCREEN_BITMAP in order to
get a ScreenBuffer referring to the screen’s actual BitMap.
(For CUSTOMBITMAP screens, Jjust set the BitMap parameter
to the BitMap you passed to OpenScreen()).

Set SB_COPY_BITMAP if you would like the screen’s BitMap
copied into this ScreenBuffer’s BitMap. This is required
to get any menu-bar or gadget imagery into each
ScreenBuffer’s BitMap. If the screen has no Intuition
rendering, you may omit this flag. Also, when allocating
a ScreenBuffer for the screen’s initial BitMap, this flag
should not be set.

RESULT
Pointer to a valid ScreenBuffer structure, or NULL if failure.
You may render into the resulting BitMap as appropriate.
You may use the sb_DBufInfo field to access graphics.library
ViewPort-buffering features such as learning when it is safe
to reuse the previous BitMap. If not, you risk writing into
the on-screen BitMap, which can damage menu or gadget rendering!

NOTES

The role of SB_SCREEN_BITMAP is to wrap a ScreenBuffer around
the actual current BitMap used by the non-CUSTOMBITMAP screen.
The words actual or current are used instead of initial, since
an application could do some double-buffering, leave the
non-initial buffer installed into the screen, free up the
others, then re-allocate ScreenBuffer structures to do more
double-buffering. In that case, the actual screen BitMap is
not necessarily the initial one.

intuition 11/143

The role of SB_COPY_BITMAP is to say "please put whatever
imagery is currently on-screen into this new BitMap too".
That’s how the screen titlebar and other imagery get copied
over into each buffer.

BUGS

SEE ALSO
FreeScreenBuffer (), ChangeScreenBuffer (),
graphics.library/AllocDBufInfo (), graphics.library/ChangeVPBitMap ()

1.9 intuition.library/AutoRequest

NAME
AutoRequest ——- Automatically build and get response from a requester.
SYNOPSIS
Response = AutoRequest (Window, BodyText, PosText, NegText,
DO AQ Al A2 A3
PosFlags, NegFlags, Width, Height)
DO D1 D2 D3

BOOL AutoRequest (struct Window x, struct IntuiText x,
struct IntuiText *, struct IntuiText «,
ULONG, ULONG, WORD, WORD) ;

FUNCTION
This procedure automatically builds a requester for you and then
waits for a response from the user, or for the system to satisfy your
request. If the response is positive, this procedure returns TRUE.
If the response is negative, this procedure returns FALSE.

An IDCMPFlag specification is created by bitwise "or’ing" your
PosFlags, NegFlags, and the IDCMP classes IDCMP_GADGETUP and
IDCMP_RAWKEY. You may specify zero flags for either the PosFlags
or NegFlags arguments.

The IntuiText arguments, and the width and height values, are
passed directly to the BuildSysRequest () procedure along with
your window pointer and the IDCMP flags. Please refer to
BuildSysRequest () for a description of the IntuiText that you are
expected to supply when calling this routine. It’s an important
but long-winded description that need not be duplicated here.

If the BuildSysRequest () procedure does not return a pointer
to a window, it will return TRUE or FALSE (not wvalid structure
pointers) instead, and these BOOL values will be returned to
you immediately.

On the other hand, if a valid window pointer is returned, that
window will have had its IDCMP ports and flags initialized according
to your specifications. AutoRequest () then waits for IDCMP messages
on the UserPort, which satisfies one of four requirements:
- either the message is of a class that matches

one of your PosFlags arguments (if you’ve supplied

intuition 12/143

any), in which case this routine returns TRUE. Or
- the message class matches one of your NegFlags
arguments (if you’ve supplied any), in which case

this routine returns FALSE. Or

- the IDCMP message is of class IDCMP_GADGETUP, which means that
one of the two gadgets, as provided with the PosText and NegText
arguments, was selected by the user. If the TRUE gadget
was selected, TRUE is returned. If the FALSE gadget was
selected, FALSE is returned.

- Lastly, two IDCMP_RAWKEY messages may satisfy the request: those
for the V and B keys with the left Amiga key depressed.
These keys, satisfy the gadgets on the left or right side of
the requester--TRUE or FALSE--, respectively.

NOTE: For V36, these two keys left-Amiga-B and V are processed
through the default keymap.

When the dust has settled, this routine calls FreeSysRequest () if
necessary to clean up the requester and any other allocated memory.

NOTE: For V36, this function now switches the processor stack
to ensure sufficient stack space for the function to succeed.

INPUTS

Window = pointer to a Window structure. See BuildSysRequest ()
for a full discussion.

BodyText = pointer to an IntuiText structure
PosText = pointer to an IntuiText structure, may by NULL.
NegText = pointer to an IntuiText structure, MUST be valid!
PosFlags = flags for the IDCMP
NegFlags = flags for the IDCMP
Width, Height = the sizes to be used for the rendering of the requester

NOTE for V36: The width and height parameters are ignored, as
are several other specifications in the IntuiText, to make
AutoRequest () requesters retroactively conform to the new look
designed for EasyRequest ().

RESULT
The return value is either TRUE or FALSE. See the text above for a
complete description of the chain of events that might lead to either
of these values being returned.

NOTES
When DOS brings up AutoRequests () on your process (eg.
"Please insert volume XXX in any drive", they normally come
up on the Workbench screen. If you set your Process pr_WindowPtr

field to point to one of your windows, then DOS will bring its
requesters up on the same screen as that window. A pr_WindowPtr
of -1 prevents requesters from coming up at all.

(Some FileSystem requesters cannot be redirected or supressed).

BUGS
The requester no longer devolves into a call to DisplayAlert ()
if there is not enough memory for the requester.

SEE ALSO

intuition 13/143

EasyRequestArgs (), BuildSysRequest (), SysRegHandler ()

1.10 intuition.library/BeginRefresh

NAME

BeginRefresh —-- Sets up a window for optimized refreshing.
SYNOPSIS

BeginRefresh (Window)

AO
VOID BeginRefresh(struct Window *);

FUNCTION
This routine sets up your window for optimized refreshing.

Its role is to provide Intuition integrated access to the Layers
library function BeginUpdate (). Its additional contribution is
to be sure that locking protocols for layers are followed, by
locking both layers of a WFLG_GIMMEZEROZERO window only after the
parent Layer_Info has been locked. Also, the WFLG_WINDOWREFRESH
flag is set in your window, for your information.

The purpose of BeginUpdate (), and hence BeginRefresh(), is to
restrict rendering in a window (layer) to the region that needs
refreshing after an operation such as window sizing or uncovering.
This restriction to the "damage region" persists until you call
EndRefresh () .

For instance, if you have a WFLG_SIMPLE_REFRESH window which is
partially concealed and the user brings it to the front, you can
receive an IDCMP_REFRESHWINDOW message asking you to refresh your
display. If you call BeginRefresh() before doing any of the
rendering, then the layer that underlies your window will be arranged
so that the only rendering that will actually take place will be that
which goes to the newly-revealed areas. This is very performance-
efficient, and visually attractive.

After you have performed your refresh of the display, you should call
EndRefresh () to reset the state of the layer and the window. Then you
may proceed with rendering to the entire window as usual.

You learn that your window needs refreshing by receiving either a
message of class IDCMP_REFRESHWINDOW through the IDCMP, or an input
event of class IECLASS_REFRESHWINDOW through the Console device.
Whenever you are told that your window needs refreshing, you should
call BeginRefresh () and EndRefresh() to clear the refresh-needed
state, even if you don’t plan on doing any rendering. You may relieve
yourself of even this burden by setting the WFLG_NOCAREREFRESH flag
when opening your window.

NOTES
WARNING: You should only perform simple graphics refreshing
operations between BeginRefresh () and EndRefresh (). These include

any graphics.library drawing functions or the simple Intuition

intuition 14 /143

rendering functions (DrawlImage(), PrintIText (), DrawBorder (), and
so on) . In particular, do not call RefreshGadgets (), RefreshGList(),
RefreshWindowFrame (), etc., since any of the complex Intuition

functions run the risk of creating a deadlock. Also avoid any
other high-level calls in Intuition or ones that might invoke
Intuition. This means no calling SetPointer (), no calling
LockIBase (), no dos.library functions (since an EasyRequest ()
might result), etc. Keep it simple.

By the time the application receives its IDCMP_REFRESHWINDWOW
message, Intuition has already repaired any damaged regions

of the window border or the gadgets in the window, so attempts
to redraw gadgets or borders are as unnecessary as they are
dangerous.

ANOTHER WARNING: The concept of multiple refresh passes using
EndRefresh(w, FALSE) 1is not completely sound without further
protection. The reason is that between two sessions, more

damage can occur to your window. Your final EndRefresh(w, TRUE)
will dispose of all damage, including the new, and your

initial refreshing pass will never get the chance to refresh

the new damage.

To avoid this, you must protect your session using LockLayerInfo ()
which will prevent Intuition from performing window operations

or anything else which might cause further damage from occurring.
Again, while holding the LayerInfo lock make no Intuition
function calls dealing with gadgets; just render.

You can, however, call InstallClipRegion() for the different
refresh passes, if you have two clip regions.

SIMILAR WARNING: Your program and Intuition "share" your window
layer’s DamagelList. BeginRefresh() helps arbitrate this
sharing, but the lower-level function layers.library/BeginUpdate ()
does not. It isn’t really supported to use BeginUpdate () on

a window’s layer, but if you do--for whatever reason-—-it is
critical that you first acquire the LayerInfo lock as in

the above example: even if you only have one pass of refresh
rendering to do. Otherwise, the refreshing of your window’s
borders and gadgets can be incomplete, and the problem might
occur only under certain conditions of task priority and

system load.

EXAMPLE
Code fragment for "two pass" window refreshing, in response
to an IDCMP_REFRESHWINDOW message:
switch (imsg->Class)

{

case IDCMP_REFRESHWINDOW:
window = imsg->IDCMPWindow;

/+ this lock only needed for "two-pass" refreshing =*/
LockLayerInfo(&window->WScreen->LayerInfo);

/+ refresh pass for region 1 «/

intuition 15/143

origclip = InstallClipRegion(window—>WLayer, regionl);
BeginRefresh(window);

myRefreshRegionl (window);

EndRefresh(window, FALSE);

/* refresh pass for region 2 */

InstallClipRegion(window->WLayer, region2);

BeginRefresh(window);

myRefreshRegion2 (window);

EndRefresh(window, TRUE); /* and dispose damage list =/

/+ restore and unlock =/

InstallClipRegion(window->WLayer, origclip);
UnlockLayerInfo(&window->WScreen->LayerInfo);
break;

INPUTS
Window = pointer to the window structure which needs refreshing

RESULT
None

BUGS
This function should check the return code of
layers.library/BeginUpdate (), and abort if that function fails.

SEE ALSO
EndRefresh (), layers.library/BeginUpdate (), OpenWindow ()
layer.library/InstallClipRegion (), layers.library/LockLayerInfo ()
The "Windows" chapter of the Intuition Reference Manual

1.11 intuition.library/BuildEasyRequestArgs

NAME
BuildEasyRequestArgs —-- Simple creation of system request. (V36)
BuildEasyRequest —-—- Varargs stub for BuildEasyRequestArgs (). (V36)

SYNOPSIS
RegWindow = BuildEasyRequestArgs(RefWindow, easyStruct, IDCMP, Args)
DO A0 Al DO A3

struct Window xBuildEasyRequestArgs(struct Window =,
struct EasyStruct =, ULONG, APTR);

RegWindow = BuildEasyRequest (RefWindow, easyStruct, IDCMP, Argl, ...)

struct Window xBuildEasyRequest (struct Window x,

struct EasyStruct x, ULONG, APTR, ...);
FUNCTION
This function is to EasyRequest () as BuildSysRequest () is to

AutoRequest () : it returns a pointer to the system requester

intuition 16 /143

window. The input from that window can then be processed
under application control.

It is recommended that this processing be done with
SysRegHandler (), so that future enhancement to the
processing will be enjoyed.

After you have determined that the requester is satisfied or
cancelled, you must free this requester using FreeSysRequest ().

Please see the autodoc for EasyRequest ().

NOTE: This function switches the processor stack to ensure
sufficient stack space for the function to complete.

INPUTS

Window = reference window for requester: determines the
requester window title and screen.

easyStruct = pointer to EasyStruct structure, as described
in the EasyRequest () autodocs.

IDCMP = (NOT A POINTER) provided application specific IDCMP
flags for the system requester window.

Args = see EasyRequestArgs ()

RESULT
A pointer to the system request window opened. In the event
of problems, you may also be returned the value ’0’ which
is to be interpreted as the "FALSE, Cancel" choice, or
(if you have a second gadget defined) the value ’1’, which
is to be taken to mean the equivalent of your corresponding
left-most gadget.

If there is a problem creating the window, a recoverable alert may
be substituted for the requester, and the result, either 0 or 1,
returned.

BUGS
Does not put up alternative alert.
See also BUGS listed for EasyRequestArgs() .

SEE ALSO
EasyRequestArgs (), FreeSysRequest (), SysRegHandler(),
BuildSysRequest (), AutoRequest ()

1.12 intuition.library/BuildSysRequest

NAME
BuildSysRequest —-—- Build and display a system requester.
SYNOPSIS
RegWindow = BuildSysRequest (Window, BodyText, PosText, NegText,
DO \0) Al A2 A3

IDCMPFlags, Width, Height)
DO D1 D2

intuition 17 /143

struct Window xBuildSysRequest (struct Window x, struct IntuiText =x,
struct IntuiText %, struct IntuiText =%, ULONG, WORD, WORD);

FUNCTION
This procedure builds a system requester based on the supplied
information. If all goes well and the requester is constructed,

this procedure returns a pointer to the window in which the requester
appears. That window will have its IDCMP initialized to reflect the
flags found in the IDCMPFlags argument. You may then wait on those
ports to detect the user’s response to your requester, which response
may include either selecting one of the gadgets or causing some other
event to be noticed by Intuition (like IDCMP_DISKINSERTED, for
instance). After the requester is satisfied, you should call the
FreeSysRequest () procedure to remove the requester and free up

any allocated memory.

See the autodoc for SysRegHandler () for more information on the
how to handle the IntuiMessages this window will receive.

The requester used by this function has the NOISYREQ flag bit set,
which means that the set of IDCMPFlags that may be used here
include IDCMP_RAWKEY, IDCMP_MOUSEBUTTONS, and others.

In release previous to V36, if the requester could not be built,
this function would try to call DisplayAlert () with the same
information, with more or less favorable results. In V36,

the requesters themselves require less memory (SIMPLEREQ), but
there is no alert attempt.

The function may return TRUE (1) or FALSE if it cannot post
the requester. (V36 will always return FALSE, but be sure to
test for TRUE in case somebody reinstates the fallback alert.)

If the window argument you supply is equal to NULL, a new window will
be created for you in the Workbench screen, or the default

public screen, for V36. If you want the requester

created by this routine to be bound to a particular window (i.e.,

to appear in the same screen as the window), you should

not supply a window argument of NULL.

New for V36: if you pass a NULL window pointer, the system requester
will appear on the default public screen, which is not always
the Workbench.

The text arguments are used to construct the display. Each is a
pointer to an instance of the structure IntuiText.

The BodyText argument should be used to describe the nature of

the requester. As usual with IntuiText data, you may link several
lines of text together, and the text may be placed in wvarious
locations in the requester. This IntuiText pointer will be stored
in the ReqgText variable of the new requester.

The PosText argument describes the text that you want associated

with the user choice of "Yes, TRUE, Retry, Good." If the requester
is successfully opened, this text will be rendered in a gadget in

the lower-left of the requester, which gadget will have the

intuition 18/143

GadgetID field set to TRUE. If the requester cannot be opened and
the DisplayAlert () mechanism is used, this text will be rendered in
the lower-left corner of the alert display with additional text
specifying that the left mouse button will select this choice. This
pointer can be set to NULL, which specifies that there is no TRUE
choice that can be made.

The NegText argument describes the text that you want associated

with the user choice of "No, FALSE, Cancel, Bad." If the requester
is successfully opened, this text will be rendered in a gadget in

the lower-right of the requester, which gadget will have the

GadgetID field set to FALSE. If the requester cannot be opened and
the DisplayAlert () mechanism is used, this text will be rendered in
the lower-right corner of the alert display with additional text
specifying that the right mouse button will select this choice. This
pointer cannot be set to NULL. There must always be a way for the
user to cancel this requester.

The Positive and Negative Gadgets created by this routine have
the following features:

— GTYP_BOOLGADGET

— GACT_RELVERIFY

- GTYP_REQGADGET

— GACT_TOGGLESELECT

When defining the text for your gadgets, you may find it convenient

to use the special constants used by Intuition for the construction

of the gadgets. These include defines like AUTODRAWMODE, AUTOLEFTEDGE,
AUTOTOPEDGE and AUTOFRONTPEN. You can find these in your local
intuition.h (or intuition.i) file.

These hard-coded constants are not very resolution or font
sensitive, but V36 will override them to provide more modern
layout.

New for V36, linked lists of IntuiText are not correctly supported
for gadget labels.

The width and height values describe the size of the requester. All
of your BodyText must fit within the width and height of your
requester. The gadgets will be created to conform to your sizes.

VERY IMPORTANT NOTE: for this release of this procedure, a new window
is opened in the same screen as the one containing your window.

Future alternatives may be provided as a function distinct from this
one.

NOTE: This function will pop the screen the requester and its
window appears in to the front of all screens. New for V36,

if the user doesn’t perform any other screen arrangement before
finishing with the requester, a popped screen will be pushed
back behind.

INPUTS
Window = pointer to a Window structure
BodyText = pointer to an IntuiText structure

PosText = pointer to an IntuiText structure

intuition 19/143

NegText = pointer to an IntuiText structure

IDCMPFlags = the IDCMP flags you want used for the initialization of the
IDCMP of the window containing this requester

Width, Height = the size required to render your requester

NOTE for V36: the width and height you pass are ignored, as
are some of the parameters of your IntuiText, so that Intuition
can make the Requesters real nice for the new look.

RESULT
If the requester was successfully created, the value
returned by this procedure is a pointer to the window in which the
requester is rendered. If the requester could not be created,
this routine might have called DisplayAlert () before returning
(it depends on the version) and will pass back TRUE if the user
pressed the left mouse button and FALSE if the user pressed the
right mouse button. If the version of Intuition doesn’t
call DisplayAlert (), or if it does, and there’s not enough
memory for the alert, the value of FALSE is returned.

BUGS
This procedure currently opens a window in the Screen which
contains the window which is passed as a parameter, or the
default public screen, if that parameter is NULL. Although
not as originally envisioned, this will probably always be the
behavior of this function.

DisplayAlert () is not called in version V36.

It’s almost impossible to make complete, correct account
of different system fonts, window border dimensions, and
screen resolution to get the layout of a System Requester
just right using this routine. For V36, we recommend the
automatic layout implemented in BuildEasyRequestArgs () and
EasyRequestArgs () .

SEE ALSO

FreeSysRequest (), DisplayAlert (), ModifyIDCMP (), exec.library/Wait(),
Request (), AutoRequest (), EasyRequestArgs (), BuildEasyRequestArgs()

1.13 intuition.library/ChangeScreenBuffer

NAME
ChangeScreenBuffer -- Swap the screen’s BitMap. (V39)
SYNOPSIS
success = ChangeScreenBuffer (Screen, ScreenBuffer)
DO AO Al

ULONG ChangeScreenBuffer (struct Screen *, struct ScreenBuffer *);

FUNCTION
Performs double (or multiple) buffering on an Intuition screen
in an Intuition-cooperative manner. The BitMap associated
with the supplied ScreenBuffer will be installed in the

intuition 20/ 143

specified screen, if possible. The previously—-installed BitMap
is available for re-use upon receiving a signal from
graphics.library. See the graphics.library autodocs for

graphics.library/AllocDBufInfo() and graphics.library/ChangeVPBitMap ()
for details.

INPUTS
Screen: pointer to the screen whose bitmap is to be swapped.
ScreenBuffer: pointer to a ScreenBuffer structure obtained from
AllocScreenBuffer ().

RESULT
Returns non-zero if the operation succeeded. Returns zero
if the operation cannot be performed. This function will
fail if Intuition’s state cannot permit it, for example the
user 1is playing with menus or gadgets.

NOTES
It is not required to restore the original ScreenBuffer
before closing the screen. Simply FreeScreenBuffer () each
buffer (including the original and the currently-installed one)
then close the screen. Of course, you cannot call
ChangeScreenBuffer () after freeing the currently-installed one.

BUGS
SEE ALSO

AllocScreenBuffer (), FreeScreenBuffer(),
graphics.library/ChangeVPBitMap ()

1.14 intuition.library/ChangeWindowBox

NAME
ChangeWindowBox ——- Change window position and dimensions. (V36)
SYNOPSIS
ChangeWindowBox (Window, Left, Top, Width, Height)
A0 DO D1 D2 D3

VOID ChangeWindowBox (struct Window x, WORD, WORD, WORD, WORD) ;

FUNCTION
Makes simultaneous changes in window position and dimensions,
in absolute (not relative) coordinates.

Like MoveWindow () and SizeWindow (), the effect of this function
is deferred until the next input comes along. Unlike these
functions, ChangeWindowBox () specifies absolute window position
and dimensions, not relative. This makes for more reliable
results considering that the action is deferred, so this
function is typically preferable to MoveWindow () and SizeWindow ()
paired.

You can detect that this operation has completed by receiving
the IDCMP_CHANGEWINDOW IDCMP message

intuition 21/143

The dimensions are limited to legal range, but you should still
take care to specify sensible inputs based on the window’s dimension
limits and the size of its screen.

This function limits the position and dimensions to legal

values.
INPUTS

Window = the window to change position/dimension

Left, Top, Width, Height = new position and dimensions
RESULT

Position and dimension are changed to your specification,
or as close as possible.
Returns nothing.

BUGS
SEE ALSO

MoveWindow (), SizeWindow (), ZipWindow(),
layers.library/MoveSizeLayer ()

1.15 intuition.library/ClearDMRequest

NAME

ClearDMRequest —-- Clear (detaches) the DMRequest of the window.
SYNOPSIS

Response = ClearDMRequest (Window)

DO A0

BOOL ClearDMRequest (struct Window x);

FUNCTION
Attempts to clear the DMRequest from the specified window,
that is detaches the special requester that you attach to
the double-click of the menu button which the user can then
bring up on demand. This routine WILL NOT clear the DMRequest
if it’s active (in use by the user). The IDCMP message class
IDCMP_REQCLEAR can be used to detect that the requester is not in use,
but that message is sent only when the last of perhaps several
requesters in use in a window is terminated.

INPUTS
Window = pointer to the window from which the DMRequest is to be cleared.

RESULT
If the DMRequest was not currently in use, detaches the DMRequest

from the window and returns TRUE.

If the DMRequest was currently in use, doesn’t change anything
and returns FALSE.

BUGS

intuition 22 /143

SEE ALSO
SetDMRequest (), Request ()

1.16 intuition.library/ClearMenuStrip

NAME

ClearMenuStrip —-- Clear (detach) the menu strip from the window.
SYNOPSIS

ClearMenuStrip (Window)

AQ

VOID ClearMenuStrip(struct Window *);

FUNCTION
Detaches the current menu strip from the window; menu strips
are attached to windows using the SetMenuStrip () function

(or, for V36, ResetMenuStrip()).

If the menu is in use (for that matter if any menu is in use)
this function will block (Wait()) until the user has finished.

Call this function before you make any changes to the data
in a Menu or Menultem structure which is part of a menu

strip linked into a window.

INPUTS
Window = pointer to a window structure

RESULT
None

BUGS

SEE ALSO
SetMenuStrip (), ResetMenuStrip ()

1.17 intuition.library/ClearPointer

NAME

ClearPointer —-- Clear the mouse pointer definition from a window.
SYNOPSIS

ClearPointer (Window)

A0
VOID ClearPointer (struct Window x);
FUNCTION

Clears the window of its own definition of the Intuition mouse pointer.
After calling ClearPointer (), every time this window is the active

intuition 23 /143

one the default Intuition pointer will be the pointer displayed
to the user. If your window is the active one when this routine
is called, the change will take place immediately.

Custom definitions of the mouse pointer which this function clears
are installed by a call to SetPointer().

INPUTS
Window = pointer to the window to be cleared of its pointer definition

RESULT
None

BUGS

SEE ALSO
SetWindowPointerA (), SetPointer()

1.18 intuition.library/CloseScreen

NAME

CloseScreen —- Close an Intuition screen.
SYNOPSIS

Success = CloseScreen(Screen)

DO (V36) A0

BOOL CloseScreen(struct Screen *);
/* returns BOOL in V36 and greater =/

FUNCTION
Unlinks the screen, unlinks the viewport, deallocates everything that
Intuition allocated when the screen was opened (using OpenScreen()).
Doesn’t care whether or not there are still any windows attached to the
screen. Doesn’t try to close any attached windows; in fact, ignores
them altogether (but see below for changes in V36).

If this is the last screen to go, attempts to reopen Workbench.

New for V36: this function will refuse to close the screen

if there are windows open on the screen or if there are any
outstanding screen locks (see LockPubScreen()) when
CloseScreen() is called. This avoids the almost certain crash
when a screen is closed out from under a window.

INPUTS
Screen = pointer to the screen to be closed.

RESULT
New for V36: returns TRUE (1) if screen is closed,
returns FALSE (0) if screen had open windows when
called.

BUGS

intuition 24 /143

SEE ALSO
OpenScreen ()

1.19 intuition.library/CloseWindow

NAME
CloseWindow ——- Close an Intuition window.
SYNOPSIS
CloseWindow (Window)
AQ

VOID CloseWindow (struct Window *);

FUNCTION
Closes an Intuition window. Unlinks it from the system, deallocates
its memory, and makes it disappear.

When this function is called, all IDCMP messages which have been sent
to your window are deallocated. 1If the window had shared a message
Port with other windows, you must be sure that there are no unreplied
messages for this window in the message queue. Otherwise, your program
will try to make use of a linked list (the queue) which contains free
memory (the old messages). This will give you big problems.

See the code fragment CloseWindowSafely (), below.

NOTE: If you have added a Menu strip to this Window (via
a call to SetMenuStrip()) you must be sure to remove that Menu strip
(via a call to ClearMenuStrip()) before closing your Window.

NOTE: This function may block until it is safe to de-link and free
your window. Your program may thus be suspended while the user
plays with gadgets, menus, or window sizes and position.

New for V36: If your window is a "Visitor Window" (see OpenWindow)
CloseWindow will decrement the "visitor count" in the public screen
on which the window was open. When the last visitor window is
closed, a signal will be sent to the public screen task, if this
was pre—arranged (see OpenScreen).

INPUTS
Window = a pointer to a Window structure

RESULT
None

BUGS

SEE ALSO
OpenWindow (), OpenScreen(), CloseScreen()

EXAMPLE
/* CloseWindowSafely x/

/* these functions close an Intuition window

intuition 25/143

that shares a port with other Intuition
windows or IPC customers.

We are careful to set the UserPort to
null before closing, and to free

any messages that it might have been
* sent.

*/

#include "exec/types.h"

#include "exec/nodes.h"

#include "exec/lists.h"

#include "exec/ports.h"

#include "intuition/intuition.h"

L S

CloseWindowSafely (win)

struct Window *win;

{
/+ we forbid here to keep out of race conditions with Intuition =/
Forbid();

/+ send back any messages for this window
* that have not yet been processed
x/

StripIntuiMessages (win->UserPort, win);

/% clear UserPort so Intuition will not free it =/
win->UserPort = NULL;

/+ tell Intuition to stop sending more messages */
ModifyIDCMP (win, OL);

/* turn multitasking back on x/
Permit () ;

/+ and really close the window =*/
CloseWindow (win) ;

/+ remove and reply all IntuiMessages on a port that
* have been sent to a particular window
* (note that we don’t rely on the 1ln_Succ pointer
* of a message after we have replied it)
*/
StripIntuiMessages(mp, win)
struct MsgPort *mp;
struct Window *win;
{
struct IntuiMessage *msg;
struct Node =*succ;

msg = (struct IntuiMessage *) mp->mp_MsgList.lh_Head;
while(succ = msg->ExecMessage.mn_Node.ln_Succ) {
if (msg->IDCMPWindow == win) {

/+ Intuition is about to free this message.

intuition 26 /143
* Make sure that we have politely sent it back.
*/
Remove (msg);
ReplyMsg(msg);
}
msg = (struct IntuiMessage =*) succ;

1.20 intuition.library/CloseWorkBench

NAME

CloseWorkBench —-- Closes the Workbench screen.
SYNOPSIS

Success = CloseWorkBench ()

DO

LONG CloseWorkBench(VOID);

FUNCTION

This routine attempts to close the Workbench screen:

- Test whether or not any applications have opened windows on the

Workbench, and return FALSE if so. Otherwise

- Clean up all special buffers
- Close the Workbench screen

- Make the Workbench program mostly inactive (it will still

monitor disk activity)
- Return TRUE

INPUTS
None

RESULT

TRUE if the Workbench screen closed successfully

FALSE if the Workbench was not open, or if it has windows

open which are not Workbench drawers.

NOTES

This routine has been drastically rewritten for V36.
It is much more solid, although we haven’t eliminated

all the problem cases yet.

BUGS

The name of this function is improperly spelled.

to have been CloseWorkbench () .

It ought

It might be more convenient to have it return TRUE if the
Workbench wasn’t opened when called. The idea as it is now
is probably this: if you want to free up the memory of the
Workbench screen when your program begins, you can call
CloseWorkBench (). The return value of that call indicates
whether you should call OpenWorkBench () when your program

intuition 27 /143

exits: if FALSE, that means either the the Workbench existed
but you could not close it, or that it wasn’t around to
begin with, and you should not try to re-open it.

We would prefer that you provide a user selection to attempt
to open or close the Workbench screen from within your application,

rather than your making assumptions like these.

SEE ALSO
OpenWorkBench ()

1.21 intuition.library/CurrentTime

NAME
CurrentTime —-—- Get the current time values.
SYNOPSIS
CurrentTime (Seconds, Micros)
A0 Al

VOID CurrentTime (ULONG =%, ULONG =*);

FUNCTION
Puts copies of the current time into the supplied argument pointers.

This time value is not extremely accurate, nor is it of a very fine
resolution. This time will be updated no more than sixty times a
a second, and will typically be updated far fewer times a second.

INPUTS
Seconds = pointer to a LONG variable to receive the current seconds
value
Micros = pointer to a LONG variable for the current microseconds value

RESULT
Puts the time values into the memory locations specified by the
arguments
Return value is not defined.

BUGS

SEE ALSO
timer.device/TR_GETSYSTIME

1.22 intuition.library/DisplayAlert

NAME
DisplayAlert —-- Create the display of an alert message.

SYNOPSIS
Response = DisplayAlert (AlertNumber, String, Height)
DO DO AO D1

intuition 28 /143

BOOL DisplayAlert (ULONG, UBYTE %, UWORD);

FUNCTION
Creates an alert display with the specified message.

If the system can recover from this alert, it’s a RECOVERY_ALERT and
this routine waits until the user presses one of the mouse buttons,
after which the display is restored to its original state and a

BOOL value is returned by this routine to specify whether or not

the user pressed the LEFT mouse button.

If the system cannot recover from this alert, it’s a DEADEND_ALERT
and this routine returns immediately upon creating the alert display.
The return value is FALSE.

NOTE: Starting with V33, if Intuition can’t get enough
memory for a RECOVERY_ALERT, the value FALSE will be returned.

AlertNumber is a LONG value, historically related to the wvalue

sent to the Alert () routine. But the only bits that are pertinent to
this routine are the ALERT_TYPE bit (s). These bits must be set to
either RECOVERY_ALERT for alerts from which the system may safely
recover, or DEADEND_ALERT for those fatal alerts. These states are
described in the paragraph above. There is a third type of

alert, the DAISY_ALERT, which is used only by the Exec.

The string argument points to an AlertMessage string. The AlertMessage
string is comprised of one or more substrings, each of which is
composed of the following components:

- first, a 16-bit x-coordinate and an 8-bit y-coordinate,
describing where on the alert display you want this string
to appear. The y-coordinate describes the offset to the
baseline of the text.

- then, the bytes of the string itself, which must be
null-terminated (end with a byte of zero)

- lastly, the continuation byte, which specifies whether or
not there’s another substring following this one. If the
continuation byte is non-zero, there IS another substring
to be processed in this alert message. If the continuation
byte is zero, this is the last substring in the message.

The last argument, Height, describes how many video lines tall you
want the alert display to be.

New for V36: Alerts are always rendered in Topaz 8 (80 column font),
regardless of the system default font. Also, RECOVERY_ALERTs are
displayed in amber, while DEADEND_ALERTs are still red. Alerts

no longer push down the application screens to be displayed. Rather,
they appear alone in a black display.

Also new for V36: Alerts block each other out, and input

during an alert is deprived of the rest of the system. Internal
input buffers still cause alert clicks to be processed by
applications sometimes.

INPUTS

intuition 29/143

AlertNumber = the number of this alert message. The only pertinent
bits of this number are the ALERT_TYPE bit(s). The rest of the
number is ignored by this routine.
String pointer to the alert message string, as described above
Height = minimum display lines required for your message

RESULT
A BOOL value of TRUE or FALSE. If this is a DEADEND_ALERT, FALSE
is always the return value. If this is a RECOVERY_ALERT. The return
value will be TRUE if the user presses the left mouse button in
response to your message, and FALSE if the user presses the right hand
button is response to your text, or if the alert could not
be posted.

BUGS
If the system is worse off than you think, the level of your alert
may become DEADEND_ALERT without you ever knowing about it. This
will NOT happen due simply to low memory. Rather, the alert
display will be skipped, and FALSE will be returned.

The left and right button clicks satisfying the alerts are
unfortunately passed to the normal applications, because of

some internal system input buffering.

SEE ALSO
TimedDisplayAlert ()

1.23 intuition.library/DisplayBeep

NAME
DisplayBeep -- Flash the video display.
SYNOPSIS
DisplayBeep (Screen)
AQ

VOID DisplayBeep(struct Screen x);

FUNCTION
"Beeps" the video display by flashing the background color of the
specified screen. If the screen argument is NULL, every screen

in the display will be beeped. Flashing everyone’s screen is not
a polite thing to do, so this should be reserved for dire
circumstances.

The reason such a routine is supported is because the Amiga has

no internal bell or speaker. When the user needs to know of

an event that is not serious enough to require the use of a requester,
the DisplayBeep () function may be called.

New for V36: Intuition now calls DisplayBeep through the

external library vector. This means that if you call SetFunction()
to replace DisplayBeep with an audible beep, for example, then
your change will affect even Intuition’s calls to DisplayBeep.

intuition 30/143

INPUTS
Screen = pointer to a screen. If NULL, every screen in the display
will be flashed

RESULT
None

NOTES
Since this function changes color zero of the affected screen(s),
surprising results could occur if the screen’s owner reading
colors or perhaps cycling them.

BUGS

SEE ALSO

1.24 intuition.library/DisposeObject

NAME

DisposeObject —- Deletes a ’'boopsi’ object. (V36)
SYNOPSIS

DisposeObject (Object)

A0

VOID DisposeObject (APTR);

FUNCTION
Deletes a boopsi object and all of it auxiliary data.
These objects are all created by NewObject (). Objects

of certain classes "own" other objects, which will also
be deleted when the object is passed to DisposeObject ().
Read the per-class documentation carefully to be aware
of these instances.

INPUTS

Object = abstract pointer to a boopsi object returned by NewObject ().
The pointer may be NULL, in which case this function has
no effect.

NOTES
This function invokes the OM_DISPOSE method.

RESULT
None.

BUGS

SEE ALSO
NewObject (), SetAttrs(), GetAttr (), MakeClass(),
Document "Basic Object-Oriented Programming System for Intuition"
and the "boopsi Class Reference" document.

intuition 31/143

1.25 intuition.library/DoGadgetMethodA

NAME
DoGadgetMethodA -- Invoke method on a boopsi gadget. (V39)
DoGadgetMethod —-- Varargs stub for DoGadgetMethodA (). (V39)
SYNOPSIS
result = DoGadgetMethodA (Gadget, Window, Requester, Message)
DO A0 Al A2 A3

ULONG DoGadgetMethodA (struct Gadget =*, struct Window x,
struct Requester %, Msg);

result = DoGadgetMethod(Gadget, Window, Requester, MethodID, ...)

ULONG DoGadgetMethod(struct Gadget *, struct Window =,
struct Requester =+, ULONG, ...);

FUNCTION
Same as the DoMethod() function of amiga.lib, but provides context
information and arbitration for classes which implement custom
Intuition gadgets.

You should use this function for boopsi gadget objects,
or for "models" which propagate information to gadgets.

Unlike DoMethod (), this function provides a GadgetInfo pointer
(if possible) when invoking the method. Some classes may
require or benefit from this.

INPUTS
Gadget = abstract pointer to a boopsi gadget
Window = window gadget has been added to using AddGList () or AddGadget ()
Requester = for REQGADGETs, requester containing the gadget
Msg = the boopsi message to send

RESULT
The object does whatever it wants with the message you sent,

which might include updating its gadget visuals.

The return value is defined per-method.

NOTES
This function invokes the specified method with a GadgetInfo
derived from the ’'Window’ and ’'Requester’ pointers. The GadgetInfo

is passed as the second parameter of the message, except for
OM_NEW, OM_SET, OM_NOTIFY, and OM_UPDATE, where the GadgetInfo
is passed as the third parameter.

Implementers of new gadget methods should ensure that the
GadgetInfo is the second long-word of their message!

SEE ALSO
NewObject (), DisposeObject (), GetAttr (), MakeClass(),
Document "Basic Object-Oriented Programming System for Intuition”
and the "boopsi Class Reference" document.

intuition 32/143

1.26 intuition.library/DoubleClick

NAME
DoubleClick —-- Test two time values for double-click timing.
SYNOPSIS
IsDouble = DoubleClick(StartSecs, StartMicros,
DO DO D1
CurrentSecs, CurrentMicros)
D2 D3

BOOL DoubleClick (ULONG, ULONG, ULONG, ULONG) ;

FUNCTION
Compares the difference in the time values with the double-click
timeout range that the user has set (using the "Preferences" tool) or
some other program has configured into the system. If the
difference between the specified time values is within the current
double-click time range, this function returns TRUE, else it
returns FALSE.

These time values can be found in input events and IDCMP messages.
The time values are not perfect; however, they are precise enough for
nearly all applications.

INPUTS
StartSeconds, StartMicros = the timestamp value describing the start of
the double-click time period you are considering
CurrentSeconds, CurrentMicros = the timestamp value describing
the end of the double-click time period you are considering

RESULT
If the difference between the supplied timestamp values is within the
double-click time range in the current set of Preferences, this
function returns TRUE, else it returns FALSE

BUGS

SEE ALSO
CurrentTime ()

1.27 intuition.library/DrawBorder

NAME
DrawBorder —-- Draw the specified Border structure into a RastPort.
SYNOPSIS
DrawBorder (RastPort, Border, LeftOffset, TopOffset)
AQ Al DO D1

VOID DrawBorder (struct RastPort x, struct Border %, WORD, WORD);

FUNCTION
First, sets up the draw mode and pens in the RastPort according to the

intuition 33/143

arguments of the Border structure. Then, draws the vectors of
the border argument into the RastPort, offset by the left and top
offsets.

As with all graphics rendering routines, the border will be clipped to
to the boundaries of the RastPort’s layer, if it exists. This is
the case with window RastPorts.

This routine will draw all borders in the NULL-terminated list linked
by the NextBorder field of the border argument.

INPUTS
RastPort = pointer to the RastPort to receive the border rendering
Border = pointer to a Border structure
LeftOffset = the offset to be added to each vector’s x coordinate

TopOffset = the offset to be added to each vector’s y coordinate

RESULT
None

BUGS

SEE ALSO

1.28 intuition.library/Drawimage

NAME
DrawImage —-- Draw the specified Image structure into a RastPort.
SYNOPSIS
DrawImage (RastPort, Image, LeftOffset, TopOffset)
AQ Al DO D1

VOID DrawlImage(struct RastPort x, struct Image =, WORD, WORD);

FUNCTION
First, sets up the draw mode and pens in the RastPort according to the
arguments of the Image structure. Then, moves the image data of

the image argument into the RastPort, offset by the left and top
offsets.

This routine does window layer clipping if you pass your window’s
(layered) RastPort -- if you draw an image outside of your window,
your imagery will be clipped at the window’s edge. If you pass

a (non-layered) screen RastPort, you MUST be sure your image is
wholly contained within the rastport bounds.

If the NextImage field of the image argument is non-NULL,
the next image is rendered as well, and so on until some
NextImage field is found to be NULL.

INPUTS
RastPort = pointer to the RastPort to receive image rendering
Image = pointer to an image structure

LeftOffset = the offset which will be added to the image’s x coordinate

intuition 34 /143

TopOffset = the offset which will be added to the image’s y coordinate

RESULT
None

NOTES
Intuition always has and will continue to assume there are
at least as many planes of data pointed to by ImageData as there
are ’1’ bits in the PlanePick field. Please ensure that
this is so. (See the intuition.h include file for full details
on using PlanePick).

BUGS

SEE ALSO
DrawImageState (), EraseImage ()

1.29 intuition.library/DrawlmageState

NAME
DrawImageState —-—- Draw an (extended) Intuition Image with
special visual state. (V36)

SYNOPSIS
DrawImageState (RPort, Image, LeftOffset, TopOffset, State, DrawInfo)
A0 Al DO D1 D2 A2

VOID DrawlImageState(struct RastPort %, struct Image x,
WORD, WORD, ULONG, struct DrawInfo x);

FUNCTION

This function draws an Intuition Image structure in a variety of
"visual states," which are defined by constants in
intuition/imageclass.h. These include:

IDS_NORMAL - like DrawImage ()

IDS_SELECTED — represents the "selected state" of a Gadget
IDS_DISABLED — the "ghosted state" of a gadget

IDS_BUSY - for future functionality

IDS_INDETERMINATE - for future functionality
IDS_INACTIVENORMAL - for gadgets in window border
IDS_INACTIVESELECTED - for gadgets in window border
IDS_INACTIVEDISABLED - for gadgets in window border

Only IDS_NORMAL will make sense for traditional Image structures,
this function is more useful when applied to new custom images
or "object-oriented image classes."

Each class of custom images is responsible for documenting which
visual states it supports, and you typically want to use images
which support the appropriate states with your custom gadgets.

The DrawInfo parameter provides information invaluable to
"rendered" images, such as pen color and resolution. Each
image class must document whether this parameter is required.

intuition 35/143

INPUTS
RPort - RastPort for rendering
Image - pointer to a (preferably custom) image
LeftOffset,RightOffset - positional offsets in pixels
State - visual state selected from above
DrawInfo - pointer to packed of pen selections and resolution.

RESULT
None.

EXAMPLE
Provided separately in the DevCon "90 disk set.
NOTES

BUGS

SEE ALSO
DrawImage (), GetScreenDrawInfo (), intuition/imageclass.h

1.30 intuition.library/EasyRequestArgs

NAME
EasyRequestArgs ——- Easy alternative to AutoRequest (). (V36)
EasyRequest —-- Varargs stub for EasyRequestArgs (). (V36)
SYNOPSIS
num = EasyRequestArgs(Window, easyStruct, IDCMP_ptr, ArgList)
DO AQ Al A2 A3

LONG EasyRequestArgs(struct Window x, struct EasyStruct =x,
ULONG %, APTR);

num = EasyRequest (Window, easyStruct, IDCMP_ptr, Argl, Arg2, ...)

LONG EasyRequest (struct Window x, struct EasyStruct x,
ULONG =, APTR, ...);

(from intuition.h)
struct EasyStruct {
ULONG es_StructSize;
ULONG es_Flags;
UBYTE =xes_Title;
UBYTE xes_TextFormat;
UBYTE =xes_GadgetFormat;
bi

FUNCTION
This function provides a simpler method of using a ’System
Requester’ than provided by AutoRequest (). It performs layout

and size calculations sensitive to the current font and screen
resolution.

intuition 36/143

It provides for the descriptive ’body’ text and the gadget
text to be constructed from ’'printf’ style format strings.

It also provides a general way for the requester to be
sensitive to particular IDCMP messages.

The first function listed is the actual Intuition library
function. It 1is passed the arguments for the formatting
operations as a pointer to the first argument.

The second function uses a C-style variable number of argument
(varargs) calling convention. It should be implemented as

a call to the first function, and might be supplied by your
compiler vendor, in amiga.lib, or using the first example below,
for most C compilers.

NOTE: The formatting is done by exec.library/RawDoFmt (), so
be aware that to display a 32-bit integer argument, for
example, you must say "%1d", not "%d", since RawDoFmt () is
"word-oriented."

NOTE: This function switches the processor stack to ensure
sufficient stack space for the function to complete.

EXAMPLES
/* varargs interface works for most C compilers x*/
EasyRequest (w, es, ip, argl)
struct Window =*w;
struct EasyStruct =xes;
ULONG *ip;
int argl;
{

return (EasyRequestArgs(w, es, 1ip, &argl));

/***/

/* typical use =/
struct EasyStruct volumeES = {
sizeof (struct EasyStruct),
OI
"Volume Request",
"Please insert volume %s in any drive.",
"Retry|Cancel",
}i
#define CANCEL (0)

Volume =
getVolume (volname)
UBYTE <*volname;
{
Volume *vptr;
Volume *findVolume () ;
UWORD reply;
ULONG iflags;

iflags = IDCMP_DISKINSERTED;

intuition 37 /143

while (((vptr = findVolume (volname)) == NULL) &&
(EasyRequest (w, &volumeES, &iflags, volname) != CANCEL))
/+ loop */ ;

/+ note that in some circumstances, you will have to
re—-initialize the value of ’iflags’. Here, it
is either unchanged, or returned as the single
IDCMPFlag value IDCMP_DISKINSERTED. If you combine
multiple IDCMPFlag values in ’iflags,’ only
one will be returned, so you must reinitialize
"iflags’ to be the combination.

x/
return (vptr);
}
INPUTS
Window = Reference window pointer, determines the screen and

title of the requester window. This can be NULL, which
means the requester is to appear on the Workbench screen,
or default public screen, if defined.
IDCMP_ptr = Pointer to IDCMP flags that you want to terminate
the requester. This pointer may be NULL.
easyStruct = Pointer to EasyStruct structure with fields
interpreted as follows:

es_StructSize = sizeof (struct EasyStruct), for future extension.

es_Flags = 0 for now, in the future may specify other options.

es_Title = Title of system requester window. If this is NULL,
the title will be taken to be the same as the title of ’'Window’,
if provided, or else "System Request."

es_TextFormat = Format string, a la RawDoFmt (), for message in
requester body. Lines are separated by the newline character.
This character is represented in C by ’'\n’, in the Amiga Shell
by "xN", etc. Formatting ’%’ functions are supported exactly
as in RawDoFmt () .

es_GadgetFormat = Format string for gadgets. Text for separate
gadgets is separated by ’'|’. Format functions are supported.
You MUST specify at least one gadget.

ArgList = Arguments for format commands. Arguments for
GadFmt follow arguments for TextFmt.

RESULT
0, 1, ..., N = Successive GadgetID wvalues, for the gadgets
you specify for the requester. NOTE: The numbering
from left to right is actually: 1, 2, ..., N, O.

This is for compatibility with AutoRequest (), which has
FALSE for the rightmost gadget.

-1 = Means that one of the caller-supplied IDCMPFlags occurred.
The IDCMPFlag value is in the longword pointed to by IDCMP_ptr.

NOTES
When DOS brings up EasyRequests () on your process (eg.
"Please insert volume XXX in any drive", they normally come
up on the default public screen, which is usually the Workbench

intuition

38/143

screen. If you set your Pro
one of your windows, then DO
same screen as that window.
requesters from coming up at
(Some FileSystem requesters

BUGS
Does not fall back to a reco
cannot be created.

Does not handle case when ga
is too long, although it doe

title for calculating dimens

PLANS

cess pr_WindowPtr field to point to

S will bring its requesters up on the
A pr_WindowPtr of -1 prevents

all.

cannot be redirected or supressed).

verable alert if the requester

dgets don’t fit or window title
s trim trailing spaces from the
ions.

Possible enhancements include: centering of text, size-sensitive
layout, window-relative requester, vertical gadget layout,

window placement, more keybo

We also reserve the use of t
gadget format strings for fu

SEE ALSO
exec.library/RawDoFmt (), Bui
AutoRequest (), BuildSysReque

ard shortcuts.
he newline character (’\n’) in

ture use as a line separator.

1ldEasyRequestArgs (), SysRegHandler (),
st ()

1.31 intuition.library/EndRefresh

NAME
EndRefresh —-- End the optimi
SYNOPSIS
EndRefresh(Window, Complete
AQ DO

zed refresh state of the window.

)

VOID EndRefresh(struct Window %, BOOL);

FUNCTION
This function gets you out o

f the special refresh state of your

window. It is called following a call to BeginRefresh (), which

routine puts you into the sp
is in the refresh state, the
your window will be to those
need to be refreshed.

After you’ve done all the re
you should call this routine
non-refreshing state. Then
window, as usual.

The ’'Complete’ argument is a
describe whether or not the
refreshing that needs to be
argument will be TRUE. But
tasks or multiple procedure

ecial refresh state. While your window
only rendering that will be wrought in
areas which were recently revealed and

freshing you want to do for this window,
to restore the window to its
all rendering will go to the entire

boolean TRUE or FALSE value used to
refreshing you’ve done was all the
done at this time. Most often, this
if, for instance, you have multiple
calls which must run to completely

intuition 39/143

refresh the window, then each can call its own Begin/EndRefresh ()
pair with a Complete argument of FALSE, and only the last calls
with a Complete argument of TRUE.

WARNING: Passing this function the value of FALSE has its
pitfalls. Please see the several caveats in the autodoc for
BeginRefresh () .

For your information, this routine calls the Layers library function
EndUpdate (), unlocks your layers (calls UnlockLayerRom()), clears
the LAYERREFRESH bit in your Layer Flags, and clears the
WELG_WINDOWREFRESH bit in your window Flags.

INPUTS
Window = pointer to the window currently in optimized-refresh mode
Complete = Boolean TRUE or FALSE describing whether or not this
window is completely refreshed

RESULT
None

BUGS
SEE ALSO

BeginRefresh (), layers.library/EndUpdate(),
graphics.library/UnlockLayerRom ()

1.32 intuition.library/EndRequest

NAME
EndRequest —-- Remove a currently active requester.
SYNOPSIS
EndRequest (Requester, Window)
AQ Al

VOID EndRequest (struct Requester *, struct Window *);

FUNCTION
Ends the request by erasing the requester and decoupling it from
the window.

Note that this doesn’t necessarily clear all requesters from the window,
only the specified one. If the window labors under other requesters,
they will remain in the window.

INPUTS
Requester = pointer to the requester to be removed
Window = pointer to the Window structure with which this requester
is associated

RESULT
None

BUGS

intuition 40/ 143

SEE ALSO
Request ()

1.33 intuition.library/Eraselmage

NAME
EraseImage —-- Erases an Image. (V36)

SYNOPSIS
EraseImage (RPort, Image, LeftOffset, TopOffset)

A0 Al DO D1

VOID EraselImage(struct RastPort x, struct Image *x, WORD, WORD);

FUNCTION
Erases an Image. For a normal Image structure, this will
call the graphics function EraseRect () (clear using layer

backfill, if any) for the Image box (LeftEdge/TopEdge/Width/Height) .

For custom image, the exact behavior is determined by the
custom image class.

INPUTS
RPort - RastPort to erase a part of
Image - custom or standard image

LeftOffset,RightOffset - pixel offsets of Image position

RESULT
None.

EXAMPLE

NOTES

BUGS

SEE ALSO
graphics.library/EraseRect () .

1.34 intuition.library/FreeClass

NAME

FreeClass —— Frees a boopsi class created by MakeClass (). (V36)
SYNOPSIS

success = FreeClass(ClassPtr)

DO AQ

intuition 41 /143

BOOL FreeClass(struct IClass *);

FUNCTION
For class implementors only.

Tries to free a boopsi class created by MakeClass (). This
won’t always succeed: classes with outstanding objects or
with subclasses cannot be freed. You cannot allow the code
which implements the class to be unloaded in this case.

For public classes, this function will xalways* remove
the class (see RemoveClass ()) making it unavailable, whether
it succeeds or not.

If you have a dynamically allocated data for your class (hanging
off of cl_UserData), try to free the class before you free the
user data, so you don’t get stuck with a half-freed class.

INPUTS
ClassPtr - pointer to a class created by MakeClass().

RESULT
Returns FALSE if the class could not be freed. Reasons include,
but will not be limited to, having non-zero cl_ObjectCount or
cl_SubclassCount.

Returns TRUE if the class could be freed.
Calls RemoveClass () for the class in either case.

EXAMPLE
Freeing a private class with dynamically allocated user data:

freeMyClass(cl)
struct IClass =xcl;
{
struct MyPerClassData mpcd;

mpcd = (struct MyPerClassData *) cl->cl_UserData;
if (FreeClass(cl))
{
FreeMem(mpcd, sizeof mpcd);
return (TRUE);
}
else
{
return (FALSE);
}

BUGS

SEE ALSO
MakeClass (),
Document "Basic Object-Oriented Programming System for Intuition"
and the "boopsi Class Reference" document.

intuition 42 /143

1.35 intuition.library/FreeRemember

NAME

FreeRemember —-- Free memory allocated by calls to AllocRemember ().
SYNOPSIS

FreeRemember (RememberKey, ReallyForget)

AQ DO
VOID FreeRemember (struct Remember =*x, BOOL);

FUNCTION
This function frees up memory allocated by the AllocRemember () function.
It will either free up Jjust the Remember structures, which supply the
link nodes that tie your allocations together, or it will deallocate
both the link nodes AND your memory buffers too.

If you want to deallocate just the Remember structure link nodes,
you should set the ReallyForget argument to FALSE. However, if you
want FreeRemember to really deallocate all the memory, including
both the Remember structure link nodes and the buffers you requested
via earlier calls to AllocRemember (), then you should set the
ReallyForget argument to TRUE.

NOTE WELL: Once you call this function passing it FALSE, the
linkages between all the memory chunks are lost, and you
cannot subsequently use FreeRemember () to free them.

INPUTS

RememberKey = the address of a pointer to struct Remember. This
pointer should either be NULL or set to some value (possibly
NULL) by a call to AllocRemember() .

ReallyForget = a BOOL FALSE or TRUE describing, respectively,
whether you want to free up only the Remember nodes or
if you want this procedure to really forget about all of
the memory, including both the nodes and the memory buffers
referenced by the nodes.

EXAMPLE
struct Remember *RememberKey;
RememberKey = NULL;
AllocRemember (&RememberKey, BUFSIZE, MEMF_CHIP) ;
FreeRemember (&§RememberKey, TRUE) ;

RESULT
None

BUGS

SEE ALSO
AllocRemember (), exec.library/FreeMem /()

1.36 intuition.library/FreeScreenBuffer

intuition 43 /143

NAME

FreeScreenBuffer —-—- Free a ScreenBuffer structure. (V39)
SYNOPSIS

FreeScreenBuffer (Screen, ScreenBuffer)

AQ Al

VOID FreeScreenBuffer(struct Screen *, struct ScreenBuffer x);

FUNCTION
Frees a ScreenBuffer structure you got from AllocScreenBuffer(),
and releases associated resources. You must call FreeScreenBuffer ()

before you close your screen.

INPUTS
Screen: pointer to the screen this ScreenBuffer is associated with.
ScreenBuffer: pointer to a ScreenBuffer structure obtained from
AllocScreenBuffer (). It is safe to call this function with
a NULL argument. It will have no effect.

RESULT
None.

NOTES
Originally, FreeScreenBuffer() did not WaitBlit () before freeing
a BitMap. The intent was that the application should do this.
However, as this sort of thing is easily forgotten, WaitBlit ()
was added in V40. Application writers should ensure that freeing
the buffer is safe by calling WaitBlit () themselves.

The SB_SCREEN_BITMAP flag instructs AllocScreenBuffer () to provide
a ScreenBuffer referring to the screen’s actual bitmap. When

you are done changing screen buffers, you must FreeScreenBuffer ()
the currently-installed ScreenBuffer before you close the screen.
Intuition will recognize when FreeScreenBuffer() is called for

the currently-installed ScreenBuffer, and will know to free the
supporting structures but not the BitMap. CloseScreen() will

take care of that.

BUGS
SEE ALSO

AllocScreenBuffer (), ChangeScreenBuffer(),
graphics.library/ChangeVPBitMap ()

1.37 intuition.library/FreeScreenDrawinfo

NAME
FreeScreenDrawInfo —-- Finish using a DrawInfo structure. (V36)

SYNOPSIS
FreeScreenDrawInfo(Screen, DrInfo)
AQ Al

intuition 44 /143

VOID FreeScreenDrawInfo(struct Screen x, struct DrawInfo *);

FUNCTION
Declares that you are finished with the DrawInfo structure
returned by GetScreenDrawInfol().

INPUTS
Screen - pointer to screen passed to GetScreenDrawInfo().
DrInfo - pointer to DrawInfo returned by GetScreenDrawInfo() .
A NULL DrawInfo pointer is a valid parameter, signifying
"do nothing".

RESULT
None

NOTES

This function, and GetScreenDrawInfo(), don’t really do much, but
they provide an upward compatibility path. That means that

if you misuse them today, they probably won’t cause a problem,
although they may someday later. So, please be very careful

only to use the DrawInfo structure between calls to
GetScreenDrawInfo () and FreeScreenDrawInfo (), and be sure

that you don’t forget FreeScreenDrawlInfo() .

BUGS

SEE ALSO
GetScreenDrawInfo ()

1.38 intuition.library/FreeSysRequest

NAME

FreeSysRequest —-—- Free resources gotten by a call to BuildSysRequest().
SYNOPSIS

FreeSysRequest (Window)

A0
VOID FreeSysRequest (struct Window *);

FUNCTION
This routine frees up all memory allocated by a successful call to
the BuildSysRequest () procedure. If BuildSysRequest () returned a
pointer to a window, then you are able to wait on the message port
of that window to detect an event which satisfies the requester.

When you want to remove the requester, you call this procedure. It
ends the requester and deallocates any memory used in the creation
of the requester. It also closes the special window that was opened

for your system requester.

For V36: It’s OK if you pass a NULL or a TRUE (1) wvalue to
this function. Also, this function properly disposes of
requesters gotten using BuildEasyRequestArgs () .

INPUTS

intuition 45/143

Window = value of the window pointer returned by a successful call to
the BuildSysRequest () procedure

RESULT
None

BUGS

SEE ALSO
BuildSysRequest (), AutoRequest (), CloseWindow ()

1.39 intuition.library/GadgetMouse

NAME
GadgetMouse ——- Calculate gadget-relative mouse position. (V36)
SYNOPSIS
GadgetMouse (Gadget, GInfo, MousePoint)
AQ Al A2

VOID GadgetMouse (struct GadgetInfo %, WORD «*);

FUNCTION
Determines the current location of the mouse pointer relative
to the upper-left corner of a custom gadget. Typically used
only in the GM_HANDLEINPUT and GM_GOACTIVE custom gadget hook
routines.

NEWS FLASH!!: These two hook routines are now passed the mouse
coordinates, so this function has no known usefulness.

We recommend that you don’t call it.

Note that this function calculates the mouse position taking
"gadget relativity" (GFLG_RELRIGHT, GFLG_RELBOTTOM) into
consideration. If your custom gadget intends to ignore these
properties, then you should either enjoin or inhibit your users
from setting those bits, since Intuition won’t ask if you respect
them.

INPUTS

GInfo = A pointer to a GadgetInfo structure as passed to the
custom gadget hook routine.

MousePoint = address of two WORDS, or a pointer to a structure of
type Point.

RESULT
Returns nothing. Fills in the two words pointed to by
MousePoint with the gadget-relative mouse position.

BUGS
Useless, since equivalent information is now passed to every
function that might have a use for this.

intuition 46 /143

SEE ALSO

1.40 intuition.library/GetAttr

NAME

GetAttr ——- Inquire the value of some attribute of an object. (V36)
SYNOPSIS

attr = GetAttr (AttrID, Object, StoragePtr)

DO DO AO0 Al

ULONG GetAttr (ULONG, APTR, ULONG *);

FUNCTION
Inquires from the specified object the value of the specified attribute.

You always pass the address of a long variable, which will
receive the same value that would be passed to SetAttrs() in

the ti_Data portion of a TaglItem element. See the documentation
for the class for exceptions to this general rule.

Not all attributes will respond to this function. Those that
will are documented on a class-by-class basis.

INPUTS
AttrID = the attribute tag ID understood by the object’s class
Object abstract pointer to the boopsi object you are interested in
StoragePtr = pointer to appropriate storage for the answer

RESULT
Returns FALSE (0) if the inquiries of attribute are not provided
by the object’s class.

NOTES
This function invokes the OM_GET method of the object.

BUGS

SEE ALSO
NewObject (), DisposeObject (), SetAttrs(), MakeClass(),
Document "Basic Object-Oriented Programming System for Intuition"
and the "boopsi Class Reference" document.

1.41 intuition.library/GetDefaultPubScreen

NAME
GetDefaultPubScreen —-- Get name of default public screen. (V36)

SYNOPSIS
GetDefaultPubScreen (Namebuff)
A0

intuition 47 /143

VOID GetDefaultPubScreen(UBYTE x);

FUNCTION
Provides the name of the current default public screen.
Only anticipated use is for Public Screen Manager utilities,
since it is easy to open a visitor window on the default
public screen without specifying the name.

INPUTS
Namebuff = a buffer of MAXPUBSCREENNAME . This can be NULL.

RESULT
None. Will provide the string "Workbench" in Namebuff if there
is no current default public screen.

NOTES
This function actually "returns" in register DO a pointer
to the public screen. Unfortunately, the lifespan of
this pointer is not ensured; the screen could be closed
at any time. The xONLY* legitimate use we can see for
this return value is to compare for identity with the pointer
to a public screen you either have a window open in, or
a lock on using LockPubScreen(), to determine if that
screen is in fact the default screen.

Also note that if there no default public screen has been set,
the return value of this function will be zero, and not a pointer
to the Workbench screen.

BUGS
The function prototype does not reflect the return value.

SEE ALSO
SetDefaultPubScreen (), OpenWindow ()

1.42 intuition.library/GetDefPrefs

NAME

GetDefPrefs —- Get a copy of the the Intuition default Preferences.
SYNOPSIS

Prefs = GetDefPrefs(PrefBuffer, Size)

DO AQ DO

struct Preferences xGetDefPrefs(struct Preferences x, WORD);

FUNCTION
Gets a copy of the Intuition default preferences data. Writes the
data into the buffer you specify. The number of bytes you want
copied is specified by the size argument.

The default preferences are those that Intuition uses when it
is first opened. If no preferences file is found, these are
the preferences that are used. These would also be the startup
preferences in an AmigaDOS-less environment.

intuition 48 /143

It is legal to take a partial copy of the Preferences structure.
The more pertinent preferences variables have been grouped near
the top of the structure to facilitate the memory conservation
that can be had by taking a copy of only some of the Preferences
structure.

INPUTS
PrefBuffer = pointer to the memory buffer to receive your copy of the
Intuition Preferences structure
Size = the number of bytes in your PrefBuffer, the number of bytes
you want copied from the system’s internal Preference settings

RESULT
Returns your parameter PrefBuffer.

BUGS

SEE ALSO
GetPrefs ()

1.43 intuition.library/GetPrefs

NAME

GetPrefs —-—- Get the current Intuition Preferences structure.
SYNOPSIS

Prefs = GetPrefs(PrefBuffer, Size)

DO AQ DO

struct Preferences *xGetPrefs(struct Preferences x, WORD);

FUNCTION
Gets a copy of the current Intuition Preferences structure.
Writes the data into the buffer you specify. The number of bytes you
want copied is specified by the size argument.

It is legal to take a partial copy of the Preferences structure.
The more pertinent preferences variables have been grouped near
the top of the structure to facilitate the memory conservation
that can be had by taking a copy of only some of the Preferences
structure.

New for V36: A new and more extensible method for supplying
Preferences has been introduced in V36, and relies on file
system notification. The Intuition preferences items rely

also on the IPrefs program. Certain elements of the
Preferences structure have been superseded by this new method.
As much as possible, the Preferences structure returned by
GetPrefs () reflect the current state of Preferences. However,
it is impossible to represent some of the V36-style preferences
items using the existing Preferences structure.

INPUTS
PrefBuffer = pointer to the memory buffer to receive your copy of the

intuition 49 /143

Intuition Preferences
Size = the number of bytes in your PrefBuffer, the number of bytes
you want copied from the system’s internal Preference settings

RESULT
Returns your parameter PrefBuffer.

BUGS

SEE ALSO
GetDefPrefs (), SetPrefs()

1.44 intuition.library/GetScreenData

NAME
GetScreenData —-—- Get copy of a screen data structure.
SYNOPSIS
Success = GetScreenData(Buffer, Size, Type, Screen)
DO AQ DO D1 Al

BOOL GetScreenData(APTR, UWORD, UWORD, struct Screen x);

FUNCTION
This function copies into the caller’s buffer data from a Screen
structure. Typically, this call will be used to find the size, title
bar height, and other wvalues for a standard screen, such as the
Workbench screen.

To get the data for the Workbench screen, one would call:
GetScreenData (buff, sizeof (struct Screen), WBENCHSCREEN, NULL)

NOTE: if the requested standard screen is not open, this function
will have the effect of opening it.

This function has been useful for two basic types of things:

1) Determining information about the Workbench screen, in
preparation for opening a window on it.

2) Attempts at discerning the user’s preferences in a working
screen, for "cloning" the Workbench modes and dimensions
when opening a similar custom screen.

Providing compatibility with both of these goals has proven
difficult, as we introduce new display modes and screen scrolling
in V36. Read carefully the somewhat involved exceptions we
elected to implement

Changes as of V36:

For V36 and later, the function LockPubScreen() is an improvement
over this function, in that it doesn’t copy the screen data

but returns a pointer and a guarantee that the screen will not

be closed.

If the global public screen SHANGHAI mode is in effect (see

intuition 50/143

SetPubScreenModes ()), this function will actually report on
the default public screen, where "Workbench" windows will
actually open.

For V36 and later, this function does some "compatibility tricks"”
when you inquire about the WBENCHSCREEN. To keep programs from
"stumbling" into modes they don’t understand, and because an NTSC
machine may be running a PAL Workbench or PRODUCTIVITY, for example,
the following "false" information is returned.

The Screen.ViewPort.Modes field will either be HIRES or HIRES+LACE
(with the SPRITES flag also set, as usual). HIRES+LACE is

used i1if the display mode selected for the Workbench screen

is an interlaced screen of any type.

The dimensions returned will be the x*smallerx of the OSCAN_TEXT
dimensions for the returned mode, and the actual dimensions
of the Workbench screen.

EXCEPTION: For specific compatibility considerations, if the
Workbench is in one of the A2024 modes, the mode returned

in Screen.ViewPort.Modes will be HIRES+LACE (with perhaps

some "special" bits also set for future improvement), but

with dimensions equal to the actual A2024-mode Workbench screen.
This will favor programs which open windows on the A2024
Workbench, but will cause some problems for programs which

try to "clone" the Workbench screen using this function.

If you want the real information about the modern Workbench
screen, call LockPubScreen("Workbench") and acquire its
display mode ID by inquiring of the actual ViewPort (using
graphics.library/GetVPModeID ()).

You may then use the information you get to clone as many of
the properties of the Workbench screen that you wish.

In the long run, it’s probably better to provide your user
with a screen mode selection option, and skip all this.

INPUTS
Buffer = pointer to a buffer into which data can be copied
Size = the size of the buffer provided, in bytes
Type = the screen type, as specified in OpenWindow () (WBENCHSCREEN,
CUSTOMSCREEN, ...)

Screen = ignored, unless type is CUSTOMSCREEN, which results only in
copying ’'size’ bytes from ’screen’ to "buffer’

RESULT
TRUE if successful
FALSE if standard screen of Type ’'type’ could not be opened.

BUGS
You cannot support the new V36 display modes using this function.

SEE ALSO
OpenWindow (), LockPubScreen (), graphics.library/GetVPModeID(),

intuition 51/143

SetPubScreenModes (), OpenScreen ()

1.45 intuition.library/GetScreenDrawinfo

NAME
GetScreenDrawInfo —-- Get pointer to rendering information. (V36)
SYNOPSIS
DrInfo = GetScreenDrawInfo(Screen)
DO AQ

struct DrawInfo *GetScreenDrawInfo(struct Screen x);

FUNCTION

Returns a pointer to a DrawInfo structure derived from the
screen passed. This data structure is READ ONLY. The field
dri_Version identifies which version of struct DrawInfo you
are given a pointer to.

INPUTS
Screen - pointer to a valid, open screen.

RESULT
DrInfo - pointer to a system—-allocated DrawInfo structure,

as defined in intuition/screens.h.

NOTES

Some information in the DrawInfo structure may in the future
be calculated the first time this function is called for a
particular screen.

You must call FreeScreenDrawInfo () when you are done using the
returned pointer.

This function does not prevent a screen from closing. Apply it
only to the screens you opened yourself, or apply a protocol
such as LockPubScreen() .

WARNING: Until further notice, the pointer returned does not
remain valid after the screen is closed.

This function and FreeScreenDrawInfo() don’t really do much now,
but they provide an upward compatibility path. That means that
if you misuse them today, they probably won’t cause a problem,
although they may someday later. So, please be very careful
only to use the DrawInfo structure between calls to
GetScreenDrawInfo () and FreeScreenDrawInfo(), and be sure

that you don’t forget FreeScreenDrawInfol().

BUGS
Does not reflect to changes in screen modes, depth, or pens.

SEE ALSO
FreeScreenDrawInfo (), LockPubScreen(), intuition/screens.h

intuition 52/143

1.46 intuition.library/HelpControl

NAME

HelpControl -—- Enable/disable Gadget-Help feature. (V39)
SYNOPSIS

HelpControl (window, flags)

A0 DO
VOID HelpControl(struct Window =%, ULONG);

FUNCTION
This function can be used to turn Gadget-Help on or off for
your window. Gadget-Help will also be enabled/disabled
accordingly for all other windows which share the same
help-group. This allows Gadget-Help to be well-behaved
for multiple-window applications.

INPUTS
window — Pointer to the window you wish to affect. (Other windows
will also be affected, as explained above.
flags - Currently, HC_GADGETHELP or zero are the allowed values.

RESULT
One or more windows will have Gadget-Help turned on or off.

NOTES
You must use utility.library/GetUniqueID() to get a help-group
identifier. Never ever supply your own!

SEE ALSO

WA_HelpGroup

1.47 intuition.library/InitRequester

NAME

InitRequester —-- Initialize a Requester structure.
SYNOPSIS

InitRequester (Requester)

AQ
VOID InitRequester(struct Requester *);

FUNCTION
Initializes a requester for general use. After calling InitRequester,
you need fill in only those Requester values that fit your needs.
The other values are set to NULL--or zero—--states.

Note that the example in the early versions of the Intuition
Reference Manual is flawed because the Requester structure is
initialized BEFORE InitRequester is called. Be sure to
perform your initialization AFTER calling InitRequester.

intuition 53/143

INPUTS
Requester = a pointer to a Requester structure

RESULT
None

BUGS
Since the publication of the first Intuition Manual to this
day, most people haven’t used this function, and for
compatibility reasons, we’ll never be able to assume that
they do. Thus, this function is useless.

SEE ALSO

1.48 intuition.library/IntuiTextLength

NAME

IntuiTextLength —-— Return the length (pixel-width) of an IntuiText.
SYNOPSIS

Length = IntuiTextLength(IText)

DO AQ

LONG IntuiTextLength(struct IntuiText =);

FUNCTION
This routine accepts a pointer to an instance of an IntuiText structure,
and returns the length (the pixel-width) of the string which that
instance of the structure represents.

NOTE: if the Font pointer of your IntuiText structure is set to NULL,
you’ll get the pixel-width of your text in terms of the current system
default font. You may wish to be sure that the field IText->ITextFont
for 'default font’ text is equal to the Font field of the screen it is
being measured for.

INPUTS
IText = pointer to an instance of an IntuiText structure

RESULT
Returns the pixel-width of the text specified by the IntuiText data

BUGS
Would do better to take a RastPort as argument, so that a NULL in
the Font pointer would lead automatically to the font for the
intended target RastPort, rather than the system default font.

SEE ALSO
OpenScreen ()

1.49 intuition.library/ltemAddress

intuition 54 /143

NAME

ItemAddress —-- Returns the address of the specified Menultem.
SYNOPSIS

Item = ItemAddress(MenuStrip, MenuNumber)

DO AO DO

struct Menultem xItemAddress(struct Menu x, UWORD);

FUNCTION
This routine feels through the specified menu strip and returns the
address of the item specified by the menu number. Typically,
you will use this routine to get the address of a menu item from
a menu number sent to you by Intuition after user has chosen from
a window’s menus.

This routine requires that the arguments are well-defined.
MenuNumber may be equal to MENUNULL, in which case this routine returns
NULL. If MenuNumber doesn’t equal MENUNULL, it’s presumed to be a
valid item number selector for your menu strip, which includes:

- a valid menu number

- a valid item number

- if the item specified by the above two components has a
sub-item, the menu number may have a sub-item component, too.

Note that there must be BOTH a menu number and an item number.
Because a sub-item specifier is optional, the address returned by
this routine may point to either an item or a sub-item.

INPUTS
MenuStrip = a pointer to the first menu in your menu strip
MenuNumber = the value which contains the packed data that selects

the menu and item (and sub-item). See the Intuition Reference
Manual for information on menu numbers.

RESULT
If MenuNumber == MENUNULL, this routine returns NULL,
else this routine returns the address of the menu item specified
by MenuNumber.

BUGS
SEE ALSO

The "Menus" chapter of the Intuition Reference Manual,
or the Amiga ROM Kernel Manual

1.50 intuition.library/LendMenus

NAME
LendMenus —-- Lend window’s menu action to another window. (V39)

SYNOPSIS
LendMenus (fromWindow, toWindow)
AQ Al

intuition 55/143

VOID LendMenus (struct Window =%, struct Window *);

FUNCTION
This function is used to "lend" the menus of one window to
another. This means that menu events (for example, the user
presses the mouse menu button) will take place in another
window’s menu (using that other window’s menu strip and screen).

The sole intended use of this function is to unify two

windows on different screens that are attached. (See
SA_Parent, SA_FrontChild, SA_BackChild). An example would

be a program with a full-sized parent screen which has a

short control panel screen attached in the front. Pressing the
menu button even when the control panel window of the canvas
screen is active can now cause the menus of the parent screen
to appear.

INPUTS
fromWindow = pointer to the Window structure whose menu actions
are to go to another window.
toWindow = pointer to the Window structure whose menus are to
be displayed in place of the fromWindow’s. If NULL, turns
off menu-lending from the fromWindow.

RESULT
None.

BUGS
The current behavior is such that the toWindow is temporarily
activated. This may not continue to be the case. Be prepared
to handle this!

SEE ALSO
SetMenuStrip (), ClearMenuStrip ()

1.51 intuition.library/LockiBase

NAME

LockIBase ——- Invoke semaphore arbitration of IntuitionBase.
SYNOPSIS

Lock = LockIBase (LockNumber)

DO DO

ULONG LockIBase (ULONG);

FUNCTION
Grabs Intuition internal semaphore so that caller may examine
IntuitionBase safely. This function is not a magic "fix all my
race conditions" panacea.

The idea here is that you can get the locks Intuition needs before
such IntuitionBase fields as ActiveWindow and FirstScreen are
changed, or linked lists of windows and screens are changed.

intuition 56 /143

Do Not Get Tricky with this entry point, and do not hold these locks
for long, as all Intuition input processing will wait for you to
surrender the lock by a call to UnlockIBase().

NOTE WELL: A call to this function MUST be paired with a subsequent
call to UnlockIBase(), and soon, please.

NOTE WELL: Do not call any Intuition functions (nor any graphics,
layers, dos, or other high-level system function) while
holding this lock.

INPUTS
A long unsigned integer, LockNumber, specifies which of Intuition’s
internal locks you want to get. This parameter should be zero for all

forseeable uses of this function, which will let you examine active
fields and linked lists of screens and windows with safety.

RESULT
Returns another ULONG which should be passed to UnlockIBase() to
surrender the lock gotten by this call.

BUGS
This function must not be called while holding any other system locks
such as layer or LayerInfo locks.

SEE ALSO

UnlockIBase (), layers.library/LockLayerInfo(),
exec.library/ObtainSemaphore ()

1.52 intuition.library/LockPubScreen

NAME

LockPubScreen -- Prevent a public screen from closing. (V36)
SYNOPSIS

screen = LockPubScreen(Name)

DO A0

struct Screen xLockPubScreen(UBYTE *);

FUNCTION
Prevents a public screen (or the Workbench) from closing
while you examine it in preparation of opening a visitor window.

The sequence you use to open a visitor window that needs to
examine fields in the screen it is about to open on is:
LockPubScreen ()
examine fields
OpenWindow () on public screen
UnlockPubScreen ()
use your window
CloseWindow ()

NOTE

intuition 57 /143

You needn’t hold the "pubscreen lock" for the duration that
your window is opened. LockPubScreen() basically has the
same effect as an open visitor window: it prevents the
screen from being closed.

If you pass the string "Workbench" or you pass NULL and there
is no default public screen, the Workbench screen will
be automatically opened if it is not already present.

INPUTS
Name = name string for public screen or NULL for default public
screen. The string "Workbench" indicates the Workbench
screen.

RESULT

Returns pointer to a screen, if successful, else NULL.
The call can fail for reasons including that the named
public screen doesn’t exist or is in private state.

BUGS

SEE ALSO
OpenWindow (), UnlockPubScreen(), GetScreenData ()

1.53 intuition.library/LockPubScreenList

NAME

LockPubScreenlList —-- Prevent changes to the system list. (V36)
SYNOPSIS

List = LockPubScreenlList ()

DO
struct List *LockPubScreenList (VOID);

FUNCTION
Arbitrates access to public screen list while you quickly
make a copy of it for display to the user.

Note that this is intended only for the Public Screen Manager
program.

NOTES
The nodes on the list are PubScreenNode structures.
Act quickly while holding this lock. The restrictions
on LockIBase () apply here as well.

INPUTS
None.

RESULT
A pointer to the public screen list.

BUGS

intuition

58/143

SEE ALSO
UnlockPubScreenList (), OpenScreen(), Intuition V36 update documentation

1.54 intuition.library/MakeClass

NAME

MakeClass —-- Create and initialize a boopsi class. (V36)
SYNOPSIS

iclass = MakeClass(ClassID, SuperClassID, SuperClassPtr,

DO A0 Al A2
InstanceSize, Flags)

DO D1

struct IClass xMakeClass(UBYTE =, UBYTE =, struct IClass =,
UWORD, ULONG) ;

FUNCTION
For class implementors only.

This function creates a new public or private boopsi class.
The superclass should be defined to be another boopsi class:
all classes are descendants of the class "rootclass".

Superclasses can be public or private. You provide a name/ID
for your class if it is to be a public class (but you must
have registered your class name and your attribute ID’s with
Commodore before you do this!). For a public class, you would
also call AddClass () to make it available after you have
finished your initialization.

Returns pointer to an IClass data structure for your

class. You then initialize the Hook cl_Dispatcher for

your class methods code. You can also set up special data
shared by all objects in your class, and point cl_UserData at it.
The last step for public classes is to call AddClass{() .

You dispose of a class created by this function by calling
FreeClass () .

INPUTS

ClassID = NULL for private classes, the name/ID string for public
classes

SuperClassID = name/ID of your new class’s superclass. NULL if
superclass is a private class

SuperClassPtr = pointer to private superclass. Only used if
SuperClassID is NULL. You are required never to provide
a NULL superclass.

InstanceSize = the size of the instance data that your class’s
objects will require, beyond that data defined for
your superclass’s objects.

Flags = for future enhancement, including possible additional
parameters. Provide zero for now.

RESULT

intuition 59/143

Pointer to the resulting class, or NULL if not possible:
- no memory for class data structure

— public superclass not found

- public class of same name/ID as this one already exists

NOTES

EXAMPLE
Creating a private subclass of a public class:

/* per—-object instance data defined by my class x/
struct MyInstanceData {

ULONG mid_SomeData;
bi

/* some useful table I’11l share use for all objects =/
UWORD myTable[] = {

5 4, 3, 2, 1, O
}i

struct IClass =
initMyClass ()
{
ULONG __saveds myDispatcher();
ULONG hookEntry(); /* asm-to-C interface glue =/
struct IClass =cl;
struct IClass =xMakeClass();

if (¢l = MakeClass(NULL,
SUPERCLASSID, NULL, /* superclass 1is public */
sizeof (struct MyInstanceData),
0))

/+ initialize the cl_Dispatcher Hook «*/
cl->cl_Dispatcher.h_Entry = hookEntry;
cl->cl_Dispatcher.h_SubEntry = myDispatcher;

cl->cl_Dispatcher.h_Data = (VOID *) OxFACE; /* unused =/
cl-cl_UserData = (ULONG) myTable;
}
return (cl);
}
BUGS
The typedef ’"Class’ isn’t consistently used. Class pointers

used blindly should be APTR, or struct IClass for class implementors.

SEE ALSO
FreeClass (), AddClass (), RemoveClass (), NewObject (),
Document "Basic Object-Oriented Programming System for Intuition"
and the "boopsi Class Reference" document.

1.55 intuition.library/MakeScreen

intuition 60/ 143

NAME

MakeScreen -- Do an Intuition-integrated MakeVPort () of a screen.
SYNOPSIS

failure = MakeScreen(Screen)

DO (V39) A0

LONG MakeScreen (struct Screen *);
/* Returns LONG in V39 and greater =/

FUNCTION
This procedure allows you to do a MakeVPort () for the viewport of your
custom screen in an Intuition-integrated way. This way you can

do your own screen manipulations without worrying about interference
with Intuition’s usage of the same viewport.

The operation of this function is as follows:
— Block until the Intuition View structure is not in being changed.
- Set the view modes correctly to reflect if there is a (visible)
interlaced screen.
- call MakeVPort (), passing the Intuition View and your screen’s
ViewPort.
— Unlocks the Intuition View.

After calling this routine, you should call RethinkDisplay () to
incorporate the new viewport of your custom screen into the
Intuition display.

NOTE: Intuition may determine that because of a change in global
interlace needs that all viewports need to be remade, so
it may effectively call RemakeDisplay() .

INPUTS
Screen = address of the custom screen structure

RESULT
Starting with V39, returns zero for success, non-zero for failure.
Probable cause of failure is failure of graphics.library/MakeVPort () .
Prior to V39, the return code is invalid. Do not interpret it when
running on pre-V39 systems!

BUGS

SEE ALSO
RethinkDisplay (), RemakeDisplay (), graphics.library/MakeVPort ()

1.56 intuition.library/ModifyIDCMP

NAME
ModifyIDCMP -- Modify the state of a window’s IDCMPFlags.

SYNOPSIS
Success = ModifyIDCMP (Window, IDCMPFlags)
DO (V37) AQ DO

intuition 61/143

BOOL ModifyIDCMP (struct Window =%, ULONG);
/* returns BOOL in V37 and greater =/

FUNCTION
This routine modifies the state of your window’s IDCMP (Intuition
Direct Communication Message Port). The state is modified to reflect

your desires as described by the flag bits in the value IDCMPFlags.
The four actions that might be taken are:

— 1if there is currently no IDCMP in the given window, and IDCMPFlags
is zero, nothing happens

- if there is currently no IDCMP in the given window, and any of the
IDCMPFlags i1s selected (set), then the IDCMP of the window is
created, including allocating and initializing the message ports

and allocating a signal bit for your port. See the "Input and
Output Methods" chapter of the Intuition Reference Manual for full
details

- if the IDCMP for the given window exists, and the
IDCMPFlags argument is zero, this says that you want
Intuition to close the ports, free the buffers and free
your signal bit. You MUST be the same task that was active
when this signal bit was allocated (either by ModifyIDCMP ()

or OpenWindow ()).

— 1if the IDCMP for the given window is opened, and the IDCMPFlags
argument is not zero, this means that you want to change the
state of which events will be broadcast to you through the IDCMP

NOTE: You can set up the Window->UserPort to any port of your own
before you call ModifyIDCMP (). If IDCMPFlags is non-null but

your UserPort is already initialized, Intuition will assume that
it’s a valid port with task and signal data preset and Intuition
won’t disturb your set-up at all, Intuition will just allocate

the Intuition message port half of it. The converse is true
as well: 1if UserPort is NULL when you call here with
IDCMPFlags == NULL, Intuition will deallocate only the Intuition

side of the port.

This allows you to use a port that you already have allocated:
- OpenWindow () with IDCMPFlags equal to NULL (open no ports)
— set the UserPort variable of your window to any valid port of your
own choosing
- call ModifyIDCMP with IDCMPFlags set to what you want
- then, to clean up later, set UserPort equal to NULL before calling
CloseWindow () (leave IDCMPFlags alone) BUT FIRST: you must make
sure that no messages sent your window are queued at the port,
since they will be returned to the memory free pool.

For an example of how to close a window with a shared IDCMP,
see the description for CloseWindow() .

INPUTS
Window = pointer to the Window structure containing the IDCMP ports
IDCMPFlags = the flag bits describing the new desired state of

the IDCMP. The flags are:

intuition

62/143

— IDCMP_REQVERIFY is the flag which, like IDCMP_SIZEVERIFY and

— IDCMP_MENUVERIFY (see immediately below), specifies that you
want to make sure that your graphical state is quiescent

before something extraordinary happens. In this case, the
extraordinary event is that a rectangle of graphical data is
about to be blasted into your Window. If you’re drawing

directly into its screen, you probably will wish to make sure
that you’ve ceased drawing before the user is allowed to bring
up the DMRequest you’ve set up, and the same for when system
has a request for the user. Set this flag to ask for that
verification step.

— IDCMP_REQCLEAR is the flag you set to hear a message whenever
a requester is cleared from your window. If you are using

IDCMP_REQVERIFY to arbitrate access to your screen’s bitmap, it

is safe to start your output once you have heard an
IDCMP_REQCLEAR for each IDCMP_REQSET.

— IDCMP_REQSET is a flag that you set to receive a broadcast
for each requester that is opened in your window. Compare
this with IDCMP_REQCLEAR above. This function is distinct
from IDCMP_REQVERIFY. This functions merely tells you that a
requester has opened, whereas IDCMP_REQVERIFY requires you to
respond before the requester is opened.

— IDCMP_MENUVERIFY is the flag you set to have Intuition stop
and wait for you to finish all graphical output to your
window before rendering the menus. Menus are currently
rendered in the most memory-efficient way, which involves
interrupting output to all windows in the screen before the
menus are drawn. If you need to finish your graphical
output before this happens, you can set this flag to make
sure that you do.

— IDCMP_SIZEVERIFY means that you will be doing output to your
window which depends on a knowledge of the current size of the
window. If the user wants to resize the window, you may want

to make sure that any queued output completes before the sizing

takes place (critical text, for instance). If this is the
case, set this flag. Then, when the user wants to size,

Intuition will send you the IDCMP_SIZEVERIFY message and Wait ()

until you reply that it’s OK to proceed with the sizing. NOTE:
when we say that Intuition will Wait () until you reply, what

we’re really saying is that user will WAIT until you reply, which

suffers the great negative potential of User-Unfriendliness.
So remember: use this flag sparingly, and, as always with any
IDCMP Message you receive, reply to it promptly! Then, after
user has sized the window, you can find out about it using
IDCMP_NEWSIZE.

With all the "VERIFY" functions, it is not save to leave them
enabled at any time when your task may not be able to respond

for a long period.

It is NEVER safe to call AmigaDOS, directly or indirectly, when

intuition

63/143

a

"VERIFY" function is active. If AmigaDOS needs to put up a

disk requester for you, your task might end up waiting for the
requester to be satisfied, at the same time as Intuition is
waiting for your response. The result is a complete machine
lockup. USE ModifyIDCMP () TO TURN OFF ANY VERIFY MESSAGES
BEFORE CALLING dos.library!!

For V36: If you do not respond to the verification IntuiMessages
within the user specified timeout duration, Intuition will abort
the operation. This eliminates the threat of these easy
deadlocks, but can result in a confused user. Please try

hard to continue to avoid "logical deadlocks".

IDCMP_NEWSIZE is the flag that tells Intuition to send an IDCMP
message to you after the user has resized your window. At

this point, you could examine the size variables in your
window structure to discover the new size of the window.

See also the IDCMP_CHANGEWINDOW IDCMP flag.

IDCMP_REFRESHWINDOW when set will cause a message to be sent
whenever your window needs refreshing. This flag makes
sense only with WFLG_SIMPLE_REFRESH and WFLG_SMART_REFRESH
windows.

IDCMP_MOUSEBUTTONS will get reports about mouse-button up/down
events broadcast to you (Note: only the ones that

don’t mean something to Intuition. If the user clicks the
select button over a gadget, Intuition deals with it and you
don’t find out about it through here).

IDCMP_MOUSEMOVE will work only if you’ve set the
WELG_REPORTMOUSE flag above, or if one of your gadgets has the
GACT_FOLLOWMOUSE flag set. Then all mouse movements will be
reported here, providing your window is active.

IDCMP_GADGETDOWN means that when the User "selects" a gadget
you’ve created with the GACT_IMMEDIATE flag set, the fact
will be broadcast through the IDCMP.

IDCMP_GADGETUP means that when the user "releases" a gadget that
you’ve created with the GACT_RELVERIFY flag set, the fact

will be broadcast through the IDCMP. This message is

only generated if the release is "good", such as releasing

the select button over a Boolean gadget, or typing ENTER

in a string gadget.

IDCMP_MENUPICK selects that menu number data will be sent via
the IDCMP.

IDCMP_CLOSEWINDOW means broadcast the IDCMP_CLOSEWINDOW event
through the IDCMP rather than the console.

IDCMP_RAWKEY selects that all IDCMP_RAWKEY events are
transmitted via the IDCMP. Note that these are absolutely RAW
keycodes, which you will have to translate before using.

Setting this and the MOUSE flags effectively eliminates the need
to open a Console device to get input from the keyboard and

intuition

64 /143

mouse. Of course, in exchange you lose all of the console
features, most notably the "cooking" of input data and
the systematic output of text to your window.

IDCMP_VANILLAKEY is for developers who don’t want the hassle

of IDCMP_RAWKEYS. This flag will return all the keycodes after
translation via the current country-dependent keymap. When

you set this flag, you will get IntuiMessages where the Code
field has a decoded ANSI character code representing the key
struck on the keyboard. Only codes that map to a single
character are returned: you can’t read such keys as HELP or

the function keys with IDCMP_VANILLAKEY.

NEW FOR V36: If you have both IDCMP_RAWKEY and IDCMP_VANILLAKEY
set, Intuition will send an IDCMP_RAWKEY event for those
rdownstrokes* which do not map to single-byte characters
("non-vanilla" keys). In this way you can easily detect cursor
keys, function keys, and the Help key without sacrificing the
convenience of IDCMP_VANILLAKEY. NB: A side-effect of having
both IDCMP_RAWKEY and IDCMP_VANILLAKEY set is that you never
hear IDCMP_RAWKEY upstrokes, even for keys that caused
IDCMP_RAWKEY downstrokes.

IDCMP_INTUITICKS gives you simple timer events from Intuition
when your window is the active one; it may help you avoid
opening and managing the timer device. With this flag set,

you will get only one queued-up INTUITICKS message at a

time. If Intuition notices that you’ve been sent an
IDCMP_INTUITICKS message and haven’t replied to it, another
message will not be sent. Intuition receives timer events and
considers sending you an IDCMP_INTUITICKS message approximately
ten times a second.

IDCMP_DELTAMOVE gives raw (unscaled) input event delta X/Y
values. This is so you can detect mouse motion regardless of
screen/window/display boundaries. This works a little
strangely: if you set both IDCMP_MOUSEMOVE and IDCMP_DELTAMOVE.
IDCMPFlags, you will get IDCMP_MOUSEMOVE messages with delta
x/y values in the MouseX and MouseY fields of the

IDCMPMessage.

IDCMP_NEWPREFS indicates you wish to be notified when the
system-wide Preferences changes. For V36, there is a new
environment mechanism to replace Preferences, which we
recommend you consider using instead.

Set IDCMP_ACTIVEWINDOW and IDCMP_INACTIVEWINDOW to get messages
when those events happen to your window. Take care not to
confuse this "ACTIVEWINDOW" with the familiar sounding, but
totally different "WINDOWACTIVE" flag. These two flags have

been supplanted by "IDCMP_ACTIVEWINDOW" and "WFLG_WINDOWACTIVE".

Use the new equivalent terms to avoid confusion.

Set IDCMP_DISKINSERTED or IDCMP_DISKREMOVED to learn when
removable disks are inserted or removed, respectively.

IDCMP_IDCMPUPDATE is a new class for V36 which is used as

intuition

65/143

a channel of communication from custom and boopsi gadgets
to your application.

— IDCMP_CHANGEWINDOW is a new class for V36 that will be sent
to your window whenever its dimensions or position are changed
by the user or the functions SizeWindow (), MoveWindow (),
ChangeWindowBox (), or ZipWindow () .

— IDCMP_MENUHELP is new for V37. If you specify the WA_MenuHelp
tag when you open your window, then when the user presses the
HELP key on the keyboard during a menu session, Intuition will
terminate the menu session and issue this even in place of an
IDCMP_MENUPICK message.

NEVER follow the NextSelect link for MENUHELP messages.

You will be able to hear MENUHELP for ghosted menus.

(This lets you tell the user why the option is ghosted.)

Be aware that you can receive a MENUHELP message whose code

corresponds to a menu header or an item that has sub-items

(which does not happen for MENUPICK). The code may also be

MENUNULL.

LIMITATION: 1if the user extend-selects some checkmarked

items with the mouse, then presses MENUHELP, your

application will only hear the MENUHELP report. You

must re-examine the state of your checkmarks when you

get a MENUHELP.

Availability of MENUHELP in V36 is not directly

controllable. We apologize...

— IDCMP_GADGETHELP is new for V39. If you turn on
gadget help for your window (using the HelpControl ())
function, then Intuition will send IDCMP_GADGETHELP
messages when the mouse passes over certain gadgets or
your window. The IntuiMessage->Code field is normally
~0, but a boopsi gadget can return any word value it wishes.

Ordinarily, gadget help is only processed for the active
window. When Intuition has determined that the mouse is
pointing at a gadget which has the GMORE_GADGETHELP
property, you will be sent an IDCMP_GADGETHELP message
whose IAddress points to the gadget. When the mouse is
over your window but not over any help-aware gadget, you
will be sent a message whose IAddress is the window
itself. When the mouse is not over your window,
Intuition sends a message whose IAddress is zero.

A multi-window application can use the WA_HelpGroup or
WA_HelpGroupWindow tags to indicate that all its windows
belong in a group. (The help group identifier should be
obtained with utility.library/GetUniqueID().) This makes
Intuition test gadget help in all windows of the group
when any one of them is the active one. Inactive windows
whose WA_HelpGroup matches the active window’s receive
IDCMP_GADGETHELP messages when the mouse is over that
window or any of its help-aware gadgets. The GADGETHELP
message with an IAddress of zero means the mouse is not
over the active window or any other window of the same
group. It is always sent to the active window (which is

intuition 66 /143

not necessarily the window in your group that last got a
message) .

To maximize performance, gadget help is not checked
while the mouse is travelling quickly, or if it has not
moved at all since the last test. As well, if Intuition
discovers that the mouse is still over same gadget and
that gadget does not wish to send a different
IntuiMessage->Code from the last message, no new
IntuiMessage is sent.

RESULT
Starting in V37, this function returns NULL if it was unable
to create the necessary message ports. (The possibility of

failure exists in earlier releases, but no return code was offered).
Do not check the return code under V36 or earlier.

BUGS

SEE ALSO
OpenWindowTagList (), OpenWindow (), CloseWindow ()

1.57 intuition.library/ModifyProp

NAME
ModifyProp —-—- Modify the current parameters of a proportional gadget.
SYNOPSIS
ModifyProp(Gadget, Window, Requester,
AQ Al A2
Flags, HorizPot, VertPot, HorizBody, VertBody)
DO D1 D2 D3 D4

VOID ModifyProp(struct Gadget =%, struct Window x,
struct Requester x, UWORD, UWORD, UWORD, UWORD, UWORD);

FUNCTION
Modifies the parameters of the specified proportional gadget. The
gadget’s internal state is then recalculated and the imagery
is redisplayed in the window or requester that contains the gadget.

The requester variable can point to a requester structure. If the
gadget has the GTYP_REQGADGET flag set, the gadget is in a requester
and the window pointer must point to the window of the requester.

If this is not the gadget of a requester, the requester argument may
be NULL.

NOTE: this function causes all gadgets from the proportional
gadget to the end of the gadget list to be refreshed, for
reasons of compatibility.

For more refined display updating, use NewModifyProp() .

New for V36: ModifyProp () refreshing consists of redrawing gadgets
completely. NewModifyProp () has changed this behavior (see
NewModifyProp()) .

intuition 67 /143

INPUTS

PropGadget = pointer to a proportional gadget
Window = pointer to the window containing the gadget or the window

containing the requester containing the gadget.
Requester = pointer to a requester (may be NULL if this isn’t

a requester gadget)
Flags = value to be stored in the Flags field of the PropInfo
HorizPot = value to be stored in the HorizPot field of the PropInfo
VertPot = value to be stored in the VertPot field of the PropInfo
HorizBody = value to be stored in the HorizBody field of the PropInfo
VertBody = value to be stored in the VertBody field of the PropInfo

RESULT
None

BUGS
SEE ALSO
NewModifyProp ()

The Intuition Reference Manual and Amiga ROM Kernel Manual contain
more information on Proportional Gadgets.

1.58 intuition.library/MoveScreen

NAME
MoveScreen —-- Attempt to move the screen by the increments provided.
SYNOPSIS
MoveScreen (Screen, DeltaX, DeltaY)
AO DO D1

VOID MoveScreen(struct Screen %, WORD, WORD);

FUNCTION
Moves the screen the specified increment, specified in screen
pixel resolution coordinates.

New for V36: Screen movement limits have been greatly relaxed,
to support screen scrolling. 1In particular, negative values
for screen LeftEdge and TopEdge may now be valid.

If the DeltaX and Delta¥Y variables you specify would move the screen
in a way that violates any restrictions, the screen will be moved
as far as possible. You may examine the LeftEdge and TopEdge fields
of the Screen structure after this function returns to see where
the screen really ended up.

INPUTS
Screen = pointer to a Screen structure
DeltaX amount to move the screen on the x-axis
Note that DeltaX no longer (V36) need be set to zero
DeltaY = amount to move the screen on the y-axis
Note that these coordinates are in the same resolution
as the screen (such as HIRES or INTERLACE)

intuition 68 /143

RESULT
None

BUGS

SEE ALSO
ScreenPosition (), RethinkDisplay ()

1.59 intuition.library/MoveWindow

NAME
MoveWindow —-—- Ask Intuition to move a window.
SYNOPSIS
MoveWindow (Window, DeltaX, DeltaY)
A0 DO D1

VOID MoveWindow (struct Window %, WORD, WORD);

FUNCTION
This routine sends a request to Intuition asking to move the window
the specified distance. The delta arguments describe how far to

move the window along the respective axes.

Note that the window will not be moved immediately, but rather
will be moved the next time Intuition receives an input event,
which happens currently at a minimum rate of ten times per second,
and a maximum of sixty times a second.

Interactions with other arbitration of Intuition data structures
may defer this operation longer. For V36, you can use the new
IDCMP class IDCMP_CHANGEWINDOW to detect when this operation has
completed.

New for V36: Intuition now will do validity checking on the final
position. To send absolute movements, or to move and size a
window in one step, use ChangeWindowBox () .

INPUTS
Window = pointer to the structure of the Window to be moved
DeltaX = how far to move the Window on the x—-axis

DeltaY = how far to move the Window on the y-axis

RESULT
None

BUGS

SEE ALSO
ChangeWindowBox (), SizeWindow (), WindowToFront (), WindowToBack ()

intuition 69/143

1.60 intuition.library/MoveWindowIlnFrontOf

NAME

MoveWindowInFrontOf —-- Arrange the relative depth of a window. (V36)
SYNOPSIS

MoveWindowInFrontOf (Window, BehindWindow)

AQ Al
VOID MoveWindowInFrontOf (struct Window *, struct Window *);

FUNCTION
Depth-arranges a window in front of an another window.
Brings out the layers.library MovelayerInFrontOf () to the
Intuition user.

INPUTS
Window = window to re-position in front of another window
BehindWindow = window to re-position in front of

RESULT

Repositions window.

BUGS
Doesn’t respect backdrop windows.

SEE ALSO
WindowToFront (), WindowToBack (), layers.library/MoveLayerInFrontOf ()

1.61 intuition.library/NewModifyProp

NAME
NewModifyProp —-- ModifyProp (), but with selective refresh.
SYNOPSIS
NewModifyProp (Gadget, Window, Requester, Flags,
AQ Al A2 DO
HorizPot, VertPot, HorizBody, VertBody, NumGad)
D1 D2 D3 D4 D5

VOID NewModifyProp(struct Gadget *, struct Window =,
struct Requester %, UWORD, UWORD, UWORD, UWORD, UWORD, WORD) ;

FUNCTION
Performs the function of ModifyProp (), but refreshes
gadgets in the list as specified by the NumGad parameter.
With NumGad = -1, this function is identical to ModifyProp() .
New for V36: When NumGad = 1, this function will now perform
an incremental update of the proportional gadget knob image,
rather than refreshing the entire gadget. This means much

less flashing when programmatically scrolling a proportional
gadget.

intuition 70/143

INPUTS
PropGadget = pointer to a proportional gadget
Window = pointer to the window containing the gadget or the window
containing the requester containing the gadget.
Requester = pointer to a requester (may be NULL if this isn’t
a requester gadget)
Flags = value to be stored in the Flags field of the PropInfo
HorizPot = wvalue to be stored in the HorizPot field of the PropInfo
VertPot = value to be stored in the VertPot field of the PropInfo
HorizBody = value to be stored in the HorizBody field of the PropInfo
VertBody = value to be stored in the VertBody field of the PropInfo
NumGad = number of gadgets to be refreshed after propgadget internals
have been adjusted. -1 means "to end of list."

RESULT
None

BUGS
SEE ALSO
ModifyProp ()

The Intuition Reference Manual contains more information on
Proportional Gadgets.

1.62 intuition.library/NewObiject

NAME
NewObjectA —- Create an object from a class. (V36)
NewObject —-- Varargs stub for NewObjectA(). (V36)
SYNOPSIS
object = NewObjectA(class, classID, tagList)
DO AQ Al A2

APTR NewObjectA(struct IClass *, UBYTE %, struct Tagltem *);
object = NewObject(class, classID, Tagl, ...)
APTR NewObject (struct IClass x, UBYTE %, ULONG, ...);

FUNCTION
This is the general method of creating objects from ’'boopsi’ classes.
("Boopsi’ stands for "basic object-oriented programming system for
Intuition".)

You specify a class either as a pointer (for a private class) or
by its ID string (for public classes). If the class pointer
is NULL, then the classID is used.

You further specify initial "create-time" attributes for the

object via a Tagltem list, and they are applied to the resulting
generic data object that is returned. The attributes, their meanings,
attributes applied only at create-time, and required attributes

are all defined and documented on a class-by-class basis.

intuition 71/143

INPUTS
class = abstract pointer to a boopsi class gotten via MakeClass () .
classID = the name/ID string of a public class. This parameter is

only used if ‘class’ is NULL.
tagList = pointer to array of Tagltems containing attribute/value
pairs to be applied to the object being created

RESULT
A boopsi object, which may be used in different contexts such
as a gadget or image, and may be manipulated by generic functions.
You eventually free the object using DisposeObject ().

NOTES
This function invokes the OM_NEW "method" for the class specified.

BUGS
Typedef’s for ’"Object’ and ’'Class’ are defined in the include
files but not used consistently. The generic type APTR is
probably best used for object and class "handles", with the
type (UBYTE %) used for classID strings.

SEE ALSO
DisposeObject (), SetAttrs(), GetAttr (), MakeClass(),
Document "Basic Object-Oriented Programming System for Intuition"
and the "boopsi Class Reference" document.

1.63 intuition.library/NextObject

NAME

NextObject —-- iterate through the object on an Exec list. (V36)
SYNOPSIS

object = NextObject (objectPtrPtr)

DO AQ

APTR NextObject (APTR);

FUNCTION
This function is for boopsi class implementors only.

When you collect a set of boopsi objects on an Exec List
structure by invoking their OM_ADDMEMBER method, you
can (only) retrieve them by iterations of this function.

Works even if you remove and dispose the returned list
members in turn.

INPUTS
Initially, you set a pointer variable to equal the
1h_Head field of the list (or mlh Head field of a MinList).
You pass the xaddressx of that pointer repeatedly
to NextObject () until it returns NULL.

EXAMPLE

intuition

72/143

/* here i1s the OM_DISPOSE case of some class’s dispatcher =/
case OM_DISPOSE:
/+ dispose members */
object_state = mydata->md_CollectionList.lh_Head;
while (member_object = NextObject (&object_state))
{
DoMethod (member_object, OM_REMOVE); /* remove from list =/
DoMethodA (member, msg); /* and pass along dispose =/
}

RESULT
Returns pointers to each object in the list in turn, and NULL
when there are no more.

NOTES

BUGS

SEE ALSO
DisposeObject (), SetAttrs(), GetAttr (), MakeClass(),

Document "Basic Object-Oriented Programming System for Intuition”
and the "boopsi Class Reference" document.

1.64 intuition.library/NextPubScreen

NAME

NextPubScreen —-- Identify next public screen in the cycle. (V36)
SYNOPSIS

Buff = NextPubScreen(Screen, NameBuff)

DO A0 Al

UBYTE +*NextPubScreen(struct Screen *, UBYTE x);

FUNCTION
Returns name of next public screen in system rotation, to
allow visitor windows to provide function to "jump" among
public-screens in a cycle.

INPUTS
Screen = pointer to the screen your window is currently open in,
or NULL, if you don’t have a pointer to a public screen.
NameBuff = pointer to a buffer of MAXPUBSCREENNAME+1 characters,
for Intuition to fill in with the name of the next public
screen in rotation.

RESULT
Returns NULL if there are no public screens, otherwise a
pointer to your NameBuff.

NOTES
There is no guarantee that the public screen whose name
was returned by this function will exist or be in "public" state
by the time you call LockPubScreen(), etc. You must handle
cases where LockPubScreen(), etc. will fail.

intuition 73/143

Note that this function may return the name of a public screen
which is open but in "private mode" (see PubScreenStatus() and
PSNF_PRIVATE) .

BUGS
Due to a bug, your buffer needs to be (MAXPUBSCREENNAME + 1)
characters big, which is one more than originally documented.

The starting screen and cycle order of the public screens isn’t
defined, so do not draw conclusions about the order you

see in the current version of Intuition. We reserve the

right to add meaning to the ordering at a future time.

SEE ALSO
OpenScreen (), Intuition V36 update documentation

1.65 intuition.library/ObtainGIRPort

NAME

ObtainGIRPort —-- Set up a RastPort for a custom gadget. (V36)
SYNOPSIS

RPort = ObtainGIRPort (GInfo)

DO AQ

struct RastPort xObtainGIRPort (struct GadgetInfo x);

FUNCTION
Sets up a RastPort for use (only) by custom gadget hook routines.
This function must be called EACH time a hook routine needing
to perform gadget rendering is called, and must be accompanied
by a corresponding call to ReleaseGIRPort ().

Note that if a hook function passes you a RastPort pointer,
e.g., GM_RENDER, you needn’t call ObtainGIRPort () in that case.

INPUTS
A pointer to a GadgetInfo structure, as passed to each custom
gadget hook function.

RESULT
A pointer to a RastPort that may be used for gadget rendering.
This pointer may be NULL, in which case you should do no rendering.
You may (optionally) pass a null return value to ReleaseGIRPort().

BUGS

SEE ALSO
ReleaseGIRPort (), Custom Gadget documentation

1.66 intuition.library/OffGadget

intuition 74 /143

NAME
OffGadget ——- Disable the specified gadget.
SYNOPSIS
OffGadget (Gadget, Window, Requester)
AQ Al A2

VOID OffGadget (struct Gadget x, struct Window x,
struct Requester *);

FUNCTION
This command disables the specified gadget. When a gadget is
disabled, these things happen:
- its imagery is displayed ghosted
- the GFLG_DISABLED flag is set
— the gadget cannot be selected by User

The window parameter must point to the window which contains the
gadget, or which contains the requester that contains the gadget.
The requester parameter must only be valid if the gadget has the
GTYP_REQGADGET flag set, a requirement for all requester gadgets.

NOTE: it’s never safe to tinker with the gadget list yourself. Don’t
supply some gadget that Intuition hasn’t already processed in
the usual way.

NOTE: for compatibility reasons, this function will refresh all
gadgets in a requester, and all gadgets from gadget to the
end of the gadget list if gadget is in a window.

If you want to improve on this behavior, you may perform the
equivalent operation yourself: remove a gadget or gadgets,
change the state of their GFLG_DISABLED flag, replace the

gadgets using AddGList (), and selectively call RefreshGList ().
INPUTS

Gadget = pointer to the gadget that you want disabled

Window = pointer to a window structure containing the gadget or

containing the requester which contains the gadget
Requester = pointer to a requester (may by NULL if this isn’t
a requester gadget (i.e. GTYP_REQGADGET is not set)).

RESULT
None

BUGS

SEE ALSO
OnGadget () , AddGadget (), RefreshGadgets()

1.67 intuition.library/OffMenu

NAME
OffMenu —-- Disable the given menu or menu item.

intuition 75/143

SYNOPSIS
OffMenu (Window, MenuNumber)
A0 DO

VOID OffMenu(struct Window x, UWORD);

FUNCTION
This command disables a sub-item, an item, or a whole menu.
This depends on the contents of the data packed into MenuNumber,
which is described in the Intuition Reference Manual.

INPUTS
Window = pointer to the window
MenuNumber = the menu piece to be disabled

RESULT
None

BUGS

SEE ALSO
OnMenu (), ResetMenuStrip ()

1.68 intuition.library/OnGadget

NAME
OnGadget —- Enable the specified gadget.
SYNOPSIS
OnGadget (Gadget, Window, Requester)
AQ Al A2

VOID OnGadget (struct Gadget x, struct Window x,
struct Requester *);

FUNCTION
This command enables the specified gadget. When a gadget is
enabled, these things happen:
— its imagery is displayed normally (not ghosted)
— the GFLG_DISABLED flag is cleared
— the gadget can thereafter be selected by the user

The window parameter must point to the window which contains the
gadget, or which contains the requester that contains the gadget
The requester parameter must only be valid if the gadget has the
GTYP_REQGADGET flag set, a requirement for all requester gadgets.

NOTE: it’s never safe to tinker with the gadget list yourself. Don’t
supply some gadget that Intuition hasn’t already processed in
the usual way.

NOTE: for compatibility reasons, this function will refresh all
gadgets in a requester, and all gadgets from gadget to the
end of the gadget list if gadget is in a window.

intuition 76 /143

If you want to improve on this behavior, you may perform the
equivalent operation yourself: remove a gadget or gadgets,
change the state of their GFLG_DISABLED flag, replace the
gadgets using AddGList (), and selectively call RefreshGList ().

INPUTS
Gadget = pointer to the gadget that you want disabled
Window = pointer to a window structure containing the gadget or
containing the requester which contains the gadget
Requester = pointer to a requester (may by NULL if this isn’t
a requester gadget (i.e. GTYP_REQGADGET is not set)).

RESULT
None

BUGS
Traditional gadgets are rendered very simply. This can result
in incomplete clearing away of the ghosting pattern when
OnGadget () is used. For example, a button whose imagery consists
of an IntuiText inside a rectangular Border doesn’t have the
button interior cleared by OnGadget (). This is because OnGadget ()

clears the GFLG_DISABLED flag then redraws the gadget. Redrawing
this gadget consists of redrawing the border and text. Nothing
redraws the field.

The solution to this type of problem is to either use a gadget
whose imagery is a struct Image that covers the whole select area,
or to manually remove the gadget, erase the gadget’s select area
(say using EraseRect()), then clear the GFLG_DISABLED flag,

add the gadget back to the window, and refresh it.

SEE ALSO
OffGadget ()

1.69 intuition.library/OnMenu

NAME

OnMenu —-- Enable the given menu or menu item.
SYNOPSIS

OnMenu (Window, MenuNumber)

A0 DO
VOID OnMenu(struct Window %, UWORD);

FUNCTION
This command enables a sub-item, an item, or a whole menu.
This depends on the contents of the data packed into MenuNumber,
which is described in the Intuition Reference Manual.

INPUTS
Window = pointer to the window
MenuNumber = the menu piece to be enables

intuition 77 /143

RESULT
None

BUGS

SEE ALSO
OffMenu (), ResetMenuStrip ()

1.70 intuition.library/OpenScreen

NAME

OpenScreen —-- Open an Intuition screen.
SYNOPSIS

Screen = OpenScreen(NewScreen)

DO AQ

struct Screen *OpenScreen(struct NewScreen x);
or
struct Screen *OpenScreen(struct ExtNewScreen x);

FUNCTION
Opens an Intuition screen according to the specified parameters
found in the NewScreen structure.

Does all the allocations, sets up the screen structure and all
substructures completely, and links this screen’s viewport into
Intuition’s View structure.

Before you call OpenScreen(), you must initialize an instance of
a NewScreen structure. NewScreen is a structure that contains

all of the arguments needed to open a screen. The NewScreen
structure may be discarded immediately after OpenScreen() returns.

The SHOWTITLE flag is set to TRUE by default when a screen is opened.
To change this, you must call the routine ShowTitle().

INPUTS
NewScreen = pointer to an instance of a NewScreen structure.

New for V36:

In addition to the information contained in the NewScreen structure,
Intuition now recognizes extended data passed in the form

of an array of Tagltem structures (from <utility/tagitem.h>),
commonly called a "tag list."

There are two ways to provide this array. The first is to
use the new Intuition entry point OpenScreenTagList () and
pass the tag list as a parameter. This is the recommended
method, and has a convenient format variation for C programs
using a variable number of arguments.

An older way used for some V36 development uses the OpenScreen ()

intuition 78 /143

entry point, and an extension of the NewScreen structure named
ExtNewScreen. See the documentation of the flag NS_EXTENDED,
below.

While we recommend that you use OpenScreenTagList () rather than
OpenScreen () when using the extension tag list, we document

the tag ID values here, so that all parameters for opening

a screen can be found in one place.

NewScreen is initialized with the following information:
Left = initial x-position of your screen (should be zero for
releases prior to V36)

Top = initial y-position of the opening screen
(Note: Left and Top are specified relative to the Intuition’s view,
in same resolution as the screen pixels.)

Width = the width for this screen’s RastPort

Height = the height for this screen’s RastPort, or the constant
STDSCREENHEIGHT to get the current default height (at
this time guaranteed to be at least 200 rows). The normal
width and height for a particular system is stored by
the graphics.library in GfxBase->NormalDisplayRows and
GfxBase->NormalDisplayColumns. These values will be different
depending on factors such as PAL video and overscan.

For V36, a new constant STDSCREENWIDTH is introduced. It
serves the similar function for screen width. Both
STDSCREENWIDTH and STDSCREENHEIGHT indicate that your
screen RastPort is to be the same dimensions as your
DisplayClip rectangle. If you do not specify either a
standard or custom DisplayClip, the OSCAN_TEXT region

will be used, which corresponds to the standard dimensions
of V35 and earlier.

Furthermore, if you are using OpenScreenTaglList (), and you
specify STDSCREENWIDTH, and you DO NOT provide a NewScreen
pointer, and you DO NOT provide sA_Left, then Intuition
will automatically set the LeftEdge of the screen to

be the left edge of the screen’s DisplayClip region.
Likewise for STDSCREENHEIGHT and the screen’s TopEdge.

Depth = number of bitplanes

DetailPen = pen number for details (like gadgets or text in title bar)
The common value for this pen is 0.

BlockPen = pen number for block fills (like title bar)
The common value for this pen is 1.

Type = screen type values
Set these flags as desired from the set:
CUSTOMSCREEN —-- this is your own screen, not a system screen.
CUSTOMBITMAP -- this custom screen has bit maps supplied

in the bitmap field of the NewScreen structure. Intuition is

intuition 79/143

not to allocate any raster bitmaps.

SCREENBEHIND -- your screen will be created behind all other open
screens. This allows a program to prepare imagery in the
screen, change its colors, and so on, bringing it to the
front when it is presentable.

SCREENQUIET -- Intuition will not render system screen gadgets or
screen title. In concert with the WFLG_RMBTRAP flag on all
your screen’s windows, this flag will prevent Intuition from
rendering into your screen’s bitplanes. Without WFLG_RMBTRAP
(or using the IDCMP_MENUVERIFY facility to cancel menu
operations), this flag will prevent Intuition from clearing

your menu bar, which is probably unacceptable. The menu bar
layer may still overwrite a portion of your screen bitmap
when the screen is opened. (V36: it won’t clobber your bits

any more.)
NS_EXTENDED for this screen to use extended attributes pointed
to by the ’"Extended’ field, below.

ViewModes = the appropriate argument for the data type ViewPort.Modes.
These include:
HIRES for this screen to be HIRES width.
LACE for the display to switch to interlace.
SPRITES for this screen to use sprites (the pointer
sprite is always displayed)

DUALPF for dual-playfield mode (not supported yet)

[For V36: The ViewModes field is superseded by a TagItem with

tag value SA_DisplayID.]

Font = pointer to the default TextAttr structure for text in this
screen and all windows that open in this screen. Text that uses
this TextAttr includes title bars of both screen and windows,
string gadgets, and menu titles. Of course, IntuiText that
specifies a NULL TextAttr field will use the screen/window default
fonts. ©NOTE: Intuition will xNOTx call OpenDiskFont (), so
the TextAttr you supply must be in memory. The ways to ensure
that are to either use a ROM font (Topaz 8 or 9) or first
call OpenDiskFont () to load the font, and don’t close it
until after your screen is successfully opened.

[For V36: this is superseded by SA_Font and SA_SysFont.]

DefaultTitle = pointer to a line of text that will be displayed along
the screen’s title bar. Null terminated, or Jjust a NULL pointer
to get no text
[For V36: superseded by SA _Title.]

Gadgets = This field should be set to NULL, since no user gadgets may
be attached to a screen with the current versions of Intuition.

CustomBitMap = if you’re not supplying a custom bitmap, this value is
ignored. However, if you have your own display memory that you
want used for this screen, the CustomBitMap field should point to

the BitMap structure that describes your display memory. See the
"Screens" chapter and the "Amiga ROM Kernel Manual" for more
information about bitmaps.

[For V36: this is superseded by SA_BitMap.]

[All TagItem extensions below are new for V36.]

intuition

80/143

Extension = if NS_EXTENDED is set in NewScreen.Type, this pointer
should point to an array (or chain of arrays) of Tagltems,
as defined in the include file <utility/tagitem.h>. This
field is only defined in the structure ExtNewScreen.
The values to use for Tagltem.ti_Tag are defined below. We
recommend that V36-specific applications use the new Intuition
entry point OpenScreenTaglList (), rather than using this field.
The ExtNewScreen structure is a convenient way to give V36
Intuition some information that V34 and earlier Intuition will
ignore.

Each TagItem is an optional tagged data structure which identifies
an additional parameter to OpenScreen(). The applicable tag ID
values for TagItem.ti_Tag and their corresponding data follow.

Several of the tag items are alternative (and overriding) versions
to familiar fields in NewScreen. (Defaults only apply if
NewScreen == NULL) . They are:

SA_Left

SA_Top

SA_Width

SA_Height
The defaults for the SA_Left, SA_Top, SA_Width, and
SA_Height tags end up being a bit complex. If none of
these tags are specified, and no NewScreen structure is
used, then the left/top/width/height correctly match the
display clip of your screen (see SA_DClip and
SA_Overscan) .

The difficulty comes with overscanned screens, because the
normal value of SA_Left or SA_Top for such a screen may be
non-zero. If a NewScreen structure is supplied, then the
left/top/width/height come originally from there. If no
NewScreen structure is supplied, but a non-default
SA_Width (SA_Height) is specified, then SA_Left (SA_Top)
defaults to zero instead. 1In these cases, the left and
top edge may not be what you want.

If you need to specify explicit width or height, or supply
a NewScreen, you must supply correct values for SA_Left
and SA_Top. The correct normal values are the display
clip rectangle’s MinX and MinY values respectively. If
you are using the SA_DClip tag, then you already have a
rectangle to consult for these values. If you are using
SA_Overscan to get one of the standard overscan types, you
may use QueryOverscan() to get a rectangle for that
overscan type.

SA_Depth (defaults to 1)

SA_DetailPen (defaults to 0)

SA_BlockPen (defaults to 1)

SA_Title (defaults to NULL)

SA_Font (defaults to NULL, meaning user’s preferred monospace font)
SA_BitMap (whose existence also implies CUSTOMBITMAP) .

Several tags are Booleans, which means that depending on whether

intuition 81/143

their corresponding ti_Data field is zero (FALSE) or non-zero
(TRUE), they specify Boolean attributes. The ones corresponding
to Boolean flags in the NewScreen.Type field are:

SA_ShowTitle (defaults to TRUE)
SA_Behind (equiv. to SCREENBEHIND) (defaults to FALSE)
SA_Quiet (equiv. to SCREENQUIET) (defaults to FALSE)

The following tags provide extended information to Intuition
when creating a screen:

SA_Type: ti_Data corresponds to the SCREENTYPE bits of the
NewScreen.Type field. This should be one of PUBLICSCREEN or
CUSTOMSCREEN. The other bits of the NewScreen.Type field
must be set with the appropriate tags (SA_Behind, SA_Quiet,
etc.)

SA_DisplayID: ti_Data is a 32-bit extended display mode ID, as
defined in the <graphics/modeid.h> include file (V39 and up)
or in <graphics/displayinfo.h> (V37 and V38).

SA_Overscan: ti_Data contains a defined constant specifying
one of the system standard overscan dimensions appropriate for
the display mode of the screen. Used with the Width and
Height dimensions STDSCREENWIDTH and STDSCREEN, this makes
it trivial to open an overscanned or standard dimension
screen. You may also hand-pick your various dimensions
for overscanned or other screens, by specifying screen position
and dimensions explicitly, and by using SA_DClip to explicitly
specify an overscanned DisplayClip region.

The values for ti_Data of this tag are as follows:

OSCAN_TEXT - Text Overscan region. A region which is completely
on screen and readable ("text safe"). A preferences data
setting, this is backward equivalent with the old MoreRows,

and specifies the DisplayClip and default dimensions of the
Workbench screen. This is the default.

OSCAN_STANDARD - Also a preferences setting, this specifies
a rectangle whose edges are "just out of view." This yields
the most efficient position and dimensions of on-monitor
presentations, such as games and artwork.

OSCAN_MAX - This is the largest rectangular region that the
graphics library can handle "comfortably" for a given mode.
Screens can smoothly scroll (hardware pan) within this region,
and any DisplayClip or Screen region within this rectangle

is also legal. It is not a preferences item, but reflects
the limits of the graphics hardware and software.

OSCAN_VIDEO - This is the largest region that the graphics
library can display, comfortable or not. There is no guarantee
that all smaller rectangles are valid. This region is
typically out of sight on any monitor or TV, but provides our
best shot at "edge-to-edge" video generation.

intuition 82/143

Remember, using overscan drastically effects memory use and
chip memory bandwidth. Always use the smallest (standard)
overscan region that works for your application.

SA_DClip: ti_Data is a pointer to a rectangle which explicitly
defines a DisplayClip region for this screen. See QueryOverscan ()
for the role of the DisplayClip region.

Except for overscan display screens, this parameter is
unnecessary, and specifying a standard value using SA_Overscan
is normally an easier way to get overscan.

SA_AutoScroll: this is a Boolean tag item, which specifies that
this screens is to scroll automatically when the mouse pointer
reaches the edge of the screen. The operation of this requires
that the screen dimensions be larger than its DisplayClip
region.

SA_PubName: If this field is present (and ti_Data is non-NULL),
it means that the screen is a public screen, and that
the public screen name string is pointed to by ti_Data.
Public screens are opened in "PRIVATE" mode and must
be made public using PubScreenStatus(screen, 0).

SA_Pens: The ti_Data field (if non-NULL) points to a UWORD
array of pen specification, as defined for struct DrawInfo.
This array will be used to initialize the screen’s
DrawInfo.dri_Pens array.

SA_Pens 1s also used to decide that a screen is ready
to support the full-blown "new look" graphics. If you
want the 3D embossed look, you must provide this tag,
and the ti_Data value cannot be NULL. If it points

to a "minimal" array, containing just the terminator ~0,
you can specify "new look" without providing any values
for the pen array.

The way the DrawInfo pens are determined is Intuition
picks a default pen-array. Then, any pens you supply with
SA_Pens override the defaults, up until the ~0 in your
array.

If the screen is monochrome or old-look, the default will
be the standard two-color pens.

If the screen is two or more planes deep, the default will
be the standard four-color pens, which now include the
new—look menu colors.

If the screen has the SA_LikeWorkbench property, the
default will be the user’s preferred pen-array, changeable
through preferences.

The following two tag items specify the task and signal to be issued
to notify when the last "visitor" window closes on a public screen.
This support is to assist envisioned public screen manager programs.

intuition 83/143

SA_PubTask: Task to be signalled. If absent (and SA_PubSig is
valid), use the task which called OpenScreen () or
OpenScreenTagList ()) .

SA_PubSig: Data is a UBYTE signal number (not flag) used to notify
a task when the last visitor window closes on a public screen.

SA_Colors: ti_Data points to an array of ColorSpec structures
(terminated with ColorIndex = -1) which specify initial
values of the screen’s color palette.

SA_FullPalette: this is a Boolean attribute. Prior to V36, there
were Jjust 7 RGB color values that Intuition maintained
in its user preferences (playfield colors 0-3, and colors
17-19 for the sprite). When opening a screen, the color
map for the screens viewport is first initialized by
graphics (graphics.library/GetColorMap()) then these
seven values are overridden to take the preferences wvalues.

In V36, Intuition maintains a full set of 32 preferences colors.
If you specify TRUE for SA_FullPalette, Intuition will

override ALL color map entries with its full suite of

preferred colors. (Defaults to FALSE) .

SA_ErrorCode: ti_Data points to a ULONG in which Intuition will
stick an extended error code if OpenScreen[TagList] () fails.
Values are of this include 0, for success, and:
OSERR_NOMONITOR - monitor for display mode not available.
OSERR_NOCHIPS - you need newer custom chips for display mode.
OSERR_NOMEM — couldn’t get normal memory
OSERR_NOCHIPMEM - couldn’t get chip memory
OSERR_PUBNOTUNIQUE - public screen name already used
OSERR_UNKNOWNMODE - don’t recognize display mode requested
OSERR_TOODEEP - screen too deep to be displayed on

this hardware (V39)
OSERR_ATTACHFAIL - An illegal attachment of screens was
requested (V39)

NOTE: These values are not the same as some similar return
values defined in graphics.library/ModeNotAvailable () .

SA_SysFont: ti_Data selects one of the system standard fonts
specified in preferences. This tag item overrides the
NewScreen.Font field and the SA_Font tag item.

Values recognized in ti_Data at present are:
0 - old DefaultFont, fixed-width, the default.
1 - Workbench screen preferred font. You have to
be very font sensitive to handle a proportional or
larger than traditional screen font.

NOTE WELL: if you select sysfont 1, windows opened on
your screen will not inherit the screen font, but rather
the window RastPort will be initialized to the old-style
DefaultFont (sysfont 0).

Attached screen tags: V39 supports attached screens, where

intuition 84 /143

one or more child screens can be associated with a parent
screen. Attached screens depth-arrange as a group, and
always remain adjacent depth-wise. Independent
depth-arrangement of child screens is possible through

the V39 ScreenDepth() call. If a child screen is

made non-draggable through {SA_Draggable, FALSE}, then

it will drag exclusively with the parent. Normal child
screens drag independently of the parent, but are pulled
down when the parent is. Use the SA_Parent, SA_FrontChild,
and SA_BackChild tags to attach screens.

SA_Parent: If you wish to attach this screen to an
already-open parent screen, use this tag and set
ti_Data to point to the parent screen. See also
SA_FrontChild and SA_BackChild. (V39) .

SA_FrontChild: If you wish to attach an already-open child
screen to this screen, set ti_Data to point to the child
screen. The child screen will come to the front of the
family defined by the parent screen you are opening. See
also SA_Parent and SA_BackChild. (V39)

SA_BackChild: 1If you wish to attach an already-open child
screen to this screen, set ti_Data to point to the child
screen. The child screen will go to the back of the family
defined by the parent screen you are opening. See also
SA_Parent and SA_FrontChild. (V39)

SA_BackFill: ti_Data is a pointer to a backfill hook for
the screen’s Layer_Info.
(see layers.library/InstallLayerInfoHook ()) . (V39) .

SA_Draggable: ti_Data is a boolean. Set to FALSE if you
wish your screen to be non-draggable. This tag should be
used very sparingly!. Defaults to TRUE. For child screens
(see SA_Parent, SA_FrontChild, and SA_BackChild) this tag
has a slightly different meaning: non-draggable child
screens are non-draggable with respect to their parent,
meaning they always drag exactly with the parent, as
opposed to having relative freedom. Also see
ScreenPosition() . (V39)

SA_Exclusive: ti_Data is a boolean. Set to TRUE if you

never want your screen to share the display with another
screen. This means that your screen can’t be pulled down,
and will not appear behind other screens that are pulled
down. Your screen may still be depth arranged, though. Use
this tag sparingly! Defaults to FALSE. Starting with V40,
attached screens may be SA_Exclusive. Setting SA_Exclusive
for each screen will produce an exclusive family. (V39) .

SA_SharePens: For those pens in the screen’s
DrawInfo->dri_Pens, Intuition obtains them in shared mode
(see graphics.library/ObtainPen()). For compatibility,
Intuition obtains the other pens of a public screen as
PENF_EXCLUSIVE. Screens that wish to manage the pens
themselves should generally set this tag to TRUE. This

intuition

85/143

instructs Intuition to leave the other pens unallocated.
Defaults to FALSE. (V39) .

SA_Colors32: Tag to set the screen’s initial palette colors
at 32 bits-per-gun. ti_Data is a pointer to a table to be
passed to the graphics.library/LoadRGB32 () function. This
format supports both runs of color registers and sparse

registers. See the autodoc for that function for full
details. Any color set here has precedence over the same
register set by SA_Colors. (V39) .

SA_Interleaved: ti_Data is a boolean. Set to TRUE to
request an interleaved bitmap for your screen. Defaults to

FALSE. If the system cannot allocate an interleaved bitmap for
you, it will attempt to allocate a non-interleaved one (V39).

SA_VideoControl: ti_Data points to a taglist that will be
passed to VideoControl () after your screen is open. You
might use this to turn on border-sprites, for example.
(V39) .

SA_ColorMapEntries: +ti_Data is the number of entries that
you wish Intuition to allocate for this screen’s ColorMap.
While Intuition allocates a suitable number for ordinary
use, certain graphics.library features require a

ColorMap which is larger than default. (The default value is

1<<depth, but not less than 32). (V39)

SA_LikeWorkbench: ti_Data is boolean. Set to TRUE to get
a screen just like the Workbench screen. This is the
best way to inherit all the characteristics of the
Workbench, including depth, colors, pen—-array, screen mode,
etc. 1Individual attributes can be overridden through the
use of tags. (SA_LikeWorkbench itself overrides things
specified in the NewScreen structure). Attention
should be paid to hidden assumptions when doing this. For
example, setting the depth to two makes assumptions about
the pen values in the DrawInfo pens. Note that this
tag requests that Intuition ATTEMPT to open the screen
to match the Workbench. There are fallbacks in case
that fails, so it is not correct to make enquiries about
the Workbench screen then make strong assumptions about
what you’re going to get. (Defaults to FALSE). (V39)

SA_MinimizeISG: ti_Data is boolean. For compatibility,
Intuition always ensures that the inter-screen gap is at
least three non-interlaced lines. If your application
would look best with the smallest possible inter-screen
gap, set ti_Data to TRUE. If you use the new graphics

VideoControl () VC_NoColorPaletteLoad tag for your screen’s
ViewPort, you should also set this tag. (V40)
RESULT

If all is well, returns the pointer to your new screen
If anything goes wrong, returns NULL, with further error
specification in the variable pointed to by the SA_ErrorCode

intuition

86 /143

data field (V36 and later).

NOTES
By default, AmigaDOS requesters related to your process are put on
the Workbench screen (these are messages like "Disk Full"). If
you wish them to show up on custom screens, DOS must be told.
This fragment shows the procedure. More information is available
in the AmigaDOS manuals. Sample code fragment:

#include "libraries/dosextens.h"

struct Process xprocess;

struct Window xwindow;

APTR temp;
process = (struct Process) FindTask (NULL) ;
temp = process—->pr_WindowPtr; (save old value)
process—>pr_WindowPtr = (APTR) window;

A

(use a pointer to any open window on your screen)
your code goes here
process—>pr_WindowPtr = temp;

(restore value BEFORE CloseWindow ())

CloseWindow (window) ;

VERY IMPORTANT NOTE about the Screen->BitMap. In the future,

bitmaps will need to grow. The embedded instance of a bitmap
in the screen will no longer be large enough to hold the whole
description of the bitmap.

YOU ARE STRONGLY URGED to use Screen->RastPort.BitMap in place of
&Screen—->BitMap whenever and whereever possible.

BUGS

SEE ALSO
OpenScreenTaglList (), OpenWindow(), PrintIText (), CloseScreen(),
QueryOverscan () PubScreenStatus (), The Intuition Reference Manual,
utility/tagitem.h, graphics.library/ModeNotAvailable(),
diskfont.library/OpenDiskFont (), graphics.library/GetColorMap ()

1.71 intuition.library/OpenScreenTagList
NAME
OpenScreenTagList —-- OpenScreen() with Tagltem extension array. (V36)
OpenScreenTags —- Varargs stub for OpenScreenTagList. (V36)
SYNOPSIS
Screen = OpenScreenTaglList (NewScreen, Tagltems)
DO AQ Al
struct Screen xOpenScreenTaglList (struct NewScreen x,

struct Tagltem *);

intuition 87 /143

Screen = OpenScreenTags (NewScreen, Tagl, ...)

struct Screen *xOpenScreenTags(struct NewScreen x,
ULONG, ...);

FUNCTION

Provides an extension to the parameters passed to OpenScreen() .
This extensions is in the form of (a pointer to) an array of
TagItem structures, which have to fields: ti_Tag, an ID identifying
the meaning of the other field, ti_Data. See <utility/tagitem.h>.

The tag items can supplement or override the values in NewScreen.
In fact, you can pass a NULL value of the NewScreen pointer.

For that matter, if you pass NULL in both arguments, you’ll get
a screen with defaults in all fields, including display mode,
depth, colors, dimension, title, and so on. We ask that

you at least supply a title when you open a screen.

See OpenScreen () documentation for parameter specifications.

INPUTS
NewScreen — (optional) pointer to a NewScreen structure.
Tagltems - (optional) pointer to (an array of) Tagltem

structures, terminated by the value TAG_END.

RESULT
Screen - an open Intuition screen. See OpenScreen() for
extended error codes when Screen is returned NULL.

EXAMPLE

The version using a variable number of arguments must be
created for each particular compiler, and may not have
an analogue in all versions. For vanilla, 32-bit C
parameter passing conventions, this works (and will
appear in amiga.lib):

struct Screen *
OpenScreenTags (ns, tagl)
struct NewScreen *ns;
ULONG tagl;

{

struct Screen xOpenScreenTagList();

return (OpenScreenTaglist(ns, (struct Tagltem %) &tagl));
}
NOTES
We recommend this extension to OpenScreen() over using the

field ExtNewScreen.Extension. However, the ExtNewScreen.Extension
is a convenient way to supply a few tags to V36 Intuition which
will be ignored by V34 Intuition. See OpenScreen() documentation
for lots of details.

A VERY IMPORTANT NOTE about the Screen->BitMap. In the future,
bitmaps will need to grow. The embedded instance of a bitmap
in the screen will no longer be large enough to hold the whole
description of the bitmap.

intuition 88/143

YOU ARE STRONGLY URGED to use Screen->RastPort.BitMap in place of
&Screen—->BitMap whenever and whereever possible.

BUGS

SEE ALSO
OpenScreen ()

1.72 intuition.library/OpenWindow

NAME

OpenWindow —- Open an Intuition window.
SYNOPSIS
Window = OpenWindow (NewWindow)

DO AQ

struct Window *OpenWindow (struct NewWindow *);

FUNCTION
Opens an Intuition window of the given dimensions and position,
with the properties specified in the NewWindow structure.
Allocates everything you need to get going.

New for V36: there is an extensive discussion of public Screens
and visitor windows at the end of this section. Also,

you can provide extensions to the NewWindow parameters using
and array of Tagltem structures. See the discussion below,

and the documentation for the function OpenScreenTagList ().

Before you call OpenWindow(), you must initialize an instance of
a NewWindow structure. NewWindow is a structure that contains
all of the arguments needed to open a window. The NewWindow
structure may be discarded immediately after it is used to open
the window.

If Type == CUSTOMSCREEN, you must have opened your own screen

already via a call to OpenScreen(). Then Intuition uses your screen
argument for the pertinent information needed to get your window
going. On the other hand, if type == one of the Intuition’s standard
screens, your screen argument is ignored. Instead,

Intuition will check to see whether or not that screen

already exists: 1f it doesn’t, it will be opened first before
Intuition opens your window in the standard screen.

New for V36: If you specify Type == WBENCHSCREEN, then your
window will appear on the Workbench screen, unless the global
public screen mode SHANGHAI is set, in which case your window
will be "hijacked" to the default public screen. See also
SetPubScreenModes () .

New for V36: If the WFLG_NW_EXTENDED flag is set, it means that the
field ’'ExtNewWindow->Extension’ points to an array of Tagltems, as

intuition 89/143

defined in intuition/tagitem.h. This provides an extensible means
of providing extra parameters to OpenWindow. For compatibility
reasons, we could not add the ’"Extension’ field to the NewWindow
structure, so we have define a new structure ExtNewWindow, which
is identical to NewWindow with the addition of the Extension field.

We recommend that rather than using ExtNewWindow.Extension, you
use the new Intuition function OpenWindowTagList () and its
varargs equivalent OpenWindowTags (). We document the window
attribute tag ID’s (ti_Tag values) here, rather than in
OpenWindowTagList (), so that you can find all the parameters
for a new window defined in one place.

If the WFLG_SUPER_BITMAP flag is set, the bitmap variable must point
to your own bitmap.

The DetailPen and the BlockPen are used for system rendering; for
instance, the title bar is first filled using the BlockPen, and then
the gadgets and text are rendered using DetailPen. You can either
choose to supply special pens for your window, or, by setting either
of these arguments to -1, the screen’s pens will be used instead.

Note for V36: The DetailPen and BlockPen no longer determine
what colors will be used for window borders, if your window
opens on a "full-blown new look screen."

INPUTS
NewWindow = pointer to an instance of a NewWindow structure. That
structure is initialized with the following data:
Left = the initial x-position for your window

Top = the initial y-position for your window
Width = the initial width of this window
Height = the initial height of this window

DetailPen = pen number (or -1) for the rendering of window details
(like gadgets or text in title bar)

BlockPen = pen number (or -1) for window block fills (like title bar)

[For V36: Title bar colors are determined otherwise.]

Flags = specifiers for your requirements of this window, including:
which system gadgets you want attached to your window:

— WFLG_DRAGBAR allows this window to be dragged

— WELG_DEPTHGADGET lets the user depth-arrange this window
— WFLG_CLOSEGADGET attaches the standard close gadget

— WFLG_SIZEGADGET allows this window to be sized.

If you ask for the WFLG_SIZEGADGET gadget, you must specify one or
both of the flags WFLG_SIZEBRIGHT and WFLG_SIZEBBOTTOM below; if
you don’t, the default is WFLG_SIZEBRIGHT. See the following items
WEFLG_SIZEBRIGHT and WFLG_SIZEBBOTTOM for more details.

— WFLG_SIZEBRIGHT is a special system gadget flag that
you set to specify whether or not you want the
RIGHT border adjusted to account for the physical size
of the sizing gadget. The sizing gadget must, after

intuition

90/143

all, take up room in either the right or bottom border
(or both, if you like) of the window. Setting either
this or the WFLG_SIZEBBOTTOM flag selects which edge
will take up the slack. This will be particularly
useful to applications that want to use the extra space
for other gadgets (like a proportional gadget and two
Booleans done up to look like scroll bars) or, for

for instance, applications that want every possible
horizontal bit and are willing to lose lines vertically.
NOTE: if you select WFLG_SIZEGADGET, you must select
either WFLG_SIZEBRIGHT or WFLG_SIZEBBOTTOM or both. If
you select neither, the default is WFLG_SIZEBRIGHT.
WFLG_SIZEBBOTTOM is a special system gadget flag that
you set to specify whether or not you want the

BOTTOM border adjusted to account for the physical size
of the sizing gadget. For details, refer to
WELG_SIZEBRIGHT above.

WFLG_GIMMEZEROZERO for easy but expensive output

what type of window layer you want, either:

WELG_SIMPLE_REFRESH
WEFLG_SMART_REFRESH
WFLG_SUPER_BITMAP

WELG_BACKDROP for whether or not you want this window to be one

of Intuition’s special backdrop windows. See WEFLG_BORDERLESS
as well.

WEFLG_REPORTMOUSE for whether or not you want to "listen" to
mouse movement events whenever your window is the active
one. After you’ve opened your window, if you want to change
you can later change the status of this via a call to
ReportMouse (). Whether or not your window is listening to
mouse is affected by gadgets too, since they can cause you
to start getting reports too if you like. The mouse move
reports (either InputEvents or messages on the IDCMP) that
you get will have the x/y coordinates of the current mouse
position, relative to the upper-left corner of your window
(WFLG_GIMMEZEROZERO notwithstanding). This flag can work in
conjunction with the IDCMP Flag called IDCMP_MOUSEMOVE, which
allows you to listen via the IDCMP.

WELG_BORDERLESS should be set if you want a window with no
border padding. Your window may have the border variables
set anyway, depending on what gadgetry you’ve requested for
the window, but you won’t get the standard border lines and
spacing that comes with typical windows.

This is a good way to take over the entire screen, since you
can have a window cover the entire width of the screen using
this flag. This will work particularly well in conjunction
with the WFLG_BACKDROP flag (see above), since it allows you
to open a window that fills the ENTIRE screen. NOTE: this is
not a flag that you want to set casually, since it may cause
visual confusion on the screen. The window borders are the
only dependable visual division between various windows and

intuition

91/143

the background screen. Taking away that border takes away
that visual cue, so make sure that your design doesn’t need
it at all before you proceed.

WELG_ACTIVATE is the flag you set if you want this window to
automatically become the active window. The active

window is the one that receives input from the keyboard and
mouse. It’s usually a good idea to to have the window you
open when your application first starts up be an ACTIVATED
one, but all others opened later not be ACTIVATED (if the
user is off doing something with another screen, for
instance, your new window will change where the input is
going, which would have the effect of yanking the input rug
from under the user). Please use this flag thoughtfully and
carefully.

Some notes: First, your window may or may not be active

by the time this function returns. Use the IDCMP_ACTIVEWINDOW
IDCMP message to know when your window has become active.
Also, be very careful not to mistakenly specify the

obsolete flag names WINDOWACTIVE or ACTIVEWINDOW. These are
used in other contexts, and their values unintentionally added
to your flags can cause most unfortunate results. To avoid
confusion, they are now know as WELG_WINDOWACTIVE and
IDCMP_ACTIVEWINDOW.

WELG_RMBTRAP, when set, causes the right mouse button events
to be trapped and broadcast as events. You can receive
these events through either the IDCMP or the console.

WELG_NOCAREREFRESH indicates that you do not wish to

be responsible for calling BeginRefresh () and EndRefresh ()
when your window has exposed regions (i.e., when the
IDCMP_REFRESHWINDOW message would be generated). See also
the descriptions of these two functions.

WELG_NW_EXTENDED (V36) indicates that NewWindow in fact points
to an ExtNewWindow structure, and that the ’'Extension’

field points to an array of Tagltem structures, with

meaning described below.

WELG_NEWLOOKMENUS (V39) Requests new-look menu treatment.

Menu colors are derived from the screen DrawInfo BARDETAILPEN,
BARBLOCKPEN, and BARTRIMPEN, instead of window detail and
block pens. Also requests that a suitably scaled and colored
Amiga-key symbol and checkmark symbol be used in the menus.
Applications using WEFLG_NEWLOOKMENUS need to use the new screen
DrawInfo pens to color their Menultem and SubItem imagery.

If your application uses GadTools, the {GTMN_NewLookMenus, TRUE}
tag-item should be passed to the menu layout calls.

(NB: For the menus to actually appear with improved colors,
the screen’s opener must supply suitable values for the

new menu pens in the DrawInfo. If this is not the case,
then an application requesting NewLookMenus will get the
scaled Amiga-key and checkmark but in V37-compatible colors.
Note that the screen’s DrawInfo will always contain valid

intuition 92/143

values for the new pens; they just may correspond to the
"old look").

IDCMPFlags = IDCMP is the acronym for Intuition Direct Communications
Message Port. (It’s Intuition’s sole acronym.) If any of the
IDCMP Flags 1is selected, Intuition will create a pair of
message ports and use them for direct communications with the
task opening this window (as compared with broadcasting
information via the Console device). See the "Input and
Output Methods" chapter of the Intuition Reference Manual for
complete details.

You request an IDCMP by setting any of these flags. Except
for the special VERIFY flags, every other flag you set tells
Intuition that if a given event occurs which your program
wants to know about, it is to broadcast the details of that
event through the IDCMP rather than via the Console device.
This allows a program to interface with Intuition directly,
rather than going through the Console device.

Many programs have elected to use IDCMP communication
exclusively, and not to associate a console with their
windows at all. Some operations, such as IDCMP_MENUVERIFY,
can ONLY be achieved using IDCMP.

The IDCMP flags you can set are described in the
ModifyIDCMP () autodoc.

Gadgets = the pointer to the first of a linked list of the your own
Gadgets which you want attached to this Window. Can be NULL
if you have no Gadgets of your own

CheckMark = a pointer to an instance of the struct Image where can
be found the imagery you want used when any of your

menu items is to be checkmarked. If you don’t want to

supply your own imagery and you want to Jjust use

Intuition’s own checkmark, set this argument to NULL

Text = a null-terminated line of text to appear on the title bar of
your window (may be null if you want no text)

Type = the screen type for this window. If this equal CUSTOMSCREEN,
you must have already opened a CUSTOMSCREEN (see text above).
Types available include:

— WBENCHSCREEN

— CUSTOMSCREEN

— PUBLICSCREEN (new for V36, see text below)

Screen = 1if your type is one of Intuition’s standard screens, then
this argument is ignored. However, if Type == CUSTOMSCREEN,
this must point to the structure of your own screen

BitMap = if you have specified WFLG_SUPER _BITMAP as the type of
refreshing you want for this window, then this wvalue points to a
instance of the struct bitmap. However, if the refresh type
is NOT WFLG_SUPER_BITMAP, this pointer is ignored.

intuition

93/143

MinWidth, MinHeight, MaxWidth, MaxHeight = the size limits for this
window. These must be reasonable values, which is to say that

the minimums cannot be greater than the current size, nor can
the maximums be smaller than the current size. If they are,

they’re ignored. Any one of these can be initialized to zero,

which means that that limit will be set to the current
dimension of that axis. The limits can be changed after the
Window is opened by calling the WindowLimits () routine.

NOTE: ORIGINALLY, we stated that:

"If you haven’t requested the WFLG_SIZEGADGET option, these
variables are ignored so you don’t have to initialize them."

It is now clear that a variety of programs take it upon

themselves to call SizeWindow () (or ChangeWindowBox ()) without

your program’s consent or consulting your WFLG_SIZEGADGE
option. To protect yourself against the results, we strongly
urge that if you supply suitable values for these fields even
if you do not specify WFLG_SIZEGADGET.

The maximums may be LARGER than the current size, or even

larger than the current screen. The maximums should be set to

the highest value your application can handle. This allows
users with larger display devices to take full advantage of
your software. If there is no good reason to limit the size,
then don’t. -1 or ~0 indicates that the maximum size is only
limited by the size of the window’s screen.

See also the docs on the function WindowLimits () for more
information.
Extension (New for V36) = a pointer to an array (or chain of arrays)

of Tagltems to specify additional parameters to OpenWindow () .
TagItems in general are described in utility/tagitem.h,

and the OpenWindow tags are defined in intuition/intuition.h
and described here. For items pertaining to Public Screens
and visitor windows, please see below.

Here are the Tagltem.ti_Tag values that are defined for OpenWindow
(and OpenWindowTagList ()) .

Certain tags simply override equivalent wvalues in NewWindow,

and allow you to open a window using OpenWindowTagList () without
having a NewWindow structure at all. In each case, cast

the corresponding data to ULONG and put it in ti_Data.

The compatible tag items include:

WA_Left

WA_Top

WA_Width

WA_Height

WA_DetailPen - NOTE: only overrides NewWindow.DetailPen of -1!
WA_BlockPen - NOTE: only overrides NewWindow.BlockPen of -1!
WA_IDCMP

WA_Flags - initial values for Flags before looking at other

intuition 94 /143

Boolean component Tag values

WA_Gadgets

WA_Title

WA_CustomScreen — also implies CUSTOMSCREEN property
WA_SuperBitMap - also implies WFLG_SUPER_BITMAP refresh mode.

WA_MinWidth
WA_MinHeight
WA_MaxWidth
WA_MaxHeight

These Boolean tag items are alternatives to the NewWindow.Flags
Boolean attributes with similar names.

WA_SizeGadget - equivalent to WFLG_SIZEGADGET
WA_DragBar - equivalent to WFLG_DRAGBAR
WA_DepthGadget - equivalent to WFLG_DEPTHGADGET
WA_CloseGadget - equivalent to WFLG_CLOSEGADGET
WA_Backdrop - equivalent to WFLG_BACKDROP
WA_ReportMouse - equivalent to WFLG_REPORTMOUSE
WA_NoCareRefresh - equivalent to WFLG_NOCAREREFRESH
WA_Borderless - equivalent to WFLG_BORDERLESS
WA_Activate — equivalent to WFLG_ACTIVATE
WA_RMBTrap - equivalent to WFLG_RMBTRAP
WA_WBenchWindow - equivalent to WFLG_WBENCHWINDOW
(system PRIVATE)
WA_SimpleRefresh - only specify if TRUE
WA_SmartRefresh — only specify if TRUE
WA_SizeBRight - equivalent to WFLG_SIZEBRIGHT
WA_SizeBBottom - equivalent to WFLG_SIZEBBOTTOM
WA_GimmeZeroZero - equivalent to WFLG_GIMMEZEROZERO
WA_NewLookMenus - equivalent to WFLG_NEWLOOKMENUS

The following tag items specify new attributes of a window.

WA_ScreenTitle - You can specify the screen title associated
with your window this way, and avoid a call to SetWindowTitles ()
when your window opens.

WA_AutoAdijust - a Boolean attribute which says that it’s OK
to move or even shrink the dimensions of this window
to fit it on the screen, within the dimension
limits specified by MinWidth and MinHeight.

Someday, this processing might be sensitive to the
currently visible portion of the screen the window
will be opening on, so don’t draw too many conclusions
about the auto-adjust algorithms.

(Normally, this attribute defaults to FALSE. However,
if you call OpenWindowTags () or OpenWindowTagList ()
with a NULL NewWindow pointer, this attribute defaults
to TRUE) .

WA_InnerWidth

WA_InnerHeight - You can specify the dimensions of the interior
region of your window, independent of what the border
thicknesses will be. You probably want to specify
WA_AutoAdijust to allow Intuition to move your window
or even shrink it so that it is completely on screen.

intuition

95/143

Note: using these tags puts some reasonable restrictions
on the gadgets you can specify as "border" gadgets when
you open your window. Since border gadgets determine

the border dimensions and hence the overall dimensions of
your window, those dimensions cannot be used calculating
the position or dimensions of border gadgets.

Here’s the complete list of restrictions:

— GACT_LEFTBORDER gadgets cannot be GFLG_RELWIDTH if
WA_InnerWidth is used.

— GACT_RIGHTBORDER gadgets MUST be GFLG_RELRIGHT if
WA_InnerWidth is used.

— GACT_TOPBORDER gadgets cannot be GFLG_RELHEIGHT if
WA_InnerHeight 1is used.

— GACT_BOTTOMBORDER gadgets MUST be GFLG_RELBOTTOM if
WA_InnerHeight 1is used.

WA_PubScreenName - This tag item declares that you want your window
to open as a visitor window on the public screen whose name
is pointed to by (UBYTE x) ti_Data.

WA_PubScreen - Open as a visitor window on the public screen

whose address if provided as (struct Screen x) ti_Data.
To ensure that this screen remains open long enough, you
must either:

1) Be the screen’s owner

2) have another window already open on the screen

3) use LockPubScreen ()
Using exec.library/Forbid() is not sufficient.

You can provide ti_Data to be NULL (zero), without any
of the above precautions, to specify the default public screen.

WA_PubScreenFallBack - This Boolean attribute specifies that a
visitor window should "fall back" to opening on the default
public screen if the explicitly specify public screen is not
available.

WA_WindowName - this visionary specification of a window
rendezvous name string is not yet implemented.

WA_Colors - this equally great idea about associating a palette
specification with the active window may not ever be implemented.

WA_Zoom - ti_Data points to an array of four WORD’s to be used

as the initial Left/Top/Width/Height of the "alternate
Zoom position and dimensions." The presence of this tag
item implies that you want a Zoom gadget, even though you
might not have a sizing gadget.
New for V39: if the initial zoom-box left and top are
both set to ~0, then Intuition will give your window
"size-only" zooming, meaning that zooming the window
will not affect the left/top unless the window needs
to be moved on-screen.

WA_MouseQueue - This tag specifies a limit for the number

intuition 96/ 143

of outstanding IDCMP_MOUSEMOVE IntuiMessages that Intuition
will send to your window. You can change the value of this
limit after the window is open using SetMouseQueue ().

WA_RptQueue - This tag specifies a limit for the number of
outstanding repeated-IDCMP_RAWKEY, repeated-IDCMP_VANILLAKEY,
and repeated-IDCMP_IDCMPUPDATE IntuiMessages that Intuition will
send to your window. Currently, there is no function to adjust
the repeat-key queue.

WA_BackFill - ti_Data is a pointer to a Hook structure that
the Layers library will call when your window needs
"backfilling." See layers.library/InstalllLayerHook() .

WA_MenuHelp - ti_Data is a boolean. If true, enables the MenuHelp
feature for this window. See IDCMP_MENUHELP above. (V37)

WA_NotifyDepth - ti_Data is a boolean. Set to true if you
would also like IDCMP_CHANGEWINDOW events sent to your window
when it is depth-arranged. ©Normally, such events are only
sent for movement or resizing of the window.
IDCMP_CHANGEWINDOW events originating from
depth—arrangement have a Code equal to CWCODE_DEPTH, as
opposed to CWCODE_MOVESIZE. (V39)

WA_Checkmark - (ti_Data is struct Image x) Image to use as a
checkmark in menus. Prior to V39, or if WA_NewLookMenus
is not specified, the default will be the traditional
checkmark in the original colors. Under V39 and higher,
if you have requested WA_NewLookMenus then the default will
be an appropriately colored checkmark scaled to the screen’s
font. Alternately, you can provide a custom one, which you
can~design yourself or get from sysiclass (use this if
your menu-font is different from the screen’s font).

WA_AmigaKey - (ti_Data is struct Image %) Image to use as
the Amiga-key symbol in menus. If WA_NewLookMenus is not
specified, the default will be the traditional Amiga-key
symbol in the original colors. If you’ve requested
WA_NewLookMenus, then the default will be an appropriately
colored Amiga-key scaled to the screen’s font.
Alternately, you can provide a custom one, which you can
design yourself or get from sysiclass (use this if your
menu—font is different from the screen’s font). (V39)

WA_Pointer - (APTR) The pointer you wish to associate with
your window. If NULL, you are requesting the Preferences
default pointer. Custom pointers should be allocated by
performing a NewObject () on "pointerclass". (See
<intuition/pointerclass.h>). Defaults to NULL. This tag is
also recognized by SetWindowPointerA() . (V39)

WA_BusyPointer (BOOL) - Set to TRUE to request the Preferences
busy-pointer. If FALSE, your pointer will be as requested
by WA_Pointer. Defaults to FALSE. This tag is also
recognized by SetWindowPointerA(). (V39)

intuition 97 /143

WA_PointerDelay - (BOOL) Set to TRUE to defer changing your
pointer for a brief instant. This is typically used along
with setting the busy pointer, especially when the
application knows it may be busy for a very short while. If
the application clears the pointer or sets another pointer
before the delay expires, the pending pointer change is
cancelled. This reduces short flashes of the busy pointer.
This tag is also recognized by SetWindowPointerA(). (V39)

WA_HelpGroup - (ULONG) Normally, only the active window can
receive IDCMP_GADGETHELP messages. However, an application
with multiple windows will want all its windows to be able
to receive help when any of them are active. First obtain a
unique help ID with utility.library/GetUniqueID(), then
pass it as ti_Data of this tag to all your windows. See
HelpControl (). (V39)

WA_HelpGroupWindow — (struct Window x) Instead of using
WA_HelpGroup, you can pass a pointer to another window
whose HelpGroup you wish this window to belong to. (V39)

WA_TabletMessages - (BOOL) Set to TRUE to request extended
IntuiMessages for your window. If a tablet driver is
generating IESUBCLASS_NEWTABLET input events, you will be
able to receive extended tablet information with most
IntuiMessages. See the eim TabletData field of the
ExtIntuiMessage structure. Defaults to FALSE. (V39)

NOTES

Regarding Public Screens, you can specify a window to be a
"visitor window" on a public screen in one of several ways.
In each case, you must be sure not to specify a NewWindow
type of CUSTOMSCREEN. You should use the value PUBLICSCREEN.

There are actually several ways you can specify which screen
you want a visitor window to be opened on:

1) Specify the name of the public screen WA_PubScreenName,
or a NULL pointer, in ti_Data. The name might have been
provided by the user. A NULL pointer means to use the
default public screen.

If the named screen cannot be found, the default public screen
will be used if the Boolean attribute WA_PubScreenFallBack
is TRUE.

2) Specify a pointer to a public screen using the
WA_PubScreen tag item. The WA_PubScreenFallBack
attribute has no effect. You can specify the default
public screen by providing a NULL pointer.

You can also specify the pointer by setting NewWindow.Type

to PUBLICSCREEN, and specifying the public screen pointer

in NewWindow.Screen. The WA_PubScreen tag item has precedent
over this technique.

Unless NULL, the screen pointer provided MUST be a valid

intuition 98/143

public screen. You may ensure this several ways:

— Be the owner of the screen.

- Have a window already open on the screen.

— Use LockPubScreen() to prevent the screen from closing.

— specifying the WFLG_VISITOR bit in NewWindow.Flags is not
supported.

It is anticipated that the last will be the most common method
of opening public screens because you often want to examine
properties of the screen your window will be using in order
to compensate for differences in dimension, depth, and font.

The standard sequence for this method is as follows:

LockPubScreen () - obtain a pointer and a promise

layout window - adapt your window to the screen you will use
OpenWindow () - using the pointer you specify
UnlockPubScreen () - once your window is open, you can let go

of the lock on the public screen
normal window even processing
CloseWindow () .

Regarding "service" windows, such as those opened for a system
requester or file requester associated with a given "client"window.
These windows should NOT be "visitor" windows. Open them

using NewWindow.Type = CUSTOMSCREEN and NewWindow.Screen

equal to the screen of the client window (window->WScreen).

You can also use WA_CustomScreen, which has precedence.

This ensures that the requester service window will be allowed to
open on the same screen as the client window, even if that
screen is not a public screen, or has private status.

This has an implication for service/client protocol: when you
pass a window pointer to any system requester routine or

to a routine which creates some other other service window,
you MUST keep your window open until the client window

is closed.

If a requester service will allow a NULL client window, this

should indicate to open the service window on the default public
screen (probably Workbench). The correct way to get a pointer

to this screen is to call LockPubScreen(NULL). In this

case, you want to open as a visitor window, which means you

should use either PUBLICSCREEN or WA_PubScreen, described above.

You should call UnlockPubScreen() after your visitor window is open.

As of V36, gadgets in the right and bottom border

(specified with GACT_RIGHTBORDER and GACT_BOTTOMBORDER) only
contribute to the dimensions of the borders if they are also
GFLG_RELRIGHT and GFLG_RELBOTTOM, respectively.

RESULT
If all is well, returns the pointer to your new Window

If anything goes wrong, returns NULL

BUGS

intuition 99/143

When you open a window, Intuition will set the font of

the window’s RastPort to the font of the window’s screen.
This does not work right for GimmeZeroZero windows: the
BorderRPort RastPort has the font set correctly, but
Window.RPort is set up with the system default font.

For compatibility reasons, we won’t be fixing this problem.

Also, there is a compatibility trick going on with the
default font of your window’s RastPort if the screen’s
font is "fancy." See the SA_SysFont attribute described
under OpenScreen() .

Unless you arrange otherwise, each window you open will allocate
a signal for your task from the 16 "user signals."

If no signal is available, your window will not be able

to be opened. In early V36 versions and before, Intuition didn’t
check this condition, but Jjust left you with an unusable port.

SEE ALSO
OpenWindowTagList (), OpenScreen(), ModifyIDCMP (), SetWindowTitles(),
LockPubScreen (), SetDefaultPubScreen(), ZipWindow(),
layers.library/InstalllayerHook (), SetPubScreenModes ()

1.73 intuition.library/OpenWindowTagList

NAME
OpenWindowTagList —- OpenWindow () with TagItem extension. (V36)
OpenWindowTags —-- Varargs stub for OpenWindowTagList (V36)
SYNOPSIS
Window = OpenWindowTagList (NewWindow, Tagltems)
DO A0 Al

struct Window xOpenWindowTagList (struct NewWindow x*,
struct Tagltem *);

Window = OpenWindowTags (NewWindow, Tagl, ...)
struct Window xOpenWindowTags (struct NewWindow =, ULONG, ...);

FUNCTION
A variation of OpenWindow () that allow direct specification of
a Tagltem array of extension data. Recommended over using the
ExtNewWindow.Extension field.

If you omit the NewWindow (pass NULL), a set of defaults

are used, and overridden by the tag items. Even without

any tag items at all, a reasonable window opens on the Workbench
or default public screen.

See OpenWindow () for all the details.
INPUTS

NewWindow - (optional) pointer to a NewWindow structure.
TagItems - (optional) pointer to Tagltem array, with tag

intuition 100/ 143

values as described under the description for
OpenWindow () .

RESULT
Window - newly created window, per your specifications.

EXAMPLE
See OpenScreenTaglList () for an example of how to create
a "varargs" version of this function for convenient C

language programming.

NOTES
BUGS

SEE ALSO
OpenWindow ()

1.74 intuition.library/OpenWorkBench

NAME

OpenWorkBench —- Open the Workbench screen.
SYNOPSIS

WBScreen = OpenWorkBench ()

DO

ULONG OpenWorkBench (VOID);

FUNCTION
This routine attempts to reopen the Workbench. The actions taken are:
- general good stuff and nice things, and then return a non-null
pointer to the Workbench screen.
— find that something has gone wrong, and return NULL

The return value, if not NULL, is indeed the address of the Workbench
screen, although you should not use it as such. This is because the
Workbench may be closed by other programs, which can invalidate

the address at any time. We suggest that you regard the return

value as a ULONG indication that the routine has succeeded, if

you pay any attention to it at all.

INPUTS
None

RESULT

non-zero if Workbench screen opened successfully, or was already
opened

zero if anything went wrong and the Workbench screen isn’t out there

BUGS
The name of this routine is spelled wrong: it ought to have been
OpenWorkbench () .

intuition 101/143

SEE ALSO

1.75 intuition.library/Pointinimage

NAME
PointInImage —-- Tests whether an image "contains" a point. (V36)
SYNOPSIS
DoesContain = PointInImage(Point, Image)
DO DO AQ

BOOL PointInImage(struct Point, struct Image *);

FUNCTION

Tests whether a point is properly contained in an image.
The intention of this is to provide custom gadgets a means
to delegate "image mask" processing to the Image, where

it belongs (superseding things like BOOLMASK). After all,
a rounded rect image with a drop shadow knows more about
what points are inside it than anybody else should.

For traditional Intuition Images, this routine checks if
the point is in the Image box (LeftEdge/RightEdge/Width/Height) .

INPUTS
Point - Two words, X/Y packed into a LONG, with high word
containing "X’. This is what you get if you pass
a Point structure (not a pointer!) using common
C language parameter conventions.
Image - a pointer to a standard or custom Image data object.

NOTE: If ’'Image’ is NULL, this function returns TRUE.

RESULT
DoesContain - Boolean result of the test.

EXAMPLE
NOTES

BUGS
Only applies to the first image, does not follow NextImage
linked 1list. This might be preferred.

SEE ALSO

1.76 intuition.library/PrintIText

intuition 102 /143

NAME
PrintIText —-- Print text described by the IntuiText argument.
SYNOPSIS
PrintIText (RastPort, IText, LeftOffset, TopOffset)
AQ Al DO D1

VOID PrintIText (struct RastPort %, struct IntuiText *, WORD, WORD);

FUNCTION
Prints the IntuiText into the specified RastPort. Sets up the RastPort
as specified by the IntuiText values, then prints the text into the
RastPort at the IntuiText x/y coordinates offset by the left/top
arguments. Note, though, that the IntuiText structure itself
may contain further text position coordinates: those coordinates
and the Left/TopOffsets are added to obtain the true position of
the text to be rendered.

This routine does window layer clipping as appropriate —-- if you
print text outside of your window, your characters will be
clipped at the window’s edge, providing you pass your window’s
(layered) RastPort.

If the NextText field of the IntuiText argument is non-NULL,
the next IntuiText is rendered as well, and so on until some
NextText field is NULL.

IntuiText with the ITextFont field NULL are displayed in the
font of the RastPort. If the RastPort font is also NULL, the
system default font, as set via the Preferences tool, will be used.

INPUTS
RastPort = the RastPort destination of the text
IText = pointer to an instance of the structure IntuiText

LeftOffset = left offset of the IntuiText into the RastPort
TopOffset = top offset of the IntuiText into the RastPort

RESULT
None

BUGS

SEE ALSO

1.77 intuition.library/PubScreenStatus

NAME

PubScreenStatus —-- Change status flags for a public screen. (V36)
SYNOPSIS

ResultFlags = PubScreenStatus(Screen, StatusFlags)

DO AO DO

UWORD PubScreenStatus(struct Screen x, UWORD);

intuition 103 /143

FUNCTION
Changes status flags for a given public screen. The only
flag bit currently defined is PSNF_PRIVATE. Thus,
PubScreenStatus (screen, PSNF_PRIVATE) makes a screen
private, while PubScreenStatus(screen, 0) makes it public.

Do not apply this function to a screen if your program
isn’t the screen’s "owner", in particular, don’t call
this function for the Workbench screen.

INPUTS
Screen = pointer to public screen
StatusFlags = Any of the PSNF_ flags (only PSNF_PRIVATE is
currently defined) .

RESULT
Returns 0 in the lowest order bit of the return value
if the screen wasn’t public, or because it can not be taken

private because visitors are open in it.

All other bits in the return code are reserved for future
enhancement.

BUGS

SEE ALSO
OpenScreen (), Intuition V36 update documentation

1.78 intuition.library/QueryOverscan

NAME

QueryOverscan —-- Inquire about a standard overscan region. (V36)
SYNOPSIS

success = QueryOverscan(DisplayID, Rect, OScanType)

DO AQ Al DO

LONG QueryOverscan (ULONG, struct Rectangle %, WORD);

FUNCTION
This function fills in a rectangle with one of the system
overscan dimensions, scaled appropriately for the mode of
the DisplayID it is passed.

There are three types of system overscan values:
OSCAN_TEXT: completely visible, by user preference. Used
for Workbench screen and screen dimensions STDSCREENWIDTH
and STDSCREENHEIGHT. Left/Top is always 0,0.
OSCAN_STANDARD: Jjust beyond visible bounds of monitor, by
user preference. Left/Top may be negative.
OSCAN_MAX: The largest region we can display, AND display
any smaller region (see note below) .
OSCAN_VIDEO: The absolute largest region that the graphics.library
can display. This region must be used as-is.

intuition 104 /143

INPUTS

DisplayID -—- A 32-bit identifier for a display mode, as defined
in the <graphics/modeid.h> include file (V39 and up) or in
<graphics/displayinfo.h> (V37/V38).

NOTE: If you only intend to use one of the four standard
overscan dimensions as is, and open your screen to exactly
the DisplayClip dimensions, you can specify one of

the OSCAN_ values using the SA_Overscan tag to the
OpenScreenTaglList () function and omit all of SA_Left, SA_Top,
SA_Width, and SA_Height. This also requires that you do

not supply a NewScreen structure, since it always contains
left/top/width/height information.

If you wish to supply a NewScreen structure, then you are
supplying left/top/width/height information. This information
can be taken from the rectangle resulting from this function:
NewScreen.LeftEdge = Rect.MinX;
NewScreen.TopEdge = Rect.MinY;
NewScreen.Width = STDSCREENWIDTH;

/* or (Rect.MaxX - Rect.MinX + 1) =x/
NewScreen.Height = STDSCREENHEIGHT;

/+* or (Rect.MaxY - Rect.Miny + 1) */

Rect —-- pointer to a Rectangle structure which this function
will f£ill out with its return values. Note that to convert
a rectangle to a screen "Height" you do (MaxY - MinY + 1), and
similarly for "Width." The rectangle may be passed directly
to OpenScreen() as a DisplayClip region (SA_DClip).

RESULT
0 (FALSE) if the MonitorSpec your NewScreen requests
does not exist. Non-zero (TRUE) if it does.

BUGS

Change in parameter V36.A17 might cause problems for some.

SEE ALSO
OpenScreen (), Intuition V36 update documentation

1.79 intuition.library/RefreshGadgets

NAME

RefreshGadgets —-—- Refresh (redraw) the gadget display.
SYNOPSIS

RefreshGadgets (Gadgets, Window, Requester)

AQ Al A2

VOID RefreshGadgets(struct Gadget =%, struct Window =x,
struct Requester *);

FUNCTION

intuition 105/143

Refreshes (redraws) all of the gadgets in the gadget list starting
from the specified gadget.

The window parameter must point to the window which contains the
gadget, or which contains the requester that contains the gadget
The requester parameter must only be valid if the gadget has the
GTYP_REQGADGET flag set, a requirement for all requester gadgets.

The Pointer argument points to a Window structure.

The two main reasons why you might want to use this routine are:
first, that you’ve modified the imagery of the gadgets in your
display and you want the new imagery to be displayed; secondly,
if you think that some graphic operation you Jjust performed
trashed the gadgetry of your display, this routine will refresh
the imagery for you.

Note that to modify the imagery of a gadget, you must first remove
that gadget from the window’s gadget list, using RemoveGadget () (or
RemoveGList ()). After changing the image, border, text (including
text for a string gadget), the gadget is replaced in the gadget list
(using AddGadget () or AddGList()). Adding gadgets does not cause
them to be displayed (refreshed), so this function, or RefreshGList ()
is typically called.

A common technique is to set or reset the GFLG_SELECTED flag of a
Boolean gadget and then call RefreshGadgets () to see it displayed
highlighted if and only if GFLG_SELECTED is set. 1If you wish to do

this and be completely proper, you must RemoveGadget (), change the
GFLG_SELECTED flag, AddGadget (), and RefreshGadgets (), or the
equivalent.

The gadgets argument can be a copy of the FirstGadget variable in
the Window structure that you want refreshed:

the effect of this will be that all gadgets will be redrawn.
However, you can selectively refresh just some of the gadgets

by starting the refresh part-way into the list: for instance,
redrawing your window non-GTYP_GZZGADGET gadgets only, which you’ve
conveniently grouped at the end of your gadget list.

Even more control is available using the RefreshGList () routine which
enables you to refresh a single gadget, or number of your choice.

NOTE: 1It’s never safe to tinker with the gadget list yourself. Don’t
supply some gadget list that Intuition hasn’t already processed in
the usual way.

INPUTS
Gadgets = pointer to the first in the list of gadgets wanting
refreshment
Window = pointer to the window containing the gadget or its requester

Requester = pointer to a requester (ignored if gadget is not attached
to a requester).

RESULT
None

intuition 106 /143

BUGS

SEE ALSO
RefreshGList (), RemoveGadget (), RemoveGList (), AddGadget (), AddGList ()

1.80 intuition.library/RefreshGList

NAME

RefreshGList -- Refresh (redraw) a chosen number of gadgets.
SYNOPSIS

RefreshGList (Gadgets, Window, Requester, NumGad)

AQ Al A2 DO

VOID RefreshGList (struct Gadget #, struct Window x,
struct Requester %, WORD);

FUNCTION
Refreshes (redraws) gadgets in the gadget list starting
from the specified gadget. At most NumGad gadgets are redrawn.
If NumGad is -1, all gadgets until a terminating NULL value
in the NextGadget field is found will be refreshed, making this
routine a superset of RefreshGadgets().

The Requester parameter can point to a Requester structure. If
the first gadget in the list has the GTYP_REQGADGET flag set, the
gadget list refers to gadgets in a requester and the pointer

must necessarily point to a window. If these are not the gadgets
of a requester, the requester argument may be NULL.

Be sure to see the RefreshGadgets () function description, as this
function is simply an extension of that.

INPUTS
Gadgets = pointer to the first in the list of gadgets wanting
refreshment

Window = pointer to the window containing the gadget or its requester
Requester = pointer to a requester (ignored if Gadget is not attached
to a Requester).

NumGad = maximum number of gadgets to be refreshed. A value of -1
will cause all gadgets to be refreshed from gadget to the
end of the list. A wvalue of -2 will also do this, but if ’Gadgets’
points to a Requester Gadget (GTYP_REQGADGET) ALL gadgets in the
requester will be refreshed (this is a mode compatible with vl1l.1
RefreshGadgets () .)

RESULT
None

BUGS

SEE ALSO
RefreshGadgets ()

intuition 107 /143

1.81 intuition.library/RefreshWindowFrame

NAME

RefreshWindowFrame —-- Ask Intuition to redraw your window border.
SYNOPSIS

RefreshWindowFrame (Window)

AQ
VOID RefreshWindowFrame (struct Window *);
FUNCTION
Refreshes the border of a window, including title region and all

of the window’s gadgets.

You may use this call if you wish to update the display of your borders.
The expected use of this is to correct unavoidable corruption.

INPUTS
Window = a pointer to a Window structure

RESULT
None

BUGS

SEE ALSO

1.82 intuition.library/ReleaseGIRPort

NAME
ReleaseGIRPort —-—- Release a custom gadget RastPort. (V36)
SYNOPSIS
ReleaseGIRPort (RPort)
A0

VOID ReleaseGIRPort (struct RastPort *);

FUNCTION
The corresponding function to ObtainGIRPort (), it releases
arbitration used by Intuition for gadget RastPorts.

INPUTS
Pointer to the RastPort returned by ObtainGIRPort ().
This pointer can be NULL, in which case nothing happens.

RESULT
None

BUGS

SEE ALSO
ObtainGIRPort (), Custom Gadget documentation

intuition 108 /143

1.83 intuition.library/RemakeDisplay

NAME

RemakeDisplay —-— Remake the entire Intuition display.
SYNOPSIS

failure = RemakeDisplay ()

DO (V39)

LONG RemakeDisplay(VOID);
/+ Returns LONG in V39 and greater =/

FUNCTION
This is the big one.

This procedure remakes the entire View structure for the
Intuition display. It does the equivalent of MakeScreen() for
every screen in the system, and then it calls the internal
equivalent of RethinkDisplay ().

WARNING: This routine can take many milliseconds to run, so
do not use it lightly.

Calling MakeScreen() followed by RethinkDisplay () is typically
a more efficient method for affecting changes to a single
screen’s ViewPort.

INPUTS
None

RESULT
Starting with V39, returns zero for success, non-zero for failure.
Probable cause of failure is failure of graphics.library/MakeVPort ()
or of graphics.library/MrgCop () .
Prior to V39, the return code is invalid. Do not interpret it when
running on pre-V39 systems!

BUGS
SEE ALSO

MakeScreen(), RethinkDisplay (), graphics.library/MakeVPort ()
graphics.library/MrgCop (), graphics.library/LoadView ()

1.84 intuition.library/RemoveClass

NAME
RemoveClass —-- Make a public boopsi class unavailable. (V36)
SYNOPSIS
RemoveClass (classPtr)
\0)

VOID RemoveClass(struct IClass x);

intuition 109/143

FUNCTION
Makes a public class unavailable for public consumption.
It’s OK to call this function for a class which is not
yet in the internal public class list, or has been
already removed.

INPUTS
ClassPtr = pointer to *public* class created by MakeClass(),
may be NULL.

RESULT
None.

NOTES
BUGS
SEE ALSO
MakeClass (), FreeClass (), AddClass /()

Document "Basic Object-Oriented Programming System for Intuition"
and the "boopsi Class Reference" document.

1.85 intuition.library/RemoveGadget

NAME

RemoveGadget —-—- Remove a gadget from a window.
SYNOPSIS

Position = RemoveGadget (Window, Gadget)

DO AD Al

UWORD RemoveGadget (struct Window x, struct Gadget x);

FUNCTION
Removes the given gadget from the gadget list of the specified
window. Returns the ordinal position of the removed gadget.

If the gadget is in a requester attached the the window, this
routine will look for it and remove it if it is found.

If the gadget pointer points to a gadget that isn’t in the
appropriate list, -1 is returned. TIf there aren’t any gadgets in the
list, -1 is returned. If you remove the 65535th gadget from the list
-1 is returned.

NOTES
New with V37: If one of the gadgets you wish to remove
is the active gadget, this routine will wait for the user
to release the mouse button before deactivating and removing
the gadget.

INPUTS
Window = pointer to the window containing the gadget or the requester
containing the gadget to be removed.
Gadget = pointer to the gadget to be removed. The gadget itself

intuition 110/ 143

describes whether this is a gadget that should be removed from the
window or some requester.

RESULT
Returns the ordinal position of the removed gadget. If the gadget
wasn’t found in the appropriate list, or if there are no gadgets in
the 1list, returns -1.

BUGS

SEE ALSO
AddGadget (), AddGList (), RemoveGList ()

1.86 intuition.library/RemoveGList

NAME

RemoveGList —-— Remove a sublist of gadgets from a window.
SYNOPSIS

Position = RemoveGList (Window, Gadget, Numgad)

DO A0 Al DO

UWORD RemoveGList (struct Window x, struct Gadget =, WORD);

FUNCTION
Removes ’Numgad’ gadgets from the gadget list of the specified
window. Will remove gadgets from a requester if the first
gadget’s GadgetType flag GTYP_REQGADGET is set.

Otherwise identical to RemoveGadget () .

NOTE
The last gadget in the list does NOT have its link zeroed.
New with V36: OK, last gadget’s NextGadget field is set to NULL.

New with V37: If one of the gadgets you wish to remove

is the active gadget, this routine will wait for the user

to release the mouse button before deactivating and removing
the gadget.

INPUTS

Window = pointer to the window containing the gadget or the requester

containing the gadget to be removed.

Gadget = pointer to the gadget to be removed. The gadget itself
describes whether this is a gadget that should be removed
from the window or some requester.

Numgad = number of gadgets to be removed. If -1, remove all gadgets

to end of window gadget list

RESULT
Returns the ordinal position of the removed gadget. If the gadget
wasn’t found in the appropriate list, or if there are no gadgets in
the list, returns -1.

BUGS

intuition 111/143

SEE ALSO
RemoveGadget (), AddGadget (), AddGList ()

1.87 intuition.library/ReportMouse

NAME
ReportMouse —-- Tell Intuition whether to report mouse movement.
SYNOPSIS
ReportMouse (Boolean, Window)
DO AQ0 <-note

VOID ReportMouse (BOOL, struct Window *);

SPECIAL NOTE
Some compilers and link files switch the arguments to this function
about in unpredictable ways. We apologize for this confusion
wrapped around an error enclosing a mistake.
The call will take one of two forms:

ReportMouse (Boolean, Window) ;
—or—
ReportMouse (Window, (ULONG)Boolean);

The first form is the one that corresponds to the amiga.lib supplied
by Commodore. The linker libraries and "pragmas" of some compilers
supply the alternate form.

A key point to remember is that the form of the function in ROM
has always been the same, so there has always been object code
compatibility. However some care should be taken when switching
compilers or switching between stubs and pragmas.

From assembler the interface has always been:
Boolean in DO, Window in AQ

Also, it is still endorsed to simply set the WFLG_REPORTMOUSE flag bit
in Window->Flags, or reset it, on your own. Make the operation
an atomic assembly instruction (OR.W #WFLG_REPORTMOUSE,wd_Flags+2 (A0)
where A0 contains your window pointer). Most compilers will produce
an atomic operation when faced with:

Window->Flags |= WFLG_REPORTMOUSE;

Window->Flags &=~WEFLG_REPORTMOUSE;
or else bracket the operation between Forbid()/Permit ().

FUNCTION
Tells Intuition whether or not to broadcast mouse-movement events to
your window when it’s the active one. The Boolean value specifies
whether to start or stop broadcasting position information of
mouse-movement. If the window is the active one, mouse-movement reports
start coming immediately afterwards. This same routine will change
the current state of the GACT_FOLLOWMOUSE function of a
currently—-selected gadget too.

intuition 112/143

Note that calling ReportMouse () when a gadget is selected will only
temporarily change whether or not mouse movements are reported while
that gadget remains selected; the next time the gadget is selected, its
GACT_FOLLOWMOUSE flag is examined anew.

Note also that calling ReportMouse () when no gadget is currently
selected will change the state of the window’s WFLG_REPORTMOUSE flag,
but will have no effect on any gadget that may be subsequently
selected. (This is all fixed in V36.)

The ReportMouse () function is first performed when OpenWindow ()
is first called; if the flag WFLG_REPORTMOUSE is included among
the options, then all mouse-movement events are reported

to the opening task and will continue to be reported

until ReportMouse () is called with a Boolean value of FALSE.
If WFLG_REPORTMOUSE is not set, then no mouse-movement reports will
be broadcast until ReportMouse() is called with a Boolean of TRUE.

Note that the WFLG_REPORTMOUSE flag, as managed by this routine,

determines IF mouse messages are to be broadcast. Determining HOW
they are to be broadcast is determined by the IDCMP_MOUSEMOVE
IDCMPFlag.

INPUTS

Window = pointer to a Window structure associated with this request
Boolean = TRUE or FALSE value specifying whether to turn this
function on or off

RESULT
None

BUGS
See above

SEE ALSO
The Input and Output section of the Intuition Reference Manual

1.88 intuition.library/Request

NAME
Request —-- Activate a requester.
SYNOPSIS
Success = Request (Requester, Window)
DO AQ Al

BOOL Request (struct Requester *, struct Window x);

FUNCTION
Links in and displays a requester into the specified window.

This routine ignores the window’s IDCMP_REQVERIFY flag.

INPUTS
Requester = pointer to the requester to be displayed

intuition 113/143

Window = pointer to the window into which this requester goes

New for V36: the POINTREL flag now has meaning if the requester
is not a DMR (Double-Menu Requester):

If POINTREL is set this requester should be placed in the center
of the window, offset by Requester.Relleft and Requester.RelTop.
If the requester doesn’t fit in the window, its position will be
adjusted to show the upper-left corner.

RESULT
If the requester is successfully opened, TRUE is returned. Otherwise,
if the requester could not be opened, FALSE is returned.

BUGS
It turns out that the return code of this function is not
always correct under V34 and prior. If your requester does
not have an ENDGADGET, then you can examine window->FirstRequest
to see if your requester successfully opened. (A requester with
an ENDGADGET can go away all by itself before you get the chance
to look). Under V36 and higher, the return code from this routine
is fine.

There is a maximum of 8 requesters that are supported in
a window that can be changed in size, position, or depth.

SEE ALSO
The Requesters section of the Intuition Reference Manual

1.89 intuition.library/ResetMenuStrip

NAME

ResetMenuStrip —-- Re—attach a menu strip to a window. (V36)
SYNOPSIS

Success = ResetMenuStrip(Window, Menu)

DO AQ Al

BOOL ResetMenuStrip(struct Window x, struct Menu *);

FUNCTION
This function is simply a "fast" version of SetMenuStrip() that
doesn’t perform the precalculations of menu page sizes that
SetMenuStrip () does.

You may call this function ONLY IF the menu strip and all items

and sub-items have not changed since the menu strip was passed to

SetMenuStrip (), with the following exceptions:

- You may change the CHECKED flag to turn a checkmark on or off.

- You may change the ITEMENABLED flag to enable/disable some
Menultem or Menu structures.

In all other ways, this function performs like SetMenuStrip().

The new sequence of events you can use is:

intuition 114 /143

— OpenWindow ()

- SetMenuStrip ()

zero or more iterations of:
- ClearMenuStrip ()
- change CHECKED or ITEMENABLED flags
- ResetMenuStrip()

- ClearMenuStrip ()

— CloseWindow ()

INPUTS
Window = pointer to a Window structure

Menu = pointer to the first menu in the menu strip

RESULT
TRUE always.

BUGS

SEE ALSO
SetMenuStrip (), ClearMenuStrip ()

1.90 intuition.library/RethinkDisplay

NAME

RethinkDisplay —-- Grand manipulation of the entire Intuition display.
SYNOPSIS

failure = RethinkDisplay ()

DO (V39)

LONG RethinkDisplay(VOID);
/+ Returns LONG in V39 and greater =/

FUNCTION
This function performs the Intuition global display reconstruction.
This includes rethinking about all of the ViewPorts and their
relationship to one another and reconstructing the entire display
based on the results of this rethinking.

Specifically, and omitting many internal details, the operation
consists of this:

Determine which ViewPorts are invisible and set their VP_HIDE
ViewPort Mode flag. VP_HIDE flags are also set for screens that
may not be simultaneously displayed with the frontmost (V36).

If a change to a viewport height, or changing interlace or
monitor scan rates require, MakeVPort () is called for specific
screen viewports. After this phase, the intermediate Copper lists
for each screen’s viewport are correctly set up.

MrgCop () and LoadView() are then called to get these Copper lists
in action, thus establishing the new state of the Intuition
display.

intuition 115/143

You may perform a MakeScreen() on your Custom Screen before calling
this routine. The results will be incorporated in the new display, but
changing the INTERLACE ViewPort mode for one screens must be reflected
in the Intuition View, which is left to Intuition.

WARNING: This routine can take several milliseconds to run, so
do not use it lightly.

New for V36: This routine is substantially changed to support
new screen modes. In particular, if screen rearrangement has
caused a change in interlace mode or scan rate, this routine
will remake the copper lists for each screen’s viewport.

INPUTS
None

RESULT
Starting with V39, returns zero for success, non-zero for failure.
Probable cause of failure is failure of graphics.library/MakeVPort ()
or of graphics.library/MrgCop () .
Prior to V39, the return code is invalid. Do not interpret it when
running on pre-V39 systems!

BUGS
In V35 and earlier, an interlaced screen coming to the front
may not trigger a complete remake as required when the global
interlace state is changed. 1In some cases, this can be compensated
for by setting the viewport DHeight field to 0 for hidden screens.

SEE ALSO

RemakeDisplay (), graphics.library/MakeVPort (), graphics.library/MrgCop (),
graphics.library/LoadView (), MakeScreen ()

1.91 intuition.library/ScreenDepth

NAME

ScreenDepth —-- Depth arrange a screen with extra control. (V39)
SYNOPSIS

ScreenDepth (screen, flags, reserved)

AQ DO Al
VOID ScreenDepth(struct Screen x, ULONG, APTR);

FUNCTION
Brings the specified screen to the front or back, based on
the supplied flags. Also allows control of screen
depth-arranging within screen families.

INPUTS
screen = a pointer to the screen to move
flags = one of SDEPTH_TOFRONT or SDEPTH_TOBACK (bringing the
screen to front or back respectively). If the screen

is an attached screen, then you may also specify
SDEPTH_INFAMILY to move the screen within the screen

intuition 116/ 143

family. TIf the screen is an attached screen and
SDEPTH_INFAMILY is not specified, then the whole family
will move, which is also the behavior of the ScreenToFront ()
and ScreenToBack () functions, as well as the user-interface
controls.

reserved = must be NULL for now.

RESULT
None

NOTES
ONLY the application which owns the screen should use
SDEPTH_INFAMILY. It is incorrect style (and against the
intentions of the screen opener) for programs such as
commodities or mouse-helpers to move child screens around
in their family. (Note that this is a style-behavior
requirement; there is no technical requirement that the
task calling this function need be the task which opened
the screen).

BUGS
SEE ALSO

ScreenToFront (), ScreenToBack(),
SA_Parent, SA_FrontChild, SA_BackChild

1.92 intuition.library/ScreenPosition

NAME

ScreenPosition —-- Move screens with greater control. (V39)
SYNOPSIS

ScreenPosition(Screen, flags, x1, vyl1, x2, y2)

A0 DO D1 D2 D3 D4
VOID ScreenPosition(struct Screen x, ULONG, LONG, LONG, LONG, LONG);

FUNCTION
Moves the screen to the specified position or by the specified
increment, in screen pixel resolution coordinates.

If the x1 and yl variables you specify would move the screen in
a way that violates any restrictions, the screen will be moved
as far as possible. You may examine the LeftEdge and TopEdge
fields of the Screen structure after this function returns to
see where the screen really ended up.

Note that negative values for screen LeftEdge and TopEdge are
valid for screens bigger than their display clip.

INPUTS

Screen = pointer to a Screen structure

flags = Set to one of SPOS_RELATIVE, SPOS_ABSOLUTE, or
SPOS_MAKEVISIBLE. You may additionally set SPOS_FORCEDRAG

if you need. Use SPOS_RELATIVE (zero) for normal use

intuition 117 /143

(move screen a relative amount expressed by x1,yl). Set

the SPOS_ABSOLUTE flag if you wish x1 and yl to be absolute
coordinates to move the screen to. Set SPOS_MAKEVISIBLE to
position an oversized scrolling screen so that the rectangle
described by (x1,yl)-(x2,y2) is on the visible part of

the display. (A word-processor may wish to support
autoscrolling as the user types. In that case, it could
call ScreenPosition() with the SPOS_MAKEVISIBLE flag and

a rectangle that encompasses the cursor with some space
around it.

In addition to any one of the above choices, you can
additionally set SPOS_FORCEDRAG if you wish to reposition
a screen that was opened with the {SA_Draggable,FALSE}
attribute.

x1l,yl = Absolute position or change in position you wish to apply
to the screen, when using SPOS_ABSOLUTE or SPOS_RELATIVE.
When using SPOS_MAKEVISIBLE, these variables describe
the upper-left corner of the rectangle you would like to
ensure 1s on the visible part of a scrolling screen.
x2,y2 = Ignored when using SPOS_ABSOLUTE or SPOS_RELATIVE.
When using SPOS_MAKEVISIBLE, these variables describe
the lower-right corner of the rectangle you would like to
ensure 1s on the visible part of a scrolling screen.

Note that these coordinates are in the same resolution
as the screen (such as HIRES or INTERLACE)

RESULT
None

NOTES
ONLY the owner of the screen should use SPOS_FORCEDRAG.
It is incorrect style (and against the intentions of the
screen opener) for programs such as commodities or
mouse—helpers to move non-draggable screens.

BUGS

SEE ALSO
MoveScreen (), RethinkDisplay ()

1.93 intuition.library/ScreenToBack

NAME

ScreenToBack ——- Send the specified screen to the back of the display.
SYNOPSIS

ScreenToBack (Screen)

AD

VOID ScreenToBack (struct Screen *);

intuition

118/143

FUNCTION
Sends the specified screen to the back of the display.

INPUTS
Screen = pointer to a Screen structure

RESULT
None

BUGS

SEE ALSO
ScreenDepth (), ScreenToFront ()

1.94 intuition.library/ScreenToFront

NAME

ScreenToFront —-—- Make the specified screen the frontmost.
SYNOPSIS

ScreenToFront (Screen)

AQ
VOID ScreenToFront (struct Screen *);

FUNCTION
Brings the specified Screen to the front of the display.

INPUTS
Screen = a pointer to a Screen structure

RESULT
None

BUGS

SEE ALSO
ScreenDepth (), ScreenToBack ()

1.95 intuition.library/ScrollWindowRaster

NAME

ScrollWindowRaster —-—- Intuition-friendly ScrollRasterBF ()
SYNOPSIS

ScrollWindowRaster (win, dx, dy, xmin, ymin, xmax, ymax)

Al DO D1 D2 D3 D4 D5

void ScrollWindowRaster (struct Window %, WORD, WORD,
WORD, WORD, WORD, WORD) ;

FUNCTION

(V39)

intuition 119/143

Calls graphics.library/ScrollRasterBF (), which moves

the bits in the raster by (dx,dy) towards (0,0)

The space vacated is filled by calling EraseRect ().

NOTE: that vacated space is _not_ considered damage!

The scroll operation is limited to the rectangle defined
by (xmin,ymin)-(xmax,ymax). Bits outside will not be
affected. If (xmax,ymax) is outside the rastport then use

the lower right corner of the rastport.

If a window 1is partly obscured, then it is possible for
ScrollWindowRaster () to scroll some of the obscured

area into view. If the window is simple-refresh, then

the formerly obscured area is damage, and the application
needs to repair it. If Intuition detects damage as a result
of ScrollWindowRaster (), it will send an IDCMP_REFRESHWINDOW
event to the application’s window. This handling of damage
is the principal reason ScrollWindowRaster () is preferred

to ScrollRaster () and ScrollRasterBF ().

INPUTS
win - pointer to a Window structure
dx,dy are integers that may be postive, zero, or negative
xmin, ymin - upper left of bounding rectangle
xmax, ymax — lower right of bounding rectangle

NOTES
This call uses ScrollRasterBF (), which calls EraseRect ()

when clearing the newly exposed area. This allows use of
a custom layer backfill hook.

IMPORTANT: Dboopsi gadgets should use ScrollRaster() or
ScrollRasterBF () directly! Never call ScrollWindowRaster ()
from inside a boopsi gadget’s method handler. ©Note that
Intuition will detect and handle damage caused by such use
of ScrollRaster () or ScrollRasterBF (), for gadgets with
the GMORE_SCROLLRASTER property.

VERY IMPORTANT: 1if you have any gadgets in your simple-refresh
window with the GMORE_SCROLLRASTER property, you must use
ScrollWindowRaster () instead of ScrollRaster () or ScrollRasterBF ().
Handling of gadget scroll damage is incompatible with continued
use of these graphics functions in an Intuition window.

NB: TIf you’re using a gadget class whose source code you do
not control, that class might be using GMORE_SCROLLRASTER or
might start to in a future version. For that reason, you

should use ScrollWindowRaster () if you are using any such gadgets.
BUGS

SEE ALSO
graphics.library/ScrollRaster (), graphics.library/ScrollRasterBF ()
graphics.library/EraseRect (), WA_BackFill

1.96 intuition.library/SetAttrsA

intuition 120/ 143

NAME
SetAttrsA —-- Specify attribute values for an object. (V36)
SetAttrs —-- Varargs stub for SetAttrsA(). (V36)
SYNOPSIS
result = SetAttrsA(Object, TaglList)
DO AQ Al

ULONG SetAttrsA(APTR, struct Tagltem x);
result = SetAttrs(Object, Tagl, ...)
ULONG SetAttrs(APTR, ULONG, ...);
FUNCTION
Specifies a set of attribute/value pairs with meaning as
defined by a ’'boopsi’ object’s class.
This function does not provide enough context information or

arbitration for boopsi gadgets which are attached to windows
or requesters. For those objects, use SetGadgetAttrs().

INPUTS

Object = abstract pointer to a boopsi object.

TaglList = array of TagIltem structures with attribute/value pairs.
RESULT

The object does whatever it wants with the attributes you provide.
The return value tends to be non-zero if the changes would require
refreshing gadget imagery, if the object is a gadget.

NOTES
This function invokes the OM_SET method with a NULL GadgetInfo
parameter.

BUGS
SEE ALSO
NewObject (), DisposeObject (), GetAttr (), MakeClass(),

Document "Basic Object-Oriented Programming System for Intuition”
and the "boopsi Class Reference" document.

1.97 intuition.library/SetDefaultPubScreen

NAME

SetDefaultPubScreen —-- Choose a new default public screen. (V36)
SYNOPSIS

SetDefaultPubScreen (Name)

AQ

VOID SetDefaultPubScreen(UBYTE x);

FUNCTION

intuition 121/143

Establishes a new default public screen for visitor windows.

This screen is used by windows asking for a named public screen
that doesn’t exist and the FALLBACK option is selected, and for
windows asking for the default public screen directly.

INPUTS
Name = name of chosen public screen to be the new default.
A value of NULL means that the Workbench screen is to
be the default public screen.

RESULT
None

BUGS

SEE ALSO
OpenWindow (), OpenScreen(), Intuition V36 update documentation

1.98 intuition.library/SetDMRequest

NAME

SetDMRequest —-—- Set the DMRequest of a window.
SYNOPSIS

success = SetDMRequest (Window, DMRequest)

DO A0 Al

BOOL SetDMRequest (struct Window *, struct Requester =);

FUNCTION
Attempts to set the DMRequest into the specified window.
The DMRequest is the special requester that you attach to
the double-click of the menu button which the user can then
bring up on demand. This routine WILL NOT change the DMRequest
if it’s already set and is currently active (in use by the user).
After having called SetDMRequest (), if you want to change the
DMRequest, the correct way to start is by calling ClearDMRequest ()
until it returns a value of TRUE; then you can call SetDMRequest ()
with the new DMRequest.

If the POINTREL flag is set in the DMRequest, the DMR will open as
close to the pointer as possible. The Relleft/Top fields are
for fine-—-tuning the position.

INPUTS
Window = pointer to the window from which the DMRequest is to be set
DMRequest = a pointer to a requester

RESULT

If the current DMRequest was not in use, sets the DMRequest
pointer into the window and returns TRUE.

If the DMRequest was currently in use, doesn’t change the pointer
and returns FALSE

intuition 122 /143

BUGS

SEE ALSO
ClearDMRequest (), Request ()

1.99 intuition.library/SetEditHook

NAME

SetEditHook —-—- Set global processing for string gadgets. (V36)
SYNOPSIS

OldHook = SetEditHook (Hook)

DO A0

struct Hook xSetEditHook (struct Hook =*);

FUNCTION
Sets new global editing hook for string gadgets.

WARNING: The use and integration of this function has not
been explored, and thus should be considered a risky function.
Do #NOT* use this in a commercial product until further notice.

INPUTS

Hook —-- A pointer to a struct Hook which determines a function
in your code to be called every time the user types a key.
This is done before control is passed to the gadget custom
editing hook, so affects ALL string gadgets.

RESULT
Returns previous global edit hook structure. You may need this
hook if you wish to invoke the previous edit hook’s behavior
in addition to your own.

NOTES
There are a few key differences between a global edit hook and the
more famililar per-gadget StringExtend->EditHook field. 1In the
case of the latter, the hook’s creator supplies a WorkBuffer.
Intuition’s idea of the result of a keystroke is stored in
the SGWork structure (which references the WorkBuffer). The
state of the gadget before Intuition’s hook acted is available in
the StringInfo->Buffer, ->BufferPos, and ->NumChars fields.

In the case of a global editing hook, your hook _becomes_
Intuition’s hook, which affects all gadgets, most of which

do not have a WorkBuffer. This means that if you invoke
Intuition’s original hook (which you got as the result of this
function), there isn’t any easy way for you to "undo" that after

the fact. This means that if Intuition’s behavior for certain
keystrokes is incompatible with your hook’s objectives, then
you must avoid calling Intuition’s hook for those keys. One

approach is to run through your hook’s code first, acting on
those keys you wish to recognize. Then, call Intuition’s
hook for those keys you do not recognize, or for those keys
whose default actions you wish to add to.

intuition 123/143

Do not forget to set SGA_REDISPLAY when needed (see sghooks.h),
and please be sure to give the SGWork->EditOp field a value
which is as meaningful as possible.

Currently, only SGH_KEY messages are sent to the global edit
hook, though custom edit hooks do receive SGH_CLICK messages
in addition.

Finally, there is currently no arbitration between a global
edit hook and a custom edit hook as to ownership of keystrokes.
It would be fair to expect that a custom edit hook would be
written to match the current Intuition edit hook. If your
global edit hook acts on (say) up and down arrow keystrokes,

an undesirable result may occur if some string gadget’s custom
hook also acts on these keystrokes. There is currently

no easy way to resolve this issue.

BUGS

SEE ALSO

1.100 intuition.library/SetGadgetAttrsA

NAME
SetGadgetAttrsA -- Specify attribute values for a boopsi gadget. (V36)
SetGadgetAttrs —- Varargs stub for SetGadgetAttrsA(). (V36)
SYNOPSIS
result = SetGadgetAttrsA(Gadget, Window, Requester, TagList)
DO \0) Al A2 A3

ULONG SetGadgetAttrsA(struct Gadget «, struct Window x,
struct Requester %, struct Tagltem *);

result = SetGadgetAttrs(Gadget, Window, Requester, Tagl, ...)

ULONG SetGadgetAttrs(struct Gadget *, struct Window x,
struct Requester *, ULONG, ...);

FUNCTION
Same as SetAttrs (), but provides context information and
arbitration for classes which implement custom Intuition gadgets.

You should use this function for boopsi gadget objects which have
already been added to a requester or a window, or for "models" which
propagate information to gadget already added.

Typically, the gadgets will refresh their visuals to reflect
changes to visible attributes, such as the value of a slider,
the text in a string-type gadget, the selected state of a button.

You can use this as a replacement for SetAttrs (), too, if you
specify NULL for the ’'Window’ and ’'Requester’ parameters.

intuition

124 /143

INPUTS
Gadget

abstract pointer to a boopsi gadget

Window = window gadget has been added to using AddGList () or AddGadget ()

Requester = for REQGADGETs, requester containing the gadget
Taglist = array of TagIltem structures with attribute/value pairs.

RESULT
The object does whatever it wants with the attributes you provide,
which might include updating its gadget visuals.

The return value tends to be non-zero if the changes would require
refreshing gadget imagery, if the object is a gadget.

NOTES
This function invokes the OM_SET method with a GadgetInfo
derived from the ’'Window’ and ’'Requester’ pointers.

BUGS
Prior to V39, this function ran with inadequate locking against
the calls that Intuition’s input task makes to the gadgets.
To run properly prior to V39, this function, input processing,
and and the gadget’s dispatcher must be mutually re-entrant.

SEE ALSO
NewObject (), DisposeObject (), GetAttr(), MakeClass(),
Document "Basic Object-Oriented Programming System for Intuition”
and the "boopsi Class Reference" document.

1.101 intuition.library/SetMenuStrip

NAME

SetMenuStrip —-- Attach a menu strip to a window.
SYNOPSIS

Success = SetMenuStrip(Window, Menu)

DO AQ Al

BOOL SetMenuStrip(struct Window x, struct Menu *);

FUNCTION
Attaches the menu strip to the window. After calling this routine,
if the user presses the menu button, this specified menu strip
will be displayed and accessible by the user.

Menus with zero menu items are not allowed.

NOTE: You should always design your menu strip changes to be a
two-way operation, where for every menu strip you add to your
window you should always plan to clear that strip sometime. Even
in the simplest case, where you will have just one menu strip for
the lifetime of your window, you should always clear the menu strip

before closing the window. If you already have a menu strip attached

to this window, the correct procedure for changing to a new menu
strip involves calling ClearMenuStrip() to clear the old first.

intuition 125/143

The sequence of events should be:
- OpenWindow ()
- zero or more iterations of:
- SetMenuStrip ()
- ClearMenuStrip ()
— CloseWindow ()

INPUTS
Window = pointer to a Window structure
Menu = pointer to the first menu in the menu strip
RESULT
TRUE if there were no problems. TRUE always, since this routine
will wait until it is OK to proceed.

BUGS

SEE ALSO
ClearMenuStrip (), ResetMenuStrip ()

1.102 intuition.library/SetMouseQueue

NAME

SetMouseQueue —-—- Change limit on pending mouse messages. (V36)
SYNOPSIS

oldQueuelLength = SetMouseQueue (Window, QueueLength)

DO A0 DO

LONG SetMouseQueue (struct Window %, UWORD);

FUNCTION
Changes the number of mouse messages that Intuition will allow
to be outstanding for your window.

INPUTS
Window = your window
Queuelength = the new value of outstanding mouse movement messages

you wish to allow.

RESULT
-1 if 'Window’ 1is not known
Otherwise the previous value of the queue limit.
The corresponding function for changing the repeat key
queue limit is not yet implemented.

BUGS

SEE ALSO
OpenWindow ()

1.103 intuition.library/SetPointer

intuition 126 /143

NAME
SetPointer —-—- Specify a pointer sprite image for a window.
SYNOPSIS
SetPointer (Window, Pointer, Height, Width, XOffset, YOffset)
AQ Al DO D1 D2 D3

VOID SetPointer(struct Window x, UWORD %, WORD, WORD, WORD, WORD);

FUNCTION
Sets up the window with the sprite definition for the pointer.
Then, whenever the window is the active one, the pointer
image will change to the window’s version. If the window is
the active one when this routine is called, the change takes
place immediately.

The XOffset and YOffset parameters are used to offset the
upper-left corner of the hardware sprite image from what Intuition
regards as the current position of the pointer. Another way of
describing it is as the offset from the "hot spot" of the pointer
to the top-left corner of the sprite. For instance, if you specify
offsets of zero, zero, then the top-left corner of your sprite
image will be placed at the mouse position. On the other hand,

if you specify an XOffset of -7 (remember, sprites are 16 pixels
wide) then your sprite will be centered over the mouse position.
If you specify an XOffset of -15, the right-edge of the sprite
will be over the mouse position.

INPUTS
Window = pointer to the window to receive this pointer definition
Pointer = pointer to the data definition of a sprite
Height = the height of the pointer
Width = the width of the sprite (must be less than or equal to sixteen)
XOffset = the offset for your sprite from the mouse position
YOffset = the offset for your sprite from the mouse position

RESULT
None

BUGS

SEE ALSO
SetWindowPointerA (), ClearPointer (), ROM Kernel Manual: Libraries

1.104 intuition.library/SetPrefs

NAME
SetPrefs —-- Set Intuition preferences data.
SYNOPSIS
Prefs = SetPrefs(PrefBuffer, Size, Inform)
DO AO DO D1

struct Preferences xSetPrefs(struct Preferences x, LONG, BOOL);

intuition 127 /143

FUNCTION
Sets new preferences values. Copies the first ’Size’ bytes
from your preferences buffer to the system preferences table,
and puts them into effect.

The ’"Inform’ parameter, if TRUE, indicates that an IDCMP_NEWPREFS
message is to be sent to all windows that have the IDCMP_NEWPREFS
IDCMPFlag set.

It is legal to set a partial copy of the Preferences structure.
The most frequently changed values are grouped at the beginning
of the Preferences structure.

New for V36: A new and more extensible method for supplying
Preferences has been introduced in V36, and relies on file
system notification. The Intuition preferences items rely

also on the IPrefs program. Certain elements of the

Preferences structure have been superseded by this new method.
(Elements are generally superseded as new hardware or software
features demand more information than fits in struct Preferences.
Parts of struct Preferences must be ignored so that applications
calling GetPrefs (), modifying some other part of struct Preferences,
then calling SetPrefs (), don’t end up truncating the extended
data) .

Pointer Preferences: Starting with V36, pointer changes
submitted through SetPrefs() are only heeded until the first
time IPrefs informs Intuition of a V36-style pointer preferences
file. In V39 and higher, only the pointer from the initial
SetPrefs () (i.e. devs:system-configuration) is heeded.

Palette Preferences: Starting with V39, color changes submitted
through SetPrefs() are ignored after the first time IPrefs sends
Intuition new style palette preferences.

FontHeight and LaceWB: These are only respected from
devs:system—configuration.

View centering and size: Changes to ViewX/YOffset and
Row/ColumnSizeChange only apply to the default monitor
(NTSC or PAL), and not to other monitors such as Productivity.

Other fields may be superseded in the future.

INPUTS
PrefBuffer = pointer to the memory buffer which contains your
desired settings for Intuition preferences
Size = the number of bytes in your PrefBuffer, the number of bytes
you want copied to the system’s internal preference settings
Inform = whether you want the information of a new preferences
setting propagated to all windows.

NOTES
Unless you are responding to a user’s explicit request to
change Preferences (for example, you are writing a Preferences
editor), you should probably avoid using this function.

intuition

128 /143

The user’s Preferences should be respected, not overridden.

RESULT
Returns your parameter PrefBuffer.

BUGS

SEE ALSO
GetDefPrefs (), GetPrefs()

1.105 intuition.library/SetPubScreenModes

NAME

SetPubScreenModes —-- Establish global public screen behavior.
SYNOPSIS

OldModes = SetPubScreenModes (Modes)

DO DO

UWORD SetPubScreenModes (UWORD) ;

FUNCTION
Sets GLOBAL Intuition public screen modes.

INPUTS

Modes = new global modes flags. Values for flag bits are:
SHANGHATI: workbench windows are to be opened on the
default public screen
POPPUBSCREEN: when a visitor window is opened, the public
screen it opens on is to be brought to the front.

RESULT
OldModes = previous global mode settings

BUGS

SEE ALSO
OpenScreen (), Intuition V36 update documentation

1.106 intuition.library/SetWindowPointerA

(V36)

NAME
SetWindowPointerA —-- Select a pointer for your window. (V39)
SetWindowPointer —-- Varargs stub for SetWindowPointerA (). (V39)
SYNOPSIS
SetWindowPointerA (window, taglist)

AQ Al
VOID SetWindowPointerA (struct Window %, struct Tagltem x);

SetWindowPointer (window, tagl, ...)

intuition 129 /143

VOID SetWindowPointer (struct Window =, ULONG tagl, ...);
FUNCTION

Allows you to set the pointer image associated with the

specified window. Whenever the window is the active one,

the pointer image will change to the window’s wversion.
If the window is the active one when this routine is
called, the change takes place immediately.

INPUTS
window = pointer to the window to receive this pointer definition
taglist = pointer to a taglist describing your pointer

TAGS

The same three tags are also accepted by OpenWindowTagList (),
which allows you to establish the initial pointer at the
time you open your window.

WA_Pointer (APTR) - The pointer you wish to associate with
your window. If NULL, you are requesting the Preferences
default pointer. Custom pointers should be allocated
by performing a NewObject () on "pointerclass".

(See <intuition/pointerclass.h>). Defaults to NULL.

WA_BusyPointer (BOOL) - Set to TRUE to request the Preferences
busy-pointer. If FALSE, your pointer will be as requested
by WA_Pointer. Defaults to FALSE.

WA_PointerDelay (BOOL) - Set to TRUE to defer changing your
pointer for a brief instant. This is typically used
along with setting the busy pointer, especially when
the application knows it may be busy for a very short
while. 1If the application clears the pointer or sets
another pointer before the delay expires, the pending
pointer change is cancelled. This reduces short
flashes of the busy pointer.

RESULT
None

EXAMPLE
This example sets the standard busy pointer with pointer-delay,
does a bit of work, then clears the pointer:

/+ Put up the busy pointer, with pointer—-delay =/
SetWindowPointer (win,

WA_BRusyPointer, TRUE,

WA_PointerDelay, TRUE,

TAG_DONE) ;

/+ Do busy stuff here «/
/* No tags means "clear the pointer" =/

SetWindowPointer (win,
TAG_DONE) ;

intuition 130/ 143

BUGS

SEE ALSO
SetPointer (), ClearPointer (), ROM Kernel Manual: Libraries

1.107 intuition.library/SetWindowTitles

NAME
SetWindowTitles —-—- Set the window’s titles for both window and screen.
SYNOPSIS
SetWindowTitles (Window, WindowTitle, ScreenTitle)
A0 Al A2

VOID SetWindowTitles(struct Window =, UBYTE *, UBYTE =);

FUNCTION
Allows you to set the text which appears in the Window and/or Screen
title bars.

The window title appears at all times along the window title bar.
The window’s screen title appears at the screen title bar whenever
this window is the active one.

When this routine is called, your window title will be changed
immediately. If your window is the active one when this routine is
called, the screen title will be changed immediately.

You can specify a value of -1 (i.e. (UBYTE x) ~0) for either of

the title pointers. This designates that you want Intuition to leave
the current setting of that particular title alone, and modify

only the other one. O0Of course, you could set both to -1.

Furthermore, you can set a value of 0 (zero) for either of the
title pointers. Doing so specifies that you want no title to
appear (the title bar will be blank).

Both of the titles are rendered in the default font of the window’s
screen, as set using OpenScreen().

In setting the window’s title, Intuition may do some other rendering

in the top border of your window. If your own rendering sometimes
appears in your window border areas, you may want to restore the entire
window border frame. The function SetWindowTitles () does not do this
in the newer versions. The function RefreshWindowFrame () is provided
to do this kind of thing for you.

INPUTS
Window = pointer to your window structure
WindowTitle = pointer to a null-terminated text string, or set to
either the value of -1 (negative one) or 0 (zero)
ScreenTitle = pointer to a null-terminated text string, or set to
either the value of -1 (negative one) or 0 (zero)

RESULT

intuition 131/143

None
BUGS

SEE ALSO
OpenWindow (), RefreshWindowFrame (), OpenScreen ()

1.108 intuition.library/ShowTitle

NAME
ShowTitle —-—- Set the screen title bar display mode.
SYNOPSIS
ShowTitle(Screen, ShowlIt)
A0 DO

VOID ShowTitle(struct Screen x, BOOL);

FUNCTION
This routine sets the SHOWTITLE flag of the specified screen, and
then coordinates the redisplay of the screen and its windows.

The screen title bar can appear either in front of or behind
WFLG_BACKDROP windows. This is contrasted with the fact that
non-WEFLG_BACKDROP windows always appear in front of the screen title
bar. You specify whether you want the screen title bar to be in front
of or behind the screen’s WFLG_BACKDROP windows by calling this
routine.

The ShowIt argument should be set to either TRUE or FALSE. If TRUE,
the screen’s title bar will be shown in front of WFLG_BACKDROP windows

If FALSE, the title bar will be rendered behind all windows.

When a screen is first opened, the default setting of the SHOWTITLE
flag is TRUE.

INPUTS
Screen = pointer to a Screen structure
ShowIt = Boolean TRUE or FALSE describing whether to show or hide the

screen title bar

RESULT
None

BUGS

SEE ALSO

1.109 intuition.library/SizeWindow

intuition 132/143

NAME
SizeWindow —— Ask Intuition to size a window.
SYNOPSIS
SizeWindow (Window, DeltaX, DeltaY)
A0 DO D1

VOID SizeWindow(struct Window =, WORD, WORD) ;

FUNCTION
This routine sends a request to Intuition asking to size the window
the specified amounts. The delta arguments describe how much to

size the window along the respective axes.

Note that the window will not be sized immediately, but rather

will be sized the next time Intuition receives an input event,

which happens currently at a minimum rate of ten times per second,

and a maximum of sixty times a second. You can discover when

you window has finally been sized by setting the IDCMP_NEWSIZE flag

of the IDCMP of your window. See the "Input and Output Methods"
chapter of The Intuition Reference Manual for description of the IDCMP.

New for V36: Intuition now will do validity checking on the final
dimensions. To change to new absolute dimensions, or to move and
size a window in one step, use ChangeWindowBox () .

However, limit checking against window MinWidth, MinHeight,
MaxWidth, and MaxHeight was not done prior to V36, and
these fields are still ignored (as documented) if you have
no sizing gadget (WFLG_SIZEGADGET is not set). The xarex
respected now (V36) if WFLG_SIZEGADGET is set.

New for V36: you can determine when the change in size has
taken effect by receiving the IDCMP_CHANGEWINDOW IDCMP message.

INPUTS
Window = pointer to the structure of the window to be sized

DeltaX = signed value describing how much to size the window
on the x-axis
DeltaY = signed value describing how much to size the window

on the y-axis

RESULT
None

BUGS

SEE ALSO
ChangeWindowBox (), MoveWindow (), WindowToFront (), WindowToBack ()

1.110 intuition.library/SysReqHandler

NAME
SysRegHandler -- Handle system requester input. (V36)

intuition 133/143

SYNOPSIS
num = SysReqgHandler (Window, IDCMPFlagsPtr, WaitInput)
DO A0 Al DO

LONG SysRegHandler (struct Window =%, ULONG =%, BOOL);

FUNCTION
Handles input for a window returned by either BuildSysRequest ()
or BuildEasyRequest (). These functions with SysRegHandler ()
you can perform an "asynchronous" EasyRequest () or AutoRequest ().
That is to say, you can perform other processing while you
wait for the requester to be satisfied.

FEach time this function is called, it will process all
IDCMPMessages that the window has received. TIf the parameter
"WaitInput’ is non-zero, SysRegHandler() will wait for input
(by calling WaitPort()) if there are no IDCMP messages.

SysRegHandler () returns the same values as EasyRequest (): A gadget
ID greater than equal to 0, and -1 if one of the other IDCMP
events were received.

An additional value of -2 is returned if the input processed
does not satisfy the requester. In this case, you might
perform some processing and call SysRegHandler () again.

Note: this function does NOT terminate the system request.

Not only must you call FreeSysRequest () to eliminate the request,
but you may also continue processing after an event which would
normally terminate a normal call to EasyRequest ().

EXAMPLE
Implementation of EasyRequest () input loop:

window = BuildEasyRequest(...)
while ((retval = SysRegHandler (window, idcmp_ptr, TRUE)) == -2)
{
/+ loop */;
}

FreeSysRequest (window);

EXAMPLE
Request a volume, but don’t remove the requester when the
user inserts the wrong disk:

struct EasyStruct volumeES = {
sizeof (struct EasyStruct),
OI
"Volume Request",
"Please insert volume %s in any drive.",
"Cancel™"
}i

Volume *
getVolume (volname)
UBYTE +*volname;

intuition

134 /143

Wi

ID

Wa

0,

-1

struct Window xwindow;

Volume *volume = NULL;
Volume *findVolume () ;
int retval;

window = BuildEasyRequest (NULL, &volumeES, IDCMP_DISKINSERTED,

volname) ;

while ((retval = SysRegHandler (window, NULL, TRUE)) != 0

{
/* not cancelled yet x/

/* when IDCMP_DISKINSERTED, check for volume =*/
if ((retval == -1) && (volume = findVolume (volname)))
break;

}

FreeSysRequest (window);

return (volume);
INPUTS
ndow = Window pointer returned from BuildSysRequest () or
BuildEasyRequest () . Those functions can also return

values 0" or ’1’, and these values may also be
passed to SysRegHandler (), which will immediately
return the same value.

CMPFlagsPtr = If you passed application specific IDCMP
flags to BuildSysRequest () or BuildEasyRequest (),
SysRegHandler () will return -1 if that IDCMP message
is received. If IDCMPFlagsPtr is non-null, it

points to a ULONG where the IDCMP class received

will be copied for your examination.

This pointer can be NULL if you have provided no
application specific IDCMP flags or if you do

not need to know which application specific IDCMP
event occurred.

If you provide more than on flag in the flags variable
this pointer points to, you will have to refresh

the variable whenever -1 is returned, since the
variable will have been changed to show just the
single IDCMP Class bit that caused the return.

itInput = Specifies that you want SysRegHandler () to
to wait for IDCMP input if there is none pending.

RESULT
1, ..., N = Successive GadgetID values, for the gadgets
you specify for the requester. NOTE: The numbering
from left to right is actually: 1, 2, ..., N, O.

This is for compatibility with AutoRequests which has
FALSE for the rightmost gadget.

= Means that one of the caller-supplied IDCMPFlags occurred.

intuition 135/143

The IDCMPFlag value is in the longword pointed to by UDCMP_ptr.
-2 = input processed did not satisfy the requester. One example
is a keystroke that does not satisfy the requester. Another
example is if there is no input pending and you specified
FALSE for WaitInput.
BUGS

SEE ALSO
exec.library/WaitPort ()

1.111 intuition.library/TimedDisplayAlert

NAME

TimedDisplayAlert —-- Display an alert with automatic time-out. (V39)
SYNOPSIS

Response = TimedDisplayAlert (AlertNumber, String, Height, Time)

DO DO A0 D1 Al

BOOL TimedDisplayAlert (ULONG, UBYTE %, UWORD, ULONG);

FUNCTION
This function is equivalent to DisplayAlert (), except that if
the user fails to respond in a given time, the alert comes
down automatically. See the autodoc for DisplayAlert () for
full details.

INPUTS
AlertNumber = the number of this alert message. The only pertinent
bits of this number are the ALERT_TYPE bit(s). The rest of the

number 1is ignored by this routine.
String = pointer to the alert message string, as described above
Height = minimum display lines required for your message
Time = length of time the alert should wait for the user to
respond. This time is the number of video frames the
alert should remain up for.

RESULT
A BOOL value of TRUE or FALSE. If this is a DEADEND_ALERT, FALSE
is always the return value. If this is a RECOVERY_ALERT. The return
value will be TRUE if the user presses the left mouse button in
response to your message, and FALSE if the user presses the right hand
button is response to your text, or if the alert could not
be posted. 1If the alert times out, the return value will be FALSE.

BUGS

SEE ALSO
DisplayAlert ()

intuition 136 /143

1.112 intuition.library/UnlockiBase

NAME
UnlockIBase —-- Surrender an Intuition lock gotten by LockIBase() .
SYNOPSIS
UnlockIBase (Lock)
\0)

VOID UnlockIBase (ULONG) ;
FUNCTION
Surrenders lock gotten by LockIBase().

Calling this function when you do not own the specified lock will
immediately crash the system.

INPUTS
The value returned by LockIBase () should be passed to this function,
to specify which internal lock is to be freed.

Note that the parameter is passed in A0, not DO, for historical reasons.

RESULT
None

BUGS

SEE ALSO
LockIBase()

1.113 intuition.library/UnlockPubScreen

NAME
UnlockPubScreen —-- Release lock on a public screen. (V36)
SYNOPSIS
UnlockPubScreen(Name, [Screen])
A0 Al

VOID UnlockPubScreen(UBYTE %, struct Screen *);

FUNCTION
Releases lock gotten by LockPubScreen() .
It is best to identify the locked public screen by
the pointer returned from LockPubScreen(). To do this,
supply a NULL ’Name’ pointer and the screen pointer.

In rare circumstances where it would be more convenient to pass
a non-NULL pointer to the public screen name string, the

"Screen’ parameter is ignored.

INPUTS

intuition

137 /143

Name = pointer to name of public screen. If Name is NULL,
then argument ’Screen’ is used as a direct pointer to
a public screen.

Screen = pointer to a public screen. Used only if Name
is NULL. This pointer MUST have been returned
by LockPubScreen() .
It is safe to call UnlockPubScreen () with NULL Name
and Screen (the function will have no effect).

RESULT
BUGS

SEE ALSO
LockPubScreen ()

1.114 intuition.library/UnlockPubScreenList

NAME

UnlockPubScreenList —-—- Release public screen list semaphore.

SYNOPSIS
UnlockPubScreenList ()

VOID UnlockPubScreenList (VOID);

FUNCTION
Releases lock gotten by LockPubScreenList ().

INPUTS
None.

RESULT
None.

BUGS

SEE ALSO
LockPubScreenList ()

1.115 intuition.library/ViewAddress

NAME

ViewAddress ——- Return the address of the Intuition View structure.

SYNOPSIS
view = ViewAddress ()
DO
struct View *ViewAddress(VOID);

FUNCTION

(V36)

intuition 138 /143

Returns the address of the Intuition View structure. If you
want to use any of the graphics, text, or animation primitives
in your window and that primitive requires a pointer to a view,
this routine will return the address of the view for you.

INPUTS
None

RESULT
Returns the address of the Intuition View structure

BUGS

SEE ALSO
graphics.library

1.116 intuition.library/ViewPortAddress

NAME

ViewPortAddress —-- Return the address of a window’s viewport.
SYNOPSIS

ViewPort = ViewPortAddress (Window)

DO \0)

struct ViewPort *ViewPortAddress(struct Window *);

FUNCTION
Returns the address of the viewport associated with the specified
window. The viewport is actually the viewport of the screen within
which the window is displayed. If you want to use any of the graphics,
text, or animation primitives in your window and that primitive
requires a pointer to a viewport, you can use this call.

This pointer is only valid as long as your window’s screen remains
open, which is ensured by keeping your window open.

INPUTS
Window = pointer to the window for which you want the viewport address

RESULT
Returns the address of the Intuition ViewPort structure for
your window’s screen

BUGS
This routine is unnecessary: you can just use the expression
&Window->WScreen->ViewPort.

SEE ALSO
graphics.library

1.117 intuition.library/WBenchToBack

intuition 139/143

NAME

WBenchToBack —-- Send the Workbench screen in back of all screens.
SYNOPSIS

Success = WBenchToBack ()

DO

BOOL WBenchToBack (VOID);

FUNCTION
Causes the Workbench screen, if it’s currently opened, to go behind
all other screens. This does not ’'move’ the screen up or down,

instead only affects the depth-arrangement of the screens.

INPUTS
None

RESULT
If the Workbench screen was opened, this function returns TRUE,
otherwise it returns FALSE.

BUGS

SEE ALSO
WBenchToFront (), ScreenToFront ()

1.118 intuition.library/WBenchToFront

NAME

WBenchToFront ——- Bring the Workbench screen in front of all screens.
SYNOPSIS

Success = WBenchToFront ()

DO

BOOL WBenchToFront (VOID);

FUNCTION
Causes the Workbench Screen, if it’s currently opened, to come to
the foreground. This does not 'move’ the screen up or down, instead
only affects the depth—-arrangement of the screen.

INPUTS
None

RESULT
If the Workbench screen was opened, this function returns TRUE,
otherwise it returns FALSE.

BUGS

SEE ALSO
WBenchToBack (), ScreenToBack ()

intuition 140/ 143

1.119 intuition.library/WindowLimits

NAME
WindowLimits —- Set the minimum and maximum limits of a window.
SYNOPSIS
Success = WindowLimits (Window, MinWidth, MinHeight, MaxWidth,
DO A0 DO D1 D2
MaxHeight)
D3

BOOL WindowLimits (struct Window %, WORD, WORD, UWORD, UWORD) ;

FUNCTION
Sets the minimum and maximum limits of the window’s size. Until this
routine is called, the window’s size limits are equal to the initial
values established in the OpenWindow () function.

After a call to this routine, the Window will be able to be sized
to any dimensions within the specified limits.

If you don’t want to change any one of the dimensions, set the limit
argument for that dimension to zero. If any of the limit arguments
is equal to zero, that argument is ignored and the initial setting
of that parameter remains undisturbed.

If any of the arguments is out of range (minimums greater than the
current size, maximums less than the current size), that limit
will be ignored, though the others will still take effect if they
are in range. If any are out of range, the return value from this
procedure will be FALSE. If all arguments are valid, the return
value will be TRUE.

If you want your window to be able to become "as large as possible"
you may put -1 (i.e. ~0) in either or both Max arguments. But
please note: screen sizes may vary for several reasons, and you
must be able to handle any possible size of window you might end

up with if you use this method. ©Note that you can use the function
LockPubScreen() to find out how big the screen your window will
appear in is. You may also refer to the WScreen field in your
window structure, providing that your window remains open,

which will ensure that the screen remains open, and thus the
pointer remains valid.

If the user is currently sizing this window, the new limits will
not take effect until after the sizing is completed.

INPUTS
Window = pointer to a Window structure
MinWidth, MinHeight, MaxWidth, MaxHeight = the new limits for the size
of this window. If any of these is set to zero, it will
be ignored and that setting will be unchanged.

RESULT
Returns TRUE if everything was in order. TIf any of the parameters was
out of range (minimums greater than current size, maximums less than

intuition 141 /143

current size), FALSE is returned and the errant limit request is
not fulfilled (though the valid ones will be).

BUGS

SEE ALSO
LockPubScreen ()

1.120 intuition.library/WindowToBack

NAME

WindowToBack —-—- Ask Intuition to send a window behind others.
SYNOPSIS

WindowToBack (Window)

AO

VOID WindowToBack (struct Window *);

FUNCTION
This routine sends a request to Intuition asking to send the window
in back of all other windows in the screen.
Note that the window will not be depth-arranged immediately, but rather
will be arranged the next time Intuition receives an input event,
which happens currently at a minimum rate of ten times per second,
and a maximum of sixty times a second.

Remember that WFLG_BACKDROP windows cannot be depth-arranged.

INPUTS
Window = pointer to the structure of the window to be sent to the back

RESULT
None

BUGS

SEE ALSO
MoveWindow (), SizeWindow (), WindowToFront (), MoveWindowInFrontOf ()

1.121 intuition.library/WindowToFront

NAME

WindowToFront —-- Ask Intuition to bring a window to the front.
SYNOPSIS

WindowToFront (Window)

AQ

VOID WindowToFront (struct Window *);

intuition 142 /143

FUNCTION
This routine sends a request to Intuition asking to bring the window
in front of all other windows in the screen.

Note that the window will not be depth-arranged immediately, but rather
will be arranged the next time Intuition receives an input event,

which happens currently at a minimum rate of ten times per second,

and a maximum of sixty times a second.

Remember that WFLG_BACKDROP windows cannot be depth-arranged.

INPUTS
Window = pointer to the structure of the window to be brought to front

RESULT
None

BUGS

SEE ALSO
MoveWindow (), SizeWindow (), WindowToBack (), MoveWindowInFrontOf ()

1.122 intuition.library/ZipWindow

NAME
ZipWindow —-- Change window to "alternate" position and
dimensions. (V36)
SYNOPSIS
ZipWindow (Window)
AQ

VOID ZipWindow(struct Window x);

FUNCTION
Changes the position and dimension of a window to the values
at the last occasion of ZipWindow being called (or invoked
via the "zoom" gadget) .

Typically this is used to snap between a normal, large, working
dimension of the window to a smaller, more innocuous position

and dimension.

Like MoveWindow (), SizeWindow (), and ChangeWindowBox (), the action of
this function is deferred to the Intuition input handler.

More tuning needs to be done to establish initial values for

the first invocation of this function for a window. You can
provide initial values using the OpenWindow () tag item
WA_Zoom.

It could also use a new name, but "ZoomWindow" is misleading,
since "Zoom" normally implies "scale."

The zoom gadget will appear (in the place of the old "toback"

intuition 143 /143

gadget) when you open your window if you either specify a
sizing gadget or use WA_Zoom.

You can detect that this function has taken effect by receiving
an IDCMP_CHANGEWINDOW IDCMP message.

INPUTS
Window —-- window to be changed.

RESULT
None

BUGS
OpenWindow () assumes that the proper default "other" dimensions
are "full size."

SEE ALSO
ChangeWindowBox (), MoveWindow (), SizeWindow ()

	intuition
	intuition.doc
	intuition.library/ActivateGadget
	intuition.library/ActivateWindow
	intuition.library/AddClass
	intuition.library/AddGadget
	intuition.library/AddGList
	intuition.library/AllocRemember
	intuition.library/AllocScreenBuffer
	intuition.library/AutoRequest
	intuition.library/BeginRefresh
	intuition.library/BuildEasyRequestArgs
	intuition.library/BuildSysRequest
	intuition.library/ChangeScreenBuffer
	intuition.library/ChangeWindowBox
	intuition.library/ClearDMRequest
	intuition.library/ClearMenuStrip
	intuition.library/ClearPointer
	intuition.library/CloseScreen
	intuition.library/CloseWindow
	intuition.library/CloseWorkBench
	intuition.library/CurrentTime
	intuition.library/DisplayAlert
	intuition.library/DisplayBeep
	intuition.library/DisposeObject
	intuition.library/DoGadgetMethodA
	intuition.library/DoubleClick
	intuition.library/DrawBorder
	intuition.library/DrawImage
	intuition.library/DrawImageState
	intuition.library/EasyRequestArgs
	intuition.library/EndRefresh
	intuition.library/EndRequest
	intuition.library/EraseImage
	intuition.library/FreeClass
	intuition.library/FreeRemember
	intuition.library/FreeScreenBuffer
	intuition.library/FreeScreenDrawInfo
	intuition.library/FreeSysRequest
	intuition.library/GadgetMouse
	intuition.library/GetAttr
	intuition.library/GetDefaultPubScreen
	intuition.library/GetDefPrefs
	intuition.library/GetPrefs
	intuition.library/GetScreenData
	intuition.library/GetScreenDrawInfo
	intuition.library/HelpControl
	intuition.library/InitRequester
	intuition.library/IntuiTextLength
	intuition.library/ItemAddress
	intuition.library/LendMenus
	intuition.library/LockIBase
	intuition.library/LockPubScreen
	intuition.library/LockPubScreenList
	intuition.library/MakeClass
	intuition.library/MakeScreen
	intuition.library/ModifyIDCMP
	intuition.library/ModifyProp
	intuition.library/MoveScreen
	intuition.library/MoveWindow
	intuition.library/MoveWindowInFrontOf
	intuition.library/NewModifyProp
	intuition.library/NewObject
	intuition.library/NextObject
	intuition.library/NextPubScreen
	intuition.library/ObtainGIRPort
	intuition.library/OffGadget
	intuition.library/OffMenu
	intuition.library/OnGadget
	intuition.library/OnMenu
	intuition.library/OpenScreen
	intuition.library/OpenScreenTagList
	intuition.library/OpenWindow
	intuition.library/OpenWindowTagList
	intuition.library/OpenWorkBench
	intuition.library/PointInImage
	intuition.library/PrintIText
	intuition.library/PubScreenStatus
	intuition.library/QueryOverscan
	intuition.library/RefreshGadgets
	intuition.library/RefreshGList
	intuition.library/RefreshWindowFrame
	intuition.library/ReleaseGIRPort
	intuition.library/RemakeDisplay
	intuition.library/RemoveClass
	intuition.library/RemoveGadget
	intuition.library/RemoveGList
	intuition.library/ReportMouse
	intuition.library/Request
	intuition.library/ResetMenuStrip
	intuition.library/RethinkDisplay
	intuition.library/ScreenDepth
	intuition.library/ScreenPosition
	intuition.library/ScreenToBack
	intuition.library/ScreenToFront
	intuition.library/ScrollWindowRaster
	intuition.library/SetAttrsA
	intuition.library/SetDefaultPubScreen
	intuition.library/SetDMRequest
	intuition.library/SetEditHook
	intuition.library/SetGadgetAttrsA
	intuition.library/SetMenuStrip
	intuition.library/SetMouseQueue
	intuition.library/SetPointer
	intuition.library/SetPrefs
	intuition.library/SetPubScreenModes
	intuition.library/SetWindowPointerA
	intuition.library/SetWindowTitles
	intuition.library/ShowTitle
	intuition.library/SizeWindow
	intuition.library/SysReqHandler
	intuition.library/TimedDisplayAlert
	intuition.library/UnlockIBase
	intuition.library/UnlockPubScreen
	intuition.library/UnlockPubScreenList
	intuition.library/ViewAddress
	intuition.library/ViewPortAddress
	intuition.library/WBenchToBack
	intuition.library/WBenchToFront
	intuition.library/WindowLimits
	intuition.library/WindowToBack
	intuition.library/WindowToFront
	intuition.library/ZipWindow

