
AmigaMail

AmigaMail ii

COLLABORATORS

TITLE :

AmigaMail

ACTION NAME DATE SIGNATURE

WRITTEN BY July 23, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

AmigaMail iii

Contents

1 AmigaMail 1

1.1 II-43: The 2.0 Dos.library Path Name Handling Functions . 1

AmigaMail 1 / 4

Chapter 1

AmigaMail

1.1 II-43: The 2.0 Dos.library Path Name Handling Functions

By Ewout Walraven

When processing file names, it is often necessary to extract only a file
name from a path or to generate an absolute path to a file. The release
2.0 dos.library contains several routines designed to make this easier.

The FilePart() function takes a pointer to a file path and returns a
pointer to the last part of the string (the part of the string that
follows the last separator character, "/"). The last part of the string
is normally a file or directory name.

UBYTE *FilePart(UBYTE *mypath);

In case mypath (from the prototype above) consists only of a file or
directory name (like startup-sequence, s, or libs), FilePart() returns a
pointer to the start of the string (a.k.a. the same value as mypath).

The PathPart() function returns a pointer to the last character in the
path string that doesn’t include the file name (usually the separator
character "/"):

UBYTE *PathPart(UBYTE *mypath);

If passed a pointer to the path string "sys:s/startup-sequence",
PathPart() will return a pointer to "/startup-sequence". The application
can then put a \0 where PathPart() points so that the original string has
been shortened to a path part string. In case mypath (from the above
prototype) is only a file name, PathPart() returns a pointer to this file
name (the same value as mypath). This can confuse an application if it
blindly expects PathPart() to return a path. An application should make
sure the pointer PathPart() returns is not the same pointer the
application passed to the function.

Both FilePart() and PathPart() consider the initial colon of an absolute
path name (a path starting with a volume/device/assign name) to be a
special separator character, but PathPart() will not include the colon in
the string it returns a pointer to. For example, if passed the string

AmigaMail 2 / 4

"ram:tmpfile", PathPart() will return a pointer to the string "tmpfile".

Neither FilePart() nor PathPart() check the syntax of the path string
passed to them, so if your application passes an invalid path to them,
they will pass back equally invalid path fragments. Also, they do not
process any of the wildcard tokens, treating them as normal characters.
The following chart summarizes the possible results of the FilePart() and
PathPart() functions. It assumes that the path supplied to the functions
is valid.

wholepath is the path passed to FilePart() and PathPart(),
pathpart is result of PathPart(),
and filepart is the result of FilePart().

1. If (wholepath != pathpart != filepart), then filepart points
to the the file or directory name in wholepath and pathpart
points to the ’/’ before the file or directory name in
wholepath. For example:

wholepath: "ram:t/tmpfile"
Filepart: "tmpfile"
Pathpart: "/tmpfile"

wholepath: "//t/tmpfile"
Filepart: "tmpfile"
Pathpart: "/tmpfile"

2. If (wholepath != pathpart == filepart), then filepart and
pathpart point to a file or a directory name preceded by a
volume name or series of separator characters. For example:

wholepath: "ram:tmpfile"
Filepart: "tmpfile"
Pathpart: "tmpfile"

wholepath: "//tmpfile"
Filepart: "tmpfile"
Pathpart: "tmpfile"

3. If (wholepath == pathpart == filepart) then pathpart points
to either a file or a directory name. This name is not preceded
by a volume name.

wholepath: "tmpfile"
Filepart: "tmpfile"
Pathpart: "tmpfile"

4. If (pathpart[0] == 0), then path points to either "" (current
directory), a series of separators ("/", "//", ":", etc.), or a
volume/device name.

wholepath: "////"

AmigaMail 3 / 4

Filepart: ""
Pathpart: ""

wholepath: "ram:"
Filepart: ""
Pathpart: ""

The dos.library AddPart() function lets you append a file or directory
name to the end of a (relative) path, inserting any necessary separator
characters:

BOOL AddPart(UBYTE *mypathname, UBYTE *myfilename, ULONG mysize);
AddPart() will add myfilename to the end of mypathname. The mysize
argument indicates how large the mypathname buffer is. In case this
buffer is too small, AppPart() returns FALSE and makes no changes to the
buffer. If myfilename is an absolute path, it will replace the current
contents of the mypathname buffer. If myfilename starts with a colon,
AddPart() will generate a new path relative to the root of the
volume/device in mypathname.

These functions are used in subsequent examples. The Part.c example lets
you view the results of these functions. Taking a path and a file name as
arguments, Path.c interprets the path, removes the file name (if part of)
from the path and replaces the path’s file name with the file name
supplied in the argument list.

Another dos.library function called SplitName() makes it possible to
extract individual volume/device, directory, or file names (referred to
here as path components) from a path string:

WORD = SplitName(UBYTE *mypathname, UBYTE separatorchar,
UBYTE *buffer, WORD oldposition, LONG buffersize);

SplitName() searches through the string mypathname for the separator
character (separatorchar from the above prototype) starting at
oldposition. As it is stepping through mypathname, SplitName() copies the
characters it encounters from mypathname to the buffer, terminating the
resulting string with a NULL. It does not copy the separator character
into the buffer. If it finds the separator character, SplitName() returns
the position of the character that follows the separator character. This
position can be used as the oldposition argument in subsequent calls to
SplitName() to extract other path components from the same path. If
SplitName() does not find another separator character, it will return -1,
although it will still copy characters from mypathname to buffer. For
example, if SplitName() was called with the following arguments:

mypathname = "ram:env/sys/win.pat"
separatorchar = ’/’
oldposition = 8
buffersize = 10

buffer would contain the NULL terminated string "sys" and SplitName()
would return a value of 12. If SplitName() was called again placing the
return value of 12 into oldposition, buffer would contain the NULL
terminated string "win.pat" and SplitName() would return a value of -1,
as there are no separator characters in mypathname beyond the eleventh

AmigaMail 4 / 4

character.

If SplitName() runs out of room in the buffer, it will copy as much of the
characters as it can fit (buffersize - 1) and will write a NULL into the
last position in the buffer (actually, if a path component is followed by
a separator character and the 2.04 version SplitName() runs out of room in
the buffer, SplitName() will only copy (buffersize - 2) characters into
the buffer. This may be rectified in the future). Also, if SplitName()
runs out of room in the buffer and it finds another separator character,
the position it returns will not be of the character that follows the
separator character. Instead, SplitName() will return the position of the
actual separator character.

The Split.c example shows the behavior of this function. The example
takes two arguments, the path name to split up and the size of the
destination buffer SplitName() should use for the path components.

	AmigaMail
	II-43: The 2.0 Dos.library Path Name Handling Functions

