
locale

locale ii

COLLABORATORS

TITLE :

locale

ACTION NAME DATE SIGNATURE

WRITTEN BY July 23, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

locale iii

Contents

1 locale 1

1.1 locale.doc . 1

1.2 locale.library/--environment_vars-- . 1

1.3 locale.library/--rexxhost-- . 2

1.4 locale.library/--structures-- . 2

1.5 locale.library/CloseCatalog . 6

1.6 locale.library/CloseLocale . 6

1.7 locale.library/ConvToLower . 6

1.8 locale.library/ConvToUpper . 7

1.9 locale.library/FormatDate . 8

1.10 locale.library/FormatString . 9

1.11 locale.library/GetCatalogStr . 11

1.12 locale.library/GetLocaleStr . 11

1.13 locale.library/IsXXXX . 12

1.14 locale.library/OpenCatalog . 13

1.15 locale.library/OpenLocale . 15

1.16 locale.library/ParseDate . 16

1.17 locale.library/StrConvert . 17

1.18 locale.library/StrnCmp . 17

locale 1 / 19

Chapter 1

locale

1.1 locale.doc

--environment_vars--()
--rexxhost--
--structures--
CloseCatalog()
CloseLocale()
ConvToLower()
ConvToUpper()
FormatDate()
FormatString()
GetCatalogStr()
GetLocaleStr()
IsXXXX()
OpenCatalog()
OpenLocale()
ParseDate()
StrConvert()
StrnCmp()

1.2 locale.library/--environment_vars--

Starting with V40, locale.library maintains a global environment
variable called "Language" which contains the name of the current
default language as used in the system. This is the name of the
language associated with the Locale structure returned by
OpenLocale(NULL).

EXAMPLE
From a shell:

Echo "The system language currently is: $Language"

will print the name of the current system language ("english",
"français", etc)

locale 2 / 19

1.3 locale.library/--rexxhost--

HOST INTERFACE
locale.library provides an ARexx function host interface that enables
ARexx programs to take advantage of system localization. The
functions provided by the interface are directly related to the
functions described herein, with the differences mostly being
in the way they are called.

The function host library vector is located at offset -30 from the
library. This is the value you provide to ARexx in the AddLib()
function call.

FUNCTIONS
CloseCatalog (CATALOG/N/A)
ConvToLower (CHARACTER/A)
ConvToUpper (CHARACTER/A)
GetCatalogStr (CATALOG/A,STRING/N/A,DEFAULT/A)
IsAlNum (CHARACTER/A)
IsAlpha (CHARACTER/A)
IsCntrl (CHARACTER/A)
IsDigit (CHARACTER/A)
IsGraph (CHARACTER/A)
IsLower (CHARACTER/A)
IsPrint (CHARACTER/A)
IsPunct (CHARACTER/A)
IsSpace (CHARACTER/A)
IsUpper (CHARACTER/A)
IsXDigit (CHARACTER/A)
OpenCatalog (NAME/A,BUILTINLANGUAGE/A,VERSION/N/A)
Strncmp (STRING1/A,STRING2/A,TYPE/N/A)

EXAMPLE
/* localetest.rexx */

/* Make sure locale is loaded as a function host */
IF ~SHOW(L,’locale.library’) THEN DO

CALL ADDLIB(’locale.library’,0,-30)
END;

say ConvToLower("A");
say ConvToUpper("b");
say IsAlpha("1");

catalog = OpenCatalog("sys/workbench.catalog","english",0);
say GetCatalogStr(catalog,34,"default");
say CloseCatalog(catalog);
say StrnCmp("test","test",2);

1.4 locale.library/--structures--

The Locale structure is the main public structure provided by
locale.library. The structure is defined in <libraries/locale.h>
and consists of the following fields:

locale 3 / 19

STRPTR loc_LocaleName
Locale’s name.

STRPTR loc_LanguageName
The language of the driver bound to this locale.

STRPTR loc_PrefLanguages[10]
The ordered list of preferred languages for this locale.

ULONG loc_Flags
Locale flags. Currently always 0.

ULONG loc_CodeSet
Specifies the code set required by this locale. Currently, this
value is always 0.

ULONG loc_CountryCode
The international country code.

ULONG loc_TelephoneCode
The international telephone code for the country.

LONG loc_GMTOffset
The offset in minutes of the current location from GMT.
Positive indicates a Westerly direction from GMT,
negative Easterly.

UBYTE loc_MeasuringSystem
The measuring system being used.

STRPTR loc_DateTimeFormat
The date and time format string, ready to pass to FormatDate()

STRPTR loc_DateFormat
The date format string.

STRPTR loc_TimeFormat
The time format string.

STRPTR loc_ShortDateTimeFormat
The short date and time format string, ready to pass to
FormatDate()

STRPTR loc_ShortDateFormat
The short date format string.

STRPTR loc_ShortTimeFormat
The short time format string.

STRPTR loc_DecimalPoint
The decimal point character used to format non-monetary quantities.

STRPTR loc_GroupSeparator
The characters used to separate groups of digits before the
decimal-point character in formatted non-monetary quantities.

locale 4 / 19

STRPTR loc_FracGroupSeparator
The characters used to separate groups of digits after the
decimal-point character in formatted non-monetary quantities.

STRPTR loc_Grouping
A string whose elements indicate the size of each group of digits
before the decimal-point character in formatted non-monetary
quantities.

STRPTR loc_FracGrouping
A string whose elements indicate the size of each group of digits
after the decimal-point character in formatted non-monetary
quantities.

STRPTR loc_MonDecimalPoint
The decimal-point used to format monetary quantities.

STRPTR loc_MonGroupSeparator
The separator for groups of digits before the decimal-point in
monetary quantities.

STRPTR loc_MonFracGroupSeparator
The separator for groups of digits after the decimal-point in
monetary quantities.

STRPTR loc_MonGrouping
A string whose elements indicate the size of each group of digits
before the decimal-point character in monetary quantities.

STRPTR loc_MonFracGrouping
A string whose elements indicate the size of each group of digits
after the decimal-point character in monetary quantities.

UBYTE loc_MonFracDigits
The number of fractional digits (those after the decimal-point)
to be displayed in a formatted monetary quantity.

UBYTE loc_MonIntFracDigits
The number of fractional digits (those after the decimal-point)
to be displayed in an internationally formatted monetary quantity.

STRPTR loc_MonCS
The local currency symbol applicable to the current locale.

STRPTR loc_MonSmallCS
The currency symbol for small amounts.

STRPTR loc_MonIntCS
The international currency symbol applicable to the current
locale. The first three characters contain the alphabetic
international currency symbol in accordance with those specified
in ISO 4217 Codes for the Representation of Currency and Funds.
The fourth character (immediately preceding the NULL) is the
character used to separate the international currency symbol from
the monetary quantity.

STRPTR loc_MonPositiveSign

locale 5 / 19

The string used to indicate a non-negative monetary quantity.

UBYTE loc_MonPositiveSpaceSep
Specifies the number of spaces separating the currency symbol from
the non-negative monetary quantity.

UBYTE loc_MonPositiveSignPos
Set to a value indicating the positioning of loc_MonPositiveSign
for a non-negative monetary quantity.

UBYTE loc_MonPositiveCSPos
Set to 1 or 0 if loc_MonCS respectively precedes or succeeds
the value for a non-negative monetary quantity.

STRPTR loc_MonNegativeSign
The string used to indicate a negative monetary quantity.

UBYTE loc_MonNegativeSpaceSep
Specifies the number of spaces separating the currency symbol from
the negative monetary quantity.

UBYTE loc_MonNegativeSignPos
Set to a value indicating the positioning of loc_MonNegativeSign
for a negative monetary quantity.

UBYTE loc_MonNegativeCSPos
Set to 1 or 0 if loc_MonCS respectively precedes or succeeds
the value for a negative monetary quantity.

The grouping tables pointed to by loc_Grouping, loc_FracGrounping,
loc_MonGrouping, and loc_MonFracGrouping contain a stream of bytes
with the following values:

255 No further grouping is to be performed.

0 The previous element is to be repeatedly used for the
remainder of the digits.

1..254 The integer value is the number of digits that comprise
the current group. The next element is examined to
determine the size of the next group of digits before
the current group.

The values of loc_MonPositiveSignPos and loc_MonNegativeSignPos are
interpreted according to the following:

0 Parentheses surround the quantity and currency symbol

1 The sign string precedes the quantity and
currency symbol

2 The sign string succeeds the quantity and
currency symbol

3 The sign string immediately precedes the
currency symbol

locale 6 / 19

4 The sign string immediately succeeds the
currency symbol.

1.5 locale.library/CloseCatalog

NAME
CloseCatalog -- close a message catalog. (V38)

SYNOPSIS
CloseCatalog(catalog);

A0

VOID CloseCatalog(struct Catalog *);

FUNCTION
Concludes access to a message catalog. The usage count of the
catalog is decremented. When this count reaches 0, the catalog
can be expunged from system memory whenever a memory panic occurs.

INPUTS
catalog - the message catalog to close. A NULL catalog is a valid

parameter and is simply ignored.

SEE ALSO
OpenCatalog(), GetCatalogStr()

1.6 locale.library/CloseLocale

NAME
CloseLocale -- close a locale. (V38)

SYNOPSIS
CloseLocale(locale);

A0

VOID CloseLocale(struct Locale *);

FUNCTION
Concludes access to a locale.

INPUTS
locale - an opened locale. A NULL locale is a valid

parameter and is simply ignored.

SEE ALSO
OpenLocale(), <libraries/locale.h>

1.7 locale.library/ConvToLower

locale 7 / 19

NAME
ConvToLower -- convert a character to lower case. (V38)

SYNOPSIS
char = ConvToLower(locale,character);
D0 A0 D0

ULONG ConvToLower(struct Locale *,ULONG);

FUNCTION
This function tests if the character specified is upper case. If it is
then the lower case version of that character is returned, and if it
isn’t then the original character is returned.

INPUTS
locale - the locale to use for the conversion
character - the character to convert

RESULT
char - a (possibly) converted character

NOTE
This function requires a full 32-bit character be passed-in in order
to support multi-byte character sets.

1.8 locale.library/ConvToUpper

NAME
ConvToUpper -- convert a character to upper case. (V38)

SYNOPSIS
char = ConvToUpper(locale,character);
D0 A0 D0

ULONG ConvToUpper(struct Locale *,ULONG);

FUNCTION
This function tests if the character specified is lower case. If it is
then the upper case version of that character is returned, and if it
isn’t then the original character is returned.

INPUTS
locale - the locale to use for the conversion
character - the character to convert

RESULT
char - a (possibly) converted character

NOTE
This function requires a full 32-bit character be passed-in in order
to support multi-byte character sets.

locale 8 / 19

1.9 locale.library/FormatDate

NAME
FormatDate -- generate a date string based on a date formatting

template. (V38)

SYNOPSIS
FormatDate(locale,fmtTemplate,date,putCharFunc);

A0 A1 A2 A3

VOID FormatDate(struct Locale *,STRPTR,struct DateStamp *,
struct Hook *);

FUNCTION
This function processes a formatting template and generates
a stream of bytes that’s sent one character at a time to the
putCharFunc callback hook.

INPUTS
locale - the locale to use for the formatting
fmtTemplate - the NULL-terminated template describing the desired

format for the date. This is constructed just like
C-language printf() statements, except that different
formatting codes are used. Just like in C, formatting
codes start with a % followed by the formatting command.
The following commands are accepted by this function:

%a - abbreviated weekday name
%A - weekday name
%b - abbreviated month name
%B - month name
%c - same as "%a %b %d %H:%M:%S %Y"
%C - same as "%a %b %e %T %Z %Y"
%d - day number with leading 0s
%D - same as "%m/%d/%y"
%e - day number with leading spaces
%h - abbreviated month name
%H - hour using 24-hour style with leading 0s
%I - hour using 12-hour style with leading 0s
%j - julian date
%m - month number with leading 0s
%M - the number of minutes with leading 0s
%n - insert a linefeed
%p - AM or PM strings
%q - hour using 24-hour style
%Q - hour using 12-hour style
%r - same as "%I:%M:%S %p"
%R - same as "%H:%M"
%S - number of seconds with leadings 0s
%t - insert a tab character
%T - same as "%H:%M:%S"
%U - week number, taking Sunday as first day of week
%w - weekday number
%W - week number, taking Monday as first day of week
%x - same as "%m/%d/%y"
%X - same as "%H:%M:%S"

locale 9 / 19

%y - year using two digits with leading 0s
%Y - year using four digits with leading 0s

If the template parameter is NULL, a single NULL byte
is sent to putCharFunc.

date - the date to format into a string
putCharFunc - a callback hook invoked for every character generated,

including for the terminating NULL character. The hook
is called with:

A0 - address of Hook structure
A1 - character for hook to process (not a pointer!)

A2 - locale pointer

SEE ALSO
ParseDate(), <libraries/locale.h>, <dos/dos.h>

1.10 locale.library/FormatString

NAME
FormatString -- format data into a character stream. (V38)

SYNOPSIS
next = FormatString(locale,fmtTemplate,dataStream,putCharFunc);
D0 A0 A1 A2 A3

APTR FormatString(struct Locale *,STRPTR,APTR,struct Hook *);

FUNCTION
This function performs C-language-like formatting of a data stream,
outputting the result a character at a time. Where % formatting
commands are found in the formatting template, they are replaced with
the corresponding elements in ’dataStream’. %% must be used in the
string if a % is desired in the output.

An extension to the standard C-language printf() conventions used
by FormatString() is argument position specification. Specifying the
argument position lets the order of the % commands change while the
arguments provided remain the same. Using the C printf() call as an
example:

printf("%d eyes, %d feet and %d ears",eyes,feet,ears);
printf("%3$d ears, %1$d eyes and %2$d feet",eyes,feet,ears);

These two statements would produce the following output:
"2 eyes, 3 feet and 4 ears" for the first
"4 ears, 2 eyes and 3 feet" for the second

The argument positioning feature lets you change the format string
being processed while keeping the data stream the same. This is
an invaluable tool when translating strings to different languages.

INPUTS
locale - the locale to use for the formatting
fmtTemplate - a C-language-like NULL-terminated format string,

with the following supported % options:

locale 10 / 19

%[arg_pos$][flags][width][.limit][length]type

arg_pos - ordinal position of the argument for this command within
the array of arguments pointed to by ’dataStream’

$ - must follow the arg_pos value, if specified
flags - only one allowed. ’-’ specifies left justification.
width - field width. If the first character is a ’0’, the

field is padded with leading 0s.
. - must precede the field limit value, if specified

limit - maximum number of characters to output from a string.
(only valid for %s or %b).

length - size of input data defaults to word (16-bit) for types c,
d, u and x, ’l’ changes this to long (32-bit).

type - supported types are:
b - BSTR, data is 32-bit BPTR to byte count followed

by a byte string. A NULL BPTR is treated as an
empty string.

d - signed decimal
D - signed decimal using the locale’s formatting

conventions
u - unsigned decimal
U - unsigned decimal using the locale’s formatting

conventions
x - hexadecimal with hex digits in uppercase

X - hexadecimal with hex digits in lowercase
s - string, a 32-bit pointer to a NULL-terminated

byte string. A NULL pointer is treated
as an empty string.

c - character

If the formatting template parameter is NULL, the
function returns without outputting anything. Note the
meaning of %x and %X are swapped with respect to
standard C conventions. This is for compatibility with
exec.library/RawDoFmt().

dataStream - a stream of data that is interpreted according to
the format string. Often this is a pointer into
the task’s stack.

putCharFunc - a callback hook invoked for every character generated,
including for the terminating NULL character. The hook
is called with:

A0 - address of Hook structure
A1 - character for hook to process (not a pointer!)

A2 - locale pointer

the function is called with a NULL char at the end of
the format string.

RESULT
next - A pointer to beyond the last data element used in ’dataStream’

(the next argument that would have been processed).
This allows multiple formatting passes to be made using the
same data.

WARNING

locale 11 / 19

This function formats word values in the data stream. If your compiler
defaults to longs, you must add an "l" to your specifications. This
can get strange for characters, which might look like "%lc".

SEE ALSO
exec.library/RawDoFmt()

1.11 locale.library/GetCatalogStr

NAME
GetCatalogStr -- get a string from a message catalog. (V38)

SYNOPSIS
string = GetCatalogStr(catalog,stringNum,defaultString);
D0 A0 D0 A1

STRPTR GetCatalogStr(struct Catalog *,LONG,STRPTR);

FUNCTION
This function returns a specific string within a message catalog.
If the catalog parameter is NULL, or the requested message does not
exist, then defaultString is returned.

INPUTS
catalog - a message catalog as obtained from OpenCatalog(), or NULL
stringNum - a message number within the catalog
defaultString - string to return in case "catalog" is NULL or

"stringNum" can’t be found

RESULT
string - a pointer to a NULL-terminated string. The returned string

is READ-ONLY, do NOT modify! This string pointer is valid
only as long as the catalog remains open.

SEE ALSO
OpenCatalog(), CloseCatalog()

1.12 locale.library/GetLocaleStr

NAME
GetLocaleStr -- get a standard string from a locale. (V38)

SYNOPSIS
string = GetLocaleStr(locale,stringNum);
D0 A0 D0

STRPTR GetLocaleStr(struct Locale *,ULONG);

FUNCTION
This function returns a specific string associated with the given
locale.

locale 12 / 19

INPUTS
locale - a valid locale
stringNum - the number of the string to get a pointer to. See the

constants defined in <libraries/locale.h> for the
possible values.

RESULT
string - a pointer to a NULL-terminated string, or NULL if the

requested string number was out of bounds. The returned
string is READ-ONLY, do NOT modify! This string pointer
is valid only as long as the locale remains open.

SEE ALSO
OpenLocale(), CloseLocale(), <libraries/locale.h>

1.13 locale.library/IsXXXX

NAME
IsXXXX -- determine whether a character is of a certain type. (V38)

SYNOPSIS
state = IsXXXX(locale,character);
D0 A0 D0

BOOL IsXXXX(struct Locale *,ULONG);

FUNCTION
These functions determine whether the character specified is of a
certain type, according to the supplied locale.

IsAlNum() - test if alphanumeric character
IsAlpha() - test if alphabetical character
IsCntrl() - test if control character
IsDigit() - test if decimal digit character
IsGraph() - test if visible character
IsLower() - test if lower case character
IsPrint() - test if blank
IsPunct() - test if punctuation character
IsSpace() - test if white space character
IsUpper() - test if upper case character
IsXDigit() - test if hexadecimal digit

INPUTS
locale - the locale to use for the test
character - the character to test

RESULT
state - TRUE if the character is of the required type, FALSE otherwise

NOTE
These functions require full 32-bit characters be passed-in in order
to support multi-byte character sets.

locale 13 / 19

1.14 locale.library/OpenCatalog

NAME
OpenCatalogA -- open a message catalog. (V38)
OpenCatalog -- varargs stub for OpenCatalogA(). (V38)

SYNOPSIS
catalog = OpenCatalogA(locale,name,tagList);
D0 A0 A1 A2

struct Catalog *OpenCatalogA(struct Locale *,STRPTR,struct TagItem *);

catalog = OpenCatalog(locale,name,firstTag, ...);

struct Catalog *OpenCatalog(struct Locale *,STRPTR,Tag, ...);

FUNCTION
This function opens a message catalog. Catalogs contain all the
text strings that an application uses. These strings can easily
be replaced by strings in a different language, which causes the
application to magically start operating in that new language.

Catalogs originally come from disk files. This function searches for
them in the following places:

PROGDIR:Catalogs/languageName/name
LOCALE:Catalogs/languageName/name

where languageName is the name of the language associated with the
locale parameter. So assuming an application called WizPaint:

catalog = OpenCatalog(NULL,
"WizPaint.catalog",
OC_BuiltInLanguage,"english",
TAG_DONE);

Passing NULL as first parameter to OpenCatalog() indicates you
wish to use the system’s default locale. Assuming the default locale
specifies "deutsch" as language, OpenCatalog() tries to open the
catalog as:

PROGDIR:Catalogs/deutsch/WizPaint.catalog

and if that file is not found, then OpenCatalog() tries to open it
as:

LOCALE:Catalogs/deutsch/WizPaint.catalog

PROGDIR: is not always checked before LOCALE: is. If the volume which
PROGDIR: is assigned to is NOT currently mounted, and if the one
which LOCALE: is assigned to IS mounted, then LOCALE: is checked
first, followed by PROGDIR: if needed. This is done in order to
minimize the number of disk swaps on floppy systems.

The OC_BuiltInLanguage tag specifies the language of the strings
that are built into the application. If the language of the

locale 14 / 19

built-in strings matches that of the locale, then no catalog
need be loaded from disk and the built-in strings can be used
directly.

locale.library caches text catalogs in order to minimize disk
access. As such, OpenCatalog() may or may not cause disk access.
This fact should be taken into consideration. Unused catalogs are
automatically flushed from the system when there is not enough
memory. When there is disk access, it is possible a DOS requester
may be opened asking for a volume to be inserted. You can avoid this
requester opening by setting your process’ pr_WindowPtr field to -1.

INPUTS
locale - the locale for which the catalog should be opened, or NULL.

When NULL, then the system’s default locale is used. This
should generally be NULL

name - the NULL-terminated name of the catalog to open, typically
the application name with a ".catalog" extension

tagList - pointer to an array of tags providing optional extra
parameters, or NULL

TAGS
OC_BuiltInLanguage (STRPTR) - language of built-in strings of the

application. That is, this tag identifies
the language used for the "defaultString"
parameter used in the GetCatalogStr()
function. Default is "english". Providing
this tag and setting its value to NULL
indicates that there are no built-in
strings.

OC_BuiltInCodeSet (ULONG) - code set of built-in strings. Default is 0.
THIS TAG SHOULD ALWAYS BE SET TO 0 FOR NOW.

OC_Language (STRPTR) - language explicitly requested for the catalog.
A catalog of this language will be returned if
possible, otherwise a catalog in one of the
user’s preferred languages. This tag should
normally not be provided as it overrides the
user’s preferences.

OC_Version (UWORD) - catalog version number required. Default is 0
which means to accept any version of the catalog
that is found. Note that if a version is
specified, the catalog’s version much match it
exactly. This is different from version numbers
used by OpenLibrary().

RESULT
catalog - a message catalog to use with GetCatalogStr() or NULL.

A NULL result does not necessarily indicate an error.
If OpenCatalog() determines that the built-in strings of
the application can be used instead of an external catalog
from disk, then NULL is returned. To determine whether
a NULL result actually indicates an error, look at the
return value of dos.library/IoErr(). 0 means no error.

locale 15 / 19

GetCatalogStr() interprets a NULL catalog as meaning to use
the built-in strings.

NOTE
In most cases, failing to open a catalog should not be considered a
fatal error, and the application should continue operating and
simply use the built-in set of strings instead of the disk-based
catalog. Note that GetCatalogStr() accepts a NULL catalog pointer for
this very reason.

Also note that displaying an error message when a catalog fails to
open can be a meaningless endeavor as the message is likely in a
language the user does not understand.

SEE ALSO
CloseCatalog(), GetCatalogStr()

1.15 locale.library/OpenLocale

NAME
OpenLocale -- open a locale. (V38)

SYNOPSIS
locale = OpenLocale(name);
D0 A0

struct Locale *OpenLocale(STRPTR);

FUNCTION
This function opens a named locale. Locales contain many parameters
that an application needs to consider when being integrated into
different languages, territories and customs. Using the information
stored in a locale instead of hard-coding it into an application,
lets the application dynamically adapt to the user’s environment.

Locales originally come from disk files which are created by the
user using the Locale preferences editor. Passing a NULL instead of
a name causes this function to return the current default locale.
This is what most applications will do.

Every locale specifies a language, and special language drivers
must be loaded from disk depending on which language is being used.
These files include for example:

LOCALE:Languages/français.language
LOCALE:Languages/dansk.language
LOCALE:Languages/italiano.language

INPUTS
name - the NULL-terminated name of the locale to open, or NULL to open

the current default locale. This should generally be NULL. The
name you supply must be a pathname leading to a locale
preferences file. This is an IFF PREF file as saved by
Locale prefs, that can contain both LCLE and CTRY chunks.
See <prefs/locale.h> for definitions.

locale 16 / 19

RESULT
locale - a pointer to an initialized Locale structure, or NULL if the

locale could not be loaded. In the case of a NULL return, the
DOS IoErr() function can be called to obtain more information
on the failure.

When passing a NULL name parameter to this function, you are
guaranteed a valid return.

SEE ALSO
CloseLocale(), <libraries/locale.h>, <prefs/locale.h>

1.16 locale.library/ParseDate

NAME
ParseDate -- interpret a string according to the date formatting

template and convert it into a DateStamp. (V38)

SYNOPSIS
state = ParseDate(locale,date,fmtTemplate,getCharFunc);
D0 A0 A1 A2 A3

BOOL ParseDate(struct Locale *,struct DateStamp *,STRPTR,struct Hook *);

FUNCTION
This function converts a stream of characters into an AmigaDOS
DateStamp structure. The characters are obtained from the
getCharFunc callback hook and the formatting template is used
to direct the parse.

INPUTS
locale - the locale to use for the formatting
date - place to put the converted date, this may be NULL in which

case this routine can be used to simply validate a date
fmtTemplate - the date template describing the expected format of the

data. See FormatDate() documentation for a description of
date templates. The following formatting controls from
FormatDate() can be used in ParseDate():

%a %A %b %B %d %e %h %H %I %m %M %p %S %y %Y
getCharFunc - a callback hook invoked whenever a character is required.

The hook should return the next character to process,
with a NULL character to indicate the end of the string.
The hook is called with:

A0 - address of Hook structure
A1 - locale pointer

A2 - NULL

The hook returns the character to process in D0. Note
that a complete 32-bit result is expected in D0, not
just 8 bits.

RESULT
state - TRUE if the parsing went OK, or FALSE if the input did not

locale 17 / 19

match the template

SEE ALSO
FormatDate(), <dos/dos.h>

1.17 locale.library/StrConvert

NAME
StrConvert -- transform a string according to collation information.

(V38)

SYNOPSIS
length = StrConvert(locale,string,buffer,bufferSize,type);
D0 A0 A1 A2 D0 D1

ULONG StrConvert(struct Locale *,STRPTR,APTR,ULONG,ULONG);

FUNCTION
This function transforms the passed string and places the resulting
into the supplied buffer. No more than bufferSize bytes are copied
into the buffer.

The transformation is such that if the C strcmp() function is applied
to two transformed strings, it returns a value corresponding to
the result returned by the StrnCmp() function applied to the two
original strings.

INPUTS
locale - the locale to use for the transformation
string - NULL-terminated string to transform
buffer - buffer where to put the transformed string
bufferSize - maximum number of bytes to deposit in the buffer

StrConvert() may require more storage than
the unconverted string does

type - describes how the transformation is to be performed. See
the documentation on StrnCmp() for more information on the
comparison types available

RESULT
length - length of the transformed string which is the number of bytes

deposited in the buffer minus 1 (since strings are NULL-
terminated)

SEE ALSO
StrnCmp(), <libraries/locale.h>

1.18 locale.library/StrnCmp

NAME
StrnCmp -- localized string comparison. (V38)

SYNOPSIS

locale 18 / 19

result = StrnCmp(locale,string1,string2,length,type);
D0 A0 A1 A2 D0 D1

LONG StrnCmp(struct Locale *,STRPTR,STRPTR,LONG,ULONG);

FUNCTION
Compares string1 to string2 according to the collation information
provided by the locale and returns an integer greater than,
equal to, or less than zero, accordingly as the string pointed to
by string1 is greater than, equal to, or less than the string
pointed to by string2.

The length parameter specifies how many characters to compare, or if
the length is specified as -1 then the strings are compared until
a NULL is encountered.

The type parameter dictates how the comparison is to be performed.

INPUTS
locale - the locale to use for this comparison
string1 - NULL-terminated string
string2 - NULL-terminated string
length - the maximum number of characters to be compared, or -1 to

compare all characters until a NULL is encountered
type - describes how the comparison is to be performed. The following

values can be passed:
SC_ASCII causes an ASCII-based case-insensitive comparison
to be performed. SC_ASCII is the fastest of the comparison
types, but it uses ASCII ordering and considers accented
characters different than their non-accented counterparts.

SC_COLLATE1 causes the characters to be compared using their
primary sorting order. This effectively produces a comparison
that ignores letter case and diacritical marks. That is,
letters such as "e" and "é" are treated as if they were both
"e".

SC_COLLATE2 causes the characters to be compared using both
their primary and secondary sorting order. SC_COLLATE2 is
slower than SC_COLLATE1. This is the type of comparison to
use when sorting data to be presented to the user. It operates
in two passes. First it performs a comparison equivalent to
SC_COLLATE1. If both strings compare the same, then a second
pass is made using the secondary sorting order, which gives
finer resolution to the comparison. For example, SC_COLLATE1
would return the following strings as identical:

"père" and "pere"
since SC_COLLATE1 ignores diacritical marks. SC_COLLATE2
would make a second pass over the string comparing
diacritical marks instead of actual characters.

RESULT
result - relationship between string1 and string2

<0 means string1 < string2
=0 means string1 = string2
>0 means string1 > string2

locale 19 / 19

SEE ALSO
OpenLocale(), CloseLocale(), StrConvert()

	locale
	locale.doc
	locale.library/--environment_vars--
	locale.library/--rexxhost--
	locale.library/--structures--
	locale.library/CloseCatalog
	locale.library/CloseLocale
	locale.library/ConvToLower
	locale.library/ConvToUpper
	locale.library/FormatDate
	locale.library/FormatString
	locale.library/GetCatalogStr
	locale.library/GetLocaleStr
	locale.library/IsXXXX
	locale.library/OpenCatalog
	locale.library/OpenLocale
	locale.library/ParseDate
	locale.library/StrConvert
	locale.library/StrnCmp

