cardres

cardres

COLLABORATORS

TITLE :
cardres
ACTION NAME DATE SIGNATURE
WRITTEN BY July 23, 2024
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

cardres iii

Contents

1 cardres 1
.1 cardres.doc e e e 1
1.2 card.resource/BeginCardACCess e e 1
1.3 card.resource/CardAccessSpeed e 2
1.4 card.resource/CardChangeCount o i e e e e e e e e 3
1.5 card.resource/CardForceChange L e 3
1.6 card.resource/CardInterface L 4
1.7 card.resource/CardMiscControl L e e e 5
1.8 card.resource/CardProgramVoltage L e 7
1.9 card.resource/CardResetCard L 8
1.10 card.resource/CardResetRemove L 9
1.11 card.resource/CopyTuple e e e e 10
1.12 card.resource/DeviceTuple L e 12
1.13 card.resource/EndCardAccess e e 13
1.14 card.resource/GetCardMap e e 14
1.15 card.resource/IfAmMiIgaXIP L e e e 15
1.16 card.resource/OwnCard e e e e e 17
1.17 card.resource/ReadCardStatus e 22
1.18 card.resource/ReleaseCard L e e e 22

cardres

1/23

Chapter 1

cardres

1.1

cardres.doc

BeginCardAccess (
CardAccessSpeed (
CardChangeCount (
CardForceChange (
CardInterface()
CardMiscControl ()
CardProgramVoltage ()
CardResetCard ()
CardResetRemove ()
CopyTuple ()
DeviceTuple ()
EndCardAccess ()
GetCardMap ()
IfAmigaXIP ()
OwnCard ()
ReadCardStatus ()
ReleaseCard()

—_ — — —

1.2 card.resource/BeginCardAccess

NAME

BeginCardAccess ——- Called before you begin credit-card memory access

SYNOPSIS

result=BeginCardAccess (handle

do

BOOL BeginCardAccess (

al

FUNCTION

This function should be called before you begin access

to credit-card memory.

Its effect will depend on the type of Amiga machine your
code happens to be running on.

)

struct CardHandle x);

On some machines it

cardres 2/23

will cause an access light to be turned ON.

INPUTS
handle - Same handle as that used when OwnCard() was called.

RETURNS

TRUE if you are still the owner of the credit-card, and
memory access 1is permitted. FALSE if you are no longer
the owner of the credit-card (usually indicating that
the card was removed).

NOTES
This function may be called from within a task, or from a level 1
or level 2 interrupt.

It is highly recommended that you call this function
before accessing credit-card memory, as well as checking
the return value. If it is a return value of FALSE, you
should stop accessing credit-card memory.

SEE ALSO
OwnCard (), EndCardAccess /()

1.3 card.resource/CardAccessSpeed

NAME
CardAccessSpeed ——- Select best possible memory access speed.
SYNOPSIS
result=CardAccessSpeed(handle, nanoseconds);
do al do

ULONG CardAccessSpeed(struct CardHandle x, ULONG) ;

FUNCTION
This function is used to set memory access speed for all CPU
accesses to card memory.

Typically this information would be determined by first examining
the Card Information Structure.

Then you would use this function to let the card.resource
select the best possible access speed for you, however note
that the range of possible access speeds may vary on some
machines (depending on the type of credit-card interface
hardware being provided).

INPUTS
handle - Same handle as that used when OwnCard() was called.
nanoseconds - Preferred access speed in nanoseconds.

RETURNS

Speed — Access speed selected by resource (in nanoseconds) .

cardres 3/23

0 - Not successful. Either because the credit-card was
removed, or the access speed you requested is slower than
that supported by the credit-card interface hardware.

NOTES
This function may be called from within a task, or from a level 1

or level 2 interrupt.

SEE ALSO
OwnCard ()

1.4 card.resource/CardChangeCount

NAME
CardChangeCount -- Obtain card change count.
SYNOPSIS
count = CardChangeCount (VOID)
do

ULONG CardChangeChange (VOID);

FUNCTION

This function returns the card change count. The
counter is incremented by one for every removal, and

for every successful insertion (a card which is inserted
long enough to be debounced before it is removed again).

RESULT
The change count number.

NOTES
This function may be called from a task, or any level interrupt.

SEE ALSO

1.5 card.resource/CardForceChange

NAME
CardForceChange —- Force a card change.
SYNOPSIS
success = CardForceChange(VOID)
do

BOOL CardForceChange(VOID);

FUNCTION

This function is not intended for general use. Its
purpose is to force a credit-card change as if

the user had removed, or inserted a card.

cardres 4/23

This function is intended to be used by a utility program
which needs to force the current card owner to release
ownership of the card, thereby allowing the utility an
opportunity to own the credit-card.

RESULT
TRUE if the function succeeded, FALSE if card change is
not allowed. This function will generally succeed, unless

someone is using the card in reset remove mode at the time
this function is called.

NOTES
This function should only be called from a task.

SEE ALSO

1.6 card.resource/Cardinterface

NAME
CardInterface -- Determine the type of card interface.
SYNOPSIS
return = CardInterface ()
do

ULONG CardInterface(void);

FUNCTION

This function is used to determine the type of credit-card
(hardware) interface available. For the most part the
card.resource hides the hardware details from devices within its
function calls. However should we need to provide a work—-around
because of differences, or limitations imposed by future interface
hardware, this function must be used to identify which interface
is available.

RETURN
A ULONG value as defined in card.h/i.

NOTES

In general only I/0 devices (e.g., a device which interfaces

with a modem card) would need to provide work-arounds,

or alternative code. An example would be a change in the way
interrupt requests from the card are handled. Specific details
will be provided as need in the future. I/0 devices) should abort
properly if this function returns a value which is unknown.

Current implementations (see card.h/i) -

CARD_INTERFACE_AMIGA_O

The card slot can be configured for use as an I/0 interface
by using the CardMiscControl () function.

cardres 5/23

The card slot inhibits writes to cards which do not negate
the WP status bit. This can be overridden by using the
CardMiscControl () function.

Changes in the interrupt request line are latched by a gate-array,
and have to be obtained via the status change mechanism provided
when you call the OwnCard() function. The interrupt is cleared
when you return from the status change interrupt. A level 2
interrupt is generated. Usually you will want to clear the
interrupt on the card at this time, and Signal() a task. The IRQ
line is the same as the RDY/BSY line.

Changes in BVD1l, WP, and RDY/BSY are also latched by the gate-array,
and are obtainable via the status change mechanism provided by
the OwnCard() function. A level 2 interrupt is generated.

Changes in BVD2 (also used for digital audio) have to be

monitored via polling. Generally this will cause no problem.
Monitoring changes in BVDl & BVD2 to monitor for low battery
condition can be handled by a low priority tool which periodically
checks the condition of both lines using the ReadCardStatus()

function.
As of card.resource V39 (check VERSION in resource base), the
CardMiscControl () function can be used to enable/disable

status change interrupts for changes in BVD1l, BVD2, and the
RDY/BSY status line. Status change interrupts for WR
(Write-protect enable/disable) are always enabled. The default
state of enabled/disabled status change interrupts noted above
are unchanged, and automatically reset to the defaults when

a card is removed, or when even a task releases ownership

of the card.

Some PC oriented eight (8) bit cards may require you read
odd-byte I/0O address registers at the corresponding even-byte
address plus 64K. There is sufficient I/0 address space

provided that exceeding I/0O address space should not be a problem.

Your code should wait at least 1 millisecond for Vpp to stabilize
after voltage change (see CardProgramVoltage()) .

SEE ALSO
CardMiscControl (), resources/card.i, resources/card.h

1.7 card.resource/CardMiscControl

NAME
CardMiscControl —-- Set/Clear miscellaneous control bits
SYNOPSIS
control_bits=CardMiscControl (handle, control_bits);
do al dl

UBYTE CardMiscControl (struct CardHandle x, UBYTE);

cardres 6/23

FUNCTION
Used to set/clear miscellaneous control bits (generally for
use with I/O cards).

INPUTS
handle - Same handle as that used when OwnCard() was called.
control_bits - A mask value of control bits to be turned on/off.

The bit values which might be usable are defined in card.h/i.

For example, to enable digital audio, and disable hardware
write-protect (if supported), you would call this function with these
values —-—

CARDF_DISABLE_WP |CARDF_ENABLE_DIGAUDIO

Then to turn off digital audio, but leave write-protect
disable, you would use a value of —-—

CARDF_DISABLE_WP

Finally too reenable write protect, call this function with
a mask value of 0.

RETURNS
control_bits - The same mask value you called this function
with if successful. If one, or more bits has been cleared

in the return mask, this would indicate that the control bit
is not being supported, or that the card has been removed
by the user.

For example, if you called this function with a mask wvalue
of ——

CARDF_DISABLE_WP | CARDF_ENABLE_DIGAUDIO
And this function returned a value of —-—
CARDF_DISABLE_WP

This would indicate that it is not possible to enable digital
audio (most likely because this feature has not been implemented).

NOTES
This function may be called from within a task, or from a level 1
or level 2 interrupt.

' ' IMPORTANT!!!

You should ALWAYS try to enable digital audio for I/O cards
as this will also configure the card socket for the I/O
interface (if supported).

Not all cards will connect the write-enable line (e.g.,
some I/0O cards). On some machines (e.g., the A600) it will
not be possible to write to such cards unless you disable

cardres 7123

write-protection by using this function.
VI INEW! !

For card.resource V39 (check resource base for VERSION before
using), new bits have been defined which let you enable/disable
particular status change interrupts. See CardInterface() for
defaults. These new bits are backwards compatable with V37

for which only the CARDB_DISABLE_WP, and CARDB_ENABLE_DIGAUDIO
bits were defined. These new bits allow you to enable, or
disable specific status change interrupts including BVD1/SC,
BVD2/DA, and BSY/IRQ. The defaults for these status change
interrupts are unchanged from V37, and WR (Write-protect) status
change interrupts are always enabled as they use to be.

An example of use:

CARD_INTF_SETCLR!CARD_INTF_BVD1

Would enable BVD1/SC status change interrupts, and not change

the enable/disable state for BVD2/DA or BSY/IRQ status change
interrupts. If the change was made successfully, the
CARD_INTB_BVD1l bit would be set in register DO when this function

returns.

SEE ALSO
CardInterface (), resources/card.h, resources/card.i

1.8 card.resource/CardProgramVoltage

NAME
CardProgramVoltage —-- Set programming voltage.
SYNOPSIS

success=CardProgramVoltage (handle, voltage);

al do

LONG CardProgramVoltage(struct CardHandle %, ULONG);

FUNCTION
Used to set programming voltages (e.g., for FLASH-ROM/EPROM
cards) .

INPUTS
handle - Same handle as that used when OwnCard() was called.
voltage - See card.i/h for valid values.

RETURNS

1 - Successful.

0 - Not successful. Most likely because the credit-card

card has been removed, and you are no longer the owner.

-1 - This function is not being supported. On some machines

cardres

8/23

with a minimal (hardware) credit-card interface, this feature
may not be possible.

NOTES
This function may be called from within a task, or from a level 1
or level 2 interrupt.

' 'WARNING! !!

Flash-ROM programming requires careful coding to prevent

leaving the Erase command on too long. Failure to observe

the maximum time between the Erase command, and the Erase-Verify

command can make a Flash-ROM card unusable. Some Flash-ROM cards
may provide an internal watch-dog timer which protects the card.

Because of the relatively long time (e.g., 1l0ms) between Erase, and
Erase-Verify which must be observed, the need for such critical
timing can be problematic on a multi-tasking machine.

Vendors of Flash-ROM’s recommend a high priority interrupt
generated by a 10ms timer be used to turn off Erase. On the
Amiga this can be accomplished by using a CIA-B interval timer.
The timer.device also provides a mechanism for generating a low
priority interrupt. The timer.device is easier to use than CIA
interval timers, though not as accurate or as safe.

Even if the Flash-ROM card provides an internal watch-dog timer,
implementation of the code during Erase should assume that

the Flash—-ROM does not.

SEE ALSO
OwnCard (), resources/card.h, resources/card.i

1.9 card.resource/CardResetCard

NAME
CardResetCard —-- Reset credit-card.
SYNOPSIS
success=CardResetCard(handle);
al

BOOL CardResetCard(struct CardHandle x);

FUNCTION

Used to reset a credit-card. Some cards, such as some
configurable cards can be reset.

Asserts credit-card reset for at least 10us.

INPUTS
handle - Same handle as that used when OwnCard() was called.

RETURNS
TRUE - Successful.

cardres 9/23

FALSE - Not successful. Most likely because the credit-card
card has been removed, and you are no longer the owner.

NOTES
This function may be called from within a task, or from a level 1
or level 2 interrupt.

* %% IMPORTANT * * %

It is the responsibility of the card owner to reset
configurable cards, or any other type of card such as

some I/0 cards before calling ReleaseCard() if the owner
has made use of that card such that it is no longer in its
reset state (unless you are releasing the card because it
has been removed) .

If the card manufacturer indicates that a certain amount

of time must elapse between end of reset, and completion

of card initialization, you should wait at least that long
before releasing the card (unless you are releasing the card
because it has been removed).

SEE ALSO
OwnCard(), ReleaseCard()

1.10 card.resource/CardResetRemove

NAME
CardResetRemove —- Set/Clear reset on card removal.
SYNOPSIS
success=CardResetRemove (handle, flag);
al do

BOOL CardResetRemove (struct CardHandle %, ULONG);

FUNCTION
Used to set/clear HARDWARE RESET on card change detect.

This function should generally not be used by devices
which support HOT-REMOVAL. HARDWARE RESET on removal
is generally intended for execute-in-place software, or
ram cards whose memory has been added as system ram.

INPUTS
handle - Same handle as that used when OwnCard() was called.

flag — TRUE if you want to SET HARDWARE RESET on credit
card removal. FALSE if you want to CLEAR HARDWARE
RESET.

RETURNS
1 - Success.

cardres 10/23

0 - Function failed (most likely because the card was removed
by the user, and you are no longer the owner of the card).

-1 - This function is not being made available.

NOTES
This function should only be called from a task.

SEE ALSO
OwnCard ()

1.11 card.resource/CopyTuple

NAME
CopyTuple —— Find/copy a credit card tuple.

SYNOPSIS

success = CopyTuple(CardHandle, buffer, tuplecode, size);
do al a0 di do

BOOL CopyTuple (struct CardHandle %, UBYTE %, ULONG, ULONG);

FUNCTION
This function scans credit-card memory for a tuple, and
if found, copies it into a supplied buffer. The entire

tuple (including the tuple code, and link) are copied to
the supplied buffer. The number of bytes copied to the
buffer will be 2 bytes, plus the argument "size", or the
value in the tuple LINK field (whichever is SMALLER).

The software calling this function is responsible for
examining the copy of the tuple (e.g., recognition of
fields, recognition of stop bytes, etc. within the tuple).

This function does the best job it can to find a tuple
in attribute, or common memory. It follows tuple chains,
and skips odd bytes in attribute memory.

This function monitors for credit-card removal while reading data.
If the credit-card is removed while a byte is being read, it will
stop searching, and return FALSE.

This function does not protect against another task writing
to credit-card memory while data is being read. The device
is responsible for single-threading reads/writes to the
credit card as needed.

This function can be used to find multiple tuple codes; this
is a very rare case, so the mechanism provided for doing so is
unusual. See INPUTS below for more information.

This function does not read bytes within the body of any tuples
except for the tuple you want copied, and the basic compatibility
tuples this function understands (see list below).

cardres 11/23

On some machines this function may slow down memory access

speed while reading the tuple chain. This is done to prevent
potential problems on slow cards. By examining the CISTPL_DEVICE,
and CISTPL_DEVICE_A tuples, you can determine the best possible
memory access speed for the type of card inserted. Because memory
access speed may be slowed down, calls to this function should

be single-threaded.

The Card Information Structure must start with a CISTPL_DEVICE
tuple stored as the first tuple in attribute memory. If not,
this function will search for a CISTPL_LINKTARGET tuple

stored at byte 0 of common memory. Therefore it is possible
to store a CIS on cards which do not have any writeable
attribute memory, though this may cause problems for other
software implemented on other machines. For example, some
SRAM cards do not come with writeable attribute memory, and/or
some may have OPTIONAL EEPROM memory which may not have been
initialized by the card manufacturer. While it could be
argued that such cards do not conform to the PCMCIA PC Card
Standard, such cards are cheaper, and therefore likely to be
used.

INPUTS
CardHandle - Same handle as that used when OwnCard() was
called.

buffer - Pointer to a buffer where the tuple will be copied.

The buffer should be at least as large as "size" + 8 (see
use of "size" argument below). Therefore the minimum buffer
size is 8 bytes. See NOTES below.

tuplecode - The tuple code you want to search for. This is

a ULONG value. The upper 16 bits should be 0, or a number between
1-32K where a value of 0 means you want to find the first tuple
match, a value of 1 the second, etc. For example -

0x41 means find the FIRST tuple equal to $41.

((1<<16) | (0x41)) means find the SECOND tuple equal to $41.

((2<<16)] (0x41)) means find the THIRD tuple equal to $41.

size - The maximum number of bytes you want copied (not
including the tuple code, and link). The actual number
of bytes copied may be less than "size" if the tuple

link field is less than "size".

A size of 0 will result in only the tuple code, and
link being copied to your buffer if the tuple is found.

If you do not care how many bytes are copied, any unsigned
value of 255 or greater will do. In this case a maximum
of 257 bytes might be copied to your buffer (if the

tuple link field is the maximum of 255).

Other sizes are useful if you know the size of the tuple

cardres 12/23

you want copied, or you know there are active registers
stored within the tuple, and only want to copy a portion
of a tuple.

RETURNS

TRUE if the tuple was found, and copied, else FALSE.

This function may also return false if the CIS is believed
to be corrupt, or if the card is removed while reading the
tuples.

NOTES

This function can be called multiple times (adjusting the "size"
argument) to read a tuple of variable length, or unknown size.

Your supplied buffered is used by this function for working
storage - the contents of it will be modified even if this
function fails to find the tuple you want a copy of.

This function should NOT be used to find/copy tuples of type

— CISTPL_LONGLINK_A
— CISTPL_LONGLINK_C
— CISTPL_NO_LINK

— CISTPL_LINKTARGET
- CISTPL_NULL

- CISTPL_END

These tuples are automatically handled for you by this function.

SEE ALSO
OwnCard()

1.12 card.resource/DeviceTuple

NAME
DeviceTuple —-- Decode a device tuple
SYNOPSIS

return=DeviceTuple(tuple_data, storage)

a0 al
ULONG DeviceTuple (UBYTE x, struct DeviceTData x);

FUNCTION
Extracts SIZE, TYPE, and SPEED from a device tuple (generally
obtained with CopyTuple()).

INPUTS
tuple_data - Pointer to a CISTPL_DEVICE tuple (generally obtained
with CopyTuple()) .

storage - Pointer to a DeviceTData structure in which results
are to be stored.

cardres 13/23

struct DeviceTData {

ULONG dtd_DTsize; /+ Size of card (bytes) «/
ULONG dtd_DTspeed; /+ Speed in nanoseconds x/
UBYTE dtd_DTtype; /% Type of card */
UBYTE dtd_DTflags; /* Other flags */

}i

RETURN

SIZE (same as dtd_DTsize) if the Device Tuple could be decoded.
FALSE (0) if the tuple is believed to be invalid. The tuple is
considered to be invalid if:

The tuple link value is 0.
The device type/speed byte is $00, or SFF.

The device type is DTYPE_EXTEND, which is undefined
as of this writing.

The extended speed byte is a value which is
undefined as of this writing.

The extended speed byte is extended again which is
undefined as of this writing.

The device Size byte is SFF.
NOTES
Some cards may not have a size specified in the device
tuple. An example would be an I/0 card. The size would be

returned as one (1) in this case.

You should not call this function with a partial CISTPL_DEVICE
tuple, or the return values may be junk.

SEE ALSO
CopyTuple (), resources/card.h, resources/card.i

1.13 card.resource/EndCardAccess

NAME
EndCardAccess —- Called at the end of credit-card memory access
SYNOPSIS
result=EndCardAccess (handle)
do al

ULONG EndCardAccess(struct CardHandle *);

FUNCTION
This function should be called when you are done accessing
credit-card memory.

cardres 14 /23

Its effect will depend on the type of Amiga machine your

code happens to be running on. On some machines it
will cause an access light to be turned OFF in approximately
1/2 second.

On machines which support an access light, the light will
automatically be turned off when you call ReleaseCard() .

INPUTS
handle - Same handle as that used when OwnCard() was called.

RETURNS

TRUE if you are still the owner of the credit-card. FALSE
if you are no longer the owner of the credit-card (usually
indicating the card was removed) .

NOTES
This function may be called from within a task, or from a level 1
or level 2 interrupt.

It is highly recommended that you call this function
after accessing credit-card memory, as well as checking
the return value. If it is a return value of FALSE, you
should stop accessing credit-card memory, and conclude
that the card was removed before this function was called.

On some machines it is possible that the credit-card will be
removed before you receive the removed interrupt.

SEE ALSO
OwnCard (), ReleaseCard(), BeginCardAccess ()

1.14 card.resource/GetCardMap

NAME
GetCardMap —-—- Obtain pointer to CardMemoryMap structure
SYNOPSIS
pointer=GetCardMap ()
do

struct CardMemoryMap xGetCardMap(void);

FUNCTION
Obtain pointer to a CardMemoryMap structure. The structure
is READ only.

Devices should never assume credit-card memory appears

at any particular place in memory. By using this function

to obtain pointers to the base memory locations of the wvarious
credit-card memory types, your device will continue to work
properly should credit cards appear in different memory
locations in future hardware.

RETURNS

cardres 15/23

Pointer to CardMemoryMap structure -

struct CardMemoryMap {
UBYTE xcmm_CommonMemory;
UBYTE xcmm_AttributeMemory;
UBYTE xcmm_IOMemory;

bi

As of card.resource V39, this structure has been extended to
include the size of these memory regions. See card.h/card.i
for the new fields. If card.resource V39, use the constants

in the CardMemoryMap structure rather than hard coded constants
for memory region size.

NOTES
If any pointer in the structure is NULL, it means this type

of credit-card memory is not being made available.

SEE ALSO
resources/card.h, resources/card.i

1.15 card.resource/lfAmigaXIP

NAME
IfAmigaXIP —-- Check if a card is an Amiga execute-in-place card.
SYNOPSIS
result=IfAmigaXIP (handle)
do az

struct Resident *IfAmigaXIP(struct CardHandle x);

FUNCTION
Check to see if a card in the slot is an Amiga execute—-in-place
card. The Card Information Structure must have a valid

CISTPL_AMIGAXIP tuple.

Tuples can be treated like structures. The format of a
CISTPL_AMIGAXIP tuple is -

struct TP_AmigaXIP {
UBYTE TPL_CODE;
UBYTE TPL_LINK;
UBYTE TP_XIPLOC[4];
UBYTE TP_XIPFLAGS;
UBYTE TP_XIPRESRV;
bi

The TPL_CODE field must be equal to CISTPL_AMIGAXIP (0x91).

The TPL_LINK field must be equal to the length of the body
of a CISTPL_AMIGAXIP tuple (0x06).

cardres 16/23

The TP_XIPLOC array 1s the memory location of your ROM-TAG

stored in little-endian order. This value is stored as an
"offset" into common memory as is the standard for storing 32 bit
bit pointers in tuples.

For example, a pointer to a ROM-TAG stored at an offset of
0x00000200 would be stored as four bytes like so:

0x00, 0x02, 0x00, 0x00

Currently credit-card common memory is mapped starting at

memory location 0x600000. Because a ROM-TAG is used,

it is implied that execute—-in-place code can be compiled/linked
to use absolute references. It is believed that most developers
will not want to have to write pc-relative code only.

The TP_XIPFLAGS field is treated as a set of flag bits.
See card.i/h for defined bits. All undefined bits MUST be
0.

The TP_XIPRESRV field must be 0 for now.

The system polls for cards which have a CISTPL_AMIGAXIP tuple

at the same time that it searches for devices to boot off.

When a card with a valid CISTPL_AMIGAXIP tuple is found, the
system will call your ROM-TAG via Exec’s InitResident () function.

The system examines the return code from InitResident (). A

NULL return in DO means you are done with the card, and it can
be removed by the user. A successful return indicates you are
still using the card. Some programs (e.g., some games) may
never return. The only requirement is that if you do return,
you must leave the system in a "good" state (including returning
most of, or all the memory you allocated). The standard
convention for preserving registers apply.

Note that your execute-in-place code will not be called
a second time, unless you have returned a non-successful
result. In this case your execute-in-place code MUST
assume the user can remove, and insert your card again.
There are a variety of ways to check for re-insertion
(e.g., search for a message port, device, library, task,
etc., that you created).

Note that your execute-in-place code runs in an environment
similar to boot block games; before DOS has been initialized!

Your execute-in-place code should NOT try to initialize DOS
because DOS requires a suitable disk-like device be at
the head of the expansion base mountlist to boot off.

If you need DOS, it 1is possible to boot off a credit-card using
carddisk.device. Such cards will require a valid

CISTPL_DEVICE tuple, and CISTPL_FORMAT tuple. A portion

of the card can be used for a minimal number of data blocks
like the method described above.

cardres 17 /23

However this method is not recommended, though it is anticipated
that some developers will have thought of, and used this

method anyway. If you must do this, at least use the

CardHandle returned by OwnCard() to set hardware reset

on removal else the machine will likely crash anyway if

the card is removed while your execute-in-place code is running.

RETURNS
Pointer to a ROM-TAG on the card, or NULL indicating that:

o The card does not meet the above requirements, or
o The card has been removed, or
o You are not the owner of the credit-card.

NOTES

This function is being made public so developers can test
test that their execute-in-place credit-cards meet the
requirements for an Amiga execute-in-place card. In general
there is no reason for devices, or applications to use this
function.

Amiga execute-in-place software is identified via a tuple code
reserved for manufacturer specific use, therefore the manufacturer
of the card may freely use the CISTPL_VERS_1, or CISTPL_VERS_2
tuples to place identification information on the credit-card.

No attempt has been made to make use of the MS-DOS execute-in-place
method; it is believed that most manufacturers of Amiga
execute-in-place software will prefer a simple, and small

scheme for running their execute-in-place code.

SEE ALSO
OwnCard (), resources/card.h, resources/card.i

1.16 card.resource/OwnCard

NAME
OwnCard —-- Own credit card registers, and memory
SYNOPSIS
return = OwnCard(handle)
do al

struct CardHandle »OwnCard(struct CardHandle *);

FUNCTION
This function is used to obtain immediate, or deferred
ownership of a credit-card in the credit-card slot.

Typically an EXEC STYLE DEVICE will be written to interface
between an application, and a credit card in the slot. While
applications, and libraries can attempt to own a credit-card
in the card slot, the rest of this documentation assumes a
device interface will be used.

cardres 18 /23

Because credit-cards can be inserted, or removed by the user at
any time (otherwise known as HOT-INSERTION, and HOT-REMOVAL),
the card.resource provides devices with a protocol which

lets many devices bid for ownership of a newly inserted card.

In general, devices should support HOT-REMOVAL, however there
are legitimate cases where HOT-REMOVAL is not practical. For
these cases this function allows you to own the resource using
the CARDB_RESETREMOVE flag. If the card is removed before your
device calls ReleaseCard(), the machine will RESET.

INPUTS
handle - pointer to a CardHandle structure.

struct CardHandle {

struct Node cah_CardNode;
struct Interrupt =+cah_CardRemoved;
struct Interrupt =+cah_CardInserted;
struct Interrupt =*cah_CardStatus;
UBYTE cah_CardFlags;

}i

The following fields in the structure must be filled
in by the application before calling OwnCard() -

cah_CardNode.ln_Pri -

See table below. The Node field is used by the resource to
add your handle to a sorted list of CardHandle structures.
This list is used by the resource to notify devices when the
device owns the credit-card.

Your device will only be notified (at most) one time
per card insertion, and perhaps less often if some
higher priority device on the notification list retains
ownership of a card in the slot.
Priority Comments

>= 21 Reserved for future use
10-20 To be used by third party devices (e.g.,

I/0 CARD manufacturers) which look for

specific card tuples to identify credit-cards.

01-19 Reserved for future use

00 To be used by general purpose devices which
have loose card specification requirements.

<= -1 Reserved for future use

cah_CardNode.ln_Type -

Must be set to 0 for now. This field may be used in the

cardres 19/23

future to identify an extended CardHandle structure.
cah_CardNode.ln_Name -

Must be initialized to NULL, or name of device which owns
this structure.

cah_CardRemoved -

Pointer to an initialized interrupt structure. Only the
is_Data, and is_Code fields need to be initialized. This

is the interrupt code which will be called when a credit-card
which your device owns is removed. Once you receive this
interrupt, all credit-card interface control registers are
reset (e.g., programming voltage, access speed, etc.), and
you should stop accessing the card as soon as possible.

Because your code is called on interrupt time, you
should do the least amount possible, and use little
stack space.

This pointer can be NULL if you have asked for reset
on card-removal, and you never turn reset off.

cah_ CardInserted -

Pointer to an initialized interrupt structure. Only the
is_Data, and is_Code fields need to be initialized. This
is the code which will be called when your CardHandle owns
the credit-card in the slot.

Note that your code may be called on the context of
an interrupt, or a task in FORBID, therefore you should
do the least amount possible, and use little stack space.

Note that it is possible to receive a card removed
interrupt immediately before you receive this interrupt if
the card is removed while your CardInserted interrupt

is being called.

Your device owns the credit-card until the card is manually
removed by the user, or you release the card by calling
ReleaseCard() .

Your device should examine the card in the slot (e.g., look
for specific tuples), and decide if the card is of a type your
device understands.

If not, release ownership of the card by calling
ReleaseCard () so that other devices will be given a chance to
examine the current card in the credit-card slot.

cah_CardStatus -

Pointer to an initialized interrupt structure. Only the
is_Data, and is_Code fields need to be initialized.

cardres 20/23

Note that your code will be called on the context of
an interrupt, therefore you should do the least
amount possible, and use little stack space.

Note that it is possible to receive a card removed
interrupt immediately before you receive this interrupt
if the card is removed during this interrupt.

If this pointer is NULL, you will not receive card status
change interrupts.

Your interrupt code will be called with a mask value in
register DO, and a pointer to your data in Al.

The mask value in DO can be interpreted using the same bit
definitions returned by ReadCardStatus (). Note that more
than one bit may be set, and the mask only tells you what has
changed, not the current state.

Use ReadCardStatus () if you need to determine the current
state of the status bits.

Not all status change interrupts will necessarily be

enabled on all systems. For example, on some systems
BVD2/DA status change interrupts will not be enabled so

that digital audio can occur without generating many
interrupts. Status change interrupts are typically meant

to be used for monitoring BSY/IRQ, WR, and BVD1/SC. Battery
voltage low detection would best be done by a separate
utility which periodically polls BVDl & BVD2 by using the
ReadCardStatus () function.

Typically the mask value in DO MUST be returned unchanged
on exit from your code. The return value in DO is then used
to clear the source(s) of the interrupt.

In the rare case that you need to keep a status change
interrupt active, clear the appropriate bit(s) in DO before
returning via RTS. Clear no bits other than those defined
as valid bits for ReadCardStatus () !
I''INEW FOR V39!!!
See definition of CARDB_POSTSTATUS below.
cah_CardFlags -
Optional flags (all other bits must be 0).
— CARDB_RESETREMOVE means you want the machine to
reset if the credit-card in the slot is removed
while you own the credit-card.
— CARDB_IFAVAILABLE means you only want ownership of

the credit-card in the slot if it is immediately
available.

cardres 21/23

If it is available, your CardHandle structure will be added
to a list so that you can be notified via an interrupt when
the credit-card is removed by the user.

If the credit-card is not immediately available (either
because there is no credit-card in the slot, or because some
other device owns the credit-card), your CardHandle structure
will NOT be added to the notification list.

— CARDB_DELAYOWNERSHIP means you never want a successful
return from OwnCard() even if the credit-card is
available. Rather you will be notified of ownership
via your cah_CardInserted interrupt. If you use this flag,
OwnCard() will always return -1. This flag cannot be used
with the CARDB_IFAVAILABLE flag.

— CARDB_POSTSTATUS is new for V39 card.resource (check
resource base VERSION before using). It is meant to be
used by drivers which want to service the card hardware
AFTER the status change interrupt has been cleared on the
gate array. Previously a PORTS interrupt server had
to be added to do this; this is somewhat more efficient, and
easier to use. Your status change interrupt is first called
with status change bits in register DO. You would examine
these bits, and set a flag(s) for the POST callback. When
you return from the status change interrupt, the interrupt
on the gate array is cleared (based on what you return in
register DO0), and your status change interrupt is immediately
called again, but this time with O in DO. The wvalue you
return in DO for the POST callback case is ignored.

ALL other fields are used by the resource, and no fields in the
structure may be modified while the structure is in use by the
resource. If you need to make changes, you must remove your
CardHandle (see ReleaseCard()), make the changes, and then call
OwnCard() again.

RESULTS
0 - indicates success, your device owns the credit card.
-1 - indicates that the card cannot be owned (most likely

because there is no card in the credit card slot).

ptr - indicates failure. Returns pointer to the CardHandle
structure which owns the credit card.

NOTES
This function should only be called from a task.

CardHandle interrupts are called with a pointer to your data
in Al, and a pointer to your code in A5. With the exception
of status change interrupts, DO0-D1, AO-Al, and A5-A6 may be
treated as scratch registers. Status change interrupts are
also called with meaningful data in DO, and expect DO be
preserved upon RTS from your code. No other registers are
guaranteed to contain initialized data. All other registers

cardres 22 /23

must be preserved.

SEE ALSO
ReleaseCard (), ReadCardStatus (), resources/card.i, resources/card.h

1.17 card.resource/ReadCardStatus

NAME
ReadCardStatus —-- Read credit card status register
SYNOPSIS
status=ReadCardStatus ()
do

UBYTE ReadCardStatus(void);

FUNCTION
Returns current state of the credit card status register.

See card.h/i for bit definitions.

Note that the meaning of the returned status bits may vary
depending on the type of card inserted in the slot, and
mode of operation. Interpretation of the bits is left

up to the application.

RETURNS
A UBYTE value to be interpreted as status bits.

NOTES
This function may be called from within a task, or from any level

interrupt.

SEE ALSO
resources/card.h, resources/card.i

1.18 card.resource/ReleaseCard

NAME
ReleaseCard —-- Release ownership of credit card
SYNOPSIS
ReleaseCard(handle, flags)
al do

void ReleaseCard(struct CardHandle x, ULONG);
FUNCTION
This function releases ownership of the credit card in the

slot.

The access light (if any) is automatically turned off

cardres 23/23

(if it was turned on) when you release ownership of
a card you owned, and all credit-card control registers
are reset to their default state.

You must call this function if -

You own the credit-card, and want to release it so that
other devices on the notification list will have a chance
to examine the credit-card in the card slot.

You took a Card Removed interrupt while you owned the
credit-card. If so, you MUST call this function, else

no other task will be notified of newly inserted cards. On

some machines the credit-card interface hardware may also

be left disabled until you respond to the card removed interrupt
by calling this function.

You want to remove yourself from the notification list (see
optional flags below).

INPUTS
handle - Same handle as that used when OwnCard() was called.

flags - Optional flags.

— CARDB_REMOVEHANDLE means you want remove your
CardHandle structure from the notification list
whether or not you currently own the credit-card
in the card slot. The node structure in your
CardHandle will be removed from the notification
list, and ownership will be released if you were
the owner of the card.

NOTES
This function should only be called from a task.

SEE ALSO
OwnCard (), resources/card.i, resources/card.h

	cardres
	cardres.doc
	card.resource/BeginCardAccess
	card.resource/CardAccessSpeed
	card.resource/CardChangeCount
	card.resource/CardForceChange
	card.resource/CardInterface
	card.resource/CardMiscControl
	card.resource/CardProgramVoltage
	card.resource/CardResetCard
	card.resource/CardResetRemove
	card.resource/CopyTuple
	card.resource/DeviceTuple
	card.resource/EndCardAccess
	card.resource/GetCardMap
	card.resource/IfAmigaXIP
	card.resource/OwnCard
	card.resource/ReadCardStatus
	card.resource/ReleaseCard

