
audio

audio ii

COLLABORATORS

TITLE :

audio

ACTION NAME DATE SIGNATURE

WRITTEN BY July 23, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

audio iii

Contents

1 audio 1

1.1 audio.doc . 1

1.2 audio.device/AbortIO . 1

1.3 audio.device/ADCMD_ALLOCATE . 2

1.4 audio.device/ADCMD_FINISH . 3

1.5 audio.device/ADCMD_FREE . 4

1.6 audio.device/ADCMD_LOCK . 5

1.7 audio.device/ADCMD_PERVOL . 6

1.8 audio.device/ADCMD_SETPREC . 7

1.9 audio.device/ADCMD_WAITCYCLE . 8

1.10 audio.device/BeginIO . 8

1.11 audio.device/CloseDevice . 9

1.12 audio.device/CMD_CLEAR . 9

1.13 audio.device/CMD_FLUSH . 10

1.14 audio.device/CMD_READ . 11

1.15 audio.device/CMD_RESET . 11

1.16 audio.device/CMD_START . 12

1.17 audio.device/CMD_STOP . 13

1.18 audio.device/CMD_UPDATE . 14

1.19 audio.device/CMD_WRITE . 14

1.20 audio.device/Expunge . 15

1.21 audio.device/OpenDevice . 16

audio 1 / 17

Chapter 1

audio

1.1 audio.doc

AbortIO()
ADCMD_ALLOCATE
ADCMD_FINISH
ADCMD_FREE
ADCMD_LOCK
ADCMD_PERVOL
ADCMD_SETPREC
ADCMD_WAITCYCLE
BeginIO()
CloseDevice()
CMD_CLEAR
CMD_FLUSH
CMD_READ
CMD_RESET
CMD_START
CMD_STOP
CMD_UPDATE
CMD_WRITE
Expunge()
OpenDevice()

1.2 audio.device/AbortIO

NAME
AbortIO - abort a device command

SYNOPSIS
AbortIO(iORequest);

A1

FUNCTION
AbortIO tries to abort a device command. It is allowed to be
unsuccessful. If the Abort is successful, the io_Error field of the
iORequest contains an indication that IO was aborted.

audio 2 / 17

INPUTS
iORequest -- pointer to the I/O Request for the command to abort

1.3 audio.device/ADCMD_ALLOCATE

ADCMD_ALLOCATE -- allocate a set of audio channels

FUNCTION
ADCMD_ALLOCATE is a command that allocates multiple audio channels.
ADCMD_ALLOCATE takes an array of possible channel combinations
(ioa_Data) and an allocation precedence (ln_Pri) and tries to allocate
one of the combinations of channels.

If the channel combination array is zero length (ioa_Length), the
allocation succeeds; otherwise, ADCMD_ALLOCATE checks each
combination, one at a time, in the specified order, to find one
combination that does not require ADCMD_ALLOCATE to steal allocated
channels.

If it must steal allocated channels, it uses the channel combination
that steals the lowest precedence channels.

ADCMD_ALLOCATE cannot steal a channel of equal or greater precedence
than the allocation precedence (ln_Pri).

If it fails to allocate any channel combination and the no-wait flag
(ADIOF_NOWAIT) is set ADCMD_ALLOCATE returns a zero in the unit field
of the I/O request (io_Unit) and an error (IOERR_ALLOCFAILED). If the
no-wait flag is clear, it places the I/O request in a list that tries
to allocate again whenever ADCMD_FREE frees channels or ADCMD_SETPREC
lowers the channels’ precedences.

If the allocation is successful, ADCMD_ALLOCATE checks if any channels
are locked (ADCMD_LOCK) and if so, replies (ReplyMsg) the lock I/O
request with an error (ADIOERR_CHANNELSTOLEN). Then it places the
allocation I/O request in a list waiting for the locked channels to be
freed. When all the allocated channels are un-locked, ADCMD_ALLOCATE:

. resets (CMD_RESET) the allocated channels,

. generates a new allocation key (ioa_AllocKey), if it is zero,

. copies the allocation key into each of the allocated channels

. copies the allocation precedence into each of the allocated
channels, and

. copies the channel bit map into the unit field of the I/O request.

If channels are allocated with a non-zero allocation key,
ADCMD_ALLOCATE allocates with that same key; otherwise, it generates a
new and unique key.

ADCMD_ALLOCATE is synchronous:
. if the allocation succeeds and there are no locked channels to be

stolen, or
. if the allocation fails and the no-wait flag is set.

In either case, ADCMD_ALLOCATE only replies (mn_ReplyPort) if the
quick flag (IOF_QUICK) is clear; otherwise, the allocation is

audio 3 / 17

asynchronous, so it clears the quick flag and replies the I/O request
after the allocation is finished. If channels are stolen, all audio
device commands return an error (IOERR_NOALLOCATION) when the former
user tries to use them again. Do not use ADCMD_ALLOCATE in interrupt
code.

If you decide to store directly to the audio hardware registers, you
must either lock the channels you’ve allocated, or set the precedence
to maximum (ADALLOC_MAXPREC) to prevent the channels from being
stolen.

Under all circumstances, unless channels are stolen, you must free
(ADCMD_FREE) all allocated channels when you are finished using them.

INPUTS
ln_Pri - allocation precedence (-128 thru 127)
mn_ReplyPort- pointer to message port that receives I/O request after

the allocation completes is asynchronous or quick flag
(ADIOF_QUICK) is set

io_Device - pointer to device node, must be set by (or copied from
I/O block set by) OpenDevice function

io_Command - command number for ADCMD_ALLOCATE
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
(SET) only reply I/O request only if

asynchronous (see above text)
ADIOF_NOWAIT- (CLEAR) if allocation fails, wait till is

succeeds
(SET) if allocation fails, return error

(ADIOERR_ALLOCFAILED)
ioa_AllocKey- allocation key, zero to generate new key; otherwise,

it must be set by (or copied from I/O block set by)
OpenDevice function or previous ADCMD_ALLOCATE command

ioa_Data - pointer to channel combination options (byte array, bits
0 thru 3 correspond to channels 0 thru 3)

ioa_Length - length of the channel combination option array
(0 thru 16, 0 always succeeds)

OUTPUTS
io_Unit - bit map of successfully allocated channels (bits 0 thru

3 correspond to channels 0 thru 3)
io_Flags - IOF_QUICK flag cleared if asynchronous (see above text)
io_Error - error number:

0 - no error
ADIOERR_ALLOCFAILED - allocation failed

ioa_AllocKey- allocation key, set to a unique number if passed a zero
and command succeeds

1.4 audio.device/ADCMD_FINISH

NAME
ADCMD_FINISH -- abort writes in progress to audio channels

FUNCTION
ADCMD_FINISH is a command for multiple audio channels. For each

audio 4 / 17

selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct and there is a write (CMD_WRITE)in progress, ADCMD_FINISH
aborts the current write immediately or at the end of the current
cycle depending on the sync flag (ADIOF_SYNCCYCLE). If the allocation
key is incorrect ADCMD_FINISH returns an error (ADIOERR_NOALLOCATION).
ADCMD_FINISH is synchronous and only replies (mn_ReplyPort) if the
quick flag (IOF_QUICK) is clear. Do not use ADCMD_FINISH in interrupt
code at interrupt level 5 or higher.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to finish (bits 0 thru 3 correspond

to channels 0 thru 3)
io_Command - command number for ADCMD_FINISH
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ADIOF_SYNCCYCLE- (CLEAR) finish immediately

(SET) finish at the end of current
cycle

ioa_AllocKey- allocation key, must be set by (or copied from I/O block
set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of channels successfully finished (bits 0 thru 3

correspond to channels 0 thru 3)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

1.5 audio.device/ADCMD_FREE

NAME
ADCMD_FREE -- free audio channels for allocation

FUNCTION
ADCMD_FREE is a command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct, ADCMD_FREE does the following:

. restores the channel to a known state (CMD_RESET),

. changes the channels allocation key, and

. makes the channel available for re-allocation.

. If the channel is locked (ADCMD_LOCK) ADCMD_FREE unlocks it and
clears the bit for the channel (io_Unit) in the lock I/O request.
If the lock I/O request has no channel bits set ADCMD_FREE replies
the lock I/O request, and

. checks if there are allocation requests (ADCMD_ALLOCATE) waiting
for the channel.

Otherwise, ADCMD_FREE returns an error (ADIOERR_NOALLOCATION).
ADCMD_FREE is synchronous and only replies (mn_ReplyPort) if the quick

audio 5 / 17

flag (IOF_QUICK) is clear. Do not use ADCMD_FREE in interrupt code.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to free (bits 0 thru 3 correspond to

channels 0 thru 3)
io_Command - command number for ADCMD_FREE
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of channels successfully freed (bits 0 thru 3

correspond to channels 0 thru 3)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

1.6 audio.device/ADCMD_LOCK

NAME
ADCMD_LOCK -- prevent audio channels from being stolen

FUNCTION
ADCMD_LOCK is a command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct, ADCMD_LOCK locks the channel, preventing subsequent
allocations (ADCMD_ALLOCATE or OpenDevice) from stealing the channel.
Otherwise, ADCMD_LOCK returns an error (ADIOERR_NOALLOCATION) and will
not lock any channels.

Unlike setting the precedence (ADCMD_SETPREC, ADCMD_ALLOCATE or
OpenDevice) to maximum (ADALLOC_MAXPREC) which would cause all
subsequent allocations to fail, ADCMD_LOCK causes all higher
precedence allocations, even no-wait (ADIOF_NOWAIT) allocations, to
wait until the channels are un-locked.

Locked channels can only be unlocked by freeing them (ADCMD_FREE),
which clears the channel select bits (io_Unit). ADCMD_LOCK does not
reply the I/O request (mn_ReplyPort) until all the channels it locks
are freed, unless a higher precedence allocation attempts to steal one
the locked channels. If a steal occurs, ADCMD_LOCK replies and returns
an error (ADIOERR_CHANNELSTOLEN). If the lock is replied
(mn_ReplyPort) with this error, the channels should be freed as soon
as possible. To avoid a possible deadlock, never make the freeing of
stolen channels dependent on another allocations completion.

ADCMD_LOCK is only asynchronous if the allocation key is correct, in
which case it clears the quick flag (IOF_QUICK); otherwise, it is
synchronous and only replies if the quick flag (IOF_QUICK) is clear.

audio 6 / 17

Do not use ADCMD_LOCK in interrupt code.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to lock (bits 0 thru 3 correspond to

channels 0 thru 3)
io_Command - command number for ADCMD_LOCK
io_Flags - flags, must be cleared
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of successfully locked channels (bits 0 thru 3

correspond to channels 0 thru 3) not freed (ADCMD_FREE)
io_Flags - IOF_QUICK flag cleared if the allocation key is correct

(no ADIOERR_NOALLOCATION error)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel
ADIOERR_CHANNELSTOLEN- allocation attempting to steal

locked channel

1.7 audio.device/ADCMD_PERVOL

NAME
ADCMD_PERVOL -- change the period and volume for writes in progress to

audio channels

FUNCTION
ADCMD_PERVOL is a command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct and there is a write (CMD_WRITE) in progress, ADCMD_PERVOL
loads a new volume and period immediately or at the end of the current
cycle depending on the sync flag (ADIOF_SYNCCYCLE). If the allocation
key in incorrect, ADCMD_PERVOL returns an error
(ADIOERR_NOALLOCATION). ADCMD_PERVOL is synchronous and only replies
(mn_ReplyPort) if the quick flag (IOF_QUICK) is clear. Do not use
ADCMD_PERVOL in interrupt code at interrupt level 5 or higher.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to load period and volume (bits 0

thru 3 correspond to channels 0 thru 3)
io_Command - command number for ADCMD_PERVOL
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ADIOF_SYNCCYCLE- (CLEAR) load period and volume

immediately

audio 7 / 17

(SET) load period and volume at the end
of the current cycle

ioa_AllocKey- allocation key, must be set by (or copied from I/O block
set by) OpenDevice function or ADCMD_ALLOCATE command

ioa_Period - new sample period in 279.365 ns increments (124 thru
65536, anti-aliasing filter works below 300 to 500
depending on waveform)

ioa_Volume - new volume (0 thru 64, linear)

OUTPUTS
io_Unit - bit map of channels that successfully loaded period and

volume (bits 0 thru 3 correspond to channels 0 thru 3)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

1.8 audio.device/ADCMD_SETPREC

NAME
ADCMD_SETPREC -- set the allocation precedence for audio channels

FUNCTION
ADCMD_SETPREC is a command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct, ADCMD_SETPREC sets the allocation precedence to a new value
(ln_Pri) and checks if there are allocation requests (ADCMD_ALLOCATE)
waiting for the channel which now have higher precedence; otherwise,
ADCMD_SETPREC returns an error (ADIOERR_NOALLOCATION). ADCMD_SETPREC
is synchronous and only replies (mn_ReplyPort) if the quick flag
(IOF_QUICK) is clear. Do not use ADCMD_SETPREC in interrupt code.

INPUTS
ln_Pri - new allocation precedence (-128 thru 127)
mn_ReplyPort- pointer to message port that receives I/O request

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to set precedence (bits 0 thru 3

correspond to channels 0 thru 3)
io_Command - command number for ADCMD_SETPREC
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of channels that successfully set precedence

(bits 0 thru 3 correspond to channels 0 thru 3)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

audio 8 / 17

1.9 audio.device/ADCMD_WAITCYCLE

NAME
ADCMD_WAITCYCLE -- wait for an audio channel to complete the current

cycle of a write

FUNCTION
ADCMD_WAITCYCLE is a command for a single audio channel (io_Unit).
If the allocation key (ioa_AllocKey) is correct and there is a write
(CMD_WRITE) in progress on selected channel, ADCMD_WAITCYCLE does not
reply (mn_ReplyPort) until the end of the current cycle. If there is
no write is progress, ADCMD_WAITCYCLE replies immediately. If the
allocation key is incorrect, ADCMD_WAITCYCLE returns an error
(ADIOERR_NOALLOCATION). ADCMD_WAITCYCLE returns an error
(IOERR_ABORTED) if it is canceled (AbortIO) or the channel is stolen
(ADCMD_ALLOCATE). ADCMD_WAITCYCLE is only asynchronous if it is
waiting for a cycle to complete, in which case it clears the quick
flag (IOF_QUICK); otherwise, it is synchronous and only replies if the
quick flag (IOF_QUICK) is clear. Do not use ADCMD_WAITCYCLE in
interrupt code at interrupt level 5 or higher.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request, if

the quick flag (IOF_QUICK) is clear, or if a write is in
progress on the selected channel and a cycle has
completed

io_Device - pointer to device node, must be set by (or copied from
I/O block set by) OpenDevice function

io_Unit - bit map of channel to wait for cycle (bits 0 thru 3
correspond to channels 0 thru 3), if more then one bit
is set lowest bit number channel is used

io_Command - command number for CMD_WAITCYCLE
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
(SET) only reply I/O request if a write is

in progress on the selected channel
and a cycle has completed

ioa_AllocKey- allocation key, must be set by (or copied from I/O block
set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of channel that successfully waited for cycle

(bits 0 thru 3 correspond to channels 0 thru 3)
io_Flags - IOF_QUICK flag cleared if a write is in progress on the

selected channel
io_Error - error number:

0 - no error
IOERR_ABORTED - canceled (AbortIO) or channel

stolen
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

1.10 audio.device/BeginIO

audio 9 / 17

NAME
BeginIO - dispatch a device command

SYNOPSIS
BeginIO(iORequest);

A1

FUNCTION
BeginIO has the responsibility of dispatching all device commands.
Immediate commands are always called directly, and all other commands
are queued to make them single threaded.

INPUTS
iORequest -- pointer to the I/O Request for this command

1.11 audio.device/CloseDevice

NAME
CloseDevice - terminate access to the audio device

SYNOPSIS
CloseDevice(iORequest);

A1

FUNCTION
The CloseDevice routine notifies the audio device that it will no
longer be used. It takes an I/O audio request block (IOAudio) and
clears the device pointer (io_Device). If there are any channels
allocated with the same allocation key (ioa_AllocKey), CloseDevice
frees (ADCMD_FREE) them. CloseDevice decrements the open count, and if
it falls to zero and an expunge (Expunge) is pending, the device is
expunged.

INPUTS
iORequest - pointer to audio request block (struct IOAudio)

io_Device - pointer to device node, must be set by (or
copied from I/O block set by) open (OpenDevice)

io_Unit - bit map of channels to free (ADCMD_FREE) (bits 0
thru 3 correspond to channels 0 thru 3)

ioa_AllocKey- allocation key, used to free channels

OUTPUTS
iORequest - pointer to audio request block (struct IOAudio)

io_Device - set to -1
io_Unit - set to zero

1.12 audio.device/CMD_CLEAR

NAME
CMD_CLEAR -- throw away internal caches

audio 10 / 17

FUNCTION
CMD_CLEAR is a standard command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct, CMD_CLEAR does nothing; otherwise, CMD_CLEAR returns an error
(ADIOERR_NOALLOCATION). CMD_CLEAR is synchronous and only replies
(mn_ReplyPort) if the quick flag (IOF_QUICK) is clear.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request after

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to clear (bits 0 thru 3 correspond

to channels 0 thru 3)
io_Command - command number for CMD_CLEAR
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of channels successfully cleared (bits 0 thru 3

correspond to channels 0 thru 3)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

1.13 audio.device/CMD_FLUSH

NAME
CMD_FLUSH -- cancel all pending I/O

FUNCTION
CMD_FLUSH is a standard command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct, CMD_FLUSH aborts all writes (CMD_WRITE) in progress or queued
and any I/O requests waiting to synchronize with the end of the cycle
(ADCMD_WAITCYCLE); otherwise, CMD_FLUSH returns an error
(ADIOERR_NOALLOCATION). CMD_FLUSH is synchronous and only replies
(mn_ReplyPort) if the quick flag (IOF_QUICK) is clear. Do not use
CMD_FLUSH in interrupt code at interrupt level 5 or higher.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to flush (bits 0 thru 3 correspond

to channels 0 thru 3)
io_Command - command number for CMD_FLUSH
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

audio 11 / 17

OUTPUTS
io_Unit - bit map of channels successfully flushed (bits 0 thru 3

correspond to channels 0 thru 3)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

1.14 audio.device/CMD_READ

NAME
CMD_READ -- normal I/O entry point

FUNCTION
CMD_READ is a standard command for a single audio channel (io_Unit).
If the allocation key (ioa_AllocKey) is correct, CMD_READ returns a
pointer (io_Data) to the I/O block currently writing (CMD_WRITE) on
the selected channel; otherwise, CMD_READ returns an error
(ADIOERR_NOALLOCATION). If there is no write in progress, CMD_READ
returns zero. CMD_READ is synchronous and only replies (mn_ReplyPort)
if the quick bit (IOF_QUICK) is clear.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request after

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channel to read (bit 0 thru 3 corresponds to

channel 0 thru 3), if more then one bit is set lowest
bit number channel read

io_Command - command number for CMD_READ
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of channel successfully read (bit 0 thru 3

corresponds to channel 0 thru 3)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel
ioa_Data - pointer to I/O block for current write, zero if none is

progress

1.15 audio.device/CMD_RESET

NAME
CMD_RESET -- restore device to a known state

audio 12 / 17

FUNCTION
CMD_RESET is a standard command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct, CMD_RESET:

. clears the hardware audio registers and attach bits,

. sets the audio interrupt vector,

. cancels all pending I/O (CMD_FLUSH), and

. un-stops the channel if it is stopped (CMD_STOP),

Otherwise, CMD_RESET returns an error (ADIOERR_NOALLOCATION).
CMD_RESET is synchronous and only replies (mn_ReplyPort) if the quick
flag (IOF_QUICK) is clear. Do not use CMD_RESET in interrupt code at
interrupt level 5 or higher.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to reset (bits 0 thru 3 correspond

to channels 0 thru 3)
io_Command - command number for CMD_RESET
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of channels to successfully reset (bits 0 thru 3

correspond to channels 0 thru 3)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

1.16 audio.device/CMD_START

NAME
CMD_START -- start device processing (like ^Q)

FUNCTION
CMD_START is a standard command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct and the channel was previously stopped (CMD_STOP), CMP_START
immediately starts all writes (CMD_WRITE) to the channel. If the
allocation key is incorrect, CMD_START returns an error
(ADIOERR_NOALLOCATION). CMD_START starts multiple channels
simultaneously to minimize distortion if the channels are playing the
same waveform and their outputs are mixed. CMD_START is synchronous an

d
only replies (mn_ReplyPort) if the quick flag (IOF_QUICK) is clear. D

o
not use CMD_START in interrupt code at interrupt level 5 or higher.

INPUTS

audio 13 / 17

mn_ReplyPort- pointer to message port that receives I/O request after
if the quick flag (IOF_QUICK) is clear

io_Device - pointer to device node, must be set by (or copied from
I/O block set by) OpenDevice function

io_Unit - bit map of channels to start (bits 0 thru 3 correspond
to channels 0 thru 3)

io_Command - command number for CMD_START
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of channels successfully started (bits 0 thru 3

correspond to channels 0 thru 3)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

1.17 audio.device/CMD_STOP

NAME
CMD_STOP -- stop device processing (like ^S)

FUNCTION
CMD_STOP is a standard command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct, CMD_STOP immediately stops any writes (CMD_WRITE) in
progress; otherwise, CMD_STOP returns an error (ADIOERR_NOALLOCATION).
CMD_WRITE queues up writes to a stopped channel until CMD_START starts
the channel or CMD_RESET resets the channel. CMD_STOP is synchronous
and only replies (mn_ReplyPort) if the quick flag (IOF_QUICK) is
clear. Do not use CMD_STOP in interrupt code at interrupt level 5 or
higher.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request after

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to stop (bits 0 thru 3 correspond to

channels 0 thru 3)
io_Command - command number for CMD_STOP
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of channels successfully stopped (bits 0 thru 3

correspond to channels 0 thru 3)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

audio 14 / 17

does not match key for channel

1.18 audio.device/CMD_UPDATE

NAME
CMD_UPDATE -- force dirty buffers out

FUNCTION
CMD_UPDATE is a standard command for multiple audio channels. For
each selected channel (io_Unit), if the allocation key (ioa_AllocKey)
is correct, CMD_UPDATE does nothing; otherwise, CMD_UPDATE returns an
error (ADIOERR_NOALLOCATION). CMD_UPDATE is synchronous and only
replies (mn_ReplyPort) if the quick flag (IOF_QUICK) is clear.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request after

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to update (bits 0 thru 3 correspond

to channels 0 thru 3)
io_Command - command number for CMD_UPDATE
io_Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - bit map of channels successfully updated (bits 0 thru 3

correspond to channels 0 thru 3)
io_Error - error number:

0 - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

1.19 audio.device/CMD_WRITE

NAME
CMD_WRITE -- normal I/O entry point

FUNCTION
CMD_WRITE is a standard command for a single audio channel (io_Unit).
If the allocation key (ioa_AllocKey) is correct, CMD_WRITE plays a
sound using the selected channel; otherwise, it returns an error
(ADIOERR_NOALLOCATION). CMD_WRITE queues up requests if there is
another write in progress or if the channel is stopped (CMD_STOP).
When the write actually starts; if the ADIOF_PERVOL flag is set,
CMD_WRITE loads volume (ioa_Volume) and period (ioa_Period), and if
the ADIOF_WRITEMESSAGE flag is set, CMD_WRITE replies the write
message (ioa_WriteMsg). CMD_WRITE returns an error (IOERR_ABORTED) if
it is canceled (AbortIO) or the channel is stolen (ADCMD_ALLOCATE).
CMD_WRITE is only asynchronous if there is no error, in which case it

audio 15 / 17

clears the quick flag (IOF_QUICK) and replies the I/O request
(mn_ReplyPort) after it finishes writting; otherwise, it is synchronous
and only replies if the quick flag (IOF_QUICK) is clear. Do not use
CMD_WRITE in interrupt code at interrupt level 5 or higher.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request after

the write completes
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channel to write (bit 0 thru 3 corresponds to

channel 0 thru 3), if more then one bit is set lowest
bit number channel is written

io_Command - command number for CMD_WRITE
io_Flags - flags, must be cleared if not used:

ADIOF_PERVOL - (SET) load volume and period
ADIOF_WRITEMESSAGE - (SET) reply message at write start

ioa_AllocKey- allocation key, must be set by (or copied from I/O block
set by) OpenDevice function or ADCMD_ALLOCATE command

ioa_Data - pointer to waveform array (signed bytes (-128 thru 127)
in custom chip addressable ram and word aligned)

ioa_Length - length of the wave array in bytes (2 thru 131072, must
be even number)

ioa_Period - sample period in 279.365 ns increments (124 thru 65536,
anti-aliasing filter works below 300 to 500 depending on
waveform), if enabled by ADIOF_PERVOL

ioa_Volume - volume (0 thru 64, linear), if enabled by ADIOF_PERVOL
ioa_Cycles - number of times to repeat array (0 thru 65535, 0 for

infinite)
ioa_WriteMsg- message replied at start of write, if enabled by

ADIOF_WRITEMESSAGE

OUTPUTS
io_Unit - bit map of channel successfully written (bit 0 thru 3

corresponds to channel 0 thru 3)
io_Flags - IOF_QUICK flag cleared if there is no error
io_Error - error number:

0 - no error
IOERR_ABORTED - canceled (AbortIO) or channel

stolen
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

BUGS
If CMD_WRITE starts the write immediately after stopping a previous
write, you must set the ADIOF_PERVOL flag or else the new data pointer
(ioa_Data) and length (ioa_Length) may not be loaded.

1.20 audio.device/Expunge

NAME
EXPUNGE - indicate a desire to remove the Audio device

FUNCTION
The Expunge routine is called when a user issues a RemDevice call. By

audio 16 / 17

the time it is called, the device has already been removed from the
device list, so no new opens will succeed. The existence of any other
users of the device, as determined by the device open count being
non-zero, will cause the Expunge to be deferred. When the device is
not in use, or no longer in use, the Expunge is actually performed.

1.21 audio.device/OpenDevice

NAME
OpenDevice - open the audio device

SYNOPSIS
error = OpenDevice("audio.device", unitNumber, iORequest, flags);

FUNCTION
The OpenDevice routine grants access to the audio device. It takes an
I/O audio request block (iORequest) and if it can successfully open
the audio device, it loads the device pointer (io_Device) and the
allocation key (ioa_AllocKey); otherwise, it returns an error
(IOERR_OPENFAIL). OpenDevice increments the open count keeping the
device from being expunged (Expunge). If the length (ioa_Length) is
non-zero, OpenDevice tries to allocate (ADCMD_ALLOCATE) audio channels
from a array of channel combination options (ioa_Data). If the
allocation succeeds, the allocated channel combination is loaded into
the unit field (ioa_Unit); otherwise, OpenDevice returns an error
(ADIOERR_ALLOCFAILED). OpenDevice does not wait for allocation to
succeed and closes (CloseDevice) the audio device if it fails. To
allocate channels, OpenDevice also requires a properly initialized
reply port (mn_ReplyPort) with an allocated signal bit.

INPUTS
unitNumber- not used
iORequest - pointer to audio request block (struct IOAudio)

ln_Pri - allocation precedence (-128 thru 127), only
necessary for allocation (non-zero length)

mn_ReplyPort- pointer to message port for allocation, only
necessary for allocation (non-zero length)

ioa_AllocKey- allocation key; zero to generate new key.
Otherwise, it must be set by (or copied from I/O
block that is set by) previous OpenDevice
function or ADCMD_ALLOCATE command (non-zero
length)

ioa_Data - pointer to channel combination options (byte
array, bits 0 thru 3 correspond to channels 0
thru 3), only necessary for allocation (non-zero
length)

ioa_Length - length of the channel combination option array
(0 thru 16), zero for no allocation

flags - not used

OUTPUTS
iORequest - pointer to audio request block (struct IOAudio)

io_Device - pointer to device node if OpenDevice succeeds,
otherwise -1

io_Unit - bit map of successfully allocated channels (bits

audio 17 / 17

0 thru 3 correspond to channels 0 thru 3)
io_Error - error number:

0 - no error
IOERR_OPENFAIL - open failed
ADIOERR_ALLOCFAILED - allocation failed, no open

ioa_AllocKey- allocation key, set to a unique number if passed
a zero and OpenDevice succeeds

error - copy of io_Error

	audio
	audio.doc
	audio.device/AbortIO
	audio.device/ADCMD_ALLOCATE
	audio.device/ADCMD_FINISH
	audio.device/ADCMD_FREE
	audio.device/ADCMD_LOCK
	audio.device/ADCMD_PERVOL
	audio.device/ADCMD_SETPREC
	audio.device/ADCMD_WAITCYCLE
	audio.device/BeginIO
	audio.device/CloseDevice
	audio.device/CMD_CLEAR
	audio.device/CMD_FLUSH
	audio.device/CMD_READ
	audio.device/CMD_RESET
	audio.device/CMD_START
	audio.device/CMD_STOP
	audio.device/CMD_UPDATE
	audio.device/CMD_WRITE
	audio.device/Expunge
	audio.device/OpenDevice

