
serial

serial ii

COLLABORATORS

TITLE :

serial

ACTION NAME DATE SIGNATURE

WRITTEN BY July 23, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

serial iii

Contents

1 serial 1

1.1 serial.doc . 1

1.2 serial.device/AbortIO . 1

1.3 serial.device/BeginIO . 2

1.4 serial.device/CloseDevice . 3

1.5 serial.device/CMD_CLEAR . 3

1.6 serial.device/CMD_FLUSH . 3

1.7 serial.device/CMD_READ . 4

1.8 serial.device/CMD_RESET . 5

1.9 serial.device/CMD_START . 5

1.10 serial.device/CMD_STOP . 6

1.11 serial.device/CMD_WRITE . 6

1.12 serial.device/OpenDevice . 7

1.13 serial.device/SDCMD_BREAK . 8

1.14 serial.device/SDCMD_QUERY . 9

1.15 serial.device/SDCMD_SETPARAMS . 10

serial 1 / 11

Chapter 1

serial

1.1 serial.doc

AbortIO()
BeginIO()
CloseDevice()
CMD_CLEAR
CMD_FLUSH
CMD_READ
CMD_RESET
CMD_START
CMD_STOP
CMD_WRITE
OpenDevice()
SDCMD_BREAK
SDCMD_QUERY
SDCMD_SETPARAMS

1.2 serial.device/AbortIO

NAME
AbortIO(ioRequest) -- abort an I/O request

A1

FUNCTION
This is an exec.library call.

This function attempts to aborts a specified read or write request.
If the request is active, it is stopped immediately. If the request is
queued, it is painlessly removed. The request will be returned
in the same way any completed request it.

After AbortIO(), you must generally do a WaitIO().

INPUTS
iORequest -- pointer to the IORequest Block that is to be aborted.

RESULTS

serial 2 / 11

io_Error -- if the Abort succeded, then io_Error will be #IOERR_ABORTED

(-2) and the request will be flagged as aborted (bit 5 of
io_Flags is set). If the Abort failed, then the Error will be zero.

BUGS
Previous to version 34, the serial.device would often hang when
aborting CTS/RTS handshake requests. This was the cause of the
incorrect assumption that AbortIO() does not need to be followed
by a wait for a reply (or a WaitIO()).

1.3 serial.device/BeginIO

NAME
BeginIO(ioRequest),deviceNode -- start up an I/O process

A1 A6
FUNCTION

This is a direct function call to the device. It is intended for
more advanced programmers. See exec’s DoIO() and SendIO() for
the normal method of calling devices.

This function initiates a I/O request made to the serial
device. Other than read or write, the functions are performed
synchronously, and do not depend on any interrupt handling
logic (or it’s associated discontinuities), and hence should
be performed as IO_QUICK.
With some exceptions, reads and writes are merely initiated by
BeginIO, and thusly return to the caller as begun, not completed.
Completion is signalled via the standard ReplyMsg routine.
Multiple requests are handled via FIFO queueing.
One exception to this non-QUICK handling of reads and writes
is for READS when:

- IO_QUICK bit is set
- There are no pending read requests
- There is already enough data in the input buffer to satisfy

this I/O Request immediately.
In this case, the IO_QUICK flag is not cleared, and the request
is completed by the time it returns to the caller. There is no
ReplyMsg or signal bit activity in this case.

INPUTS
ioRequest -- pointer to an I/O Request Block of size

io_ExtSerSize (see serial.i for size/definition),
containing a valid command in io_Command to process,
as well as the command’s other required parameters.

deviceNode -- pointer to the "serial.device", as found in
the IO_DEVICE of the ioRequest.

RESULTS
io_Error -- if the BeginIO succeded, then Error will be null.

If the BeginIO failed, then the Error will be non-zero.
I/O errors won’t be reported until the io completes.

SEE ALSO

serial 3 / 11

devices/serial.h

1.4 serial.device/CloseDevice

NAME
CloseDevice -- close the serial port

SYNOPSIS
CloseDevice(deviceNode)

A1
FUNCTION

This is an exec call that terminates communication with the
serial device. Upon closing, the device’s input buffer is freed.

Note that all IORequests MUST be complete before closing.
If any are pending, your program must AbortIO() then WaitIO()

to complete them.

INPUTS
deviceNode - pointer to the device node, set by Open

SEE ALSO
serial.device/OpenDevice()

1.5 serial.device/CMD_CLEAR

NAME
Clear -- clear the serial port buffers

FUNCTION
This command resets the serial port’s read buffer pointers.

IO REQUEST
io_Message mn_ReplyPort initialized
io_Device set by OpenDevice
io_Unit set by OpenDevice
io_Command CMD_CLEAR

RESULTS
Error -- If the Clear succeded, then io_Error will be null.

If the Clear failed, then the io_Error will be non-zero.

1.6 serial.device/CMD_FLUSH

NAME
Flush -- clear all queued I/O requests for the serial port

FUNCTION
This command purges the read and write request queues for the
serial device. Flush will not affect active requests.

serial 4 / 11

IO REQUEST
io_Message mn_ReplyPort initialized
io_Device set by OpenDevice
io_Unit set by OpenDevice
io_Command CMD_FLUSH

RESULTS
Error -- if the Flush succeded, then io_Error will be null.

If the Flush failed, then the io_Error will be non-zero.

1.7 serial.device/CMD_READ

NAME
Read -- read input from serial port

FUNCTION
This command causes a stream of characters to be read in from
the serial port buffer. The number of characters is specified
in io_Length.

The Query function can be used to check how many characters
are currently waiting in the serial port buffer. If more characters
are requested than are currently available, the ioRequest
will be queued until it can be satisfied.

The best way to handle reads is to first Query to get the number
of characters currently in the buffer. Then post a read request
for that number of characters (or the maximum size of your buffer).

If zero characters are in the buffer, post a request
for 1 character. When at least one is ready, the device will return
it. Now start over with another Query.

Before the program exits, it must be sure to AbortIO() then WaitIO()
any outstanding ioRequests.

IO REQUEST
io_Message A mn_ReplyPort is required
io_Device set by OpenDevice
io_Unit set by OpenDevice
io_Command CMD_READ
io_Flags If the IOB_QUICK bit is set, read will try
to complete the IO quickly
io_Length number of characters to receive.
io_Data pointer to buffer

RESULTS
Error -- if the Read succeded, then io_Error will be null.

If the Read failed, then io_Error will be non-zero.
io_Error will indicate problems such as parity mismatch,
break, and buffer overrun.

SEE ALSO

serial 5 / 11

serial.device/SDCMD_QUERY
serial.device/SDCMD_SETPARAMS

BUGS
Having multiple outstanding read IORequests at any one time will
probably fail.

Old documentation mentioned a mode where io_Length was set to -1.
If you want a NULL terminated read, use the io_TermArray instead.

1.8 serial.device/CMD_RESET

NAME
Reset -- reinitializes the serial port

FUNCTION
This command resets the serial port to its freshly initialized
condition. It aborts all I/O requests both queued and current,
relinquishes the current buffer, obtains a new default sized
buffer, and sets the port’s flags and parameters to their
boot-up time default values. The functions places the reset
parameter values in the ioRequest block.

IO REQUEST
io_Message mn_ReplyPort initialized
io_Device set by OpenDevice
io_Unit set by OpenDevice
io_Command CMD_RESET

RESULTS
Error -- if the Reset succeded, then Error will be null.

If the Reset failed, then the Error will be non-zero.

1.9 serial.device/CMD_START

NAME
Start -- restart paused I/O over the serial port

FUNCTION
This function restarts all current I/O on the serial port by
sending an xON to the "other side", and submitting a "logical
xON" to "our side", if/when appropriate to current activity.

IO REQUEST
io_Message mn_ReplyPort initialized
io_Device set by OpenDevice
io_Unit set by OpenDevice
io_Command CMD_START

RESULTS

SEE ALSO

serial 6 / 11

serial.device/CMD_STOP

1.10 serial.device/CMD_STOP

NAME
Stop -- pause all current I/O over the serial port

FUNCTION
This command halts all current I/O on the serial port by
sending an xOFF to the "other side", and submitting a "logical
xOFF" to "our side", if/when appropriate to current activity.

IO REQUEST
io_Message mn_ReplyPort initialized
io_Device set by OpenDevice
io_Unit set by OpenDevice
io_Command CMD_STOP

RESULTS

SEE ALSO
serial.device/CMD_START

1.11 serial.device/CMD_WRITE

NAME
Write -- send output to serial port

FUNCTION
This command causes a stream of characters to be written out
the serial port. The number of characters is specified in
io_Length, unless -1 is used, in which case output is sent until
a null(0x00) is encountered.

IO REQUEST
io_Message must have mn_ReplyPort initialized
io_Device set by OpenDevice
io_Unit set by OpenDevice
io_Command CMD_WRITE
io_Flags Set IOF_QUICK to try quick I/O
io_Length number of characters to transmit, or if set

to -1 transmit until null encountered in buffer
io_Data pointer to block of data to transmit

RESULTS
Error -- if the Write succeded, then io_Error will be null.

If the Write failed, then the io_Error will be non-zero.

SEE ALSO
serial.device/SDCMD_SETPARAMS

serial 7 / 11

1.12 serial.device/OpenDevice

NAME
OpenDevice -- Request an opening of the serial device.

SYNOPSIS
error = OpenDevice("serial.device", unit, ioRequest, flags)
D0 A0 D0 A1 D1

BYTE OpenDevice(STRPTR, ULONG, struct IOExtSer *, ULONG);

FUNCTION
This is an exec call. Exec will search for the serial.device, and
if found, will pass this call on to the device.

Unless the shared-access bit (bit 5 of io_SerFlags) is set,
exclusive use is granted and no other access to that unit is
allowed until the owner closes it. All the serial-specific fields
in the ioRequest are initialized to their most recent values (or
the Preferences default, for the first time open).

If support of 7-wire handshaking (i.e. RS232-C CTS/RTS protocol)
is required, use the serial.device/SDCMD_SETPARAMS command.

This feature should also be specified at inital OpenDevice() time.

INPUTS
"serial.device" - pointer to literal string "serial.device"
unit - Must be zero, or a user setable unit number.
(This field is used by multiple port controllers)

Zero specifies the default serial port.
ioRequest - pointer to an ioRequest block of size io_ExtSerSize

to be initialized by the serial.device.
(see devices/serial.h for the definition)

NOTE use of io_SerFlags (see FUNCTION above)
IMPORTANT: The ioRequest block MUST be of size io_ExtSerSize,

and zeroed (with the exeptions as noted)!
flags - Must be zero for future compatibility

RESULTS
D0 - same as io_Error
io_Error - If the Open succeded, then io_Error will be null.

If the Open failed, then io_Error will be non-zero.
io_Device - A pointer to whatever device will handle the calls

for this unit. This pointer may be different depending
on what unit is requested.

BUGS
If 7-wire handshaking is specified, a timeout "feature" is enabled.
If the device holds off the computer for more than about 30-60
seconds, the device will return the write request with the error
SerErr_TimerErr. Don’t depend on this, however. If you want a timeout,
set up the timer.device and wait for either timer, or serial IO to
complete.

On open, the serial.device allocates the misc.resource for the
serial port. It does not return it until the serial.device is

serial 8 / 11

expunged from memory. It should return it when no more openers
exist. This code can force a specified device to try and
expunge. Of course, if the device is in use nothing will happen:

#include "exec/types.h"
#include "exec/execbase.h"
#include "proto/exec.h"

void FlushDevice(char *);
extern struct ExecBase *SysBase;

void main()
{

FlushDevice("serial.device"); /* or parallel.device */
}

/*
* Attempts to flush the named device out of memory.

* If it fails, no status is returned; examination of

* the problem will reveal that information has no

* valid use after the Permit().

*/
void FlushDevice(name)
char *name;
{
struct Device *result;

Forbid();
if(result=(struct Device *)FindName(&SysBase->DeviceList,name))

RemDevice(result);
Permit();

}

SEE ALSO
serial.device/CloseDevice()
serial.device/SDCMD_SETPARAMS
devices/serial.h

1.13 serial.device/SDCMD_BREAK

NAME
Break -- send a break signal over the serial line

FUNCTION
This command sends a break signal (serial line held low for an
extended period) out the serial port. For the built-in port,
This is accomplished by setting the UARTBRK bit of regisrer ADKCON.

After a duration (user specifiable via setparams, default 250000
microseconds) the bit is reset and the signal discontinued.
If the QUEUEDBRK bit of io_SerFlags is set in the io_Request
block, the request is placed at the back of the write-request
queue and executed in turn. If the QUEUEDBRK bit is not set,
the break is started immediately, control returns to the

serial 9 / 11

caller, and the timer discontinues the signal after the
duration is completed. Be aware that calling BREAK may

affect other commands such as ABORT, FLUSH, STOP, START, etc...

IO REQUEST
io_Message mn_ReplyPort initialized
io_Device set by OpenDevice
io_Unit set by OpenDevice
io_Command SDCMD_BREAK
io_Flags set/reset IO_QUICK per above description

RESULTS
Error -- if the Break succeded, then Error will be null.

If the Break failed, then the Error will be non-zero.

1.14 serial.device/SDCMD_QUERY

NAME
Query -- query serial port/line status

FUNCTION
This command return the status of the serial port lines and
registers. The number of unread bytes in the serial device’s
read buffer is shown in io_Actual.

The break send & received flags are cleared by a query, and
whenever a read IORequest is returned with a error
in io_Error.

IO REQUEST
io_Message mn_ReplyPort initialized
io_Device preset by OpenDevice
io_Unit preset by OpenDevice
io_Command SDCMD_QUERY

RESULTS
io_Status BIT ACTIVE FUNCTION

LSB 0 --- reserved
1 --- reserved
2 high parallel "sel" on the A1000

On the A500 & A2000, "sel" is also
connected to the serial port’s
"Ring Indicator". Be cautious when
making cables.

3 low Data Set Ready
4 low Clear To Send
5 low Carrier Detect
6 low Ready To Send
7 low Data Terminal Ready

MSB 8 high hardware overrun
9 high break sent (most recent output)
10 high break received (as latest input)
11 high transmit x-OFFed
12 high receive x-OFFed

serial 10 / 11

13-15 --- reserved

io_Actual set to count of unread input characters

io_Error -- Query will always succeded.

1.15 serial.device/SDCMD_SETPARAMS

NAME
SetParams -- change parameters for the serial port

FUNCTION
This command allows the caller to change parameters for the
serial device. Except for xON-xOFF enable/disable, it will
reject a setparams call if any reads or writes are active
or pending.

Note specifically:

1. Valid input for io_Baud is between 112 and 292000 baud inclusive;
asynchronous i/o above 32KB (especially on a busy system) may
be ambitious.

2. The EOFMODE and QUEUEDBRK bits of io_SerFlags can be set/reset
in the io_Rqst block without a call to SetParams. The SHARED
and 7WIRE bits of io_SerFlags can be used in OpenDevice calls.
ALL OTHER PARAMETERS CAN ONLY BE CHANGED BY THE SetParams
COMMAND.

3. RBufLen must be at least 64. The buffer may be any multiple of
64 bytes.

4. If not used, io_ExtFlags MUST be set to zero.
5. xON-xOFF is by default enabled. The XDISABLED bit is the only

parameter that can be changed via a SetParams call while the
device is active. Note that this will return the value
SerErr_DevBusy in the io_Error field.

xON/xOFF handshaking is inappropriate for certain binary transfer
protocalls, such as Xmodem. The binary data might contain the
xON (ASCII 17) and xOFF (ASCII 19) characters.

6. If trying to run MIDI, you should set the RAD_BOOGIE bit of
io_SerFlags to eliminate unneeded overhead. Specifically, this skips
checks for parity, x-OFF handling, character lengths other than
8 bits, and testing for a break signal. Setting RAD_BOOGIE will
also set the XDISABLED bit.
Note that writing data (that’s already in MIDI format) at MIDI rates
is easily accomplished. Using this driver alone for MIDI reads may,
however, may not be reliable, due to MIDI timestamping requirements,
and possibility of overruns in a busy multitasking and/or display
intensive environment.

7. If you select mark or space parity (see io_ExtFlags in serial.h),
this will cause the SERB_PARTY_ON bit to be set, and the setting
of SERB_PARTY_ODD to be ignored.

8. For best results, set the RAD_BOOGIE flag whenever possible. See
#6 for details.

9. Note that at this time parity is *not* calculated for the xON-xOFF
characters. If you have a system that is picky about the parity of

serial 11 / 11

these, you must set your own xON-xOFF characters in io_CtlChar.
10. 7WIRE (CTS/RTS) handshake is bi-directional. The external side

is expected to drop CTS several character times before the external
buffer is full. The Amiga will drop RTS several character times
before the Amiga’s buffer is full.

IO REQUEST
io_Message mn_ReplyPort initialized
io_Device preset by OpenDevice
io_Unit preset by OpenDevice
io_Command SDCMD_SETPARAMS (0x0B)
NOTE that the following fields are filled in by Open

to reflect the serial device’s current configuration.
io_CtlChar a longword containing byte values for the

xON,xOFF,INQ,ACK fields (respectively)
(INQ/ACK not used at this time)

io_RBufLen length in bytes of input buffer
NOTE that any change in buffer size causes the

current buffer to be deallocated and a new,
correctly sized one to be allocated. Thusly,
the CONTENTS OF THE OLD BUFFER ARE LOST.

io_ExtFlags additional serial flags (bitdefs in devices/serial.h)
mark & space parity may be specified here.
io_Baud baud rate for reads AND writes. (See 1 above)
io_BrkTime duration of break signal in MICROseconds
io_TermArray ASCII descending-ordered 8-byte array of

termination characters. If less than 8 chars
used, fill out array w/lowest valid value.
Terminators are checked only if EOFMODE bit of
io_Serflags is set. (e.g. x512F040303030303)

io_ReadLen number of bits in read word (1-8) not including parity
io_WriteLen number of bits in write word (1-8) " " "
io_StopBits number of stop bits (0, 1 or 2)
io_SerFlags see devices/serial.h for bit equates, NOTE that x00

yields exclusive access, xON/OFF-enabled, no
parity checking, 3-wire protocol and TermArray
inactive.

RESULTS
Error -- if the SetParams succeded, then Error will be null.

If the SetParams failed, then the Error will be non-zero.

SEE ALSO
exec/OpenDevice()

	serial
	serial.doc
	serial.device/AbortIO
	serial.device/BeginIO
	serial.device/CloseDevice
	serial.device/CMD_CLEAR
	serial.device/CMD_FLUSH
	serial.device/CMD_READ
	serial.device/CMD_RESET
	serial.device/CMD_START
	serial.device/CMD_STOP
	serial.device/CMD_WRITE
	serial.device/OpenDevice
	serial.device/SDCMD_BREAK
	serial.device/SDCMD_QUERY
	serial.device/SDCMD_SETPARAMS

