dos

dos

] COLLABORATORS
TITLE :
dos
ACTION NAME DATE SIGNATURE
WRITTEN BY July 23, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

dos i

Contents

1 dos 1
1.1 dos.doc . . . o e e 1
1.2 dosldibrary/AbortPkt L e 4
1.3 dos.dibrary/AddBuffers e e 4
1.4 doslibrary/AddDosEntry 5
1.5 dosdibrary/AddPart e e 6
1.6 dos.dibrary/AddSegment L e e e e 6
1.7 dos.library/AllocDosObject e e 7
1.8 dos.dibrary/AssignAdd L. e e e e 8
1.9 doslibrary/Assignlate e 9
1.10 dos.dibrary/AssignLock L e 9
1.11 dos.dibrary/AssignPath e 10
1.12 dos.ibrary/AttemptLockDosList e 10
1.13 dos.dibrary/ChangeMode e e e 11
1.14 dos.library/CheckSignal L e e 12
1.15 dos.dibrary/Cli o e 12
1.16 dos.dibrary/ClilnitNewcli o e 12
1.17 dos.dibrary/ClilnitRun L e e e 13
1.18 dos.dibrary/Close e 14
1.19 dos.dibrary/CompareDates L e e 15
1.20 dos.dibrary/CreateDir L e e e e 15
1.21 dos.dibrary/CreateNewProc L 16
1.22 dos.dibrary/CreateProc e e e e e e 17
1.23 doslibrary/CurrentDir L. e e 18
1.24 dos.dibrary/DateStamp e e 19
1.25 dos.dibrary/DateToStr e e e e e e e e 19
1.26 dosldibrary/Delay L e 20
1.27 dosibrary/DeleteFile e e 21
1.28 dos.dibrary/DeleteVar e e e e 21
1.29 dos.library/DeviceProc e 22

dos iv
1.30 dos.dibrary/DoPKt e e 23
1.31 dos.dibrary/Duplock e e e e 24
1.32 dos.dibrary/DupLockFromFH 24
1.33 dos.dibrary/EndNotify e e e e e 25
1.34 dos.dibrary/ErrorReport e 25
1.35 dosdibrary/EXAIl o e e e 26
1.36 dos.dibrary/EXAIIEnd e 30
1.37 dos.dibrary/Examine e e e e e e e e e e 30
1.38 dos.dibrary/ExamineFH 31
1.39 dos.dibrary/EXecute e e e e e e e e e e 31
1.40 dos.dibrary/EXit e 33
141 dos.dibrary/EXNEeXt o o e e e e e e e e e 33
1.42 dosdibrary/Fault e e e 34
1.43 dos.dibrary/FGetC e e e e 35
1.44 dosdibrary/FGets L e 36
1.45 dos.dibrary/FilePart e e e 36
1.46 dos.dibrary/FindArg L e 37
1.47 dos.dibrary/FindCliProc e e e 38
1.48 dos.dibrary/FindDosEntry L 38
1.49 dos.library/FindSegment e e e e e e 39
1.50 dos.dibrary/FindVar L 39
1.51 dos.dibrary/Flush e e e e 40
1.52 dosdibrary/Format L e 41
1.53 dos.dibrary/FPutC e e e e e e e 41
1.54 doslibrary/FPuts L e 42
1.55 dos.dibrary/FRead e e e e 43
1.56 dos.dibrary/FreeArgs e 43
1.57 dos.dibrary/FreeDeviceProc e e 44
1.58 dos.dibrary/FreeDosEntry L e 44
1.59 dos.dibrary/FreeDosObject e e e e e e e e e 45
1.60 dos.dibrary/FWrite e e 45
1.61 dos.dibrary/GetArgStr e e e e e e e e 46
1.62 dos.library/GetConsoleTask e 46
1.63 dos.library/GetCurrentDirName L e e e e e 47
1.64 dos.library/GetDeviceProc L e 47
1.65 dos.dibrary/GetFileSysTask e e e e e e 48
1.66 dos.library/GetProgramDir L 49
1.67 dosdibrary/GetProgramName e e e 49
1.68 dos.dibrary/GetPrompt e 50

dos v
1.69 dos.library/GetVar e e 50
1.70 dos.dibrary/Info L e e e 51
1.71 dosdibrary/Inhibito e e 52
1.72 dos.dibrary/Input e e e e e e e e 52
1.73 dos.dibrary/InternalloadSeg 53
1.74 dos.library/InternalUnLoadSeg e 54
1.75 dosdibrary/IOErr L e 54
1.76 dos.library/IsFileSystem e e e 55
1.77 dosdibrary/IsInteractive L L e e e e 55
1.78 dos.dibrary/LoadSeg e e e e 56
1.79 dos.dibrary/Lock 56
1.80 dos.library/LockDosList e e e e e e e 57
1.81 dos.dibrary/LockRecord 59
1.82 dos.library/LockRecords e e e 60
1.83 dos.dibrary/MakeDosEntry L 60
1.84 dos.dibrary/MakeLink L e e e 61
1.85 dos.dibrary/MatchEnd 62
1.86 dos.ibrary/MatchFirst e e e e e e e e 62
1.87 dos.dibrary/MatchNext e e e e 64
1.88 dos.library/MatchPattern e e e e e e e e e 64
1.89 dos.library/MatchPatternNoCase L e 65
1.90 dos.dibrary/MaxClLi e e e e e e e e 66
1.91 dos.library/NameFromFH o e 66
1.92 dos.dibrary/NameFromLock e e e e 67
1.93 dos.dibrary/NewLoadSeg L e 67
1.94 dos.dibrary/NextDosEntry e e e e e e 68
1.95 dosldibrary/Open L e 69
1.96 dos.ibrary/OpenFromLock e e e 69
1.97 dosldibrary/Output e 70
1.98 dos.dibrary/ParentDir oL e e e e e e e e 70
1.99 dos.library/ParentOfFH oo e 71
1.100dos.library/ParsePattern L e e e e e 71
1.101dos.library/ParsePatternNoCase L e 72
1.102dos.library/PathPart o e e e e e e e e 73
1.103dos.library/PrintFault e 74
1.104dos. library/PutStr e e e e e e e e e e e 74
1.105dosdibrary/Read e 75
1.106dos.Jibrary/ReadArgs e e e e 76

1.107dosdibrary/Readltem e 78

dos Vi

1.108dos.library/ReadLink e e 78
1.109dos.library/Relabel L e e 79
1.110dos.library/RemAssignlist L 80
I.111dos.Jibrary/RemDosEntry e e e e e e 80
1.112dos.Jibrary/RemSegment L e e e e 81
1.113dos.Jibrary/Rename L e e e e e e e e e e 81
1.114dosdibrary/ReplyPkt 82
1.115dos.library/RunCommand e e e e e e 82
1.116dos.library/SameDevice e e 83
1.117dos.Jibrary/Samelock L e e e e e e 84
1.118dosdibrary/Seek L e 84
1.119dos.library/SelectInput L e e e e e e e e 85
1.120dos.library/SelectOutput L e e e 86
1.121dos.library/SendPkt e e e e e 86
1.122dos library/SetArgStr e e e 87
1.123dos.library/SetComment e e e e e e e e e e e e e e 87
1.124dos.library/SetConsoleTask e 88
1.125dos.library/SetCurrentDirName e e e e e 88
1.126dos.library/SetFileDate 89
1.127dos.library/SetFileSize L e e 89
1.128dos.library/SetFileSysTask e 90
1.129dos.library/SetIoErr e e e e e e e 91
1.130dosdibrary/SetMode e 91
1.131dos. library/SetOWner o o e e e e e e e e e e e e e 91
1.132dos.library/SetProgramDir e 92
1.133dos.library/SetProgramName e e e e e e e e e 93
1.134dosdibrary/SetPrompt e 93
1.135dos.library/SetProtection e e e e e e e e 94
1.136dosdibrary/SetVaro e 95
1.137dos.library/SetVBuf e e e 95
1.138dos.dibrary/SplitName e 96
1.139dos.library/StartNOtify e e e e e e e e 97
1.140dosibrary/StrToDate L e 98
1.141dos dibrary/StrToLong e e 99
1.142dos.dibrary/SystemTaglist 99
1.143dos.library/UnGetC o e e e e e e e e e e 101
1.144dos.dibrary/UnLoadSeg e 102
1.145dos dibrary/UnLock o . e e e 102

1.146dos.library/UnLockDosList L e 103

dos Vii

1.147dos.library/UnLockRecord 103
1.148dos.library/UnLockRecords L e e 104
1.149dos.library/VFPrintf e e e e 104
1.150dosdibrary/VEWritef e 105
1.151dos dibrary/VPrintf Lo e e 106
1.152dos.library/WaitForChar e e e 107
1.153dos.library/WaitPKt e e e e 107
1.154dos dibrary/Write e e e e 108

1.155dos dibrary/WriteChars o e e 108

dos

1/109

Chapter 1

dos

1.1

dos.doc

AbortPkt ()
AddBuffers ()
AddDosEntry ()
AddPart ()
AddSegment ()
AllocDosObject ()
AssignAdd ()
AssignLate (
AssignLock (
AssignPath (
AttemptLock
ChangeMode (
CheckSignal ()
Cli()
CliInitNewcli ()
CliInitRun ()
Close ()
CompareDates ()
CreateDir ()
CreateNewProc ()
CreateProc ()
CurrentDir ()
DateStamp ()
DateToStr ()
Delay ()
DeleteFile ()
DeleteVar ()
DeviceProc ()
DoPkt ()
DupLock ()
DupLockFromFH ()
EndNotify ()
ErrorReport ()
ExAll ()
ExXAll1End()
Examine ()
ExamineFH ()
Execute ()

)
)
)
DosList ()
)

dos

2/109

Exit ()

ExNext ()

Fault ()

FGetC()

FGets ()
FilePart ()
FindArg ()
FindCliProc ()
FindDosEntry ()
FindSegment ()
FindVar ()
Flush ()

Format ()

FPutC ()

FPuts ()

FRead ()
FreeArgs ()
FreeDeviceProc ()
FreeDosEntry ()
FreeDosObject ()
FiWrite ()
GetArgStr ()
GetConsoleTask ()
GetCurrentDirName ()
GetDeviceProc ()
GetFileSysTask ()
GetProgramDir ()
GetProgramName ()
GetPrompt ()
GetVar ()

Info ()

Inhibit ()
Input ()
InternalloadSeqg ()
InternalUnLoadSeqg ()
IoErr ()
IsFileSystem()
IsInteractive ()
LoadSeg ()

Lock ()
LockDosList ()
LockRecord()
LockRecords ()
MakeDosEntry ()
MakeLink ()
MatchEnd ()
MatchFirst ()
MatchNext ()
MatchPattern ()
MatchPatternNoCase ()
MaxCli ()
NameFromFH ()
NameFromLock ()
NewLoadSeqg ()
NextDosEntry ()
Open ()
OpenFromLock ()

dos 3/109

Output ()
ParentDir ()
ParentOfFH ()
ParsePattern ()
ParsePatternNoCase ()
PathPart ()
PrintFault ()
PutStr ()

Read ()
ReadArgs ()
ReadItem()
ReadLink ()
Relabel ()
RemAssignList ()
RemDosEntry ()
RemSegment ()
Rename ()
ReplyPkt ()
RunCommand ()
SameDevice ()
SameLock ()
Seek ()
SelectInput ()
SelectOutput ()
SendPkt ()
SetArgStr ()
SetComment ()
SetConsoleTask ()
SetCurrentDirName ()
SetFileDate ()
SetFileSize ()
SetFileSysTask ()
SetIoErr ()
SetMode ()
SetOwner ()
SetProgramDir ()
SetProgramName ()
SetPrompt ()
SetProtection ()
SetVar ()
SetVBuf ()
SplitName ()
StartNotify ()
StrToDate ()
StrToLong ()
SystemTagList ()
UnGetC ()
UnLoadSeg ()
UnLock ()
UnLockDosList ()
UnLockRecord ()
UnLockRecords ()
VEPrintf ()
VEWritef ()
VPrintf ()
WaitForChar ()
WaitPkt ()

dos

4/109

Write ()
WriteChars ()

1.2 dos.library/AbortPkt

NAME
AbortPkt -- Aborts an asynchronous packet, if possible. (V36)
SYNOPSIS
AbortPkt (port, pkt)
D1 D2

void AbortPkt (struct MsgPort =*, struct DosPacket =)

FUNCTION

This attempts to abort a packet sent earlier with SendPkt to a
handler. There is no guarantee that any given handler will allow
a packet to be aborted, or if it is aborted whether function
requested completed first or completely. After calling AbortPkt (),
you must wait for the packet to return before reusing it or
deallocating it.

INPUTS
port - port the packet was sent to
pkt - the packet you wish aborted
BUGS

As of V37, this function does nothing.

SEE ALSO
SendPkt (), DoPkt (), WaitPkt ()

1.3 dos.library/AddBuffers

NAME
AddBuffers —-- Changes the number of buffers for a filesystem (V36)
SYNOPSIS
success = AddBuffers(filesystem, number)
DO D1 D2

BOOL AddBuffers (STRPTR, LONG)

FUNCTION
Adds buffers to a filesystem. If it succeeds, the number of current
buffers is returned in IoErr (). Note that "number" may be negative.

The amount of memory used per buffer, and any limits on the number of
buffers, are dependant on the filesystem in question.

If the call succeeds, the number of buffers in use on the filesystem
will be returned by IoErr().

INPUTS

dos 5/109

filesystem - Name of device to add buffers to (with 7:7).

number — Number of buffers to add. May be negative.

RESULT

success — Success or failure of command.

BUGS

The V36 ROM filesystem (FFS/OFS) doesn’t return the right number of
buffers unless preceded by an AddBuffers(fs,-1) (in-use buffers aren’t
counted). This is fixed in V37.

The V37 and before ROM filesystem doesn’t return success, it returns
the number of buffers. The best way to test for this is to consider
0 (FALSE) failure, -1 (DOSTRUE) to mean that IoErr () will have the
number of buffers, and any other positive value to be the number of
buffers. It may be fixed in some future ROM revision.

SEE ALSO
IoErr ()

1.4 dos.library/AddDosEntry

NAME

AddDosEntry —-- Add a Dos List entry to the lists (V36)
SYNOPSIS

success = AddDosEntry(dlist)

DO D1

LONG AddDosEntry (struct DosList x)

FUNCTION
Adds a device, volume or assign to the dos devicelist. Can fail if it
conflicts with an existing entry (such as another assign to the same
name or another device of the same name). Volume nodes with different

dates and the same name CAN be added, or with names that conflict with
devices or assigns. Note: the dos list does NOT have to be locked to
call this. Do not access dlist after adding unless you have locked the
Dos Device list.

An additional note concerning calling this from within a handler:
in order to avoid deadlocks, your handler must either be multi-
threaded, or it must attempt to lock the list before calling this
function. The code would look something like this:

if (AttemptLockDosList (LDF_xxx|LDF_WRITE))
{

rc = AddDosEntry(...);

UnLockDosList (LDF_xxx|LDF_WRITE) ;

If AttemptLockDosList () fails (i.e. it’s locked already), check for
messages at your filesystem port (don’t wait!) and try the
AttemptLockDosList () again.

dos

6/109

INPUTS
dlist — Device list entry to be added.
RESULT
success — Success/Failure indicator
SEE ALSO
RemDosEntry (), FindDosEntry (), NextDosEntry (), LockDosList(),

MakeD

osEntry (), FreeDosEntry (), AttemptLockDosList ()

1.5 dos.library/AddPart

NAME
AddPart —- Appends a file/dir to the end of a path (V36)
SYNOPSIS
success = AddPart (dirname, filename, size)
DO D1 D2 D3
BOOL AddPart (STRPTR, STRPTR, ULONG)
FUNCTION
This function adds a file, directory, or subpath name to a directory
path name taking into account any required separator characters. If

filename is a fully-qualified path it will totally replace the current

value of dirname.
INPUTS
dirname - the path to add a file/directory name to.
filename - the filename or directory name to add. May be a relative

pathname from the current directory (example: foo/bar).
Can deal with leading '/’ (s), indicating one directory up
per '/, or with a ’:’, indicating it’s relative to the
root of the appropriate volume.

size - size in bytes of the space allocated for dirname. Must
not be 0.
RESULT
success - non-zero for ok, FALSE if the buffer would have overflowed.
If an overflow would have occured, dirname will not be
changed.
BUGS
Doesn’t check if a subpath is legal (i.e. doesn’t check for ’:’s) and
doesn’t handle leading ’/’s in 2.0 through 2.02 (V36). V37 fixes
this, allowing filename to be any path, including absolute.
SEE ALSO
FilePart (), PathPart ()

1.6 dos.library/AddSegment

dos 7/109

NAME
AddSegment - Adds a resident segment to the resident list (V36)

SYNOPSIS
success = AddSegment (name, seglist, type)
DO D1 D2 D3

BOOL AddSegment (STRPTR, BPTR, LONG)

FUNCTION
Adds a segment to the Dos resident list, with the specified Seglist
and type (stored in seg_UC - normally 0). NOTE: currently unused

types may cause it to interpret other registers (d4-?) as additional
parameters in the future.

Do NOT build Segment structures yourself!

INPUTS
name - name for the segment

seglist - Dos seglist of code for segment
type - initial usecount, normally O
RESULT
success — success or failure

SEE ALSO
FindSegment (), RemSegment (), LoadSeg/()

1.7 dos.library/AllocDosObject

NAME

AllocDosObject —-- Creates a dos object (V36)
SYNOPSIS

ptr = AllocDosObject (type, tags)

DO D1 D2

void xAllocDosObject (ULONG, struct Tagltem =)

ptr = AllocDosObjectTagList (type, tags)
DO D1 D2

void xAllocDosObjectTagList (ULONG, struct Tagltem x)
ptr = AllocDosObjectTags (type, Tagl, ...)
void xAllocDosObjectTags (ULONG, ULONG, ...)
FUNCTION
Create one of several dos objects, initializes it, and returns it
to you. ©Note the DOS_STDPKT returns a pointer to the sp_Pkt of the

structure.

This function may be called by a task for all types and tags defined

dos 8/109

in the V37 includes (DOS_FILEHANDLE through DOS_RDARGS and ADO_FH_ Mode
through ADO_PromptLen, respectively). Any future types or tags
will be documented as to whether a task may use them.

INPUTS
type - type of object requested
tags - pointer to taglist with additional information

RESULT
packet - pointer to the object or NULL

BUGS
Before V39, DOS_CLI should be used with care since FreeDosObject ()

can’t free 1it.

SEE ALSO
FreeDosObject (), <dos/dostags.h>, <dos/dos.h>

1.8 dos.library/AssignAdd

NAME

AssignAdd —-- Adds a lock to an assign for multi-directory assigns (V36)
SYNOPSIS

success = AssignAdd (name, lock)

DO D1 D2

BOOL AssignAdd (STRPTR, BPTR)

FUNCTION
Adds a lock to an assign, making or adding to a multi-directory
assign. Note that this only will succeed on an assign created with
AssignLock (), or an assign created with AssignLate() which has been
resolved (converted into a AssignLock ()-assign) .

NOTE: you should not use the lock in any way after making this call
successfully. It becomes the part of the assign, and will be unlocked
by the system when the assign is removed. If you need to keep the
lock, pass a lock from DupLock() to AssignLock() .

INPUTS
name - Name of device to assign lock to (without trailing ’':’)
lock - Lock associated with the assigned name

RESULT
success — Success/failure indicator. On failure, the lock is not
unlocked.
SEE ALSO
Lock (), AssignLock (), AssignPath(), AssignLate(), DupLock(),

RemAssignList ()

dos

9/109

1.9 dos.library/AssignLate

NAME
AssignlLate —-- Creates an assignment to a specified path later (V36)
SYNOPSIS
success = AssignlLate (name, path)
DO D1 D2

BOOL Assignlate (STRPTR, STRPTR)

FUNCTION

Sets up a assignment that is expanded upon the FIRST reference to the
name. The path (a string) would be attached to the node. When

the name is referenced (Open ("FOO:xyzzy"...), the string will be used
to determine where to set the assign to, and if the directory can be
locked, the assign will act from that point on as if it had been
created by AssignLock ().

A major advantage is assigning things to unmounted volumes, which
will be requested upon access (useful in startup sequences).

INPUTS
name - Name of device to be assigned (without trailing ’:’)
path - Name of late assignment to be resolved on the first reference.

RESULT

success — Success/failure indicator of the operation
SEE ALSO
Lock (), AssignAdd(), AssignPath(), AssignLock(),

1.10 dos.library/AssignLock

NAME

AssignLock —-—- Creates an assignment to a locked object (V36)
SYNOPSIS

success = AssignLock (name, lock)

DO D1 D2

BOOL AssignLock (STRPTR, BPTR)

FUNCTION
Sets up an assign of a name to a given lock. Passing NULL for a lock
cancels any outstanding assign to that name. If an assign entry of

that name is already on the list, this routine replaces that entry.
an entry is on the list that conflicts with the new assign, then a
failure code is returned.

NOTE: you should not use the lock in any way after making this call
successfully. It becomes the assign, and will be unlocked by the
system when the assign is removed. If you need to keep the lock,
pass a lock from DupLock () to AssignLock() .

dos 10/109

INPUTS
name - Name of device to assign lock to (without trailing ’':’)
lock - Lock associated with the assigned name
RESULT
success — Success/failure indicator. On failure, the lock is not
unlocked.

SEE ALSO
Lock (), AssignAdd(), AssignPath(), AssignLate(), DupLock(),
RemAssignList ()

1.11 dos.library/AssignPath

NAME

AssignPath —-—- Creates an assignment to a specified path (V36)
SYNOPSIS

success = AssignPath (name, path)

DO D1 D2

BOOL AssignPath (STRPTR, STRPTR)

FUNCTION

Sets up a assignment that is expanded upon EACH reference to the name.
This is implemented through a new device list type (DLT_ASSIGNPATH, or
some such). The path (a string) would be attached to the node. When

the name is referenced (Open("FOO:xyzzy"...), the string will be used

to determine where to do the open. No permanent lock will be part of

it. For example, you could AssignPath() c2: to df2:c, and references

to c2: would go to df2:c, even if you change disks.

The other major advantage is assigning things to unmounted volumes,
which will be requested upon access (useful in startup sequences).

INPUTS
name - Name of device to be assigned (without trailing ’:’)

path - Name of late assignment to be resolved at each reference

RESULT
success - Success/failure indicator of the operation

SEE ALSO
AssignAdd (), AssignLock (), AssignLate(), Open()

1.12 dos.library/AttemptLockDosList

NAME
AttemptLockDosList —-—- Attempt to lock the Dos Lists for use (V36)

SYNOPSIS

dos 11/109

dlist = AttemptLockDosList (flags)
DO D1

struct DosList xAttemptLockDosList (ULONG)

FUNCTION

Locks the dos device list in preparation to walk the list. If the
list is 'busy’ then this routine will return NULL. See LockDosList ()
for more information.

INPUTS
flags - Flags stating which types of nodes you want to lock.

RESULT
dlist - Pointer to the beginning of the list or NULL. Not a valid
node!

BUGS
In V36 through Vv39.23 dos, this would return NULL or 0x00000001 for
failure. Fixed in V39.24 dos (after kickstart 39.106).

SEE ALSO
LockDosList (), UnLockDosList (), Forbid(), NextDosEntry ()

1.13 dos.library/ChangeMode

NAME
ChangeMode - Change the current mode of a lock or filehandle (V36)

SYNOPSIS
success = ChangeMode (type, object, newmode)
DO D1 D2 D3

BOOL ChangeMode (ULONG, BPTR, ULONG)

FUNCTION

This allows you to attempt to change the mode in use by a lock or
filehandle. For example, you could attempt to turn a shared lock
into an exclusive lock. The handler may well reject this request.
Warning: if you use the wrong type for the object, the system may
crash.

INPUTS
type — Either CHANGE_FH or CHANGE_LOCK
object - A lock or filehandle
newmode - The new mode you want

RESULT
success — Boolean

BUGS
Did not work in 2.02 or before (V36). Works in V37. In the

earlier versions, it can crash the machine.

SEE ALSO

dos 12/109

Lock (), Open ()

1.14 dos.library/CheckSignal

NAME
CheckSignal —-- Checks for break signals (V36)

SYNOPSIS
signals = CheckSignal (mask)
DO D1

ULONG CheckSignal (ULONG)

FUNCTION

This function checks to see if any signals specified in the mask have
been set and if so, returns them. Otherwise it returns FALSE.
All signals specified in mask will be cleared.

INPUTS

mask - Signals to check for.

RESULT

signals - Signals specified in mask that were set.
SEE ALSO

1.15 dos.library/Cli

NAME
Cli -- Returns a pointer to the CLI structure of the process (V36)

SYNOPSIS
cli_ptr = Cli()
DO

struct CommandLineInterface *Cli(void)

FUNCTION
Returns a pointer to the CLI structure of the current process, or NULL

if the process has no CLI structure.

RESULT
cli_ptr - pointer to the CLI structure, or NULL.

SEE ALSO

1.16 dos.library/ClilnitNewcli

dos

13/109

NAME
CliInitNewcli —-—- Set up a process to be a shell from initial packet
SYNOPSIS
flags = CliInitNewcli (packet)
DO AQ

LONG CliInitNewcli(struct DosPacket =)

FUNCTION

This function initializes a process and CLI structure for a new
shell, from parameters in an initial packet passed by the system

(NewShell or NewCLI, etc).

The format of the data in the packet

is purposely not defined. The setup includes all the normal fields
in the structures that are required for proper operation (current
directory, paths, input streams, etc).

It returns a set of flags containing information about what type

of shell invocation this is.

Definitions for the values of fn:
Bit 31 Set to indicate flags are wvalid
Bit 3 Set to indicate asynch system call
Bit 2 Set if this is a System() call
Bit 1 Set if user provided input stream
Bit O Set if RUN provided output stream

If Bit 31 is 0, then you must
occurred. If IoErr() returns
been an error, and you should
have already been returned by
to your process and Bit 31 is
(Note: this is different from

This function is very similar

check IoErr() to determine if an error
a pointer to your process, there has
clean up and exit. The packet will
CliInitNewcli(). If it isn’t a pointer
0, reply the packet immediately.

what you do for CliInitRun() .)

to CliInitRun() .

INPUTS

packet - the initial packet sent to your process MsgPort
RESULT

fn - flags or a pointer
SEE ALSO

CliInitRun (), ReplyPkt (), WaitPkt (), IoErr()

1.17 dos.library/ClilnitRun

NAME

CliInitRun —- Set up a process to be a shell from initial packet

SYNOPSIS
flags = CliInitRun(packet)
DO AQ

dos 14 /109

LONG CliInitRun(struct DosPacket *)

FUNCTION

This function initializes a process and CLI structure for a new
shell, from parameters in an initial packet passed by the system
(Run, System(), Execute()). The format of the data in the packet
is purposely not defined. The setup includes all the normal fields
in the structures that are required for proper operation (current
directory, paths, input streams, etc).

It returns a set of flags containing information about what type
of shell invocation this is.

Definitions for the values of fn:

Bit 31 Set to indicate flags are wvalid
Bit 3 Set to indicate asynch system call
Bit 2 Set if this is a System() call

Bit 1 Set if user provided input stream
Bit O Set if RUN provided output stream

If Bit 31 is 0, then you must check IoErr() to determine if an error
occurred. If IoErr() returns a pointer to your process, there has
been an error, and you should clean up and exit. The packet will
have already been returned by CliInitNewcli(). If it isn’t a pointer
to your process and Bit 31 is 0, you should wait before replying

the packet until after you’ve loaded the first command (or when you
exit). This helps avoid disk "gronking”" with the Run command.

(Note: this is different from what you do for CliInitNewcli().)

If Bit 31 is 1, then if Bit 3 is one, ReplyPkt () the packet
immediately (Asynch System()), otherwise wait until your shell exits
(Sync System(), Execute()).

(Note: this is different from what you do for CliInitNewcli().)

This function is very similar to CliInitNewcli().

INPUTS

packet - the initial packet sent to your process MsgPort
RESULT

fn - flags or a pointer
SEE ALSO

CliInitNewcli (), ReplyPkt (), WaitPkt (), System(), Execute(), IoErr()

1.18 dos.library/Close

NAME
Close —— Close an open file
SYNOPSIS
success = Close(file)
DO D1

BOOL Close (BPTR)

dos 15/109

FUNCTION
The file specified by the file handle is closed. You must close all
files you explicitly opened, but you must not close inherited file
handles that are passed to you (each filehandle must be closed once
and ONLY once). If Close() fails, the file handle is still
deallocated and should not be used.

INPUTS
file - BCPL pointer to a file handle

RESULTS
success - returns if Close () succeeded. Note that it might fail
depending on buffering and whatever IO must be done to
close a file being written to. NOTE: this return value
did not exist before V36!

SEE ALSO
Open (), OpenFromLock ()

1.19 dos.library/CompareDates

NAME
CompareDates —- Compares two datestamps (V36)
SYNOPSIS
result = CompareDates (datel, date?2)
DO D1 D2

LONG CompareDates (struct DateStamp *,struct DateStamp x)

FUNCTION

Compares two times for relative magnitide. <0 is returned if datel is
later than date2, 0 if they are equal, or >0 if date2 is later than
datel. NOTE: this is NOT the same ordering as strcmp!

INPUTS
datel, date2 - DateStamps to compare

RESULT

result - <0, 0, or >0 based on comparison of two date stamps
SEE ALSO
DateStamp (), DateToStr (), StrToDate ()

1.20 dos.library/CreateDir

NAME
CreateDir —-- Create a new directory

SYNOPSIS
lock = CreateDir(name)

dos 16/109

DO D1

BPTR CreateDir (STRPTR)

FUNCTION
CreateDir creates a new directory with the specified name. An error
is returned if it fails. Directories can only be created on
devices which support them, e.g. disks. CreateDir returns an

exclusive lock on the new directory if it succeeds.

INPUTS
name - pointer to a null-terminated string

RESULTS
lock - BCPL pointer to a lock or NULL for failure.

SEE ALSO
Lock (), UnLock ()

1.21 dos.library/CreateNewProc

NAME
CreateNewProc -- Create a new process (V36)
SYNOPSIS
process = CreateNewProc (tags)
DO D1

struct Process xCreateNewProc (struct Tagltem x)

process = CreateNewProcTagList (tags)
DO D1

struct Process *CreateNewProcTagList (struct TagItem =)
process = CreateNewProcTags (Tagl, ...)
struct Process xCreateNewProcTags (ULONG, ...)

FUNCTION
This creates a new process according to the tags passed in. See
dos/dostags.h for the tags.

You must specify one of NP_Seglist or NP_Entry. NP_Seglist takes a
seglist (as returned by LoadSeg()). NP_Entry takes a function
pointer for the routine to call.

There are many options, as you can see by examining dos/dostags.h.
The defaults are for a non-CLI process, with copies of your
CurrentDir, HomeDir (used for PROGDIR:), priority, consoletask,
windowptr, and variables. The input and output filehandles default
to opens of NIL:, stack to 4000, and others as shown in dostags.h.
This is a fairly reasonable default setting for creating threads,
though you may wish to modify it (for example, to give a descriptive
name to the process.)

dos 17 /109

CreateNewProc () is callable from a task, though any actions that
require doing Dos I/0 (DupLock () of currentdir, for example) will not
occur.

NOTE: if you call CreateNewProc() with both NP_Arguments, you must
not specify an NP_Input of NULL. When NP_Arguments is specified, it
needs to modify the input filehandle to make ReadArgs () work properly.

INPUTS
tags - a pointer to a Tagltem array.
RESULT
process - The created process, or NULL. Note that if it returns

NULL, you must free any items that were passed in via
tags, such as if you passed in a new current directory
with NP_CurrentDir.

BUGS

In V36, NP_Arguments was broken in a number of ways, and probably

should be avoided (instead you should start a small piece of your

own code, which calls RunCommand() to run the actual code you wish

to run). In V37, NP_Arguments works, though see the note above.
SEE ALSO
LoadSeg (), CreateProc(), ReadArgs(), RunCommand(), <dos/dostags.h>

1.22 dos.library/CreateProc

NAME
CreateProc —-- Create a new process

SYNOPSIS
process = CreateProc(name, pri, seglist, stackSize)
DO D1 D2 D3 D4

struct MsgPort xCreateProc (STRPTR, LONG, BPTR, LONG)

FUNCTION
CreateProc () creates a new AmigaDOS process of name 'name’. AmigaDOS
processes are a superset of exec tasks.

A seglist, as returned by LoadSeg(), is passed as ’'seglist’.

This represents a section of code which is to be run as a new
process. The code is entered at the first hunk in the segment list,
which should contain suitable initialization code or a Jjump to
such. A process control structure is allocated from memory and
initialized. If you wish to fake a seglist (that will never

have DOS UnLoadSeg () called on it), use this code:

DS.L 0 ;Align to longword
DC.L 16 ;Segment "length" (faked)
DC.L 0 ;Pointer to next segment

...start of code...

dos

18/109

The size of the root stack upon activation is passed as
"stackSize’. 'pri’ specifies the required priority of the new
process. The result will be the process msgport address of the new
process, or zero if the routine failed. The argument ’'name’
specifies the new process name. A zero return code indicates
error.

The seglist passed to CreateProc() is not freed when it exits; it
is up to the parent process to free it, or for the code to unload

itself.

Under V36 and later, you probably should use CreateNewProc() instead.

INPUTS
name — pointer to a null-terminated string
pri — signed long (range -128 to +127)
seglist - BCPL pointer to a seglist
stackSize - integer (must be a multiple of 4 bytes)
RESULTS
process - pointer to new process msgport
SEE ALSO

CreateNewProc (), LoadSeg(), UnLoadSeg()

1.23 dos.library/CurrentDir

NAME

CurrentDir —-—- Make a directory lock the current directory
SYNOPSIS

oldLock = CurrentDir(lock)

DO D1

BPTR CurrentDir (BPTR)

FUNCTION
CurrentDir () causes a directory associated with a lock to be made
the current directory. The old current directory lock is returned.

A value of zero is a valid result here, this 0 lock represents the
root of file system that you booted from.

Any call that has to Open() or Lock () files (etc) requires that
the current directory be a valid lock or 0.

INPUTS
lock - BCPL pointer to a lock

RESULTS
oldLock - BCPL pointer to a lock

SEE ALSO

dos

19/109

Lock (), UnLock (), Open{(), DupLock()

1.24 dos.library/DateStamp

NAME

DateStamp —-- Obtain the date and time in internal format
SYNOPSIS

ds = DateStamp(ds);

DO D1

struct DateStamp =*DateStamp (struct DateStamp =)

FUNCTION
DateStamp () takes a structure of three longwords that is set to the
current time. The first element in the vector is a count of the

number of days. The second element is the number of minutes elapsed
in the day. The third is the number of ticks elapsed in the current
minute. A tick happens 50 times a second. DateStamp() ensures that

the day and minute are consistent. All three elements are zero if
the date is unset. DateStamp () currently only returns even

multiples of 50 ticks. Therefore the time you get is always an even

number of ticks.
Time is measured from Jan 1, 1978.

INPUTS
ds - pointer a struct DateStamp

RESULTS
The array is filled as described and returned (for pre-vV36

compabability) .

SEE ALSO
DateToStr (), StrToDate(), SetFileDate(), CompareDates()

1.25 dos.library/DateToStr

NAME
DateToStr —-- Converts a DateStamp to a string (V36)
SYNOPSIS
success = DateToStr(datetime)
DO D1

BOOL DateToStr (struct DateTime =)

FUNCTION

DateToStr converts an AmigaDOS DateStamp to a human
readable ASCII string as requested by your settings in the
DateTime structure.

dos 20/109

INPUTS
DateTime - a pointer to an initialized DateTime structure.

The DateTime structure should be initialized as follows:
dat_Stamp - a copy of the datestamp you wish to convert to
ascii.

dat_Format - a format byte which specifies the format of the
dat_StrDate. This can be any of the following
(note: If value used is something other than those
below, the default of FORMAT_DOS is used):

FORMAT_DOS: AmigaDOS format (dd-mmm-yy) .
FORMAT_INT: International format (yy-mmm-dd) .
FORMAT_USA: American format (mm-dd-yy).
FORMAT_CDN: Canadian format (dd-mm-yy) .
FORMAT_DEF: default format for locale.

dat_Flags - a flags byte. The only flag which affects this
function is:

DTF_SUBST: If set, a string such as Today,
Monday, etc., will be used instead
of the dat_Format specification if
possible.

DTF_FUTURE: Ignored by this function.

dat_StrDay - pointer to a buffer to receive the day of the
week string. (Monday, Tuesday, etc.). If null, this
string will not be generated.

dat_StrDate - pointer to a buffer to receive the date
string, in the format requested by dat_Format,
subject to possible modifications by DTF_SUBST. If
null, this string will not be generated.

dat_StrTime - pointer to a buffer to receive the time of day
string. If NULL, this will not be generated.

RESULT

success — a zero return indicates that the DateStamp was
invalid, and could not be converted. Non-zero
indicates that the call succeeded.

SEE ALSO
DateStamp (), StrtoDate(), <dos/datetime.h>

1.26 dos.library/Delay

dos 21/109

NAME
Delay —-- Delay a process for a specified time

SYNOPSIS
Delay(ticks)
D1

void Delay (ULONG)
FUNCTION

The argument ’'ticks’ specifies how many ticks (50 per second) to
wait before returning control.

INPUTS
ticks - integer

BUGS
Due to a bug in the timer.device in V1.2/V1.3, specifying a timeout
of zero for Delay() can cause the unreliable timer & floppy disk

operation. This is fixed in V36 and later.

SEE ALSO

1.27 dos.library/DeleteFile

NAME

DeleteFile —- Delete a file or directory
SYNOPSIS

success = DeleteFile(name)

DO D1

BOOL DeleteFile (STRPTR)

FUNCTION
This attempts to delete the file or directory specified by ’'name’.
An error is returned if the deletion fails. Note that all the files
within a directory must be deleted before the directory itself can

be deleted.

INPUTS
name - pointer to a null-terminated string

RESULTS
success — boolean

SEE ALSO

1.28 dos.library/DeleteVar

NAME

dos 22 /109

DeleteVar —-—- Deletes a local or environment variable (V36)
SYNOPSIS

success = DeleteVar(name, flags)

DO D1 D2

BOOL DeleteVar (STRPTR, ULONG)

FUNCTION
Deletes a local or environment variable.

INPUTS
name - pointer to an variable name. Note variable names follow
filesystem syntax and semantics.
flags - combination of type of var to delete (low 8 bits), and
flags to control the behavior of this routine. Currently
defined flags include:

GVF_LOCAL_ONLY - delete a local (to your process) variable.
GVF_GLOBAL_ONLY - delete a global environment variable.

The default is to delete a local variable if found, otherwise
a global environment variable if found (only for LV_VAR).

RESULT
success - If non-zero, the variable was sucessfully deleted, FALSE

indicates failure.

BUGS
LV_VAR is the only type that can be global

SEE ALSO
GetVar (), SetVar(), FindVar(), DeleteFile(), <dos/var.h>

1.29 dos.library/DeviceProc

NAME

DeviceProc —- Return the process MsgPort of specific I/O handler
SYNOPSIS

process = DeviceProc (name)

DO D1

struct MsgPort #«DeviceProc (STRPTR)

FUNCTION
DeviceProc () returns the process identifier of the process which
handles the device associated with the specified name. If no
process handler can be found then the result is zero. If the name
refers to an assign then a directory lock is returned in IoErr().
This lock should not be UnLock()ed or Examine()ed (if you wish to do
so, DupLock () it first).

BUGS
In V36, if you try to DeviceProc() something relative to an assign

dos 23/109

made with AssignPath(), it will fail. This is because there’s no
way to know when to unlock the lock. If you’re writing code for
V36 or later, it is highly advised you use GetDeviceProc () instead,
or make your code conditional on V36 to use GetDeviceProc()/
FreeDeviceProc () .

SEE ALSO
GetDeviceProc (), FreeDeviceProc (), DupLock (), UnLock (), Examine ()

1.30 dos.library/DoPkt

NAME
DoPkt —-—- Send a dos packet and wait for reply (V36)
SYNOPSIS

resultl = DoPkt (port,action,argl,arg2,arg3,argd4,argb)
DO D1 D2 D3 D4 D5 D6 D7

LONG DoPkt (struct MsgPort =, LONG,LONG,LONG, LONG, LONG, LONG)

FUNCTION
Sends a packet to a handler and waits for it to return. Any secondary
return will be available in D1 AND from IoErr (). DoPkt() will work

even if the caller is an exec task and not a process; however it will
be slower, and may fail for some additional reasons, such as being
unable to allocate a signal. DoPkt () uses your pr_MsgPort for the
reply, and will call pr_PktWait. (See BUGS regarding tasks, though).

Only allows 5 arguments to be specified. For more arguments (packets
support a maximum of 7) create a packet and use SendPkt () /WaitPkt ().

INPUTS
port - pr_MsgPort of the handler process to send to.
action - the action requested of the filesystem/handler
argl, arg2, arg3, argd4,argb - arguments, depend on the action, may not

be required.

RESULT

resultl - the value returned in dp_Resl, or FALSE if there was some
problem in sending the packet or recieving it.

result2 - Available from IoErr () AND in register DI1.

BUGS

Using DoPkt () from tasks doesn’t work in V36. Use AllocDosObject (),
PutMsg (), and WaitPort () /GetMsg() for a workaround, or you can call
CreateNewProc () to start a process to do Dos I/0O for you. In V37,
DoPkt () will allocate, use, and free the MsgPort required.

NOTES

Callable from a task (under V37 and above).

SEE ALSO
AllocDosObject (), FreeDosObject (), SendPkt (), WaitPkt (),
CreateNewProc (), AbortPkt ()

dos

24 /109

1.31 dos.library/DupLock

NAME

DupLock —-- Duplicate a lock
SYNOPSIS

lock = DupLock(lock)

DO D1

BPTR DupLock (BPTR)

FUNCTION
DupLock () is passed a shared filing system lock. This is the ONLY
way to obtain a duplicate of a lock... simply copying is not
allowed.

Another lock to the same object is then returned. It is not
possible to create a copy of a exclusive lock.

A zero return indicates failure.

INPUTS
lock — BCPL pointer to a lock

RESULTS
newLock - BCPL pointer to a lock

SEE ALSO
Lock (), UnLock (), DupLockFromFH(), ParentOfFH/()

1.32 dos.library/DupLockFromFH

NAME
DupLockFromFH ——- Gets a lock on an open file (V36)
SYNOPSIS
lock = DupLockFromFH (fh)
DO D1

BPTR DupLockFromFH (BPTR)

FUNCTION
Obtain a lock on the object associated with fh. Only works if the

file was opened using a non-exclusive mode. Other restrictions may be

placed on success by the filesystem.

INPUTS
fth — Opened file for which to obtain the lock

RESULT
lock - Obtained lock or NULL for failure

SEE ALSO
DupLock (), Lock (), UnLock ()

dos 25/109

1.33 dos.library/EndNotify

NAME
EndNotify —-- Ends a notification request (V36)
SYNOPSIS
EndNotify (notifystructure)
D1

VOID EndNotify (struct NotifyRequest x)

FUNCTION

Removes a notification request. Safe to call even if StartNotify ()
failed. For NRF_SEND_MESSAGE, it searches your port for any messages
about the object in question and removes and replies them before
returning.

INPUTS

notifystructure - a structure passed to StartNotify ()
SEE ALSO

StartNotify (), <dos/notify.h>

1.34 dos.library/ErrorReport

NAME
ErrorReport -- Displays a Retry/Cancel requester for an error (V36)
SYNOPSIS
status = ErrorReport (code, type, argl, device)
DO D1 D2 D3 D4

BOOL ErrorReport (LONG, LONG, ULONG, struct MsgPort x)

FUNCTION

Based on the request type, this routine formats the appropriate
requester to be displayed. If the code is not understood, it returns
DOS_TRUE immediately. Returns DOS_TRUE if the user selects CANCEL or
if the attempt to put up the requester fails, or if the process
pr_WindowPtr is -1. Returns FALSE if the user selects Retry. The
routine will retry on DISKINSERTED for appropriate error codes.

These return values are the opposite of what AutoRequest returns.

Note: this routine sets IoErr() to code before returning.
INPUTS
code - Error code to put a requester up for.

Current valid error codes are:
ERROR_DISK_NOT_VALIDATED
ERROR_DISK_WRITE_PROTECTED
ERROR_DISK_FULL
ERROR_DEVICE_NOT_MOUNTED
ERROR_NOT_A_DOS_DISK
ERROR_NO_DISK

dos 26/109

ABORT_DISK_ERROR /* read/write error =/

ABORT_BUSY /+ you MUST replace... */
type — Request type:
REPORT_LOCK - argl is a lock (BPTR).
REPORT_FH - argl is a filehandle (BPTR).

REPORT_VOLUME - argl is a volumenode (C pointer).
REPORT_INSERT - argl is the string for the volumename
(will be split on a ":").
With ERROR_DEVICE_NOT_MOUNTED puts

up the "Please insert..." requester.
argl - variable parameter (see type)
device - (Optional) Address of handler task for which report is to be

made. Only required for REPORT_LOCK, and only if argl==NULL.

RESULT

status - Cancel/Retry indicator (0 means Retry)
SEE ALSO
Fault (), IoErr()

1.35 dos.library/ExAll

NAME
ExAll —-- Examine an entire directory (V36)

SYNOPSIS
continue = ExAll (lock, buffer, size, type, control)
DO D1 D2 D3 D4 D5

BOOL ExAll (BPTR, STRPTR, LONG, LONG, struct ExAllControl x)

FUNCTION
Examines an entire directory.

Lock must be on a directory. Size is the size of the buffer supplied.
The buffer will be filled with (partial) ExAllData structures, as
specified by the type field.

Type is a value from those shown below that determines which information is
to be stored in the buffer. Each higher value adds a new thing to the list
as described in the table below:-—

ED_NAME FileName

ED_TYPE Type

ED_SIZE Size in bytes

ED_PROTECTION Protection bits

ED_DATE 3 longwords of date

ED_COMMENT Comment (will be NULL if no comment)
Note: the V37 ROM/disk filesystem returns this
incorrectly as a BSTR. See BUGS for a workaround.

ED_OWNER owner user-id and group-id (if supported) (V39)

Thus, ED_NAME gives only filenames, and ED_OWNER gives everything.

NOTE: V37 dos.library, when doing ExAll() emulation, and RAM: filesystem

dos 27 /109

will return an error if passed ED_OWNER. If you get ERROR_BAD_NUMBER,
retry with ED_COMMENT to get everything but owner info. All filesystems
supporting ExAll () must support through ED_COMMENT, and must check Type
and return ERROR_BAD_NUMBER if they don’t support the type.

The V37 ROM/disk filesystem doesn’t fill in the comment field correctly
if you specify ED_OWNER. See BUGS for a workaround if you need to use
ED_OWNER.

The ead_Next entry gives a pointer to the next entry in the buffer. The
last entry will have NULL in ead_Next.

The control structure is required so that FFS can keep track if more than
one call to ExAll is required. This happens when there are more names in
a directory than will fit into the buffer. The format of the control
structure is as follows:—

NOTE: the control structure MUST be allocated by AllocDosObject!!!

Entries: This field tells the calling application how many entries are
in the buffer after calling ExAll. Note: make sure your code
handles the 0 entries case, including 0 entries with continue
non-zero.

LastKey: This field ABSOLUTELY MUST be initialised to 0 before calling
ExAll for the first time. Any other value will cause nasty
things to happen. If ExAll returns non-zero, then this field
should not be touched before making the second and subsequent
calls to ExAll. Whenever ExAll returns non-zero, there are more
calls required before all names have been received.

As soon as a FALSE return is received then ExAll has completed
(1f IoErr () returns ERROR_NO_MORE_ENTRIES - otherwise it returns
the error that occured, similar to ExNext.)

MatchString
If this field is NULL then all filenames will be returned. If
this field is non-null then it is interpreted as a pointer to
a string that is used to pattern match all file names before
accepting them and putting them into the buffer. The default
AmigaDOS caseless pattern match routine is used. This string
MUST have been parsed by ParsePatternNoCase () !

MatchFunc:
Contains a pointer to a hook for a routine to decide if the entry
will be included in the returned list of entries. The entry is

filled out first, and then passed to the hook. If no MatchFunc is
to be called then this entry should be NULL. The hook is
called with the following parameters (as is standard for hooks):

BOOL = MatchFunc(hookptr, data, typeptr)

a0 al a2z
(a0 = ptr to hook, al = ptr to filled in ExAllData, a2 = ptr
to longword of type).

MatchFunc should return FALSE if the entry is not to be
accepted, otherwise return TRUE.

dos 28/109

Note that Dos will emulate ExAll () using Examine () and ExNext ()
if the handler in question doesn’t support the ExAll () packet.

INPUTS
lock — Lock on directory to be examined.
buffer - Buffer for data returned (MUST be at least word-aligned,
preferably long-word aligned) .
size - Size in bytes of 'buffer’.
type - Type of data to be returned.
control - Control data structure (see notes above). MUST have been

allocated by AllocDosObject!

RESULT

continue - Whether or not ExAll is done. If FALSE is returned, either
ExAll has completed (IoErr() == ERROR_NO_MORE_ENTRIES), or
an error occurred (check IoErr()). If non-zero is returned,

you MUST call ExAll again until it returns FALSE.
EXAMPLE

eac = AllocDosObject (DOS_EXALLCONTROL,NULL) ;

if (leac)
eac—>eac_LastKey = 0;
do {
more = ExAll (lock, EAData, sizeof (EAData), ED_FO0O, eac);
if ((!more) && (IoErr () != ERROR_NO_MORE_ENTRIES)) {
\x ExAll failed abnormally =\
break;
}
if (eac->eac_Entries == 0) {
* ExAll failed normally with no entries =\
continue; * ("more" is *usuallyx zero) =*\
}
ead = (struct ExAllData x) EAData;
do {

* use ead here =\

* get next ead =\
ead = ead->ed_Next;
} while (ead);

} while (more);
FreeDosObject (DOS_EXALLCONTROL, eac) ;

BUGS

In V36, there were problems with ExAll (particularily with
eac_MatchString, and ed_Next with the ramdisk and the emulation
of it in Dos for handlers that do not support the packet. It is
advised you only use this under V37 and later.

The V37 ROM/disk filesystem incorrectly returned comments as BSTR’s
(length plus characters) instead of CSTR’s (null-terminated). See
the next bug for a way to determine if the filesystem is a V37
ROM/disk filesystem. Fixed in V39.

dos

29/109

The V37 ROM/disk filesystem incorrectly handled values greater than
ED_COMMENT. Because of this, ExAll() information is trashed if

To work around this, use
the following code to identify if a filesystem is a V37 ROM/disk

ED_OWNER 1is passed to it. Fixed in V39.

filesystem:

// return TRUE if this is a V37 ROM filesystem, which doesn’t
// support ED_OWNER safely

BOOL CheckV37 (BPTR lock)

{

}

struct FileLock %1 = BADDR(lock);
struct Resident xresident;

struct DosList =xdl;

BOOL result = FALSE;

dl = LockDosList (LDF_READ |LDF_DEVICES) ;

// 1if the lock has a volume and no device,

we won’t find it,

// so we know it’s not a V37 ROM/disk filesystem

do {

dl = NextDosEntry(dl, LDF_READ|LDF_DEVICES) ;
if (dl && (dl->dol_Task == 1->fl1 Task))

{

// found the filesystem - test isn’t actually required,

// but we know the filesystem we’re looking for will always

(really)

// have a startup msg. If we needed to examine the message,
// we would need a _bunch_ of checks to make sure it’s not

// either a small value (like port-handler uses)

if (dl->dol_misc.dol_handler.dol_Startup)

{

// try to make sure it’s the ROM fs or l:FastFileSystem

if (resident =

FindRomTag (dl->dol_misc.dol_handler.dol_SegList))

if (resident->rt_Version < 39 &&

(strncmp (resident->rt_IdString, "fs 37.",

strlen("fs 37.")) == 0 ||

strncmp (resident->rt_Name, "ffs 37.",

strlen("ffs 37.")) == 0))

result = TRUE;

}

break;
}
} while (dl);
UnLockDosList (LDF_READ | LDF_DEVICES) ;

return result;

SEE ALSO

or a BSTR.

dos 30/109

Examine (), ExNext (), ExamineFH(), MatchPatternNoCase(),
ParsePatternNoCase (), AllocDosObject (), ExAllEnd()

1.36 dos.library/ExAIIEnd

NAME
ExAllEnd —-- Stop an ExAll() (V39)

SYNOPSIS
ExAllEnd(lock, buffer, size, type, control)

D1 D2 D3 D4 D5
ExAl11End (BPTR, STRPTR, LONG, LONG, struct ExAllControl x)

FUNCTION

Stops an ExAll () on a directory before it hits NO_MORE_ENTRIES.

The full set of arguments that had been passed to ExAll () must be
passed to ExAllEnd(), so it can handle filesystems that can’t abort
an ExAll () directly.

INPUTS
lock - Lock on directory to be examined.
buffer - Buffer for data returned (MUST be at least word-aligned,
preferably long-word aligned).
size - Size in bytes of ’"buffer’.
type - Type of data to be returned.
control - Control data structure (see notes above). MUST have been

allocated by AllocDosObject!

SEE ALSO
ExAl1(), AllocDosObject ()

1.37 dos.library/Examine

NAME

Examine —-- Examine a directory or file associated with a lock
SYNOPSIS

success = Examine(lock, FileInfoBlock)

DO D1 D2

BOOL Examine (BPTR, struct FileInfoBlock =x)

FUNCTION
Examine () fills in information in the FileInfoBlock concerning the
file or directory associated with the lock. This information
includes the name, size, creation date and whether it is a file or
directory. FileInfoBlock must be longword aligned. Examine () gives
a return code of zero if it fails.

You may make a local copy of the FileInfoBlock, as long as it is
never passed to ExNext ().

dos 31/109

INPUTS
lock - BCPL pointer to a lock
infoBlock - pointer to a FileInfoBlock (MUST be longword aligned)

RESULTS
success — boolean

SPECIAL NOTE
FileInfoBlock must be longword-aligned. AllocDosObject () will
allocate them correctly for you.

SEE ALSO
Lock (), UnLock(), ExNext (), ExamineFH(), <dos/dos.h>, AllocDosObject (),
ExAll ()

1.38 dos.library/ExamineFH

NAME
ExamineFH —-- Gets information on an open file (V36)
SYNOPSIS
success = ExamineFH (fh, fib)
DO D1 D2

BOOL ExamineFH (BPTR, struct FileInfoBlock)

FUNCTION
Examines a filehandle and returns information about the file in the
FileInfoBlock. There are no guarantees as to whether the fib_Size

field will reflect any changes made to the file size it was opened,
though filesystems should attempt to provide up-to-date information
for it.

INPUTS
fh - Filehandle you wish to examine
fib - FileInfoBlock, must be longword aligned.

RESULT

success — Success/failure indication

SEE ALSO
Examine (), ExNext (), ExAll(), Open(), AllocDosObject ()

1.39 dos.library/Execute

NAME
Execute —-- Execute a CLI command
SYNOPSIS
success = Execute(commandString, input, output)

DO D1 D2 D3

dos 32/109

BOOL Execute (STRPTR, BPTR, BPTR)

FUNCTION
This function attempts to execute the string commandString as a
Shell command and arguments. The string can contain any valid input
that you could type directly in a Shell, including input and output
redirection using < and >. Note that Execute() doesn’t return until
the command(s) in commandstring have returned.

The input file handle will normally be zero, and in this case
Execute () will perform whatever was requested in the commandString
and then return. If the input file handle is nonzero then after the
(possibly empty) commandString is performed subsequent input is read
from the specified input file handle until end of that file is
reached.

In most cases the output file handle must be provided, and is used
by the Shell commands as their output stream unless output
redirection was specified. If the output file handle is set to zero
then the current window, normally specified as %, 1is used. Note
that programs running under the Workbench do not normally have a
current window.

Execute () may also be used to create a new interactive Shell process
just like those created with the NewShell command. In order to do
this you would call Execute() with an empty commandString, and pass
a file handle relating to a new window as the input file handle.

The output file handle would be set to zero. The Shell will read
commands from the new window, and will use the same window for
output. This new Shell window can only be terminated by using the
EndCLI command.

Under V37, if an input filehandle is passed, and it’s either
interactive or a NIL: filehandle, the pr_ConsoleTask of the new
process will be set to that filehandle’s process (the same applies
to SystemTagList()).

For this command to work the program Run must be present in C: in
versions before V36 (except that in 1.3.2 and any later 1.3 versions,
the system first checks the resident list for Run).

INPUTS
commandString - pointer to a null-terminated string
input - BCPL pointer to a file handle
output — BCPL pointer to a file handle
RESULTS
success - BOOLEAN indicating whether Execute was successful

in finding and starting the specified program. Note this
is NOT the return code of the command(s).
SEE ALSO
SystemTagList (), NewShell, EndCLI, Run

dos 33/109

1.40 dos.library/Exit

NAME
Exit —-- Exit from a program

SYNOPSIS
Exit (returnCode)

D1

void Exit (LONG)

FUNCTION
Exit () is currently for use with programs written as if they
were BCPL programs. This function is not normally useful for

other purposes.
In general, therefore, please DO NOT CALL THIS FUNCTION!

In order to exit, C programs should use the C language exit ()
function (note the lower case letter "e"). Assembly programs should
place a return code in DO, and execute an RTS instruction with

their original stack ptr.

IMPLEMENTATION
The action of Exit () depends on whether the program which called it
is running as a command under a CLI or not. If the program is
running under the CLI the command finishes and control reverts to
the CLI. In this case, returnCode is interpreted as the return code
from the program.

If the program is running as a distinct process, Exit () deletes the
process and release the space associated with the stack, segment
list and process structure.

INPUTS
returnCode - integer
SEE ALSO
CreateProc (), CreateNewProc()

1.41 dos.library/ExNext

NAME

ExNext —-- Examine the next entry in a directory
SYNOPSIS

success = ExNext (lock, FileInfoBlock)

DO D1 D2

BOOL ExNext (BPTR, struct FileInfoBlock =x)

FUNCTION
This routine is passed a directory lock and a FileInfoBlock that
have been initialized by a previous call to Examine(), or updated

dos 34/109

by a previous call to ExNext (). ExNext() gives a return code of zero
on failure. The most common cause of failure is reaching the end

of the list of files in the owning directory. In this case, IoErr
will return ERROR_NO_MORE_ENTRIES and a good exit is appropriate.

So, follow these steps to examine a directory:

1) Pass a Lock and a FileInfoBlock to Examine (). The lock must
be on the directory you wish to examine.

2) Pass ExNext () the same lock and FileInfoBlock.

3) Do something with the information returned in the FileInfoBlock.
Note that the fib_DirEntryType field is positive for directories,
negative for files.

4) Keep calling ExNext () until it returns FALSE. Check IoErr ()
to ensure that the reason for failure was ERROR_NO_MORE_ENTRIES.

Note: if you wish to recursively scan the file tree and you find
another directory while ExNext () ing you must Lock that directory and
Examine () it using a new FileInfoBlock. Use of the same
FileInfoBlock to enter a directory would lose important state
information such that it will be impossible to continue scanning

the parent directory. While it is permissible to UnLock () and Lock ()
the parent directory between ExNext () calls, this is NOT recommended.
Important state information is associated with the parent lock, so
if it is freed between ExNext () calls this information has to be
rebuilt on each new ExNext () call, and will significantly slow down
directory scanning.

It is NOT legal to Examine() a file, and then to ExNext () from that
FileInfoBlock. You may make a local copy of the FileInfoBlock, as
long as it is never passed back to the operating system.

INPUTS
lock - BCPL pointer to a lock originally used for the Examine() call
infoBlock - pointer to a FileInfoBlock used on the previous Examine ()
or ExNext () call.
RESULTS

success — boolean

SPECIAL NOTE
FileInfoBlock must be longword-aligned. AllocDosObject () will
allocate them correctly for you.

SEE ALSO
Examine (), Lock (), UnLock (), IoErr(), ExamineFH(), AllocDosObject (),
ExAll ()

1.42 dos.library/Fault

NAME
Fault —- Returns the text associated with a DOS error code (V36)

SYNOPSIS
len = Fault (code, header, buffer, len)
DO D1 D2 D3 D4

dos

35/109

LONG Fault (LONG, STRPTR, STRPTR, LONG)

FUNCTION

This routine obtains the error message text for the given error code.
The header is prepended to the text of the error message, followed
by a colon. Puts a null-terminated string for the error message into

the buffer. By convention, error messages should be no longer than 80

characters (+1 for termination), and preferably no more than 60.

The value returned by IoErr() is set to the code passed in. If there
is no message for the error code, the message will be "Error code
<number>\n".

The number of characters put into the buffer is returned, which will
be 0 if the code passed in was 0.

INPUTS
code - Error code
header - header to output before error text

buffer - Buffer to receive error message.
len — Length of the buffer.
RESULT
len - number of characters put into buffer (may be 0)
SEE ALSO
IoErr (), SetIoErr (), PrintFault ()
BUGS
In older documentation, the return was shown as BOOL success. This

was incorrect, it has always returned the length.

1.43 dos.library/FGetC

NAME
FGetC -- Read a character from the specified input (buffered) (V36)
SYNOPSIS
char = FGetC(fh)
DO D1

LONG FGetC (BPTR)

FUNCTION
Reads the next character from the input stream. A -1 is
returned when EOF or an error is encountered. This call is buffered.

Use Flush () between buffered and unbuffered I/O on a filehandle.

INPUTS
fh - filehandle to use for buffered I/0

RESULT
char - character read (0-255) or -1

BUGS

dos 36/109

In V36, after an EOF was read, EOF would always be returned from
FGetC () from then on. Starting in V37, it tries to read from the
handler again each time (unless UnGetC(fh,-1) was called).

SEE ALSO
FPutC (), UnGetC(), Flush{()

1.44 dos.library/FGets

NAME
FGets —— Reads a line from the specified input (buffered) (V36)
SYNOPSIS
buffer = FGets (fh, buf, len)
DO D1 D2 D3

STRPTR FGets (BPTR, STRPTR, ULONG)

FUNCTION

This routine reads in a single line from the specified input stopping
at a NEWLINE character or EOF. In either event, UP TO the number of
len specified bytes minus 1 will be copied into the buffer. Hence if
a length of 50 is passed and the input line is longer than 49 bytes,
it will return 49 characters. It returns the buffer pointer normally,
or NULL if EOF is the first thing read.

If terminated by a newline, the newline WILL be the last character in
the buffer. This is a buffered read routine. The string read in IS
null-terminated.

INPUTS
fh - filehandle to use for buffered I/0
buf - Area to read bytes into.
len - Number of bytes to read, must be > 0.

RESULT
buffer - Pointer to buffer passed in, or NULL for immediate EOF or for
an error. If NULL is returnd for an EOF, IoErr() will return
0.
BUGS
In V36 and V37, it copies one more byte than it should if it doesn’t
hit an EOF or newline. In the example above, it would copy 50 bytes

and put a null in the 51st. This is fixed in dos V39. Workaround
for V36/V37: pass in buffersize-1.

SEE ALSO
FRead (), FPuts (), FGetC()

1.45 dos.library/FilePart

dos 37/109

NAME
FilePart —-- Returns the last component of a path (V36)
SYNOPSIS
fileptr = FilePart (path)
DO D1

STRPTR FilePart (STRPTIR)

FUNCTION
This function returns a pointer to the last component of a string path
specification, which will normally be the file name. If there is only

one component, it returns a pointer to the beginning of the string.

INPUTS
path - pointer to an path string. May be relative to the current
directory or the current disk.

RESULT
fileptr - pointer to the last component of the path.

EXAMPLE
FilePart ("xxx:yyy/zzz/qqq") would return a pointer to the first 'g’.

FilePart ("xxx:yyy") would return a pointer to the first ’'y’).

SEE ALSO
PathPart (), AddPart ()

1.46 dos.library/FindArg

NAME
FindArg - find a keyword in a template (V36)

SYNOPSIS
index = FindArg(template, keyword)
DO D1 D2

LONG FindArg (STRPTR, STRPTR)

FUNCTION
Returns the argument number of the keyword, or -1 if it is not a
keyword for the template. Abbreviations are handled.

INPUTS
keyword - keyword to search for in template
template - template string to search

RESULT
index - number of entry in template, or -1 if not found

BUGS
In earlier published versions of the autodoc, keyword and template
were backwards.

dos 38/109

SEE ALSO
ReadArgs (), ReadItem(), FreeArgs/()

1.47 dos.library/FindCliProc

NAME
FindCliProc -- returns a pointer to the requested CLI process (V36)
SYNOPSIS
proc = FindCliProc (num)
DO D1

struct Process *FindCliProc (ULONG)

FUNCTION
This routine returns a pointer to the CLI process associated with the
given CLI number. If the process isn’t an active CLI process, NULL is

returned. NOTE: should normally be called inside a Forbid(), if you
must use this function at all.

INPUTS

num - Task number of CLI process (range 1-N)
RESULT

proc - Pointer to given CLI process
SEE ALSO

Cli(), Forbid(), MaxCli()

1.48 dos.library/FindDosEntry

NAME
FindDosEntry -- Finds a specific Dos List entry (V36)
SYNOPSIS
newdlist = FindDosEntry(dlist,name, flags)
DO D1 D2 D3

struct DosList *FindDosEntry (struct DosList =%, STRPTR, ULONG)

FUNCTION

Locates an entry on the device list. Starts with the entry dlist.
NOTE: must be called with the device 1list locked, no references may be
made to dlist after unlocking.

INPUTS
dlist — The device entry to start with.
name - Name of device entry (without ’:’) to locate.
flags — Search control flags. Use the flags you passed to

LockDosList, or a subset of them. LDF_READ/LDF_WRITE are
not required for this call.

dos 39/109

RESULT
newdlist - The device entry or NULL

SEE ALSO

AddDosEntry (), RemDosEntry (), NextDosEntry (), LockDosList (),
MakeDosEntry (), FreeDosEntry()

1.49 dos.library/FindSegment

NAME
FindSegment - Finds a segment on the resident list (V36)
SYNOPSIS
segment = FindSegment (name, start, system)
DO D1 D2 D3

struct Segment *FindSegment (STRPTR, struct Segment =%, LONG)

FUNCTION

Finds a segment on the Dos resident list by name and type, starting
at the segment AFTER ’'start’, or at the beginning if start is NULL.
If system is zero, it will only return nodes with a seg_UC of 0

or more. It does NOT increment the seg_UC, and it does NOT do any
locking of the list. You must Forbid() lock the list to use this
call.

To use an entry you have found, you must: if the seg_UC is 0 or more,
increment it, and decrement it (under Forbid()!) when you’re done

the the seglist.

The other values for seg_UC are:

-1 - system module, such as a filesystem or shell
-2 - resident shell command
-999 - disabled internal command, ignore

Negative values should never be modified. All other negative
values between 0 and -32767 are reserved to AmigaDos and should not
be used.

INPUTS
name - name of segment to find
start - segment to start the search after

system - true for system segment, false for normal segments

RESULT
segment - the segment found or NULL

SEE ALSO
AddSegment (), RemSegment (), Forbid()

1.50 dos.library/FindVar

dos 40/ 109

NAME
FindVar —-- Finds a local variable (V36)
SYNOPSIS
var = FindVar (name, type)
DO D1 D2

struct LocalVar x FindVar (STRPTR, ULONG)

FUNCTION
Finds a local variable structure.

INPUTS
name - pointer to an variable name. Note variable names follow
filesystem syntax and semantics.
type - type of variable to be found (see <dos/var.h>)
RESULT

var - pointer to a LocalVar structure or NULL

SEE ALSO
GetVar (), SetVar (), DeleteVar (), <dos/var.h>

1.51 dos.library/Flush

NAME
Flush —- Flushes buffers for a buffered filehandle (V306)
SYNOPSIS
success = Flush (fh)
DO D1

LONG Flush (BPTR)

FUNCTION

Flushes any pending buffered writes to the filehandle. All buffered
writes will also be flushed on Close(). If the filehandle was being
used for input, it drops the buffer, and tries to Seek () back to the
last read position (so subsequent reads or writes will occur at the
expected position in the file).

INPUTS
fh - Filehandle to flush.

RESULT

success - Success or failure.

BUGS

Before V37 release, Flush() returned a random value. As of V37,

it always returns success (this will be fixed in some future
release).

dos 41/109

The V36 and V37 releases didn’t properly flush filehandles which
have never had a buffered IO done on them. This commonly occurs
on redirection of input of a command, or when opening a file for
input and then calling CreateNewProc () with NP_Arguments, or when
using a new filehandle with SelectInput () and then calling
RunCommand () . This is fixed in V39. A workaround would be to

do FGetC (), then UnGetC(), then Flush().

SEE ALSO

FputC(), FGetC(), UnGetC(), Seek(), Close(), CreateNewProc(),
SelectInput (), RunCommand ()

1.52 dos.library/Format

NAME
Format ——- Causes a filesystem to initialize itself (V36)
SYNOPSIS
success = Format (filesystem, volumename, dostype)
DO D1 D2 D3

BOOL Format (STRPTR, STRPTR, ULONG)

FUNCTION

Interface for initializing new media on a device. This causes the

filesystem to write out an empty disk structure to the media, which
should then be ready for use. This assumes the media has been low-—
level formatted and verified already.

The filesystem should be inhibited before calling Format () to make
sure you don’t get an ERROR_OBJECT_IN_USE.

INPUTS
filesystem - Name of device to be formatted. ' :’ must be supplied.
volumename - Name for volume (if supported). No ’:’.
dostype - Type of format, if filesystem supports multiple types.
RESULT
success - Success/failure indicator.
BUGS
Existed, but was non-functional in V36 dos. (The volumename wasn’t
converted to a BSTR.) Workaround: require V37, or under V36

convert volumename to a BPTR to a BSTR before calling Format ().
Note: a number of printed packet docs for ACTION_FORMAT are wrong
as to the arguments.

SEE ALSO

1.53 dos.library/FPutC

dos

42/109

NAME
FPutC —-- Write a character to the specified output (buffered) (V36)
SYNOPSIS
char = FPutC(fh, char)
DO D1 D2

LONG FPutC (BPTR, LONG)

FUNCTION
Writes a single character to the output stream. This call is
buffered. Use Flush() between buffered and unbuffered I/O on a

filehandle. Interactive filehandles are flushed automatically
on a newline, return, ’"\0’, or line feed.

INPUTS
fh — filehandle to use for buffered I/0
char - character to write

RESULT

char - either the character written, or EOF for an error.
BUGS
Older autodocs indicated that you should pass a UBYTE. The

correct usage is to pass a LONG in the range 0-255.

SEE ALSO
FGetC (), UnGetC (), Flush({()

1.54 dos.library/FPuts

NAME
FPuts —-—- Writes a string the the specified output (buffered) (V36)
SYNOPSIS
error = FPuts(fh, str)
DO D1 D2

LONG FPuts (BPTR, STRPTR)

FUNCTION
This routine writes an unformatted string to the filehandle. No
newline is appended to the string. This routine is buffered.

INPUTS
fh - filehandle to use for buffered I/0
str — Null-terminated string to be written to default output
RESULT
error — 0 normally, otherwise -1. ©Note that this is opposite of

most other Dos functions, which return success.

SEE ALSO
FGets (), FPutC(), FWrite (), PutStr ()

dos 43/109

1.55 dos.library/FRead

NAME
FRead —-- Reads a number of blocks from an input (buffered) (V36)
SYNOPSIS
count = FRead(fh, buf, blocklen, blocks)
DO D1 D2 D3 D4

LONG FRead (BPTR, STRPTR, ULONG, ULONG)

FUNCTION
Attempts to read a number of blocks, each blocklen long, into the
specified buffer from the input stream. May return less than

the number of blocks requested, either due to EOF or read errors.
This call is buffered.

INPUTS
fh - filehandle to use for buffered I/0
buf — Area to read bytes into.
blocklen - number of bytes per block. Must be > 0.
blocks - number of blocks to read. Must be > 0.
RESULT

count - Number of _blocks_ read, or 0 for EOF. On an error, the
number of blocks actually read is returned.

BUGS
Doesn’t clear IoErr () before starting. If you want to find out

about errors, use SetlIoErr (0L) before calling.

SEE ALSO
FGetC (), FWrite (), FGets()

1.56 dos.library/FreeArgs

NAME
FreeArgs — Free allocated memory after ReadArgs () (V36)
SYNOPSIS
FreeArgs (rdargs)

D1
void FreeArgs (struct RDArgs =)

FUNCTION

Frees memory allocated to return arguments in from ReadArgs(). If
ReadArgs allocated the RDArgs structure it will be freed. If NULL
is passed in this function does nothing.

INPUTS
rdargs - structure returned from ReadArgs () or NULL.

SEE ALSO

dos 44 /109

ReadArgs (), ReadItem(), FindArg()

1.57 dos.library/FreeDeviceProc

NAME
FreeDeviceProc —-—- Releases port returned by GetDeviceProc() (V36)
SYNOPSIS
FreeDeviceProc (devproc)
D1

void FreeDeviceProc (struct DevProc =)

FUNCTION
Frees up the structure created by GetDeviceProc (), and any associated
temporary locks.

Decrements the counter incremented by GetDeviceProc(). The counter
is in an extension to the 1.3 process structure. After calling
FreeDeviceProc (), do not use the port or lock again! It is safe to

call FreeDeviceProc (NULL) .

INPUTS
devproc - A value returned by GetDeviceProc()

BUGS
Counter not currently active in 2.0.

SEE ALSO

GetDeviceProc (), DeviceProc (), AssignLock (), AssignLate(),
AssignPath ()

1.58 dos.library/FreeDosEntry

NAME
FreeDosEntry —-- Frees an entry created by MakeDosEntry (V36)
SYNOPSIS
FreeDosEntry (dlist)

D1
void FreeDosEntry (struct DosList x)

FUNCTION
Frees an entry created by MakeDosEntry (). This routine should be
eliminated and replaced by a value passed to FreeDosObject () !

INPUTS
dlist - DosList to free.

SEE ALSO
AddDosEntry (), RemDosEntry (), FindDosEntry (), LockDosList (),

dos 45/109

NextDosEntry (), MakeDosEntry ()

1.59 dos.library/FreeDosObiject

NAME
FreeDosObject —-- Frees an object allocated by AllocDosObject () (V36)
SYNOPSIS
FreeDosObject (type, ptr)

D1 D2
void FreeDosObject (ULONG, void =)
FUNCTION

Frees an object allocated by AllocDosObject (). Do NOT call for
objects allocated in any other way.

INPUTS
type - type passed to AllocDosObject ()
ptr - ptr returned by AllocDosObject ()
BUGS
Before V39, DOS_CLI objects will only have the struct
CommandLineInterface freed, not the strings it points to. This

is fixed in V39 dos. Before V39, you can workaround this bug by
using FreeVec () on cli_SetName, cli_CommandFile, cli_CommandName,
and cli_Prompt, and then setting them all to NULL. In V39 or
above, do NOT use the workaround.

SEE ALSO
AllocDosObject (), FreeVec(), <dos/dos.h>

1.60 dos.library/FWrite

NAME
FWrite —-— Writes a number of blocks to an output (buffered) (V36)
SYNOPSIS
count = FWrite (fh, buf, blocklen, blocks)
DO D1 D2 D3 D4

LONG FWrite (BPTR, STRPTR, ULONG, ULONG)

FUNCTION
Attempts to write a number of blocks, each blocklen long, from the
specified buffer to the output stream. May return less than the
number of blocks requested, if there is some error such as a full

disk or r/w error. This call is buffered.
INPUTS
fh - filehandle to use for buffered I/0

buf — Area to write bytes from.

dos 46/ 109

blocklen - number of bytes per block. Must be > 0.
blocks - number of blocks to write. Must be > 0.

RESULT
count - Number of _blocks_ written. On an error, the number of
blocks actually written is returned.

BUGS
Doesn’t clear IoErr () before starting. If you want to find out
about errors, use SetlIoErr (0L) before calling.

SEE ALSO
FPutC (), FRead(), FPuts()

1.61 dos.library/GetArgStr

NAME
GetArgStr —-—- Returns the arguments for the process (V36)
SYNOPSIS
ptr = GetArgStr ()
DO

STRPTR GetArgStr (void)

FUNCTION

Returns a pointer to the (null-terminated) arguments for the program
(process). This is the same string passed in a0 on startup from CLI.
RESULT

ptr - pointer to arguments

SEE ALSO
SetArgStr (), RunCommand ()

1.62 dos.library/GetConsoleTask

NAME
GetConsoleTask —-- Returns the default console for the process (V36)
SYNOPSIS
port = GetConsoleTask ()
DO

struct MsgPort xGetConsoleTask (void)

FUNCTION
Returns the default console task’s port (pr_ConsoleTask) for the
current process.

RESULT
port - The pr_MsgPort of the console handler, or NULL.

dos 47 /109

SEE ALSO
SetConsoleTask (), Open|()

1.63 dos.library/GetCurrentDirName

NAME
GetCurrentDirName —-- returns the current directory name (V36)
SYNOPSIS
success = GetCurrentDirName (buf, len)
DO D1 D2

BOOL GetCurrentDirName (STRPTR, LONG)

FUNCTION
Extracts the current directory name from the CLI structure and puts it
into the buffer. If the buffer is too small, the name is truncated
appropriately and a failure code returned. If no CLI structure is
present, a null string is returned in the buffer, and failure from
the call (with IoErr () == ERROR_OBJECT_WRONG_TYPE) ;

INPUTS
buf — Buffer to hold extracted name

len — Number of bytes of space in buffer

RESULT

success - Success/failure indicator

BUGS

In V36, this routine didn’t handle 0O-length buffers correctly.

SEE ALSO
SetCurrentDirName ()

1.64 dos.library/GetDeviceProc

NAME

GetDeviceProc -- Finds a handler to send a message to (V36)
SYNOPSIS

devproc = GetDeviceProc (name, devproc)
DO D1 D2

struct DevProc *GetDeviceProc (STRPTR, struct DevProc =)

FUNCTION
Finds the handler/filesystem to send packets regarding ’'name’ to.
This may involve getting temporary locks. It returns a structure

that includes a lock and msgport to send to to attempt your operation.
It also includes information on how to handle multiple-directory
assigns (by passing the DevProc back to GetDeviceProc() until it

dos 48 /109

returns NULL) .

The initial call to GetDeviceProc () should pass NULL for devproc. If
after using the returned DevProc, you get an ERROR_OBJECT_NOT_FOUND,
and (devproc->dvp_Flags & DVPEF_ASSIGN) is true, you should call

GetDeviceProc () again, passing it the devproc structure. It will
either return a modified devproc structure, or NULL (with
ERROR_NO_MORE_ENTRIES in IoErr()). Continue until it returns NULL.

This call also increments the counter that locks a handler/fs into
memory. After calling FreeDeviceProc (), do not use the port or lock
again!

INPUTS
name - name of the object you wish to access. This can be a
relative path ("foo/bar"), relative to the current volume
(":foo/bar"), or relative to a device/volume/assign
("foo:bar").
devproc - A value returned by GetDeviceProc() before, or NULL

RESULT
devproc - a pointer to a DevProc structure or NULL

BUGS

Counter not currently active in 2.0.

In 2.0 and 2.01, you HAD to check DVPF_ASSIGN before calling it again.
This was fixed for the 2.02 release of V36.

SEE ALSO

FreeDeviceProc (), DeviceProc (), AssignLock(), AssignLate(),
AssignPath ()

1.65 dos.library/GetFileSysTask

NAME
GetFileSysTask —- Returns the default filesystem for the process (V36)
SYNOPSIS
port = GetFileSysTask()
DO

struct MsgPort *GetFileSysTask (void)

FUNCTION
Returns the default filesystem task’s port (pr_FileSystemTask) for the
current process.

RESULT
port - The pr_MsgPort of the filesystem, or NULL.

SEE ALSO
SetFileSysTask (), Open|()

dos 49/109

1.66 dos.library/GetProgramDir

NAME
GetProgramDir —-- Returns a lock on the directory the program was loaded
from (V36)
SYNOPSIS
lock = GetProgramDir ()
DO

BPTR GetProgramDir (void)

FUNCTION

Returns a shared lock on the directory the program was loaded from.
This can be used for a program to find data files, etc, that are stored
with the program, or to find the program file itself. NULL returns are
valid, and may occur, for example, when running a program from the
resident list. You should NOT unlock the lock.

RESULT
lock — A lock on the directory the current program was loaded from,
or NULL if loaded from resident list, etc.

BUGS
Should return a lock for things loaded via resident. Perhaps should

return currentdir if NULL.

SEE ALSO
SetProgramDir (), Open/()

1.67 dos.library/GetProgramName

NAME
GetProgramName —-- Returns the current program name (V36)
SYNOPSIS
success = GetProgramName (buf, len)
DO D1 D2

BOOL GetProgramName (STRPTR, LONG)

FUNCTION
Extracts the program name from the CLI structure and puts it
into the buffer. If the buffer is too small, the name is truncated.

If no CLI structure is present, a null string is returned in the
buffer, and failure from the call (with IoErr() ==
ERROR_OBJECT_WRONG_TYPE) ;

INPUTS

buf — Buffer to hold extracted name

len — Number of bytes of space in buffer
RESULT

success — Success/failure indicator

dos 50/109

SEE ALSO
SetProgramName ()

1.68 dos.library/GetPrompt

NAME
GetPrompt —-—- Returns the prompt for the current process (V36)
SYNOPSIS
success = GetPrompt (buf, len)
DO D1 D2

BOOL GetPrompt (STRPTR, LONG)

FUNCTION
Extracts the prompt string from the CLI structure and puts it
into the buffer. If the buffer is too small, the string is truncated

appropriately and a failure code returned. If no CLI structure is
present, a null string is returned in the buffer, and failure from
the call (with IoErr () == ERROR_OBJECT_WRONG_TYPE) ;

INPUTS
buf — Buffer to hold extracted prompt

len — Number of bytes of space in buffer

RESULT
success - Success/failure indicator

SEE ALSO
SetPrompt ()

1.69 dos.library/GetVar

NAME
GetVar —-- Returns the value of a local or global variable (V36)
SYNOPSIS
len = GetVar (name, buffer, size, flags)
DO D1 D2 D3 D4

LONG GetVar (STRPTR, STRPTR, LONG, ULONG)

FUNCTION

Gets the value of a local or environment variable. It is advised to
only use ASCII strings inside variables, but not required. This stops
putting characters into the destination when a \n is hit, unless

GVF_BINARY_VAR is specified. (The \n 1s not stored in the buffer.)
INPUTS
name — pointer to a variable name.

buffer - a user allocated area which will be used to store

dos

51/109

the value associated with the variable.

size — length of the buffer region in bytes.
flags - combination of type of var to get value of (low 8 bits),
flags to control the behavior of this routine. Currently

defined flags include:

GVF_GLOBAL_ONLY - tries to get a global env variable.

GVF_LOCAL_ONLY - tries to get a local variable.

GVF_BINARY_VAR - don’t stop at \n

GVF_DONT_NULL_TERM - no null termination (only wvalid
for binary variables). (V37)

The default is to try to get a local variable first, then
to try to get a global environment variable.

RESULT

len - Size of environment variable. -1 indicates that the
variable was not defined (if IoErr () returns
ERROR_OBJECT_NOT_FOUND - it returns ERROR_BAD_NUMBER 1if
you specify a size of 0). If the value would overflow

the user buffer, the buffer is truncated. The buffer
returned is null-terminated (even if GVF_BINARY_VAR is

used, unless GVF_DONT_NULL_TERM is in effect). If it
succeeds, len is the number of characters put in the buffer
(not including null termination), and IoErr () will return the

the size of the variable (regardless of buffer size).

BUGS
LV_VAR is the only type that can be global.

and

Under V36, we documented (and it returned) the size of the variable,
not the number of characters transferred. For V37 this was changed

to the number of characters put in the buffer, and the total size

of the variable is put in IoErr().

GVF_DONT_NULL_TERM only works for local variables under V37. For

V39, it also works for globals.

SEE ALSO
SetVar (), DeleteVar(), FindVar (), <dos/var.h>

1.70 dos.library/Info

NAME

Info —- Returns information about the disk
SYNOPSIS

success = Info(lock, parameterBlock)

DO D1 D2

BOOL Info (BPTR, struct InfoData x)

FUNCTION
Info() can be used to find information about any disk in use.

"lock’ refers to the disk, or any file on the disk. The parameter

block is returned with information about the size of the disk,
number of free blocks and any soft errors.

dos 52/109

INPUTS
lock - BCPL pointer to a lock
parameterBlock - pointer to an InfoData structure
(longword aligned)

RESULTS
success — boolean

SPECIAL NOTE:
Note that InfoData structure must be longword aligned.

1.71 dos.library/Inhibit

NAME
Inhibit —-- Inhibits access to a filesystem (V36)
SYNOPSIS
success = Inhibit (filesystem, flag)
DO D1 D2

BOOL Inhibit (STRPTR, LONG)

FUNCTION

Sends an ACTION_INHIBIT packet to the indicated handler. This stops
all activity by the handler until uninhibited. When uninhibited,
anything may have happened to the disk in the drive, or there may no
longer be one.

INPUTS
filesystem - Name of device to inhibit (with ’":’)
flag — New status. DOSTRUE = inhibited, FALSE = uninhibited
RESULT
success — Success/failure indicator

SEE ALSO

1.72 dos.library/Input

NAME
Input —-- Identify the program’s initial input file handle

SYNOPSIS
file = Input ()
DO

BPTR Input (void)
FUNCTION

Input () is used to identify the initial input stream allocated when
the program was initiated. Never close the filehandle returned by

dos 53/109

Input!

RESULTS
file - BCPL pointer to a file handle

SEE ALSO
Output (), SelectInput ()

1.73 dos.library/InternalLoadSeg

NAME

InternalloadSeg —- Low-level load routine (V36)
SYNOPSIS

seglist = InternalloadSeg(fh,table, functionarray, stack)
DO DO A0 Al A2

BPTR InternalloadSeg (BPTR,BPTR, LONG %, LONG x)

FUNCTION

Loads from fh. Table is used when loading an overlay, otherwise
should be NULL. Functionarray is a pointer to an array of functions.
Note that the current Seek position after loading may be at any point
after the last hunk loaded. The filehandle will not be closed. If a
stacksize is encoded in the file, the size will be stuffed in the
LONG pointed to by stack. This LONG should be initialized to your
default value: InternalloadSeg() will not change it if no stacksize
is found. Clears unused portions of Code and Data hunks (as well as
BSS hunks) . (This also applies to LoadSeg() and NewLoadSeg()) .

If the file being loaded is an overlaid file, this will return
—(seglist). All other results will be positive.

NOTE to overlay users: InternalloadSeg() does NOT return seglist in

both DO and D1, as LoadSeg does. The current ovs.asm uses LoadSeg(),
and assumes returns are in D1. We will support this for LoadSeg()
ONLY.

INPUTS
fh - Filehandle to load from.
table — When loading an overlay, otherwise ignored.

functionarray - Array of function to be used for read, alloc, and free.
FuncTable[0] -> Actual = ReadFunc(readhandle,buffer, length),DOSBase

DO D1 D2 D3 Ab
FuncTable[1l] -> Memory = AllocFunc(size,flags), Execbase
DO DO D1 a6
FuncTable[2] -> FreeFunc (memory,size), Execbase
Al DO a6
stack - Pointer to storage (ULONG) for stacksize.
RESULT
seglist - Seglist loaded or NULL. NOT returned in D1!
BUGS

Really should use tags.

dos

547109

SEE ALSO
LoadSeg (), UnLoadSeg(), NewLoadSeg(), InternalUnLoadSeg/()

1.74 dos.library/InternalUnLoadSeg

NAME
InternalUnLoadSeg —- Unloads a seglist loaded with InternalloadSeg() (V36)
SYNOPSIS
success = InternalUnLoadSeg(seglist,FreeFunc)
DO D1 Al

BOOL InternalUnLoadSeg (BPTR,void (%) (STRPTR, ULONG))

FUNCTION

Unloads a seglist using freefunc to free segments. Freefunc is called
as for InternalloadSeg. NOTE: will call Close() for overlaid
seglists.

INPUTS
seglist - Seglist to be unloaded
FreeFunc - Function called to free memory

RESULT

success - returns whether everything went OK (since this may close
files). Also returns FALSE if seglist was NULL.

BUGS

Really should use tags

SEE ALSO
LoadSeg (), UnLoadSeg(), InternalloadSeg(), NewUnLoadSeg(), Close()

1.75 dos.library/loErr

NAME

IoErr ——- Return extra information from the system
SYNOPSIS

error = IoErr ()
DO

LONG IoErr (void)

FUNCTION
Most I/O routines return zero to indicate an error. When this
happens (or whatever the defined error return for the routine)
this routine may be called to determine more information. It is
also used in some routines to pass back a secondary result.

Note: there is no guarantee as to the value returned from IoErr()

dos 55/109

after a successful operation, unless to specified by the routine.

RESULTS
error - integer

SEE ALSO
Fault (), PrintFault (), SetIoErr()

1.76 dos.library/IsFileSystem

NAME
IsFileSystem —-- returns whether a Dos handler is a filesystem (V36)
SYNOPSIS
result = IsFileSystem(name)
DO D1

BOOL IsFileSystem (STRPTR)

FUNCTION

Returns whether the device is a filesystem or not. A filesystem
supports seperate files storing information. It may also support
sub-directories, but is not required to. If the filesystem doesn’t
support this new packet, IsFileSystem() will use Lock(":",...) as
an indicator.

INPUTS
name — Name of device in question, with trailing " :’.

RESULT
result - Flag to indicate if device is a file system

SEE ALSO
Lock ()

1.77 dos.library/lsinteractive

NAME

IsInteractive —- Discover whether a file is "interactive"
SYNOPSIS

status = IsInteractive(file)

DO D1

BOOL IsInteractive (BPTR)

FUNCTION
The return value ’'status’ indicates whether the file associated
with the file handle ’'file’ is connected to a virtual terminal.

INPUTS
file - BCPL pointer to a file handle

dos 56 /109

RESULTS
status - boolean

SEE ALSO

1.78 dos.library/LoadSeg

NAME

LoadSeg —-- Scatterload a loadable file into memory
SYNOPSIS

seglist = LoadSeg(name)

DO D1

BPTR LoadSeg (STRPTR)

FUNCTION
The file ’'name’ should be a load module produced by the linker.
LoadSeg () scatterloads the CODE, DATA and BSS segments into memory,
chaining together the segments with BPTR’s on their first words.

The end of the chain is indicated by a zero. There can be any number
of segments in a file. All necessary relocation is handled by
LoadSeg() .

In the event of an error any blocks loaded will be unloaded and a
NULL result returned.

If the module is correctly loaded then the output will be a pointer
at the beginning of the list of blocks. Loaded code is unloaded via
a call to UnLoadSeg() .

INPUTS
name - pointer to a null-terminated string

RESULTS
seglist - BCPL pointer to a seglist

SEE ALSO
UnLoadSeg (), InternalloadSeg(), InternalUnlLoadSeg(), CreateProc(),
CreateNewProc (), NewLoadSeg() .

1.79 dos.library/Lock

NAME
Lock —- Lock a directory or file
SYNOPSIS
lock = Lock(name, accessMode)
DO D1 D2

BPTR Lock (STRPTR, LONG)

dos 57 /109

FUNCTION
A filing system lock on the file or directory ’'name’ is returned if
possible.

If the accessMode is ACCESS_READ, the lock is a shared read lock;
if the accessMode is ACCESS_WRITE then it is an exclusive write
lock. Do not use random values for mode.

If Lock() fails (that is, if it cannot obtain a filing system lock
on the file or directory) it returns a zero.

Tricky assumptions about the internal format of a lock are unwise,
as are any attempts to use the fl_Link or fl_Access fields.

INPUTS
name — pointer to a null-terminated string
accessMode - integer

RESULTS

lock - BCPL pointer to a lock

SEE ALSO
UnLock (), DupLock (), ChangeMode (), NameFromLock (), DupLockFromFH ()

1.80 dos.library/LockDosList

NAME
LockDosList —-- Locks the specified Dos Lists for use (V36)
SYNOPSIS
dlist = LockDosList (flags)
DO D1

struct DosList *LockDosList (ULONG)

FUNCTION

Locks the dos device list in preparation to walk the list.

If the list is ’'busy’ then this routine will not return until it is
available. This routine "nests": you can call it multiple times, and
then must unlock it the same number of times. The dlist

returned is NOT a valid entry: it is a special value. Note that
for 1.3 compatibility, it also does a Forbid() - this will probably
be removed at some future time. The 1.3 Forbid() locking of this
list had some race conditions. The pointer returned by this is NOT
an actual DosList pointer - you should use on of the other DosEntry
calls to get actual pointers to DosList structures (such as
NextDosEntry()), passing the value returned by LockDosList ()

as the dlist wvalue.

Note for handler writers: you should never call this function with
LDF_WRITE, since it can deadlock you (if someone has it read-locked
and they’re trying to send you a packet). Use AttemptLockDosList ()
instead, and effectively busy-wait with delays for the list to be
available. The other option is that you can spawn a process to

dos

58/109

add the entry safely.

As an example, here’s how you can search for all volumes of a specific
name and do something with them:

2.0 way:

dl = LockDosList (LDF_VOLUMES | LDF_READ) ;

while (dl = FindDosEntry (dl, name, LDF_VOLUMES))

{
Add to list of volumes to process or break out of
the while loop.
(You could try using it here, but I advise
against it for compatability reasons if you
are planning on continuing to examine the list.)

process list of volumes saved above, or current entry if
you’ re only interested in the first one of that name.

UnLockDosList (LDF_VOLUMES | LDF_READ) ;
* must not use dl after this! x\

1.3/2.0 way:

if (version >= 36)
dl = LockDosList (LDF_VOLUMES |LDF_READ) ;

else {
Forbid();
/+ tricky! note dol_Next is at offset 0! «/
dl = &(...->di_DevicelList);

while (version >= 36 ?
dl = FindDosEntry (dl, name, LDF_VOLUMES)
dl = yourfindentry(dl, name,DLT_VOLUME))

Add to list of volumes to process, or break out of
the while loop.

Do NOT lock fool/foo2 here if you will continue

to examine the list - it breaks the forbid

and the list may change on you.

process list of volumes saved above, or current entry if
you’ re only interested in the first one of that name.

if (version >= 306)

UnLockDosList (LDF_VOLUMES | LDF_READ) ;
else

Permit () ;
* must not use dl after this! =*\

struct DosList =
yourfindentry (struct DosList xdl, STRPTRname, type)
{

dos

59/109

\x tricky - depends on dol_Next being at offset 0,
and the initial ptr being a ptr to di_DeviceList! x\
while (dl = dl->dol_Next)

{

if (dl->dol_Type == type &&

stricmp (name, BADDR (d1->dol_Name)+1) == 0)

{

break;

}

}

return dl;

INPUTS

flags - Flags stating which types of nodes you want to lock.

RESULT
dlist - Pointer to the head of the list. ©NOT a valid node!
SEE ALSO
AttemptLockDosList (), UnLockDosList (), Forbid(), NextDosEntry ()

1.81 dos.library/LockRecord

NAME
LockRecord —- Locks a portion of a file (V36)
SYNOPSIS

success = LockRecord(fh,offset,length,mode, timeout)
DO D1 D2 D3 D4 D5

BOOL LockRecord (BPTR, ULONG, ULONG, ULONG, ULONG)

FUNCTION

This locks a portion of a file for exclusive access.

long to

Timeout is how

wait in ticks (1/50 sec) for the record to be available.

Valid modes are:
REC_EXCLUSIVE
REC_EXCLUSIVE_IMMED
REC_SHARED
REC_SHARED_IMMED

For the

IMMED modes, the timeout is ignored.

Record locks are tied to the filehandle used to create them.
same filehandle can get any number of exclusive locks on the same

record,

for example. These are cooperative locks,

affect other people calling LockRecord() .

INPUTS
fh
offset
length
mode
timeout

— File handle for which to lock the record
- Record start position

— Length of record in bytes

- Type of lock requester

- Timeout interval in ticks. 0 1is legal.

they only

The

dos 60/109

RESULT
success — Success or failure

BUGS

In 2.0 through 2.02 (V36), LockRecord() only worked in the ramdisk.
Attempting to lock records on the disk filesystem causes a crash.
This was fixed for V37.

SEE ALSO
LockRecords (), UnLockRecord(), UnLockRecords ()

1.82 dos.library/LockRecords

NAME

LockRecords —- Lock a series of records (V36)
SYNOPSIS

success = LockRecords (record_array, timeout)
DO D1 D2

BOOL LockRecords (struct RecordLock =*,ULONG)

FUNCTION

This locks several records within a file for exclusive access.
Timeout is how long to wait in ticks for the records to be available.
The wait is applied to each attempt to lock each record in the list.
It is recommended that you always lock a set of records in the same
order to reduce possibilities of deadlock.

The array of RecordLock structures is terminated by an entry with
rec_FH of NULL.

INPUTS
record_array - List of records to be locked
timeout — Timeout interval. 0 is legal
RESULT
success - Success or failure

BUGS

See LockRecord()

SEE ALSO
LockRecord (), UnLockRecord(), UnLockRecords()

1.83 dos.library/MakeDosEntry

NAME
MakeDosEntry —-- Creates a DosList structure (V36)

SYNOPSIS

dos

61/109

newdlist = MakeDosEntry (name, type)
DO D1 D2

struct DosList *MakeDosEntry (STRPTR, LONG)

FUNCTION

Create a DosList structure, including allocating a name and correctly
null-terminating the BSTR. It also sets the dol_Type field, and sets
all other fields to 0. This routine should be eliminated and replaced
by a value passed to AllocDosObject ()!

INPUTS
name - name for the device/volume/assign node.
type - type of node.

RESULT
newdlist - The new device entry or NULL.

SEE ALSO

AddDosEntry (), RemDosEntry (), FindDosEntry (), LockDosList (),
NextDosEntry (), FreeDosEntry ()

1.84 dos.library/MakeLink

NAME

MakeLink —-- Creates a filesystem link (V36)
SYNOPSIS

success = MakelLink (name, dest, soft)

DO D1 D2 D3

BOOL MakeLink (STRPTR, LONG, LONG)

FUNCTION

Create a filesystem link from ’'name’ to dest. For "soft-links",
dest is a pointer to a null-terminated path string. For "hard-
links", dest is a lock (BPTR). "soft’ is FALSE for hard-links,

non-zero otherwise.

Soft-1links are resolved at access time by a combination of the
filesystem (by returning ERROR_IS_SOFT_LINK to dos), and by
Dos (using ReadLink () to resolve any links that are hit).

Hard-links are resolved by the filesystem in question. A series
of hard-links to a file are all equivalent to the file itself.
If one of the links (or the original entry for the file) is
deleted, the data remains until there are no links left.

INPUTS
name - Name of the link to create
dest - CPTR to path string, or BPTR lock
soft - FALSE for hard-links, non-zero for soft-links

RESULT
Success — boolean

dos 62/109

BUGS
In V36, soft-links didn’t work in the ROM filesystem. This was
fixed for V37.

SEE ALSO
ReadLink (), Open(), Lock()

1.85 dos.library/MatchEnd

NAME

MatchEnd -- Free storage allocated for MatchFirst () /MatchNext () (V36)
SYNOPSIS

MatchEnd (AnchorPath)

D1
VOID MatchEnd (struct AnchorPath)

FUNCTION
Return all storage associated with a given search.

INPUTS
AnchorPath - Anchor used for MatchFirst () /MatchNext ()
MUST be longword aligned!

SEE ALSO
MatchFirst (), ParsePattern(), Examine (), CurrentDir (), Examine(),
MatchNext (), ExNext (), <dos/dosasl.h>

1.86 dos.library/MatchFirst

NAME
MatchFirst —-—- Finds file that matches pattern (V36)
SYNOPSIS
error = MatchFirst (pat, AnchorPath)
DO D1 D2

LONG MatchFirst (STRPTR, struct AnchorPath =)

FUNCTION

Locates the first file or directory that matches a given pattern.
MatchFirst () is passed your pattern (you do not pass it through
ParsePattern() - MatchFirst () does that for you), and the control
structure. MatchFirst () normally initializes your AnchorPath
structure for you, and returns the first file that matched your
pattern, or an error. Note that MatchFirst () /MatchNext () are unusual
for Dos in that they return 0 for success, or the error code (see
<dos/dos.h>), instead of the application getting the error code

from IoErr().

dos 63/109

When looking at the result of MatchFirst () /MatchNext (), the ap_Info
field of your AnchorPath has the results of an Examine () of the object.
You normally get the name of the object from fib_FileName, and the
directory it’s in from ap_Current->an_Lock. To access this object,
normally you would temporarily CurrentDir () to the lock, do an action
to the file/dir, and then CurrentDir () back to your original directory.
This makes certain you affect the right object even when two volumes
of the same name are in the system. You can use ap_Buf (with
ap_Strlen) to get a name to report to the user.

To initialize the AnchorPath structure (particularily when reusing
it), set ap_BreakBits to the signal bits (CDEF) that you want to take
a break on, or NULL, if you don’t want to convenience the user.
ap_Flags should be set to any flags you need or all 0’s otherwise.
ap_FoundBreak should be cleared if you’ll be using breaks.

If you want to have the FULL PATH NAME of the files you found,
allocate a buffer at the END of this structure, and put the size of
it into ap_Strlen. If you don’t want the full path name, make sure
you set ap_Strlen to zero. In this case, the name of the file, and
stats are available in the ap_Info, as per usual.

Then call MatchFirst () and then afterwards, MatchNext () with this
structure. You should check the return value each time (see below)
and take the appropriate action, ultimately calling MatchEnd() when
there are no more files or you are done. You can tell when you are
done by checking for the normal AmigaDOS return code
ERROR_NO_MORE_ENTRIES.

Note: patterns with trailing slashes may cause MatchFirst () /MatchNext ()
to return with an ap_Current->an_Lock on the object, and a filename
of the empty string ("").

See ParsePattern() for more information on the patterns.
INPUTS
pat - Pattern to search for

AnchorPath - Place holder for search. MUST be longword aligned!

RESULT
error — 0 for success or error code. (Opposite of most Dos calls!)

BUGS

In V36, there were a number of bugs with MatchFirst () /MatchNext () .
One was that if you entered a directory with a name like "dfO0:1"
using DODIR, it would re-lock the full string "df0:1", which can
cause problems if the disk has changed. It also had problems
with patterns such as #?/abc/def - the ap_Current->an_Lock would
not be on the directory def is found in. ap_Buf would be correct,
however. It had similar problems with patterns with trailing
slashes. These have been fixed for V37 and later.

A bug that has not been fixed for V37 concerns a pattern of a
single directory name (such as "1"). If you enter such a directory
via DODIR, it re-locks 1 relative to the current directory. Thus
you must not change the current directory before calling MatchNext ()
with DODIR in that situation. If you aren’t using DODIR to enter

dos 64 /109

directories you can ignore this. This may be fixed in some upcoming
release.

SEE ALSO
MatchNext (), ParsePattern(), Examine (), CurrentDir (), Examine(),
MatchEnd (), ExNext (), <dos/dosasl.h>

1.87 dos.library/MatchNext

NAME
MatchNext - Finds the next file or directory that matches pattern (V36)

SYNOPSIS
error = MatchNext (AnchorPath)
DO D1

LONG MatchNext (struct AnchorPath «)

FUNCTION

Locates the next file or directory that matches a given pattern.
See <dos/dosasl.h> for more information. Various bits in the flags
allow the application to control the operation of MatchNext ().

See MatchFirst () for other notes.

INPUTS
AnchorPath - Place holder for search. MUST be longword aligned!

RESULT
error — 0 for success or error code. (Opposite of most Dos calls)

BUGS
See MatchFirst ().

SEE ALSO
MatchFirst (), ParsePattern (), Examine (), CurrentDir(), Examine(),
MatchEnd (), ExNext (), <dos/dosasl.h>

1.88 dos.library/MatchPattern

NAME

MatchPattern —-- Checks for a pattern match with a string (V36)
SYNOPSIS

match = MatchPattern (pat, str)

DO D1 D2

BOOL MatchPattern (STRPTR, STRPTR)

FUNCTION
Checks for a pattern match with a string. The pattern must be a
tokenized string output by ParsePattern(). This routine is

dos 65/109

case—-sensitive.

NOTE: this routine is highly recursive. You must have at least
1500 free bytes of stack to call this (it will cut off it’s
recursion before going any deeper than that and return failure).

That’s _currently_ enough for about 100 levels deep of #, (, ~, etc.
INPUTS
pat - Special pattern string to match as returned by ParsePattern()
str - String to match against given pattern
RESULT
match - success or failure of pattern match. On failure,

IoErr() will return 0 or ERROR_TOO_MANY_LEVELS (starting
with V37 - before that there was no stack checking).

SEE ALSO
ParsePattern (), MatchPatternNoCase (), MatchFirst (), MatchNext ()

1.89 dos.library/MatchPatternNoCase

NAME

MatchPatternNoCase —-- Checks for a pattern match with a string (V37)
SYNOPSIS

match = MatchPatternNoCase (pat, str)

DO D1 D2

BOOL MatchPatternNoCase (STRPTR, STRPTR)

FUNCTION
Checks for a pattern match with a string. The pattern must be a
tokenized string output by ParsePatternNoCase (). This routine is

case—-insensitive.

NOTE: this routine is highly recursive. You must have at least
1500 free bytes of stack to call this (it will cut off it’s
recursion before going any deeper than that and return failure).

That’s _currently_ enough for about 100 levels deep of #, (, ~, etc.
INPUTS
pat - Special pattern string to match as returned by ParsePatternNoCase ()
str — String to match against given pattern
RESULT
match - success or failure of pattern match. On failure,

IoErr() will return 0 or ERROR_TOO_MANY_LEVELS (starting
with V37 - before that there was no stack checking).

BUGS
See ParsePatternNoCase () .

SEE ALSO
ParsePatternNoCase (), MatchPattern (), MatchFirst (), MatchNext ()

dos 66 /109

1.90 dos.library/MaxCli

NAME
MaxCli —-- returns the highest CLI process number possibly in use (V36)
SYNOPSIS
number = MaxCli ()
DO

LONG MaxCli (void)

FUNCTION

Returns the highest CLI number that may be in use. CLI numbers are
reused, and are usually as small as possible. To find all CLIs, scan
using FindCliProc () from 1 to MaxCLI (). The number returned by
MaxCli () may change as processes are created and destroyed.

RESULT

number - The highest CLI number that _may_ be in use.

SEE ALSO
FindCliProc (), Cli{()

1.91 dos.library/NameFromFH

NAME
NameFromFH —-- Get the name of an open filehandle (V36)
SYNOPSIS
success = NameFromFH (fh, buffer, len)
DO D1 D2 D3

BOOL NameFromFH (BPTR, STRPTR, LONG)

FUNCTION

Returns a fully qualified path for the filehandle. This routine 1is
guaranteed not to write more than len characters into the buffer. The
name will be null-terminated. See NameFromLock () for more information.

Note: Older filesystems that don’t support ExamineFH() will cause
NameFromFH () to fail with ERROR_ACTION_NOT_SUPPORTED.

INPUTS
fh - Lock of object to be examined.
buffer - Buffer to store name.
len — Length of buffer.
RESULT
success — Success/failure indicator.
SEE ALSO

NameFromLock (), ExamineFH ()

dos 67 /109

1.92 dos.library/NameFromLock

NAME
NameFromLock —-- Returns the name of a locked object (V36)
SYNOPSIS
success = NameFromLock (lock, buffer, len)
DO D1 D2 D3

BOOL NameFromLock (BPTR, STRPTR, LONG)

FUNCTION

Returns a fully qualified path for the lock. This routine is
guaranteed not to write more than len characters into the buffer. The
name will be null-terminated. NOTE: if the volume is not mounted,

the system will request it (unless of course you set pr_WindowPtr to
-1). If the volume is not mounted or inserted, it will return an
error. If the lock passed in is NULL, "SYS:" will be returned. If

the buffer is too short, an error will be returned, and IoErr() will
return ERROR_LINE_TOO_LONG.

INPUTS
lock - Lock of object to be examined.
buffer - Buffer to store name.
len — Length of buffer.

RESULT
success — Success/failure indicator.
BUGS

Should return the name of the boot volume instead of SYS: for a NULL
lock.

SEE ALSO
NameFromFH (), Lock()

1.93 dos.library/NewLoadSeg

NAME
NewLoadSeg —-- Improved version of LoadSeg for stacksizes (V36)
SYNOPSIS
seglist = NewLoadSeg(file, tags)
DO D1 D2

BPTR NewLoadSeg (STRPTR, struct TagItem =)

seglist = NewLoadSegTagList (file, tags)
DO D1 D2

BPTR NewLoadSegTagList (STRPTR, struct Tagltem =)

seglist = NewLoadSegTags (file, ...)

dos

68 /109

BPTR NewlLoadSegTags (STRPTR, ...)
FUNCTION
Does a LoadSeg on a file, and takes additional actions based on the

tags supplied.

Clears unused portions of Code and Data hunks (as well as BSS hunks).
(This also applies to InternalloadSeg() and LoadSeg()) .

NOTE to overlay users: NewLoadSeg () does NOT return seglist in

both DO and D1, as LoadSeg does. The current ovs.asm uses LoadSeg(),
and assumes returns are in D1. We will support this for LoadSeg()
ONLY.

INPUTS

file - Filename of file to load
tags - pointer to tagitem array

RESULT
seglist - Seglist loaded, or NULL

BUGS
No tags are currently defined.

SEE ALSO
LoadSeg (), UnLoadSeg(), InternalloadSeg(), InternalUnLoadSeg/()

1.94 dos.library/NextDosEntry

NAME
NextDosEntry —-- Get the next Dos List entry (V36)
SYNOPSIS
newdlist = NextDosEntry(dlist, flags)
DO D1 D2

struct DosList #*NextDosEntry (struct DosList =*,ULONG)

FUNCTION
Find the next Dos List entry of the right type. You MUST have locked
the types you’re looking for. Returns NULL if there are no more of

that type in the list.

INPUTS
dlist — The current device entry.
flags - What type of entries to look for.
RESULT

newdlist - The next device entry of the right type or NULL.

SEE ALSO
AddDosEntry (), RemDosEntry (), FindDosEntry (), LockDosList (),
MakeDosEntry (), FreeDosEntry ()

dos

69/109

1.95 dos.library/Open

NAME

Open —- Open a file for input or output
SYNOPSIS

file = Open(name, accessMode)

DO D1 D2

BPTR Open (STRPTR, LONG)

FUNCTION
The named file is opened and a file handle returned. TIf the
accessMode is MODE_OLDFILE, an existing file is opened for reading
or writing. If the value is MODE_NEWFILE, a new file is created for
writing. MODE_READWRITE opens a file with an shared lock, but
creates it if it didn’t exist. Open types are documented in the
<dos/dos.h> or <libraries/dos.h> include file.

The ’"name’ can be a filename (optionally prefaced by a device

name), a simple device such as NIL:, a window specification such as

CON: or RAW: followed by window parameters, or "x", representing the
current window. Note that as of V36, "*" is obsolete, and CONSOLE:

should be used instead.

If the file cannot be opened for any reason, the value returned
will be zero, and a secondary error code will be available by
calling the routine IoErr ().

INPUTS
name — pointer to a null-terminated string
accessMode - integer

RESULTS

file - BCPL pointer to a file handle

SEE ALSO
Close (), ChangeMode (), NameFromFH(), ParentOfFH(), ExamineFH ()

1.96 dos.library/OpenFromLock

NAME
OpenFromLock —-- Opens a file you have a lock on (V36)
SYNOPSIS
fh = OpenFromLock (lock)
DO D1

BPTR OpenFromLock (BPTR)

FUNCTION

Given a lock, this routine performs an open on that lock. If the open

succeeds, the lock is (effectively) relinquished, and should not be
UnLock ()ed or used. If the open fails, the lock is still usable.

dos 70/109

The lock associated with the file internally is of the same access
mode as the lock you gave up - shared is similar to MODE_OLDFILE,
exclusive is similar to MODE_NEWFILE.

INPUTS
lock - Lock on object to be opened.

RESULT

fh — Newly opened file handle or NULL for failure

BUGS

In the original V36 autodocs, this was shown (incorrectly) as
taking a Mode parameter as well. The prototypes and pragmas were

also wrong.

SEE ALSO
Open (), Close(), Lock(), UnLock/()

1.97 dos.library/Output

NAME
Output —-- Identify the programs’ initial output file handle

SYNOPSIS
file = Output ()
DO

BPTR Output (void)

FUNCTION
Output () is used to identify the initial output stream allocated
when the program was initiated. Never close the filehandle returned

by Output () .

RESULTS
file - BCPL pointer to a file handle

SEE ALSO
Input ()

1.98 dos.library/ParentDir

NAME

ParentDir -- Obtain the parent of a directory or file
SYNOPSIS

newlock = ParentDir(lock)

DO D1

BPTR ParentDir (BPTR)

FUNCTION

dos 71/109

The argument ’lock’ 1is associated with a given file or directory.
ParentDir () returns 'newlock’ which is associated the parent
directory of ’lock’.

Taking the ParentDir () of the root of the current filing system
returns a NULL (0) lock. Note this 0 lock represents the root of
file system that you booted from (which is, in effect, the parent
of all other file system roots.)

INPUTS
lock — BCPL pointer to a lock

RESULTS
newlock - BCPL pointer to a lock

SEE ALSO
Lock (), DupLock (), UnLock (), ParentOfFH(), DupLockFromFH ()

1.99 dos.library/ParentOfFH

NAME
ParentOfFH —-- returns a lock on the parent directory of a file (V36)
SYNOPSIS
lock = ParentOfFH (fh)
DO D1

BPTR ParentOfFH (BPTR)

FUNCTION
Returns a shared lock on the parent directory of the filehandle.

INPUTS
th — Filehandle you want the parent of.

RESULT
lock - Lock on parent directory of the filehandle or NULL for failure.

SEE ALSO
Parent (), Lock (), UnLock () DupLockFromFH ()

1.100 dos.library/ParsePattern

NAME
ParsePattern —-- Create a tokenized string for MatchPattern() (V36)
SYNOPSIS
IswWild = ParsePattern (Source, Dest, DestLength)
do D1 D2 D3

LONG ParsePattern (STRPTR, STRPTR, LONG)

dos 72/109

FUNCTION

Tokenizes a pattern, for use by MatchPattern(). Also indicates if
there are any wildcards in the pattern (i.e. whether it might match
more than one item). Note that Dest must be at least 2 times as

large as Source plus bytes to be (almost) 100% certain of no

buffer overflow. This is because each input character can currently
expand to 2 tokens (with one exception that can expand to 3, but
only once per string). Note: this implementation may change in

the future, so you should handle error returns in all cases, but

the size above should still be a reasonable upper bound for a buffer
allocation.

The patterns are fairly extensive, and approximate some of the ability
of Unix/grep "regular expression" patterns. Here are the available
tokens:

? Matches a single character.
Matches the following expression 0 or more times.
(ablcd) Matches any one of the items seperated by " |’.
~ Negates the following expression. It matches all strings
that do not match the expression (aka ~(foo) matches all
strings that are not exactly "foo").
[abc] Character class: matches any of the characters in the class.
[~bc] Character class: matches any of the characters not in the

class.
a-z Character range (only within character classes).
% Matches 0 characters always (useful in " (foolbar|%)").

* Synonym for "#7?", not available by default in 2.0. Available
as an option that can be turned on.

"Expression" in the above table means either a single character

(ex: "#?"), or an alternation (ex: "#(ablcd|ef)"), or a character
class (ex: "#[a-zA-Z]1").
INPUTS
source — unparsed wildcard string to search for.
dest - output string, gets tokenized version of input.

DestLength - length available in destination (should be at least as
twice as large as source + 2 bytes).

RESULT
IsWwild - 1 means there were wildcards in the pattern,
0 means there were no wildcards in the pattern,
-1 means there was a buffer overflow or other error

BUGS
In V37 this call didn’t always set IoErr() to something useful on an
error. Fixed in V39.

SEE ALSO
ParsePatternNoCase (), MatchPattern(), MatchFirst (), MatchNext ()

1.101 dos.library/ParsePatternNoCase

dos 73/109

NAME
ParsePatternNoCase —-- Create a tokenized string for
MatchPatternNoCase () (V37)
SYNOPSIS
IsWild = ParsePatternNoCase (Source, Dest, DestLength)
do D1 D2 D3

LONG ParsePatternNoCase (STRPTR, STRPTR, LONG)

FUNCTION

Tokenizes a pattern, for use by MatchPatternNoCase (). Also indicates
if there are any wildcards in the pattern (i.e. whether it might match
more than one item). Note that Dest must be at least 2 times as

large as Source plus 2 bytes.

For a description of the wildcards, see ParsePattern().

INPUTS
source — unparsed wildcard string to search for.
dest - output string, gets tokenized version of input.

DestLength - length available in destination (should be at least as
twice as large as source + 2 bytes).

RESULT
IsWild - 1 means there were wildcards in the pattern,
0 means there were no wildcards in the pattern,
-1 means there was a buffer overflow or other error

BUGS
In V37 this call didn’t always set IoErr() to something useful on an
error. Fixed in V39.

In V37, it didn’t properly convert character-classes ([x-y]) to
upper case. Workaround: convert the input pattern to upper case
using ToUpper () from utility.library before calling
ParsePatternNoCase (). Fixed in V39 dos.

SEE ALSO
ParsePattern (), MatchPatternNoCase (), MatchFirst (), MatchNext (),

utility.library/ToUpper ()

1.102 dos.library/PathPart

NAME
PathPart —-—- Returns a pointer to the end of the next-to-last (V36)
component of a path.

SYNOPSIS
fileptr = PathPart (path)
DO D1

STRPTR PathPart (STRPTR)

FUNCTION

dos 74 /109

This function returns a pointer to the character after the next-to-last
component of a path specification, which will normally be the directory
name. If there is only one component, it returns a pointer to the
beginning of the string. The only real difference between this and
FilePart () is the handling of " /’.

INPUTS
path - pointer to an path string. May be relative to the current
directory or the current disk.

RESULT
fileptr - pointer to the end of the next-to-last component of the path.

EXAMPLE
PathPart ("xxx:yyy/zzz/qqq") would return a pointer to the last '/’.
PathPart ("xxx:yyy") would return a pointer to the first "y’).

SEE ALSO
FilePart (), AddPart ()

1.103 dos.library/PrintFault

NAME
PrintFault —-- Returns the text associated with a DOS error code (V36)
SYNOPSIS
success = PrintFault (code, header)
DO D1 D2

BOOL PrintFault (LONG, STRPTR)

FUNCTION
This routine obtains the error message text for the given error code.
This is similar to the Fault () function, except that the output is
written to the default output channel with buffered output.
The value returned by IoErr() is set to the code passed in.
INPUTS
code - Error code
header - header to output before error text
RESULT
success - Success/failure code.
SEE ALSO
IoErr (), Fault (), SetlIoErr(), Output(), FPuts/()

1.104 dos.library/PutStr

NAME
PutStr —-- Writes a string the the default output (buffered) (V36)

dos 75/109

SYNOPSIS
error = PutStr(str)
DO D1

LONG PutStr (STRPTR)

FUNCTION

This routine writes an unformatted string to the default output. No
newline is appended to the string and any error is returned. This
routine is buffered.

INPUTS
str — Null-terminated string to be written to default output
RESULT
error — 0 for success, -1 for any error. NOTE: this is opposite

most Dos function returns!

SEE ALSO
FPuts (), FPutC(), FWrite (), WriteChars/()

1.105 dos.library/Read

NAME
Read —-- Read bytes of data from a file
SYNOPSIS
actuallength = Read(file, buffer, length)
DO D1 D2 D3

LONG Read (BPTR, void =*, LONG)

FUNCTION
Data can be copied using a combination of Read() and Write().
Read () reads bytes of information from an opened file (represented
here by the argument ’"file’) into the buffer given. The argument
"length’ is the length of the buffer given.

The value returned is the length of the information actually read.
So, when ’"actuallength’ is greater than zero, the value of
"actualLength’ is the the number of characters read. Usually Read
will try to fill up your buffer before returning. A value of zero
means that end-of-file has been reached. Errors are indicated by a
value of -1.

Note: this is an unbuffered routine (the request is passed directly
to the filesystem.) Buffered I/0 is more efficient for small
reads and writes; see FGetC().

INPUTS
file - BCPL pointer to a file handle
buffer - pointer to buffer
length - integer

RESULTS

dos 76 /109

actuallength - integer

SEE ALSO
Open (), Close(), Write(), Seek (), FGetC()

1.106 dos.library/ReadArgs

NAME
ReadArgs - Parse the command line input (V36)
SYNOPSIS
result = ReadArgs (template, array, rdargs)
DO D1 D2 D3

struct RDArgs * ReadArgs (STRPTR, LONG *, struct RDArgs x)

FUNCTION

Parses and argument string according to a template. Normally gets
the arguments by reading buffered IO from Input (), but also can be
made to parse a string. MUST be matched by a call to FreeArgs().

ReadArgs () parses the commandline according to a template that is
passed to it. This specifies the different command-line options and
their types. A template consists of a list of options. Options are
named in "full" names where possible (for example, "Quick" instead of
"Q"). Abbreviations can also be specified by using "abbrev=option"
(for example, "Q=Quick").

Options in the template are separated by commas. To get the results
of ReadArgs (), you examine the array of longwords you passed to it
(one entry per option in the template). This array should be cleared
(or initialized to your default values) before passing to ReadArgs().
Exactly what is put in a given entry by ReadArgs () depends on the type
of option. The default is a string (a sequence of non-whitespace
characters, or delimited by quotes, which will be stripped by
ReadArgs()), in which case the entry will be a pointer.

Options can be followed by modifiers, which specify things such as

the type of the option. Modifiers are specified by following the
option with a '/’ and a single character modifier. Multiple modifiers
can be specified by using multiple ’/’s. Valid modifiers are:

/S — Switch. This is considered a boolean variable, and will be
set 1f the option name appears in the command-line. The entry
is the boolean (0 for not set, non-zero for set).

/K - Keyword. This means that the option will not be filled unless
the keyword appears. For example if the template is "Name/K",
then unless "Name=<string>" or "Name <string>" appears in the
command line, Name will not be filled.

/N — Number. This parameter is considered a decimal number, and will
be converted by ReadArgs. If an invalid number is specified,
an error will be returned. The entry will be a pointer to the
longword number (this is how you know if a number was specified).

dos 77 /109

/T — Toggle. This is similar to a switch, but when specified causes
the boolean value to "toggle". Similar to /S.

/A — Required. This keyword must be given a value during command-line
processing, or an error is returned.

/F — Rest of line. If this is specified, the entire rest of the line
is taken as the parameter for the option, even if other option
keywords appear in it.

/M - Multiple strings. This means the argument will take any number
of strings, returning them as an array of strings. Any arguments
not considered to be part of another option will be added to this
option. Only one /M should be specified in a template. Example:
for a template "Dir/M,All/S" the command-line "foo bar all gwe"
will set the boolean "all", and return an array consisting of
"foo", "bar", and "gwe". The entry in the array will be a pointer
to an array of string pointers, the last of which will be NULL.

There is an interaction between /M parameters and /A parameters.
If there are unfilled /A parameters after parsing, it will grab
strings from the end of a previous /M parameter list to fill the
/A"s. This is used for things like Copy ("From/A/M,To/A").

ReadArgs () returns a struct RDArgs if it succeeds. This serves as an
"anchor" to allow FreeArgs() to free the associated memory. You can
also pass in a struct RDArgs to control the operation of ReadArgs()
(normally you pass NULL for the parameter, and ReadArgs () allocates
one for you). This allows providing different sources for the
arguments, providing your own string buffer space for temporary
storage, and extended help text. See <dos/rdargs.h> for more
information on this. Note: if you pass in a struct RDArgs, you must
still call FreeArgs () to release storage that gets attached to it,
but you are responsible for freeing the RDArgs yourself.

If you pass in a RDArgs structure, you MUST reset (clear or set)
RDA_Buffer for each new call to RDArgs. The exact behavior if you
don’t do this varies from release to release and case to case; don’t
count on the behavior!

See BUGS regarding passing in strings.

INPUTS
template - formatting string
array - array of longwords for results, 1 per template entry
rdargs - optional rdargs structure for options. AllocDosObject

should be used for allocating them if you pass one in.

RESULT
result - a struct RDArgs or NULL for failure.

BUGS

In V36, there were a couple of minor bugs with certain argument
combinations (/M/N returned strings, /T didn’t work, and /K and
/F interacted). Also, a template with a /K before any non-switch
parameter will require the argument name to be given in order for

dos

787109

line to be accepted (i.e. "parm/K,xyzzy/A" would require

"xyzzy=xxxxx" in order to work - "xxxxx" would not work). If you
need to avoid this for V36, put /K parameters after all non-switch

parameters. These problems should be fixed for V37.

Currently (V37 and before) it requires any strings passed in to have
newlines at the end of the string. This may or may not be fixed in

the future.

SEE ALSO
FindArg(), ReadItem(), FreeArgs(), AllocDosObiject ()

1.107 dos.library/Readltem

NAME
ReadItem - reads a single argument/name from command line (V36)

SYNOPSIS
value = ReadItem(buffer, maxchars, input)
DO D1 D2 D3

LONG ReadItem (STRPTR, LONG, struct CSource x)

FUNCTION
Reads a "word" from either Input () (buffered), or via CSource,
is non-NULL (see <dos/rdargs.h> for more information). Handles

if it

quoting and some ’'x’ substitutions (xe and xn) inside quotes (only).

See dos/dos.h for a listing of values returned by ReadItem()
(ITEM_XXXX). A "word" is delimited by whitespace, quotes, ’'=’,
an EOF.

ReadItem always unreads the last thing read (UnGetC(fh,-1)) so
caller can find out what the terminator was.

INPUTS

buffer — buffer to store word in.

maxchars - size of the buffer

input — CSource input or NULL (uses FGetC (Input()))
RESULT

value - See <dos/dos.h> for return values.

BUGS

Doesn’t actually unread the terminator.
SEE ALSO

ReadArgs (), FindArg(), UnGetC(), FGetC(), Input(), <dos/dos.h>,
<dos/rdargs.h>, FreeArgs()

1.108 dos.library/ReadLink

or

the

dos 79/109

NAME
ReadLink —-- Reads the path for a soft filesystem link (V36)
SYNOPSIS
success = ReadLink (port, lock, path, buffer, size)
DO D1 D2 D3 D4 D5

BOOL ReadLink (struct MsgPort %, BPTR, STRPTR, STRPTR, ULONG)

FUNCTION

ReadLink () takes a lock/name pair (usually from a failed attempt
to use them to access an object with packets), and asks the
filesystem to find the softlink and fill buffer with the modified
path string. You then start the resolution process again by
calling GetDeviceProc () with the new string from ReadLink ().

Soft-links are resolved at access time by a combination of the
filesystem (by returning ERROR_IS_SOFT_LINK to dos), and by
Dos (using ReadLink () to resolve any links that are hit).

INPUTS
port - msgport of the filesystem
lock - lock this path is relative to on the filesystem
path - path that caused the ERROR_IS_SOFT_LINK
buffer - pointer to buffer for new path from handler.
size — size of buffer.

RESULT
Success - boolean

BUGS
In V36, soft-links didn’t work in the ROM filesystem. This was
fixed for V37.

SEE ALSO
MakeLink (), Open (), Lock (), GetDeviceProc/()

1.109 dos.library/Relabel

NAME
Relabel -- Change the volume name of a volume (V36)
SYNOPSIS
success = Relabel (volumename, name)
DO D1 D2

BOOL Relabel (STRPTR, STRPTR)

FUNCTION
Changes the volumename of a volume, if supported by the filesystem.

INPUTS
volumename - Full name of device to rename (with ’':7)
newname - New name to apply to device (without ’:’)

dos 80/109

RESULT
success — Success/failure indicator

SEE ALSO

1.110 dos.library/RemAssignList

NAME
RemAssignList -- Remove an entry from a multi-dir assign (V36)
SYNOPSIS
success = RemAssignList (name, lock)
DO D1 D2

BOOL RemAssignList (STRPTR,BPTR)

FUNCTION

Removes an entry from a multi-directory assign. The entry removed is
the first one for which SamelLock with ’"lock’ returns that they are on
the same object. The lock for the entry in the list is unlocked (not

the entry passed in).

INPUTS
name - Name of device to remove lock from (without trailing ’:’)
lock - Lock associated with the object to remove from the list
RESULT
success — Success/failure indicator.
BUGS

In V36 through Vv39.23 dos, it would fail to remove the first lock
in the assign. Fixed in V39.24 dos (after the V39.106 kickstart).

SEE ALSO

Lock (), AssignLock (), AssignPath (), AssignLate (), DupLock(),
AssignAdd (), UnLock ()

1.111 dos.library/RemDosEntry

NAME
RemDosEntry —-—- Removes a Dos List entry from it’s list (V36)
SYNOPSIS
success = RemDosEntry (dlist)
DO D1

BOOL RemDosEntry (struct DosList x)

FUNCTION
This removes an entry from the Dos Device list. The memory associated
with the entry is NOT freed. NOTE: you must have locked the Dos List

dos 81/109

with the appropriate flags before calling this routine. Handler
writers should see the AddDosEntry () caveats about locking and use
a similar workaround to avoid deadlocks.

INPUTS
dlist — Device list entry to be removed.
RESULT
success — Success/failure indicator
SEE ALSO
AddDosEntry (), FindDosEntry (), NextDosEntry (), LockDosList (),
MakeDosEntry (), FreeDosEntry ()

1.112 dos.library/RemSegment

NAME
RemSegment - Removes a resident segment from the resident list (V36)
SYNOPSIS
success = RemSegment (segment)
DO D1

BOOL RemSegment (struct Segment x)

FUNCTION

Removes a resident segment from the Dos resident segment list,
unloads it, and does any other cleanup required. Will only succeed
if the seg_UC (usecount) is O.

INPUTS
segment - the segment to be removed
RESULT
success — success or failure.

SEE ALSO

FindSegment (), AddSegment ()

1.113 dos.library/Rename

NAME
Rename —-- Rename a directory or file
SYNOPSIS
success = Rename (oldName, newName)
DO D1 D2

BOOL Rename (STRPTR, STRPTR)

FUNCTION
Rename () attempts to rename the file or directory specified as

dos 82/109

"oldName’ with the name ’'newName’. If the file or directory
"newName’ exists, Rename () fails and returns an error. Both
"oldName’ and the ’"newName’ can contain a directory specification.
In this case, the file will be moved from one directory to another.

Note: it is impossible to Rename() a file from one volume to
another.

INPUTS
oldName - pointer to a null-terminated string
newName - pointer to a null-terminated string

RESULTS
success — boolean

SEE ALSO
Relabel ()

1.114 dos.library/ReplyPkt

NAME
ReplyPkt —-- replies a packet to the person who sent it to you (V36)
SYNOPSIS
ReplyPkt (packet, resultl, result2)
D1 D2 D3

void ReplyPkt (struct DosPacket =%, LONG, LONG)

FUNCTION

This returns a packet to the process which sent it to you. 1In
addition, puts your pr_MsgPort address in dp_Port, so using ReplyPkt ()
again will send the message to you. (This is used in "ping-ponging"
packets between two processes). It uses result 1 & 2 to set the
dp_Resl and dp_Res2 fields of the packet.

INPUTS
packet - packet to reply, assumed to set up correctly.
resultl - first result

result2 - secondary result

SEE ALSO

DoPkt (), SendPkt (), WaitPkt (), IoErr()

1.115 dos.library/RunCommand

NAME
RunCommand —-- Runs a program using the current process (V36)

SYNOPSIS
rc = RunCommand (seglist, stacksize, argptr, argsize)
DO D1 D2 D3 D4

dos 83/109

LONG RunCommand (BPTR, ULONG, STRPTR, ULONG)

FUNCTION

Runs a command on your process/cli. Seglist may be any language,
including BCPL programs. Stacksize is in bytes. argptr is a null-
terminated string, argsize is its length. Returns the returncode the
program exited with in dO0. Returns -1 if the stack couldn’t be
allocated.

NOTE: the argument string MUST be terminated with a newline to work
properly with ReadArgs () and other argument parsers.

RunCommand also takes care of setting up the current input filehandle
in such a way that ReadArgs () can be used in the program, and restores
the state of the buffering before returning. It also sets the value
returned by GetArgStr (), and restores it before returning. NOTE:

the setting of the argument string in the filehandle was added in V37.

It’s usually appropriate to set the command name (via
SetProgramName ()) before calling RunCommand (). RunCommand() sets
the value returned by GetArgStr () while the command is running.

INPUTS
seglist Seglist of command to run.
stacksize - Number of bytes to allocate for stack space

argptr - Pointer to argument command string.
argsize — Number of bytes in argument command.

RESULT

rc - Return code from executed command. -1 indicates failure
SEE ALSO
CreateNewProc (), SystemTagList (), Execute(), GetArgStr(),
SetProgramName (), ReadArgs ()

1.116 dos.library/SameDevice

NAME
SameDevice —-- Are two locks are on partitions of the device? (V37)
SYNOPSIS
same = SameDevice (lockl, lock2)
DO D1 D2

BOOL SameDevice (BPTR, BPTR)

FUNCTION
SameDevice () returns whether two locks refer to partitions that
are on the same physical device (if it can figure it out). This

may be useful in writing copy routines to take advantage of
asynchronous multi-device copies.

Entry existed in V36 and always returned 0.

dos 84 /109

INPUTS
lockl,lock2 — locks

RESULT
same — whether they’re on the same device as far as Dos can determine.

1.117 dos.library/SameLock

NAME
SameLock —-- returns whether two locks are on the same object (V36)
SYNOPSIS
value = SameLock (lockl, lock2)
DO D1 D2

LONG SameLock (BPTR, BPTR)

FUNCTION

Compares two locks. Returns LOCK_SAME if they are on the same object,
LOCK_SAME_VOLUME if on different objects on the same volume, and
LOCK_DIFFERENT if they are on different volumes. Always compare

for equality or non-equality with the results, in case new return
values are added.

INPUTS
lockl - 1st lock for comparison
lock2 - 2nd lock for comparison

RESULT
value - LOCK_SAME, LOCK_SAME_VOLUME, or LOCK_DIFFERENT

BUGS
Should do more extensive checks for NULL against a real lock, checking
to see if the real lock is a lock on the root of the boot volume.

In V36, it would return LOCK_SAME_VOLUME for different volumes on the
same handler. Also, LOCK_SAME_VOLUME was LOCK_SAME_HANDLER (now

an obsolete define, see <dos/dos.h>).

SEE ALSO
<dos/dos.h>

1.118 dos.library/Seek

NAME

Seek —— Set the current position for reading and writing
SYNOPSIS

oldPosition = Seek(file, position, mode)

DO D1 D2 D3

LONG Seek (BPTR, LONG, LONG)

dos

85/109

FUNCTION
Seek () sets the read/write cursor for the file ’"file’ to the
position ’'position’. This position is used by both Read() and
Write() as a place to start reading or writing. The result is the
current absolute position in the file, or -1 if an error occurs, in
which case IoErr () can be used to find more information. ’'mode’ can
be OFFSET_BEGINNING, OFFSET_CURRENT or OFFSET_END. It is used to
specify the relative start position. For example, 20 from current
is a position 20 bytes forward from current, -20 is 20 bytes back
from current.

So that to find out where you are, seek zero from current. The end
of the file is a Seek () positioned by zero from end. You cannot
Seek () beyond the end of a file.

INPUTS
file - BCPL pointer to a file handle
position - integer
mode — integer

RESULTS
oldPosition - integer

BUGS
The V36 and V37 ROM filesystem (and V36/V37 l:fastfilesystem)
returns the current position instead of -1 on an error. It sets
IoErr() to 0 on success, and an error code on an error. This bug
was fixed in the V39 filesystem.

SEE ALSO
Read (), Write (), SetFileSize()

1.119 dos.library/Selectinput

NAME
SelectInput —-- Select a filehandle as the default input channel (V36)
SYNOPSIS
old_fh = SelectInput (fh)
DO D1

BPTR SelectInput (BPTR)

FUNCTION
Set the current input as the default input for the process.
This changes the value returned by Input (). old_fh should

be closed or saved as needed.

INPUTS
fh - Newly default input handle

RESULT
0old_fh - Previous default input filehandle

dos 86/109

SEE ALSO
Input (), SelectOutput (), Output ()

1.120 dos.library/SelectOutput

NAME
SelectOutput —- Select a filehandle as the default output channel (V36)
SYNOPSIS
old_fh = SelectOutput (fh)
DO D1

BPTR SelectOutput (BPTR)

FUNCTION
Set the current output as the default output for the process.
This changes the value returned by Output (). old_fh should

be closed or saved as needed.

INPUTS
th - Newly desired output handle
RESULT
old_fh - Previous current output
SEE ALSO
Output (), SelectInput (), Input/()

1.121 dos.library/SendPkt

NAME
SendPkt —-- Sends a packet to a handler (V36)
SYNOPSIS
SendPkt (packet, port, replyport)
D1 D2 D3

void SendPkt (struct DosPacket =x,struct MsgPort =x,struct MsgPort =)

FUNCTION

Sends a packet to a handler and does not wait. All fields in the
packet must be initialized before calling this routine. The packet
will be returned to replyport. If you wish to use this with
WaitPkt (), use the address of your pr_MsgPort for replyport.

INPUTS
packet - packet to send, must be initialized and have a message.
port — pr_MsgPort of handler process to send to.
replyport - MsgPort for the packet to come back to.

NOTES
Callable from a task.

dos 87 /109

SEE ALSO
DoPkt (), WaitPkt (), AllocDosObject (), FreeDosObject (), AbortPkt ()

1.122 dos.library/SetArgStr

NAME
SetArgStr —- Sets the arguments for the current process (V36)
SYNOPSIS
oldptr = SetArgStr (ptr)
DO D1

STRPTR SetArgStr (STRPTR)

FUNCTION
Sets the arguments for the current program. The ptr MUST be reset
to it’s original value before process exit.

INPUTS
ptr - pointer to new argument string.

RESULT
oldptr - the previous argument string
SEE ALSO
GetArgStr (), RunCommand ()

1.123 dos.library/SetComment

NAME

SetComment —-- Change a files’ comment string
SYNOPSIS

success = SetComment (name, comment)

DO D1 D2

BOOL SetComment (STRPTR, STRPTR)

FUNCTION
SetComment () sets a comment on a file or directory. The comment is
a pointer to a null-terminated string of up to 80 characters in the
current ROM filesystem (and RAM:). Note that not all filesystems

will support comments (for example, NFS usually will not), or the
size of comment supported may vary.

INPUTS
name - pointer to a null-terminated string
comment - pointer to a null-terminated string
RESULTS

success — boolean

dos 88/109

SEE ALSO
Examine (), ExNext (), SetProtection ()

1.124 dos.library/SetConsoleTask

NAME
SetConsoleTask —— Sets the default console for the process (V36)
SYNOPSIS
oldport = SetConsoleTask (port)
DO D1

struct MsgPort xSetConsoleTask (struct MsgPort =)
FUNCTION
Sets the default console task’s port (pr_ConsoleTask) for the

current process.

INPUTS
port - The pr_MsgPort of the default console handler for the process

RESULT
oldport - The previous ConsoleTask value.

SEE ALSO
GetConsoleTask (), Open /()

1.125 dos.library/SetCurrentDirName

NAME
SetCurrentDirName —-- Sets the directory name for the process (V36)
SYNOPSIS
success = SetCurrentDirName (name)
DO D1

BOOL SetCurrentDirName (STRPTR)

FUNCTION

Sets the name for the current dir in the cli structure. If the name
is too long to fit, a failure is returned, and the old value is left
intact. It is advised that you inform the user of this condition.

This routine is safe to call even if there is no CLI structure.

INPUTS
name — Name of directory to be set.
RESULT
success — Success/failure indicator

BUGS

dos 89/109

This clips to a fixed (1.3 compatible) size.

SEE ALSO
GetCurrentDirName ()

1.126 dos.library/SetFileDate

NAME
SetFileDate —-— Sets the modification date for a file or dir (V36)
SYNOPSIS
success = SetFileDate (name, date)
DO D1 D2

BOOL SetFileDate (STRPTR, struct DateStamp x*)

FUNCTION

Sets the file date for a file or directory. ©Note that for the 01d
File System and the Fast File System, the date of the root directory
cannot be set. Other filesystems may not support setting the date
for all files/directories.

INPUTS
name - Name of object
date - New modification date
RESULT
success — Success/failure indication
SEE ALSO

DateStamp (), Examine (), ExNext (), ExAll ()

1.127 dos.library/SetFileSize

NAME
SetFileSize —— Sets the size of a file (V36)
SYNOPSIS
newsize = SetFileSize (fh, offset, mode)
DO D1 D2 D3

LONG SetFileSize (BPTR, LONG, LONG)

FUNCTION
Changes the file size, truncating or extending as needed. Not all
handlers may support this; be careful and check the return code. If

the file is extended, no values should be assumed for the new bytes.
If the new position would be before the filehandle’s current position
in the file, the filehandle will end with a position at the
end-of-file. If there are other filehandles open onto the file, the
new size will not leave any filehandle pointing past the end-of-file.
You can check for this by looking at the new size (which would be

dos

90/109

different than what you requested).

The seek position should not be changed unless the file is made
smaller than the current seek position. However, see BUGS.

Do NOT count on any specific values to be in any extended area.

INPUTS
fh — File to be truncated/extended.
offset - Offset from position determined by mode.
mode — One of OFFSET_BEGINNING, OFFSET_CURRENT, or OFFSET_END.
RESULT
newsize - position of new end-of-file or -1 for error.
BUGS
The RAM: filesystem and the normal Amiga filesystem act differently
in where the file position is left after SetFileSize(). RAM: leaves

you at the new end of the file (incorrectly), while the Amiga ROM
filesystem leaves the seek position alone, unless the new position
is less than the current position, in which case you’re left at the
new EOF.

The best workaround is to not make any assumptions about the seek
position after SetFileSize().

SEE ALSO
Seek ()

1.128 dos.library/SetFileSysTask

NAME
SetFileSysTask ——- Sets the default filesystem for the process (V36)
SYNOPSIS
oldport = SetFileSysTask (port)
DO D1

struct MsgPort =*SetFileSysTask (struct MsgPort x)

FUNCTION
Sets the default filesystem task’s port (pr_FileSystemTask) for the
current process.

INPUTS
port - The pr_MsgPort of the default filesystem for the process

RESULT
oldport - The previous FileSysTask value

SEE ALSO
GetFileSysTask (), Open/()

dos 91/109

1.129 dos.library/SetloErr

NAME
SetIoErr —-- Sets the value returned by IoErr () (V36)
SYNOPSIS
oldcode = SetIoErr (code)
DO D1

LONG SetIoErr (LONG) ;

FUNCTION
This routine sets up the secondary result (pr_Result2) return code
(returned by the IoErr() function).

INPUTS
code - Code to be returned by a call to IoErr.

RESULT
oldcode - The previous error code.

SEE ALSO

IoErr (), Fault(), PrintFault ()

1.130 dos.library/SetMode

NAME
SetMode - Set the current behavior of a handler (V36)

SYNOPSIS
success = SetMode (fh, mode)
DO D1 D2

BOOL SetMode (BPTR, LONG)

FUNCTION

SetMode () sends an ACTION_SCREEN_MODE packet to the handler in
question, normally for changing a CON: handler to raw mode or
vice-versa. For CON:, use 1 to go to RAW: mode, 0 for CON: mode.

INPUTS

fh — filehandle

mode - The new mode you want
RESULT

success — Boolean
SEE ALSO

1.131 dos.library/SetOwner

dos 92/109
NAME
SetOwner —-- Set owner information for a file or directory (V39)
SYNOPSIS
success = SetOwner (name, owner_info)
DO D1 D2

BOOL SetOwner (STRPTR, LONG)

FUNCTION
SetOwner () sets the owner information for the
This value is a 32-bit value that is normally
of owner user id (bits 31-16), and 16 bits of
15-0) . However, other than returning them as
ExNext () /ExALlLl (),

These are primarily for use by networking software
in conjunction with the FIBF_OTR_xxx and FIBF_GRP_xxx

hosts),
protection bits.

This entrypoint did not exist in V36,
dos.library to use it.

file or directory.
split into 16 bits
owner group id (bits
shown by Examine () /

the filesystem take no interest in the values.

(clients and

so you must open at least V37
V37 dos.library will return FALSE to this

call.
INPUTS

name - pointer to a null-terminated string

owner_info - owner uid (31:16) and group id (15:0)
RESULTS

success — boolean
SEE ALSO

SetProtect (), Examine (), ExNext (), ExAll(), <dos/dos.h>

1.132 dos.library/SetProgramDir

NAME

SetProgramDir —-—- Sets the directory returned by GetProgramDir (V36)
SYNOPSIS

oldlock = SetProgramDir (lock)

DO D1

BPTR SetProgramDir (BPTR)

FUNCTION

Sets a shared lock on the directory the program was loaded from.

This can be used for a program to find data files,
or to find the program file itself.
This can be accessed via GetProgramDir ()

stored with the program,
is a valid input.
by using paths relative to PROGDIR:.

INPUTS

that are
NULL
or

etc,

lock — A lock on the directory the current program was loaded from

dos 93/109

RESULT
oldlock - The previous ProgramDir.

SEE ALSO
GetProgramDir (), Open|()

1.133 dos.library/SetProgramName

NAME
SetProgramName —-- Sets the name of the program being run (V36)
SYNOPSIS
success = SetProgramName (name)
DO D1

BOOL SetProgramName (STRPTR)

FUNCTION

Sets the name for the program in the cli structure. If the name is
too long to fit, a failure is returned, and the old value is left
intact. It is advised that you inform the user if possible of this

condition, and/or set the program name to an empty string.
This routine is safe to call even if there is no CLI structure.

INPUTS
name — Name of program to use.
RESULT
success — Success/failure indicator.
BUGS

This clips to a fixed (1.3 compatible) size.

SEE ALSO
GetProgramName ()

1.134 dos.library/SetPrompt

NAME
SetPrompt —-—- Sets the CLI/shell prompt for the current process (V36)
SYNOPSIS
success = SetPrompt (name)
DO D1

BOOL SetPrompt (STRPTR)

FUNCTION

Sets the text for the prompt in the cli structure. If the prompt is
too long to fit, a failure is returned, and the old value is left
intact. It is advised that you inform the user of this condition.
This routine is safe to call even if there is no CLI structure.

dos 94 /109

INPUTS
name - Name of prompt to be set.
RESULT
success — Success/failure indicator.
BUGS

This clips to a fixed (1.3 compatible) size.

SEE ALSO
GetPrompt ()

1.135 dos.library/SetProtection

NAME

SetProtection —-- Set protection for a file or directory
SYNOPSIS

success = SetProtection(name, mask)

DO D1 D2

BOOL SetProtection (STRPTR, LONG)

FUNCTION
SetProtection () sets the protection attributes on a file or
directory. See <dos/dos.h> for a listing of protection bits.

Before V36, the ROM filesystem didn’t respect the Read and Write
bits. 1In V36 or later and in the FFS, the Read and Write
bits are respected.

The archive bit should be cleared by the filesystem whenever the file
is changed. Backup utilities will generally set the bit after
backing up each file.

The V36 Shell looks at the execute bit, and will refuse to execute
a file if it is set.

Other bits will be defined in the <dos/dos.h> include files. Rather
than referring to bits by number you should use the definitions in
<dos/dos.h>.

INPUTS
name - pointer to a null-terminated string
mask - the protection mask required

RESULTS
success — boolean

SEE ALSO
SetComment (), Examine (), ExNext (), <dos/dos.h>

dos 95/109

1.136 dos.library/SetVar

NAME
SetVar —-— Sets a local or environment variable (V36)
SYNOPSIS
success = SetVar (name, buffer, size, flags)
DO D1 D2 D3 D4

BOOL SetVar (STRPTR, STRPTR, LONG, ULONG)

FUNCTION
Sets a local or environment variable. It is advised to only use
ASCII strings inside variables, but not required.

INPUTS
name - pointer to an variable name. Note variable names follow
filesystem syntax and semantics.
buffer - a user allocated area which contains a string that is the
value to be associated with this variable.

size - length of the buffer region in bytes. -1 means buffer
contains a null-terminated string.

flags - combination of type of var to set (low 8 bits), and
flags to control the behavior of this routine. Currently

defined flags include:

GVF_LOCAL_ONLY - set a local (to your process) variable.
GVF_GLOBAL_ONLY - set a global environment variable.

The default is to set a local environment variable.
RESULT
success - If non-zero, the variable was sucessfully set, FALSE

indicates failure.

BUGS
LV_VAR is the only type that can be global

SEE ALSO
GetVar (), DeleteVar (), Findvar (), <dos/var.h>

1.137 dos.library/SetVBuf

NAME
SetVBuf -- set buffering modes and size (V39)
SYNOPSIS
error = SetVBuf (fh, buff, type, size)
DO D1 D2 D3 D4

LONG SetVBuf (BPTR, STRPTR, LONG, LONG)

FUNCTION
Changes the buffering modes and buffer size for a filehandle.

dos 96 /109

With buff == NULL, the current buffer will be deallocated and a
new one of (approximately) size will be allocated. If buffer is
non-NULL, it will be used for buffering and must be at least

max (size,208) bytes long, and MUST be longword aligned. If size
is -1, then only the buffering mode will be changed.

Note that a user-supplied buffer will not be freed if it is later
replaced by another SetVBuf () call, nor will it be freed if the
filehandle is closed.

Has no effect on the buffersize of filehandles that were not created
by AllocDosObject () .

INPUTS
fh — Filehandle
buff - buffer pointer for buffered I/0 or NULL. MUST be LONG-aligned!
type - buffering mode (see <dos/stdio.h>)
size — size of buffer for buffered I/0 (sizes less than 208 bytes
will be rounded up to 208), or -1.

RESULT

error — 0 if successful. NOTE: opposite of most dos functions!
NOTE: fails if someone has replaced the buffer without
using SetVBuf () - RunCommand () does this. Remember to

check error before freeing user-supplied buffers!

BUGS
Not implemented until after V39. From V36 up to V39, always
returned 0.

SEE ALSO

FputC(), FGetC(), UnGetC(), Flush(), FRead(), FWrite(), FGets(),
FPuts (), AllocDosObject ()

1.138 dos.library/SplitName

NAME
SplitName -- splits out a component of a pathname into a buffer (V36)
SYNOPSIS
newpos = SplitName (name, separator, buf, oldpos, size)
DO D1 D2 D3 D4 D5

WORD SplitName (STRPTR, UBYTE, STRPTR, WORD, LONG)

FUNCTION

This routine splits out the next piece of a name from a given file
name. Each piece is copied into the buffer, truncating at size-1
characters. The new position is then returned so that it may be
passed in to the next call to splitname. If the separator is not

found within ’size’ characters, then size-1 characters plus a null will
be put into the buffer, and the position of the next separator will
be returned.

If a a separator cannot be found, -1 is returned (but the characters

dos 97 /109

from the old position to the end of the string are copied into the
buffer, up to a maximum of size-1 characters). Both strings are
null-terminated.

This function is mainly intended to support handlers.

INPUTS
name - Filename being parsed.
separator - Separator charactor to split by.
buf — Buffer to hold separated name.
oldpos — Current position in the file.
size - Size of buf in bytes (including null termination).

RESULT
newpos - New position for next call to splitname. -1 for last one.
BUGS

In V36 and V37, path portions greater than or equal to ’"size’ caused
the last character of the portion to be lost when followed by a
separator. Fixed for V39 dos. For V36 and V37, the suggested work-—
around is to call SplitName () with a buffer one larger than normal
(for example, 32 bytes), and then set buf[size-2] to "0’ (for example,
buf[30] = "\0’;).

SEE ALSO
FilePart (), PathPart (), AddPart ()

1.139 dos.library/StartNotify

NAME
StartNotify —-—- Starts notification on a file or directory (V36)
SYNOPSIS
success = StartNotify (notifystructure)
DO D1

BOOL StartNotify(struct NotifyRequest x)

FUNCTION
Posts a notification request. Do not modify the notify structure while
it is active. You will be notified when the file or directory changes.

For files, you will be notified after the file is closed. Not all
filesystems will support this: applications should NOT require it. 1In
particular, most network filesystems won’t support it.

INPUTS
notifystructure - A filled-in NotifyRequest structure

RESULT
success - Success/failure of request

BUGS
The V36 floppy/HD filesystem doesn’t actually send notifications. The
V36 ram handler (ram:) does. This has been fixed for V37.

dos 98 /109

SEE ALSO
EndNotify (), <dos/notify.h>

1.140 dos.library/StrToDate

NAME
StrToDate —-- Converts a string to a DateStamp (V36)
SYNOPSIS
success = StrToDate(datetime)
DO D1

BOOL StrToDate(struct DateTime *)

FUNCTION
Converts a human readable ASCII string into an AmigaDOS
DateStamp.

INPUTS
DateTime - a pointer to an initialized DateTime structure.

The DateTime structure should be initialized as follows:
dat_Stamp - ignored on input.

dat_Format - a format byte which specifies the format of the
dat_StrDat. This can be any of the following (note:
If value used is something other than those below,
the default of FORMAT_DOS is used) :

FORMAT_DOS: AmigaDOS format (dd-mmm-yy) .
FORMAT_INT: International format (yy-mmm-dd) .
FORMAT_USA: American format (mm-dd-yy) .
FORMAT_CDN: Canadian format (dd-mm-yy) .
FORMAT_DEF: default format for locale.

dat_Flags - a flags byte. The only flag which affects this
function is:

DTF_SUBST: ignored by this function
DTF_FUTURE: If set, indicates that strings such
as (stored in dat_StrDate) "Monday"
refer to "next" monday. Otherwise,
if clear, strings like "Monday"
refer to "last" monday.

dat_StrDay - ignored bythis function.
dat_StrDate - pointer to valid string representing the date.

This can be a "DTF_SUBST" style string such as
"Today" "Tomorrow" "Monday", or it may be a string

dos 99/109

as specified by the dat_Format byte. This will be
converted to the ds_Days portion of the DateStamp.
If this pointer is NULL, DateStamp->ds_Days will not
be affected.

dat_StrTime - Pointer to a buffer which contains the time in
the ASCII format hh:mm:ss. This will be converted
to the ds_Minutes and ds_Ticks portions of the
DateStamp. If this pointer is NULL, ds_Minutes and
ds_Ticks will be unchanged.

RESULT

success — a zero return indicates that a conversion could
not be performed. A non-zero return indicates that the
DateTime.dat_Stamp variable contains the converted
values.

SEE ALSO
DateStamp (), DateToStr(), <dos/datetime.h>

1.141 dos.library/StrToLong

NAME
StrToLong —-- string to long value (decimal) (V36)
SYNOPSIS
characters = StrTolong(string,value)
DO D1 D2

LONG StrToLong (STRPTR, LONG x)

FUNCTION
Converts decimal string into LONG value. Returns number of characters
converted. Skips over leading spaces & tabs (included in count). If

no decimal digits are found (after skipping leading spaces & tabs),
StrToLong returns -1 for characters converted, and puts 0 into value.

INPUTS

string - Input string.

value - Pointer to long value. Set to 0 if no digits are converted.
RESULT

result - Number of characters converted or -1.
BUGS

Before V39, if there were no convertible characters it returned the
number of leading white-space characters (space and tab in this case).

1.142 dos.library/SystemTagList

NAME
SystemTagList —— Have a shell execute a command line (V36)

dos 100/109

SYNOPSIS
error = SystemTagList (command, tags)
DO D1 D2

LONG SystemTagList (STRPTR, struct Tagltem =)

error = System(command, tags)
DO D1 D2

LONG System(STRPTR, struct Tagltem x*)
error = SystemTags (command, Tagl, ...)

LONG SystemTags (STRPTR, ULONG, ...)

FUNCTION
Similar to Execute(), but does not read commands from the input
filehandle. Spawns a Shell process to execute the command, and

returns the returncode the command produced, or -1 if the command
could not be run for any reason. The input and output filehandles
will not be closed by System, you must close them (if needed) after
System returns, if you specified them via SYS_Input or SYS_Output.

By default the new process will use your current Input () and Output ()
filehandles. Normal Shell command-line parsing will be done
including redirection on ’command’. The current directory and path
will be inherited from your process. Your path will be used to find
the command (if no path is specified).

Note that you may NOT pass the same filehandle for both SYS_Input
and SYS_Output. If you want input and output to both be to the same
CON: window, pass a SYS_Input of a filehandle on the CON: window,
and pass a SYS_Output of NULL. The shell will automatically set

the default Output () stream to the window you passed via SYS_Input,
by opening "x" on that handler.

If used with the SYS_Asynch flag, it WILL close both it’s input and
output filehandles after running the command (even if these were
your Input () and Output()!)

Normally uses the boot (ROM) shell, but other shells can be specified
via SYS_UserShell and SYS_CustomShell. Normally, you should send
things written by the user to the UserShell. The UserShell defaults
to the same shell as the boot shell.

The tags are passed through to CreateNewProc() (tags that conflict
with SystemTagList () will be filtered out). This allows setting
things like priority, etc for the new process. The tags that are

currently filtered out are:

NP_Seglist
NP_FreeSeglist
NP_Entry
NP_Input
NP_Output
NP_CloselInput

dos 101/109

NP_CloseOutput
NP_HomeDir

NP_Cli
INPUTS
command — Program and arguments
tags - see <dos/dostags.h>. ©Note that both SystemTagList ()-—
specific tags and tags from CreateNewProc () may be passed.
RESULT
error - 0 for success, result from command, or -1. Note that on
error, the caller is responsible for any filehandles or other
things passed in via tags. -1 will only be returned if
dos could not create the new shell. TIf the command is not

found the shell will return an error value, normally
RETURN_ERROR.

SEE ALSO
Execute (), CreateNewProc(), <dos/dostags.h>, Input (), Output ()

1.143 dos.library/UnGetC

NAME
UnGetC —-- Makes a char available for reading again. (buffered) (V36)
SYNOPSIS
value = UnGetC(fh, character)
DO D1 D2

LONG UnGetC (BPTR, LONG)

FUNCTION

Pushes the character specified back into the input buffer. Every
time you use a buffered read routine, you can always push back 1
character. You may be able to push back more, though it is not
recommended, since there is no guarantee on how many can be
pushed back at a given moment.

Passing -1 for the character will cause the last character read to
be pushed back. If the last character read was an EOF, the next
character read will be an EOF.

Note: UnGetC can be used to make sure that a filehandle is set up
as a read filehandle. This is only of importance if you are writing
a shell, and must manipulate the filehandle’s buffer.

INPUTS
fh — filehandle to use for buffered I/O
character - character to push back or -1

RESULT
value — character pushed back, or FALSE if the character cannot
be pushed back.

BUGS

dos 102 /109

In V36, UnGetC(fh,-1) after an EOF would not cause the next character
read to be an EOF. This was fixed for V37.

SEE ALSO
FGetC (), FPutC(), Flush{()

1.144 dos.library/UnLoadSeg

NAME

UnLoadSeg ——- Unload a seglist previously loaded by LoadSeg()
SYNOPSIS

success = UnLoadSeg(seglist)

DO D1

BOOL UnLoadSeg (BPTR)

FUNCTION
Unload a seglist loaded by LoadSeg() . "seglist’ may be zero.
Overlaid segments will have all needed cleanup done, including
closing files.

INPUTS
seglist - BCPL pointer to a segment identifier
RESULTS
success — returns 0 if a NULL seglist was passed or if it failed

to close an overlay file. NOTE: this function returned
a random value before V36!

SEE ALSO
LoadSeg (), InternalloadSeg(), InternalUnLoadSeg/()

1.145 dos.library/UnLock

NAME

UnLock —- Unlock a directory or file
SYNOPSIS

UnLock (lock)
D1

void UnLock (BPTR)

FUNCTION
The filing system lock (obtained from Lock (), DupLock(), or
CreateDir()) 1is removed and deallocated.

INPUTS

lock - BCPL pointer to a lock

NOTE

dos

103/109

passing zero to UnLock() is harmless
SEE ALSO
Lock (), DupLock (), ParentOfFH(), DupLockFromFH ()

1.146 dos.library/UnLockDosList

NAME
UnLockDosList —-- Unlocks the Dos List (V36)
SYNOPSIS
UnLockDosList (flags)
D1

void UnLockDosList (ULONG)

FUNCTION

Unlocks the access on the Dos Device List. You MUST pass the same

flags you used to lock the list.

INPUTS

flags — MUST be the same flags passed to (Attempt)LockDosList ()

SEE ALSO
AttemptLockDosList (), LockDosList (), Permit ()

1.147 dos.library/UnLockRecord

NAME
UnLockRecord —-- Unlock a record (V36)
SYNOPSIS

success UnLockRecord(fh,offset, length)
DO D1 D2 D3

BOOL UnLockRecord (BPTR, ULONG, ULONG)

FUNCTION

This releases the specified lock on a file. Note that you must use
the same filehandle you used to lock the record, and offset and length
call must

must be the same values used to lock it. Every LockRecord()
be balanced with an UnLockRecord() call.

INPUTS
fh — File handle of locked file
offset - Record start position
length - Length of record in bytes
RESULT
success — Success or failure.

BUGS

dos 104 /109

See LockRecord()

SEE ALSO
LockRecords (), LockRecord(), UnLockRecords/()

1.148 dos.library/UnLockRecords

NAME
UnLockRecords —-- Unlock a list of records (V36)
SYNOPSIS
success = UnLockRecords (record_array)
DO D1

BOOL UnLockRecords (struct RecordLock =)

FUNCTION
This releases an array of record locks obtained using LockRecords.
You should NOT modify the record_array while you have the records

locked. Every LockRecords () call must be balanced with an
UnLockRecords () call.

INPUTS
record_array - List of records to be unlocked

RESULT
success - Success or failure.

BUGS

See LockRecord()

SEE ALSO
LockRecords (), LockRecord(), UnLockRecord()

1.149 dos.library/VFPrintf

NAME

VFPrintf -- format and print a string to a file (buffered) (V36)
SYNOPSIS

count = VFPrintf (fh, fmt, argv)

DO D1 D2 D3

LONG VFPrintf (BPTR, STRPTR, LONG =x*)
count = FPrintf (fh, fmt, ...)

LONG FPrintf (BPTR, STRPTR, ...)
FUNCTION

Writes the formatted string and values to the given file. This
routine is assumed to handle all internal buffering so that the

dos 105/109

formatting string and resultant formatted values can be arbitrarily
long. Any secondary error code is returned in IoErr (). This routine
is buffered.

INPUTS

fh — Filehandle to write to
fmt - RawDoFmt () style formatting string
argv - Pointer to array of formatting values

RESULT
count - Number of bytes written or -1 (EOF) for an error

BUGS

The prototype for FPrintf () currently forces you to cast the first
varargs parameter to LONG due to a deficiency in the program

that generates fds, prototypes, and amiga.lib stubs.

SEE ALSO
VPrintf (), VFWritef (), RawDoFmt (), FPutC()

1.150 dos.library/VFWritef

NAME
VFWritef - write a BCPL formatted string to a file (buffered) (V36)

SYNOPSIS
count = VFWritef (fh, fmt, argv)
DO D1 D2 D3

LONG VFWritef (BPTR, STRPTR, LONG x)
count = FWritef (fh, fmt, ...)
LONG FWritef (BPTR, STRPTR, ...)
FUNCTION
Writes the formatted string and values to the specified file. This

routine is assumed to handle all internal buffering so that the
formatting string and resultant formatted values can be arbitrarily

long. The formats are in BCPL form. This routine is buffered.
Supported formats are: (Note x is in base 36!)
$S - string (CSTR)

$Tx — writes a left-justified string in a field at least
x bytes long.

%$C - writes a single character

%$0x — writes a number in octal, maximum x characters wide
$Xx — writes a number in hex, maximum x characters wide

$Ix — writes a number in decimal, maximum x characters wide
$N - writes a number in decimal, any length

%$Ux — writes an unsigned number, maximum x characters wide
%$$ - ignore parameter

Note: ’"x’ above is actually the character value - "0’.

dos 106 /109

INPUTS
fh - filehandle to write to
fmt - BCPL style formatting string
argv - Pointer to array of formatting values
RESULT
count - Number of bytes written or -1 for error
BUGS
As of V37, VFWritef () does NOT return a valid return value. In

order to reduce possible errors, the prototypes supplied for the
system as of V37 have it typed as VOID.

SEE ALSO
VEFPrintf (), VFPrintf (), FPutC{()

1.151 dos.library/VPrintf

NAME
VPrintf —-- format and print string (buffered) (V36)
SYNOPSIS
count = VPrintf (fmt, argv)
DO D1 D2

LONG VPrintf (STRPTR, LONG =x)
count = Printf (fmt, ...)
LONG Printf (STRPTR, ...)

FUNCTION
Writes the formatted string and values to Output (). This routine is
assumed to handle all internal buffering so that the formatting string
and resultant formatted values can be arbitrarily long. Any secondary
error code is returned in IoErr (). This routine is buffered.

Note: RawDoFmt assumes 16 bit ints, so you will usually need ’"1’s in
your formats (ex: %$1d versus %d).

INPUTS
fmt - exec.library RawDoFmt () style formatting string
argv - Pointer to array of formatting values

RESULT
count - Number of bytes written or -1 (EOF) for an error

BUGS
The prototype for Printf () currently forces you to cast the first

varargs parameter to LONG due to a deficiency in the program
that generates fds, prototypes, and amiga.lib stubs.

SEE ALSO
VFPrintf (), VFWritef (), RawDoFmt (), FPutC/()

dos

107 /109

1.152 dos.library/WaitForChar

NAME

WaitForChar —- Determine if chars arrive within a time limit
SYNOPSIS

status = WaitForChar(file, timeout)

DO D1 D2

BOOL WaitForChar (BPTR, LONG)

FUNCTION
If a character is available to be read from ’"file’ within the
time (in microseconds) indicated by ’timeout’, WaitForChar ()
returns -1 (TRUE). If a character is available, you can use Read()
to read it. Note that WaitForChar () is only valid when the I/O
stream is connected to a virtual terminal device. If a character is
not available within ’‘timeout’, a 0 (FALSE) is returned.

BUGS
Due to a bug in the timer.device in V1.2/V1.3, specifying a timeout
of zero for WaitForChar () can cause the unreliable timer & floppy

disk operation.
INPUTS
file - BCPL pointer to a file handle

timeout - integer

RESULTS
status - boolean

SEE ALSO
Read (), FGetC()

1.153 dos.library/WaitPkt

NAME
WaitPkt -- Waits for a packet to arrive at your pr_MsgPort (V36)
SYNOPSIS
packet = WaitPkt ()
DO

struct DosPacket xWaitPkt (void);

FUNCTION
Waits for a packet to arrive at your pr_MsgPort. If anyone has
installed a packet wait function in pr_PktWait, it will be called.
The message will be automatically GetMsg()ed so that it is no longer
on the port. It assumes the message is a dos packet. It is NOT
guaranteed to clear the signal for the port.

RESULT

packet - the packet that arrived at the port (from 1ln_Name of message).

dos 108 /109

SEE ALSO
SendPkt (), DoPkt (), AbortPkt ()

1.154 dos.library/Write

NAME
Write —-— Write bytes of data to a file
SYNOPSIS
returnedLength = Write(file, buffer, length)
DO D1 D2 D3

LONG Write (BPTR, void =%, LONG)

FUNCTION
Write () writes bytes of data to the opened file ’"file’. ’'length’
indicates the length of data to be transferred; ’buffer’ is a
pointer to the buffer. The value returned is the length of
information actually written. So, when ’'length’ is greater than
zero, the value of ’length’ is the number of characters written.
Errors are indicated by a value of -1.

Note: this is an unbuffered routine (the request is passed directly
to the filesystem.) Buffered I/0 is more efficient for small
reads and writes; see FPutC().

INPUTS
file - BCPL pointer to a file handle
buffer - pointer to the buffer
length - integer

RESULTS
returnedlLength - integer

SEE ALSO
Read (), Seek (), Open(), Close(), FPutC

1.155 dos.library/WriteChars

NAME
WriteChars —-—- Writes bytes to the the default output (buffered) (V36)
SYNOPSIS
count = WriteChars (buf, buflen)
DO D1

LONG WriteChars (STRPTR, LONG)

FUNCTION
This routine writes a number of bytes to the default output. The
length is returned. This routine is buffered.

dos 109/109

INPUTS
buf — buffer of characters to write
buflen - number of characters to write

RESULT
count - Number of bytes written. -1 (EOF) indicates an error

SEE ALSO
FPuts (), FPutC(), FWrite(), PutStr()

	dos
	dos.doc
	dos.library/AbortPkt
	dos.library/AddBuffers
	dos.library/AddDosEntry
	dos.library/AddPart
	dos.library/AddSegment
	dos.library/AllocDosObject
	dos.library/AssignAdd
	dos.library/AssignLate
	dos.library/AssignLock
	dos.library/AssignPath
	dos.library/AttemptLockDosList
	dos.library/ChangeMode
	dos.library/CheckSignal
	dos.library/Cli
	dos.library/CliInitNewcli
	dos.library/CliInitRun
	dos.library/Close
	dos.library/CompareDates
	dos.library/CreateDir
	dos.library/CreateNewProc
	dos.library/CreateProc
	dos.library/CurrentDir
	dos.library/DateStamp
	dos.library/DateToStr
	dos.library/Delay
	dos.library/DeleteFile
	dos.library/DeleteVar
	dos.library/DeviceProc
	dos.library/DoPkt
	dos.library/DupLock
	dos.library/DupLockFromFH
	dos.library/EndNotify
	dos.library/ErrorReport
	dos.library/ExAll
	dos.library/ExAllEnd
	dos.library/Examine
	dos.library/ExamineFH
	dos.library/Execute
	dos.library/Exit
	dos.library/ExNext
	dos.library/Fault
	dos.library/FGetC
	dos.library/FGets
	dos.library/FilePart
	dos.library/FindArg
	dos.library/FindCliProc
	dos.library/FindDosEntry
	dos.library/FindSegment
	dos.library/FindVar
	dos.library/Flush
	dos.library/Format
	dos.library/FPutC
	dos.library/FPuts
	dos.library/FRead
	dos.library/FreeArgs
	dos.library/FreeDeviceProc
	dos.library/FreeDosEntry
	dos.library/FreeDosObject
	dos.library/FWrite
	dos.library/GetArgStr
	dos.library/GetConsoleTask
	dos.library/GetCurrentDirName
	dos.library/GetDeviceProc
	dos.library/GetFileSysTask
	dos.library/GetProgramDir
	dos.library/GetProgramName
	dos.library/GetPrompt
	dos.library/GetVar
	dos.library/Info
	dos.library/Inhibit
	dos.library/Input
	dos.library/InternalLoadSeg
	dos.library/InternalUnLoadSeg
	dos.library/IoErr
	dos.library/IsFileSystem
	dos.library/IsInteractive
	dos.library/LoadSeg
	dos.library/Lock
	dos.library/LockDosList
	dos.library/LockRecord
	dos.library/LockRecords
	dos.library/MakeDosEntry
	dos.library/MakeLink
	dos.library/MatchEnd
	dos.library/MatchFirst
	dos.library/MatchNext
	dos.library/MatchPattern
	dos.library/MatchPatternNoCase
	dos.library/MaxCli
	dos.library/NameFromFH
	dos.library/NameFromLock
	dos.library/NewLoadSeg
	dos.library/NextDosEntry
	dos.library/Open
	dos.library/OpenFromLock
	dos.library/Output
	dos.library/ParentDir
	dos.library/ParentOfFH
	dos.library/ParsePattern
	dos.library/ParsePatternNoCase
	dos.library/PathPart
	dos.library/PrintFault
	dos.library/PutStr
	dos.library/Read
	dos.library/ReadArgs
	dos.library/ReadItem
	dos.library/ReadLink
	dos.library/Relabel
	dos.library/RemAssignList
	dos.library/RemDosEntry
	dos.library/RemSegment
	dos.library/Rename
	dos.library/ReplyPkt
	dos.library/RunCommand
	dos.library/SameDevice
	dos.library/SameLock
	dos.library/Seek
	dos.library/SelectInput
	dos.library/SelectOutput
	dos.library/SendPkt
	dos.library/SetArgStr
	dos.library/SetComment
	dos.library/SetConsoleTask
	dos.library/SetCurrentDirName
	dos.library/SetFileDate
	dos.library/SetFileSize
	dos.library/SetFileSysTask
	dos.library/SetIoErr
	dos.library/SetMode
	dos.library/SetOwner
	dos.library/SetProgramDir
	dos.library/SetProgramName
	dos.library/SetPrompt
	dos.library/SetProtection
	dos.library/SetVar
	dos.library/SetVBuf
	dos.library/SplitName
	dos.library/StartNotify
	dos.library/StrToDate
	dos.library/StrToLong
	dos.library/SystemTagList
	dos.library/UnGetC
	dos.library/UnLoadSeg
	dos.library/UnLock
	dos.library/UnLockDosList
	dos.library/UnLockRecord
	dos.library/UnLockRecords
	dos.library/VFPrintf
	dos.library/VFWritef
	dos.library/VPrintf
	dos.library/WaitForChar
	dos.library/WaitPkt
	dos.library/Write
	dos.library/WriteChars

