
realtime

realtime ii

COLLABORATORS

TITLE :

realtime

ACTION NAME DATE SIGNATURE

WRITTEN BY July 23, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

realtime iii

Contents

1 realtime 1

1.1 realtime.doc . 1

1.2 realtime.library/CreatePlayer . 1

1.3 realtime.library/DeletePlayer . 3

1.4 realtime.library/ExternalSync . 3

1.5 realtime.library/FindConductor . 4

1.6 realtime.library/GetPlayerAttrsA . 4

1.7 realtime.library/LockRealTime . 6

1.8 realtime.library/NextConductor . 6

1.9 realtime.library/SetConductorState . 7

1.10 realtime.library/SetPlayerAttrs . 7

1.11 realtime.library/UnlockRealTime . 9

realtime 1 / 9

Chapter 1

realtime

1.1 realtime.doc

CreatePlayer()
DeletePlayer()
ExternalSync()
FindConductor()
GetPlayerAttrsA()
LockRealTime()
NextConductor()
SetConductorState()
SetPlayerAttrs()
UnlockRealTime()

1.2 realtime.library/CreatePlayer

NAME
CreatePlayerA -- create a player and link it to a conductor. (V37)
CreatePlayer -- varargs stub for CreatePlayerA(). (V37)

SYNOPSIS
player = CreatePlayerA(tagList);
D0 A0

struct Player *CreatePlayerA(struct TagItem *);

player = CreatePlayer(firstTag, ...);

struct Player *CreatePlayer(Tag, ...);

FUNCTION
Creates a player structure with the desired attributes.

INPUTS
tagList - pointer to an array of tags providing optional extra

parameters, or NULL

TAGS

realtime 2 / 9

PLAYER_Name (STRPTR) - name of the player (generally the
application’s name). Default is no name. (V37)

PLAYER_Hook (struct Hook *) - function to call when time changes
occur. Default is no function. The Hook is called
with:

A0 - address of Hook structure
A1 - message, currently pmTime or pmState

A2 - address of Player structure

Note that your hook function is not necessarily called
TICK_FREQ times per second. This is the maximum number
of times it can be called. (V37)

PLAYER_Priority (BYTE) - priority for the player, from -128 to +127.
Default is 0. (V37)

PLAYER_Conductor (STRPTR) - name of the conductor to link with. If
this conductor doesn’t exist, it is created
automatically. If ~0 is passed, creates a private
conductor. (V37)

PLAYER_Ready (BOOL) - set/clear the "ready" flag. Default is FALSE.
(V37)

PLAYER_AlarmTime (LONG) - sets this player’s alarm time, and the
PLAYERF_ALARMSET flag. (V37)

PLAYER_Alarm (BOOL) - if TRUE sets the PLAYERF_ALARMSET flag, FALSE
clears the flag. Default is FALSE. (V37)

PLAYER_AlarmSigTask (struct Task *) - task to signal on notify or
alarm. Default is no task. Having no task automatically
forces the PLAYERF_ALARMSET flag off. (V37)

PLAYER_AlarmSigBit (BYTE) - signal bit to use on alarm or -1 to
disable. Default is -1. Having a signal bit of -1
automatically forces the PLAYERF_ALARMSET flag
off. (V37)

PLAYER_Quiet (BOOL) - when TRUE, this player is ignored. Mainly
used by external sync applications. Default is FALSE.
(V37)

PLAYER_UserData (VOID *) - sets the player’s UserData value.
Default is NULL. (V37)

PLAYER_ID (UWORD) - sets the player’s ID value. Default is 0. (V37)

PLAYER_Conducted (BOOL) - if TRUE sets the PLAYERF_CONDUCTED flag,
FALSE clears the flag. Default is FALSE. (V37)

PLAYER_ExtSync (BOOL) - if TRUE, attempts to become external sync
source. (V37)

PLAYER_ErrorCode (LONG *) - optional pointer to a longword which

realtime 3 / 9

will receive an error code whenever this function
fails. Possible error values currently include:

RTE_NOMEMORY - memory allocation failed
RTE_NOTIMER - timer (CIA) allocation failed

RESULTS
player - a pointer to a Player structure on success or NULL on

failure. When NULL is returned, an error code can be returned
in the longword variable pointed to by the optional
PLAYER_ErrorCode tag.

SEE ALSO
DeletePlayer(), GetPlayerAttrs(), SetPlayerAttrs()

1.3 realtime.library/DeletePlayer

NAME
DeletePlayer -- delete a player. (V37)

SYNOPSIS
DeletePlayer(player);

A0

VOID DeletePlayer(struct Player *);

FUNCTION
Deletes the specified player.

Flushes the conductor that the player was connected to if this
is the last player connected to that conductor.

INPUTS
player - Player structure to delete, as allocated by

CreatePlayer(). May be NULL, in which case this function
does nothing.

SEE ALSO
CreatePlayer()

1.4 realtime.library/ExternalSync

NAME
ExternalSync -- provide external source clock for a player’s

conductor. (V37)

SYNOPSIS
result = ExternalSync(player, minTime, maxTime);
D0 A0 D0 D1

BOOL ExternalSync(struct Player *, LONG, LONG);

FUNCTION

realtime 4 / 9

Allows external applications to constrain conductor time between
minTime and maxTime, with the restraint that time can never run
backwards. Does nothing if the given player is not the
current External Sync source.

INPUTS
player - player referencing the conductor to change
minTime, maxTime - time constraints

RESULTS
result - TRUE if everything went OK, FALSE if the player is not the

current sync source or there is no conductor for the player.

1.5 realtime.library/FindConductor

NAME
FindConductor -- find a conductor by name. (V37)

SYNOPSIS
conductor = FindConductor(name);
D0 A0

struct Conductor *FindConductor(STRPTR);

FUNCTION
Returns the conductor with the given name or NULL if not found.

The conductor list must be locked before calling this function. This
is done by calling LockRealTime(RT_CONDUCTORS).

INPUTS
name - name of conductor to find.

RESULTS
conductor - pointer to a Conductor structure, or NULL if not found.

SEE ALSO
NextConductor(), LockRealTime(), UnlockRealTime()

1.6 realtime.library/GetPlayerAttrsA

NAME
GetPlayerAttrsA -- get the attributes of a player. (V37)
GetPlayerAttrs -- varargs stub for GetPlayerAttrsA(). (V37)

SYNOPSIS
numProcessed = GetPlayerAttrsA(player, tagList);
D0 A0 A1

ULONG GetPlayerAttrsA(struct Player *, struct TagItem *);

numProcessed = GetPlayerAttrs(player, firstTag, ...);

realtime 5 / 9

ULONG GetPlayerAttrs(struct Player *, Tag, ...);

FUNCTION
Retrieves the attributes of the specified player, according to the
attributes chosen in the tag list. For each entry in the tag list,
ti_Tag identifies the attribute, and ti_Data is a pointer to
the longword variable where you wish the result to be stored.

INPUTS
player - pointer to the player in question. May be NULL, in which case

this function returns 0
tagList - pointer to TagItem list.

TAGS
PLAYER_Name (STRPTR) - return the name of the player, or NULL

if this is an unnamed player. (V37)

PLAYER_Hook (struct Hook *) - returns a pointer to the current
function called when time changes occur, or NULL
if no function is currently installed. (V37)

PLAYER_Priority (BYTE) - returns the priority for the player. (V37)

PLAYER_Conductor (STRPTR) - returns the name of the conductor this
player is currently linked with, or NULL if the
player is not linked to a conductor. (V37)

PLAYER_Ready (BOOL) - gets the state of the "ready" flag. (V37)

PLAYER_AlarmTime (LONG) - gets the current alarm time for this
player. (V37)

PLAYER_Alarm (BOOL) - returns TRUE if this player’s alarm is
currently on. (V37)

PLAYER_AlarmSigTask (struct Task *) - returns a pointer to the task to
signal on notify or alarm, or NULL if there is no
task to signal. (V37)

PLAYER_AlarmSigBit (BYTE) - returns the signal bit to use on alarm or
-1 if no signal. (V37)

PLAYER_Quiet (BOOL) - returns TRUE if this player is currently being
ignored. FALSE if not. (V37)

PLAYER_UserData (VOID *) - returns the current value of this player’s
UserData. (V37)

PLAYER_ID (UWORD) - gets the value of this player’s ID. (V37)

PLAYER_Conducted (BOOL) - returns TRUE if this player is currently
being conducted. (V37)

PLAYER_ExtSync (BOOL) - returns TRUE if this player is the current
external sync source. (V37)

realtime 6 / 9

RESULTS
numProcessed - the number of attributes successfully filled in.

SEE ALSO
CreatePlayer(), SetPlayerAttrs()

1.7 realtime.library/LockRealTime

NAME
LockRealTime -- prevent other tasks from changing internal structures.

(V37)

SYNOPSIS
lockHandle = LockRealTime(lockType);
D0 D0

APTR LockRealTime(ULONG);

FUNCTION
This routine will lock the internal sempahores in the RealTime library.
If they are already locked by another task, this routine will wait
until they are free.

INPUTS
lockType - the internal list to lock. Only RT_CONDUCTORS is

currently defined.

RESULT
handle - if lockType is valid, returns a value that must be passed

later to UnlockRealTime() to unlock the list. Returns NULL
if passed an invalid lock type.

SEE ALSO
UnlockRealTime()

1.8 realtime.library/NextConductor

NAME
NextConductor -- return the next conductor on realtime.library’s

conductor list. (V37)

SYNOPSIS
conductor = NextConductor(previousConductor);
D0 A0

struct Conductor *NextConductor(struct Conductor *);

FUNCTION
Returns the next conductor on realtime.library’s conductor list. If
previousConductor is NULL, returns the first conductor in the list.
Returns NULL if no more conductors.

realtime 7 / 9

The conductor list must be locked before calling this function. This
is done by calling LockRealTime(RT_CONDUCTORS).

INPUTS
previousConductor - previous conductor or NULL to get first conductor.

RESULTS
conductor - next conductor on the list, or NULL if no more.

SEE ALSO
FindConductor(), LockRealTime(), UnlockRealTime()

1.9 realtime.library/SetConductorState

NAME
SetConductorState -- change the play state of a player’s

conductor. (V37)

SYNOPSIS
result = SetConductorState(player, state, time);
D0 A0 D0 D1

LONG SetConductorState(struct Player *, ULONG, LONG);

FUNCTION
Changes the play state of the conductor referenced by the
player. The states can be CONDSTATE_STOPPED, CONDSTATE_PAUSED,
CONDSTATE_LOCATE, CONDSTATE_RUNNING, or the special value
CONDSTATE_METRIC which asks the highest priority conducted node
to do a CONDSTATE_LOCATE, or the special value CONDSTATE_SHUTTLE
which informs the players that the clock value is changing, but the
clock isn’t actually running. Note that going from CONDSTATE_PAUSED
to CONDSTATE_RUNNING does not reset the cdt_ClockTime of the
conductor.

INPUTS
player - player referencing the conductor to change
state - new play state of conductor
time - start time offset in realtime.library heartbeat units

RESULTS
result - 0 if everything went OK, or a realtime.library error code

if an error occured. These currently include RTE_PLAYING
and RTE_NOCONDUCTOR.

1.10 realtime.library/SetPlayerAttrs

NAME
SetPlayerAttrsA -- set the attributes of a player. (V37)
SetPlayerAttrs -- varargs stub for SetPlayerAttrsA(). (V37)

SYNOPSIS

realtime 8 / 9

result = SetPlayerAttrsA(player, tagList);
D0 A0 A1

BOOL SetPlayerAttrsA(struct Player *, struct TagItem *);

result = SetPlayerAttrs(player,firstTag, ...);

BOOL SetPlayerAttrs(struct Player *, Tag, ...);

FUNCTION
Changes the attributes of the specified player, according to the
attributes chosen in the tag list. If an attribute is not provided
in the tag list, its value remains unchanged.

INPUTS
player - player to set the attributes of.
tagList - pointer to an array of tags specifying the attributes

to change, or NULL.

TAGS
PLAYER_Name (STRPTR) - name of the player (generally the

application’s name). (V37)

PLAYER_Hook (struct Hook *) - function to call when time changes
occur. The Hook is called
with:

A0 - address of Hook structure
A1 - message, currently pmTime or pmState

A2 - address of Player structure

Note that your hook function is not necessarily called
TICK_FREQ times per second. This is the maximum number
of times it can be called. (V37)

PLAYER_Priority (BYTE) - priority for the player, from -128 to +127.
(V37)

PLAYER_Conductor (STRPTR) - name of the conductor to link with. If
NULL, delink from conductor. (V37)

PLAYER_Ready (BOOL) - set/clear the "ready" flag. (V37)

PLAYER_AlarmTime (LONG) - sets this player’s alarm time, and the
PLAYERF_ALARMSET flag. (V37)

PLAYER_Alarm (BOOL) - if TRUE sets the PLAYERF_ALARMSET flag, FALSE
clears the flag. (V37)

PLAYER_AlarmSigTask (struct Task *) - task to signal on notify or
alarm. Setting this to NULL automatically clears the
PLAYERF_ALARMSET flag. (V37)

PLAYER_AlarmSigBit (BYTE) - signal bit to use on alarm or -1 to
disable. Setting this to -1 automatically clears the
PLAYERF_ALARMSET. (V37)

realtime 9 / 9

PLAYER_Quiet (BOOL) - when TRUE, this player is ignored. Mainly
used by external sync applications. (V37)

PLAYER_UserData (VOID *) - sets this player’s UserData value. (V37)

PLAYER_ID (UWORD) - sets this player’s ID value. (V37)

PLAYER_Conducted (BOOL) - if TRUE sets the PLAYERF_CONDUCTED flag,
FALSE clears the flag. (V37)

PLAYER_ExtSync (BOOL) - if TRUE, attempt to become external sync
source. If FALSE, release external sync. (V37)

PLAYER_ErrorCode (LONG *) - optional pointer to a longword which
will receive an error code whenever this function
fails. Possible error values currently include:

RTE_NOMEM - memory allocation failed
RTE_NOTIMER - timer (CIA) allocation failed

RESULTS
result - TRUE if all went well, FALSE if there was an error.

When an error occurs, an error code can be returned
in the longword variable pointed to by the optional
PLAYER_ErrorCode tag.

SEE ALSO
CreatePlayer(), DeletePlayer(), GetPlayerAttrs()

1.11 realtime.library/UnlockRealTime

NAME
UnlockRealTime -- unlock internal lists. (V37)

SYNOPSIS
UnlockRealTime(lockHandle);

A0

VOID UnlockRealTime(APTR);

FUNCTION
Undoes the effects of LockRealTime().

INPUTS
lockHandle - value returned by LockRealTime(). May be NULL.

SEE ALSO
LockRealTime()

	realtime
	realtime.doc
	realtime.library/CreatePlayer
	realtime.library/DeletePlayer
	realtime.library/ExternalSync
	realtime.library/FindConductor
	realtime.library/GetPlayerAttrsA
	realtime.library/LockRealTime
	realtime.library/NextConductor
	realtime.library/SetConductorState
	realtime.library/SetPlayerAttrs
	realtime.library/UnlockRealTime

